WO2011149127A1 - Novel non-metallic heat emitter composition, a method for producing a non-metallic heat emitter by using the composition, and a non-metallic heat emitter produced therefrom - Google Patents

Novel non-metallic heat emitter composition, a method for producing a non-metallic heat emitter by using the composition, and a non-metallic heat emitter produced therefrom Download PDF

Info

Publication number
WO2011149127A1
WO2011149127A1 PCT/KR2010/003347 KR2010003347W WO2011149127A1 WO 2011149127 A1 WO2011149127 A1 WO 2011149127A1 KR 2010003347 W KR2010003347 W KR 2010003347W WO 2011149127 A1 WO2011149127 A1 WO 2011149127A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating element
temperature
composition
weight
metal heating
Prior art date
Application number
PCT/KR2010/003347
Other languages
French (fr)
Korean (ko)
Inventor
서용석
Original Assignee
주식회사 자연에너지산업
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 자연에너지산업 filed Critical 주식회사 자연에너지산업
Priority to KR1020127034059A priority Critical patent/KR101419166B1/en
Priority to PCT/KR2010/003347 priority patent/WO2011149127A1/en
Publication of WO2011149127A1 publication Critical patent/WO2011149127A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic

Definitions

  • the present invention relates to a nonmetallic heating element composition, a method for producing a nonmetallic heating element using the composition, and a nonmetallic heating element prepared therefrom.
  • planar heating element which is recently emerging, is a product that reduces power by 20 to 40% than the electric heating element that is generally used, and is expected to have a large electric energy saving and economic ripple effect.
  • the surface heating element is easy to control the temperature by using the radiant heat generated by the electric current, it does not pollute the air has advantages in terms of hygiene and noise is used for bedding, such as heating mats or pads.
  • it is widely applied to heating devices in various industrial places such as floor heating in homes, industrial heating in offices and workshops, paint drying, vinyl houses, barns, agricultural equipment, automotive back mirrors, freezing prevention devices for parking lots, recreational cold protection equipment, and home appliances. It is used.
  • planar heating element has recently been widely used, replacing much of the heating in Europe, and is emerging as a new material that can be applied to industrial dryers, agricultural product dryers, health care auxiliary products, and construction subsidiary materials in addition to the housing sector.
  • the domestic heating element market is estimated to be worth about 20 billion won for home appliances and about 50 billion won for home heating elements, and the market size is over hundreds of billions due to the development of a wide range of applications using planar heating elements. In view of this, the high value-addedness of the planar heating element technology and the importance in the parts and materials industries are being highlighted.
  • the planar heating element uses heat generated by resistance when a voltage is applied to the conductive material, and is generally produced by forming a heat generating layer containing a conductive material on a surface of a fabric or a synthetic resin substrate.
  • the conductive material used to manufacture the planar heating element is classified into a metal heating element and a non-metal heating element, and in recent years, non-metal heating elements are mostly used in consideration of stability.
  • non-metal heating elements conductive carbon, carbon, graphite, and tin chloride are mainly used as conductive materials, and electrodes for applying a voltage to the flat plate to form a heating layer and applying voltage to the heating layer are applied. After the formation of the insulating layer formed on top of the planar heating element has been manufactured.
  • the resistance value of the heating layer is not uniform, so that the heat generation temperature is very unstable, and thus the temperature deviation depending on the position of the planar heating element has a very severe disadvantage. That is, the thickness of the planar heating element is constant, but the resistance value is different, the heating state is uneven, even in the same plane has a disadvantage that the deviation of the heating temperature is severe. For this reason, there is a problem that the heating element of the portion higher than the region having a low heat generation temperature is aging first, which shortens the life of the planar heating element and makes it impossible to generate high temperature of 300 ° C. or higher.
  • the present inventors have made diligent research efforts to solve the problems of the prior art as described above, and as a result, molybdenum disulfide (MoSi 2 ), tungsten carbide (WC), tin tin chloride (SnCl 4 ⁇ 5H 2 O), chromium trioxide (
  • MoSi 2 molybdenum disulfide
  • WC tungsten carbide
  • SnCl 4 ⁇ 5H 2 O chromium trioxide
  • the resistance value of the heating layer is uniform, so that the heating temperature is constant, and low temperature, medium temperature, and high temperature heating are possible and durable depending on the intended use.
  • it completed the present invention by confirming that it can achieve the heating element beneficial to a human body by radiating far infrared rays.
  • an object of the present invention is to provide a non-metallic far-infrared heating element which is excellent in durability while having low temperature, constant temperature, and high temperature heating depending on the intended use because the resistance value of the heating layer is uniform.
  • the present invention is based on the weight of the total composition molybdenum disilicide (MoSi 2 ) 30 to 32% by weight, tungsten carbide (WC) 27 to 29% by weight, tin tin chloride (tin chloride, SnCl 4 ⁇ 5H 2 O) 20 to 22% by weight, chromium trioxide (H 2 CrO 2 ) 13 to 15% by weight and boric acid (boric acid, H 3 BO 3 ) 6 to 8% by weight It provides a heating element composition.
  • MoSi 2 molybdenum disilicide
  • WC tungsten carbide
  • tin tin chloride tin chloride, SnCl 4 ⁇ 5H 2 O
  • chromium trioxide H 2 CrO 2
  • boric acid boric acid
  • the present invention comprises the step of depositing the composition on the surface of the target matrix to be deposited by atmospheric pressure chemical vapor deposition (atmospheric pressure chemical vapor deposition) to form a heating layer, and then forming electrodes on both ends of the heating layer; It provides a method for producing a non-metallic heating element.
  • atmospheric pressure chemical vapor deposition atmospheric pressure chemical vapor deposition
  • the present invention provides a non-metal heating element that emits far-infrared rays produced by the above method and is capable of low temperature, medium temperature and high temperature heating depending on the intended use.
  • the initial heat is rapidly generated by the use of the nonmetal heating element composition having excellent electrical resistance to the unit area, and the resistance of the heating layer is uniform, so that the heating temperature is constant. It is possible to selectively generate low temperature, medium temperature, and high temperature of 1000 ° C. or more, but also has excellent durability.
  • the non-metallic heating element according to the present invention is excellent in energy conversion efficiency, can significantly suppress power consumption and radiate far infrared rays, which is beneficial to the human body, and the manufacturing process is simple, economical and does not cause environmental pollution. It can be usefully applied as.
  • the present invention is based on the weight of the total composition molybdenum disilicide (MoSi 2 ) 30 to 32% by weight, tungsten carbide (WC) 27 to 29% by weight, tin chloride, SnCl 4 ⁇ 5H 2 O) 20 to 22% by weight, chromium trioxide (H 2 CrO 2 ) 13 to 15% by weight and boric acid (boric acid, H 3 BO 3 ) It provides a non-metallic heating element composition comprising 6 to 8% by weight.
  • MoSi 2 molybdenum disilicide
  • WC tungsten carbide
  • SnCl 4 ⁇ 5H 2 O chromium trioxide
  • boric acid boric acid
  • the non-metallic heating element composition according to the present invention has a molybdenum disilicide (MoSi 2 ) 30 to 32% by weight, tungsten carbide (WC) 27 to 29% by weight, tin tin (tin) chloride, SnCl 4 ⁇ 5H 2 O) 20 to 22% by weight, chromium trioxide (H 2 CrO 2 ) 13 to 15% by weight and boric acid (H 3 BO 3 ) 6 to 8% by weight.
  • MoSi 2 molybdenum disilicide
  • WC tungsten carbide
  • tin tin (tin) chloride SnCl 4 ⁇ 5H 2 O
  • chromium trioxide H 2 CrO 2
  • boric acid H 3 BO 3
  • the non-metallic heating element composition according to the present invention is composed of components having excellent electrical resistance characteristics for a unit area, and the physical properties and functions of these components are as follows.
  • Molybdenum silicide is a compound in which the molar ratio of molybdenum (Mo) and silicon (Si) is 1: 2, and has a high melting point (2030 ° C.) and a low density (6.3 g / cc). Molybdenum disulfide has been widely studied as a next-generation high temperature oxidation resistant material because silicon, which is one of the constituents, combines with oxygen in the atmosphere to form a silica (SiO 2 ) film on the surface of a product at a high temperature in an oxidizing atmosphere.
  • the content of molybdenum disulphide is preferably 32 to 30% by weight based on the total weight of the composition. If the content thereof is less than 30% or more than 32% by weight, the desired level of high temperature heating may not be achieved.
  • Tungsten carbide is a hexagonal crystal produced by heating powder tungsten and carbon black under hydrogen gas at 1400-1600 ° C.
  • Tungsten carbide is one of the most important components of cemented carbide, which has high temperature hardness, high density and high strength, and stable physical properties.It is used in various cutting tools, wear resistance, impact tools, and high temperature and high pressure components. It is applied to drills and precision micro molds.
  • the content of tungsten carbide is preferably 27 to 29% by weight based on the total weight of the composition. If the content is less than 27% or more than 29% by weight, the electric flow may become unstable at high heat.
  • Tin tin chloride (SnCl 4 ⁇ 5H 2 O) is a compound of tin and chlorine that is a colorless, fuming liquid obtained by distillation by passing chlorine gas directly through tin. When dissolved in water, it is exothermic and slowly hydrolyzed to produce colloid of tin oxide (IV) and HSnCl of hexachlorotin (IV) acid. Soluble in organic solvents, used as a mordant, condensing agent, organotin compound. Its anhydride is one of the representative cationic polymerization catalysts.
  • the content of stannic chloride is preferably 20 to 22% by weight based on the total weight of the composition, but if the content is less than 20% or more than 22% by weight, it may cause instability of the exothermic layer.
  • Chromium trioxide (H 2 CrO 2 ) is a glossy green or black powdered crystalline solid with a molecular weight of 151.99 and a melting point of 1990 ° C. It is harder than quartz and hardly changes by heat, air or water. The most common pigment, also called chrome green, is used for coloring glass or pottery. Soluble in water, acidic on its own, prolong life and make electric flow strong during plating.
  • the content of chromium trioxide is preferably 13 to 15% by weight based on the total weight of the composition. If the content is less than 13% or more than 15% by weight, the heating element life may be shortened due to the instability of the electric flow. .
  • Boric acid is a colorless, odorless, glossy, scaly crystal, generally referred to as orthoboric acid. It is a substance obtained by treating concentrated boric acid solution with sulfuric acid. It dissolves well in hot water. The aqueous solution has a weak acidity and shows sterilization effect. It is used as a mild disinfectant to treat burns or skin wounds. Boric acid is also used as an important component in fabric fireproofing, nickel electroplating or tanning solutions and catalysts used in many organic chemical reactions.
  • the content of boric acid is preferably 6 to 8% by weight based on the total weight of the composition. If the content of the boric acid is less than 6% or more than 8% by weight, the bondability with other components may be reduced when the exothermic layer is formed. Can be.
  • the present invention provides a method for producing a non-metallic heating element by atmospheric pressure chemical vapor deposition using the non-metallic heating element composition of the above configuration.
  • the stock solution containing the components of the non-metallic heating element composition is heated to a predetermined temperature or more and evaporated in a chemical vapor, the components of the composition are vaporized and uniformly deposited on the surface of the mother to be deposited. Atmospheric pressure chemical vapor deposition is used.
  • step 1) is a step of preparing a non-metallic heating element stock solution using the non-metallic heating element composition according to the present invention, molybdenum silicide (MoSi 2 ), tungsten carbide (WC), tin tin chloride (SnCl 4 ⁇ 5H 2 O) , A suitable solvent is added to a nonmetallic heating element composition comprising chromium trioxide (H 2 CrO 2 ) and boric acid (H 3 BO 3 ), and dissolved by gradual heating.
  • MoSi 2 molybdenum silicide
  • WC tungsten carbide
  • SnCl 4 ⁇ 5H 2 O tin tin chloride
  • a suitable solvent is added to a nonmetallic heating element composition comprising chromium trioxide (H 2 CrO 2 ) and boric acid (H 3 BO 3 ), and dissolved by gradual heating.
  • the solvent in the present invention can be used without limitation as long as it can dissolve each component of the non-metallic heating element composition, for example, distilled water, butyl cellosol portion, ethyl cellosol portion, ethyl acetate, cyclohexanone, Xylene, diacetyl alcohol, toluene, ketones, mineral spirits and the like can be used.
  • the solvent is added in a ratio of 1: 1 to 1: 2.2 by volume relative to the nonmetallic heating element composition. At this time, the solvent is added to the non-metallic heating element composition, and then the mixture is preferably dissolved while gradually heating to 75 to 85 ° C.
  • Step 2) is a step of forming an exothermic layer by evaporating the non-metal heating element stock prepared in step 1) in a chemical vapor furnace and vaporizing the components of the composition on the surface of the parent to be deposited. It is a step to perform.
  • the nonmetallic heating element stock is placed on an evaporation table in a chemical gas furnace.
  • the temperature of the evaporation zone in the chemical gas furnace is maintained at 120 to 220 ° C, and the main temperature is the exothermic temperature and the non-metal to be achieved in the non-metal heating element finally obtained in the range of 300 to 1500 ° C. It may vary depending on the use of the heating element, the thickness of the matrix to be deposited.
  • the main temperature is set to 400 to 450 ° C, and at the time of the production of the 100 to 500 ° C medium-temperature heating nonmetal heating element, the main temperature is 450 to 500 ° C. It is preferably set at 600 ° C, and preferably at 600 to 1100 ° C when the nonmetallic heating element for high temperature heating at 500 to 1000 ° C is manufactured.
  • the substrate to be deposited on which the heating layer is to be formed on the surface of the substrate is fixed to a fixing mechanism located at an upper portion of the substrate.
  • the fixture may rotate the fixed deposition target matrix as necessary so that a plurality of deposition target substrates may be fixed and uniformly deposited on the surface of the substrate during the deposition process.
  • the substrate to be deposited suitable for the present invention may be used as all substrates to form the heating layer, as long as it does not cause physical deformation such as shrinkage or expansion by the deposition temperature of the nonmetallic heating element composition or the exothermic temperature of the finally obtained nonmetallic heating element. have.
  • the material of the substrate to be deposited glass, quartz, ceramic, quartz, or the like having various shapes such as circular, elliptical, plate, tubular, etc. may be used depending on the intended use.
  • the substrate to be deposited is preferably preheated to 300 to 1500 ° C. for 10 to 20 minutes before being applied to atmospheric pressure chemical vapor deposition using a non-metallic heating element stock solution.
  • This preheating process is for the safe deposition of resistance. The effect of durability and stability of resistance can be expected.
  • the preheating temperature or time may vary depending on the shape, size, thickness and use of the matrix to be deposited, and is preferably preheated at the same temperature as the atmospheric chemical vapor deposition temperature.
  • the non-metal heating element stock solution and the deposition target matrix are installed in a chemical gas furnace as described above, all of the stock solution of the evaporation table is evaporated by heating the evaporation zone and the main body at a set temperature. During evaporation, the solvent is volatilized and the non-metallic heating element components are vaporized and deposited uniformly on the surface of the mother body. In this case, in order to prevent atmospheric pressure chemical vapor deposition on a portion where the formation of a heating layer is not required on the surface of the substrate to be deposited, various processes such as masking with a coating or a tape may be performed. When all of the non-metallic heating element stock solution evaporates, the mother body on which the heating layer is deposited is taken out and cooled to room temperature.
  • the electrical resistance per unit area of the heating layer may vary depending on the heating temperature required in the final non-metal heating element. .
  • the electrical resistance per unit area of the heating layer is inversely proportional to the heating temperature. The higher the electrical resistance per unit area of the heating layer, the lower the heating temperature, and the lower the electrical resistance per unit area, the higher the heating temperature.
  • the electrical resistance per unit area of the heat generating layer can be achieved to have a desired range by adjusting the deposition thickness of the heat generating layer.
  • the deposition thickness of the heating layer becomes thicker, the electrical resistance per unit area is lowered to increase the heating temperature, while the thinner the deposition thickness, the higher the electrical resistance per unit area is, so that the heating temperature is decreased.
  • the deposition thickness of the heating layer may be adjusted depending on the amount of the non-metal heating element stock solution to be evaporated and the mixing method of the composition.
  • Step 3) is a step of forming an electrode for applying a voltage to both ends of the heating layer formed on the surface of the matrix to be deposited in step 2), the electrode is at least one pair in the longitudinal or transverse direction of the heating layer Can be formed.
  • an electrode material suitable for use in the present invention it is preferable that the conductivity is higher than that of the heat generating layer, and general metals, graphite, rosin, and the like correspond to this.
  • an electrode solution made of silver powder liquid is applied to the outer circumferential surface of the heat generating layer in a band shape at a predetermined length and thickness to form an electrode.
  • the target non-metallic heating element is completed by putting the electrode to be deposited on the outer circumferential surface of the heating layer in a chemical gas furnace and heating it through a three-step temperature change to sinter the electrode and then take it out to room temperature and cool it.
  • the temperature of the chemical gas furnace is initially put into the deposition target matrix and heated for 10 to 20 minutes at 150 to 400 °C, then heated to 300 to 1500 °C to heat for 20 to 30 minutes, then at 150 to 400 °C It is set to heat for 10 to 20 minutes, wherein the temperature conditions depend on the temperature of the mains at which atmospheric pressure vapor deposition is carried out in the preceding step.
  • the present invention is to selectively prepare a non-metal heating element capable of low-temperature, medium-temperature and high-temperature heating according to the intended use by controlling the temperature of the predominant temperature and the amount of the non-metal heating element stock solution deposited in the chemical gas furnace where atmospheric pressure chemical vapor deposition is performed in the above method.
  • the temperature of the main body in the chemical gas furnace is set to 600 to 1100 ° C according to the maximum set temperature of the heating target mother, and the heating layer is deposited on the surface of the deposition target mother.
  • the amount of the non-metallic heating element stock solution may be increased.
  • the non-metal heating element in order to manufacture a non-metal heating element capable of low-temperature heating, the non-metal heating element to increase the electrical resistance by setting the temperature of the main chamber in the chemical gas furnace to 400 to 450 °C and reducing the thickness of the heating layer deposited on the surface of the substrate to be deposited You can reduce the amount of stock solution.
  • the non-metallic heating element obtained according to the present invention is molybdenum disulfide (MoSi 2 ), tungsten carbide (WC), stannic chloride (SnCl 4 ⁇ 5H 2 O), chromium trioxide (H 2 CrO 2 ) and boric acid (H 3 BO 3
  • the non-metallic heating element composition including) is formed by evaporation of the non-metallic heating element components by atmospheric vapor chemical vapor deposition, and the heating layer is formed of molybdenum disulfide (MoSi 2 ), tungsten carbide (WC), and tin oxide (SnO). 2 ), chromium trioxide (H 2 CrO 2 ) and boron trioxide (B 2 O 3 ) is the main component.
  • the non-metal heating element according to the present invention can selectively control the exothermic temperature according to the temperature and amount of the non-metal heating element stock solution is deposited in the manufacturing process, the higher the temperature at which atmospheric pressure chemical vapor deposition is carried out, the amount of the non-metal heating element stock is deposited The more the exothermic temperature of the non-metallic heating element finally obtained increases.
  • the amount of the non-metal heating element stock solution to be deposited may be represented by the thickness of the heating layer to be formed. If the heating layer has a thickness of 8 to 20 nm, the non-metal heating element may be heated at a low temperature of 10 to 100 ° C., and the heating layer may be 15 to 15 nm.
  • the non-metal heating element having a thickness of 35 nm can be a medium-temperature heating of 100 to 500 °C
  • the non-metal heating element is capable of high temperature heating of 500 to 1000 °C if the heating layer has a thickness of 30 to 65 nm.
  • Molybdenum disulphide (MoSi 2 ) in the non-metal heating element is a strong non-metal resistive heating element, a core heating material that enables high-temperature heating of 1000 °C, tungsten carbide (WC) having a high density increases the hardness and strength when the heating element is a high temperature, Tin oxide (SnO 2 ) plays an aggregate role in the heating layer, chromium trioxide (H 2 CrO 2 ) strengthens the electric flow and improves durability, and boron trioxide (B 2 O 3 ) fills the space between the crystals. It acts as a filler to improve transparency and brightness of the heating layer and to improve thermal stability.
  • the initial heat generation is made very quickly by using a nonmetal heating element composition having excellent electrical resistance to unit area, and the resistance value of the heating layer is uniform, so that the heating temperature is constant and is used at 10 ° C. according to the intended use. It is possible to selectively generate low temperature, medium temperature, and high temperature of 1000 ° C. or more, but also has excellent durability.
  • the non-metallic heating element according to the present invention is excellent in energy conversion efficiency, can significantly suppress power consumption and radiate far infrared rays, which is beneficial to the human body, and the manufacturing process is simple, economical and does not cause environmental pollution. It can be usefully applied as.
  • the non-metallic heating element according to the present invention can be applied to various heating, hot water supply, drying, food cooking, and equipment requiring high temperature or heat, for example, beddings such as heating mats or pads, apartments or general houses.
  • Residential heating devices such as floor heating, industrial heating devices for offices or workplaces, various industrial heating devices such as printing drying and paint drying, agricultural equipment such as plastic houses and barns, agricultural product drying systems, and freezing to melt snow on roads and parking lots. It can be applied to the prevention device.
  • a silver powder liquid (Ag 99% purity) electrode solution it was coated on both ends of the heating layer deposited on the surface of the ceramic plate with a constant thickness and length.
  • the ceramic plate is placed in a chemical furnace and heated at 400 ° C. for 15 minutes, at 800 ° C. for 30 minutes, and at 300 ° C. for 15 minutes to sinter the electrode, and then take it out and cool it to room temperature to emit far-infrared rays.
  • a ceramic plate heating element was produced as possible.
  • the unit resistance value was about 30 kPa.
  • the surface temperature was kept constant over 1000 ° C.
  • the far-infrared emission amount of the ceramic plate heating element was measured by Fourier transform infrared spectroscopy at 100 ° C., and it was confirmed that it emits 7.63 ⁇ 10 2 W / m 2 radiation energy and shows 88.6% far-infrared emissivity. It was.
  • a silver powder liquid (Ag 99% purity) electrode solution it was coated on both ends of the heating layer deposited on the surface of the quartz plate with a constant thickness and length.
  • the quartz plate was placed in a chemical furnace and heated at 300 ° C. for 15 minutes, at 600 ° C. for 30 minutes, and at 300 ° C. for 15 minutes to sinter the electrode, and then taken out and cooled to room temperature to emit far-infrared rays.
  • a quartz plate heating element was produced as possible.
  • the unit resistance value was about 117 kPa.
  • the surface temperature was kept constant at 300 ° C. or higher.
  • the far-infrared emission amount of the ceramic plate heating element was measured by Fourier transform infrared spectroscopy at 100 ° C., and it was confirmed that it emits 7.63 ⁇ 10 2 W / m 2 radiation energy and shows 88.6% far-infrared emissivity. It was.
  • atmospheric pressure chemical vapor deposition was performed by evaporating the non-metal heating element stock solution on the evaporator while raising the temperature of the main to 450 ° C. while rotating the holder so that the heating layer was uniformly deposited on the heat-resistant glass plate surface. After about 15 minutes, when all the nonmetallic heating element stocks evaporated, the heat-resistant glass plate on which the exothermic layer was deposited was taken out and cooled to room temperature.
  • the unit resistance value was about 450 kPa.
  • the surface temperature was constantly maintained at 100 ° C. or lower.
  • the far-infrared emission amount of the ceramic plate heating element was measured by Fourier transform infrared spectroscopy at 100 ° C., and it was confirmed that it emits 7.63 ⁇ 10 2 W / m 2 radiation energy and shows 88.6% far-infrared emissivity. It was.
  • the initial heat is rapidly generated by the use of the nonmetal heating element composition having excellent electrical resistance to the unit area, and the resistance of the heating layer is uniform, so that the heating temperature is constant. It is possible to selectively generate low temperature, medium temperature, and high temperature of 1000 ° C. or more, but also has excellent durability.
  • the non-metallic heating element according to the present invention is excellent in energy conversion efficiency, can significantly suppress power consumption and radiate far infrared rays, which is beneficial to the human body, and the manufacturing process is simple, economical and does not cause environmental pollution. It can be usefully applied as.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Resistance Heating (AREA)

Abstract

The present invention relates to a novel non-metallic heat emitter composition, to a method for producing a non-metallic heat emitter by using the composition and to a non-metallic heat emitter produced therefrom and, more specifically, the present invention relates to a non-metallic heat emitter composition comprising, based on the weight of the composition as a whole, from 30 to 32 percent by weight of molybdenum disilicide (MoSi2), from 27 to 29 percent by weight of tungsten carbide (WC), from 20 to 22 percent by weight of stannic chloride (tin chloride, SnCl5H2O)20, from 13 to 15 percent by weight of chromium trioxide (H2CrO2), and from 6 to 8 percent by weight of boric acid (H3BO3), and the invention relates to a method for producing the non-metallic heat emitter by using the composition and to a non-metallic heat emitter produced therefrom. The non-metallic heat emitter according to the present invention is advantageous in that the resistance value of the heat-emitting layer is uniform and the heat-emitting temperature is constant and it can be adjusted at will to low-temperature heat emission at between 10 and 100℃, mid-temperature heat emission at between 100 and 500℃ and high-temperature heat emission at between 500 and 1,000℃ while having outstanding durability and, additionally, it emits far infrared and hence is beneficial to the human body.

Description

신규한 비금속 발열체 조성물, 상기 조성물을 이용한 비금속 발열체의 제조방법 및 이로부터 제조된 비금속 발열체New nonmetallic heating element composition, method for preparing nonmetallic heating element using the composition and nonmetallic heating element prepared therefrom
본 발명은 비금속 발열체 조성물, 상기 조성물을 이용한 비금속 발열체의 제조방법 및 이로부터 제조된 비금속 발열체에 관한 것이다.The present invention relates to a nonmetallic heating element composition, a method for producing a nonmetallic heating element using the composition, and a nonmetallic heating element prepared therefrom.
에너지 자원의 고갈에 따라 세계 각국은 에너지 절약 부분에 많은 투자를 하고 있다. 이러한 흐름에 맞춰 최근 부각되고 있는 면상 발열체는 일반적으로 사용하고 있는 전기 발열체보다 20~40%의 전력을 감소하는 제품으로 전기에너지 절약 및 경제적 파급효과가 클 것으로 예상된다.With the depletion of energy resources, countries around the world are investing heavily in energy conservation. In line with this trend, the planar heating element, which is recently emerging, is a product that reduces power by 20 to 40% than the electric heating element that is generally used, and is expected to have a large electric energy saving and economic ripple effect.
일반적으로 면상 발열체는 전기통전에 의해 발생하는 복사열을 이용하여 온도조절이 용이하고, 공기를 오염시키지 않아 위생과 소음 면에서 장점이 있어 히팅 매트나 패드 등의 침구류에 이용되고 있다. 또한 주택의 바닥 난방, 사무실 및 작업장 등의 산업용 난방, 도장 건조 등 각종 산업장의 가열장치, 비닐하우스나 축사, 농업용 설비, 자동차용 백밀러, 주차장의 동결방지장치, 레저용 방한용 장비, 가전제품 등에 폭넓게 이용되고 있다.In general, the surface heating element is easy to control the temperature by using the radiant heat generated by the electric current, it does not pollute the air has advantages in terms of hygiene and noise is used for bedding, such as heating mats or pads. In addition, it is widely applied to heating devices in various industrial places such as floor heating in homes, industrial heating in offices and workshops, paint drying, vinyl houses, barns, agricultural equipment, automotive back mirrors, freezing prevention devices for parking lots, recreational cold protection equipment, and home appliances. It is used.
면상 발열체는 특히, 최근에 그 이용이 활발하여 유럽의 주택난방의 많은 부분을 대체하고 있으며 주택분야 외에 산업용 건조기, 농산물 건조기, 건장의료 보조제품 및 건축부자재 등으로 응용이 가능한 신소재로 각광받고 있다. 국내 발열체 시장규모는 가전제품용 발열체 시장이 대략 200억 정도이고 주택 난방용 발열체 시장이 대략 500억 정도로 예상되며, 면상 발열체를 이용한 폭넓은 응용제품 개발로 그 시장 규모는 수천억 이상으로 세계시장 규모를 감안할 때 면상 발열체 기술의 고부가 가치성과 부품ㆍ소재 산업에서의 중요성이 부각되고 있다.The planar heating element has recently been widely used, replacing much of the heating in Europe, and is emerging as a new material that can be applied to industrial dryers, agricultural product dryers, health care auxiliary products, and construction subsidiary materials in addition to the housing sector. The domestic heating element market is estimated to be worth about 20 billion won for home appliances and about 50 billion won for home heating elements, and the market size is over hundreds of billions due to the development of a wide range of applications using planar heating elements. In view of this, the high value-addedness of the planar heating element technology and the importance in the parts and materials industries are being highlighted.
면상 발열체는 도전성 재료에 전압을 걸어주었을 때 저항에 의해 발생하는 열을 이용하는 것으로서, 일반적으로 직물이나 합성수지의 기판에 면상으로 도전성 재료를 포함하는 발열층을 형성하여 제조된다.The planar heating element uses heat generated by resistance when a voltage is applied to the conductive material, and is generally produced by forming a heat generating layer containing a conductive material on a surface of a fabric or a synthetic resin substrate.
면상 발열체를 제조하기 위하여 사용되는 도전성 재료는 금속 발열체와 비금속 발열체로 구분되는데, 근래에는 안정성을 고려하여 대부분 비금속 발열체를 사용하고 있다. 특히, 비금속 발열체 중에서도 전도성 카본, 탄소, 흑연, 염화주석이 도전성 재료로 주로 사용되고 있으며, 상기 전도성 재료를 평판에 소정의 두께로 도포하여 발열층을 형성하고, 상기 발열층에 전압을 걸어주기 위한 전극을 형성한 후 그 상단에 절연층을 형성하여 면상 발열체를 제조하여 왔다.The conductive material used to manufacture the planar heating element is classified into a metal heating element and a non-metal heating element, and in recent years, non-metal heating elements are mostly used in consideration of stability. In particular, among the non-metal heating elements, conductive carbon, carbon, graphite, and tin chloride are mainly used as conductive materials, and electrodes for applying a voltage to the flat plate to form a heating layer and applying voltage to the heating layer are applied. After the formation of the insulating layer formed on top of the planar heating element has been manufactured.
그러나 종래의 방법에 의해 제조된 면상 발열체의 경우 발열층의 저항치가 균일하지 못하여 발열온도가 매우 불안정하고, 그에 따라 면상 발열체의 위치에 따른 온도편차가 매우 심한 단점을 가지고 있다. 즉, 면상 발열체의 두께는 일정하지만 저항치가 달라 발열상태가 고르지 못하여 같은 면상이라 할지라도 발열온도의 편차가 심하다는 단점을 가지고 있다. 이로 인해 발열온도가 낮은 부위보다 높은 부위의 발열체가 먼저 노후되어 면상 발열체의 수명이 단축되고 300℃ 이상의 고온 발열이 불가능하다는 등의 문제점이 있었다.However, in the case of the planar heating element manufactured by the conventional method, the resistance value of the heating layer is not uniform, so that the heat generation temperature is very unstable, and thus the temperature deviation depending on the position of the planar heating element has a very severe disadvantage. That is, the thickness of the planar heating element is constant, but the resistance value is different, the heating state is uneven, even in the same plane has a disadvantage that the deviation of the heating temperature is severe. For this reason, there is a problem that the heating element of the portion higher than the region having a low heat generation temperature is aging first, which shortens the life of the planar heating element and makes it impossible to generate high temperature of 300 ° C. or higher.
이에 본 발명자들은 상기한 바와 같은 종래기술의 문제점을 해결하기 위하여 예의 연구 노력한 결과, 이규화몰리브덴(MoSi2), 탄화텅스텐(WC), 염화제2주석(SnCl5H2O), 삼산화크롬(H2CrO2) 및 붕산(H3BO3)을 함유하는 비금속 발열체 조성물을 이용하면, 발열층의 저항치가 균일하여 발열온도가 일정하고 사용 용도에 따라 저온, 중온 및 고온 발열이 가능하면서 내구성이 우수할 뿐만 아니라, 원적외선을 방사하여 인체에 유익한 발열체를 달성할 수 있음을 확인함으로써 본 발명을 완성하였다.Accordingly, the present inventors have made diligent research efforts to solve the problems of the prior art as described above, and as a result, molybdenum disulfide (MoSi 2 ), tungsten carbide (WC), tin tin chloride (SnCl 5H 2 O), chromium trioxide ( When using a non-metallic heating element composition containing H 2 CrO 2 ) and boric acid (H 3 BO 3 ), the resistance value of the heating layer is uniform, so that the heating temperature is constant, and low temperature, medium temperature, and high temperature heating are possible and durable depending on the intended use. Not only is it excellent, it completed the present invention by confirming that it can achieve the heating element beneficial to a human body by radiating far infrared rays.
따라서 본 발명의 목적은 발열층의 저항치가 균일하여 발열온도가 일정하고 사용 용도에 따라 저온, 중온 및 고온 발열이 가능하면서 내구성이 우수한 비금속 원적외선 발열체를 제공하는 것이다.Accordingly, an object of the present invention is to provide a non-metallic far-infrared heating element which is excellent in durability while having low temperature, constant temperature, and high temperature heating depending on the intended use because the resistance value of the heating layer is uniform.
상기 목적을 달성하기 위하여, 본 발명은 전체 조성물의 중량을 기준으로 이규화몰리브덴(molybdenum disilicide, MoSi2) 30 내지 32 중량%, 탄화텅스텐(tungsten carbide, WC) 27 내지 29 중량%, 염화제2주석(tin chloride, SnCl5H2O) 20 내지 22 중량%, 삼산화크롬(H2CrO2) 13 내지 15 중량% 및 붕산(boric acid, H3BO3) 6 내지 8 중량%를 포함하는 비금속 발열체 조성물을 제공한다.In order to achieve the above object, the present invention is based on the weight of the total composition molybdenum disilicide (MoSi 2 ) 30 to 32% by weight, tungsten carbide (WC) 27 to 29% by weight, tin tin chloride (tin chloride, SnCl 5H 2 O) 20 to 22% by weight, chromium trioxide (H 2 CrO 2 ) 13 to 15% by weight and boric acid (boric acid, H 3 BO 3 ) 6 to 8% by weight It provides a heating element composition.
또한 본 발명은 상기 조성물을 목적하는 증착대상 모체의 표면에 상압화학기상증착(atmospheric pressure chemical vapor deposition)에 의해 증착시켜 발열층을 형성한 후, 상기 발열층의 양단부에 전극을 형성하는 것을 포함하는, 비금속 발열체의 제조방법을 제공한다.In another aspect, the present invention comprises the step of depositing the composition on the surface of the target matrix to be deposited by atmospheric pressure chemical vapor deposition (atmospheric pressure chemical vapor deposition) to form a heating layer, and then forming electrodes on both ends of the heating layer; It provides a method for producing a non-metallic heating element.
아울러, 본 발명은 상기 방법에 의해 제조된 원적외선을 방사하고 사용 용도에 따라 저온, 중온 및 고온 발열이 가능한 비금속 발열체를 제공한다.In addition, the present invention provides a non-metal heating element that emits far-infrared rays produced by the above method and is capable of low temperature, medium temperature and high temperature heating depending on the intended use.
본 발명에 따른 비금속 발열체는 단위면적에 대한 전기저항 특성이 우수한 비금속 발열체 조성물의 사용에 의해 초기 발열이 신속하게 이루어지고 발열층의 저항치가 균일하여 발열온도가 일정하며, 사용 용도에 따라 10℃에서 1000℃ 이상의 저온, 중온 및 고온의 선택적 발열이 가능하면서도 내구성이 우수하다는 장점을 갖는다. 또한 본 발명에 따른 비금속 발열체는 에너지 변환효율이 우수하여 전력낭비를 상당히 억제할 수 있고 인체에 유익한 원적외선을 방사할 뿐만 아니라, 제조공정이 단순하고 경제적이며 환경오염을 유발하지 않아 다양한 분야에 면상 발열체로서 유용하게 적용될 수 있다.In the nonmetal heating element according to the present invention, the initial heat is rapidly generated by the use of the nonmetal heating element composition having excellent electrical resistance to the unit area, and the resistance of the heating layer is uniform, so that the heating temperature is constant. It is possible to selectively generate low temperature, medium temperature, and high temperature of 1000 ° C. or more, but also has excellent durability. In addition, the non-metallic heating element according to the present invention is excellent in energy conversion efficiency, can significantly suppress power consumption and radiate far infrared rays, which is beneficial to the human body, and the manufacturing process is simple, economical and does not cause environmental pollution. It can be usefully applied as.
본 발명은 전체 조성물의 중량을 기준으로 이규화몰리브덴(molybdenum disilicide, MoSi2) 30 내지 32 중량%, 탄화텅스텐(tungsten carbide, WC) 27 내지 29 중량%, 염화제2주석(tin chloride, SnCl5H2O) 20 내지 22 중량%, 삼산화크롬(H2CrO2) 13 내지 15 중량% 및 붕산(boric acid, H3BO3) 6 내지 8 중량%를 포함하는 비금속 발열체 조성물을 제공한다.The present invention is based on the weight of the total composition molybdenum disilicide (MoSi 2 ) 30 to 32% by weight, tungsten carbide (WC) 27 to 29% by weight, tin chloride, SnCl 5H 2 O) 20 to 22% by weight, chromium trioxide (H 2 CrO 2 ) 13 to 15% by weight and boric acid (boric acid, H 3 BO 3 ) It provides a non-metallic heating element composition comprising 6 to 8% by weight.
본 발명에 따른 비금속 발열체 조성물은 전체 조성물의 중량을 기준으로 이규화몰리브덴(molybdenum disilicide, MoSi2) 30 내지 32 중량%, 탄화텅스텐(tungsten carbide, WC) 27 내지 29 중량%, 염화제2주석(tin chloride, SnCl5H2O) 20 내지 22 중량%, 삼산화크롬(H2CrO2) 13 내지 15 중량% 및 붕산(boric acid, H3BO3) 6 내지 8 중량%를 포함한다.The non-metallic heating element composition according to the present invention has a molybdenum disilicide (MoSi 2 ) 30 to 32% by weight, tungsten carbide (WC) 27 to 29% by weight, tin tin (tin) chloride, SnCl 5H 2 O) 20 to 22% by weight, chromium trioxide (H 2 CrO 2 ) 13 to 15% by weight and boric acid (H 3 BO 3 ) 6 to 8% by weight.
본 발명에 따른 비금속 발열체 조성물은 단위면적에 대한 전기저항 특성이 우수한 성분들로 구성되는데, 이들 성분들의 물성 및 기능은 다음과 같다.The non-metallic heating element composition according to the present invention is composed of components having excellent electrical resistance characteristics for a unit area, and the physical properties and functions of these components are as follows.
이규화몰리브덴(MoSi2)은 몰리브덴(Mo)과 실리콘(Si)의 몰비가 1:2로 이루어진 화합물로서, 높은 융점(2030℃)을 가짐과 동시에 낮은 밀도(6.3 g/cc)를 갖는다. 이규화몰리브덴은 산화성 분위기의 고온에서 구성성분의 하나인 실리콘이 대기 중의 산소와 결합하여 실리카(SiO2) 피막을 제품의 표면에 형성하기 때문에, 차세대 고온 내산화성 재료로서 널리 연구되고 있다.Molybdenum silicide (MoSi 2 ) is a compound in which the molar ratio of molybdenum (Mo) and silicon (Si) is 1: 2, and has a high melting point (2030 ° C.) and a low density (6.3 g / cc). Molybdenum disulfide has been widely studied as a next-generation high temperature oxidation resistant material because silicon, which is one of the constituents, combines with oxygen in the atmosphere to form a silica (SiO 2 ) film on the surface of a product at a high temperature in an oxidizing atmosphere.
이규화몰리브덴의 함량은 전체 조성물의 중량을 기준으로 32 내지 30 중량%가 바람직한데, 이의 함량이 30 중량% 미만이거나 32 중량%를 초과하는 경우에는 목적하는 수준의 고온발열이 이루어지지 않을 수 있다.The content of molybdenum disulphide is preferably 32 to 30% by weight based on the total weight of the composition. If the content thereof is less than 30% or more than 32% by weight, the desired level of high temperature heating may not be achieved.
탄화텅스텐(WC; tungsten carbide)은 1400-1600℃의 수소 기체 하에서 분말 텅스텐과 카본블랙을 가열하여 제조되는 육방 정계 결정이다. 탄화텅스텐은 초경합금의 가장 중요한 성분 중 하나로 고온경도가 우수하고 밀도와 강도가 높으며, 물리적 성질이 안정하기 때문에 각종 절삭공구 및 내마모, 내충격용 공구, 고온˙고압용 부품에 사용되고 있으며, 최근에는 마이크로드릴이나 정밀 마이크로금형 등에 응용되고 있다.Tungsten carbide (WC) is a hexagonal crystal produced by heating powder tungsten and carbon black under hydrogen gas at 1400-1600 ° C. Tungsten carbide is one of the most important components of cemented carbide, which has high temperature hardness, high density and high strength, and stable physical properties.It is used in various cutting tools, wear resistance, impact tools, and high temperature and high pressure components. It is applied to drills and precision micro molds.
탄화텅스텐의 함량은 전체 조성물의 중량을 기준으로 27 내지 29 중량%가 바람직한데, 이의 함량이 27 중량% 미만이거나 29 중량%를 초과하는 경우에는 고온발열 시 전기흐름이 불안정해 질 수 있다.The content of tungsten carbide is preferably 27 to 29% by weight based on the total weight of the composition. If the content is less than 27% or more than 29% by weight, the electric flow may become unstable at high heat.
염화제2주석(SnCl5H2O)은 주석과 염소의 화합물로서 주석에 직접 염소가스를 지나게 하여 증류하면 얻어지는 무색의 발연성 액체이다. 물에 녹을 때 발열하며 천천히 가수분해되어 산화주석(Ⅳ)의 콜로이드와 헥사클로로주석(Ⅳ)산 HSnCl을 생성한다. 유기용매에 녹으며, 매염제, 축합제, 유기주석 화합물의 원료로 사용된다. 이의 무수물은 대표적인 양이온 중합촉매의 하나이다. Tin tin chloride (SnCl 5H 2 O) is a compound of tin and chlorine that is a colorless, fuming liquid obtained by distillation by passing chlorine gas directly through tin. When dissolved in water, it is exothermic and slowly hydrolyzed to produce colloid of tin oxide (IV) and HSnCl of hexachlorotin (IV) acid. Soluble in organic solvents, used as a mordant, condensing agent, organotin compound. Its anhydride is one of the representative cationic polymerization catalysts.
염화제2주석의 함량은 전체 조성물의 중량을 기준으로 20 내지 22 중량%가 바람직한데, 이의 함량이 20 중량% 미만이거나 22 중량%를 초과하는 경우에는 발열층의 불안정성을 유발할 수 있다.The content of stannic chloride is preferably 20 to 22% by weight based on the total weight of the composition, but if the content is less than 20% or more than 22% by weight, it may cause instability of the exothermic layer.
삼산화크롬(H2CrO2)은 광택이 있는 녹색 또는 흑색의 분말 결정성 고체로, 분자량은 151.99이고 녹는점은 1990℃이다. 석영보다 단단하며 열이나 공기, 물 등에 의해 거의 변화하지 않는다. 용도가 가장 많은 안료로 크롬그린이라고도 하며 유리나 도기의 착색에 사용된다. 물에 잘 녹고 그 자체가 산성을 띄며, 도금 시 수명을 연장하고 전기흐름을 강하게 한다.Chromium trioxide (H 2 CrO 2 ) is a glossy green or black powdered crystalline solid with a molecular weight of 151.99 and a melting point of 1990 ° C. It is harder than quartz and hardly changes by heat, air or water. The most common pigment, also called chrome green, is used for coloring glass or pottery. Soluble in water, acidic on its own, prolong life and make electric flow strong during plating.
삼산화크롬의 함량은 전체 조성물의 중량을 기준으로 13 내지 15 중량%가 바람직한데, 이의 함량이 13 중량% 미만이거나 15 중량%를 초과하는 경우에는 전기흐름의 불안정성으로 인해 발열체 수명이 단축될 수 있다.The content of chromium trioxide is preferably 13 to 15% by weight based on the total weight of the composition. If the content is less than 13% or more than 15% by weight, the heating element life may be shortened due to the instability of the electric flow. .
붕산(H3BO3)은 무색무취에 광택이 나는 비늘 모양의 결정으로, 일반적으로 오르토붕산을 일컫는다. 진한 붕사용액을 황산으로 처리하여 얻어지는 물질로 더운 물에 잘 녹으며 수용액은 약한 산성을 띠면서 살균작용을 나타내어 화상이나 피부의 상처를 치료하기 위한 순한 소독제로 사용된다. 또한 붕산은 직물의 내화재, 니켈 전기도금이나 가죽을 무두질하기 위해 사용되는 용액과 여러 유기 화학반응에 사용되는 촉매의 중요한 성분으로 사용된다.Boric acid (H 3 BO 3 ) is a colorless, odorless, glossy, scaly crystal, generally referred to as orthoboric acid. It is a substance obtained by treating concentrated boric acid solution with sulfuric acid. It dissolves well in hot water. The aqueous solution has a weak acidity and shows sterilization effect. It is used as a mild disinfectant to treat burns or skin wounds. Boric acid is also used as an important component in fabric fireproofing, nickel electroplating or tanning solutions and catalysts used in many organic chemical reactions.
붕산의 함량은 전체 조성물의 중량을 기준으로 6 내지 8 중량%가 바람직한데, 이의 함량이 6 중량% 미만이거나 8 중량%를 초과하는 경우에는 발열층 형성 시 나머지 성분들과의 결합성이 저하될 수 있다.The content of boric acid is preferably 6 to 8% by weight based on the total weight of the composition. If the content of the boric acid is less than 6% or more than 8% by weight, the bondability with other components may be reduced when the exothermic layer is formed. Can be.
본 발명은 상기와 같은 구성의 비금속 발열체 조성물을 이용하여 상압화학기상증착(atmospheric pressure chemical vapor deposition)에 의해 비금속 발열체를 제조하는 방법을 제공한다.The present invention provides a method for producing a non-metallic heating element by atmospheric pressure chemical vapor deposition using the non-metallic heating element composition of the above configuration.
본 발명에 따른 비금속 발열체의 제조방법은Method for producing a non-metallic heating element according to the present invention
1) 비금속 발열체 조성물을 용매에 용해시켜 비금속 발열체 원액을 제조하는 단계;1) dissolving the nonmetallic heating element composition in a solvent to prepare a nonmetallic heating element stock solution;
2) 상압화학기상증착에 따라 상기 비금속 발열체 원액을 증발시켜 목적하는 증착대상 모체의 표면에 발열층을 증착하는 단계; 및2) evaporating the non-metallic heating element stock solution by atmospheric pressure chemical vapor deposition to deposit a heating layer on a surface of a target deposition target matrix; And
3) 상기 발열층의 양단부에 전극을 형성하는 단계를 포함한다.3) forming electrodes at both ends of the heating layer.
본 발명에 따른 제조방법은 비금속 발열체 조성물의 구성성분들을 포함하는 원액을 일정한 온도 이상으로 가열하여 화학증기로 내에서 증발시키면, 상기 조성물의 구성성분들이 기화되면서 증착대상 모체의 표면에 균일하게 증착되는 상압화학기상증착 방식을 이용한다. In the manufacturing method according to the present invention, when the stock solution containing the components of the non-metallic heating element composition is heated to a predetermined temperature or more and evaporated in a chemical vapor, the components of the composition are vaporized and uniformly deposited on the surface of the mother to be deposited. Atmospheric pressure chemical vapor deposition is used.
먼저, 단계 1)은 본 발명에 따른 비금속 발열체 조성물을 이용하여 비금속 발열체 원액을 제조하는 단계로, 이규화몰리브덴(MoSi2), 탄화텅스텐(WC), 염화제2주석(SnCl5H2O), 삼산화크롬(H2CrO2) 및 붕산(H3BO3)을 포함하는 비금속 발열체 조성물에 적당한 용매를 첨가하고 서서히 가열하면서 용해시켜 제조한다.First, step 1) is a step of preparing a non-metallic heating element stock solution using the non-metallic heating element composition according to the present invention, molybdenum silicide (MoSi 2 ), tungsten carbide (WC), tin tin chloride (SnCl 5H 2 O) , A suitable solvent is added to a nonmetallic heating element composition comprising chromium trioxide (H 2 CrO 2 ) and boric acid (H 3 BO 3 ), and dissolved by gradual heating.
본 발명에서 용매는 이후의 상압화학기상증착 단계에서 휘발되므로 그 사용량을 반드시 제한할 필요는 없으며, 필요에 따라 가감하여 사용할 수 있다. 또한, 본 발명에서 용매는 상기 비금속 발열체 조성물의 각 성분을 용해시킬 수 있는 것이라면 종류에 제한 없이 사용될 수 있으며, 예를 들면 증류수, 부틸셀로솔부, 에틸셀로솔부, 에틸아세테이트, 사이클로헥사논, 자이렌, 다이아세틸알코올, 톨루엔, 케톤류, 미네랄 스피리트 등이 사용될 수 있다. 본 발명에서 용매는 비금속 발열체 조성물에 대해 부피비로 1:1 내지 1:2.2의 비율로 첨가한다. 이때, 비금속 발열체 조성물에 용매를 첨가한 후 상기 혼합물을 75 내지 85℃로 서서히 가열하면서 용해시키는 것이 바람직하다.In the present invention, since the solvent is volatilized in the subsequent atmospheric chemical vapor deposition step, the amount of the solvent need not necessarily be limited, and may be added or subtracted as necessary. In addition, the solvent in the present invention can be used without limitation as long as it can dissolve each component of the non-metallic heating element composition, for example, distilled water, butyl cellosol portion, ethyl cellosol portion, ethyl acetate, cyclohexanone, Xylene, diacetyl alcohol, toluene, ketones, mineral spirits and the like can be used. In the present invention, the solvent is added in a ratio of 1: 1 to 1: 2.2 by volume relative to the nonmetallic heating element composition. At this time, the solvent is added to the non-metallic heating element composition, and then the mixture is preferably dissolved while gradually heating to 75 to 85 ° C.
단계 2)는 단계 1)에서 제조된 비금속 발열체 원액을 화학기상로 내에서 증발시켜 상기 조성물의 구성성분들이 기화되면서 증착대상 모체의 표면에 증착됨으로써 발열층을 형성하는 단계로, 상압화학기상증착을 수행하는 단계이다. Step 2) is a step of forming an exothermic layer by evaporating the non-metal heating element stock prepared in step 1) in a chemical vapor furnace and vaporizing the components of the composition on the surface of the parent to be deposited. It is a step to perform.
먼저, 비금속 발열체 원액을 화학기상로 내의 증발대 위에 올려놓는다. 이때, 화학기상로 내 증발대의 온도는 120 내지 220℃를 유지하는 것이 바람직하고, 주로(主爐)의 온도는 300 내지 1500℃의 범위 내에서 최종 수득되는 비금속 발열체에서 달성하고자 하는 발열온도, 비금속 발열체의 용도, 증착대상 모체의 두께 등에 따라 달라질 수 있다. 예를 들어, 10 내지 100℃의 저온 발열용 비금속 발열체의 제조 시에는 주로의 온도를 400 내지 450℃로 설정하고, 100 내지 500℃의 중온 발열용 비금속 발열체의 제조 시에는 주로의 온도를 450 내지 600℃로 설정하며, 500 내지 1000℃의 고온 발열용 비금속 발열체의 제조 시에는 600 내지 1100℃로 설정하는 것이 바람직하다.First, the nonmetallic heating element stock is placed on an evaporation table in a chemical gas furnace. At this time, it is preferable that the temperature of the evaporation zone in the chemical gas furnace is maintained at 120 to 220 ° C, and the main temperature is the exothermic temperature and the non-metal to be achieved in the non-metal heating element finally obtained in the range of 300 to 1500 ° C. It may vary depending on the use of the heating element, the thickness of the matrix to be deposited. For example, at the time of production of the low-temperature heating nonmetallic heating element at 10 to 100 ° C, the main temperature is set to 400 to 450 ° C, and at the time of the production of the 100 to 500 ° C medium-temperature heating nonmetal heating element, the main temperature is 450 to 500 ° C. It is preferably set at 600 ° C, and preferably at 600 to 1100 ° C when the nonmetallic heating element for high temperature heating at 500 to 1000 ° C is manufactured.
이어서 모체의 표면에 발열층을 형성하고자 하는 증착대상 모체를 주로의 상부에 위치하는 고정기구에 고정한 다음 화학기상로 내부로 증착대상을 내려 증발대 위해 정지하여 대기시킨다. 상기 고정기구는 여러 개의 증착대상 모체가 고정될 수 있고 증착공정 동안에 모체의 표면에 균일하게 증착될 수 있도록 고정된 증착대상 모체를 필요에 따라 회전시킬 수 있다. Subsequently, the substrate to be deposited on which the heating layer is to be formed on the surface of the substrate is fixed to a fixing mechanism located at an upper portion of the substrate. The fixture may rotate the fixed deposition target matrix as necessary so that a plurality of deposition target substrates may be fixed and uniformly deposited on the surface of the substrate during the deposition process.
본 발명에 적합한 증착대상 모체는 발열층을 형성하고자 하는 모든 기재로서 비금속 발열체 조성물의 증착온도 또는 최종 수득되는 비금속 발열체의 발열온도에 의해서 수축 또는 팽창과 같은 물리적 변형을 유발하지 않는 것이라면 어느 것이나 사용될 수 있다. 이러한 증착대상 모체의 재료로는 사용 용도에 따라 원형, 타원형, 판형, 관형 등의 다양한 모양을 갖는 유리, 석영, 세라믹, 수정 등이 사용될 수 있다.The substrate to be deposited suitable for the present invention may be used as all substrates to form the heating layer, as long as it does not cause physical deformation such as shrinkage or expansion by the deposition temperature of the nonmetallic heating element composition or the exothermic temperature of the finally obtained nonmetallic heating element. have. As the material of the substrate to be deposited, glass, quartz, ceramic, quartz, or the like having various shapes such as circular, elliptical, plate, tubular, etc. may be used depending on the intended use.
상기에서 증착대상 모체는 비금속 발열체 원액을 이용한 상압화학기상증착에 적용되기 전에 300 내지 1500℃로 10 내지 20분간 예열시키는 것이 바람직한데, 이러한 예열과정은 저항의 안전 증착을 위한 것으로, 이를 통해 발열체의 내구성 및 저항의 안정성이라는 효과를 기대할 수 있다. 예열온도나 시간은 증착대상 모체의 모양, 크기, 두께와 사용 용도에 따라 달라질 수 있으며, 바람직하게는 상압화학기상증착 온도와 동일한 온도에서 예열한다.The substrate to be deposited is preferably preheated to 300 to 1500 ° C. for 10 to 20 minutes before being applied to atmospheric pressure chemical vapor deposition using a non-metallic heating element stock solution. This preheating process is for the safe deposition of resistance. The effect of durability and stability of resistance can be expected. The preheating temperature or time may vary depending on the shape, size, thickness and use of the matrix to be deposited, and is preferably preheated at the same temperature as the atmospheric chemical vapor deposition temperature.
상기와 같이 비금속 발열체 원액과 증착대상 모체를 화학기상로 내에 설치한 후 설정된 온도로 증발대와 주로를 가열하여 증발대의 원액을 모두 증발시킨다. 증발과정에서 용매는 휘발되고 상기 비금속 발열체 성분들이 기화하여, 모체의 표면에 균일하게 증착된다. 여기서, 증착대상 모체의 표면에 발열층의 형성이 요구되지 않는 부분에는 상압화학기상증착을 방지하기 위하여 다양한 처리, 예컨대 코팅 또는 테이프로 마스킹한 후 증착을 수행하면 된다. 비금속 발열체 원액이 모두 증발하면, 표면에 발열층이 증착된 모체를 꺼내어 실온으로 냉각시킨다.After the non-metal heating element stock solution and the deposition target matrix are installed in a chemical gas furnace as described above, all of the stock solution of the evaporation table is evaporated by heating the evaporation zone and the main body at a set temperature. During evaporation, the solvent is volatilized and the non-metallic heating element components are vaporized and deposited uniformly on the surface of the mother body. In this case, in order to prevent atmospheric pressure chemical vapor deposition on a portion where the formation of a heating layer is not required on the surface of the substrate to be deposited, various processes such as masking with a coating or a tape may be performed. When all of the non-metallic heating element stock solution evaporates, the mother body on which the heating layer is deposited is taken out and cooled to room temperature.
본 발명에 따라 비금속 발열체 조성물을 상압화학기상증착에 의해 모체의 표면에 증착시켜 발열층을 형성할 경우, 발열층의 단위면적당 전기저항은 최종 수득되는 비금속 발열체에서 요구되는 발열온도에 따라 달라질 수 있다. 일반적으로 발열층의 단위면적당 전기저항은 발열온도에 반비례하는데, 발열층의 단위면적당 전기저항이 높을수록 발열온도는 저하되고, 이의 단위면적당 전기저항이 낮을수록 발열온도는 상승한다. 이러한 발열층의 단위면적당 전기저항은 발열층의 증착 두께를 조절함으로써 목적하는 범위를 갖도록 달성될 수 있다. 여기서, 발열층의 증착 두께가 두꺼워질수록 단위면적당 전기저항이 낮아져 발열온도가 증가하게 되는 반면, 그의 증착 두께가 얇아질수록 단위면적당 전기저항이 높아져 발열온도가 감소하게 된다. 이때, 발열층의 증착 두께는 증발시키는 비금속 발열체 원액의 양과 조성물의 혼합 방법에 따라 조절할 수 있다.According to the present invention, when the non-metal heating element composition is deposited on the surface of the mother body by atmospheric pressure chemical vapor deposition to form a heating layer, the electrical resistance per unit area of the heating layer may vary depending on the heating temperature required in the final non-metal heating element. . In general, the electrical resistance per unit area of the heating layer is inversely proportional to the heating temperature. The higher the electrical resistance per unit area of the heating layer, the lower the heating temperature, and the lower the electrical resistance per unit area, the higher the heating temperature. The electrical resistance per unit area of the heat generating layer can be achieved to have a desired range by adjusting the deposition thickness of the heat generating layer. Here, as the deposition thickness of the heating layer becomes thicker, the electrical resistance per unit area is lowered to increase the heating temperature, while the thinner the deposition thickness, the higher the electrical resistance per unit area is, so that the heating temperature is decreased. At this time, the deposition thickness of the heating layer may be adjusted depending on the amount of the non-metal heating element stock solution to be evaporated and the mixing method of the composition.
단계 3)은 상기 단계 2)에서 증착대상 모체의 표면에 형성된 발열층의 양단부에 전압을 걸어주기 위한 전극을 형성하는 단계로, 상기 전극은 발열층의 종방향이나 횡방향으로 적어도 한 쌍 이상이 형성될 수 있다. 본 발명에 사용하기에 적합한 전극재료로는 상기 발열층 보다 전도성이 우수한 것이 바람직한데, 일반 금속류, 흑연, 송진액 등이 이에 해당한다. 본 발명의 바람직한 실시태양에서는 은 분말 액체로 만들어진 전극액를 소정의 길이와 두께로 발열층의 외주면에 띠 형태로 도포하여 전극을 형성한다.Step 3) is a step of forming an electrode for applying a voltage to both ends of the heating layer formed on the surface of the matrix to be deposited in step 2), the electrode is at least one pair in the longitudinal or transverse direction of the heating layer Can be formed. As an electrode material suitable for use in the present invention, it is preferable that the conductivity is higher than that of the heat generating layer, and general metals, graphite, rosin, and the like correspond to this. In a preferred embodiment of the present invention, an electrode solution made of silver powder liquid is applied to the outer circumferential surface of the heat generating layer in a band shape at a predetermined length and thickness to form an electrode.
발열층의 외주면에 전극이 도포된 증착대상 모체를 화학기상로에 넣고 3단계 온도 변화를 거치면서 가열하여 전극을 소결시킨 후 실온으로 꺼내어 냉각시키면 목적하는 비금속 발열체가 완성된다. 이때, 화학기상로의 온도는 초기에 증착대상 모체를 넣고 150 내지 400℃에서 10 내지 20분간 가열하고, 이어서 300 내지 1500℃로 온도를 상승시켜 20 내지 30분간 가열한 후, 150 내지 400℃에서 10 내지 20분간 가열하도록 설정되는데, 상기 온도 조건은 앞선 단계에서 상압화학기상증착이 수행된 주로의 온도에 따라 달라진다.The target non-metallic heating element is completed by putting the electrode to be deposited on the outer circumferential surface of the heating layer in a chemical gas furnace and heating it through a three-step temperature change to sinter the electrode and then take it out to room temperature and cool it. At this time, the temperature of the chemical gas furnace is initially put into the deposition target matrix and heated for 10 to 20 minutes at 150 to 400 ℃, then heated to 300 to 1500 ℃ to heat for 20 to 30 minutes, then at 150 to 400 ℃ It is set to heat for 10 to 20 minutes, wherein the temperature conditions depend on the temperature of the mains at which atmospheric pressure vapor deposition is carried out in the preceding step.
이와 같이 제조된 비금속 발열체는 상하부에 형성된 전극에 전기가 연결되어 전류가 통전이 되게끔 전극에 전기 단자를 결합시키면 일측에 있는 전극에서 타측에 있는 전극으로 전류가 흐르면서 발열층이 저항 역할을 하여 열이 발생하게 된다.In the non-metal heating element manufactured as described above, when an electrical terminal is coupled to an electrode so that electric current is connected to the electrodes formed on the upper and lower parts, current flows from the electrode on one side to the electrode on the other side, and the heating layer acts as a resistance. This will occur.
본 발명은 상기 방법에서 상압화학기상증착이 수행되는 화학기상로 내 주로의 온도와 증착되는 비금속 발열체 원액의 양을 조절함으로써 사용 용도에 따라 저온, 중온 및 고온 발열이 가능한 비금속 발열체를 선택적으로 제조할 수 있다. 예를 들어, 고온 발열이 가능한 비금속 발열체의 제조를 위해서는, 발열대상 모체의 최고 설정 온도에 따라 화학기상로 내 주로의 온도를 600 내지 1100℃로 설정하고 증착대상 모체의 표면에 증착되는 발열층의 두께를 증가시켜 전기저항을 낮추기 위해 비금속 발열체 원액의 양을 증가시키면 된다. 반면, 저온 발열이 가능한 비금속 발열체의 제조를 위해서는, 화학기상로 내 주로의 온도를 400 내지 450℃로 설정하고 증착대상 모체의 표면에 증착되는 발열층의 두께를 감소시켜 전기저항을 높이기 위해 비금속 발열체 원액의 양을 감소시키면 된다.The present invention is to selectively prepare a non-metal heating element capable of low-temperature, medium-temperature and high-temperature heating according to the intended use by controlling the temperature of the predominant temperature and the amount of the non-metal heating element stock solution deposited in the chemical gas furnace where atmospheric pressure chemical vapor deposition is performed in the above method. Can be. For example, in order to manufacture a non-metallic heating element capable of high temperature heating, the temperature of the main body in the chemical gas furnace is set to 600 to 1100 ° C according to the maximum set temperature of the heating target mother, and the heating layer is deposited on the surface of the deposition target mother. In order to decrease the electrical resistance by increasing the thickness, the amount of the non-metallic heating element stock solution may be increased. On the other hand, in order to manufacture a non-metal heating element capable of low-temperature heating, the non-metal heating element to increase the electrical resistance by setting the temperature of the main chamber in the chemical gas furnace to 400 to 450 ℃ and reducing the thickness of the heating layer deposited on the surface of the substrate to be deposited You can reduce the amount of stock solution.
본 발명에 따라 수득되는 비금속 발열체는 이규화몰리브덴(MoSi2), 탄화텅스텐(WC), 염화제2주석(SnCl5H2O), 삼산화크롬(H2CrO2) 및 붕산(H3BO3)을 포함하는 비금속 발열체 조성물이 상압화학기상증착을 거치면서 비금속 발열체 성분들이 기화되어 증착된 발열층이 형성된 것으로서, 상기 발열층은 이규화몰리브덴(MoSi2), 탄화텅스텐(WC), 산화주석(SnO2), 삼산화크롬(H2CrO2) 및 삼산화붕소(B2O3)가 주성분을 이루고 있다.The non-metallic heating element obtained according to the present invention is molybdenum disulfide (MoSi 2 ), tungsten carbide (WC), stannic chloride (SnCl 5H 2 O), chromium trioxide (H 2 CrO 2 ) and boric acid (H 3 BO 3 The non-metallic heating element composition including) is formed by evaporation of the non-metallic heating element components by atmospheric vapor chemical vapor deposition, and the heating layer is formed of molybdenum disulfide (MoSi 2 ), tungsten carbide (WC), and tin oxide (SnO). 2 ), chromium trioxide (H 2 CrO 2 ) and boron trioxide (B 2 O 3 ) is the main component.
본 발명에 따른 비금속 발열체는 제조과정에서 비금속 발열체 원액이 증착되는 온도와 양에 따라 발열온도를 선택적으로 조절할 수 있는데, 상압화학기상증착이 수행되는 온도가 높을수록, 증착되는 비금속 발열체 원액의 양이 많을수록 최종 수득되는 비금속 발열체의 발열온도는 증가한다. 증착되는 비금속 발열체 원액의 양은 형성되는 발열층의 두께로 나타낼 수 있는데, 상기 발열층이 8 내지 20 ㎚의 두께를 가지면 비금속 발열체는 10 내지 100℃의 저온 발열이 가능하고, 상기 발열층이 15 내지 35 ㎚의 두께를 가지면 비금속 발열체는 100 내지 500℃의 중온 발열이 가능하며, 상기 발열층이 30 내지 65 nm의 두께를 가지면 비금속 발열체는 500 내지 1000℃의 고온 발열이 가능하다. The non-metal heating element according to the present invention can selectively control the exothermic temperature according to the temperature and amount of the non-metal heating element stock solution is deposited in the manufacturing process, the higher the temperature at which atmospheric pressure chemical vapor deposition is carried out, the amount of the non-metal heating element stock is deposited The more the exothermic temperature of the non-metallic heating element finally obtained increases. The amount of the non-metal heating element stock solution to be deposited may be represented by the thickness of the heating layer to be formed. If the heating layer has a thickness of 8 to 20 nm, the non-metal heating element may be heated at a low temperature of 10 to 100 ° C., and the heating layer may be 15 to 15 nm. If the non-metal heating element having a thickness of 35 nm can be a medium-temperature heating of 100 to 500 ℃, the non-metal heating element is capable of high temperature heating of 500 to 1000 ℃ if the heating layer has a thickness of 30 to 65 nm.
비금속 발열체에서 이규화몰리브덴(MoSi2)은 강력한 비금속 저항 발열체로서 1000℃의 고온 발열을 가능케 하는 핵심 발열소재이고, 큰 밀도를 갖는 탄화텅스텐(WC)은 발열체가 고온일 때 경도와 강도를 높여주며, 산화주석(SnO2)은 발열층에서 골재 역할을 담당하고, 삼산화크롬(H2CrO2)은 전기흐름을 강하게 하고 내구성을 향상시키며, 삼산화붕소(B2O3)는 결정체 사이의 공간을 메우는 충진제로 작용하여 발열층의 투명도와 광도를 향상시키고 열 안정성을 개선시키는 작용을 한다.Molybdenum disulphide (MoSi 2 ) in the non-metal heating element is a strong non-metal resistive heating element, a core heating material that enables high-temperature heating of 1000 ℃, tungsten carbide (WC) having a high density increases the hardness and strength when the heating element is a high temperature, Tin oxide (SnO 2 ) plays an aggregate role in the heating layer, chromium trioxide (H 2 CrO 2 ) strengthens the electric flow and improves durability, and boron trioxide (B 2 O 3 ) fills the space between the crystals. It acts as a filler to improve transparency and brightness of the heating layer and to improve thermal stability.
본 발명에 따른 비금속 발열체는 단위면적에 대한 전기저항 특성이 우수한 비금속 발열체 조성물의 사용에 의해 초기 발열이 매우 신속하게 이루어지고 발열층의 저항치가 균일하여 발열온도가 일정하며 사용 용도에 따라 10℃에서 1000℃ 이상의 저온, 중온 및 고온의 선택적 발열이 가능하면서도 내구성이 우수하다는 장점을 갖는다. 또한 본 발명에 따른 비금속 발열체는 에너지 변환효율이 우수하여 전력낭비를 상당히 억제할 수 있고 인체에 유익한 원적외선을 방사할 뿐만 아니라, 제조공정이 단순하고 경제적이며 환경오염을 유발하지 않아 다양한 분야에 면상 발열체로서 유용하게 적용될 수 있다.In the nonmetal heating element according to the present invention, the initial heat generation is made very quickly by using a nonmetal heating element composition having excellent electrical resistance to unit area, and the resistance value of the heating layer is uniform, so that the heating temperature is constant and is used at 10 ° C. according to the intended use. It is possible to selectively generate low temperature, medium temperature, and high temperature of 1000 ° C. or more, but also has excellent durability. In addition, the non-metallic heating element according to the present invention is excellent in energy conversion efficiency, can significantly suppress power consumption and radiate far infrared rays, which is beneficial to the human body, and the manufacturing process is simple, economical and does not cause environmental pollution. It can be usefully applied as.
본 발명에 따른 비금속 발열체는 고온이나 온열이 필요한 각종 난방용, 급탕용, 건조용, 식품조리용, 기기에 적용될 수 있는데, 예를 들면 히팅(heating) 매트나 패드 등의 침구류, 아파트나 일반주택의 바닥난방 등의 주거용 난방장치, 사무실이나 작업장의 산업용 난방장치, 프린팅 건조 및 도장 건도 등의 각종 산업용 가열장치, 비닐하우스와 축사, 농산물 건조시스템과 같은 농업용 설비, 도로나 주차장의 눈을 녹이는 동결방지장치 등에 적용될 수 있다.The non-metallic heating element according to the present invention can be applied to various heating, hot water supply, drying, food cooking, and equipment requiring high temperature or heat, for example, beddings such as heating mats or pads, apartments or general houses. Residential heating devices such as floor heating, industrial heating devices for offices or workplaces, various industrial heating devices such as printing drying and paint drying, agricultural equipment such as plastic houses and barns, agricultural product drying systems, and freezing to melt snow on roads and parking lots. It can be applied to the prevention device.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하기로 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention more specifically, it will be apparent to those skilled in the art that the scope of the present invention is not limited by these examples in accordance with the gist of the present invention.
실시예 1: 고온 발열용 비금속 발열체의 제조Example 1 Preparation of Nonmetallic Heating Element for High Temperature Heating
전체 조성물의 중량을 기준으로 31 중량%의 이규화몰리브덴(MoSi2), 28 중량%의 탄화텅스텐(WC), 21 중량%의 염화제2주석(SnCl5H2O), 14 중량%의 삼산화크롬(H2CrO2) 및 6 중량%의 붕산(H3BO3)을 혼합한 후, 상기 혼합물에 1:1 부피비로 증류수를 첨가하고 80℃로 서서히 가열하면서 용해시켜 비금속 발열체 원액을 제조하였다. 이와 같이 준비된 비금속 발열체 원액 20 g을 증발대의 온도가 120℃, 주로의 온도가 1100℃로 설정된 화학기상로 내 증발대 위에 올려놓았다. 표면에 발열층을 형성할 증착대상 모체로 세라믹판(200 ㎜× 250 ㎜× 4 ㎜)을 주로의 고정기구에 고정시킨 후 고정된 세라믹판을 화학기상로 속으로 넣어 증발대 위에 위치하도록 대기시켰다. 이때, 세라믹판을 800℃에서 10분간 예열하였다. 이어서 세라믹판 표면에 발열층이 균일하게 증착되도록 거치대를 회전시키면서 주로의 온도를 1100℃로 상승시켜 증발대 위의 비금속 발열체 원액을 증발시킴으로써 상압화학기상증착을 수행하였다. 약 15분 후 비금속 발열체 원액이 모두 증발하면, 표면에 발열층이 증착된 세라믹판을 꺼내어 실온으로 냉각시켰다.31 weight percent molybdenum disulphide (MoSi 2 ), 28 weight percent tungsten carbide (WC), 21 weight percent tin chloride (SnCl 4 5H 2 O), 14 weight percent trioxide based on the total weight of the composition After mixing chromium (H 2 CrO 2 ) and 6% by weight of boric acid (H 3 BO 3 ), distilled water was added to the mixture in a 1: 1 volume ratio, and dissolved by heating slowly at 80 ° C. to prepare a nonmetallic heating element stock solution. . 20 g of the non-metallic heating element stock solution thus prepared was placed on an evaporation stand in a chemical gas furnace where the temperature of the evaporation stand was set to 120 ° C and the main temperature was 1100 ° C. After fixing the ceramic plate (200 mm × 250 mm × 4 mm) to the main fixture, the ceramic plate was placed in a chemical chamber and placed on the evaporation table as a substrate to be formed to form a heating layer on the surface. . At this time, the ceramic plate was preheated at 800 degreeC for 10 minutes. Subsequently, atmospheric pressure chemical vapor deposition was performed by evaporating the non-metal heating element stock solution on the evaporator while raising the temperature of the main to 1100 ° C. while rotating the holder so that the heating layer was uniformly deposited on the surface of the ceramic plate. After about 15 minutes, when all the non-metallic heating element stocks evaporated, the ceramic plate on which the heating layer was deposited was taken out and cooled to room temperature.
이어서, 은 분말 액체(Ag 99% 순도) 전극액을 준비한 후, 이를 세라믹판 표면에 증착된 발열층의 양단부에 일정한 두께와 길이로 도말하였다. 상기 세라믹판을 화학기상로에 넣고 400℃에서 15분, 800℃에서 30분, 및 300℃에서 15분간 가열하여 전극을 소결한 후 이를 꺼내어 실온으로 냉각시켜 원적외선을 방출하고 1000℃ 이상 고온 발열이 가능한 세라믹판 발열체를 제조하였다. Subsequently, after preparing a silver powder liquid (Ag 99% purity) electrode solution, it was coated on both ends of the heating layer deposited on the surface of the ceramic plate with a constant thickness and length. The ceramic plate is placed in a chemical furnace and heated at 400 ° C. for 15 minutes, at 800 ° C. for 30 minutes, and at 300 ° C. for 15 minutes to sinter the electrode, and then take it out and cool it to room temperature to emit far-infrared rays. A ceramic plate heating element was produced as possible.
이와 같이 제조된 세라믹판 발열체의 단위면적당 전기저항을 측정한 결과, 단위 저항값은 약 30 Ω이었다.As a result of measuring the electrical resistance per unit area of the ceramic plate heating element thus manufactured, the unit resistance value was about 30 kPa.
상기 세라믹판 발열체의 전극에 220 V, 60 ㎐의 전압을 인가하고 표면온도를 50일간 측정한 결과, 표면온도가 1000℃ 이상 일정하게 유지됨을 확인하였다. 또한, 상기 세라믹판 발열체의 원적외선 방출량을 100℃에서 FT-IR 분광기(Fourier transform infrared spectroscopy)로 측정한 결과, 7.63× 102 W/㎡의 방사에너지를 방출하고 88.6%의 원적외선 방사율을 나타냄을 확인하였다.As a result of applying a voltage of 220 V and 60 kV to the electrode of the ceramic plate heating element and measuring the surface temperature for 50 days, it was confirmed that the surface temperature was kept constant over 1000 ° C. In addition, the far-infrared emission amount of the ceramic plate heating element was measured by Fourier transform infrared spectroscopy at 100 ° C., and it was confirmed that it emits 7.63 × 10 2 W / m 2 radiation energy and shows 88.6% far-infrared emissivity. It was.
실시예 2: 중온 발열용 비금속 발열체의 제조Example 2 Preparation of Nonmetallic Heating Element for Medium Temperature Heating
전체 조성물의 중량을 기준으로 31 중량%의 이규화몰리브덴(MoSi2), 28 중량%의 탄화텅스텐(WC), 21 중량%의 염화제2주석(SnCl5H2O), 14 중량%의 삼산화크롬(H2CrO2) 및 6 중량%의 붕산(H3BO3)을 혼합한 후, 상기 혼합물에 1:1 부피비로 증류수를 첨가하고 80℃로 서서히 가열하면서 용해시켜 비금속 발열체 원액을 제조하였다. 이와 같이 준비된 비금속 발열체 원액 13 g을 증발대의 온도가 120℃, 주로의 온도가 700℃로 설정된 화학기상로 내 증발대 위에 올려놓았다. 표면에 발열층을 형성할 증착대상 모체로 석영판(250 ㎜× 250 ㎜× 3 ㎜)을 주로의 고정기구에 고정시킨 후 고정된 석영판을 화학기상로 속으로 넣어 증발대 위에 위치하도록 대기시켰다. 이때, 석영판을 600℃에서 10분간 예열하였다. 이어서 석영판 표면에 발열층이 균일하게 증착되도록 거치대를 회전시키면서 주로의 온도를 700℃로 상승시켜 증발대 위의 비금속 발열체 원액을 증발시킴으로써 상압화학기상증착을 수행하였다. 약 15분 후 비금속 발열체 원액이 모두 증발하면, 표면에 발열층이 증착된 석영판을 꺼내어 실온으로 냉각시켰다.31 weight percent molybdenum disulphide (MoSi 2 ), 28 weight percent tungsten carbide (WC), 21 weight percent tin chloride (SnCl 4 5H 2 O), 14 weight percent trioxide based on the total weight of the composition After mixing chromium (H 2 CrO 2 ) and 6% by weight of boric acid (H 3 BO 3 ), distilled water was added to the mixture in a 1: 1 volume ratio and dissolved by heating gradually to 80 ° C. to prepare a nonmetallic heating element stock solution. . 13 g of the non-metallic heating element stock solution thus prepared was placed on the evaporation stand in a chemical gas furnace where the temperature of the evaporation stand was set to 120 ° C and the main temperature was 700 ° C. After fixing the quartz plate (250 mm × 250 mm × 3 mm) to the main fixture, the quartz plate was placed in a chemical vapor chamber and placed on the evaporation table. . At this time, the quartz plate was preheated at 600 ° C for 10 minutes. Subsequently, atmospheric pressure chemical vapor deposition was performed by evaporating the stock solution of the non-metallic heating element on the evaporator while raising the temperature of the main to 700 ° C. while rotating the holder so that the heating layer was uniformly deposited on the quartz plate surface. After about 15 minutes, when all the non-metallic heating element stocks evaporated, the quartz plate on which the heating layer was deposited was taken out and cooled to room temperature.
이어서, 은 분말 액체(Ag 99% 순도) 전극액을 준비한 후, 이를 석영판 표면에 증착된 발열층의 양단부에 일정한 두께와 길이로 도말하였다. 상기 석영판을 화학기상로에 넣고 300℃에서 15분, 600℃에서 30분, 및 300℃에서 15분간 가열하여 전극을 소결한 후 이를 꺼내어 실온으로 냉각시켜 원적외선을 방출하고 300℃ 이상 중온 발열이 가능한 석영판 발열체를 제조하였다.Subsequently, after preparing a silver powder liquid (Ag 99% purity) electrode solution, it was coated on both ends of the heating layer deposited on the surface of the quartz plate with a constant thickness and length. The quartz plate was placed in a chemical furnace and heated at 300 ° C. for 15 minutes, at 600 ° C. for 30 minutes, and at 300 ° C. for 15 minutes to sinter the electrode, and then taken out and cooled to room temperature to emit far-infrared rays. A quartz plate heating element was produced as possible.
이와 같이 제조된 석영판 발열체의 단위면적당 전기저항을 측정한 결과, 단위 저항값은 약 117 Ω이었다. As a result of measuring the electrical resistance per unit area of the quartz plate heating element thus produced, the unit resistance value was about 117 kPa.
상기 석영판 발열체의 전극에 220 V, 60 ㎐의 전압을 인가하고 표면온도를 50일간 측정한 결과, 표면온도가 300℃ 이상 일정하게 유지됨을 확인하였다. 또한, 상기 세라믹판 발열체의 원적외선 방출량을 100℃에서 FT-IR 분광기(Fourier transform infrared spectroscopy)로 측정한 결과, 7.63× 102 W/㎡의 방사에너지를 방출하고 88.6%의 원적외선 방사율을 나타냄을 확인하였다.When the voltage of 220 V, 60 kV was applied to the electrode of the quartz plate heating element and the surface temperature was measured for 50 days, it was confirmed that the surface temperature was kept constant at 300 ° C. or higher. In addition, the far-infrared emission amount of the ceramic plate heating element was measured by Fourier transform infrared spectroscopy at 100 ° C., and it was confirmed that it emits 7.63 × 10 2 W / m 2 radiation energy and shows 88.6% far-infrared emissivity. It was.
실시예 3: 저온 발열용 비금속 발열체의 제조Example 3 Preparation of Nonmetallic Heating Element for Low Temperature Heating
전체 조성물의 중량을 기준으로 31 중량%의 이규화몰리브덴(MoSi2), 28 중량%의 탄화텅스텐(WC), 21 중량%의 염화제2주석(SnCl5H2O), 14 중량%의 삼산화크롬(H2CrO2) 및 6 중량%의 붕산(H3BO3)을 혼합한 후, 상기 혼합물에 대해 1:1 부피비로 증류수를 첨가하고 80℃로 서서히 가열하면서 용해시켜 비금속 발열체 원액을 제조하였다. 이와 같이 준비된 비금속 발열체 원액 5 g을 증발대의 온도가 120℃, 주로의 온도가 450℃로 설정된 화학기상로 내 증발대 위에 올려놓았다. 표면에 발열층을 형성할 증착대상 모체로 내열 유리판(280 ㎜× 280 ㎜× 3 ㎜)을 주로의 고정기구에 고정시킨 후 고정된 내열 유리판을 화학기상로 속으로 넣어 증발대 위에 위치하도록 대기시켰다. 이때, 내열 유리판을 450℃에서 10분간 예열하였다. 이어서 내열 유리판 표면에 발열층이 균일하게 증착되도록 거치대를 회전시키면서 주로의 온도를 450℃로 상승시켜 증발대 위의 비금속 발열체 원액을 증발시킴으로써 상압화학기상증착을 수행하였다. 약 15분 후 비금속 발열체 원액이 모두 증발하면, 표면에 발열층이 증착된 내열 유리판을 꺼내어 실온으로 냉각시켰다.31 weight percent molybdenum disulphide (MoSi 2 ), 28 weight percent tungsten carbide (WC), 21 weight percent tin chloride (SnCl 5H 2 O), 14 weight percent trioxide based on the weight of the total composition After mixing chromium (H 2 CrO 2 ) and 6% by weight of boric acid (H 3 BO 3 ), distilled water is added to the mixture in a 1: 1 volume ratio, and dissolved by gradually heating to 80 ° C. to prepare a nonmetallic heating element stock solution. It was. 5 g of the non-metallic heating element stock solution thus prepared was placed on the evaporation stand in a chemical gas furnace where the temperature of the evaporation stand was set to 120 ° C and the main temperature was 450 ° C. After fixing the heat-resistant glass plate (280 mm × 280 mm × 3 mm) to the main fixture, the heat-resistant glass plate (280 mm × 280 mm × 3 mm) was fixed to the main fixture to be placed on the evaporation table. . At this time, the heat resistant glass plate was preheated at 450 ° C for 10 minutes. Subsequently, atmospheric pressure chemical vapor deposition was performed by evaporating the non-metal heating element stock solution on the evaporator while raising the temperature of the main to 450 ° C. while rotating the holder so that the heating layer was uniformly deposited on the heat-resistant glass plate surface. After about 15 minutes, when all the nonmetallic heating element stocks evaporated, the heat-resistant glass plate on which the exothermic layer was deposited was taken out and cooled to room temperature.
이어서, 은 분말 액체(Ag 99% 순도) 전극액을 준비한 후, 이를 내열 유리판 표면에 증착된 발열층의 양단부에 일정한 두께와 길이로 도말하였다. 상기 내열 유리판을 화학기상로에 넣고 150℃에서 15분, 450℃에서 30분, 및 150℃에서 15분간 가열하여 전극을 소결한 후 이를 꺼내어 실온으로 냉각시켜 원적외선을 방출하고 100℃ 이하 저온 발열이 가능한 내열 유리판 발열체를 제조하였다.Subsequently, after preparing a silver powder liquid (Ag 99% purity) electrode solution, it was coated on both ends of the heat generating layer deposited on the heat-resistant glass plate surface at a constant thickness and length. The heat-resistant glass plate is placed in a chemical gas furnace and heated at 150 ° C. for 15 minutes, at 450 ° C. for 30 minutes, and at 150 ° C. for 15 minutes to sinter the electrode, and then take it out and cool it to room temperature to emit far infrared rays. A heat resistant glass plate heating element was produced.
이와 같이 제조된 내열 유리판 발열체의 단위면적당 전기저항을 측정한 결과, 단위 저항값은 약 450 Ω이었다.As a result of measuring the electrical resistance per unit area of the heat-resistant glass plate heating element thus manufactured, the unit resistance value was about 450 kPa.
상기 유리판 발열체의 전극에 220 V, 60 ㎐의 전압을 인가하고 표면온도를 50일간 측정한 결과, 표면온도가 100℃ 이하로 일정하게 유지됨을 확인하였다. 또한, 상기 세라믹판 발열체의 원적외선 방출량을 100℃에서 FT-IR 분광기(Fourier transform infrared spectroscopy)로 측정한 결과, 7.63× 102 W/㎡의 방사에너지를 방출하고 88.6%의 원적외선 방사율을 나타냄을 확인하였다.When the voltage of 220 V, 60 kV was applied to the electrode of the glass plate heating element and the surface temperature was measured for 50 days, it was confirmed that the surface temperature was constantly maintained at 100 ° C. or lower. In addition, the far-infrared emission amount of the ceramic plate heating element was measured by Fourier transform infrared spectroscopy at 100 ° C., and it was confirmed that it emits 7.63 × 10 2 W / m 2 radiation energy and shows 88.6% far-infrared emissivity. It was.
이상으로 본 발명 내용의 특정 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.The specific parts of the present invention have been described in detail, and it is apparent to those skilled in the art that such specific descriptions are merely preferred embodiments, and thus the scope of the present invention is not limited thereto. something to do. Therefore, the substantial scope of the present invention will be defined by the appended claims and their equivalents.
본 발명에 따른 비금속 발열체는 단위면적에 대한 전기저항 특성이 우수한 비금속 발열체 조성물의 사용에 의해 초기 발열이 신속하게 이루어지고 발열층의 저항치가 균일하여 발열온도가 일정하며, 사용 용도에 따라 10℃에서 1000℃ 이상의 저온, 중온 및 고온의 선택적 발열이 가능하면서도 내구성이 우수하다는 장점을 갖는다. 또한 본 발명에 따른 비금속 발열체는 에너지 변환효율이 우수하여 전력낭비를 상당히 억제할 수 있고 인체에 유익한 원적외선을 방사할 뿐만 아니라, 제조공정이 단순하고 경제적이며 환경오염을 유발하지 않아 다양한 분야에 면상 발열체로서 유용하게 적용될 수 있다.In the nonmetal heating element according to the present invention, the initial heat is rapidly generated by the use of the nonmetal heating element composition having excellent electrical resistance to the unit area, and the resistance of the heating layer is uniform, so that the heating temperature is constant. It is possible to selectively generate low temperature, medium temperature, and high temperature of 1000 ° C. or more, but also has excellent durability. In addition, the non-metallic heating element according to the present invention is excellent in energy conversion efficiency, can significantly suppress power consumption and radiate far infrared rays, which is beneficial to the human body, and the manufacturing process is simple, economical and does not cause environmental pollution. It can be usefully applied as.

Claims (13)

  1. 전체 조성물의 중량을 기준으로 이규화몰리브덴(molybdenum disilicide, MoSi2) 30 내지 32 중량%, 탄화텅스텐(tungsten carbide, WC) 27 내지 29 중량%, 염화제2주석(tin chloride, SnCl5H2O) 20 내지 22 중량%, 삼산화크롬(H2CrO2) 13 내지 15 중량% 및 붕산(boric acid, H3BO3) 6 내지 8 중량%를 포함하는 비금속 발열체 조성물.30 to 32 wt% molybdenum disilicide (MoSi 2 ), 27 to 29 wt% tungsten carbide (WC), tin chloride, SnCl 5H 2 O based on the weight of the total composition ) 20 to 22% by weight, chromium trioxide (H 2 CrO 2 ) 13 to 15% by weight and boric acid (boric acid, H 3 BO 3 ) 6 to 8% by weight composition.
  2. 하기 단계를 포함하는 비금속 발열체의 제조방법:Method for producing a non-metal heating element comprising the following steps:
    1) 제1항에 따른 비금속 발열체 조성물을 용매에 용해시켜 비금속 발열체 원액을 제조하는 단계;1) dissolving the non-metal heating element composition according to claim 1 in a solvent to prepare a non-metal heating element stock solution;
    2) 상기 비금속 발열체 원액을 상압화학기상증착에 따라 증발시켜 증착대상 모체의 표면에 발열층을 증착하는 단계; 및2) depositing the exothermic layer on the surface of the matrix to be deposited by evaporating the non-metal heating element stock solution according to atmospheric pressure chemical vapor deposition; And
    3) 상기 발열층의 양단부에 전극을 형성하는 단계.3) forming electrodes at both ends of the heating layer.
  3. 제2항에 있어서,The method of claim 2,
    단계 1)에서 비금속 발열체 조성물에 용매를 첨가한 후 상기 혼합물을 75 내지 85℃로 서서히 가열하면서 용해시켜 비금속 발열체 원액을 제조하는, 비금속 발열체의 제조방법.A solvent is added to the nonmetallic heating element composition in step 1), and then the mixture is dissolved while slowly heating to 75 to 85 ° C to prepare a nonmetallic heating element stock solution.
  4. 제2항에 있어서,The method of claim 2,
    단계 2)에서 상압화학기상증착이 비금속 발열체 원액을 300 내지 1500℃로 가열하여 증발시킴으로써 수행되는, 비금속 발열체의 제조방법.Atmospheric pressure chemical vapor deposition in step 2) is carried out by heating and evaporating the non-metal heating element stock solution to 300 to 1500 ℃.
  5. 제4항에 있어서,The method of claim 4, wherein
    10 내지 100℃의 저온 발열 비금속 발열체의 제조를 위해, 상기 상압화학기상증착이 400 내지 450℃에서 수행되는, 비금속 발열체의 제조방법.In order to produce a low-temperature exothermic non-metallic heating element of 10 to 100 ℃, the atmospheric pressure chemical vapor deposition is carried out at 400 to 450 ℃, manufacturing method of a non-metal heating element.
  6. 제4항에 있어서,The method of claim 4, wherein
    100 내지 500℃의 중온 발열 비금속 발열체의 제조를 위해, 상기 상압화학기상증착이 450 내지 600℃에서 수행되는, 비금속 발열체의 제조방법.Method for producing a non-metal heating element, the atmospheric pressure chemical vapor deposition is carried out at 450 to 600 ℃ for the production of a medium-temperature heating non-metal heating element of 100 to 500 ℃.
  7. 제4항에 있어서,The method of claim 4, wherein
    500 내지 1000℃의 고온 발열 비금속 발열체의 제조를 위해, 상기 상압화학기상증착이 600 내지 1100℃에서 수행되는, 비금속 발열체의 제조방법.In order to produce a high temperature exothermic nonmetal heating element of 500 to 1000 ℃, the atmospheric pressure chemical vapor deposition is carried out at 600 to 1100 ℃, a method for producing a non-metal heating element.
  8. 제2항에 있어서,The method of claim 2,
    단계 2)에서 상압화학기상증착을 수행하기 전에 증착대상 모체를 상압화학기상증착이 수행되는 온도에서 10 내지 20분간 예열하는 단계를 추가로 포함하는, 비금속 발열체의 제조방법.The method of manufacturing a non-metallic heating element further comprising the step of preheating the substrate to be deposited at a temperature at which atmospheric pressure chemical vapor deposition is performed for 10 to 20 minutes before performing atmospheric pressure chemical vapor deposition in step 2).
  9. 제2항에 있어서,The method of claim 2,
    단계 2)에서 상압화학기상증착에 의해 증발되는 비금속 발열체 원액의 양에 비례하여 수득되는 비금속 발열체의 발열 온도가 증가하는, 비금속 발열체의 제조방법.The exothermic temperature of the non-metal heating element obtained in proportion to the amount of the non-metal heating element stock solution evaporated by atmospheric pressure chemical vapor deposition in step 2), the method of producing a non-metal heating element.
  10. 증착대상 모체의 표면에 형성된 이규화몰리브덴(MoSi2), 탄화텅스텐(WC), 산화주석(SnO2), 삼산화크롬(H2CrO2) 및 삼산화붕소(B2O3)를 포함하는 발열층, 및 상기 발열층의 양단부에 전압을 걸어주기 위한 전극을 포함하고, 저온, 중온 및 고온의 선택적 발열이 가능한 비금속 발열체.Exothermic layer comprising molybdenum silicide (MoSi 2 ), tungsten carbide (WC), tin oxide (SnO 2 ), chromium trioxide (H 2 CrO 2 ) and boron trioxide (B 2 O 3 ) formed on the surface of the substrate to be deposited, And electrodes for applying a voltage to both ends of the heat generating layer, and capable of selectively generating low temperature, medium temperature, and high temperature.
  11. 제10항에 있어서,The method of claim 10,
    상기 발열층이 8 내지 20 ㎚의 두께를 가질 때, 비금속 발열체가 10 내지 100℃의 저온 발열이 가능한 비금속 발열체.Non-metal heating element capable of low-temperature heating of 10 to 100 ℃ non-metal heating element when the heating layer has a thickness of 8 to 20 nm.
  12. 제10항에 있어서,The method of claim 10,
    상기 발열층이 15 내지 35 ㎚의 두께를 가질 때, 비금속 발열체가 100 내지 500℃의 중온 발열이 가능한 비금속 발열체.When the heat generating layer has a thickness of 15 to 35 nm, the non-metal heating element is capable of heating a medium temperature of 100 to 500 ℃.
  13. 제10항에 있어서,The method of claim 10,
    상기 발열층이 30 내지 65 ㎚의 두께를 가질 때, 비금속 발열체가 500 내지 1000℃의 고온 발열이 가능한 비금속 발열체.Non-metal heating element capable of high-temperature heating of 500 to 1000 ℃ non-metal heating element when the heating layer has a thickness of 30 to 65 nm.
PCT/KR2010/003347 2010-05-27 2010-05-27 Novel non-metallic heat emitter composition, a method for producing a non-metallic heat emitter by using the composition, and a non-metallic heat emitter produced therefrom WO2011149127A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020127034059A KR101419166B1 (en) 2010-05-27 2010-05-27 Novel non-metallic heat emitter composition, a method for producing a non-metallic heat emitter by using the composition, and a non metallic heat emitter produced there from
PCT/KR2010/003347 WO2011149127A1 (en) 2010-05-27 2010-05-27 Novel non-metallic heat emitter composition, a method for producing a non-metallic heat emitter by using the composition, and a non-metallic heat emitter produced therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2010/003347 WO2011149127A1 (en) 2010-05-27 2010-05-27 Novel non-metallic heat emitter composition, a method for producing a non-metallic heat emitter by using the composition, and a non-metallic heat emitter produced therefrom

Publications (1)

Publication Number Publication Date
WO2011149127A1 true WO2011149127A1 (en) 2011-12-01

Family

ID=45004107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/003347 WO2011149127A1 (en) 2010-05-27 2010-05-27 Novel non-metallic heat emitter composition, a method for producing a non-metallic heat emitter by using the composition, and a non-metallic heat emitter produced therefrom

Country Status (2)

Country Link
KR (1) KR101419166B1 (en)
WO (1) WO2011149127A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109527660A (en) * 2019-01-18 2019-03-29 胡雪涛 A kind of electronic cigarette film heating sheets

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101637526B1 (en) * 2016-02-26 2016-07-07 김민규 Carbon heating composition and method for menufacturing carbon heating element
JP7162164B1 (en) * 2021-05-07 2022-10-28 福建晶▲しい▼新材料科技有限公司 Semiconductor electrothermal film precursor solution, semiconductor electrothermal film structure, and method for manufacturing electrothermal structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08268760A (en) * 1995-02-02 1996-10-15 Nippondenso Co Ltd Ceramic heater and its production
JP2000252046A (en) * 1999-03-02 2000-09-14 Shin Etsu Chem Co Ltd Manufacture of ceramics heater
JP2000299179A (en) * 1999-04-14 2000-10-24 Daiken Kagaku Kogyo Kk Heater resistor composition and heating roller using it
KR20050084503A (en) * 2002-12-27 2005-08-26 마이코루 프로다쿠쓰 가부시키가이샤 Exothermic composition and exothermic element
JP2008115069A (en) * 2006-11-04 2008-05-22 Winner Technology Co Ltd Composition of molybdenum disilicide and the application of the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08268760A (en) * 1995-02-02 1996-10-15 Nippondenso Co Ltd Ceramic heater and its production
JP2000252046A (en) * 1999-03-02 2000-09-14 Shin Etsu Chem Co Ltd Manufacture of ceramics heater
JP2000299179A (en) * 1999-04-14 2000-10-24 Daiken Kagaku Kogyo Kk Heater resistor composition and heating roller using it
KR20050084503A (en) * 2002-12-27 2005-08-26 마이코루 프로다쿠쓰 가부시키가이샤 Exothermic composition and exothermic element
JP2008115069A (en) * 2006-11-04 2008-05-22 Winner Technology Co Ltd Composition of molybdenum disilicide and the application of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109527660A (en) * 2019-01-18 2019-03-29 胡雪涛 A kind of electronic cigarette film heating sheets

Also Published As

Publication number Publication date
KR20130043120A (en) 2013-04-29
KR101419166B1 (en) 2014-07-11

Similar Documents

Publication Publication Date Title
Liu et al. Air-permeable, multifunctional, dual-energy-driven MXene-decorated polymeric textile-based wearable heaters with exceptional electrothermal and photothermal conversion performance
CN101148939B (en) Electric heating floor board
CN106255238A (en) A kind of Graphene thermo electric material and application thereof
DE602004011386T2 (en) thin-film
CN112055429B (en) Infrared heating furred ceiling
WO2011149127A1 (en) Novel non-metallic heat emitter composition, a method for producing a non-metallic heat emitter by using the composition, and a non-metallic heat emitter produced therefrom
KR20100110497A (en) Non-metal heating element composition, method for the preparation of non-metal heating element using the same and non-metal heating element prepared thereby
CN109862631A (en) A kind of preparation method of NEW TYPE OF COMPOSITE plate Electric radiant Heating Film
CN109454751A (en) One pressure embryo, integrally sintered compound carbon filament electric heating function ceramic plate and its manufacturing method
CN102036433A (en) Infrared electric heating film heating tube with double-film layer structure as well as preparation method and application thereof
CN104327554A (en) Electric heating paint
CN102761995B (en) Semiconductor electrothermal membrane preparation method
CN108328605B (en) High-temperature-resistant graphene heat dissipation film and preparation method thereof
CN106686772A (en) Making method of high-temperature transparent electrothermal film
WO2017146391A1 (en) Carbon heating composition and method for manufacturing carbon heating element using same
CN105645940A (en) Preparation method of far infrared honeycomb ceramic heating body
KR101826149B1 (en) Transparent surface heating device
CN103781209A (en) Nano electric heating plate using chemical vapor deposition technology and manufacturing method thereof
CN106304433A (en) New and effective nanometer heating plate and preparation method thereof
CN102685943B (en) Nanometer material electrothermal film
CN112888095B (en) Inorganic composite electrothermal film material, preparation method and application
CN109805453B (en) Manufacturing method of electronic cigarette heating assembly based on metal nanowires
CN107419607A (en) A kind of High Strength Carbon Nanotubes conductive paper and preparation method
CN109819535B (en) Preparation method of high-temperature service silver nanowire conductive film heater
CN205812415U (en) Infrared heating dish and firing equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10852213

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127034059

Country of ref document: KR

Kind code of ref document: A

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06-03-2013)

122 Ep: pct application non-entry in european phase

Ref document number: 10852213

Country of ref document: EP

Kind code of ref document: A1