WO2011150736A1 - 无线基站及无线基站接收信号的方法 - Google Patents

无线基站及无线基站接收信号的方法 Download PDF

Info

Publication number
WO2011150736A1
WO2011150736A1 PCT/CN2011/073866 CN2011073866W WO2011150736A1 WO 2011150736 A1 WO2011150736 A1 WO 2011150736A1 CN 2011073866 W CN2011073866 W CN 2011073866W WO 2011150736 A1 WO2011150736 A1 WO 2011150736A1
Authority
WO
WIPO (PCT)
Prior art keywords
satellite
base station
signal
antenna
radio frequency
Prior art date
Application number
PCT/CN2011/073866
Other languages
English (en)
French (fr)
Inventor
袁毅
杨刚华
黄茂胜
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201180037414.6A priority Critical patent/CN103039121B/zh
Priority to JP2012523195A priority patent/JP2013501439A/ja
Publication of WO2011150736A1 publication Critical patent/WO2011150736A1/zh
Priority to US13/339,889 priority patent/US20120100801A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18515Transmission equipment in satellites or space-based relays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0644External master-clock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0641Change of the master or reference, e.g. take-over or failure of the master
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/10Access point devices adapted for operation in multiple networks, e.g. multi-mode access points

Definitions

  • the present invention claims the priority of the Chinese Patent Application entitled “A Wireless Base Station", which is filed on May 31, 2010, the Chinese Patent Office, Application No. 201010188622. The content is incorporated herein by reference.
  • TECHNICAL FIELD The present invention relates to the field of communications technologies, and in particular, to a method for receiving a signal by a wireless base station and a wireless base station.
  • BACKGROUND OF THE INVENTION In order to meet the clock accuracy requirements, satellite receiving systems are currently deployed in some wireless base stations to perform clock control of base stations using clock signals provided by satellites.
  • a conventional wireless base station is generally divided into two parts: a base station indoor device and a base station outdoor device.
  • the base station outdoor device mainly includes: a satellite antenna that receives satellite radio frequency signals and an access side radio frequency signal that receives and exchanges with the terminal.
  • the radio access antenna and the like, and the base station indoor device mainly includes a baseband module (mainly responsible for baseband service signal processing, main control, clock and transmission functions, referred to as BBU) and a radio frequency module (mainly responsible for transmitting and receiving signals for radio frequency processing, referred to as RRU).
  • the satellite receiving card is disposed in the baseband module or independently placed indoors, and is mainly used for decoding the satellite radio frequency signal received by the satellite antenna to obtain a clock signal, etc., to provide a clock signal for clock control to the baseband module.
  • the wireless base station of the existing architecture it is necessary to separately install a feeder line between the base station outdoor device and the indoor device of the base station (the length of which can be several meters) for the satellite receiving system, and transmit the satellite signal received by the satellite antenna to the satellite receiving card for demodulation processing.
  • the wiring is relatively complicated and the manufacturing cost is relatively high. Summary of the invention
  • the embodiments of the present invention provide a method for receiving a signal by a wireless base station and a wireless base station, which is used to solve the problem that the prior art has complicated wiring and relatively high manufacturing cost.
  • the embodiment of the present invention provides the following technical solutions:
  • a wireless base station includes:
  • Base station indoor device and base station outdoor device are Base station indoor device and base station outdoor device
  • the base station outdoor device includes: an adapter, a terrestrial service antenna, and a satellite antenna; wherein the terrestrial service antenna is a microwave transmission antenna or a radio access antenna;
  • the base station indoor device includes: a satellite signal processing module for decoding a satellite radio frequency signal received by the satellite antenna to obtain a satellite service signal;
  • the satellite antenna and terrestrial service antenna are coupled to the adapter for coupling the satellite antenna to a signal received by a terrestrial service antenna and for transmitting the coupled signal to the base station indoor device via the first data line.
  • a wireless base station includes:
  • Base station indoor device and base station outdoor device are Base station indoor device and base station outdoor device
  • the base station outdoor device includes: a terrestrial service antenna, a satellite antenna, a satellite signal processing module for decoding a satellite radio frequency signal received by the satellite antenna to obtain a satellite service signal, and a method for demodulating the ground a first terrestrial service processing module of the modulated signal received by the service antenna; wherein the terrestrial service antenna is a microwave transmission antenna or a radio access antenna;
  • the satellite service signal is transmitted to the indoor station device through the second data line, and the modulated signal received by the terrestrial service antenna demodulated by the first terrestrial service processing module is transmitted to the device through the second data line
  • the base station indoor device is described.
  • a method for receiving a signal by a wireless base station includes:
  • An adapter located at the outdoor unit of the base station couples a signal received by the satellite antenna and the terrestrial service antenna, wherein the terrestrial service antenna includes a microwave transmission antenna or a wireless access antenna located at an outdoor unit of the base station;
  • the adapter transmits the coupled signal to the base station indoor unit through the first data line;
  • the satellite signal processing module located in the indoor unit of the base station decodes the satellite radio frequency signal received by the satellite antenna to obtain a satellite service signal.
  • a method for receiving a signal by a wireless base station includes:
  • the satellite signal processing module located in the outdoor unit of the base station decodes the satellite radio frequency signal received by the satellite antenna located in the outdoor unit of the base station to obtain a satellite service signal;
  • a first terrestrial service processing module located in the outdoor device of the base station demodulates a modulated signal received by a terrestrial service antenna located in the outdoor device of the base station, and transmits a signal subjected to demodulation processing to the second data line to The base station indoor device.
  • the satellite signal processing module is disposed in the indoor unit of the base station, and the signals of the satellite antenna and the other at least one antenna are transmitted from the outdoor unit of the base station to the indoor unit of the base station through a data line, simplifying Feeder wiring from the outdoor unit of the base station to the indoor unit of the base station, and at the same time, due to the two signals The combination is performed. Therefore, a lightning protection module can be used for the data line after the combination, and the number of lightning protection modules can be relatively reduced compared with the scheme of using one lightning protection module for the two signals respectively, which is beneficial to reduce manufacturing cost.
  • the satellite signal processing module is disposed in the outdoor unit of the base station, and the processed signal of the satellite antenna and the other at least one antenna is transmitted from the outdoor unit of the base station to the indoor unit of the base station through a data line, simplifying The feeder wiring of the base station outdoor device to the indoor unit of the base station, and at the same time, since the two signals are combined, a lightning protection module can be used for the combined data line, and one lightning protection module is used for each of the two signals. Compared with the solution of the module, the number of lightning protection modules can be relatively reduced, which is beneficial to reducing the manufacturing cost.
  • FIG. 1 is a schematic diagram of a wireless base station in the prior art
  • FIG. 2 is a schematic diagram of a wireless base station according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic diagram of a radio base station according to Embodiment 2 of the present invention.
  • FIG. 3 is a schematic diagram of a signal flow of a radio base station according to Embodiment 2 of the present invention.
  • Figure 4-a is a schematic diagram of a radio base station according to Embodiment 3 of the present invention.
  • FIG. 4 is a schematic diagram of a signal flow of a radio base station according to Embodiment 3 of the present invention.
  • FIG. 5-a is a schematic diagram of a radio base station according to Embodiment 4 of the present invention.
  • FIG. 5 is a schematic diagram of another wireless base station according to Embodiment 4 of the present invention.
  • FIG. 5 is a schematic diagram of another wireless base station according to Embodiment 4 of the present invention.
  • 6-a is a schematic diagram of a wireless base station according to Embodiment 5 of the present invention.
  • 6-b is a schematic diagram of another wireless base station according to Embodiment 5 of the present invention.
  • 6-c is a schematic diagram of a signal flow of a radio base station according to Embodiment 5 of the present invention.
  • FIG. 7-a is a schematic diagram of a wireless base station according to Embodiment 6 of the present invention.
  • FIG. 7-b is a schematic diagram of a signal flow of a radio base station according to Embodiment 6 of the present invention.
  • Embodiments of the present invention provide a wireless base station, which can simplify feeder wiring of a wireless base station, and is advantageous for reducing manufacturing cost.
  • an embodiment of a radio base station may include: a base station outdoor device 210 and a base station indoor device 220.
  • the base station outdoor device 210 may include: a terrestrial service antenna 211, a satellite antenna 212, and an adapter 213; wherein the terrestrial service antenna 211 may be a microwave transmission antenna or a wireless access antenna;
  • the base station indoor device 220 may include: a satellite signal processing module 100 for decoding a satellite radio frequency signal received by the satellite antenna 212 to obtain a satellite service signal;
  • the satellite radio frequency signals received by the satellite antenna 212 are conducted through the first data line 230 to the base station indoor unit 220, and the modulated signals received by the terrestrial service antenna 211 are conducted through the first data line 230 to the base station indoor unit 220.
  • satellite antenna 212 and terrestrial service antenna 211 can be coupled to adapter 213, and adapter 213 is coupled to base station indoor unit 220 via first data line 230.
  • the adapter 120 can couple the satellite radio frequency signal received by the satellite antenna 212 and the modulation signal received by the terrestrial service antenna 211 into a path signal (the adapter can perform necessary impedance matching processing on the signal), and conduct the coupled signal to the first data line 230 to
  • the base station indoor unit 220 realizes that the signals of the two antennas are transmitted from the base station outdoor unit 210 to the base station indoor unit 220 through one data line, thereby simplifying the feeder wiring of the base station outdoor unit to the base station indoor unit.
  • the first data line 230 can be a feeder or other type of signal conducting line.
  • the base station indoor device 220 After receiving the coupled signal, the base station indoor device 220 performs decoupling, and processes the signal received by the satellite antenna and the signal received by the terrestrial service antenna through a corresponding processing circuit; for example, the satellite antenna can be received by the satellite signal processing unit.
  • the signal is processed and the signals received by the terrestrial service antenna are processed by microwave or wireless processing circuitry.
  • the data line is connected to a lightning protection circuit (or lightning protection module), and can be shared.
  • a lightning protection circuit performs lightning protection on the two antennas, and the number of lightning protection circuits can be saved compared with the prior art.
  • the terrestrial service antenna 211 is a wireless access antenna
  • the satellite signal processing module 100 It can be disposed in the radio frequency module of the base station indoor device 220.
  • the BBU and the RRU may be connected through a standard Common Public Radio Interface (CPRI) or an Open Base Station Architecture Initiative (OBSAI) interface.
  • CPRI Common Public Radio Interface
  • OBSAI Open Base Station Architecture Initiative
  • the data transmission between the wireless base station and the network side device such as the base station controller in the embodiment of the present invention may be wirelessly transmitted by microwave or the like in addition to wired transmission such as optical fiber.
  • the microwave transmission device may include: a microwave outdoor unit (abbreviated as 0DU, which is mainly used for frequency conversion processing of the transceiver signal, including converting the microwave radio frequency signal received by the microwave transmission antenna into a microwave intermediate frequency signal; and the microwave intermediate frequency signal to be transmitted.
  • the frequency conversion is a microwave radio frequency signal
  • the microwave indoor unit referred to as IDU, which is mainly used for baseband processing of the transmitted and received signals, including baseband processing on the received microwave intermediate frequency signal to obtain a microwave service signal; and baseband processing of the microwave service signal to be transmitted.
  • IDU microwave indoor unit
  • IDU which is mainly used for baseband processing of the transmitted and received signals, including baseband processing on the received microwave intermediate frequency signal to obtain a microwave service signal
  • baseband processing of the microwave service signal to be transmitted Obtain a microwave intermediate frequency signal, etc., or a microwave outdoor integrated device (that is, an outdoor device in which the microwave transmission device is entirely arranged in a base station).
  • the satellite signal processing module 100 may be disposed in the microwave indoor unit of the base station indoor device 220.
  • the satellite signal processing module 100 of the embodiment of the present invention may be, for example, a satellite receiving card or other device having similar functions.
  • the satellite signal processing module 100 decodes the satellite service signals obtained by processing the satellite radio frequency signals, including: a clock signal and/or a position signal.
  • the satellite service signal is a clock signal.
  • the clock signal can be provided to the baseband module of the base station indoor device 220, so that the baseband module can use the clock signal for clock calibration and control.
  • the satellite antenna can receive, for example, a satellite from a Galileo satellite, a Global Positioning System (GPS) satellite, a Beidou satellite, or a Global Navigation Satel System (GL0NASS) satellite. Satellite radio frequency signals from satellites.
  • GPS Global Positioning System
  • GL0NASS Global Navigation Satel System
  • the satellite signal processing module is disposed in the base station indoor device, and the signals of the satellite antenna and the other at least one antenna are transmitted from the base station outdoor device to the base station indoor device through one data line, thereby simplifying the base station outdoor device to
  • the feeder wiring of the indoor unit of the base station can also relatively reduce the number of lightning protection modules, which is beneficial to reducing the manufacturing cost.
  • the radio base station 300 may include: a base station outdoor device 310 and a base station indoor device 320.
  • the base station outdoor device 310 may include: a satellite antenna 311, a wireless access antenna 312, a microwave transmission antenna 313, a microwave outdoor unit 314, and an adapter 315 (the adapter 315 may also be disposed in the microwave outdoor unit 314).
  • the base station indoor device 320 may include: a radio frequency module 321, a baseband module 322, a microwave indoor unit 323, and a satellite signal processing module 100.
  • the satellite signal processing module 100 can be disposed in the microwave indoor unit 323.
  • the radio access antenna 312 is connected to the radio frequency module via a feeder.
  • the radio frequency module 321 is connected to the baseband module 322 via a CPRI or 0BSAI interface.
  • the radio frequency module 321 performs radio frequency processing on the access side radio frequency signal received by the radio access antenna 312 to obtain an access side baseband signal, and outputs the access side baseband signal to the baseband module 322 for baseband processing; the baseband module 322 can also send the baseband module 322.
  • the access side baseband signal is output to the radio frequency module 321 , and the radio frequency module 321 performs radio frequency processing on the access side baseband signal to be transmitted to obtain an access side radio frequency signal, and transmits the access side radio frequency signal through the radio access antenna 312.
  • the satellite antenna 311 is connected to the adapter 315; the microwave transmission antenna 313 is connected to the adapter 315 through the microwave outdoor unit 314, and the microwave outdoor unit 314 performs frequency conversion processing on the microwave radio frequency signal received by the microwave transmission antenna 313 to obtain a microwave intermediate frequency signal, and the microwave outdoor unit 314 outputs the microwave IF signal.
  • the microwave intermediate frequency signal is to the adapter 315.
  • the adapter 315 is connected to the microwave indoor unit 323 in the base station indoor unit 320 via a feeder 330.
  • the adapter 315 couples the satellite radio frequency signal with the microwave intermediate frequency signal from the microwave outdoor unit 314 to obtain a coupled signal (the adapter can perform necessary impedance matching processing on the signal).
  • the coupling signal is conducted to the microwave indoor unit 323 through the feeder line 330.
  • examples of parameters of the microwave IF signal and the satellite RF signal can be as follows:
  • Satellite RF signal receiving frequency (GHz) 1. 5/2. 4
  • the microwave indoor unit 323 separates the satellite radio frequency signal and the microwave intermediate frequency signal in the coupled signal, and demodulates and baseband the separated microwave intermediate frequency signal to obtain a microwave service signal; and outputs the separated satellite radio frequency signal to the satellite signal processing module 100,
  • the satellite signal processing module 100 decodes and receives the received satellite radio frequency signals to obtain satellite service signals (which may include clock signals), and the microwave indoor unit 323 converts the satellite service signals and the microwave service signals into corresponding signal formats (eg, Ethernet (Ethernet) Format, quasi-synchronous digital series (PDH, The Plesiochronous Digital Hierarchy format, SDH, Synchronous Digital Hierarchy format, etc., and the converted formatted service signals are output to the baseband module 322 for processing.
  • signal formats eg, Ethernet (Ethernet) Format, quasi-synchronous digital series (PDH, The Plesiochronous Digital Hierarchy format, SDH, Synchronous Digital Hierarchy format, etc.
  • the microwave indoor unit 323 can use the clock signal to calibrate the clock of the microwave service signal, and the baseband module 322 can extract the microwave service signal after the calibration clock.
  • the clock signal (it is understood that since the microwave indoor unit 323 uses the satellite signal processing module 100 to decode and process the satellite radio frequency signal to obtain a clock signal to calibrate the microwave service signal, the baseband module 322 extracts the microwave service signal after the calibration clock.
  • the clock signal can be equivalent to the satellite signal processing module 100 decoding the clock signal obtained by processing the satellite radio frequency signal, and the clock signal is used for clock calibration and control.
  • the microwave indoor unit 323 may include: a microwave intermediate frequency module 3231, a microwave baseband module 3232, a service interface module 3233, a clock module 3234, and the like.
  • the satellite radio frequency signal carries a clock signal
  • the signal flow direction in the base station 300 and the working mode of each module can be:
  • the satellite antenna 311 receives the satellite radio frequency signal and outputs it to the adapter 315 through the feeder line;
  • the microwave transmission antenna 313 receives the microwave radio frequency signal and outputs it to the microwave outdoor unit 314 through the feeder line, and the microwave outdoor unit 314 performs frequency conversion processing on the microwave radio frequency signal to obtain a microwave intermediate frequency signal.
  • the microwave outdoor unit 314 outputs the microwave intermediate frequency signal to the adapter 315.
  • the adapter 315 couples the satellite radio frequency signal and the microwave intermediate frequency signal, and outputs the coupled signals of the satellite radio frequency signal and the microwave intermediate frequency signal to the microwave indoor unit 323 of the base station indoor unit 320.
  • the microwave intermediate frequency module 3231 of the microwave indoor unit 323 receives the coupled signal of the satellite radio frequency signal and the microwave intermediate frequency signal, separates the satellite radio frequency signal and the microwave intermediate frequency signal in the coupled signal, and outputs the separated satellite radio frequency signal to the satellite signal processing module 100.
  • the satellite signal processing module 100 decodes and processes the received satellite radio frequency signal to obtain a clock signal, and provides the clock signal to the clock module 3234.
  • the clock module 3234 uses the clock signal to calibrate its clock and clocks other modules of the microwave indoor unit 323.
  • the microwave intermediate frequency module 3231 converts the separated microwave intermediate frequency signal into a microwave baseband signal, and outputs the microwave baseband signal to the microwave baseband module 3232; the microwave baseband module 3232 performs the microwave baseband signal under the clock control of the clock module 3234.
  • the baseband service process obtains the corresponding microwave service signal; the service interface module 3233 performs corresponding format conversion on the microwave service signal processed by the microwave baseband module 3232, and outputs the converted formatted microwave service signal to the baseband module 322, which can be understood,
  • the clock module 3234 uses the satellite signal processing module 100 to decode and process the received satellite radio frequency signal to obtain a clock signal to calibrate its clock, and the microwave intermediate frequency module 3231, the microwave baseband module 3232, the service interface module 3233, etc.
  • the microwave signal is processed under the control of the clock, so the microwave service signal received by the baseband module 322
  • the clock is synchronized with the satellite.
  • the baseband module 322 can extract a clock signal (corresponding to a clock signal obtained by the satellite signal processing module 100 decoding the processed satellite radio frequency signal) from the microwave service signal from the microwave indoor unit 323, and use the clock signal for clock calibration and control, and the like.
  • the satellite signal processing module is disposed in the microwave indoor unit of the indoor unit of the base station, and the signals of the satellite antenna and the microwave transmission antenna are transmitted from the outdoor unit of the base station to the indoor unit of the base station through one data line, simplifying the outdoor base station.
  • the feeder wiring to the indoor device of the base station can also reduce the number of lightning protection modules relatively, which is beneficial to reduce the manufacturing cost.
  • This embodiment is mainly described by taking a satellite signal processing module in a radio frequency module of a base station indoor device as an example.
  • the radio base station 400 may include: a base station outdoor device 410 and a base station indoor device 420.
  • the base station outdoor device 410 may include: a satellite antenna 411 that receives satellite radio frequency signals, a radio access antenna 412 that receives an access side radio frequency signal, an adapter 413, and the like.
  • the base station indoor unit 420 may include a radio frequency module 421, a baseband module 422, a satellite signal processing module 100, and the like.
  • the satellite signal processing module 100 is disposed in the radio frequency module 421.
  • the satellite antenna 411 and the wireless access antenna 412 are connected to the adapter 413.
  • the adapter 413 is connected to the radio frequency module 421 of the base station indoor unit 420 via the feeder 430.
  • the adapter 413 couples the satellite radio frequency signal and the access side radio frequency signal to obtain a coupled signal.
  • the adapter can perform the necessary impedance matching processing on the signal, and the coupled signal is conducted to the RF module 421 through the feeder 430.
  • parameters of the access side RF signal and the satellite RF signal can be as follows:
  • Satellite RF signal receiving frequency (GHz) 1. 5/2. 4
  • the radio frequency module 421 receives the coupling signal of the satellite radio frequency signal and the access side radio frequency signal, separates the satellite radio frequency signal and the access side radio frequency signal in the coupled signal, and performs radio frequency processing on the separated access side radio frequency signal to obtain the access side baseband signal.
  • the separated satellite radio frequency signal is output to the satellite signal processing module 100; the satellite signal processing module 100 decodes and receives the received satellite radio frequency signal to obtain a satellite service signal (which may include a clock signal), and the radio frequency module
  • the 421 embeds the satellite service signal into the access side baseband signal, and performs interface format conversion (for example, CPRI or 0BSAI interface format), and outputs the access side baseband signal after the conversion interface format to the baseband module 422.
  • the baseband module 422 extracts the satellite service signal embedded in the access side baseband signal, and performs baseband processing on the access side baseband signal.
  • the baseband module 422 can extract the clock signal embedded in the access side baseband signal (equivalent to the clock signal obtained by the satellite signal processing module 100 decoding and processing the satellite radio frequency signal). ), using this clock signal for clock calibration and control.
  • the radio frequency module 421 can include: a radio frequency processing unit 4211, an interface unit 4212, and the like.
  • the satellite radio frequency signal carries a clock signal
  • the signal flow direction in the base station 400 and the working mode of each module can be:
  • the satellite antenna 411 receives the satellite radio frequency signal and outputs it to the adapter 413 through the feeder; the radio access antenna 412 receives the access side radio frequency signal and outputs it to the adapter 413.
  • the adapter 413 couples the satellite radio frequency signal and the access side radio frequency signal, and outputs the coupled signal of the satellite radio frequency signal and the access side radio frequency signal to the radio frequency module 421 of the base station indoor unit 420.
  • the radio frequency processing unit 4211 of the radio frequency module 421 receives the coupling signal of the satellite radio frequency signal and the access side radio frequency signal, and separates the satellite radio frequency signal and the access side radio frequency signal in the coupled signal, and the radio frequency processing unit 4211 separates the access side.
  • the radio frequency signal is converted into an access side baseband signal, and the access side baseband signal is output to the interface unit 4212.
  • the radio frequency processing unit 4211 outputs the separated satellite radio frequency signal to the satellite signal processing module 100, and the satellite signal processing module 100 decodes
  • the received satellite radio frequency signal is processed to obtain a clock signal, and the clock signal is output to the interface unit 4212.
  • the interface unit 4212 embeds the clock signal into the access side baseband signal, and outputs the access side baseband signal embedded with the clock signal to the baseband module 422.
  • the baseband module 422 extracts the clock signal embedded in the access side baseband signal (since the interface unit 4212 is to embed the satellite radio frequency signal received by the star signal processing module 100 to obtain the clock signal into the access side baseband signal, so the baseband module
  • the clock signal extracted from the access side baseband signal from the interface unit 4212 is equivalent to the clock signal obtained by the satellite signal processing module 100 for decoding and processing the satellite radio frequency signal, and the clock signal is used for clock calibration and control, etc.
  • the baseband signal is input to the baseband for processing.
  • the satellite signal processing module is disposed in the radio frequency module of the indoor unit of the base station, and the signals received by the satellite antenna and the radio access antenna are transmitted from the outdoor unit of the base station to the indoor unit of the base station through a data line, simplifying
  • the feeder wiring of the base station outdoor device to the indoor unit of the base station can also reduce the number of lightning protection modules relatively, which is beneficial to reducing the manufacturing cost.
  • the radio base station 500 may include: a base station outdoor device 510 and a base station indoor device 520.
  • the base station outdoor device 510 includes: a terrestrial service antenna 512, a satellite antenna 511, a satellite signal processing module 100 for decoding a satellite radio frequency signal received by the satellite antenna to obtain a satellite service signal, and a demodulation processing ground service antenna 512 receiving The first ground service processing module 513 of the modulated signal; wherein the terrestrial service antenna 512 can be a microwave transmission antenna or a wireless access antenna;
  • the satellite traffic signal is transmitted through the second data line 530 to the base station indoor unit 520, and the modulated signal received by the ground service antenna 512 demodulated by the first terrestrial service processing module 513 is transmitted to the base station indoor unit 520 via the second data line 530.
  • the second data line 530 can be an optical fiber, a network cable, or other type of signal conducting line.
  • the satellite signal processing module 100 can decode the satellite radio frequency signal received by the satellite antenna to obtain a satellite signal of the satellite service signal and output it to the first terrestrial service processing module 513, and the first terrestrial service processing module 513 further
  • the satellite service signal can be embedded in the modulated signal received by the demodulation processed terrestrial service antenna 512 to obtain a coupled signal that is transmitted to the base station indoor unit 520 via the second data line 530.
  • the satellite signal processing module 100 can be disposed in the first terrestrial service processing module 513.
  • the terrestrial service antenna 512 is a radio access antenna
  • the first terrestrial service processing module 513 can be a radio frequency module
  • the satellite signal processing module 100 can be disposed in the radio frequency module.
  • the terrestrial service antenna 512 is a microwave transmission antenna
  • the satellite signal processing module 100 can be disposed in the microwave outdoor integrated device.
  • the satellite antenna 511 can be connected to the lightning protection circuit (not shown) of the first terrestrial service processing module 513 through an adapter 514, and the adapter 514 can connect the satellite antenna 511 and The signal received by the terrestrial service antenna 512 is coupled, and the coupled signal is transmitted to the first terrestrial service processing module 513.
  • This manner can realize the sharing of the lightning protection circuit, and the number of lightning protection circuits can be saved compared with the prior art.
  • the satellite signal processing module 100 decodes the satellite service signals obtained by processing the satellite radio frequency signals, including: a clock signal and/or a position signal.
  • the satellite service signal is a clock signal.
  • the clock signal may be further provided to the baseband module of the base station indoor device 520, so that the baseband module uses the clock signal for clock calibration, control, and the like.
  • the satellite signal processing module is disposed in the external device of the base station, and the processed satellite antenna and the signals received by the other at least one antenna are transmitted from the outdoor device of the base station to the indoor device of the base station through one data line, simplifying
  • the feeder wiring of the base station outdoor device to the indoor unit of the base station can also reduce the number of lightning protection modules relatively, which is beneficial to reducing the manufacturing cost.
  • This embodiment is mainly described by taking a satellite signal processing module in a radio frequency module of an outdoor unit of the base station as an example.
  • the radio base station 600 may include: a base station outdoor device 610 and a base station indoor device 620.
  • the base station outdoor device 610 may include: a satellite antenna 611 that receives a satellite radio frequency signal, a radio access antenna 612 that receives an access side radio frequency signal, a radio frequency module 613, and a decoding process for the satellite radio frequency signal received by the satellite antenna 611.
  • the satellite signal processing module 100 can obtain the satellite signal processing module 100.
  • the satellite signal processing module 100 can be disposed in the radio frequency module 613, and can also be disposed outside the radio frequency module 613.
  • the base station indoor unit 620 may include: a baseband module 621 and the like.
  • the satellite radio frequency signal received by the satellite antenna 611 is transmitted to the satellite signal processing module 100; the access side radio frequency signal received by the radio access antenna 612 is transmitted to the radio frequency module 613.
  • the radio frequency module 613 performs radio frequency processing on the access side radio frequency signal to obtain an access side baseband signal; the satellite signal processing module 100 decodes and processes the received satellite radio frequency signal to obtain a satellite service signal (which may include a clock signal), and the radio frequency module 613 can perform the satellite service.
  • the signal is embedded in the access side baseband signal, and interface format conversion (for example, CPRI or 0BSAI interface format) is performed, and the access side baseband signal after the conversion interface format is output to the baseband module 621.
  • the baseband module 621 extracts the satellite service signal embedded in the access side baseband signal, and performs baseband processing on the access side baseband signal.
  • the baseband module 621 can extract the clock signal embedded in the access side baseband signal (since the radio frequency module 613 is received by the star signal processing module 100 for decoding processing.
  • the satellite radio frequency signal is obtained by embedding the clock signal into the access side baseband signal. Therefore, the clock signal extracted by the baseband module 621 from the access side baseband signal from the radio frequency module 613 is equivalent to the satellite signal processing module 100 decoding and processing the satellite radio frequency signal. Clock signal), using this clock signal for clock calibration and control.
  • the base station outdoor device 610 may further include an adapter 614.
  • the signals received by the satellite antenna 611 and the wireless access antenna 612 are coupled by the adapter 614 and then transmitted to the RF module 613.
  • the processing procedure refer to the related description in Embodiment 3.
  • the radio frequency module 613 can include: a radio frequency processing unit 6131, an interface unit 6132, and the like.
  • the satellite radio frequency signal carries the clock signal
  • the signal flow direction in the base station 600 and the working mode of each module can be:
  • the satellite antenna 611 receives the satellite radio frequency signal and outputs it to the satellite signal processing module 100 through the feeder line; the radio access antenna 612 receives the access side radio frequency signal and outputs it to the radio frequency module 613.
  • the radio frequency processing unit 6131 of the radio frequency module 421 receives the access side radio frequency signal, converts the access side radio frequency signal into an access side baseband signal, and outputs the access side baseband signal to the interface unit 6132; the satellite signal processing module 100 decodes The received satellite radio frequency signal is processed to obtain a clock signal, and the clock signal is output to the interface unit 6132.
  • the interface unit 6132 embeds the clock signal into the access side baseband signal, and outputs the access side baseband signal embedded with the clock signal to the baseband module 621 via the data line 630.
  • the baseband module 621 extracts the clock signal embedded in the baseband signal of the access side (since the interface unit 6132 of the radio frequency module 613 is to embed the satellite radio frequency signal received by the star signal processing module 100 to obtain the clock signal and embed the clock signal into the access side baseband signal. Therefore, the clock signal extracted by the baseband module 621 from the access side baseband signal from the interface unit 6132 is equivalent to the clock signal obtained by the satellite signal processing module 100 for decoding and processing the satellite radio frequency signal, and the clock signal is used for clock calibration and control. And perform baseband processing on the access side baseband signal.
  • the satellite signal processing module is disposed in the radio frequency module of the indoor unit of the base station, and the processed satellite antenna and the signals received by the at least one antenna are transmitted from the base station outdoor device to the base station indoor through one data line.
  • the device simplifies the feeder wiring of the base station outdoor device to the indoor unit of the base station, and can also relatively reduce the number of lightning protection modules, thereby reducing manufacturing costs.
  • This embodiment is mainly described by taking an example in which the satellite signal processing module is installed in the microwave outdoor integrated setting of the outdoor unit of the base station.
  • the radio base station 700 may include: a base station outdoor device 710 and a base station indoor device 720.
  • the base station outdoor device 710 may include: a satellite antenna 711, a wireless access antenna 712, a microwave transmission antenna 713, a microwave outdoor integrated device 714, a satellite signal processing module 100, and the like.
  • the base station indoor device 720 can include: a radio frequency module 721 and a baseband module 722.
  • the satellite signal processing module 100 is disposed in the microwave outdoor integrated device 714.
  • the radio access antenna 712 is connected to the radio frequency module 721 through a feeder, and the radio frequency module 721 and the baseband module 722 pass
  • the radio frequency module 721 performs radio frequency processing on the access side radio frequency signal received by the radio access antenna 712 to obtain an access side baseband signal, and outputs the access side baseband signal to the baseband module 722 for baseband processing; the baseband module 722 can also send the baseband module 722.
  • the access side baseband signal is output to the radio frequency module 721, and the radio frequency module 721 performs radio frequency processing on the access side baseband signal to be transmitted to obtain an access side radio frequency signal, and transmits the access side radio frequency signal through the radio access antenna 712.
  • the satellite antenna 711 is connected to the satellite signal processing module 100, and the satellite signal processing module 100 decodes the satellite radio frequency signal received by the satellite antenna 711 to obtain a satellite service signal (which may include a clock signal); the microwave transmission antenna 713 is connected to the microwave outdoor integration device 714.
  • the microwave outdoor integrated device 714 decodes and processes the microwave radio frequency signal received by the microwave transmission antenna 713 to obtain a microwave service signal; the microwave outdoor integration device 714 embeds the satellite service signal into the microwave service signal to perform signal format conversion (eg, Ethernet format, The PDH format, the SDH format, etc., and the converted formatted service signal are output to the baseband module 722 through the data line 730.
  • signal format conversion eg, Ethernet format, The PDH format, the SDH format, etc.
  • the microwave outdoor integrated device 714 can use the clock signal to calibrate the clock of the microwave service signal, and the baseband module 722 can be used from the microwave service signal after the calibration clock.
  • the clock signal is extracted. It can be understood that since the microwave outdoor integrated device 714 uses the satellite signal processing module 100 to decode and process the satellite radio frequency signal to obtain a clock signal to clock the microwave service signal, the baseband module 722 obtains the microwave service signal after the clock is calibrated.
  • the clock signal extracted in the clock signal processing module 100 can be equivalent to the clock signal obtained by the satellite signal processing module 100 for processing the satellite radio frequency signal, and the clock signal is used for clock calibration and control.
  • the microwave outdoor integrated device 714 may include: a microwave intermediate frequency module 7141, a microwave baseband module 7142, a service interface module 7143, a clock module 7144, a microwave radio frequency module 7145, and the like.
  • the satellite radio frequency signal carries the clock signal
  • the signal flow direction in the base station 700 and the working mode of each module can be:
  • the satellite antenna 711 receives the satellite radio frequency signal and outputs it to the satellite signal processing module 100 through the feeder.
  • the satellite signal processing module 100 decodes and processes the satellite radio frequency signal to obtain a clock signal, and supplies the clock signal to the clock module 7144.
  • the clock module 7144 uses the clock signal to calibrate its clock and clocks other modules of the microwave outdoor integrated device 714.
  • the microwave transmitting antenna 713 receives the microwave radio frequency signal and outputs the microwave radio frequency signal to the microwave outdoor integrated device 714.
  • the microwave radio frequency module 7145 of the microwave outdoor integrated device 714 performs frequency conversion processing on the microwave radio frequency signal to obtain a microwave intermediate frequency signal, and the microwave radio frequency module 7145 outputs the microwave radio frequency signal 7145.
  • the microwave intermediate frequency module 7141 converts the received microwave intermediate frequency signal into a microwave baseband signal, and outputs the microwave baseband signal to the microwave baseband module 7142; the microwave baseband module 7142 is under the clock control of the clock module 7144, and the microwave baseband The signal is processed by the baseband service to obtain a corresponding microwave service signal; the service interface unit 7143 performs corresponding format conversion on the microwave service signal processed by the microwave baseband module 7142, and outputs the converted microwave service signal to the baseband module 722, which can be understood.
  • the clock module 7144 is configured to use the satellite signal processing module 100 to decode and process the received satellite radio frequency signals to obtain a clock signal to calibrate the clock thereof, and the microwave intermediate frequency module 7141, the microwave baseband module 7142, the service interface module 7143, etc.
  • the microwave signal is processed under the clock control of the clock module 7144, so that the clock of the microwave service signal received by the baseband module 722 is synchronized with the satellite.
  • the baseband module 722 can extract a clock signal (corresponding to a clock signal obtained by the satellite signal processing module 100 decoding the processed satellite radio frequency signal) from the microwave service signal from the microwave outdoor integrated device 714, and use the clock signal for clock calibration and control, and the like.
  • the satellite signal processing module is disposed in the microwave outdoor integrated device of the outdoor unit of the base station, and the processed satellite antenna and signals received by at least one of the antennas are transmitted from the outdoor unit of the base station through one data line.
  • the base station indoor device simplifies the feeder wiring of the base station outdoor device to the base station indoor device, and at the same time, the number of lightning protection modules can be relatively reduced, which is advantageous for reducing the manufacturing cost.

Description

无线基站及无线基站接收信号的方法 本申请要求于 2010年 5月 31日提交中国专利局、 申请号为 201010188622. 3、发明 名称为 "一种无线基站"的中国专利申请的优先权, 其全部内容通过引用结合在本申请 中。 技术领域 本发明涉及通信技术领域, 具体涉及无线基站及无线基站接收信号的方法。 背景技术 为满足时钟精度要求, 目前在一些无线基站中配置了卫星接收系统, 以利用卫星提 供的时钟信号进行基站的时钟控制。
参见图 1,现有的无线基站一般分为基站室内装置和基站室外装置两个部分,其中, 基站室外装置主要包括: 接收卫星射频信号的卫星天线和收发与终端交互的接入侧射频 信号的无线接入天线等, 而基站室内装置主要包括基带模块(主要负责基带业务信号处 理、 主控、 时钟和传输等功能, 简称 BBU)和射频模块(主要负责收发信号的射频处理, 简称 RRU)。卫星接收卡设置于基带模块中, 或独立置于室内, 主要用于对卫星天线接收 的卫星射频信号进行解码处理得到时钟信号等, 以向基带模块提供用于时钟控制的时钟 信号。
现有架构的无线基站中, 需要为卫星接收系统单独架设基站室外装置到基站室内装 置间的馈线 (其长度可达数米), 将卫星天线接收的卫星信号传送到卫星接收卡解调处 理, 其布线相对较复杂, 且制造成本相对较高。 发明内容
本发明实施例提供一种无线基站及无线基站接收信号的方法,用于解决现有技术布 线复杂, 制造成本相对较高的问题。
为解决上述技术问题, 本发明实施例提供以下技术方案:
一种无线基站, 包括:
基站室内装置和基站室外装置;
其中, 所述基站室外装置包括: 适配器、 地面业务天线和卫星天线; 其中, 所述地 面业务天线为微波传输天线或无线接入天线; 所述基站室内装置包括: 用于对所述卫星天线接收的卫星射频信号进行解码处理得 到卫星业务信号的卫星信号处理模块;
所述卫星天线和地面业务天线连接到所述适配器,所述适配器用于将所述卫星天线 和地面业务天线接收的信号进行耦合, 并通过第一数据线路将耦合信号传导至基站室内 装置。
一种无线基站, 包括:
基站室内装置和基站室外装置;
其中, 所述基站室外装置包括: 地面业务天线、 卫星天线、 用于对所述卫星天线接 收的卫星射频信号进行解码处理得到卫星业务信号的卫星信号处理模块、 以及用于解调 处理所述地面业务天线接收的调制信号的第一地面业务处理模块; 其中, 所述地面业务 天线为微波传输天线或无线接入天线;
所述卫星业务信号通过第二数据线路传导至所述基站室内装置,所述第一地面业务 处理模块解调处理后的所述地面业务天线接收的调制信号通过所述第二数据线路传导 至所述基站室内装置。
一种无线基站接收信号的方法, 包括:
位于基站室外装置的适配器将卫星天线和地面业务天线接收的信号进行耦合, 其 中, 所述地面业务天线包括位于基站室外装置的微波传输天线或无线接入天线;
所述适配器通过第一数据线路将耦合信号传导至基站室内单元;
位于基站室内装置的卫星信号处理模块对所述卫星天线接收的卫星射频信号进行 解码处理得到卫星业务信号。
一种无线基站接收信号的方法, 包括:
位于基站室外装置的卫星信号处理模块对位于所述基站室外装置的卫星天线接收 的卫星射频信号进行解码得到卫星业务信号;
通过第二数据线将所述卫星业务信号传导至基站室内装置;
位于所述基站室外装置的第一地面业务处理模块对位于所述基站室外装置的地面 业务天线接收的调制信号进行解调处理,通过所述第二数据线路将进行解调处理后的信 号传导至所述基站室内装置。
由上可见, 本发明实施例的其中一种方案中, 将卫星信号处理模块设置于基站室内 装置,卫星天线和其它至少一路天线的信号通过一路数据线路从基站室外装置传导至基 站室内装置, 简化了基站室外装置到基站室内装置的馈线布线, 同时, 由于对两路信号 进行了合路, 因此, 可以对合路后的数据线路使用一个防雷模块, 与分别对两路信号使 用一个防雷模块的方案相比, 还可以相对减少防雷模块的数量, 有利于降低制造成本。
本发明实施例的另一种方案中, 将卫星信号处理模块设置于基站室外装置, 卫星天 线和其它至少一路天线的经过处理后的信号通过一路数据线路从基站室外装置传导至 基站室内装置, 简化了基站室外装置到基站室内装置的馈线布线, 同时, 由于对两路信 号进行了合路, 因此, 可以对合路后的数据线路使用一个防雷模块, 与分别对两路信号 使用一个防雷模块的方案相比,还可以相对减少防雷模块的数量,有利于降低制造成本。 附图说明 为了更清楚地说明本发明实施例和现有技术中的技术方案, 下面将对实施例和现有 技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本 发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1是现有技术的一种无线基站示意图;
图 2是本发明实施例一提供的一种无线基站示意图;
图 3-a是本发明实施例二提供的一种无线基站示意图;
图 3-b是本发明实施例二提供的一种无线基站信号流向示意图;
图 4-a是本发明实施例三提供的一种无线基站示意图;
图 4-b是本发明实施例三提供的一种无线基站信号流向示意图;
图 5-a是本发明实施例四提供的一种无线基站示意图;
图 5-b是本发明实施例四提供的另一种无线基站示意图;
图 5-c是本发明实施例四提供的另一种无线基站示意图;
图 6-a是本发明实施例五提供的一种无线基站示意图;
图 6-b是本发明实施例五提供的另一种无线基站示意图;
图 6-c是本发明实施例五提供的一种无线基站信号流向示意图;
图 7-a是本发明实施例六提供的一种无线基站示意图;
图 7-b是本发明实施例六提供的一种无线基站信号流向示意图。 具体实施方式 本发明实施例提供一种无线基站, 能够简化无线基站的馈线布线, 有利于降低制造 成本。
以下分别进行详细说明。
实施例一
参见图 2, 本发明实施例提供的无线基站的一个实施例, 无线基站 200可以包括: 基 站室外装置 210和基站室内装置 220。
其中, 基站室外装置 210可包括: 地面业务天线 211、 卫星天线 212和适配器 213; 其中, 地面业务天线 211可为微波传输天线或无线接入天线;
基站室内装置 220可以包括: 用于对卫星天线 212接收的卫星射频信号进行解码处理 得到卫星业务信号的卫星信号处理模块 100;
卫星天线 212接收的卫星射频信号通过第一数据线路 230传导至基站室内装置 220, 地面业务天线 211接收的调制信号通过第一数据线路 230传导至基站室内装置 220。
在一种应用场景下, 卫星天线 212和地面业务天线 211可以连接到适配器 213, 适配 器 213通过第一数据线路 230连接到基站室内装置 220。 适配器 120可将卫星天线 212接收 的卫星射频信号和地面业务天线 211接收的调制信号耦合成一路信号 (适配器可对信号 进行必要的阻抗匹配处理) , 并通过第一数据线路 230将耦合信号传导至基站室内装置 220, 从而实现两路天线的信号通过一路数据线路从基站室外装置 210传导至基站室内装 置 220, 也就可以简化基站室外装置到基站室内装置的馈线布线。
其中, 第一数据线路 230可以是馈线或其它类型的信号传导线路。
基站室内装置 220收到耦合后的信号后进行解耦合, 并通过相应的处理电路对卫星 天线接收的信号及地面业务天线接收的信号进行处理; 例如, 可以通过卫星信号处理单 元对卫星天线接收的信号进行处理,通过微波或无线处理电路对地面业务天线接收的信 号进行处理。
可以理解, 由于两路天线的信号是通过一路数据线路从基站室外装置 210传导至基 站室内装置 220的, 故而将这一路数据线路与一个防雷电路 (或称防雷模块) 相连, 即 可共用一个防雷电路对该两路天线进行防雷处理,相对于现有技术可节省防雷电路的数 在一种应用场景下, 若地面业务天线 211为无线接入天线, 则卫星信号处理模块 100 可以设置于基站室内装置 220的射频模块中。 其中, BBU和 RRU可通过标准的普通公共无线规范接口 (CPRI, Common Publ ic Radio Interface ) 或开放式基站架构联盟 ( OBSAI , Open Base Station Architecture Initiative ) 接口连接, 该接口的物理载体是光纤或导线。
本发明实施例的无线基站与基站控制器等网络侧设备之间的数据传输除了光纤等 有线传输外, 还可采用微波等无线传输。
其中, 微波传输设备可包括: 微波室外单元 (简称 0DU, 主要用于对收发信号进行 变频处理, 包括将微波传输天线接收到的微波射频信号变频为微波中频信号; 以及将待 发送的微波中频信号变频为微波射频信号) 和微波室内单元 (简称 IDU, 主要用于对收 发信号进行基带处理, 包括对接收到的微波中频信号进行基带处理得到微波业务信号; 以及对待发送的微波业务信号进行基带处理得到微波中频信号等) , 或者微波室外一体 化设备 (即微波传输设备全部布置基站的室外装置中) 。
在一种应用场景下, 若地面业务天线 211为微波传输天线, 则卫星信号处理模块 100 可以设置于基站室内装置 220的微波室内单元中。
需要说明的是, 本发明实施例的中卫星信号处理模块 100例如可以是卫星接收卡, 或者具有类似功能的其它装置。
在一种应用场景下, 卫星信号处理模块 100解码处理卫星射频信号得到的卫星业务 信号包括: 时钟信号和 /或位置信号等。 本发明实施例中主要针对卫星业务信号为时钟 信号的情况进行具体说明。
其中, 若卫星信号处理模块 100解码处理得到时钟信号, 则可向基站室内装置 220的 基带模块提供该时钟信号, 以便于基带模块利用该时钟信号进行时钟校准和控制等。
本发明实施例中, 卫星天线可以接收例如来自伽利略 (Gal i leo ) 卫星、 全球定位 系统(GPS, Global Positioning System)卫星、北斗卫星或全球导航卫星系统(GL0NASS, Global Navigation Satel l ite System) 卫星等卫星的卫星射频信号。
由上可以看出, 本实施例中将卫星信号处理模块设置于基站室内装置, 卫星天线和 其它至少一路天线的信号通过一路数据线路从基站室外装置传导至基站室内装置, 简化 了基站室外装置到基站室内装置的馈线布线, 同时还可以相对减少防雷模块的数量, 有 利于降低制造成本。
实施例二
本实施例主要以将卫星信号处理模块设置于基站室内装置的微波室内单元中为例 进行说明。 参见图 3-a, 本发明实施例提供的无线基站的一个实施例, 无线基站 300可以包括: 基站室外装置 310和基站室内装置 320。
其中, 基站室外装置 310可包括: 卫星天线 311、 无线接入天线 312、 微波传输天线 313, 微波室外单元 314、 以及适配器 315 (适配器 315亦可设置于微波室外单元 314中) 等。 基站室内装置 320可以包括: 射频模块 321、 基带模块 322、 微波室内单元 323、 以及 卫星信号处理模块 100等。 其中, 卫星信号处理模块 100可设置于微波室内单元 323中。
无线接入天线 312通过馈线连接到射频模块 321, 射频模块 321与基带模块 322通过 CPRI或 0BSAI接口连接。 射频模块 321对无线接入天线 312接收的接入侧射频信号进行射 频处理得到接入侧基带信号, 将该接入侧基带信号输出给基带模块 322进行基带处理; 基带模块 322也可将待发送的接入侧基带信号输出给射频模块 321, 射频模块 321将待发 送的接入侧基带信号进行射频处理得到接入侧射频信号, 通过无线接入天线 312发射该 接入侧射频信号。
卫星天线 311连接到适配器 315; 微波传输天线 313通过微波室外单元 314连接到适配 器 315, 微波室外单元 314对微波传输天线 313接收的微波射频信号进行变频处理得到微 波中频信号, 微波室外单元 314输出该微波中频信号至适配器 315。 适配器 315通过馈线 330连接到基站室内装置 320中的微波室内单元 323,适配器 315将卫星射频信号和来自微 波室外单元 314的微波中频信号进行耦合得到耦合信号 (适配器可对信号进行必要的阻 抗匹配处理) , 该耦合信号通过馈线 330传导至微波室内单元 323。
其中, 微波中频信号和卫星射频信号的参数示例可如下所示:
微波中频信号 发射频率 (MHz ) 350
接收频率 (MHz ) 140
阻抗 (ohm) 50
卫星射频信号 接收频率 (GHz ) 1. 5/2. 4
阻抗 (ohm) 50
微波室内单元 323分离耦合信号中的卫星射频信号和微波中频信号, 将分离出的微 波中频信号进行解调和基带处理得到微波业务信号; 将分离出的卫星射频信号输出至卫 星信号处理模块 100,卫星信号处理模块 100解码处理接收到的卫星射频信号得到卫星业 务信号 (可包括时钟信号) , 微波室内单元 323将卫星业务信号和微波业务信号, 进行 对应的信号格式转换 (如, 以太网 (Ethernet ) 格式、 准同步数字系列 (PDH, Plesiochronous Digital Hierarchy)格式、 同步数字系列 ( SDH, Synchronous Digital Hierarchy) 格式等) , 并将转换格式后的业务信号输出至基带模块 322处理。
其中, 若卫星信号处理模块 100解码处理卫星射频信号得到时钟信号, 则微波室内 单元 323可利用该时钟信号对微波业务信号的时钟进行校准,基带模块 322可从校准时钟 后的微波业务信号中提取时钟信号 (可以理解, 由于微波室内单元 323是利用卫星信号 处理模块 100解码处理卫星射频信号得到时钟信号对微波业务信号进行校准时钟的, 因 此基带模块 322从校准时钟后的微波业务信号中提取出的该时钟信号可等同于卫星信号 处理模块 100解码处理卫星射频信号得到的时钟信号) , 利用该时钟信号进行时钟校准 和控制等。
参见图 3-b, 在一种应用场景下, 微波室内单元 323可包括: 微波中频模块 3231、 微 波基带模块 3232、 业务接口模块 3233、 时钟模块 3234等。
例如卫星射频信号承载了时钟信号, 基站 300中的信号流向和各模块工作方式可以 是:
卫星天线 311接收卫星射频信号并通过馈线输出至适配器 315; 微波传输天线 313接 收微波射频信号并通过馈线输出至微波室外单元 314,微波室外单元 314对该微波射频信 号进行变频处理得到微波中频信号, 微波室外单元 314输出该微波中频信号至适配器 315。 适配器 315耦合该卫星射频信号和微波中频信号, 并将卫星射频信号和微波中频信 号的耦合信号输出至基站室内装置 320的微波室内单元 323。 微波室内单元 323的微波中 频模块 3231接收该卫星射频信号和微波中频信号的耦合信号, 分离该耦合信号中的卫星 射频信号和微波中频信号, 将分离出的卫星射频信号输出至卫星信号处理模块 100, 卫 星信号处理模块 100解码处理接收到的卫星射频信号得到时钟信号, 将时钟信号提供给 时钟模块 3234。时钟模块 3234利用该时钟信号对其时钟进行校准,并对微波室内单元 323 的其它模块进行时钟控制。微波中频模块 3231还将分离出的微波中频信号转换成微波基 带信号, 并将该微波基带信号输出至微波基带模块 3232; 微波基带模块 3232在时钟模块 3234的时钟控制下, 对该微波基带信号进行基带业务处理得到相应的微波业务信号; 业 务接口模块 3233将微波基带模块 3232处理得到的微波业务信号进行对应的格式转换, 并 将转换格式后的微波业务信号输出至基带模块 322, 可以理解, 由于时钟模块 3234是利 用卫星信号处理模块 100解码处理接收到的卫星射频信号得到时钟信号对其时钟进行校 准的, 而微波中频模块 3231、 微波基带模块 3232、 业务接口模块 3233等都是在时钟模块 3234的时钟控制下对微波信号进行处理的, 因此基带模块 322接收到的微波业务信号的 时钟与卫星是同步的。基带模块 322可以从来自微波室内单元 323的微波业务信号中提取 时钟信号 (等同于卫星信号处理模块 100解码处理卫星射频信号得到的时钟信号) , 利 用该时钟信号进行时钟校准和控制等。
由上可见, 本实施例中将卫星信号处理模块设置于基站室内装置的微波室内单元 中,卫星天线和微波传输天线的信号通过一路数据线路从基站室外装置传导至基站室内 装置, 简化了基站室外装置到基站室内装置的馈线布线, 同时还可以相对减少防雷模块 的数量, 有利于降低制造成本。
实施例三
本实施例主要以将卫星信号处理模块设置于基站室内装置的射频模块中为例进行 说明。
参见图 4_a,本发明实施例提供的无线基站的另一个实施例,无线基站 400可以包括: 基站室外装置 410和基站室内装置 420。
其中, 基站室外装置 410可包括: 接收卫星射频信号的卫星天线 411、 接收接入侧射 频信号的无线接入天线 412、 适配器 413等。
基站室内装置 420可包括:射频模块 421、基带模块 422以及卫星信号处理模块 100等。 其中, 卫星信号处理模块 100设置于射频模块 421中。
其中, 卫星天线 411和无线接入天线 412连接到适配器 413, 适配器 413通过馈线 430 连接到基站室内装置 420的射频模块 421, 适配器 413将卫星射频信号和接入侧射频信号 进行耦合得到耦合信号 (适配器可对信号进行必要的阻抗匹配处理) , 将该耦合信号通 过馈线 430传导至射频模块 421。
其中, 接入侧射频信号和卫星射频信号的参数示例可如下所示:
接入侧射频信号 发射频率 (DHz ) 0. 7/0. 9/1. 8/2. 1/……
接收频率 (MHz )
阻抗 (ohm) 50
卫星射频信号 接收频率 (GHz ) 1. 5/2. 4
阻抗 (ohm) 50
射频模块 421接收卫星射频信号和接入侧射频信号的耦合信号, 分离耦合信号中的 卫星射频信号和接入侧射频信号,对分离出的接入侧射频信号进行射频处理得到接入侧 基带信号; 将分离出的卫星射频信号输出至卫星信号处理模块 100; 卫星信号处理模块 100解码处理接收到的卫星射频信号得到卫星业务信号 (可包括时钟信号) , 射频模块 421将卫星业务信号嵌入接入侧基带信号, 并进行接口格式转换(例如 CPRI或 0BSAI接口 格式) , 将转换接口格式后的接入侧基带信号输出至基带模块 422。 基带模块 422提取出 接入侧基带信号中嵌入的卫星业务信号, 对接入侧基带信号进行基带处理。
其中, 若卫星信号处理模块 100解码处理卫星射频信号得到时钟信号, 基带模块 422 可以提取出接入侧基带信号中嵌入的时钟信号 (等同于卫星信号处理模块 100解码处理 卫星射频信号得到的时钟信号) , 利用该时钟信号进行时钟校准和控制等。
参见图 4-b, 在一种应用场景下, 射频模块 421可包括: 射频处理单元 4211和接口单 元 4212等。
例如卫星射频信号承载了时钟信号, 基站 400中的信号流向和各模块工作方式可以 是:
卫星天线 411接收卫星射频信号并通过馈线输出至适配器 413; 无线接入天线 412接 收接入侧射频信号并输出至适配器 413。适配器 413耦合该卫星射频信号和接入侧射频信 号, 并将卫星射频信号和接入侧射频信号的耦合信号输出至基站室内装置 420的射频模 块 421。射频模块 421的射频处理单元 4211接收该卫星射频信号和接入侧射频信号的耦合 信号, 分离该耦合信号中的卫星射频信号和接入侧射频信号, 射频处理单元 4211将分离 出的接入侧射频信号变频处理成接入侧基带信号, 并将该接入侧基带信号输出至接口单 元 4212; 射频处理单元 4211将分离出的卫星射频信号输出至卫星信号处理模块 100, 卫 星信号处理模块 100解码处理接收到的卫星射频信号得到时钟信号, 并将时钟信号输出 至接口单元 4212。 接口单元 4212将时钟信号嵌入到接入侧基带信号中, 将嵌入了时钟信 号的接入侧基带信号输出至基带模块 422。基带模块 422提取出接入侧基带信号中嵌入的 时钟信号 (由于接口单元 4212是将星信号处理模块 100解码处理接收到的卫星射频信号 得到时钟信号嵌入到接入侧基带信号中, 因此基带模块 422从来自接口单元 4212的接入 侧基带信号中提取出的时钟信号等同于卫星信号处理模块 100解码处理卫星射频信号得 到的时钟信号) , 利用该时钟信号进行时钟校准和控制等, 并对接入侧基带信号进行基 带处理。
由上可以看出, 本实施例中将卫星信号处理模块设置于基站室内装置的射频模块 中,卫星天线和无线接入天线接收的信号通过一路数据线路从基站室外装置传导至基站 室内装置, 简化了基站室外装置到基站室内装置的馈线布线, 同时还可以相对减少防雷 模块的数量, 有利于降低制造成本。
实施例四 参见图 5-a、本发明实施例提供的无线基站的另一个实施例,无线基站 500可以包括: 基站室外装置 510和基站室内装置 520。
基站室外装置 510包括: 地面业务天线 512、 卫星天线 511、 用于对卫星天线接收的 卫星射频信号进行解码处理得到卫星业务信号的卫星信号处理模块 100、 以及用于解调 处理地面业务天线 512接收的调制信号的第一地面业务处理模块 513; 其中, 地面业务天 线 512可以为微波传输天线或无线接入天线;
卫星业务信号通过第二数据线路 530传导至基站室内装置 520,第一地面业务处理模 块 513解调处理后的地面业务天线 512接收的调制信号通过第二数据线路 530传导至基站 室内装置 520。
其中, 第二数据线路 530可以是光纤、 网线或其它类型的信号传导线路。
在一种应用场景下, 卫星信号处理模块 100可将对卫星天线接收的卫星射频信号进 行解码处理得到卫星业务信号的卫星信号输出给第一地面业务处理模块 513, 第一地面 业务处理模块 513还可用于在解调处理后的地面业务天线 512接收的调制信号中嵌入该 卫星业务信号, 得到耦合信号, 通过第二数据线路 530将该耦合信号传导至基站室内装 置 520。
参见图 5-b, 在一种应用场景下, 卫星信号处理模块 100可设置于第一地面业务处理 模块 513中。
在一种应用场景下, 若地面业务天线 512为无线接入天线, 则第一地面业务处理模 块 513可为射频模块, 卫星信号处理模块 100可设置于该射频模块中。
在一种应用场景下, 地面业务天线 512为微波传输天线, 则第一地面业务处理模块
513为微波室外一体化设备, 卫星信号处理模块 100可设置于该微波室外一体化设备中。
参见图 5-c, 在一种应用场景下, 卫星天线 511可通过一个适配器 514连接到第一地 面业务处理模块 513的防雷电路 (图中未示出) , 适配器 514可将卫星天线 511和地面业 务天线 512接收的信号进行耦合, 并耦合的信号传导至第一地面业务处理模块 513, 该方 式可实现防雷电路的共享, 相对于现有技术可节省防雷电路的数量。
在一种应用场景下, 卫星信号处理模块 100解码处理卫星射频信号得到的卫星业务 信号包括: 时钟信号和 /或位置信号等。 本发明实施例中主要针对卫星业务信号为时钟 信号的情况进行具体说明。 其中, 若卫星信号处理模块 100解码处理得到时钟信号, 则可进一步向基站室内装 置 520的基带模块提供该时钟信号, 以便于基带模块利用该时钟信号进行时钟校准和控 制等。
由上可以看出, 本实施例中将卫星信号处理模块设置于基站外内装置, 处理后的卫 星天线和其它至少一路天线接收的信号通过一路数据线路从基站室外装置传导至基站 室内装置, 简化了基站室外装置到基站室内装置的馈线布线, 同时还可以相对减少防雷 模块的数量, 有利于降低制造成本。
实施例五
本实施例主要以将卫星信号处理模块设置于基站室外装置的射频模块中为例进行 说明。
参见图 6_a,本发明实施例提供的无线基站的另一个实施例,无线基站 600可以包括: 基站室外装置 610和基站室内装置 620。
其中, 基站室外装置 610可包括: 接收卫星射频信号的卫星天线 611、 接收接入侧射 频信号的无线接入天线 612、 射频模块 613、 以及用于对卫星天线 611接收的卫星射频信 号进行解码处理得到卫星业务信号的卫星信号处理模块 100; 其中, 卫星信号处理模块 100可设置于射频模块 613中, 当然也可设置于射频模块 613之外。
基站室内装置 620可包括: 基带模块 621等。
卫星天线 611接收的卫星射频信号传导至卫星信号处理模块 100; 无线接入天线 612 接收的接入侧射频信号传导至射频模块 613。
射频模块 613对接入侧射频信号进行射频处理得到接入侧基带信号; 卫星信号处理 模块 100解码处理接收到的卫星射频信号得到卫星业务信号 (可包括时钟信号) , 射频 模块 613可将卫星业务信号嵌入接入侧基带信号, 并进行接口格式转换 (例如 CPRI或 0BSAI接口格式) , 将转换接口格式后的接入侧基带信号输出至基带模块 621。 基带模块 621提取出接入侧基带信号中嵌入的卫星业务信号, 对接入侧基带信号进行基带处理。
其中, 若卫星信号处理模块 100解码处理卫星射频信号得到时钟信号, 基带模块 621 可以提取出接入侧基带信号中嵌入的时钟信号 (由于射频模块 613是将星信号处理模块 100解码处理接收到的卫星射频信号得到时钟信号嵌入到接入侧基带信号中, 因此基带 模块 621从来自射频模块 613的接入侧基带信号中提取出的时钟信号等同于卫星信号处 理模块 100解码处理卫星射频信号得到的时钟信号) , 利用该时钟信号进行时钟校准和 控制等。 参见图 6-b, 在另一种应用场景下, 基站室外装置 610还可以包括适配器 614, 卫星 天线 611和无线接入天线 612接收的信号通过适配器 614耦合后, 传导至射频模块 613中, 具体处理过程可参考实施例三中的相关描述。
参见图 6-c, 在一种应用场景下, 射频模块 613可包括: 射频处理单元 6131和接口单 元 6132等。
例如卫星射频信号承载了时钟信号, 基站 600中的信号流向和各模块工作方式可以 是:
卫星天线 611接收卫星射频信号并通过馈线输出至卫星信号处理模块 100; 无线接入 天线 612接收接入侧射频信号并输出至射频模块 613。 射频模块 421的射频处理单元 6131 接收接入侧射频信号, 将接入侧射频信号变频处理成接入侧基带信号, 并将该接入侧基 带信号输出至接口单元 6132; 卫星信号处理模块 100解码处理接收到的卫星射频信号得 到时钟信号, 将时钟信号输出至接口单元 6132。 接口单元 6132将时钟信号嵌入到接入侧 基带信号中, 将嵌入了时钟信号的接入侧基带信号通过数据线路 630输出至基带模块 621。 基带模块 621提取出接入侧基带信号中嵌入的时钟信号 (由于射频模块 613的接口 单元 6132是将星信号处理模块 100解码处理接收到的卫星射频信号得到时钟信号嵌入到 接入侧基带信号中, 因此基带模块 621从来自接口单元 6132的接入侧基带信号中提取出 的时钟信号等同于卫星信号处理模块 100解码处理卫星射频信号得到的时钟信号) , 利 用该时钟信号进行时钟校准和控制等, 并对接入侧基带信号进行基带处理。
由上可以看出, 本实施例中将卫星信号处理模块设置于基站室内装置的射频模块 中, 处理后的卫星天线和其它至少一路天线接收的信号通过一路数据线路从基站室外装 置传导至基站室内装置, 简化了基站室外装置到基站室内装置的馈线布线, 同时还可以 相对减少防雷模块的数量, 有利于降低制造成本。
实施例六
本实施例主要以将卫星信号处理模块设置于基站室外装置的微波室外一体化设置 中为例进行说明。
参见图 7_a,本发明实施例提供的无线基站的另一个实施例,无线基站 700可以包括: 基站室外装置 710和基站室内装置 720。
其中, 基站室外装置 710可包括: 卫星天线 711、 无线接入天线 712、 微波传输天线 713, 微波室外一体化设备 714、 卫星信号处理模块 100等。
基站室内装置 720可包括: 射频模块 721、 基带模块 722。 其中, 卫星信号处理模块 100设置于微波室外一体化设备 714中。
无线接入天线 712通过馈线连接到射频模块 721, 射频模块 721与基带模块 722通过
CPRI或 0BSAI接口连接。 射频模块 721对无线接入天线 712接收的接入侧射频信号进行射 频处理得到接入侧基带信号, 将该接入侧基带信号输出给基带模块 722进行基带处理; 基带模块 722也可将待发送的接入侧基带信号输出给射频模块 721, 射频模块 721将待发 送的接入侧基带信号进行射频处理得到接入侧射频信号, 通过无线接入天线 712发射该 接入侧射频信号。
卫星天线 711连接到卫星信号处理模块 100, 卫星信号处理模块 100解码处理卫星天 线 711接收到的卫星射频信号得到卫星业务信号 (可包括时钟信号) ; 微波传输天线 713 连接到微波室外一体化设备 714, 微波室外一体化设备 714解码处理微波传输天线 713接 收到的微波射频信号得到微波业务信号; 微波室外一体化设备 714将卫星业务信号嵌入 微波业务信号中, 进行信号格式转换 (如, Ethernet格式、 PDH格式、 SDH格式等) , 并 通过数据线路 730将转换格式后的业务信号输出至基带模块 722处理。
其中, 若卫星信号处理模块 100解码处理卫星射频信号得到时钟信号, 微波室外一 体化设备 714可利用该时钟信号对微波业务信号的时钟进行校准,基带模块 722可从校准 时钟后的微波业务信号中提取时钟信号 (可以理解, 由于微波室外一体化设备 714是利 用卫星信号处理模块 100解码处理卫星射频信号得到时钟信号对微波业务信号进行时钟 校准的, 因此基带模块 722从校准时钟后的微波业务信号中提取出的该时钟信号可等同 于卫星信号处理模块 100解码处理卫星射频信号得到的时钟信号) , 利用该时钟信号进 行时钟校准和控制等。
参见图 7-b, 在一种应用场景下, 微波室外一体化设备 714可包括: 微波中频模块 7141、 微波基带模块 7142、 业务接口模块 7143、 时钟模块 7144、 微波射频模块 7145等。
例如卫星射频信号承载了时钟信号, 基站 700中的信号流向和各模块工作方式可以 是:
卫星天线 711接收卫星射频信号, 并通过馈线输出至卫星信号处理模块 100, 卫星信 号处理模块 100解码处理卫星射频信号得到时钟信号, 将该时钟信号提供给时钟模块 7144。 时钟模块 7144利用该时钟信号对其时钟进行校准, 并对微波室外一体化设备 714 的其它模块进行时钟控制。 微波传输天线 713接收微波射频信号并通过馈线输出至微波 室外一体化设备 714,微波室外一体化设备 714的微波射频模块 7145对该微波射频信号进 行变频处理得到微波中频信号,微波射频模块 7145输出该微波中频信号至微波中频模块 7141; 微波中频模块 7141还将接收到的微波中频信号转换成微波基带信号, 并将该微波 基带信号输出至微波基带模块 7142; 微波基带模块 7142在时钟模块 7144的时钟控制下, 对该微波基带信号进行基带业务处理得到相应的微波业务信号; 业务接口单元 7143将微 波基带模块 7142处理得到的微波业务信号进行对应的格式转换, 并将转换格式后的微波 业务信号输出至基带模块 722, 可以理解的是, 由于时钟模块 7144是利用卫星信号处理 模块 100解码处理接收到的卫星射频信号得到时钟信号对其时钟进行校准的, 而微波中 频模块 7141、 微波基带模块 7142、 业务接口模块 7143等都是在时钟模块 7144的时钟控制 下对微波信号进行处理的, 因此基带模块 722接收到的微波业务信号的时钟与卫星是同 步的。基带模块 722可以从来自微波室外一体化设备 714的微波业务信号中提取时钟信号 (等同于卫星信号处理模块 100解码处理卫星射频信号得到的时钟信号) , 利用该时钟 信号进行时钟校准和控制等。
由上可以看出,本实施例中将卫星信号处理模块设置于基站室外装置的微波室外一 体化设备中, 处理后的卫星天线和其它至少一路天线接收的信号通过一路数据线路从基 站室外装置传导至基站室内装置, 简化了基站室外装置到基站室内装置的馈线布线, 同 时还可以相对减少防雷模块的数量, 有利于降低制造成本。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分, 可以参见其他实施例的相关描述。
以上对本发明实施例所提供的一种无线基站进行了详细介绍,本文中应用了具体个 例对本发明的原理及实施方式进行了阐述, 以上实施例的说明只是用于帮助理解本发明 的方法及其核心思想; 同时, 对于本领域的一般技术人员, 依据本发明的思想, 在具体 实施方式及应用范围上均会有改变之处, 综上所述, 本说明书内容不应理解为对本发明 的限制。

Claims

权利要求
1、 一种无线基站, 其特征在于, 包括:
基站室内装置和基站室外装置;
其中, 所述基站室外装置包括: 适配器、 地面业务天线和卫星天线; 其中, 所述地 面业务天线包括微波传输天线或无线接入天线;
所述基站室内装置包括: 用于对所述卫星天线接收的卫星射频信号进行解码处理得 到卫星业务信号的卫星信号处理模块;
所述卫星天线和地面业务天线连接到所述适配器,所述适配器用于将所述卫星天线 和地面业务天线接收的信号进行耦合, 并通过第一数据线路将耦合信号传导至基站室内 装置。
2、 根据权利要求 1所述的无线基站, 其特征在于,
若所述地面业务天线为无线接入天线, 则所述卫星信号处理模块设置于所述基站室 内装置的射频模块中。
3、 根据权利要求 1所述的基站, 其特征在于,
若所述地面业务天线为微波传输天线, 则所述卫星信号处理模块设置于所述基站室 内装置的微波室内单元中。
4、 根据权利要求 1至 3任一项所述的无线基站, 其特征在于, 卫星天线接收的卫星 射频信号来自如下卫星的一个或多个: 伽利略卫星、 全球定位系统卫星、 北斗卫星或全 球导航卫星系统卫星;
所述卫星信号处理模块解码处理得到的卫星业务信号包括: 时钟信号和 /或位置信 号。
5、 根据权利要求 1所述的无线基站, 其特征在于,
所述基站室内装置通过所述第一数据线路接收到的耦合信号后, 进行解耦合, 并将 解耦合得到的卫星射频信号和地面业务天线信号分别通过相应的处理电路进行处理。
6、 根据权利要求 1所述的无线基站, 其特征在于,
所述地面业务天线和所述卫星天线通过所述第一数据线路与一个防雷电路相连。
7、 一种无线基站, 其特征在于, 包括:
基站室内装置和基站室外装置;
其中, 所述基站室外装置包括: 地面业务天线、 卫星天线、 用于对所述卫星天线接 收的卫星射频信号进行解码处理得到卫星业务信号的卫星信号处理模块、 以及用于解调 处理所述地面业务天线接收的调制信号的第一地面业务处理模块; 其中, 所述地面业务 天线为微波传输天线或无线接入天线;
所述卫星业务信号通过第二数据线路传导至所述基站室内装置,所述第一地面业务 处理模块解调处理后的所述地面业务天线接收的调制信号通过所述第二数据线路传导 至所述基站室内装置。
8、 根据权利要求 7所述的无线基站, 其特征在于,
若所述地面业务天线为无线接入天线, 则所述第一地面业务处理模块为射频模块, 所述卫星信号处理模块设置于所述射频模块中。
9、 根据权利要求 7所述的无线基站, 其特征在于,
若所述地面业务天线为微波传输天线, 则所述第一地面业务处理模块为微波室外一 体化设备, 所述卫星信号处理模块设置于所述微波室外一体化设备中。
10、 根据权利要求 8或 9所述的无线基站, 其特征在于,
所述卫星天线连接到第一地面业务处理模块的防雷电路。
11、 一种无线基站接收信号的方法, 其特征在于, 包括:
位于基站室外装置的适配器将卫星天线和地面业务天线接收的信号进行耦合, 其 中, 所述地面业务天线包括位于基站室外装置的微波传输天线或无线接入天线;
所述适配器通过第一数据线路将耦合信号传导至基站室内单元;
位于基站室内装置的卫星信号处理模块对所述卫星天线接收的卫星射频信号进行 解码处理得到卫星业务信号。
12、 如权利要求 11所述的方法, 其特征在于, 还包括:
所述基站室内装置通过所述第一数据线路接收到耦合信号后, 进行解耦合, 并将解 耦合得到的所述卫星射频信号和所述地面业务天线信号分别通过处理所述卫星射频信 号以及处理所述地面业务天线信号的电路进行处理。
13、 一种无线基站接收信号的方法, 其特征在于, 包括:
位于基站室外装置的卫星信号处理模块对位于所述基站室外装置的卫星天线接收 的卫星射频信号进行解码得到卫星业务信号;
通过第二数据线将所述卫星业务信号传导至基站室内装置;
位于所述基站室外装置的第一地面业务处理模块对位于所述基站室外装置的地面 业务天线接收的调制信号进行解调处理,通过所述第二数据线路将进行解调处理后的信 号传导至所述基站室内装置。
PCT/CN2011/073866 2010-05-31 2011-05-10 无线基站及无线基站接收信号的方法 WO2011150736A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180037414.6A CN103039121B (zh) 2010-05-31 2011-05-10 无线基站及无线基站接收信号的方法
JP2012523195A JP2013501439A (ja) 2010-05-31 2011-05-10 無線基地局及び無線基地局の信号を受信する方法
US13/339,889 US20120100801A1 (en) 2010-05-31 2011-12-29 Wireless base station and method for receiving signal of wireless base station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010101886223A CN101868055B (zh) 2010-05-31 2010-05-31 一种无线基站
CN201010188622.3 2010-05-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/339,889 Continuation US20120100801A1 (en) 2010-05-31 2011-12-29 Wireless base station and method for receiving signal of wireless base station

Publications (1)

Publication Number Publication Date
WO2011150736A1 true WO2011150736A1 (zh) 2011-12-08

Family

ID=42959553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/073866 WO2011150736A1 (zh) 2010-05-31 2011-05-10 无线基站及无线基站接收信号的方法

Country Status (4)

Country Link
US (1) US20120100801A1 (zh)
JP (1) JP2013501439A (zh)
CN (2) CN101868055B (zh)
WO (1) WO2011150736A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9220076B2 (en) 2010-05-31 2015-12-22 Huawei Technologies Co., Ltd. Base station and method for clock synchronization of base station

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101868055B (zh) * 2010-05-31 2012-08-15 华为技术有限公司 一种无线基站
BR112013019376B1 (pt) 2011-01-26 2021-12-07 Huawei Technologies Co., Ltd Sistema de estação base e método de sincronização no tempo
CN105515710B (zh) * 2011-01-26 2019-05-24 华为技术有限公司 一种实现时间同步的方法和装置
WO2011124175A2 (zh) * 2011-05-12 2011-10-13 华为技术有限公司 基站
US9380645B2 (en) * 2011-11-30 2016-06-28 Broadcom Corporation Communication pathway supporting an advanced split microwave backhaul architecture
CN103259607A (zh) * 2012-02-21 2013-08-21 中兴通讯股份有限公司 时钟同步方法及装置
WO2014043852A1 (zh) * 2012-09-18 2014-03-27 华为技术有限公司 一种微波传输设备供电系统及方法、信号处理装置
CN103841592B (zh) * 2012-11-27 2017-12-05 中兴通讯股份有限公司 一种微波设备托管的实现方法及装置
CN103139552A (zh) * 2013-03-18 2013-06-05 德明通讯(上海)股份有限公司 应用于卫星电视接收设备的数据透传系统
CN104937969B (zh) * 2013-12-31 2019-10-15 华为技术有限公司 传输数据的方法和装置
JP6315077B2 (ja) * 2014-02-18 2018-04-25 日本電気株式会社 無線通信装置及び通信機器の取り付け構造
CN105282698B (zh) * 2014-07-10 2020-11-03 中兴通讯股份有限公司 获取gps信号的方法及系统
EP3217585A4 (en) * 2014-11-07 2018-06-27 Fujitsu Limited Method and apparatus for allocating resource for dm-rs, and communication system
CN106357320A (zh) * 2015-07-16 2017-01-25 中兴通讯股份有限公司 卫星地面站收发装置及卫星通信系统
CN108235451A (zh) * 2017-12-07 2018-06-29 姬军生 一种一体化便携专网基站系统
US11540189B2 (en) 2018-12-12 2022-12-27 At&T Intellectual Property I, L.P. Framework for a 6G ubiquitous access network
US11171719B2 (en) 2019-04-26 2021-11-09 At&T Intellectual Property 1, L.P. Facilitating dynamic satellite and mobility convergence for mobility backhaul in advanced networks
CN111541953A (zh) * 2020-04-08 2020-08-14 四川华能宝兴河水电有限责任公司 利用短波、超短波技术的专用通讯系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040038257A (ko) * 2002-10-31 2004-05-08 주식회사 현대시스콤 위성 수신안테나 케이블과 기지국 안테나 케이블의 공유장치
CN1547399A (zh) * 2003-11-28 2004-11-17 阎跃军 与共用电缆系统结合的无线通信直放站系统
KR100700459B1 (ko) * 2006-06-20 2007-03-29 에스케이텔레시스 주식회사 이동통신 기지국 시스템의 옥외 수신신호 처리장치 및 이동통신 기지국 시스템
CN101868055A (zh) * 2010-05-31 2010-10-20 华为技术有限公司 一种无线基站

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3093740B2 (ja) * 1998-12-09 2000-10-03 日本電気株式会社 Cdma移動通信システムにおける無線チャネル多重通信方式
US7024220B2 (en) * 2001-10-09 2006-04-04 Kyocera Wireless Corp. GPS receiver system and method
US20030152140A1 (en) * 2002-01-10 2003-08-14 Xxtrans, Inc. System and method for transmitting/receiving telemetry control signals with if payload data on common cable between indoor and outdoor units
US20030162539A1 (en) * 2002-02-28 2003-08-28 Fiut Brian D. System and method for remote monitoring of basestations
JP4597547B2 (ja) * 2004-02-26 2010-12-15 船井電機株式会社 Gps信号の伝送システム
US7403470B2 (en) * 2005-06-13 2008-07-22 Qualcomm Incorporated Communications system, methods and apparatus
TWI339459B (en) * 2005-06-30 2011-03-21 Yagi Antenna Inc Antenna
CN1937447A (zh) * 2005-09-22 2007-03-28 北京东方信联科技有限公司 适用于时分双工体制移动通信系统的直放站
DE102006019475B4 (de) * 2006-04-26 2008-08-28 Nokia Siemens Networks Gmbh & Co.Kg Verfahren zur Synchronisation von Baugruppen einer Basisstation
JP5016362B2 (ja) * 2007-04-16 2012-09-05 パナソニック株式会社 アンテナ装置
JP2010014485A (ja) * 2008-07-02 2010-01-21 Panasonic Corp Gps信号発生装置及び中継システム
US8045592B2 (en) * 2009-03-04 2011-10-25 Laird Technologies, Inc. Multiple antenna multiplexers, demultiplexers and antenna assemblies

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040038257A (ko) * 2002-10-31 2004-05-08 주식회사 현대시스콤 위성 수신안테나 케이블과 기지국 안테나 케이블의 공유장치
CN1547399A (zh) * 2003-11-28 2004-11-17 阎跃军 与共用电缆系统结合的无线通信直放站系统
KR100700459B1 (ko) * 2006-06-20 2007-03-29 에스케이텔레시스 주식회사 이동통신 기지국 시스템의 옥외 수신신호 처리장치 및 이동통신 기지국 시스템
CN101868055A (zh) * 2010-05-31 2010-10-20 华为技术有限公司 一种无线基站

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9220076B2 (en) 2010-05-31 2015-12-22 Huawei Technologies Co., Ltd. Base station and method for clock synchronization of base station
US9706510B2 (en) 2010-05-31 2017-07-11 Huawei Technologies Co., Ltd. Base station and method for clock synchronization of base station

Also Published As

Publication number Publication date
JP2013501439A (ja) 2013-01-10
CN103039121A (zh) 2013-04-10
US20120100801A1 (en) 2012-04-26
CN103039121B (zh) 2016-05-25
CN101868055B (zh) 2012-08-15
CN101868055A (zh) 2010-10-20

Similar Documents

Publication Publication Date Title
WO2011150736A1 (zh) 无线基站及无线基站接收信号的方法
JP6411553B2 (ja) 基地局および基地局のクロック同期のための方法
US10375662B2 (en) Method and apparatus of implementing time synchronization
CN102282897B (zh) 使用数字分布式天线系统的手机定位的系统和方法
US9060333B2 (en) Wireless communication system and time synchronization method thereof
US8310983B2 (en) Method and apparatus for performing timing synchronization in a wireless communication system
CN106413075A (zh) 一种时钟同步的方法和系统、端站
KR20180005996A (ko) 빌딩 내의 rf 케이블을 공유하는 5g 인빌딩 중계 시스템 및 5g 인빌딩 중계 방법
KR101912872B1 (ko) 고밀집 네트워크 환경을 위한 WiFi 네트워크 시스템
CN104104461A (zh) 时间同步系统及时间同步方法
CN103813273A (zh) Pdt数字集群基站无线链路信道频率配置及接入的方法
WO2018235999A1 (ko) 저궤도 위성신호기반 자율주행을 위한 다중통신을 제공하는 스마트 내비게이션-블랙박스 및 그 제공방법
CN110518964B (zh) 一种基于光载无线网络的卫星地面站高精度时间同步方法
CN217820812U (zh) 一种通信基站及定位系统
WO2020133282A1 (zh) 基站系统和时钟同步方法
CN209088077U (zh) 一种新型dvbs2载波寻星模块及寻星系统
CN114966541A (zh) 一种通信基站及定位系统
KR20120018006A (ko) 광대역 디지털 i/q 신호 전송 및 제어 방법
CN112929851A (zh) 一种基于v2x的时间同步方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180037414.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2012523195

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789115

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11789115

Country of ref document: EP

Kind code of ref document: A1