WO2011148950A1 - Antibacterial and antifungal agent, and antibacterial and antifungal product - Google Patents

Antibacterial and antifungal agent, and antibacterial and antifungal product Download PDF

Info

Publication number
WO2011148950A1
WO2011148950A1 PCT/JP2011/061900 JP2011061900W WO2011148950A1 WO 2011148950 A1 WO2011148950 A1 WO 2011148950A1 JP 2011061900 W JP2011061900 W JP 2011061900W WO 2011148950 A1 WO2011148950 A1 WO 2011148950A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibacterial
antifungal
group
cationic polymer
bis
Prior art date
Application number
PCT/JP2011/061900
Other languages
French (fr)
Japanese (ja)
Inventor
賢一 宮本
浩二 翠
Original Assignee
日華化学株式会社
ローディア日華株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日華化学株式会社, ローディア日華株式会社 filed Critical 日華化学株式会社
Publication of WO2011148950A1 publication Critical patent/WO2011148950A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N47/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid
    • A01N47/08Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having one or more single bonds to nitrogen atoms
    • A01N47/28Ureas or thioureas containing the groups >N—CO—N< or >N—CS—N<
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/48Medical, disinfecting agents, disinfecting, antibacterial, germicidal or antimicrobial compositions
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/564Polyureas, polyurethanes or other polymers having ureide or urethane links; Precondensation products forming them
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M16/00Biochemical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. enzymatic
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/06Processes in which the treating agent is dispersed in a gas, e.g. aerosols

Definitions

  • the present invention relates to an antibacterial and antifungal agent and an antibacterial and antifungal product. More specifically, the present invention relates to an antibacterial and antifungal agent containing a cationic polymer having antibacterial and antifungal properties, and an antibacterial and antifungal product to which antibacterial and antifungal properties are imparted.
  • Antibacterial agents include low molecular organic antibacterial agents such as benzalkonium chloride, cetylpyridinium chloride, chlorhexidine gluconate, and 5-chloro-2- (2,4-dichlorophenoxy) phenol, and for example, the following patent documents High molecular organic systems such as polyhexamethylene biguanide hydrochloride, poly [oxyethylene (dimethylimino) ethylene (dimethylimino) ethylene dichloride] and condensation reaction products of cyanoguanidine and polyethylene polyamine as described in 1 to 3 Antibacterial agents have been used for a long time.
  • inorganic antibacterial agents carrying silver, zinc, copper, etc., which are metals having antibacterial properties, such as zeolite and silica gel are also frequently used.
  • the above-mentioned conventional polymer organic antibacterial agents have excellent water resistance and antibacterial properties, but have insufficient antifungal properties. In addition, it has a problem that it cannot prevent off-flavors and the like.
  • the above conventional high molecular organic antibacterial agent is a cationic polymer and has a problem that it is easily discolored by heat, an antioxidant such as BHT (dibutylhydroxytoluene) and a gas such as NOx. Therefore, in fiber products and resin products that have been antibacterial processed with the above-mentioned antibacterial agents, the BHT / NOx gas discoloration resistance is deteriorated, or the appearance is impaired due to heat during product processing and heat during product use. There was a case.
  • BHT dibutylhydroxytoluene
  • the present invention has been made in view of the above circumstances, and has an antibacterial and antifungal property, an antibacterial and antifungal agent excellent in water resistance, heat discoloration resistance and BHT / NOx gas discoloration, and the same
  • An object of the present invention is to provide an antibacterial and antifungal product obtained by using.
  • a cationic polymer having a specific structure and a specific weight average molecular weight has a wide antibacterial spectrum and has sufficient antibacterial and antifungal properties. It has been found that the fiber and the resin film having the cationic polymer attached thereto and having excellent water resistance exhibit sufficient antibacterial and antifungal properties even after the washing test and the water resistance test. Furthermore, the present inventors have found that such a cationic polymer is less discolored by heat and BHT / NOx gas. And based on these knowledge, it came to complete this invention.
  • this invention provides the antibacterial antifungal agent containing the cationic polymer whose weight average molecular weight is 1000 or more represented by following General formula (1).
  • each R 1 independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or a hydroxyalkyl group, or an alkenyl group having 2 to 4 carbon atoms
  • R 2 represents the following general formula (2
  • R 3 independently represents an alkylene group having 2 to 10 carbon atoms
  • each R 4 independently represents a hydrogen atom, 1 to carbon atoms.
  • R 4 represents an alkyl group or hydroxyalkyl group or an alkenyl group having 2 to 4 carbon atoms
  • Y represents an oxygen atom or a sulfur atom
  • n represents a positive integer
  • X m ⁇ represents an m-valent anion.
  • R 5 represents an alkylene group having 1 or more carbon atoms
  • a independently represents an integer of 2 or more
  • b represents an integer of 0 or more.
  • the antibacterial and antifungal agent of the present invention has sufficiently high antibacterial and antifungal properties due to the cationic polymer having the structure described above, and has water resistance, heat discoloration resistance, and BHT / NOx gas discoloration resistance. The effect of being excellent can be produced.
  • antibacterial and antifungal agent of the present invention sufficient antibacterial and antifungal properties can be imparted to the surface of water-related parts and resin products and fiber products used in the vicinity of water, and this can be sustained over a long period of time. Color change and off-flavor caused by bacteria or fungi can be suppressed.
  • the antibacterial and antifungal agent of the present invention as a fiber treatment agent, a fiber product subjected to antibacterial and antifungal processing (providing antibacterial and antifungal properties) can be obtained.
  • a textile product can suppress discoloration and off-flavor caused by bacteria or mold even after repeated washing.
  • the textile product can be less likely to be discolored by heat and BHT / NOx gas as compared to the case where a conventional high molecular weight organic antibacterial agent is used.
  • the antibacterial and antifungal agent of the present invention is excellent in processability because the cationic polymer has an advantage of low odor in addition to excellent heat discoloration.
  • the weight average molecular weight of the cationic polymer is preferably 1000 to 50000.
  • the present invention also provides an antibacterial and antifungal product to which antibacterial and antifungal properties are imparted by the antibacterial and antifungal agent of the present invention.
  • an antibacterial and antifungal agent having sufficient antibacterial and antifungal properties, and excellent in water resistance, heat discoloration resistance and BHT / NOx gas discoloration property, and antibacterial and antifungal properties obtained by using the same Products can be provided.
  • the antibacterial and antifungal agent of the present embodiment contains a cationic polymer having a weight average molecular weight of 1000 or more represented by the following general formula (1).
  • each R 1 independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or a hydroxyalkyl group, or an alkenyl group having 2 to 4 carbon atoms
  • R 2 represents the following general formula (2
  • R 3 independently represents an alkylene group having 2 to 10 carbon atoms
  • each R 4 independently represents a hydrogen atom, 1 to carbon atoms.
  • 4 represents an alkyl group or hydroxyalkyl group or an alkenyl group having 2 to 4 carbon atoms
  • Y represents an oxygen atom or a sulfur atom
  • n represents a positive integer
  • X m ⁇ represents an m-valent anion.
  • n means the degree of polymerization when the cationic site in the parentheses is a repeating unit.
  • R 5 represents an alkylene group having 1 or more carbon atoms, a independently represents an integer of 2 or more, and b represents an integer of 0 or more.
  • examples of the alkyl group having 1 to 4 carbon atoms represented by R 1 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group.
  • examples of the hydroxyalkyl group having 1 to 4 carbon atoms include a hydroxymethyl group, a hydroxyethyl group, a hydroxypropyl group, a 1-methyl-1-hydroxyethyl group, and a 1-methyl-2-hydroxyethyl group.
  • Examples of the alkenyl group having 2 to 4 carbon atoms include a vinyl group and an allyl group.
  • R 1 is preferably a methyl group or an ethyl group from the viewpoint of water resistance, and more preferably a methyl group.
  • the oxyalkylene group having 4 to 8 carbon atoms represented by R 2 is represented by the general formula (2).
  • Examples of the oxyalkylene group having 4 to 8 carbon atoms represented by R 2 include an ethyleneoxyethylene group, a propyleneoxypropylene group, a butyleneoxybutylene group, an ethyleneoxymethyleneoxyethylene group, and an ethyleneoxyethyleneoxyethylene group. Can do.
  • R 2 is preferably an ethyleneoxyethylene group from the viewpoint of water resistance.
  • alkylene group having 2 to 10 carbon atoms represented by R 3 either a linear alkylene group or a branched alkylene group can be used.
  • alkylene group examples include an ethylene group, a propylene group, a trimethylene group, a butylene group, a tetramethylene group, a hexamethylene group, a 2-ethylhexamethylene group, an octamethylene group, and a decamethylene group.
  • R 3 is preferably an alkylene group having 2 to 6 carbon atoms from the viewpoint of water resistance.
  • Examples of the alkyl group having 1 to 4 carbon atoms represented by R 4 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group.
  • Examples of the hydroxyalkyl group having 1 to 4 carbon atoms include a hydroxymethyl group, a hydroxyethyl group, a hydroxypropyl group, a 1-methyl-1-hydroxyethyl group, and a 1-methyl-2-hydroxyethyl group.
  • Examples of the alkenyl group having 2 to 4 carbon atoms include a vinyl group and an allyl group.
  • R 4 is preferably a hydrogen atom, a methyl group or an ethyl group from the viewpoint of water resistance, and more preferably a hydrogen atom.
  • the anion represented by X m- is not particularly limited as long as it is an anion capable of forming a counter ion with a quaternary ammonium compound.
  • a monovalent or polyvalent carboxylic acid such as adipic acid, an alkyl phosphate ester anion, an alkyl sulfate anion, a halogen anion, a sulfate anion, a nitrate anion, and a phosphate anion.
  • chlorine ions and bromine ions are preferred.
  • the cationic polymer according to this embodiment can be synthesized by, for example, the following two-stage reaction.
  • First stage A diamine compound represented by the following general formula (3) and urea or thiourea are subjected to deammonia reaction at a molar ratio of 2: 0.8 to 2: 1.2 at 150 to 200 ° C. Then, a compound represented by the following general formula (4) is synthesized.
  • Second stage a compound represented by the following general formula (4) and a dihalide represented by the following general formula (5) in a molar ratio of 1: 0.8 to 1: 1.2 in a ratio of 35 to
  • the cationic polymer represented by the general formula (1) is synthesized.
  • R 1 , R 3 and R 4 have the same meaning as described above.
  • R 1 , R 3 , R 4 and Y have the same meaning as described above.
  • Z represents a halogen atom
  • a, b and R 5 have the same meaning as described above.
  • the molar ratio of the diamine compound represented by the general formula (3) to urea or thiourea is 2: 0.8 to 2: 1.2.
  • the cationic polymer represented by (1) it is preferably 2: 0.9 to 2: 1.1, more preferably 2: 0.95 to 2: 1.05, Preferably it is 2: 1.
  • the molar ratio of the compound represented by the general formula (4) and the dihalide represented by the general formula (5) is 1: 0.8 to 1: 1.2.
  • it is preferably 1: 0.9 to 1: 1.1, more preferably 1: 0.95 to 1: 1. .05, more preferably 1: 1.
  • Examples of the diamine compound represented by the general formula (3) include N, N-dimethylaminoethylamine, N, N-dimethylaminopropylamine, N, N-diethylaminoethylamine, N, N-diethylaminopropylamine, N , N-dibutylaminopropylamine, N, N-dimethylaminohexylamine and N, N-di (2-hydroxyethyl) aminopropylamine. These compounds can be used individually by 1 type or in combination of 2 or more types. Among these, N, N-dimethylaminoethylamine and N, N-dimethylaminopropylamine are preferable from the viewpoint of water resistance of the cationic polymer represented by the general formula (1).
  • Examples of the dihalide represented by the general formula (5) include bis (2-chloroethyl) ether, bis (3-chloropropyl) ether, bis (4-chlorobutyl) ether, 1,2-bis (2- Chloroethyloxy) ethane, bis (2-bromoethyl) ether, bis (2-chloroethyl) formal and bis [2- (2-chloroethyloxy) ethyl] ether. These compounds can be used individually by 1 type or in combination of 2 or more types.
  • bis (2-chloroethyl) ether bis (2-bromoethyl) ether, bis (3-chloropropyl) ether and bis (2) from the viewpoint of water resistance of the cationic polymer represented by the general formula (1).
  • 4-Chlorobutyl) ether is preferred.
  • Examples of the cationic polymer represented by the general formula (1) include bis (2-chloroethyl) ether-1,3-bis [3- (dimethylamino) propyl] urea copolymer and bis (2-chloroethyl).
  • the weight average molecular weight of the cationic polymer represented by the general formula (1) is 1000 or more, preferably 1000 to 50000, and more preferably 3000 to 20000.
  • the weight average molecular weight is less than 1000, an amine odor tends to remain, and water resistance tends to be insufficient.
  • the weight average molecular weight exceeds 50000, the polymerization time for obtaining the cationic polymer becomes longer, and the polymer tends to be extremely difficult to handle because it becomes a highly viscous polymer.
  • the weight average molecular weight of the cationic polymer represented by the general formula (1) can be measured by gel permeation chromatography using polyethylene glycol having a known molecular weight as a standard substance.
  • the weight average molecular weight of the cationic polymer represented by the general formula (1) can be adjusted by the reaction time, the reaction temperature, and the reaction molar ratio.
  • the antibacterial and antifungal agent of the present embodiment exhibits sufficient antibacterial and antifungal properties even with the cationic polymer represented by the general formula (1) alone, but in addition to the cationic polymer represented by the general formula (1)
  • a conventionally known antibacterial and antifungal compound can be contained.
  • examples of such compounds include low molecular organic antibacterial agents such as benzalkonium chloride and cetylpyridinium chloride, 5-chloro-2- [2,4-dichlorophenoxyl] phenol, and 3,4,4′- Examples include halogen antibacterial agents such as trichlorocarbanilide, inorganic antibacterial agents such as silver and zinc, and natural product antibacterial agents such as chitosan and polylysine.
  • the antibacterial and antifungal agent of the present embodiment is a surfactant such as a nonionic active agent, an anionic active agent, and a cationic active agent, a softener component, a smoothing agent component, a penetrating agent component, and a leveling agent component, depending on the application.
  • a surfactant such as a nonionic active agent, an anionic active agent, and a cationic active agent, a softener component, a smoothing agent component, a penetrating agent component, and a leveling agent component, depending on the application.
  • an antistatic agent, a chelating agent, an antioxidant, an antifoaming agent, a solvent, a binder resin, a thickener, a crosslinking agent, and the like can be further contained.
  • the antibacterial and antifungal agent of the present embodiment can exhibit antibacterial and antifungal properties effective against various bacteria and fungi. According to the antibacterial and antifungal agent of this embodiment, antibacterial and antifungal properties can be imparted to various products, and an antibacterial and antifungal product can be obtained. Such an antibacterial and antifungal product may be used for applying an antibacterial and antifungal process to a desired object.
  • Antibacterial and antifungal products include liquid detergents, liquid soaps, spraying liquids, other liquid products, gel products, coating agents, resin additives, textile products, resin products, and the like.
  • the liquid detergent of the present embodiment can contain the antibacterial and antifungal agent of the present embodiment in a proportion such that the content of the cationic polymer according to the present embodiment is 0.1 to 5% by mass based on the total amount of the liquid detergent. .
  • the liquid detergent of this embodiment has antibacterial and antifungal properties effective against various bacteria and fungi, and is used in kitchens, bathrooms, toilets, toilets, etc., and washing machines. Discoloration and off-flavor caused by bacteria or mold can be suppressed.
  • liquid detergent is a detergent for textiles
  • fungi in a fiber can be suppressed.
  • Other components contained in the liquid detergent include, for example, a softener and a bleaching agent, in addition to the detergent component including the surfactant described above and the antibacterial and antifungal component such as the antibacterial and antifungal agent according to the present embodiment. It is done.
  • the liquid soap of the present embodiment can contain the antibacterial and antifungal agent of the present embodiment in such a ratio that the content of the cationic polymer according to the present embodiment is 0.1 to 5% by mass based on the total amount of the liquid soap. .
  • the liquid soap of this embodiment has antibacterial and antifungal properties effective against various bacteria and fungi, and can suppress discoloration and off-flavor caused by the bacteria or fungi in the object to be cleaned.
  • liquid soap examples include household laundry, industrial laundry, face washing, hand washing, body washing (body soap, etc.) and the like.
  • the soap component and the antibacterial and antifungal component such as the antibacterial and antifungal agent according to the present embodiment, for example, a moisturizing agent and a stabilizer are exemplified.
  • the spray liquid of the present embodiment contains the antibacterial and antifungal agent of the present embodiment in a proportion such that the content of the cationic polymer according to the present embodiment is 0.1 to 90% by mass based on the total amount of the spray liquid. Can do.
  • a spraying liquid can be obtained by diluting the cationic polymer according to the present embodiment with water, a lower alcohol such as ethanol or isopropanol, or a mixed solvent thereof.
  • the spray liquid of this embodiment may be contaminated by microorganisms such as kitchens, bathrooms, toilets and toilets, bedding, furniture, clothing, carpets, shoes, plastic products, ceramics, and filters. By spraying an appropriate amount onto the place, discoloration and off-flavor caused by bacteria or mold can be suppressed.
  • an antibacterial and antifungal process can be given to a target object.
  • the spray liquid of this embodiment can be used as, for example, a fiber treatment agent, a deodorant, a resin treatment agent, an antibacterial agent, and an antifungal agent.
  • liquid products other than those described above include machine oils, adhesives, and fiber treatment agents.
  • These liquid products can contain the antibacterial and antifungal agent of the present embodiment in a proportion such that the content of the cationic polymer according to the present embodiment is 0.01 to 1% by mass based on the total amount of the liquid product.
  • the liquid product of the present embodiment has antibacterial and antifungal properties effective against various bacteria and fungi, and can be unlikely to cause discoloration and off-flavor due to bacteria or fungi.
  • Examples of the gel product containing the antibacterial and antifungal agent of the present embodiment include a gel fragrance, a gel deodorant, a poultice, and a gel soap. These gel-like products can contain the antibacterial and antifungal agent of the present embodiment in a proportion such that the content of the cationic polymer according to the present embodiment is 0.01 to 1% by mass based on the total amount of the product. If the content is less than 0.01% by mass, sufficient antibacterial and antifungal effect (antibacterial and antifungal effect) is difficult to be exerted. Less economical.
  • the gel-like product of this embodiment has antibacterial and antifungal properties effective against various bacteria and fungi, and can be less likely to cause discoloration and off-flavor due to bacteria or fungi.
  • the coating agent of this embodiment can contain the antibacterial and antifungal agent of this embodiment in a proportion such that the content of the cationic polymer according to this embodiment is 0.1 to 10% by mass based on the total amount of the coating agent.
  • antibacterial and antifungal treatment can be applied to an object by coating the surface of a hard material such as textiles and plastics and ceramics (for example, roll coating and brushing). Color change and off-flavor caused by bacteria or fungi can be suppressed.
  • a hard material such as textiles and plastics and ceramics
  • a dispersing agent in addition to a binder such as an acrylic resin and a urethane resin, and a thickener.
  • the coating and spraying conditions are preferably such that the amount of the cationic polymer attached to the fiber or hard material surface is 0.1 to 20 g / m 2 in terms of nonvolatile content. If it is less than 0.1 g / m 2 , a sufficient antibacterial and antifungal effect is hardly exhibited, and even if it is used in excess of 20 g / m 2 , it is difficult to further improve the antibacterial and antifungal properties, which is not economical.
  • the coating agent of this embodiment can be used as, for example, a fiber treatment agent and a resin treatment agent.
  • the additive for resin of the present embodiment may contain the antibacterial and antifungal agent of the present embodiment at a ratio of 0.01 to 1% by mass of the cationic polymer according to the present embodiment with respect to the added resin. it can.
  • antibacterial and antifungal processing can be applied to a resin product by a method such as kneading into a resin composition containing resins.
  • other components contained in the resin additive include antistatic agents, antioxidants, and dispersants.
  • the antibacterial and antifungal fiber product of the present embodiment include various materials and various forms of fiber products.
  • the raw materials for textile products include natural fibers such as cotton, hemp, wool and silk, regenerated cellulose fibers such as rayon, cupra and tencel (trademark), semi-synthetic fibers such as acetate and promix, polyamide fibers and polyester fibers.
  • synthetic fibers such as acrylic fiber, polyolefin fiber, polyvinyl chloride fiber, polyimide fiber and polyurethane fiber, and various materials of composite fibers of these fibers.
  • yarn a textile fabric, a knitted fabric, a nonwoven fabric, a cotton, a sliver, and a top are mentioned, for example.
  • the antibacterial and antifungal fiber product of the present embodiment is prepared by attaching the antibacterial and antifungal agent of the present embodiment to the fiber by a known method such as coating, spraying, dipping treatment, padding (dip-nip) treatment or the like. It can be manufactured by processing.
  • a fiber treatment agent in which a cationic polymer is mixed with a binder such as an acrylic resin and a urethane resin, and a thickener can be used.
  • concentration of the cationic polymer in the fiber treatment agent is preferably 0.1 to 10% by mass based on the total amount of the fiber treatment agent.
  • spraying it is preferable to perform spraying using a solution having a cationic polymer concentration of 10 to 90% by mass.
  • the solvent at this time include water, alcohols having 1 to 4 carbon atoms such as ethanol and isopropanol, ketones such as glycol, acetone and methyl ethyl ketone.
  • the amount of the cationic polymer attached to the fiber is preferably 0.1 to 20 g / m 2 in terms of nonvolatile content. If it is less than 0.1 g / m 2 , a sufficient antibacterial and antifungal effect is hardly exhibited, and even if it is used in excess of 20 g / m 2 , it is difficult to further improve the antibacterial and antifungal properties, which is not economical.
  • the concentration of the cationic polymer in the treatment bath is 0.01 to 10% o. w. f.
  • the concentration of the cationic polymer is preferably 0.01 to 10% by mass with respect to the fiber mass.
  • the cationic polymer is preferably 0.1 to 5% by mass based on the mass of the fiber. If it is less than 0.1% by mass, a sufficient antibacterial and antifungal effect is hardly exhibited, and even if it exceeds 5% by mass, it is difficult to further improve the antibacterial and antifungal properties, which is not economical.
  • the antibacterial and antifungal resin product of the present embodiment was formed from a resin composition containing the antibacterial and antifungal agent and resins according to the present embodiment, in addition to the resin product whose surface was processed by the coating agent described above. Things.
  • the resins include acrylic resin, styrene resin, melamine resin, urethane resin, phenol resin, polyethylene resin, polypropylene resin, polyacetal, fluororesin, silicone resin, vinyl acetate resin, vinyl chloride resin, epoxy resin, polyester resin, polyamide Examples thereof include resins, ABS resins, polycarbonate resins, and cellulose acetate.
  • the antibacterial and antifungal resin product according to the present embodiment can be produced by a method such as kneading the antibacterial and antifungal agent according to the present embodiment into a resin composition containing resins.
  • kneading can be carried out at a ratio such that the concentration of the cationic polymer is 0.01 to 1% by mass with respect to the resins.
  • concentration of the cationic polymer is less than 0.01% by mass, a sufficient antibacterial and antifungal effect is hardly exhibited, and even when used in excess of 1% by mass, it is difficult to further improve the antibacterial and antifungal properties, which is not economical.
  • various antibacterial and antifungal products such as an antibacterial and antifungal fiber product and an antibacterial and antifungal resin product to which antibacterial and antifungal properties are imparted by the antibacterial and antifungal agent of the present embodiment. Can be provided.
  • Example 1 ⁇ Preparation of 50% aqueous solution of bis (2-chloroethyl) ether-1,3-bis [3- (dimethylamino) propyl] urea copolymer>
  • a reaction vessel was charged with 204 g (2 mol) of N, N-dimethylaminopropylamine and 60 g (1 mol) of urea, heated under a nitrogen gas stream, and subjected to deammonia reaction at 170 to 180 ° C. for about 5 hours. . Thereafter, the mixture was cooled, 143 g (1 mol) of bis (2-chloroethyl) ether was added, and the mixture was reacted at 95 ° C. for 10 hours. The reaction solution was diluted with water to obtain a slightly yellow liquid composition containing 50% by mass of a cationic polymer. The weight average molecular weight of the cationic polymer was 8,000.
  • Example 2 ⁇ Preparation of 50% aqueous solution of bis (2-chloroethyl) ether-1,3-bis [2- (dimethylamino) ethyl] urea copolymer> 176 g (2 mol) of N, N-dimethylaminoethylamine and 60 g (1 mol) of urea were charged into a reaction vessel, heated under a nitrogen gas stream, and subjected to deammonia reaction at 170 to 180 ° C. for about 5 hours. Thereafter, the mixture was cooled, 143 g (1 mol) of bis (2-chloroethyl) ether was added, and the mixture was reacted at 95 ° C. for 5 hours. The reaction solution was diluted with water to obtain a slightly yellow liquid composition containing 50% by mass of a cationic polymer. The weight average molecular weight of the cationic polymer was 5000.
  • Example 4 ⁇ Preparation of 50% aqueous solution of bis (2-chloroethyl) formal-1,3-bis [3- (dimethylamino) propyl] urea copolymer> 204 g (2 mol) of N, N-dimethylaminopropylamine and 60 g (1 mol) of urea were charged in a reaction vessel, heated to a temperature in a nitrogen gas stream, and subjected to deammonia reaction at 170 to 180 ° C. for about 5 hours. Thereafter, the mixture was cooled, 173 g (1 mol) of bis (2-chloroethyl) formal was added, and the mixture was reacted at 95 ° C. for 12 hours. The reaction solution was diluted with water to obtain a slightly yellow liquid composition containing 50% by mass of a cationic polymer. The weight average molecular weight of the cationic polymer was 7500.
  • Example 7 ⁇ Preparation of 50% aqueous solution of bis (2-chloroethyl) ether-1,3-bis [3- (dibutylamino) propyl] urea copolymer> 372 g (2 mol) of N, N-dibutylaminopropylamine and 60 g (1 mol) of urea were charged into a reaction vessel, heated under a nitrogen gas stream, and subjected to deammonia reaction at 170 to 180 ° C. for about 5 hours. . Thereafter, the mixture was cooled, 143 g (1 mol) of bis (2-chloroethyl) ether was added, and the mixture was reacted at 95 ° C. for 15 hours. The reaction solution was diluted with water to obtain a slightly yellow liquid composition containing 50% by mass of a cationic polymer. The weight average molecular weight of the cationic polymer was 6900.
  • Example 11 ⁇ Preparation of 50% IPA solution of bis (2-chloroethyl) ether-1,3-bis [3- (dimethylamino) propyl] urea copolymer>
  • a reaction vessel was charged with 204 g (2 mol) of N, N-dimethylaminopropylamine and 60 g (1 mol) of urea, heated under a nitrogen gas stream, and subjected to deammonia reaction at 170 to 180 ° C. for about 5 hours. . Thereafter, the mixture was cooled, 143 g (1 mol) of bis (2-chloroethyl) ether was added, and the mixture was reacted at 95 ° C. for 10 hours.
  • the reaction solution was diluted with isopropanol (IPA) to obtain a slightly yellow liquid composition containing 50% by mass of a cationic polymer.
  • the weight average molecular weight of the cationic polymer was 7500.
  • Example 12 ⁇ Preparation of 50% aqueous solution of bis (2-chloroethyl) ether-1,3-bis [3- (dimethylamino) propyl] urea copolymer>
  • a reaction vessel was charged with 204 g (2 mol) of N, N-dimethylaminopropylamine and 60 g (1 mol) of urea, heated under a nitrogen gas stream, and subjected to deammonia reaction at 170 to 180 ° C. for about 5 hours. . Thereafter, the mixture was cooled, 143 g (1 mol) of bis (2-chloroethyl) ether was added, and the mixture was reacted at 95 ° C. for 10 hours. By diluting the reaction solution with water, a yellow liquid composition containing 50% by mass of a cationic polymer was obtained. The weight average molecular weight of the cationic polymer was 45000.
  • the weight average molecular weight of the cationic polymer was determined using gel permeation chromatography [Column: Tosoh Corporation, trade name: TSKgel G3000PW-CP], polyethylene glycol as a standard substance, and eluent with a sodium nitrate concentration of 0. It measured using 1M aqueous solution. Measurement conditions are as follows. Flow rate: 0.70 mL / min Sample concentration: 0.1 g / L Filtration filter: 0.45 ⁇ m-Millex-LH (Millipore) Injection volume: 0.200 mL Temperature: 23 ° C Detector: Differential refractive index detector (product name: RI-8020, manufactured by Tosoh Corporation)
  • the antibacterial and antifungal agents obtained above were subjected to the following evaluation tests. In the antibacterial and antifungal test, the following bacteria were used.
  • Staphylococcus aureus ATCC 6538P (abbreviated as Sa) Klebsiella pneumoniae NBRC13277: (abbreviated as Kp) Escherichia coli NBRC3301: (abbreviated E.c) Pseudomonas aeruginosa NBRC3080: (abbreviated as Pa) Methicillin-resistant Staphylococcus aureus IID1677: (abbreviated as MRSA)
  • the active ingredient concentration of the cationic polymer aqueous solution and the culture conditions for the test bacteria and test fungi were as follows. It was confirmed that the inoculated test bacterium or test fungus was a single culture, and the lowest active ingredient concentration at which growth was completely inhibited was defined as the minimum growth inhibitory concentration. It was determined that the smaller the value, the more antibacterial and antifungal effect.
  • Active ingredient concentration of cationic polymer aqueous solution 2.5, 5, 10, 25, 50, 125, 250, 500, 1000 mg / L Culture conditions
  • Bacteria 37 ° C x 48 hours Mold: 25 ° C x 2 or 7 days
  • Bacteria Ordinary agar medium
  • Mold Potato dextrose agar medium
  • the antibacterial activity value and the antifungal activity value of the polyester film obtained above were determined according to the following methods.
  • the antibacterial activity value was determined using Staphylococcus aureus as a test bacterium. When the antibacterial activity value was larger than 2, it was determined to be effective.
  • Antifungal activity value (F b ⁇ F a ) ⁇ (F c ⁇ F 0 )
  • F a Average value of common logarithm values of the amount of ATP produced by the test mold immediately after inoculating the test mold on the standard polyester film (3 samples)
  • F b Average value of common logarithm of ATP amount produced by test fungi after inoculating test fungus on standard polyester film and culturing for 42 hours (3 samples)
  • F c Average value of the common logarithm of the amount of ATP produced by the test fungus after inoculating the test fungus on a polyester film having antibacterial and antifungal properties and culturing for 42 hours (3 samples)
  • F 0 Average value of common logarithm values of the amount of ATP produced by the test fungus immediately after inoculating the test fungus on the antimicrobial and antifungal polyester film (3 samples)
  • the amount of ATP was measured with Lumitester C-110 (Kikkoman Food
  • Thermal discoloration test The polyester film coated with the antibacterial and antifungal agent was heat-treated at 100 ° C. and 180 ° C. for 1 minute to perform color measurement. Based on Comparative Example 7, the difference in b value ( ⁇ b value) was determined under the following measurement conditions. It was determined that the greater the ⁇ b value, the more yellow the color was changed. Colorimetric conditions: Minolta colorimeter CM-3700d, light source D65, field of view 10 degrees
  • the bacteriostatic and antifungal activity values before and after washing (L-0) and 10 times after washing (L-10) were determined for the cotton fiber product obtained above according to the following method.
  • the antifungal activity value was measured for cotton fiber products before washing and after 10 washings, using black candy as a test fungus, in accordance with JECF301 “Anti-fungus processed textile product certification standard”. When the antifungal activity value was larger than 2.0, it was determined that there was an effect.
  • Thermal discoloration test The cotton fiber product treated with the antibacterial antifungal agent was heat-treated at 120 ° C. and 180 ° C. for 1 minute, and the whiteness was measured under the following measurement conditions. It was determined that there was discoloration as the whiteness was smaller than Comparative Example 7.
  • Whiteness measurement conditions Minolta colorimeter CM-3700d, light source D65, field of view 10 degrees
  • the obtained resin product was evaluated for antibacterial and antifungal properties by the same method as in Evaluation Test 3. Moreover, the coloring of the resin product produced above was observed visually, and the heat discoloration was evaluated according to the following criteria.
  • Example 9 Water Resistance Test
  • the solution obtained in Example 11, Comparative Example 8, and Comparative Example 6 was applied to a polyester film (Teijin Tetron Film, Brand G2) by spraying so that the nonvolatile content was 0.5 g / m 2, and the solution was brought to room temperature. And dried for 30 minutes to produce a plastic product for water resistance test.
  • the plastic product for the water resistance test was immersed in water for 1 hour and then dried, and antibacterial and antifungal properties were evaluated by the same method as in Evaluation Test 3.
  • R 1 is a methyl group
  • R 2 is an ethyleneoxyethylene group
  • R 3 is a propylene group
  • R 4 is a hydrogen atom. It was confirmed that good antibacterial and antifungal performance can be obtained.
  • the cationic polymers of the examples all had less heat yellowing and less discoloration due to BHT / NOx gas than the cationic polymers of the comparative examples.
  • the antibacterial and antifungal agent of this example is an antibacterial and antifungal agent for liquid detergents, liquid soaps, spraying liquids and other liquid products, gel products, coating agents, resin additives, textile products, and resin products. It is possible to impart sex.
  • the cationic polymer obtained in the example is a hard material surface such as a polyester film.
  • an antibacterial and antifungal agent for antibacterial and antifungal processing it was confirmed that it exhibits good antibacterial and antifungal properties with heat resistance.
  • Cationic polymer obtained in Examples by antibacterial and antifungal test of cotton fiber product of evaluation test 5, thermal discoloration test of cotton fiber product of evaluation test 6 and BHT / NOx discoloration test of cotton fiber product of evaluation test 7 When used as a treating agent for textiles, it was confirmed that the antibacterial and antifungal property with durability was excellent, thermal yellowing was small, and there was little discoloration due to BHT / NOx gas.
  • the cationic polymers obtained in the examples show good antibacterial and antifungal properties even when kneaded into the resin. It was confirmed that heat discoloration was also good.
  • the water resistance test of evaluation test 9 confirmed that the cationic polymer obtained in the example had better water resistance than the benzalkonium chloride of comparative example 6 and the cationic polymer of comparative example 8. .
  • the cationic polymer compound having a low molecular weight had an amine odor.
  • the antibacterial and antifungal durability against washing is poor.
  • the cationic polymer having no urea group or thiourea group in the straight chain showed antibacterial properties but no antifungal properties.
  • a cationic polymer having no oxyalkylene group in the straight chain showed antibacterial properties but no antifungal properties. Moreover, the antibacterial durability against washing was inferior.
  • the cationic polymer having an oxyalkylene group having a carbon number of less than 4 in the straight chain showed antibacterial properties but no antifungal properties. Moreover, the antibacterial durability against washing was inferior.
  • the cationic polymer according to the present invention has a specific structure, thereby having both excellent antibacterial and antifungal properties against various bacteria and fungi, and water resistance and heat discoloration. It can be seen that the present invention has the effect of being excellent in heat resistance and BHT / NOx gas discoloration.
  • the present invention it is possible to provide a new antibacterial and antifungal agent having a durable antifungal property as well as a durable antifungal property. This can prevent problems such as discoloration and off-flavor due to mold in recent years, in addition to the conventional antibacterial effect, in kitchens, bathrooms, toilets and toilets, and textile products. It becomes.
  • the antibacterial and antifungal agent of the present invention has little discoloration due to heat and BHT / NOx gas, the discoloration problem can be reduced even when processed into a light-colored fiber or kneaded into a light-colored resin. be able to.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Textile Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Environmental Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Dentistry (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

Disclosed is an antibacterial and antifungal agent which contains a cationic polymer that is represented by general formula (1) and has a weight average molecular weight of 1,000 or more. (In general formula (1), R1 represents a hydrogen atom, an alkyl group, a hydroxyalkyl group or an alkenyl group; R2 represents an oxyalkylene group represented by general formula (2) below; R3 represents an alkylene group; R4 represents a hydrogen atom, an alkyl group, a hydroxyalkyl group or an alkenyl group; Y represents an oxygen atom or a sulfur atom; n represents a positive integer; and Xm- represents an m-valent anion.) -(CH2)a-(OR5)b-O(CH2)a- (2) (In general formula (2), R5 represents an alkylene group; a represents an integer of 2 or more; and b represents an integer of 0 or more.)

Description

抗菌抗かび剤及び抗菌抗かび性製品Antibacterial and antifungal agents and antibacterial and antifungal products
 本発明は、抗菌抗かび剤及び抗菌抗かび性製品に関する。より詳しくは、抗菌性及び抗かび性を有するカチオン性ポリマーを含有する抗菌抗かび剤及びこれにより抗菌抗かび性が付与された抗菌抗かび性製品に関する。 The present invention relates to an antibacterial and antifungal agent and an antibacterial and antifungal product. More specifically, the present invention relates to an antibacterial and antifungal agent containing a cationic polymer having antibacterial and antifungal properties, and an antibacterial and antifungal product to which antibacterial and antifungal properties are imparted.
 近年、メチシリン耐性黄色ブドウ球菌(MRSA)等による院内感染及び病原性大腸菌O-157等による食中毒等の細菌が原因となっている事故が多発し、社会問題化している。一般家庭においては、居住空間の気密性の高まり及び空調設備の普及によってかびが繁殖しやすい環境となり、かびが原因のアレルギー疾患、日用品の変色等の問題が増加している。これらの問題に対応するために、例えば、所望の部材表面に抗菌性を付与するための抗菌剤、並びに、予め抗菌剤により抗菌加工がなされた繊維製品及び樹脂製品等が上市されている。 In recent years, accidents caused by bacteria such as nosocomial infections caused by methicillin-resistant Staphylococcus aureus (MRSA) and food poisoning caused by pathogenic Escherichia coli O-157, etc., have become a social problem. In general households, molds are easy to propagate due to the increase in airtightness of living spaces and the spread of air conditioning equipment, and problems such as allergic diseases caused by molds and discoloration of daily necessities are increasing. In order to deal with these problems, for example, antibacterial agents for imparting antibacterial properties to the surface of desired members, and fiber products and resin products that have been antibacterial processed with an antibacterial agent in advance have been put on the market.
 抗菌剤としては、塩化ベンザルコニウム、塩化セチルピリジニウム、グルコン酸クロルヘキシジン、及び5-クロロ-2-(2,4-ジクロロフェノキシ)フェノール等の低分子有機系抗菌剤、並びに、例えば、下記特許文献1~3に記載されているような、塩酸ポリヘキサメチレンビグアナイド、ポリ[オキシエチレン(ジメチルイミノ)エチレン(ジメチルイミノ)エチレンジクロライド]及びシアノグアニジンとポリエチレンポリアミンとの縮合反応物等の高分子有機系抗菌剤が古くから使用されている。また、ゼオライト及びシリカゲル等に抗菌性を有する金属である銀、亜鉛及び銅等を担持した無機系抗菌剤も多用されている。 Antibacterial agents include low molecular organic antibacterial agents such as benzalkonium chloride, cetylpyridinium chloride, chlorhexidine gluconate, and 5-chloro-2- (2,4-dichlorophenoxy) phenol, and for example, the following patent documents High molecular organic systems such as polyhexamethylene biguanide hydrochloride, poly [oxyethylene (dimethylimino) ethylene (dimethylimino) ethylene dichloride] and condensation reaction products of cyanoguanidine and polyethylene polyamine as described in 1 to 3 Antibacterial agents have been used for a long time. In addition, inorganic antibacterial agents carrying silver, zinc, copper, etc., which are metals having antibacterial properties, such as zeolite and silica gel are also frequently used.
特公昭62-60509号公報Japanese Examined Patent Publication No. 62-60509 特開平5-310505号公報JP-A-5-310505 特開平9-195171号公報JP-A-9-195171
 上記従来の低分子有機系抗菌剤は、優れた抗菌性及び抗かび性を示すものの耐水性が低く、部材表面に付着させても水によって容易に脱落しやすかった。そのため、台所、浴室、洗面所及びトイレ等の水回り(水を使う場所)、並びに、洗濯を繰り返す繊維製品に対しては、付与した抗菌性及び抗かび性を長期にわたって持続させることができないという問題があった。 Although the above conventional low molecular weight organic antibacterial agents show excellent antibacterial and antifungal properties, they have low water resistance, and even if they adhere to the surface of the member, they were easily removed by water. Therefore, it is said that the antibacterial and antifungal properties that have been imparted cannot be sustained over a long period of time for water products (places where water is used) such as kitchens, bathrooms, toilets, and toilets, and textile products that are repeatedly washed. There was a problem.
 一方、上記従来の高分子有機系抗菌剤は、耐水性には優れており、抗菌性は十分であるものの、抗かび性が不十分であるため、居住空間で問題となっているかびによる変色及び異臭等を防ぐことができないという問題を有している。 On the other hand, the above-mentioned conventional polymer organic antibacterial agents have excellent water resistance and antibacterial properties, but have insufficient antifungal properties. In addition, it has a problem that it cannot prevent off-flavors and the like.
 また、上記従来の高分子有機系抗菌剤はカチオン性ポリマーであり、熱、BHT(ジブチルヒドロキシトルエン)等の酸化防止剤及びNOx等のガスによって変色しやすいという問題も有している。そのため、上記の抗菌剤によって抗菌加工がなされた繊維製品及び樹脂製品等では、耐BHT/NOxガス変色性が低下したり、製品加工時の熱及び製品使用時の熱によって外観が損なわれたりする場合があった。 Further, the above conventional high molecular organic antibacterial agent is a cationic polymer and has a problem that it is easily discolored by heat, an antioxidant such as BHT (dibutylhydroxytoluene) and a gas such as NOx. Therefore, in fiber products and resin products that have been antibacterial processed with the above-mentioned antibacterial agents, the BHT / NOx gas discoloration resistance is deteriorated, or the appearance is impaired due to heat during product processing and heat during product use. There was a case.
 本発明は、上記事情を鑑みてなされたものであり、抗菌性及び抗かび性を十分有し、なおかつ耐水性、耐熱変色性及び耐BHT/NOxガス変色性に優れた抗菌抗かび剤及びそれを用いて得られる抗菌抗かび性製品を提供することを目的とする。 The present invention has been made in view of the above circumstances, and has an antibacterial and antifungal property, an antibacterial and antifungal agent excellent in water resistance, heat discoloration resistance and BHT / NOx gas discoloration, and the same An object of the present invention is to provide an antibacterial and antifungal product obtained by using.
 本発明者らは上記課題を解決するため鋭意研究を重ねた結果、特定の構造を有し特定の重量平均分子量を有するカチオン性ポリマーが、抗菌スペクトルが広く、十分な抗菌性及び抗かび性を有し、なおかつ耐水性にも優れ、係るカチオン性ポリマーを付着させた繊維及び樹脂フィルムが、洗濯試験及び耐水性試験の後においても十分な抗菌性及び抗かび性を示すことを見出した。更に本発明者らは、係るカチオン性ポリマーが、熱及びBHT/NOxガスによる変色が少ないということを見出した。そして、これらの知見に基づき本発明を完成させるに至った。 As a result of intensive studies to solve the above problems, the present inventors have found that a cationic polymer having a specific structure and a specific weight average molecular weight has a wide antibacterial spectrum and has sufficient antibacterial and antifungal properties. It has been found that the fiber and the resin film having the cationic polymer attached thereto and having excellent water resistance exhibit sufficient antibacterial and antifungal properties even after the washing test and the water resistance test. Furthermore, the present inventors have found that such a cationic polymer is less discolored by heat and BHT / NOx gas. And based on these knowledge, it came to complete this invention.
 すなわち、本発明は、下記一般式(1)で表される、重量平均分子量が1000以上のカチオン性ポリマーを含有する抗菌抗かび剤を提供する。
Figure JPOXMLDOC01-appb-C000003
式(1)中、Rはそれぞれ独立に、水素原子、炭素数1~4のアルキル基若しくはヒドロキシアルキル基、又は、炭素数2~4のアルケニル基を示し、Rは下記一般式(2)で表される炭素数4~8のオキシアルキレン基を示し、Rはそれぞれ独立に、炭素数が2~10のアルキレン基を示し、Rはそれぞれ独立に、水素原子、炭素数1~4のアルキル基若しくはヒドロキシアルキル基又は炭素数2~4のアルケニル基を示し、Yは酸素原子又は硫黄原子を示し、nは正の整数を示し、Xm-はm価のアニオンを示す。
Figure JPOXMLDOC01-appb-C000004
式(2)中、Rは炭素数1以上のアルキレン基を示し、aはそれぞれ独立に2以上の整数を示し、bは0以上の整数を示す。
That is, this invention provides the antibacterial antifungal agent containing the cationic polymer whose weight average molecular weight is 1000 or more represented by following General formula (1).
Figure JPOXMLDOC01-appb-C000003
In formula (1), each R 1 independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or a hydroxyalkyl group, or an alkenyl group having 2 to 4 carbon atoms, and R 2 represents the following general formula (2 And R 3 independently represents an alkylene group having 2 to 10 carbon atoms, and each R 4 independently represents a hydrogen atom, 1 to carbon atoms. 4 represents an alkyl group or hydroxyalkyl group or an alkenyl group having 2 to 4 carbon atoms, Y represents an oxygen atom or a sulfur atom, n represents a positive integer, and X m− represents an m-valent anion.
Figure JPOXMLDOC01-appb-C000004
In formula (2), R 5 represents an alkylene group having 1 or more carbon atoms, a independently represents an integer of 2 or more, and b represents an integer of 0 or more.
 本発明の抗菌抗かび剤は、上記カチオン性ポリマーが上記構造を有するものであることにより、抗菌性及び抗かび性が十分高く、なおかつ耐水性、耐熱変色性及び耐BHT/NOxガス変色性に優れるという効果を奏することができる。 The antibacterial and antifungal agent of the present invention has sufficiently high antibacterial and antifungal properties due to the cationic polymer having the structure described above, and has water resistance, heat discoloration resistance, and BHT / NOx gas discoloration resistance. The effect of being excellent can be produced.
 本発明の抗菌抗かび剤によれば、水回りの部材表面、並びに、水回りで用いられる樹脂製品及び繊維製品に十分な抗菌性及び抗かび性を付与し、それを長期にわたって持続させることができ、細菌又はかびに起因する変色及び異臭を抑制することができる。 According to the antibacterial and antifungal agent of the present invention, sufficient antibacterial and antifungal properties can be imparted to the surface of water-related parts and resin products and fiber products used in the vicinity of water, and this can be sustained over a long period of time. Color change and off-flavor caused by bacteria or fungi can be suppressed.
 また、本発明の抗菌抗かび剤を繊維処理剤として用いることで、抗菌抗かび加工(抗菌性及び抗かび性の付与)がなされた繊維製品を得ることができる。係る繊維製品は、洗濯を繰り返しても細菌又はかびに起因する変色及び異臭を抑制することができる。また、係る繊維製品は、従来の高分子量有機系抗菌剤が用いられた場合に比較して、熱及びBHT/NOxガスによる変色が発生しにくいものになり得る。 Further, by using the antibacterial and antifungal agent of the present invention as a fiber treatment agent, a fiber product subjected to antibacterial and antifungal processing (providing antibacterial and antifungal properties) can be obtained. Such a textile product can suppress discoloration and off-flavor caused by bacteria or mold even after repeated washing. In addition, the textile product can be less likely to be discolored by heat and BHT / NOx gas as compared to the case where a conventional high molecular weight organic antibacterial agent is used.
 また、本発明の抗菌抗かび剤は、上記カチオン性ポリマーが耐熱変色性に優れていることに加え、低臭気性であるという利点を有するので、加工適性にも優れている。 Further, the antibacterial and antifungal agent of the present invention is excellent in processability because the cationic polymer has an advantage of low odor in addition to excellent heat discoloration.
 上記カチオン性ポリマーの重量平均分子量は、1000~50000であることが好ましい。 The weight average molecular weight of the cationic polymer is preferably 1000 to 50000.
 本発明はまた、上記本発明の抗菌抗かび剤により抗菌抗かび性が付与された、抗菌抗かび性製品を提供する。 The present invention also provides an antibacterial and antifungal product to which antibacterial and antifungal properties are imparted by the antibacterial and antifungal agent of the present invention.
 本発明によれば、抗菌性及び抗かび性を十分有し、なおかつ耐水性、耐熱変色性及び耐BHT/NOxガス変色性に優れた抗菌抗かび剤及びそれを用いて得られる抗菌抗かび性製品を提供することができる。 According to the present invention, an antibacterial and antifungal agent having sufficient antibacterial and antifungal properties, and excellent in water resistance, heat discoloration resistance and BHT / NOx gas discoloration property, and antibacterial and antifungal properties obtained by using the same Products can be provided.
 以下に本発明の好ましい形態について説明する。 Hereinafter, preferred embodiments of the present invention will be described.
 本実施形態の抗菌抗かび剤は、下記一般式(1)で表される重量平均分子量が1000以上のカチオン性ポリマーを含有するものである。 The antibacterial and antifungal agent of the present embodiment contains a cationic polymer having a weight average molecular weight of 1000 or more represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(1)中、Rはそれぞれ独立に、水素原子、炭素数1~4のアルキル基若しくはヒドロキシアルキル基、又は、炭素数2~4のアルケニル基を示し、Rは下記一般式(2)で表される炭素数4~8のオキシアルキレン基を示し、Rはそれぞれ独立に、炭素数が2~10のアルキレン基を示し、Rはそれぞれ独立に、水素原子、炭素数1~4のアルキル基若しくはヒドロキシアルキル基又は炭素数2~4のアルケニル基を示し、Yは酸素原子又は硫黄原子を示し、nは正の整数を示し、Xm-はm価のアニオンを示す。なお、nは、上記括弧内のカチオン部位を繰り返し単位としたときの重合度を意味する。 In formula (1), each R 1 independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or a hydroxyalkyl group, or an alkenyl group having 2 to 4 carbon atoms, and R 2 represents the following general formula (2 And R 3 independently represents an alkylene group having 2 to 10 carbon atoms, and each R 4 independently represents a hydrogen atom, 1 to carbon atoms. 4 represents an alkyl group or hydroxyalkyl group or an alkenyl group having 2 to 4 carbon atoms, Y represents an oxygen atom or a sulfur atom, n represents a positive integer, and X m− represents an m-valent anion. In addition, n means the degree of polymerization when the cationic site in the parentheses is a repeating unit.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(2)中、Rは炭素数1以上のアルキレン基を示し、aはそれぞれ独立に2以上の整数を示し、bは0以上の整数を示す。 In formula (2), R 5 represents an alkylene group having 1 or more carbon atoms, a independently represents an integer of 2 or more, and b represents an integer of 0 or more.
 ここで、Rで示される炭素数1~4のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基及びn-ブチル基を挙げることができる。炭素数1~4のヒドロキシアルキル基としては、例えば、ヒドロキシメチル基、ヒドロキシエチル基、ヒドロキシプロピル基、1-メチル-1-ヒドロキシエチル基及び1-メチル-2-ヒドロキシエチル基を挙げることができる。炭素数2~4のアルケニル基としては、例えば、ビニル基及びアリル基を挙げることができる。本実施形態においては、Rは耐水性の観点からメチル基及びエチル基が好ましく、より好ましくはメチル基である。 Here, examples of the alkyl group having 1 to 4 carbon atoms represented by R 1 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group. Examples of the hydroxyalkyl group having 1 to 4 carbon atoms include a hydroxymethyl group, a hydroxyethyl group, a hydroxypropyl group, a 1-methyl-1-hydroxyethyl group, and a 1-methyl-2-hydroxyethyl group. . Examples of the alkenyl group having 2 to 4 carbon atoms include a vinyl group and an allyl group. In the present embodiment, R 1 is preferably a methyl group or an ethyl group from the viewpoint of water resistance, and more preferably a methyl group.
 Rで示される炭素数4~8のオキシアルキレン基は、上記一般式(2)で表されるものである。 The oxyalkylene group having 4 to 8 carbon atoms represented by R 2 is represented by the general formula (2).
 Rは炭素数1以上のアルキレン基であれば、直鎖状でも分枝状でもよい。aはそれぞれ独立に2以上の整数、bは0以上の整数であれば、上記一般式(2)において炭素数の合計が4~8になるように、aとbとRとを適宜調整すればよい。耐水性の観点から好ましくは、aはそれぞれ同一の整数で、a=2~4、b=0である。 R 5 may be linear or branched as long as it is an alkylene group having 1 or more carbon atoms. If a is independently an integer of 2 or more and b is an integer of 0 or more, a, b and R 5 are appropriately adjusted so that the total number of carbon atoms is 4 to 8 in the general formula (2). do it. From the viewpoint of water resistance, preferably, a is the same integer, and a = 2 to 4 and b = 0.
 Rで示される炭素数4~8のオキシアルキレン基としては、例えば、エチレンオキシエチレン基、プロピレンオキシプロピレン基、ブチレンオキシブチレン基、エチレンオキシメチレンオキシエチレン基及びエチレンオキシエチレンオキシエチレン基を挙げることができる。本実施形態において、Rは耐水性の観点からエチレンオキシエチレン基が好ましい。 Examples of the oxyalkylene group having 4 to 8 carbon atoms represented by R 2 include an ethyleneoxyethylene group, a propyleneoxypropylene group, a butyleneoxybutylene group, an ethyleneoxymethyleneoxyethylene group, and an ethyleneoxyethyleneoxyethylene group. Can do. In the present embodiment, R 2 is preferably an ethyleneoxyethylene group from the viewpoint of water resistance.
 Rで示される炭素数が2~10のアルキレン基としては、直鎖状のアルキレン基及び分枝状のアルキレン基のいずれをも用いることができる。このようなアルキレン基としては、例えば、エチレン基、プロピレン基、トリメチレン基、ブチレン基、テトラメチレン基、ヘキサメチレン基、2-エチルヘキサメチレン基、オクタメチレン基及びデカメチレン基を挙げることができる。本実施形態において、Rは耐水性の観点から炭素数2~6のアルキレン基が好ましい。 As the alkylene group having 2 to 10 carbon atoms represented by R 3 , either a linear alkylene group or a branched alkylene group can be used. Examples of such an alkylene group include an ethylene group, a propylene group, a trimethylene group, a butylene group, a tetramethylene group, a hexamethylene group, a 2-ethylhexamethylene group, an octamethylene group, and a decamethylene group. In the present embodiment, R 3 is preferably an alkylene group having 2 to 6 carbon atoms from the viewpoint of water resistance.
 Rで示される炭素数1~4のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基及びn-ブチル基を挙げることができる。炭素数1~4のヒドロキシアルキル基としては、例えば、ヒドロキシメチル基、ヒドロキシエチル基、ヒドロキシプロピル基、1-メチル-1-ヒドロキシエチル基及び1-メチル-2-ヒドロキシエチル基を挙げることができる。炭素数2~4のアルケニル基としては、例えば、ビニル基及びアリル基を挙げることができる。本実施形態において、Rは耐水性の観点から水素原子、メチル基及びエチル基が好ましく、より好ましくは水素原子である。 Examples of the alkyl group having 1 to 4 carbon atoms represented by R 4 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group. Examples of the hydroxyalkyl group having 1 to 4 carbon atoms include a hydroxymethyl group, a hydroxyethyl group, a hydroxypropyl group, a 1-methyl-1-hydroxyethyl group, and a 1-methyl-2-hydroxyethyl group. . Examples of the alkenyl group having 2 to 4 carbon atoms include a vinyl group and an allyl group. In the present embodiment, R 4 is preferably a hydrogen atom, a methyl group or an ethyl group from the viewpoint of water resistance, and more preferably a hydrogen atom.
 Xm-で示されるアニオンとしては、第四級アンモニウム化合物と対イオンを形成することができるアニオンであれば特に制限はなく、ギ酸、酢酸、プロピオン酸、グルコン酸、乳酸、フマル酸、マレイン酸及びアジピン酸等の一価又は多価カルボン酸に由来するアニオン、アルキルリン酸エステルアニオン、アルキル硫酸エステルアニオン、ハロゲンアニオン、硫酸アニオン、硝酸アニオン、並びに、リン酸アニオン等を挙げることができる。これらのアニオンの中で、塩素イオン及び臭素イオンが好ましい。 The anion represented by X m- is not particularly limited as long as it is an anion capable of forming a counter ion with a quaternary ammonium compound. Formic acid, acetic acid, propionic acid, gluconic acid, lactic acid, fumaric acid, maleic acid And an anion derived from a monovalent or polyvalent carboxylic acid such as adipic acid, an alkyl phosphate ester anion, an alkyl sulfate anion, a halogen anion, a sulfate anion, a nitrate anion, and a phosphate anion. Of these anions, chlorine ions and bromine ions are preferred.
 本実施形態に係るカチオン性ポリマーは、例えば、次の様な2段階の反応によって合成することができる。
1段目:下記一般式(3)で表されるジアミン化合物と、尿素又はチオ尿素とをモル比2:0.8~2:1.2の割合で、150~200℃で脱アンモニア反応させて、下記一般式(4)で表される化合物を合成する。
2段目:下記一般式(4)で表される化合物と、下記一般式(5)で表されるジハロゲン化物とをモル比1:0.8~1:1.2の割合で、35~120℃で高分子化させることによって、上記一般式(1)で表されるカチオン性ポリマーを合成する。
The cationic polymer according to this embodiment can be synthesized by, for example, the following two-stage reaction.
First stage: A diamine compound represented by the following general formula (3) and urea or thiourea are subjected to deammonia reaction at a molar ratio of 2: 0.8 to 2: 1.2 at 150 to 200 ° C. Then, a compound represented by the following general formula (4) is synthesized.
Second stage: a compound represented by the following general formula (4) and a dihalide represented by the following general formula (5) in a molar ratio of 1: 0.8 to 1: 1.2 in a ratio of 35 to By polymerizing at 120 ° C., the cationic polymer represented by the general formula (1) is synthesized.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(3)中、R、R及びRは、前述と同じ意味を示す。 In formula (3), R 1 , R 3 and R 4 have the same meaning as described above.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式(4)中、R、R、R及びYは、前述と同じ意味を示す。 In formula (4), R 1 , R 3 , R 4 and Y have the same meaning as described above.
Z-(CH-(OR-O(CH-Z   (5)
式(5)中、Zはハロゲン原子を示し、a、b及びRは前述と同じ意味を表す。
Z— (CH 2 ) a — (OR 5 ) b —O (CH 2 ) a —Z (5)
In formula (5), Z represents a halogen atom, and a, b and R 5 have the same meaning as described above.
 1段目の反応においては、上記一般式(3)で表されるジアミン化合物と、尿素又はチオ尿素と、のモル比は2:0.8~2:1.2であるが、上記一般式(1)で表されるカチオン性ポリマーの耐水性の観点から好ましくは2:0.9~2:1.1であり、より好ましくは2:0.95~2:1.05であり、更に好ましくは2:1である。 In the first stage reaction, the molar ratio of the diamine compound represented by the general formula (3) to urea or thiourea is 2: 0.8 to 2: 1.2. From the viewpoint of water resistance of the cationic polymer represented by (1), it is preferably 2: 0.9 to 2: 1.1, more preferably 2: 0.95 to 2: 1.05, Preferably it is 2: 1.
 2段目の反応においては、上記一般式(4)で表される化合物と、上記一般式(5)で表されるジハロゲン化物とのモル比は1:0.8~1:1.2であるが、上記一般式(1)で表されるカチオン性ポリマーの耐水性の観点から好ましくは1:0.9~1:1.1であり、より好ましくは1:0.95~1:1.05であり、更に好ましくは1:1である。 In the second stage reaction, the molar ratio of the compound represented by the general formula (4) and the dihalide represented by the general formula (5) is 1: 0.8 to 1: 1.2. However, from the viewpoint of water resistance of the cationic polymer represented by the general formula (1), it is preferably 1: 0.9 to 1: 1.1, more preferably 1: 0.95 to 1: 1. .05, more preferably 1: 1.
 上記一般式(3)で表されるジアミン化合物としては、例えば、N,N-ジメチルアミノエチルアミン、N,N-ジメチルアミノプロピルアミン、N,N-ジエチルアミノエチルアミン、N,N-ジエチルアミノプロピルアミン、N,N-ジブチルアミノプロピルアミン、N,N-ジメチルアミノヘキシルアミン及びN,N-ジ(2-ヒドロキシエチル)アミノプロピルアミンが挙げられる。これらの化合物は、1種を単独で又は2種以上を組み合わせて用いることができる。これらの中でも、上記一般式(1)で表されるカチオン性ポリマーの耐水性の観点から、N,N-ジメチルアミノエチルアミン及びN,N-ジメチルアミノプロピルアミンが好ましい。 Examples of the diamine compound represented by the general formula (3) include N, N-dimethylaminoethylamine, N, N-dimethylaminopropylamine, N, N-diethylaminoethylamine, N, N-diethylaminopropylamine, N , N-dibutylaminopropylamine, N, N-dimethylaminohexylamine and N, N-di (2-hydroxyethyl) aminopropylamine. These compounds can be used individually by 1 type or in combination of 2 or more types. Among these, N, N-dimethylaminoethylamine and N, N-dimethylaminopropylamine are preferable from the viewpoint of water resistance of the cationic polymer represented by the general formula (1).
 上記一般式(5)で表されるジハロゲン化物としては、例えば、ビス(2-クロロエチル)エーテル、ビス(3-クロロプロピル)エーテル、ビス(4-クロロブチル)エーテル、1,2-ビス(2-クロロエチルオキシ)エタン、ビス(2-ブロモエチル)エーテル、ビス(2-クロロエチル)ホルマール及びビス[2-(2-クロロエチルオキシ)エチル]エーテルが挙げられる。これらの化合物は、1種を単独で又は2種以上を組み合わせて用いることができる。これらの中でも、上記一般式(1)で表されるカチオン性ポリマーの耐水性の観点からビス(2-クロロエチル)エーテル、ビス(2-ブロモエチル)エーテル、ビス(3-クロロプロピル)エーテル及びビス(4-クロロブチル)エーテルが好ましい。 Examples of the dihalide represented by the general formula (5) include bis (2-chloroethyl) ether, bis (3-chloropropyl) ether, bis (4-chlorobutyl) ether, 1,2-bis (2- Chloroethyloxy) ethane, bis (2-bromoethyl) ether, bis (2-chloroethyl) formal and bis [2- (2-chloroethyloxy) ethyl] ether. These compounds can be used individually by 1 type or in combination of 2 or more types. Among these, bis (2-chloroethyl) ether, bis (2-bromoethyl) ether, bis (3-chloropropyl) ether and bis (2) from the viewpoint of water resistance of the cationic polymer represented by the general formula (1). 4-Chlorobutyl) ether is preferred.
 上記一般式(1)で表されるカチオン性ポリマーとしては、例えば、ビス(2-クロロエチル)エーテル-1,3-ビス[3-(ジメチルアミノ)プロピル]尿素共重合体、ビス(2-クロロエチル)エーテル-1,3-ビス[2-(ジメチルアミノ)エチル]尿素共重合体、ビス(2-クロロエチルオキシ)エタン-1,3-ビス[3-(ジメチルアミノ)プロピル]尿素共重合体、ビス(2-クロロエチル)エーテル-1,3-ビス[3-(ジメチルアミノ)プロピル]チオ尿素共重合体、ビス(2-クロロエチル)ホルマール-1,3-ビス[3-(ジメチルアミノ)プロピル]尿素共重合体、ビス(2-クロロエチル)エーテル-1,3-ビス[6-(ジメチルアミノ)ヘキシル]尿素共重合体、ビス(4-クロロブチル)エーテル-1,3-ビス[3-(ジメチルアミノ)プロピル]尿素共重合体、ビス(2-クロロエチル)エーテル-1,3-ビス[3-(ジエチルアミノ)プロピル]尿素共重合体、ビス(2-クロロエチル)エーテル-1,3-ビス[3-(ジブチルアミノ)プロピル]尿素共重合体及びビス(2-クロロエチル)エーテル-1,3-ビス[3-(ジ(2-ヒドロキシエチル)アミノ)プロピル]尿素共重合体が挙げられる。 Examples of the cationic polymer represented by the general formula (1) include bis (2-chloroethyl) ether-1,3-bis [3- (dimethylamino) propyl] urea copolymer and bis (2-chloroethyl). ) Ether-1,3-bis [2- (dimethylamino) ethyl] urea copolymer, bis (2-chloroethyloxy) ethane-1,3-bis [3- (dimethylamino) propyl] urea copolymer Bis (2-chloroethyl) ether-1,3-bis [3- (dimethylamino) propyl] thiourea copolymer, bis (2-chloroethyl) formal-1,3-bis [3- (dimethylamino) propyl ] Urea copolymer, bis (2-chloroethyl) ether-1,3-bis [6- (dimethylamino) hexyl] urea copolymer, bis (4-chlorobutyl) ether 1,3-bis [3- (dimethylamino) propyl] urea copolymer, bis (2-chloroethyl) ether-1,3-bis [3- (diethylamino) propyl] urea copolymer, bis (2- Chloroethyl) ether-1,3-bis [3- (dibutylamino) propyl] urea copolymer and bis (2-chloroethyl) ether-1,3-bis [3- (di (2-hydroxyethyl) amino) propyl ] A urea copolymer is mentioned.
 上記一般式(1)で表されるカチオン性ポリマーの重量平均分子量は1000以上であるが、1000~50000であることが好ましく、3000~20000であることがより好ましい。重量平均分子量が1000未満の場合は、アミン臭が残留しやすくなるとともに、耐水性が十分得られない傾向がある。一方、重量平均分子量が50000を超える場合は、上記カチオン性ポリマーを得るための重合時間が長くなるとともに、粘性の高い重合体となるため取り扱いが著しく困難となる傾向がある。上記一般式(1)で表されるカチオン性ポリマーの重量平均分子量は、分子量既知のポリエチレングリコールを標準物質として、ゲル・パーミエーション・クロマトグラフィーによって測定することができる。 The weight average molecular weight of the cationic polymer represented by the general formula (1) is 1000 or more, preferably 1000 to 50000, and more preferably 3000 to 20000. When the weight average molecular weight is less than 1000, an amine odor tends to remain, and water resistance tends to be insufficient. On the other hand, when the weight average molecular weight exceeds 50000, the polymerization time for obtaining the cationic polymer becomes longer, and the polymer tends to be extremely difficult to handle because it becomes a highly viscous polymer. The weight average molecular weight of the cationic polymer represented by the general formula (1) can be measured by gel permeation chromatography using polyethylene glycol having a known molecular weight as a standard substance.
 上記一般式(1)で表されるカチオン性ポリマーの重量平均分子量は、反応時間、反応温度及び反応モル比によって調整することができる。 The weight average molecular weight of the cationic polymer represented by the general formula (1) can be adjusted by the reaction time, the reaction temperature, and the reaction molar ratio.
 本実施形態の抗菌抗かび剤は、上記一般式(1)で表されるカチオン性ポリマー単独でも十分な抗菌抗かび性を発揮するが、一般式(1)で表されるカチオン性ポリマーに加え、従来公知の抗菌抗かび性を有する化合物を含有することができる。そのような化合物としては、例えば、塩化ベンザルコニウム及び塩化セチルピリジニウム等の低分子有機系抗菌剤、5-クロロ-2-[2,4-ジクロロフェノキシル]フェノール及び3,4,4’-トリクロロカルバニリド等のハロゲン系抗菌剤、銀及び亜鉛等の無機系抗菌剤、キトサン及びポリリジン等の天然物系抗菌剤が挙げられる。 The antibacterial and antifungal agent of the present embodiment exhibits sufficient antibacterial and antifungal properties even with the cationic polymer represented by the general formula (1) alone, but in addition to the cationic polymer represented by the general formula (1) A conventionally known antibacterial and antifungal compound can be contained. Examples of such compounds include low molecular organic antibacterial agents such as benzalkonium chloride and cetylpyridinium chloride, 5-chloro-2- [2,4-dichlorophenoxyl] phenol, and 3,4,4′- Examples include halogen antibacterial agents such as trichlorocarbanilide, inorganic antibacterial agents such as silver and zinc, and natural product antibacterial agents such as chitosan and polylysine.
 本実施形態の抗菌抗かび剤は、その用途に応じて、非イオン活性剤、アニオン活性剤及びカチオン活性剤等の界面活性剤、柔軟剤成分、平滑剤成分、浸透剤成分、均染剤成分、制電剤、キレート剤、酸化防止剤、消泡剤、溶剤、バインダー樹脂、増粘剤、並びに、架橋剤等を更に含有することができる。 The antibacterial and antifungal agent of the present embodiment is a surfactant such as a nonionic active agent, an anionic active agent, and a cationic active agent, a softener component, a smoothing agent component, a penetrating agent component, and a leveling agent component, depending on the application. Further, an antistatic agent, a chelating agent, an antioxidant, an antifoaming agent, a solvent, a binder resin, a thickener, a crosslinking agent, and the like can be further contained.
 本実施形態の抗菌抗かび剤は、種々の細菌及びかびに対して有効な抗菌抗かび性を発現することができる。本実施形態の抗菌抗かび剤によれば、種々の製品に抗菌抗かび性を付与することができ、抗菌抗かび性製品を得ることができる。このような抗菌抗かび性製品は、所望の対象物に抗菌抗かび加工を施すために用いられるものであってもよい。 The antibacterial and antifungal agent of the present embodiment can exhibit antibacterial and antifungal properties effective against various bacteria and fungi. According to the antibacterial and antifungal agent of this embodiment, antibacterial and antifungal properties can be imparted to various products, and an antibacterial and antifungal product can be obtained. Such an antibacterial and antifungal product may be used for applying an antibacterial and antifungal process to a desired object.
 抗菌抗かび性製品としては、液状洗剤、液状石けん、噴霧用液体、その他の液状製品、ゲル状製品、コーティング剤、樹脂用添加剤、繊維製品、樹脂製品等が挙げられる。 Antibacterial and antifungal products include liquid detergents, liquid soaps, spraying liquids, other liquid products, gel products, coating agents, resin additives, textile products, resin products, and the like.
 本実施形態の液状洗剤は、本実施形態の抗菌抗かび剤を、本実施形態に係るカチオン性ポリマーの含有量が液状洗剤全量基準で0.1~5質量%となる割合で含むことができる。上記含有量が0.1質量%未満では十分な抗菌抗かび効果が発揮され難く、5質量%を超えて使用しても抗菌抗かび性の更なる向上効果は少なく経済的ではない。本実施形態の液状洗剤は、種々の細菌及びかびに対して有効な抗菌抗かび性を有し、台所、浴室、洗面所及びトイレ等の水回り、並びに、洗濯機等に使用されることで細菌又はかびに起因する変色及び異臭を抑制することができる。また、液状洗剤が繊維用洗剤である場合、繊維における細菌又はかびに起因する変色及び異臭を抑制することができる。液体洗剤に含まれる他の成分としては、上述した界面活性剤等を含む洗剤成分及び本実施形態に係る抗菌抗かび剤等の抗菌抗かび成分の他に、例えば、柔軟剤及び漂白剤が挙げられる。 The liquid detergent of the present embodiment can contain the antibacterial and antifungal agent of the present embodiment in a proportion such that the content of the cationic polymer according to the present embodiment is 0.1 to 5% by mass based on the total amount of the liquid detergent. . When the content is less than 0.1% by mass, a sufficient antibacterial and antifungal effect is hardly exhibited, and even when used in excess of 5% by mass, the effect of further improving the antibacterial and antifungal property is small and not economical. The liquid detergent of this embodiment has antibacterial and antifungal properties effective against various bacteria and fungi, and is used in kitchens, bathrooms, toilets, toilets, etc., and washing machines. Discoloration and off-flavor caused by bacteria or mold can be suppressed. Moreover, when a liquid detergent is a detergent for textiles, the discoloration and nasty smell resulting from the bacteria or mold | fungi in a fiber can be suppressed. Other components contained in the liquid detergent include, for example, a softener and a bleaching agent, in addition to the detergent component including the surfactant described above and the antibacterial and antifungal component such as the antibacterial and antifungal agent according to the present embodiment. It is done.
 本実施形態の液状石けんは、本実施形態の抗菌抗かび剤を、本実施形態に係るカチオン性ポリマーの含有量が液状石けん全量基準で0.1~5質量%となる割合で含むことができる。上記含有量が0.1質量%未満では十分な抗菌抗かび効果が発揮され難く、5質量%を超えて使用しても抗菌抗かび性の更なる向上効果は少なく経済的ではない。本実施形態の液状石けんは、種々の細菌及びかびに対して有効な抗菌抗かび性を有し、洗浄対象における細菌又はかびに起因する変色及び異臭を抑制することができる。液状石けんの用途としては、家庭用洗濯、工業用洗濯、洗顔、手洗い、身体洗浄(ボディーソープなど)等が挙げられる。液体石けんに含まれる他の成分としては、石けん成分と本実施形態に係る抗菌抗かび剤等の抗菌抗かび成分の他に、例えば、保湿剤及び安定剤が挙げられる。 The liquid soap of the present embodiment can contain the antibacterial and antifungal agent of the present embodiment in such a ratio that the content of the cationic polymer according to the present embodiment is 0.1 to 5% by mass based on the total amount of the liquid soap. . When the content is less than 0.1% by mass, a sufficient antibacterial and antifungal effect is hardly exhibited, and even when used in excess of 5% by mass, the effect of further improving the antibacterial and antifungal property is small and not economical. The liquid soap of this embodiment has antibacterial and antifungal properties effective against various bacteria and fungi, and can suppress discoloration and off-flavor caused by the bacteria or fungi in the object to be cleaned. Examples of the use of liquid soap include household laundry, industrial laundry, face washing, hand washing, body washing (body soap, etc.) and the like. As other components contained in the liquid soap, in addition to the soap component and the antibacterial and antifungal component such as the antibacterial and antifungal agent according to the present embodiment, for example, a moisturizing agent and a stabilizer are exemplified.
 本実施形態の噴霧用液体は、本実施形態の抗菌抗かび剤を、本実施形態に係るカチオン性ポリマーの含有量が噴霧用液体全量基準で0.1~90質量%となる割合で含むことができる。このような噴霧用液体は、本実施形態に係るカチオン性ポリマーを、水、エタノール若しくはイソプロパノール等の低級アルコール、又は、これらの混合溶媒等で希釈することにより得ることができる。本実施形態の噴霧用液体を、台所、浴室、洗面所及びトイレ等の水回り、寝具、家具、衣類、カーペット、靴、プラスチック製品、陶器、並びに、フィルター等、微生物によって汚染する可能性がある箇所へ適量噴霧することにより、細菌又はかびに起因する変色及び異臭を抑制することができる。また、本実施形態の噴霧用液体によれば、対象物に抗菌抗かび加工を施すことができる。 The spray liquid of the present embodiment contains the antibacterial and antifungal agent of the present embodiment in a proportion such that the content of the cationic polymer according to the present embodiment is 0.1 to 90% by mass based on the total amount of the spray liquid. Can do. Such a spraying liquid can be obtained by diluting the cationic polymer according to the present embodiment with water, a lower alcohol such as ethanol or isopropanol, or a mixed solvent thereof. The spray liquid of this embodiment may be contaminated by microorganisms such as kitchens, bathrooms, toilets and toilets, bedding, furniture, clothing, carpets, shoes, plastic products, ceramics, and filters. By spraying an appropriate amount onto the place, discoloration and off-flavor caused by bacteria or mold can be suppressed. Moreover, according to the liquid for spraying of this embodiment, an antibacterial and antifungal process can be given to a target object.
 本実施形態の噴霧用液体は、例えば繊維用処理剤、消臭剤、樹脂用処理剤、抗菌剤及び抗かび剤として用いることができる。 The spray liquid of this embodiment can be used as, for example, a fiber treatment agent, a deodorant, a resin treatment agent, an antibacterial agent, and an antifungal agent.
 また、上記以外の液状製品としては、例えば機械油、接着剤及び繊維用処理剤が挙げられる。これらの液状製品は、本実施形態の抗菌抗かび剤を、本実施形態に係るカチオン性ポリマーの含有量が液状製品全量基準で0.01~1質量%となる割合で含むことができる。上記含有量が0.01質量%未満では十分な抗菌抗かび効果が発揮され難く、1質量%を超えて使用しても抗菌抗かび性の更なる向上効果は少なく経済的ではない。本実施形態の液状製品は、種々の細菌及びかびに対して有効な抗菌抗かび性を有し、細菌又はかびに起因する変色及び異臭が発生しにくいものになり得る。 In addition, examples of liquid products other than those described above include machine oils, adhesives, and fiber treatment agents. These liquid products can contain the antibacterial and antifungal agent of the present embodiment in a proportion such that the content of the cationic polymer according to the present embodiment is 0.01 to 1% by mass based on the total amount of the liquid product. When the content is less than 0.01% by mass, a sufficient antibacterial and antifungal effect is hardly exhibited, and even if it is used in excess of 1% by mass, the effect of further improving the antibacterial and antifungal property is small and not economical. The liquid product of the present embodiment has antibacterial and antifungal properties effective against various bacteria and fungi, and can be unlikely to cause discoloration and off-flavor due to bacteria or fungi.
 本実施形態の抗菌抗かび剤を含むゲル状製品としては、例えばゲル状芳香剤、ゲル状消臭剤、湿布薬及びゲル状石けんが挙げられる。これらのゲル状製品は、本実施形態の抗菌抗かび剤を、本実施形態に係るカチオン性ポリマーの含有量が製品全量基準で0.01~1質量%となる割合で含むことができる。上記含有量が0.01質量%未満では十分な抗菌抗かび性の効果(抗菌抗かび効果)が発揮され難く、1質量%を超えて使用しても抗菌抗かび性の更なる向上効果は少なく経済的ではない。本実施形態のゲル状製品は、種々の細菌及びかびに対して有効な抗菌抗かび性を有し、細菌又はかびに起因する変色及び異臭が発生しにくいものになり得る。 Examples of the gel product containing the antibacterial and antifungal agent of the present embodiment include a gel fragrance, a gel deodorant, a poultice, and a gel soap. These gel-like products can contain the antibacterial and antifungal agent of the present embodiment in a proportion such that the content of the cationic polymer according to the present embodiment is 0.01 to 1% by mass based on the total amount of the product. If the content is less than 0.01% by mass, sufficient antibacterial and antifungal effect (antibacterial and antifungal effect) is difficult to be exerted. Less economical. The gel-like product of this embodiment has antibacterial and antifungal properties effective against various bacteria and fungi, and can be less likely to cause discoloration and off-flavor due to bacteria or fungi.
 本実施形態のコーティング剤は、本実施形態の抗菌抗かび剤を、本実施形態に係るカチオン性ポリマーの含有量がコーティング剤全量基準で0.1~10質量%となる割合で含むことができる。本実施形態のコーティング剤によれば、繊維製品、並びに、プラスチック及び陶器等の硬質材料表面にコーティング(例えば、ロールコーティング及び刷毛塗り)されることで、対象物に抗菌抗かび加工を施すことができ、細菌又はかびに起因する変色及び異臭を抑制することができる。コーティング剤に含まれる他の成分としては、アクリル樹脂及びウレタン樹脂等のバインダー、並びに、増粘剤の他に、例えば、制電剤、酸化防止剤及び分散剤が挙げられる。 The coating agent of this embodiment can contain the antibacterial and antifungal agent of this embodiment in a proportion such that the content of the cationic polymer according to this embodiment is 0.1 to 10% by mass based on the total amount of the coating agent. . According to the coating agent of the present embodiment, antibacterial and antifungal treatment can be applied to an object by coating the surface of a hard material such as textiles and plastics and ceramics (for example, roll coating and brushing). Color change and off-flavor caused by bacteria or fungi can be suppressed. Examples of other components contained in the coating agent include an antistatic agent, an antioxidant, and a dispersing agent in addition to a binder such as an acrylic resin and a urethane resin, and a thickener.
 コーティング及び噴霧の条件としては、カチオン性ポリマーの繊維又は硬質材料表面への付着量が不揮発分で0.1~20g/mとなることが好ましい。0.1g/m未満では十分な抗菌抗かび効果が発揮され難く、20g/mを超えて使用しても抗菌抗かび性の更なる向上は難しく、経済的ではない。 The coating and spraying conditions are preferably such that the amount of the cationic polymer attached to the fiber or hard material surface is 0.1 to 20 g / m 2 in terms of nonvolatile content. If it is less than 0.1 g / m 2 , a sufficient antibacterial and antifungal effect is hardly exhibited, and even if it is used in excess of 20 g / m 2 , it is difficult to further improve the antibacterial and antifungal properties, which is not economical.
 本実施形態のコーティング剤は、例えば繊維用処理剤及び樹脂用処理剤として用いることができる。 The coating agent of this embodiment can be used as, for example, a fiber treatment agent and a resin treatment agent.
 本実施形態の樹脂用添加剤は、添加される樹脂に対して本実施形態に係るカチオン性ポリマーが0.01~1質量%となる割合で、本実施形態の抗菌抗かび剤を含むことができる。本実施形態の樹脂用添加剤によれば、樹脂類が含まれる樹脂組成物に練り込む等の方法により、樹脂製品に抗菌抗かび加工を施すことができる。樹脂用添加剤に含まれる他の成分としては、例えば、制電剤、酸化防止剤及び分散剤が挙げられる。 The additive for resin of the present embodiment may contain the antibacterial and antifungal agent of the present embodiment at a ratio of 0.01 to 1% by mass of the cationic polymer according to the present embodiment with respect to the added resin. it can. According to the additive for resin of this embodiment, antibacterial and antifungal processing can be applied to a resin product by a method such as kneading into a resin composition containing resins. Examples of other components contained in the resin additive include antistatic agents, antioxidants, and dispersants.
 本実施形態の抗菌抗かび性繊維製品としては、各種素材、各種形態の繊維製品等が挙げられる。例えば、繊維製品の素材としては、綿、麻、羊毛及び絹等の天然繊維、レーヨン、キュプラ及びテンセル(商標)等の再生セルロース繊維、アセテート及びプロミックス等の半合成繊維、ポリアミド繊維、ポリエステル繊維、アクリル繊維、ポリオレフィン繊維、ポリ塩化ビニル繊維、ポリイミド繊維及びポリウレタン繊維等の合成繊維、並びに、これらの繊維の複合繊維の各種素材が挙げられる。また、繊維製品の形態としては、例えば、短繊維、長繊維、糸、織物、編物、不織布、わた、スライバー及びトップが挙げられる。 Examples of the antibacterial and antifungal fiber product of the present embodiment include various materials and various forms of fiber products. For example, the raw materials for textile products include natural fibers such as cotton, hemp, wool and silk, regenerated cellulose fibers such as rayon, cupra and tencel (trademark), semi-synthetic fibers such as acetate and promix, polyamide fibers and polyester fibers. And synthetic fibers such as acrylic fiber, polyolefin fiber, polyvinyl chloride fiber, polyimide fiber and polyurethane fiber, and various materials of composite fibers of these fibers. Moreover, as a form of a textile product, a short fiber, a long fiber, a thread | yarn, a textile fabric, a knitted fabric, a nonwoven fabric, a cotton, a sliver, and a top are mentioned, for example.
 本実施形態の抗菌抗かび性繊維製品は、コーティング、噴霧、浸漬処理、パディング(dip-nip)処理等の公知の方法で、本実施形態の抗菌抗かび剤を繊維に付着させて抗菌抗かび加工をすることによって、製造することができる。 The antibacterial and antifungal fiber product of the present embodiment is prepared by attaching the antibacterial and antifungal agent of the present embodiment to the fiber by a known method such as coating, spraying, dipping treatment, padding (dip-nip) treatment or the like. It can be manufactured by processing.
 上記抗菌抗かび加工がコーティングの場合、例えば、カチオン性ポリマーを、アクリル樹脂及びウレタン樹脂等のバインダー、並びに、増粘剤に混合した繊維用処理剤を使用することができる。この場合、繊維用処理剤におけるカチオン性ポリマーの濃度は繊維用処理剤全量基準で0.1~10質量%であることが好ましい。噴霧の場合は、カチオン性ポリマーの濃度が10~90質量%の溶液を使用して噴霧処理することが好ましい。このときの溶媒としては、水、エタノール及びイソプロパノール等の炭素数1~4のアルコール、グリコール、アセトン及びメチルエチルケトン等のケトン等が挙げられる。 When the antibacterial and antifungal process is a coating, for example, a fiber treatment agent in which a cationic polymer is mixed with a binder such as an acrylic resin and a urethane resin, and a thickener can be used. In this case, the concentration of the cationic polymer in the fiber treatment agent is preferably 0.1 to 10% by mass based on the total amount of the fiber treatment agent. In the case of spraying, it is preferable to perform spraying using a solution having a cationic polymer concentration of 10 to 90% by mass. Examples of the solvent at this time include water, alcohols having 1 to 4 carbon atoms such as ethanol and isopropanol, ketones such as glycol, acetone and methyl ethyl ketone.
 繊維製品にコーティング又は噴霧する場合、カチオン性ポリマーの繊維への付着量が不揮発分で0.1~20g/mとなることが好ましい。0.1g/m未満では十分な抗菌抗かび効果が発揮され難く、20g/mを超えて使用しても抗菌抗かび性の更なる向上は難しく、経済的ではない。 When the fiber product is coated or sprayed, the amount of the cationic polymer attached to the fiber is preferably 0.1 to 20 g / m 2 in terms of nonvolatile content. If it is less than 0.1 g / m 2 , a sufficient antibacterial and antifungal effect is hardly exhibited, and even if it is used in excess of 20 g / m 2 , it is difficult to further improve the antibacterial and antifungal properties, which is not economical.
 また、繊維製品を浸漬処理する場合は、処理浴中のカチオン性ポリマーの濃度は、0.01~10%o.w.f.であることが好ましく、パディング処理の場合は、カチオン性ポリマーの濃度が、繊維質量に対して0.01~10質量%であることが好ましい。 Also, when the textile product is dipped, the concentration of the cationic polymer in the treatment bath is 0.01 to 10% o. w. f. In the case of padding treatment, the concentration of the cationic polymer is preferably 0.01 to 10% by mass with respect to the fiber mass.
 繊維製品を浸漬処理又はパディング処理する場合、繊維質量に対してカチオン性ポリマーが不揮発分で0.1~5質量%となることが好ましい。0.1質量%未満では十分な抗菌抗かび効果が発揮され難く、5質量%を超えて使用しても抗菌抗かび性の更なる向上は難しく、経済的ではない。 When the fiber product is dipped or padded, the cationic polymer is preferably 0.1 to 5% by mass based on the mass of the fiber. If it is less than 0.1% by mass, a sufficient antibacterial and antifungal effect is hardly exhibited, and even if it exceeds 5% by mass, it is difficult to further improve the antibacterial and antifungal properties, which is not economical.
 本実施形態の抗菌抗かび性樹脂製品としては、上述したコーティング剤によって表面が加工された樹脂製品の他に、本実施形態に係る抗菌抗かび剤及び樹脂類を含む樹脂組成物から形成されたものが挙げられる。上記樹脂類としては、アクリル樹脂、スチレン樹脂、メラミン樹脂、ウレタン樹脂、フェノール樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリアセタール、フッ素樹脂、シリコーン樹脂、酢酸ビニル樹脂、塩化ビニル樹脂、エポキシ樹脂、ポリエステル樹脂、ポリアミド樹脂、ABS樹脂、ポリカーボネート樹脂、酢酸セルロース等が挙げられる。 The antibacterial and antifungal resin product of the present embodiment was formed from a resin composition containing the antibacterial and antifungal agent and resins according to the present embodiment, in addition to the resin product whose surface was processed by the coating agent described above. Things. Examples of the resins include acrylic resin, styrene resin, melamine resin, urethane resin, phenol resin, polyethylene resin, polypropylene resin, polyacetal, fluororesin, silicone resin, vinyl acetate resin, vinyl chloride resin, epoxy resin, polyester resin, polyamide Examples thereof include resins, ABS resins, polycarbonate resins, and cellulose acetate.
 本実施形態に係る抗菌抗かび性樹脂製品は、本実施形態に係る抗菌抗かび剤を、樹脂類が含まれる樹脂組成物に練り込む等の方法により製造することができる。この場合、樹脂類に対してカチオン性ポリマーの濃度が0.01~1質量%となる割合で練り込みを行うことができる。カチオン性ポリマーの濃度が0.01質量%未満では十分な抗菌抗かび効果が発揮され難く、1質量%を超えて使用しても抗菌抗かび性の更なる向上は難しく、経済的ではない。 The antibacterial and antifungal resin product according to the present embodiment can be produced by a method such as kneading the antibacterial and antifungal agent according to the present embodiment into a resin composition containing resins. In this case, kneading can be carried out at a ratio such that the concentration of the cationic polymer is 0.01 to 1% by mass with respect to the resins. When the concentration of the cationic polymer is less than 0.01% by mass, a sufficient antibacterial and antifungal effect is hardly exhibited, and even when used in excess of 1% by mass, it is difficult to further improve the antibacterial and antifungal properties, which is not economical.
 上述のように本実施形態によれば、本実施形態の抗菌抗かび剤により抗菌抗かび性が付与された抗菌抗かび性繊維製品、抗菌抗かび性樹脂製品等の種々の抗菌抗かび性製品を提供することができる。 As described above, according to this embodiment, various antibacterial and antifungal products such as an antibacterial and antifungal fiber product and an antibacterial and antifungal resin product to which antibacterial and antifungal properties are imparted by the antibacterial and antifungal agent of the present embodiment. Can be provided.
 以下、実施例を挙げて本発明を更に説明するが、本発明はこれらの実施例により何ら限定されるものではない。 Hereinafter, the present invention will be further described with reference to examples. However, the present invention is not limited to these examples.
(実施例1)<ビス(2-クロロエチル)エーテル-1,3-ビス[3-(ジメチルアミノ)プロピル]尿素共重合体の50%水溶液の調製>
 N,N-ジメチルアミノプロピルアミン204g(2モル)、尿素60g(1モル)を反応容器に仕込み、窒素ガス気流下にて加熱昇温して170~180℃で約5時間脱アンモニア反応をした。その後冷却して、ビス(2-クロロエチル)エーテル143g(1モル)を加え、95℃で10時間反応させた。上記反応液を水で希釈することで、カチオン性ポリマーを50質量%含む微黄色液状組成物を得た。カチオン性ポリマーの重量平均分子量は8000であった。
(Example 1) <Preparation of 50% aqueous solution of bis (2-chloroethyl) ether-1,3-bis [3- (dimethylamino) propyl] urea copolymer>
A reaction vessel was charged with 204 g (2 mol) of N, N-dimethylaminopropylamine and 60 g (1 mol) of urea, heated under a nitrogen gas stream, and subjected to deammonia reaction at 170 to 180 ° C. for about 5 hours. . Thereafter, the mixture was cooled, 143 g (1 mol) of bis (2-chloroethyl) ether was added, and the mixture was reacted at 95 ° C. for 10 hours. The reaction solution was diluted with water to obtain a slightly yellow liquid composition containing 50% by mass of a cationic polymer. The weight average molecular weight of the cationic polymer was 8,000.
(実施例2)<ビス(2-クロロエチル)エーテル-1,3-ビス[2-(ジメチルアミノ)エチル]尿素共重合体の50%水溶液の調製>
 N,N-ジメチルアミノエチルアミン176g(2モル)、尿素60g(1モル)を反応容器に仕込み、窒素ガス気流下にて加熱昇温して170~180℃で約5時間脱アンモニア反応をした。その後冷却して、ビス(2-クロロエチル)エーテル143g(1モル)を加え、95℃で5時間反応させた。上記反応液を水で希釈することで、カチオン性ポリマーを50質量%含む微黄色液状組成物を得た。カチオン性ポリマーの重量平均分子量は5000であった。
(Example 2) <Preparation of 50% aqueous solution of bis (2-chloroethyl) ether-1,3-bis [2- (dimethylamino) ethyl] urea copolymer>
176 g (2 mol) of N, N-dimethylaminoethylamine and 60 g (1 mol) of urea were charged into a reaction vessel, heated under a nitrogen gas stream, and subjected to deammonia reaction at 170 to 180 ° C. for about 5 hours. Thereafter, the mixture was cooled, 143 g (1 mol) of bis (2-chloroethyl) ether was added, and the mixture was reacted at 95 ° C. for 5 hours. The reaction solution was diluted with water to obtain a slightly yellow liquid composition containing 50% by mass of a cationic polymer. The weight average molecular weight of the cationic polymer was 5000.
(実施例3)<ビス(2-クロロエチルオキシ)エタン-1,3-ビス[3-(ジメチルアミノ)プロピル]尿素共重合体の50%水溶液の調製>
 N,N-ジメチルアミノプロピルアミン204g(2モル)、尿素60g(1モル)を反応容器に仕込み、窒素ガス気流下にて加熱昇温して170~180℃で約5時間脱アンモニア反応をした。その後冷却して、ビス(2-クロロエチルオキシ)エタン187g(1モル)を加え、95℃で10時間反応させた。上記反応液を水で希釈することで、カチオン性ポリマーを50質量%含む微黄色液状組成物を得た。カチオン性ポリマーの重量平均分子量は7000であった。
(Example 3) <Preparation of 50% aqueous solution of bis (2-chloroethyloxy) ethane-1,3-bis [3- (dimethylamino) propyl] urea copolymer>
A reaction vessel was charged with 204 g (2 mol) of N, N-dimethylaminopropylamine and 60 g (1 mol) of urea, heated under a nitrogen gas stream, and subjected to deammonia reaction at 170 to 180 ° C. for about 5 hours. . After cooling, 187 g (1 mol) of bis (2-chloroethyloxy) ethane was added and reacted at 95 ° C. for 10 hours. The reaction solution was diluted with water to obtain a slightly yellow liquid composition containing 50% by mass of a cationic polymer. The weight average molecular weight of the cationic polymer was 7000.
(実施例4)<ビス(2-クロロエチル)ホルマール-1,3-ビス[3-(ジメチルアミノ)プロピル]尿素共重合体の50%水溶液の調製>
 N,N-ジメチルアミノプロピルアミン204g(2モル)、尿素60g(1モル)を反応容器に仕込み、窒素ガス気流下にて加熱昇温して170~180℃で約5時間脱アンモニア反応した。その後冷却して、ビス(2-クロロエチル)ホルマール173g(1モル)を加え、95℃で12時間反応させた。上記反応液を水で希釈することで、カチオン性ポリマーを50質量%含む微黄色液状組成物を得た。カチオン性ポリマーの重量平均分子量は7500であった。
(Example 4) <Preparation of 50% aqueous solution of bis (2-chloroethyl) formal-1,3-bis [3- (dimethylamino) propyl] urea copolymer>
204 g (2 mol) of N, N-dimethylaminopropylamine and 60 g (1 mol) of urea were charged in a reaction vessel, heated to a temperature in a nitrogen gas stream, and subjected to deammonia reaction at 170 to 180 ° C. for about 5 hours. Thereafter, the mixture was cooled, 173 g (1 mol) of bis (2-chloroethyl) formal was added, and the mixture was reacted at 95 ° C. for 12 hours. The reaction solution was diluted with water to obtain a slightly yellow liquid composition containing 50% by mass of a cationic polymer. The weight average molecular weight of the cationic polymer was 7500.
(実施例5)<ビス(4-クロロブチル)エーテル-1,3-ビス[3-(ジメチルアミノ)プロピル]尿素共重合体の50%水溶液の調製>
 N,N-ジメチルアミノプロピルアミン204g(2モル)、尿素60g(1モル)を反応容器に仕込み、窒素ガス気流下にて加熱昇温して170~180℃で約5時間脱アンモニア反応をした。その後冷却して、ビス(4-クロロブチル)エーテル199g(1モル)を加え、95℃で12時間反応させた。上記反応液を水で希釈することで、カチオン性ポリマーを50質量%含む微黄色液状組成物を得た。カチオン性ポリマーの重量平均分子量は7000であった。
(Example 5) <Preparation of 50% aqueous solution of bis (4-chlorobutyl) ether-1,3-bis [3- (dimethylamino) propyl] urea copolymer>
A reaction vessel was charged with 204 g (2 mol) of N, N-dimethylaminopropylamine and 60 g (1 mol) of urea, heated under a nitrogen gas stream, and subjected to deammonia reaction at 170 to 180 ° C. for about 5 hours. . Thereafter, the mixture was cooled, and 199 g (1 mol) of bis (4-chlorobutyl) ether was added, followed by reaction at 95 ° C. for 12 hours. The reaction solution was diluted with water to obtain a slightly yellow liquid composition containing 50% by mass of a cationic polymer. The weight average molecular weight of the cationic polymer was 7000.
(実施例6)<ビス(2-クロロエチル)エーテル-1,3-ビス[3-(ジエチルアミノ)プロピル]尿素共重合体の50%水溶液の調製>
 N,N-ジエチルアミノプロピルアミン260g(2モル)、尿素60g(1モル)を反応容器に仕込み、窒素ガス気流下にて加熱昇温して170~180℃で約5時間脱アンモニア反応をした。その後冷却して、ビス(2-クロロエチル)エーテル143g(1モル)を加え、95℃で15時間反応させた。上記反応液を水で希釈することで、カチオン性ポリマーを50質量%含む微黄色液状組成物を得た。カチオン性ポリマーの重量平均分子量は7200であった。
(Example 6) <Preparation of 50% aqueous solution of bis (2-chloroethyl) ether-1,3-bis [3- (diethylamino) propyl] urea copolymer>
N, N-diethylaminopropylamine (260 g, 2 mol) and urea (60 g, 1 mol) were charged into a reaction vessel, heated under a nitrogen gas stream, and subjected to deammonia reaction at 170-180 ° C. for about 5 hours. Thereafter, the mixture was cooled, 143 g (1 mol) of bis (2-chloroethyl) ether was added, and the mixture was reacted at 95 ° C. for 15 hours. The reaction solution was diluted with water to obtain a slightly yellow liquid composition containing 50% by mass of a cationic polymer. The weight average molecular weight of the cationic polymer was 7200.
(実施例7)<ビス(2-クロロエチル)エーテル-1,3-ビス[3-(ジブチルアミノ)プロピル]尿素共重合体の50%水溶液の調製>
 N,N-ジブチルアミノプロピルアミン372g(2モル)、尿素60g(1モル)を反応容器に仕込み、窒素ガス気流下にて加熱昇温して170~180℃で約5時間脱アンモニア反応をした。その後冷却して、ビス(2-クロロエチル)エーテル143g(1モル)を加え、95℃で15時間反応させた。上記反応液を水で希釈することで、カチオン性ポリマーを50質量%含む微黄色液状組成物を得た。カチオン性ポリマーの重量平均分子量は6900であった。
(Example 7) <Preparation of 50% aqueous solution of bis (2-chloroethyl) ether-1,3-bis [3- (dibutylamino) propyl] urea copolymer>
372 g (2 mol) of N, N-dibutylaminopropylamine and 60 g (1 mol) of urea were charged into a reaction vessel, heated under a nitrogen gas stream, and subjected to deammonia reaction at 170 to 180 ° C. for about 5 hours. . Thereafter, the mixture was cooled, 143 g (1 mol) of bis (2-chloroethyl) ether was added, and the mixture was reacted at 95 ° C. for 15 hours. The reaction solution was diluted with water to obtain a slightly yellow liquid composition containing 50% by mass of a cationic polymer. The weight average molecular weight of the cationic polymer was 6900.
(実施例8)<ビス(2-クロロエチル)エーテル-1,3-ビス[3-(ジ(2-ヒドロキシエチル)アミノ)プロピル]尿素共重合体の50%水溶液の調製>
 N,N-ジ(2-ヒドロキシエチル)アミノプロピルアミン324g(2モル)、尿素60g(1モル)を反応容器に仕込み、窒素ガス気流下にて加熱昇温して170~180℃で約5時間脱アンモニア反応をした。その後冷却して、ビス(2-クロロエチル)エーテル143g(1モル)を加え、95℃で15時間反応させた。上記反応液を水で希釈することで、カチオン性ポリマーを50質量%含む微黄色液状組成物を得た。カチオン性ポリマーの重量平均分子量は6500であった。
(Example 8) <Preparation of 50% aqueous solution of bis (2-chloroethyl) ether-1,3-bis [3- (di (2-hydroxyethyl) amino) propyl] urea copolymer>
324 g (2 mol) of N, N-di (2-hydroxyethyl) aminopropylamine and 60 g (1 mol) of urea were charged into a reaction vessel, heated under a nitrogen gas stream and heated at 170 to 180 ° C. for about 5 Deammonia reaction was carried out for a time. Thereafter, the mixture was cooled, 143 g (1 mol) of bis (2-chloroethyl) ether was added, and the mixture was reacted at 95 ° C. for 15 hours. The reaction solution was diluted with water to obtain a slightly yellow liquid composition containing 50% by mass of a cationic polymer. The weight average molecular weight of the cationic polymer was 6500.
(実施例9)<ビス(2-クロロエチル)エーテル-1,3-ビス[3-(ジメチルアミノ)プロピル]チオ尿素共重合体の50%水溶液の調製>
 N,N-ジメチルアミノプロピルアミン204g(2モル)、チオ尿素76g(1モル)を反応容器に仕込み、窒素ガス気流下にて加熱昇温して170~180℃で約5時間脱アンモニア反応をした。その後冷却して、ビス(2-クロロエチル)エーテル143g(1モル)を加え、95℃で10時間反応させた。上記反応液を水で希釈することで、カチオン性ポリマーを50質量%含む微黄色液状組成物を得た。カチオン性ポリマーの重量平均分子量は7800であった。
(Example 9) <Preparation of 50% aqueous solution of bis (2-chloroethyl) ether-1,3-bis [3- (dimethylamino) propyl] thiourea copolymer>
A reaction vessel was charged with 204 g (2 mol) of N, N-dimethylaminopropylamine and 76 g (1 mol) of thiourea, heated under a nitrogen gas stream and heated at 170-180 ° C. for about 5 hours. did. Thereafter, the mixture was cooled, 143 g (1 mol) of bis (2-chloroethyl) ether was added, and the mixture was reacted at 95 ° C. for 10 hours. The reaction solution was diluted with water to obtain a slightly yellow liquid composition containing 50% by mass of a cationic polymer. The weight average molecular weight of the cationic polymer was 7800.
(実施例10)<ビス(2-クロロエチル)エーテル-1,3-ビス[6-(ジメチルアミノ)ヘキシル]尿素共重合体の50%水溶液の調製>
 N,N-ジメチルアミノヘキシルアミン140g(2モル)と尿素60g(1モル)を反応容器に仕込み、窒素ガス気流下にて加熱昇温して170~180℃で約5時間脱アンモニア反応をした。その後冷却して、ビス(2-クロロエチル)エーテル143g(1モル)を加え、95℃で12時間反応させた。上記反応液を水で希釈することで、カチオン性ポリマーを50質量%含む微黄色液状組成物を得た。カチオン性ポリマーの重量平均分子量は7400であった。
(Example 10) <Preparation of 50% aqueous solution of bis (2-chloroethyl) ether-1,3-bis [6- (dimethylamino) hexyl] urea copolymer>
N, N-dimethylaminohexylamine (140 g, 2 mol) and urea (60 g, 1 mol) were charged into a reaction vessel, heated under a nitrogen gas stream, and subjected to deammonia reaction at 170-180 ° C. for about 5 hours. . Thereafter, the mixture was cooled, 143 g (1 mol) of bis (2-chloroethyl) ether was added, and the mixture was reacted at 95 ° C. for 12 hours. The reaction solution was diluted with water to obtain a slightly yellow liquid composition containing 50% by mass of a cationic polymer. The weight average molecular weight of the cationic polymer was 7400.
(実施例11)<ビス(2-クロロエチル)エーテル-1,3-ビス[3-(ジメチルアミノ)プロピル]尿素共重合体の50%IPA溶液の調製>
 N,N-ジメチルアミノプロピルアミン204g(2モル)、尿素60g(1モル)を反応容器に仕込み、窒素ガス気流下にて加熱昇温して170~180℃で約5時間脱アンモニア反応をした。その後冷却して、ビス(2-クロロエチル)エーテル143g(1モル)を加え、95℃で10時間反応させた。上記反応液をイソプロパノール(IPA)で希釈することで、カチオン性ポリマーを50質量%含む微黄色液状組成物を得た。カチオン性ポリマーの重量平均分子量は7500であった。
(Example 11) <Preparation of 50% IPA solution of bis (2-chloroethyl) ether-1,3-bis [3- (dimethylamino) propyl] urea copolymer>
A reaction vessel was charged with 204 g (2 mol) of N, N-dimethylaminopropylamine and 60 g (1 mol) of urea, heated under a nitrogen gas stream, and subjected to deammonia reaction at 170 to 180 ° C. for about 5 hours. . Thereafter, the mixture was cooled, 143 g (1 mol) of bis (2-chloroethyl) ether was added, and the mixture was reacted at 95 ° C. for 10 hours. The reaction solution was diluted with isopropanol (IPA) to obtain a slightly yellow liquid composition containing 50% by mass of a cationic polymer. The weight average molecular weight of the cationic polymer was 7500.
(実施例12)<ビス(2-クロロエチル)エーテル-1,3-ビス[3-(ジメチルアミノ)プロピル]尿素共重合体の50%水溶液の調製>
 N,N-ジメチルアミノプロピルアミン204g(2モル)、尿素60g(1モル)を反応容器に仕込み、窒素ガス気流下にて加熱昇温して170~180℃で約5時間脱アンモニア反応をした。その後冷却して、ビス(2-クロロエチル)エーテル143g(1モル)を加え、95℃で10時間反応させた。上記反応液を水で希釈することで、カチオン性ポリマーを50質量%含む黄色液状組成物を得た。カチオン性ポリマーの重量平均分子量は45000であった。
(Example 12) <Preparation of 50% aqueous solution of bis (2-chloroethyl) ether-1,3-bis [3- (dimethylamino) propyl] urea copolymer>
A reaction vessel was charged with 204 g (2 mol) of N, N-dimethylaminopropylamine and 60 g (1 mol) of urea, heated under a nitrogen gas stream, and subjected to deammonia reaction at 170 to 180 ° C. for about 5 hours. . Thereafter, the mixture was cooled, 143 g (1 mol) of bis (2-chloroethyl) ether was added, and the mixture was reacted at 95 ° C. for 10 hours. By diluting the reaction solution with water, a yellow liquid composition containing 50% by mass of a cationic polymer was obtained. The weight average molecular weight of the cationic polymer was 45000.
 (比較例1)<ビス(2-クロロエチル)エーテル-1,3-ビス[3-(ジメチルアミノ)プロピル]尿素共重合体(重量平均分子量800)の50%水溶液の調製>
 N,N-ジメチルアミノプロピルアミン204g(2モル)、尿素60g(1モル)を反応容器に仕込み、窒素ガス気流下にて加熱昇温して170~180℃で約5時間脱アンモニア反応をした。その後冷却して、ビス(2-クロロエチル)エーテル143g(1モル)を加え、95℃で1時間反応させた。上記反応液を水で希釈することで、カチオン性ポリマーを50質量%含む微黄色液状組成物を得た。カチオン性ポリマーの重量平均分子量は800であった。
(Comparative Example 1) <Preparation of 50% aqueous solution of bis (2-chloroethyl) ether-1,3-bis [3- (dimethylamino) propyl] urea copolymer (weight average molecular weight 800)>
A reaction vessel was charged with 204 g (2 mol) of N, N-dimethylaminopropylamine and 60 g (1 mol) of urea, heated under a nitrogen gas stream, and subjected to deammonia reaction at 170 to 180 ° C. for about 5 hours. . Thereafter, the mixture was cooled, 143 g (1 mol) of bis (2-chloroethyl) ether was added, and the mixture was reacted at 95 ° C. for 1 hour. The reaction solution was diluted with water to obtain a slightly yellow liquid composition containing 50% by mass of a cationic polymer. The weight average molecular weight of the cationic polymer was 800.
(比較例2)<ポリ[オキシエチレン(ジメチルイミノ)エチレン(ジメチルイミノ)エチレンジクロライド]の50%水溶液の調製>
 N,N,N’,N’-テトラメチル-1,2-エチレンジアミン116g(1モル)、ビス(2-クロロエチル)エーテル143gを加え、95℃で20時間反応させた。上記反応液を水で希釈することで、カチオン性ポリマーを50質量%含む微黄色液状組成物を得た。カチオン性ポリマーの重量平均分子量は10000であった。
(Comparative Example 2) <Preparation of 50% aqueous solution of poly [oxyethylene (dimethylimino) ethylene (dimethylimino) ethylene dichloride]>
116 g (1 mol) of N, N, N ′, N′-tetramethyl-1,2-ethylenediamine and 143 g of bis (2-chloroethyl) ether were added and reacted at 95 ° C. for 20 hours. The reaction solution was diluted with water to obtain a slightly yellow liquid composition containing 50% by mass of a cationic polymer. The weight average molecular weight of the cationic polymer was 10,000.
(比較例3)<ジクロロヘキサン-1,3-ビス[3-(ジメチルアミノ)プロピル]尿素共重合体の50%水溶液の調製>
 N,N-ジメチルアミノプロピルアミン204g(2モル)、尿素60g(1モル)を反応容器に仕込み、窒素ガス気流下にて加熱昇温して170~180℃で約5時間脱アンモニア反応をした。その後冷却して、1,6-ジクロロヘキサン155g(1モル)を加え、95℃で10時間反応させた。上記反応液を水で希釈することで、カチオン性ポリマーを50質量%含む微黄色液状組成物を得た。カチオン性ポリマーの重量平均分子量は8000であった。
(Comparative Example 3) <Preparation of 50% aqueous solution of dichlorohexane-1,3-bis [3- (dimethylamino) propyl] urea copolymer>
A reaction vessel was charged with 204 g (2 mol) of N, N-dimethylaminopropylamine and 60 g (1 mol) of urea, heated under a nitrogen gas stream, and subjected to deammonia reaction at 170 to 180 ° C. for about 5 hours. . After cooling, 155 g (1 mol) of 1,6-dichlorohexane was added and reacted at 95 ° C. for 10 hours. The reaction solution was diluted with water to obtain a slightly yellow liquid composition containing 50% by mass of a cationic polymer. The weight average molecular weight of the cationic polymer was 8,000.
(比較例4)<ビスクロロメチルエーテル-1,3-ビス[3-(ジメチルアミノ)プロピル]尿素共重合体の50%水溶液の調製>
 N,N-ジメチルアミノプロピルアミン204g(2モル)、尿素60g(1モル)を反応容器に仕込み、窒素ガス気流下にて加熱昇温して170~180℃で約5時間脱アンモニア反応をした。その後冷却して、ビスクロロメチルエーテル115g(1モル)を加え、95℃で10時間反応させた。上記反応液を水で希釈することで、カチオン性ポリマーを50質量%含む微黄色液状組成物を得た。カチオン性ポリマーの重量平均分子量は8500であった。
(Comparative Example 4) <Preparation of 50% aqueous solution of bischloromethyl ether-1,3-bis [3- (dimethylamino) propyl] urea copolymer>
A reaction vessel was charged with 204 g (2 mol) of N, N-dimethylaminopropylamine and 60 g (1 mol) of urea, heated under a nitrogen gas stream, and subjected to deammonia reaction at 170 to 180 ° C. for about 5 hours. . After cooling, 115 g (1 mol) of bischloromethyl ether was added and reacted at 95 ° C. for 10 hours. The reaction solution was diluted with water to obtain a slightly yellow liquid composition containing 50% by mass of a cationic polymer. The weight average molecular weight of the cationic polymer was 8500.
(比較例5)<ビス(2-クロロメチルオキシ)エタン-1,3-ビス[3-(ジメチルアミノ)プロピル]尿素共重合体の50%水溶液の調製>
 N,N-ジメチルアミノプロピルアミン204g(2モル)、尿素60g(1モル)を反応容器に仕込み、窒素ガス気流下にて加熱昇温して170~180℃で約5時間脱アンモニア反応をした。その後冷却して、ビス(クロロメチルオキシ)エタン159g(1モル)を加え、95℃で10時間反応させた。上記反応液を水で希釈することで、カチオン性ポリマーを50質量%含む微黄色液状組成物を得た。カチオン性ポリマーの重量平均分子量は8300であった。
(Comparative Example 5) <Preparation of 50% aqueous solution of bis (2-chloromethyloxy) ethane-1,3-bis [3- (dimethylamino) propyl] urea copolymer>
A reaction vessel was charged with 204 g (2 mol) of N, N-dimethylaminopropylamine and 60 g (1 mol) of urea, heated under a nitrogen gas stream, and subjected to deammonia reaction at 170 to 180 ° C. for about 5 hours. . Thereafter, the mixture was cooled, 159 g (1 mol) of bis (chloromethyloxy) ethane was added, and the mixture was reacted at 95 ° C. for 10 hours. The reaction solution was diluted with water to obtain a slightly yellow liquid composition containing 50% by mass of a cationic polymer. The weight average molecular weight of the cationic polymer was 8300.
(比較例6)
 カチオン性ポリマーの代わりに塩化ベンザルコニウム50質量%水溶液を準備した。
(Comparative Example 6)
Instead of the cationic polymer, a 50% by mass aqueous solution of benzalkonium chloride was prepared.
(比較例7)
 抗菌抗かび剤を準備しなかった。
(Comparative Example 7)
No antibacterial antifungal agent was prepared.
(比較例8)<ポリ[オキシエチレン(ジメチルイミノ)エチレン(ジメチルイミノ)エチレンジクロライド]の50%IPA溶液の調製>
 N,N,N’,N’-テトラメチル-1,2-エチレンジアミン116g(1モル)、ビス(2-クロロエチル)エーテル143g(1モル)を加え、95℃で20時間反応させた。上記反応液をIPAで希釈することで、カチオン性ポリマーを50質量%含む微黄色液状組成物を得た。カチオン性ポリマーの重量平均分子量は10000であった。
(Comparative Example 8) <Preparation of 50% IPA solution of poly [oxyethylene (dimethylimino) ethylene (dimethylimino) ethylene dichloride]>
116 g (1 mol) of N, N, N ′, N′-tetramethyl-1,2-ethylenediamine and 143 g (1 mol) of bis (2-chloroethyl) ether were added and reacted at 95 ° C. for 20 hours. The reaction solution was diluted with IPA to obtain a slightly yellow liquid composition containing 50% by mass of a cationic polymer. The weight average molecular weight of the cationic polymer was 10,000.
[分子量測定条件]
 カチオン性ポリマーの重量平均分子量は、ゲル・パーミエーション・クロマトグラフィー[カラム:東ソー(株)製、商品名:TSKgel G3000PW-CP]を用い、ポリエチレングリコールを標準物質とし、溶離液に硝酸ナトリウム0.1M水溶液を用いて測定した。なお測定条件は以下の通りである。
流速       :0.70mL/min
試料濃度     :0.1g/L
濾過フィルター  :0.45μm-Millex-LH(ミリポア製)
注入量      :0.200mL
温度       :23℃
検出器      :示差屈折率検出器(東ソー製、商品名:RI-8020)
[Molecular weight measurement conditions]
The weight average molecular weight of the cationic polymer was determined using gel permeation chromatography [Column: Tosoh Corporation, trade name: TSKgel G3000PW-CP], polyethylene glycol as a standard substance, and eluent with a sodium nitrate concentration of 0. It measured using 1M aqueous solution. Measurement conditions are as follows.
Flow rate: 0.70 mL / min
Sample concentration: 0.1 g / L
Filtration filter: 0.45μm-Millex-LH (Millipore)
Injection volume: 0.200 mL
Temperature: 23 ° C
Detector: Differential refractive index detector (product name: RI-8020, manufactured by Tosoh Corporation)
<抗菌抗かび剤の評価>
 上記で得られた抗菌抗かび剤について以下の評価試験を行った。なお、抗菌抗かび性試験では下記の菌を使用した。
<Evaluation of antibacterial and antifungal agents>
The antibacterial and antifungal agents obtained above were subjected to the following evaluation tests. In the antibacterial and antifungal test, the following bacteria were used.
[試験菌]
黄色ブドウ球菌(Staphylococcus aureus ATCC 6538P):(S.aと略す)
肺炎桿菌(Klebsiella pneumoniae NBRC13277):(K.pと略す)
大腸菌(Escherichia coli NBRC3301):(E.cと略す)
緑膿菌(Pseudomonase areruginosa NBRC3080):(P.aと略す)
メチシリン耐性黄色ブドウ球菌(Methicillin-resistant Staphylococcus aureus IID1677):(MRSAと略す)
[Test bacteria]
Staphylococcus aureus ATCC 6538P: (abbreviated as Sa)
Klebsiella pneumoniae NBRC13277: (abbreviated as Kp)
Escherichia coli NBRC3301: (abbreviated E.c)
Pseudomonas aeruginosa NBRC3080: (abbreviated as Pa)
Methicillin-resistant Staphylococcus aureus IID1677: (abbreviated as MRSA)
[試験かび]
 抗かび性評価試験では、以下のかびを使用した。
黒麹黴(Aspergillus niger NBRC105650):(A.nと略す)
黒黴(Cladosporium cladosporioides NBRC6348):(C.cと略す)
青黴(Penicillium citrinum NBRC6352):(P.cと略す)
白癬菌(Trichophyton mentagrophytes NBRC32409):(T.mと略す)
[Test mold]
The following fungi were used in the antifungal evaluation test.
Black persimmon (Aspergillus niger NBRC105650): (abbreviated as A.n)
Black Spider (Cladosporium cladosporoides NBRC6348): (abbreviated C.c)
Blue 黴 (Penicillium citrinum NBRC6352): (abbreviated as P.c)
Trichophyton mentagrophytes NBRC32409: (abbreviated as T.m)
[評価試験1:臭気]
 実施例1~10及び12、並びに、比較例1~5及び8で得られたカチオン性ポリマー水溶液の臭いを直接嗅ぎ、アミン臭がほとんどしない場合をAとし、強いアミン臭がした場合をBとした。なお、比較例6及び7はアミン臭がないためAとした。
[Evaluation Test 1: Odor]
The odors of the cationic polymer aqueous solutions obtained in Examples 1 to 10 and 12 and Comparative Examples 1 to 5 and 8 were directly sniffed, and the case where there was almost no amine odor was designated as A, and the case where a strong amine odor was seen as B. did. In Comparative Examples 6 and 7, there was no amine odor.
[評価試験2:最小発育阻止濃度試験]
 実施例1~10及び12、並びに、比較例1~5及び8で得られたカチオン性ポリマー水溶液、並びに、比較例6の塩化ベンザルコニウム50質量%水溶液について、「わかりやすい真菌(かび)検査法と汚染防止対策(株式会社テクノシステム)、第II編わかりやすい真菌(かび)検査法、第6章抗かび試験、第4節防かび剤の効力試験」に準拠して、上記試験菌及び試験かびに対する最小発育阻止濃度(mg/L)の測定を行った。
[Evaluation Test 2: Minimum Growth Inhibitory Concentration Test]
For the cationic polymer aqueous solutions obtained in Examples 1 to 10 and 12, and Comparative Examples 1 to 5 and 8, and the benzalkonium chloride 50% by mass aqueous solution of Comparative Example 6, the “intelligible fungus test method” And anti-contamination measures (Techno System Co., Ltd.), Part II Easy-to-understand fungus test method, Chapter 6 Anti-fungal test, Section 4 Anti-fungal agent efficacy test " The minimum inhibitory concentration (mg / L) was measured.
 カチオン性ポリマー水溶液の有効成分濃度、並びに、試験菌及び試験かびの培養条件は以下の条件とした。接種した試験菌又は試験かびが単一の培養であることを確認し、完全に発育が阻止された最低有効成分濃度を最小発育阻止濃度とした。この値が小さいほど、抗菌抗かび効果があると判定した。 The active ingredient concentration of the cationic polymer aqueous solution and the culture conditions for the test bacteria and test fungi were as follows. It was confirmed that the inoculated test bacterium or test fungus was a single culture, and the lowest active ingredient concentration at which growth was completely inhibited was defined as the minimum growth inhibitory concentration. It was determined that the smaller the value, the more antibacterial and antifungal effect.
 カチオン性ポリマー水溶液の有効成分濃度:2.5、5、10、25、50、125、250、500、1000mg/L
培養条件 細菌:37℃×48時間 かび:25℃×2又は7日間
培地   細菌:普通寒天培地   かび:ポテト・デキストロース寒天培地
Active ingredient concentration of cationic polymer aqueous solution: 2.5, 5, 10, 25, 50, 125, 250, 500, 1000 mg / L
Culture conditions Bacteria: 37 ° C x 48 hours Mold: 25 ° C x 2 or 7 days Medium Bacteria: Ordinary agar medium Mold: Potato dextrose agar medium
[評価試験3:抗菌抗かび剤を塗布したポリエステルフィルムの抗菌抗かび性試験]
 実施例及び比較例で準備した水溶液をそれぞれ、ポリエステルフィルム(テイジンテトロンフイルム、銘柄G2)に不揮発分が0.5g/mとなるようにスプレーで塗布した。塗布後のフィルムを100℃にて30分間乾燥し、抗菌抗かび性を有するポリエステルフィルムを得た。比較例7については、なにも塗布をしていないポリエステルフィルムを用意した。
[Evaluation Test 3: Antibacterial and antifungal test of polyester film coated with antibacterial and antifungal agent]
Each of the aqueous solutions prepared in Examples and Comparative Examples was applied to a polyester film (Teijin Tetron Film, brand G2) by spraying so that the nonvolatile content was 0.5 g / m 2 . The coated film was dried at 100 ° C. for 30 minutes to obtain a polyester film having antibacterial and antifungal properties. For Comparative Example 7, a polyester film without any application was prepared.
 上記で得られたポリエステルフィルムについて以下の方法にしたがって抗菌活性値及び抗かび活性値をそれぞれ求めた。 The antibacterial activity value and the antifungal activity value of the polyester film obtained above were determined according to the following methods.
(抗菌活性値の測定)
 JIS Z 2801(2006)に準拠して、黄色ブドウ球菌を供試菌として抗菌活性値を求めた。抗菌活性値が2より大きい場合には効果があると判定した。
(Measurement of antibacterial activity value)
Based on JIS Z 2801 (2006), the antibacterial activity value was determined using Staphylococcus aureus as a test bacterium. When the antibacterial activity value was larger than 2, it was determined to be effective.
(抗かび活性値の測定)
 社団法人繊維評価技術協議会(以下、繊技協という)のJECF301「抗かび加工繊維製品認証基準」に準拠して、黒麹黴を供試かびとして試験した。以下の式に従い抗かび活性値を算出した。抗かび活性値が2.0より大きい場合には効果があると判定した。抗かび活性値=(F-F)-(F-F
:標準ポリエステルフィルムに供試かびを接種した直後における、供試かびが産生するATP量の常用対数値の平均値(3検体)
:標準ポリエステルフィルムに供試かびを接種して42時間培養した後における、供試かびが産生するATP量の常用対数値の平均値(3検体)
:抗菌抗かび性を有するポリエステルフィルムに供試かびを接種して42時間培養した後における、供試かびが産生するATP量の常用対数値の平均値(3検体)
:抗菌抗かび性を有するポリエステルフィルムに供試かびを接種した直後における、供試かびが産生するATP量の常用対数値の平均値(3検体)
なお、ATP量は、ルミテスターC-110(キッコーマン食品(株)製)によって測定した。
(Measurement of antifungal activity value)
Black candy was tested as a test fungus in accordance with JIS CF301 “Anti-fungus processed fiber product certification standard” of the Japan Textile Evaluation Technology Council (hereinafter referred to as the Textile Technology Association). The antifungal activity value was calculated according to the following formula. When the antifungal activity value was larger than 2.0, it was determined that there was an effect. Antifungal activity value = (F b −F a ) − (F c −F 0 )
F a : Average value of common logarithm values of the amount of ATP produced by the test mold immediately after inoculating the test mold on the standard polyester film (3 samples)
F b : Average value of common logarithm of ATP amount produced by test fungi after inoculating test fungus on standard polyester film and culturing for 42 hours (3 samples)
F c : Average value of the common logarithm of the amount of ATP produced by the test fungus after inoculating the test fungus on a polyester film having antibacterial and antifungal properties and culturing for 42 hours (3 samples)
F 0 : Average value of common logarithm values of the amount of ATP produced by the test fungus immediately after inoculating the test fungus on the antimicrobial and antifungal polyester film (3 samples)
The amount of ATP was measured with Lumitester C-110 (Kikkoman Foods Co., Ltd.).
[評価試験4:抗菌抗かび剤を塗布したポリエステルフィルムの熱変色試験]
 評価試験3と同様にして得られたポリエステルフィルムについて以下の熱変色試験を行い、耐熱変色性を評価した。
[Evaluation Test 4: Thermal Discoloration Test of Polyester Film Coated with Antibacterial Antifungal Agent]
The polyester film obtained in the same manner as in the evaluation test 3 was subjected to the following thermal discoloration test to evaluate heat discoloration.
(熱変色試験)
 抗菌抗かび剤を塗布したポリエステルフィルムを、100℃及び180℃にて1分熱処理し、測色を行った。比較例7を基準とし、下記の測定条件にてb値の差(Δb値)を求めた。Δb値が大きいほど黄色に変色していると判定した。
測色条件:ミノルタ測色機CM-3700d、光源D65、視野10度
(Thermal discoloration test)
The polyester film coated with the antibacterial and antifungal agent was heat-treated at 100 ° C. and 180 ° C. for 1 minute to perform color measurement. Based on Comparative Example 7, the difference in b value (Δb value) was determined under the following measurement conditions. It was determined that the greater the Δb value, the more yellow the color was changed.
Colorimetric conditions: Minolta colorimeter CM-3700d, light source D65, field of view 10 degrees
[評価試験5:綿繊維製品の抗菌抗かび性試験]
 実施例及び比較例で準備した水溶液をそれぞれ、綿ブロード布に繊維質量に対して不揮発分が0.5質量%となるようパディング処理にて付与し、120℃にて2分乾燥し、抗菌抗かび性を有する綿繊維製品を得た。比較例7については、なにも処理をしていない綿繊維製品を用意した。
[Evaluation Test 5: Antibacterial and Antifungal Test of Cotton Fiber Products]
The aqueous solutions prepared in Examples and Comparative Examples were each applied to a cotton broad cloth by padding treatment so that the nonvolatile content was 0.5% by mass with respect to the fiber mass, dried at 120 ° C. for 2 minutes, A cotton fiber product having moldability was obtained. For Comparative Example 7, an untreated cotton fiber product was prepared.
 上記で得られた綿繊維製品について以下の方法にしたがって洗濯前(L-0)及び洗濯10回後(L-10)における静菌活性値及び抗かび活性値をそれぞれ求めた。 The bacteriostatic and antifungal activity values before and after washing (L-0) and 10 times after washing (L-10) were determined for the cotton fiber product obtained above according to the following method.
(静菌活性値の測定)
 洗濯前及び洗濯10回後の綿繊維製品について、JIS L 1902(2008)の定量試験法に準拠して、黄色ブドウ球菌を供試菌として静菌活性値を測定した。なお、洗濯はJIS L 0217(1995)付表1の103法に準拠して行った。静菌活性値が2.2より大きい場合には効果があると判定した。
(Measurement of bacteriostatic activity value)
Bacteriostatic activity values were measured for cotton fiber products before and after washing 10 times using Staphylococcus aureus as a test bacterium in accordance with the quantitative test method of JIS L 1902 (2008). Washing was performed according to JIS L 0217 (1995) Appendix 103, Method 103. When the bacteriostatic activity value was larger than 2.2, it was determined to be effective.
(抗かび活性値の測定)
 洗濯前及び洗濯10回後の綿繊維製品について、繊技協のJECF301「抗かび加工繊維製品認証基準」に準拠して、黒麹黴を供試かびとして抗かび活性値を測定した。抗かび活性値が2.0より大きい場合には効果があると判定した。
(Measurement of antifungal activity value)
The antifungal activity value was measured for cotton fiber products before washing and after 10 washings, using black candy as a test fungus, in accordance with JECF301 “Anti-fungus processed textile product certification standard”. When the antifungal activity value was larger than 2.0, it was determined that there was an effect.
[評価試験6:綿繊維製品の熱変色試験]
 評価試験5と同様にして得られた綿繊維製品について以下の熱変色試験を行い、耐熱変色性を評価した。
[Evaluation Test 6: Thermal Discoloration Test of Cotton Fiber Products]
The following thermal discoloration test was performed on the cotton fiber product obtained in the same manner as in the evaluation test 5, and the heat discoloration property was evaluated.
(熱変色試験)
 抗菌抗かび剤で処理された綿繊維製品を、120℃及び180℃にて1分熱処理し、下記の測定条件にて白度を測定した。白度が、比較例7より小さいほど変色があると判定した。
白度測定条件:ミノルタ測色機CM-3700d、光源D65、視野10度
(Thermal discoloration test)
The cotton fiber product treated with the antibacterial antifungal agent was heat-treated at 120 ° C. and 180 ° C. for 1 minute, and the whiteness was measured under the following measurement conditions. It was determined that there was discoloration as the whiteness was smaller than Comparative Example 7.
Whiteness measurement conditions: Minolta colorimeter CM-3700d, light source D65, field of view 10 degrees
[評価試験7:綿繊維製品のBHT/NOx変色試験]
 評価試験5と同様にして得られた綿繊維製品について、以下のBHT/NOx変色試験を行い、耐BHT/NOx変色性を評価した。
[Evaluation Test 7: BHT / NOx Discoloration Test of Cotton Fiber Products]
The cotton fiber product obtained in the same manner as in the evaluation test 5 was subjected to the following BHT / NOx discoloration test to evaluate the BHT / NOx discoloration resistance.
(BHT/NOx変色試験)
 JIS L 0855(2005)に準拠して、綿繊維製品を、予め0.05gのBHTを共存させた密閉系内に50℃で24時間放置してBHTを付着させる試験を3サイクル行い、試験後の綿繊維製品について測色を行った。比較例7を基準とし、下記の測定条件にてb値の差(Δb値)を求めた。Δb値が大きいほど黄色に変色していると判定した。
測定条件:ミノルタ測色機CM-3700d、光源D65、視野10度
(BHT / NOx discoloration test)
In accordance with JIS L 0855 (2005), a cotton fiber product was allowed to stand for 24 hours at 50 ° C. in a closed system in which 0.05 g of BHT coexisted in advance for 3 cycles. After the test The color of cotton fiber products was measured. Based on Comparative Example 7, the difference in b value (Δb value) was determined under the following measurement conditions. It was determined that the greater the Δb value, the more yellow the color was changed.
Measurement conditions: Minolta colorimeter CM-3700d, light source D65, field of view 10 degrees
[評価試験8:樹脂類へ練り込んだ場合の抗菌抗かび性試験及び耐熱変色性の評価]
 ポリプロピレン樹脂(住友化学(株)製、商品名:住友ノーブレンH-501)(100質量部)と、実施例1、比較例2又は比較例7で得られたカチオン性ポリマー(1質量部)とをラボプラストミル((株)東洋精機製作所、商品名)を使用して210℃で5分間混練した後、小型成形機で150mm(たて)×150mm(よこ)×0.5(厚さ)mmの樹脂製品を作製した。得られた樹脂製品について、評価試験3と同等の方法にて抗菌抗かび性の評価を行った。また、上記にて作製した樹脂製品の着色について目視観察し、下記基準にて耐熱変色性を評価した。
A:カチオン性ポリマー未添加の樹脂と同等
B:カチオン性ポリマー未添加の樹脂に比べ着色有り
[Evaluation Test 8: Antibacterial and antifungal test and evaluation of heat discoloration when kneaded into resins]
Polypropylene resin (manufactured by Sumitomo Chemical Co., Ltd., trade name: Sumitomo Nobrene H-501) (100 parts by mass) and the cationic polymer (1 part by mass) obtained in Example 1, Comparative Example 2 or Comparative Example 7 After being kneaded for 5 minutes at 210 ° C. using a lab plast mill (trade name, Toyo Seiki Seisakusho Co., Ltd.), 150 mm (vertical) × 150 mm (horizontal) × 0.5 (thickness) with a small molding machine A resin product of mm was produced. The obtained resin product was evaluated for antibacterial and antifungal properties by the same method as in Evaluation Test 3. Moreover, the coloring of the resin product produced above was observed visually, and the heat discoloration was evaluated according to the following criteria.
A: Equivalent to resin without addition of cationic polymer B: Colored compared to resin without addition of cationic polymer
[評価試験9:耐水性試験]
 実施例11、比較例8、比較例6で得られた溶液を、ポリエステルフィルム(テイジンテトロンフイルム、銘柄G2)に不揮発分が0.5g/mとなるようにスプレーにて塗布し、室温にて30分間乾燥を行い、耐水性試験用のプラスチック製品を作製した。耐水性試験用のプラスチック製品を、水中に1時間浸漬した後乾燥し、評価試験3と同等の方法にて、抗菌抗かび性の評価を行った。
[Evaluation Test 9: Water Resistance Test]
The solution obtained in Example 11, Comparative Example 8, and Comparative Example 6 was applied to a polyester film (Teijin Tetron Film, Brand G2) by spraying so that the nonvolatile content was 0.5 g / m 2, and the solution was brought to room temperature. And dried for 30 minutes to produce a plastic product for water resistance test. The plastic product for the water resistance test was immersed in water for 1 hour and then dried, and antibacterial and antifungal properties were evaluated by the same method as in Evaluation Test 3.
 上記の評価試験1~評価試験9で得られた結果を表1~表6に示す。 The results obtained in the above evaluation tests 1 to 9 are shown in Tables 1 to 6.
 本実施例に係るカチオン性ポリマーを含有する抗菌抗かび剤は、いずれも良好な抗菌性、抗かび性及び洗濯耐久性を示すことが分かった。特に、一般式(1)において、Rがメチル基、Rがエチレンオキシエチレン基、Rがプロピレン基、Rが水素原子である実施例1、実施例9及び実施例11では、最も良好な抗菌抗かび性能が得られることが確認された。また、実施例のカチオン性ポリマーは比較例のカチオン性ポリマーに比べ、いずれも熱黄変が少なく、BHT/NOxガスによる変色も少ない結果であった。 It was found that all of the antibacterial and antifungal agents containing the cationic polymer according to this example exhibited good antibacterial properties, antifungal properties and washing durability. Particularly, in the general formula (1), R 1 is a methyl group, R 2 is an ethyleneoxyethylene group, R 3 is a propylene group, and R 4 is a hydrogen atom. It was confirmed that good antibacterial and antifungal performance can be obtained. In addition, the cationic polymers of the examples all had less heat yellowing and less discoloration due to BHT / NOx gas than the cationic polymers of the comparative examples.
 評価試験2の最小発育阻止濃度試験により、実施例で得られたカチオン性ポリマーは、いずれも良好な抗菌抗かび性を示していることが確認された。本実施例の抗菌抗かび剤は、液状洗剤、液状せっけん、噴霧用液体及びその他の液状製品、ゲル状製品、コーティング剤、樹脂用添加剤、繊維製品、並びに、樹脂製品に対して抗菌抗かび性を付与することが可能である。 From the minimum growth inhibitory concentration test of Evaluation Test 2, it was confirmed that all of the cationic polymers obtained in the examples showed good antibacterial and antifungal properties. The antibacterial and antifungal agent of this example is an antibacterial and antifungal agent for liquid detergents, liquid soaps, spraying liquids and other liquid products, gel products, coating agents, resin additives, textile products, and resin products. It is possible to impart sex.
 評価試験3のポリエステルフィルムの抗菌抗かび性試験及び評価試験4の抗菌抗かび剤を塗布したポリエステルフィルムの熱変色試験により、実施例で得られたカチオン性ポリマーは、ポリエステルフィルム等の硬質材料表面に抗菌抗かび加工を施すための抗菌抗かび剤として使用した場合、耐熱性のある良好な抗菌抗かび性を示すことが確認された。 According to the antibacterial and antifungal test of the polyester film of evaluation test 3 and the thermal discoloration test of the polyester film coated with the antibacterial and antifungal agent of evaluation test 4, the cationic polymer obtained in the example is a hard material surface such as a polyester film. When used as an antibacterial and antifungal agent for antibacterial and antifungal processing, it was confirmed that it exhibits good antibacterial and antifungal properties with heat resistance.
 評価試験5の綿繊維製品の抗菌抗かび性試験、評価試験6の綿繊維製品の熱変色試験及び評価試験7の綿繊維製品のBHT/NOx変色試験により、実施例で得られたカチオン性ポリマーは、繊維用処理剤として使用した場合、耐久性のある良好な抗菌抗かび性を示し、熱黄変が少なく、BHT/NOxガスによる変色も少ないことが確認された。 Cationic polymer obtained in Examples by antibacterial and antifungal test of cotton fiber product of evaluation test 5, thermal discoloration test of cotton fiber product of evaluation test 6 and BHT / NOx discoloration test of cotton fiber product of evaluation test 7 When used as a treating agent for textiles, it was confirmed that the antibacterial and antifungal property with durability was excellent, thermal yellowing was small, and there was little discoloration due to BHT / NOx gas.
 評価試験8の樹脂類へ練り込んだ場合の抗菌抗かび性試験及び耐熱性試験により、実施例で得られたカチオン性ポリマーは、樹脂に練り込んだ場合も良好な抗菌抗かび性を示し、耐熱変色性も良好であることが確認された。 According to the antibacterial and antifungal test and the heat resistance test when kneaded into the resins of Evaluation Test 8, the cationic polymers obtained in the examples show good antibacterial and antifungal properties even when kneaded into the resin. It was confirmed that heat discoloration was also good.
 評価試験9の耐水性試験により、実施例で得られたカチオン性ポリマーは、比較例6の塩化ベンザルコニウム及び比較例8のカチオン性ポリマーに比べて耐水性が良好であることが確認された。 The water resistance test of evaluation test 9 confirmed that the cationic polymer obtained in the example had better water resistance than the benzalkonium chloride of comparative example 6 and the cationic polymer of comparative example 8. .
 一方、比較例1に示すように分子量の低いカチオン系の高分子化合物は、アミン臭があった。また、繊維製品に施した場合、洗濯に対する抗菌性及び抗かび性の耐久性も乏しいものであった。 On the other hand, as shown in Comparative Example 1, the cationic polymer compound having a low molecular weight had an amine odor. In addition, when applied to textile products, the antibacterial and antifungal durability against washing is poor.
 比較例2に示すように、直鎖中に尿素基又はチオ尿素基を有さないカチオン系ポリマーでは、抗菌性は認められるものの抗かび性は認められなかった。 As shown in Comparative Example 2, the cationic polymer having no urea group or thiourea group in the straight chain showed antibacterial properties but no antifungal properties.
 比較例3に示すように、直鎖中にオキシアルキレン基を有さないカチオン系ポリマーでは、抗菌性は認められるものの抗かび性は認められなかった。また、洗濯に対する抗菌性の耐久性が劣る結果であった。 As shown in Comparative Example 3, a cationic polymer having no oxyalkylene group in the straight chain showed antibacterial properties but no antifungal properties. Moreover, the antibacterial durability against washing was inferior.
 比較例4に示すように、直鎖中に炭素数が4より小さいオキシアルキレン基を有するカチオン系ポリマーでは、抗菌性は認められるものの抗かび性は認められなかった。また、洗濯に対する抗菌性の耐久性が劣る結果であった。 As shown in Comparative Example 4, the cationic polymer having an oxyalkylene group having a carbon number of less than 4 in the straight chain showed antibacterial properties but no antifungal properties. Moreover, the antibacterial durability against washing was inferior.
 比較例5に示すように、直鎖中に炭素数4以上のオキシアルキレン基を有する場合でも、オキシアルキレン基の末端がメチレン基である場合は、抗菌性は認められるものの抗かび性は認められなかった。また、洗濯に対する抗菌性の耐水性が劣る結果であった。 As shown in Comparative Example 5, even when the straight chain has an oxyalkylene group having 4 or more carbon atoms, when the terminal of the oxyalkylene group is a methylene group, antibacterial property is recognized but antifungal property is recognized. There wasn't. Moreover, the antibacterial water resistance against washing was inferior.
 以上より、本発明に係るカチオン性ポリマーは、特定の構造を有するものであることにより、種々の菌及びかびに対する優れた抗菌性及び抗かび性の両性能を有し、なおかつ耐水性、耐熱変色性及び耐BHT/NOxガス変色性に優れるという効果を奏することが分かる。 As described above, the cationic polymer according to the present invention has a specific structure, thereby having both excellent antibacterial and antifungal properties against various bacteria and fungi, and water resistance and heat discoloration. It can be seen that the present invention has the effect of being excellent in heat resistance and BHT / NOx gas discoloration.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 本発明によれば、耐久性のある抗菌性に加え、耐久性のある抗かび性を兼ね備えた新たな抗菌抗かび剤を提供することができる。これにより、台所、浴室、洗面所及びトイレ等の水回り、並びに、繊維製品等において、従来の抗菌効果に加え、近年特に問題となっているかびによる変色及び異臭等の問題を防ぐことが可能となる。 According to the present invention, it is possible to provide a new antibacterial and antifungal agent having a durable antifungal property as well as a durable antifungal property. This can prevent problems such as discoloration and off-flavor due to mold in recent years, in addition to the conventional antibacterial effect, in kitchens, bathrooms, toilets and toilets, and textile products. It becomes.
 また、本発明の抗菌抗かび剤は、熱による変色及びBHT/NOxガスによる変色が少ないことから、淡色の繊維に処理した場合、淡色の樹脂に練り込んだ場合等でも変色の問題を少なくすることができる。 In addition, since the antibacterial and antifungal agent of the present invention has little discoloration due to heat and BHT / NOx gas, the discoloration problem can be reduced even when processed into a light-colored fiber or kneaded into a light-colored resin. be able to.

Claims (3)

  1.  下記一般式(1)で表される、重量平均分子量が1000以上のカチオン性ポリマーを含有する抗菌抗かび剤。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、Rはそれぞれ独立に、水素原子、炭素数1~4のアルキル基若しくはヒドロキシアルキル基、又は、炭素数2~4のアルケニル基を示し、Rは下記一般式(2)で表される炭素数4~8のオキシアルキレン基を示し、Rはそれぞれ独立に、炭素数が2~10のアルキレン基を示し、Rはそれぞれ独立に、水素原子、炭素数1~4のアルキル基若しくはヒドロキシアルキル基、又は、炭素数2~4のアルケニル基を示し、Yは酸素原子又は硫黄原子を示し、nは正の整数を示し、Xm-はm価のアニオンを示す。
    Figure JPOXMLDOC01-appb-C000002
    式(2)中、Rは炭素数1以上のアルキレン基を示し、aはそれぞれ独立に2以上の整数を示し、bは0以上の整数を示す。]
    An antibacterial antifungal agent containing a cationic polymer represented by the following general formula (1) having a weight average molecular weight of 1000 or more.
    Figure JPOXMLDOC01-appb-C000001
    [In Formula (1), each R 1 independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or a hydroxyalkyl group, or an alkenyl group having 2 to 4 carbon atoms, and R 2 represents the following general formula ( 2) represents an oxyalkylene group having 4 to 8 carbon atoms, R 3 independently represents an alkylene group having 2 to 10 carbon atoms, and R 4 each independently represents a hydrogen atom, a carbon number of 1 Represents an alkyl group or hydroxyalkyl group of ˜4, or an alkenyl group of 2 to 4 carbon atoms, Y represents an oxygen atom or a sulfur atom, n represents a positive integer, and X m− represents an m-valent anion. Show.
    Figure JPOXMLDOC01-appb-C000002
    In formula (2), R 5 represents an alkylene group having 1 or more carbon atoms, a independently represents an integer of 2 or more, and b represents an integer of 0 or more. ]
  2.  前記カチオン性ポリマーの重量平均分子量が1000~50000である、請求項1に記載の抗菌抗かび剤。 The antibacterial and antifungal agent according to claim 1, wherein the cationic polymer has a weight average molecular weight of 1,000 to 50,000.
  3.  請求項1又は2に記載の抗菌抗かび剤により抗菌抗かび性が付与された、抗菌抗かび性製品。 An antibacterial and antifungal product to which antibacterial and antifungal properties are imparted by the antibacterial and antifungal agent according to claim 1 or 2.
PCT/JP2011/061900 2010-05-28 2011-05-24 Antibacterial and antifungal agent, and antibacterial and antifungal product WO2011148950A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010122994A JP2011246415A (en) 2010-05-28 2010-05-28 Antibacterial and antifungal agent and antibacterial and antifungal product
JP2010-122994 2010-05-28

Publications (1)

Publication Number Publication Date
WO2011148950A1 true WO2011148950A1 (en) 2011-12-01

Family

ID=45003939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061900 WO2011148950A1 (en) 2010-05-28 2011-05-24 Antibacterial and antifungal agent, and antibacterial and antifungal product

Country Status (2)

Country Link
JP (1) JP2011246415A (en)
WO (1) WO2011148950A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018002178A1 (en) * 2016-07-01 2018-01-04 Henkel Ag & Co. Kgaa Cleaning agent with reduced glass corrosion
WO2023036940A1 (en) 2021-09-10 2023-03-16 Rhodia Operations Antimicrobial composition and the formulation comprising the same
WO2023110523A1 (en) 2021-12-17 2023-06-22 Rhodia Operations New cationic polymers, process for producing the same from monourea diamine condensates and ether derivatives, and uses thereof
WO2023110524A1 (en) 2021-12-17 2023-06-22 Rhodia Operations New cationic polymers, process for producing the same from urea diamine condensates and polyepoxide derivatives, and uses thereof
WO2023110525A1 (en) 2021-12-17 2023-06-22 Rhodia Operations New cationic polymers, process for producing the same from polyurea diamine condensates and ether derivatives, and uses thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015160910A (en) * 2014-02-27 2015-09-07 広栄化学工業株式会社 Urethane copolymer and antistatic agent containing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5693734A (en) * 1979-12-21 1981-07-29 Oreal Novel polycationic polymer and its manufacture
JPH05310505A (en) * 1992-05-12 1993-11-22 Osaka Kasei Kk Antifungal processing agent for textiles, antifugally processed textile product and method for antifungal processing
JPH09195171A (en) * 1996-01-11 1997-07-29 Senka Kk Antibacterial textile material
JP2007526348A (en) * 2003-06-05 2007-09-13 スリーエム イノベイティブ プロパティズ カンパニー Adhesive composition, article incorporating the same, and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5693734A (en) * 1979-12-21 1981-07-29 Oreal Novel polycationic polymer and its manufacture
JPH05310505A (en) * 1992-05-12 1993-11-22 Osaka Kasei Kk Antifungal processing agent for textiles, antifugally processed textile product and method for antifungal processing
JPH09195171A (en) * 1996-01-11 1997-07-29 Senka Kk Antibacterial textile material
JP2007526348A (en) * 2003-06-05 2007-09-13 スリーエム イノベイティブ プロパティズ カンパニー Adhesive composition, article incorporating the same, and method for producing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018002178A1 (en) * 2016-07-01 2018-01-04 Henkel Ag & Co. Kgaa Cleaning agent with reduced glass corrosion
WO2023036940A1 (en) 2021-09-10 2023-03-16 Rhodia Operations Antimicrobial composition and the formulation comprising the same
WO2023110523A1 (en) 2021-12-17 2023-06-22 Rhodia Operations New cationic polymers, process for producing the same from monourea diamine condensates and ether derivatives, and uses thereof
WO2023110524A1 (en) 2021-12-17 2023-06-22 Rhodia Operations New cationic polymers, process for producing the same from urea diamine condensates and polyepoxide derivatives, and uses thereof
WO2023110525A1 (en) 2021-12-17 2023-06-22 Rhodia Operations New cationic polymers, process for producing the same from polyurea diamine condensates and ether derivatives, and uses thereof

Also Published As

Publication number Publication date
JP2011246415A (en) 2011-12-08

Similar Documents

Publication Publication Date Title
EP2400837B9 (en) Disinfectant composition comprising a biguanide compound
WO2011148950A1 (en) Antibacterial and antifungal agent, and antibacterial and antifungal product
Nayak et al. Antimicrobial finishes for textiles
US20140220842A1 (en) Process for the Treatment of Synthetic Textiles with Cationic Biocides
CN109219350B (en) Odor adsorbent compositions and methods for use in polymers
JP6207508B2 (en) Antimicrobial ionomer composition and use thereof
EP3500102B1 (en) Anti-microbial composition
JP3784609B2 (en) Antibacterial agent for fiber and antibacterial fiber product
Luo et al. Antibacterial N‐halamine coating on cotton fabric fabricated using mist polymerization
US20080102217A1 (en) Process for anti-microbial textiles treatment
TWI676723B (en) Antibacterial/antifungal processed product preparation method and antibacterial/antifungal processed product obtained by the same
WO2012146918A1 (en) Biocidal coating composition
CN111549533A (en) Antiviral and antibacterial finishing solution for high-density polyester-nylon composite fiber fabric and finishing process
JP2013203697A (en) Antibacterial and antifungal agent and antibacterial and antifungal product
JPWO2015122360A1 (en) Liquid laundry detergent composition for clothing
WO2018085564A2 (en) 3-in-one fabric conditioners and softeners comprising antimicrobial agents
Jain et al. Development of antimicrobial textiles using zinc pyrithione
JPH0782665A (en) Production of antifungal fibers
KR102459230B1 (en) Antibacterial composition for textiles with imporved resistance to laundering
US9512559B2 (en) Method for conferring antimicrobial activity to a substrate
WO2020021810A1 (en) Antibacterial/antifungal agent and antibacterial/antifungal product
JPH0782663A (en) Production of antifungal fibers
JPH0586575A (en) Antimicrobially active acrylic fiber
JP2003113004A (en) Combined agent for cationic antimicrobial processing and method for antimicrobial processing
KR910003655B1 (en) Preparation of polyester fibers having excellent antibacterial and decorizing properties

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11786649

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11786649

Country of ref document: EP

Kind code of ref document: A1