JP2013203697A - Antibacterial and antifungal agent and antibacterial and antifungal product - Google Patents

Antibacterial and antifungal agent and antibacterial and antifungal product Download PDF

Info

Publication number
JP2013203697A
JP2013203697A JP2012074486A JP2012074486A JP2013203697A JP 2013203697 A JP2013203697 A JP 2013203697A JP 2012074486 A JP2012074486 A JP 2012074486A JP 2012074486 A JP2012074486 A JP 2012074486A JP 2013203697 A JP2013203697 A JP 2013203697A
Authority
JP
Japan
Prior art keywords
antibacterial
antifungal
cationic polymer
composition containing
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012074486A
Other languages
Japanese (ja)
Inventor
Takashi Tanaka
多加志 田中
Masaki Miyagawa
正貴 宮川
Kenichi Miyamoto
賢一 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nicca Chemical Co Ltd
Original Assignee
Nicca Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nicca Chemical Co Ltd filed Critical Nicca Chemical Co Ltd
Priority to JP2012074486A priority Critical patent/JP2013203697A/en
Publication of JP2013203697A publication Critical patent/JP2013203697A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an antibacterial and antifungal agent having sufficient antibacterial and antifungal properties and being excellent in water resistance, heat discoloration resistance, and BHT/NOx gas discoloration resistance, and also to provide an antibacterial and antifungal product acquired by using the same.SOLUTION: An antibacterial and antifungal agent includes a cationic polymer obtained by polymerizing a composition containing a monomer represented by formula (1).

Description

本発明は、抗菌性と抗かび性を付与することができる抗菌抗かび剤、及び該抗菌抗かび剤により抗菌抗かび性が付与された抗菌抗かび製品に関する。   The present invention relates to an antibacterial and antifungal agent capable of imparting antibacterial and antifungal properties, and an antibacterial and antifungal product imparted with antibacterial and antifungal properties by the antibacterial and antifungal agent.

近年、メチシリン耐性黄色ブドウ球菌(MRSA)等による院内感染や病原性大腸菌O−157等による食中毒など、細菌が原因となっている事故が多発し社会問題化している。一般家庭においては、居住空間の気密性の高まりや空調設備の普及によってかびが繁殖しやすい環境となり、かびが原因のアレルギー疾患や日用品の変色等の問題が増加している。これらの問題に対応するために、例えば、所望の部材表面に抗菌性を付与するための抗菌剤や、予め抗菌剤により抗菌加工がなされた繊維製品や樹脂製品などが上市されている。   In recent years, accidents caused by bacteria, such as nosocomial infections caused by methicillin-resistant Staphylococcus aureus (MRSA) and food poisoning caused by pathogenic E. coli O-157, etc., have become a social problem. In ordinary households, molds are easy to propagate due to the increase in airtightness of living spaces and the spread of air conditioning equipment, and problems such as allergic diseases caused by mold and discoloration of daily necessities are increasing. In order to deal with these problems, for example, an antibacterial agent for imparting antibacterial properties to the surface of a desired member, a fiber product or a resin product that has been antibacterial processed with an antibacterial agent in advance, and the like are on the market.

抗菌剤としては、例えば、塩化ベンザルコニウム、塩化セチルピリジニウム、グルコン酸クロルヘキシジン及び5−クロロ−2−(2,4−ジクロロフェノキシル)フェノール等の低分子有機系抗菌剤、並びに、特許文献1に記載されているような塩酸ポリヘキサメチレンビグアナイド、特許文献2に記載されているようなポリ[オキシエチレン(ジメチルイミノ)エチレン(ジメチルイミノ)エチレンジクロライド]及び特許文献3に記載されているようなシアノグアニジンとポリエチレンポリアミンとの縮合反応物等の高分子有機系抗菌剤が古くから使用されている。また、ゼオライト、シリカゲル等に抗菌性を有する金属である銀、亜鉛及び銅等を担持した無機系抗菌剤も多用されている。   Examples of the antibacterial agent include low molecular organic antibacterial agents such as benzalkonium chloride, cetylpyridinium chloride, chlorhexidine gluconate and 5-chloro-2- (2,4-dichlorophenoxyl) phenol, and Patent Document 1. Polyhexamethylene biguanide hydrochloride as described in Patent Document 2, poly [oxyethylene (dimethylimino) ethylene (dimethylimino) ethylene dichloride] as described in Patent Document 2, and Patent Document 3 High molecular organic antibacterial agents such as condensation reaction products of cyanoguanidine and polyethylene polyamine have been used for a long time. In addition, inorganic antibacterial agents carrying silver, zinc, copper, etc., which are metals having antibacterial properties, such as zeolite and silica gel are also frequently used.

特公昭62−60509号公報Japanese Examined Patent Publication No. 62-60509 特開平5−310505号公報Japanese Patent Laid-Open No. 5-310505 特開平9−195171号公報JP-A-9-195171

上記従来の低分子有機系抗菌剤は、優れた抗菌性及び抗かび性を示すものの、耐水性が低く、部材表面に付着させても水によって容易に脱落しやすかった。そのため、台所、浴室、洗面所及びトイレ等の水回りや洗濯を繰り返す繊維製品に対しては、付与した抗菌性及び抗かび性を長期にわたって持続させることができないという問題があった。   The conventional low molecular weight organic antibacterial agent exhibits excellent antibacterial and antifungal properties, but has low water resistance, and even if it adheres to the surface of a member, it is easily removed by water. Therefore, there has been a problem that the provided antibacterial and antifungal properties cannot be sustained over a long period of time for textile products that repeat washing and washing such as kitchens, bathrooms, toilets, and toilets.

一方、上記従来の高分子有機系抗菌剤は、耐水性には優れており、抗菌性は十分であるものの、抗かび性が不十分であるため、居住空間で問題となっているかびによる変色や異臭などを防ぐことができないという問題を有している。   On the other hand, the above-mentioned conventional polymer organic antibacterial agents have excellent water resistance and antibacterial properties, but have insufficient antifungal properties. And has a problem that it cannot prevent odors.

ところで、包装材等に含まれる2,6−ジ−t−ブチル−p−クレゾール(以下、BHTと記す)等の酸化防止剤によって、包装された繊維製品等が黄変する現象が多く報告されている。このBHTによる基材の黄変は、次のようにして起こると考えられている。まず包装材中のBHTが経時で昇華し、繊維製品に付着する。次にこのBHTが空気中の酸化窒素ガス(以下、NOxと記す)によるニトロ化等によって黄変物質に変化する。上記従来の高分子有機系抗菌剤は、カチオン性ポリマーであり、BHT又はNOxの基材への吸着を促進すると言われている。また、上記従来の高分子有機系抗菌剤は、熱によって変色し易いという性質も有する。したがって、上記従来の高分子有機系抗菌剤によって抗菌加工された製品においては、NOxとBHTとによる黄変(以下、BHT/NOx黄変と記す)が生じたり、製品加工時や使用時の熱により変色するという問題があった。   By the way, a phenomenon in which packaged textiles are yellowed by an antioxidant such as 2,6-di-t-butyl-p-cresol (hereinafter referred to as BHT) contained in packaging materials has been reported. ing. This yellowing of the substrate due to BHT is considered to occur as follows. First, BHT in the packaging material sublimes with time and adheres to the fiber product. Next, the BHT is changed into a yellowing substance by nitration with nitrogen oxide gas (hereinafter referred to as NOx) in the air. The conventional high molecular weight organic antibacterial agent is a cationic polymer and is said to promote the adsorption of BHT or NOx to a substrate. The conventional polymer organic antibacterial agent also has the property of being easily discolored by heat. Therefore, in products antibacterial processed with the above-mentioned conventional polymer organic antibacterial agents, yellowing due to NOx and BHT (hereinafter referred to as BHT / NOx yellowing) occurs, and heat during product processing and use There was a problem of discoloration.

本発明は、上記事情を鑑みてなされたものであり、抗菌性及び抗かび性を十分有し、なおかつ耐水性、耐熱変色性及び耐BHT/NOxガス変色性に優れた抗菌抗かび剤及びそれを用いて得られる抗菌抗かび性製品を提供することを目的とする。   The present invention has been made in view of the above circumstances, and has an antibacterial and antifungal property, an antibacterial and antifungal agent excellent in water resistance, heat discoloration resistance and BHT / NOx gas discoloration, and the same An object of the present invention is to provide an antibacterial and antifungal product obtainable using

本発明者らは上記課題を解決するため鋭意研究を重ねた結果、特定の構造を有するモノマーを重合させて得られるカチオン性ポリマーを用いることによって、上記課題を解決できることを見出し、この知見に基づき本発明を完成させた。   As a result of intensive studies to solve the above problems, the present inventors have found that the above problems can be solved by using a cationic polymer obtained by polymerizing a monomer having a specific structure. The present invention has been completed.

すなわち、本発明は、下記一般式(1)で表されるモノマーを含む組成物を重合させて得られるカチオン性ポリマーを含有する、抗菌抗かび剤を提供する。

Figure 2013203697

[式(1)中、R、R及びRはそれぞれ独立に、炭素数1〜22のアルキル基若しくはヒドロキシアルキル基、炭素数2〜22のアルケニル基若しくはヒドロキシアルケニル基、又は、−(AO)−Hで表される基を示し、前記AOは炭素数2〜4のアルキレンオキシ基を示し、kはAOの平均付加モル数を示し、2〜4であり、Rは−C(O)−で表される基、−R−O−C(O)−で表される基又は炭素数1〜6のアルキレン基を示し、Rは炭素数1〜6のアルキレン基を示し、Rは水素又は炭素数1〜4のアルキル基を示し、Xn−はn価のアニオンを示し、nは1〜3の整数であり、複数あるAOは同一であっても、異なってもよい。] That is, this invention provides the antibacterial antifungal agent containing the cationic polymer obtained by polymerizing the composition containing the monomer represented by following General formula (1).
Figure 2013203697

Wherein (1), R 1, R 2 and R 3 are each independently an alkyl group or hydroxyalkyl group having 1 to 22 carbon atoms, an alkenyl group or hydroxy alkenyl group having 2 to 22 carbon atoms, or - ( a group represented by AO) k -H, wherein AO represents an alkyleneoxy group having 2 to 4 carbon atoms, k represents an average addition mole number of AO, is 2-4, R 4 is -C A group represented by (O) —, a group represented by —R 6 —O—C (O) — or an alkylene group having 1 to 6 carbon atoms, wherein R 6 represents an alkylene group having 1 to 6 carbon atoms. R 5 represents hydrogen or an alkyl group having 1 to 4 carbon atoms, X n- represents an n-valent anion, n represents an integer of 1 to 3, and a plurality of AOs may be the same or different May be. ]

本発明の抗菌抗かび剤は、上記一般式(1)で表されるモノマーを含む組成物を重合させて得られるカチオン性ポリマーを含有することによって、抗菌性及び抗かび性を十分有し、なおかつ耐水性、耐熱変色性及び耐BHT/NOxガス変色性に優れた抗菌抗かび剤になり得る。   The antibacterial and antifungal agent of the present invention has sufficient antibacterial and antifungal properties by containing a cationic polymer obtained by polymerizing a composition containing the monomer represented by the general formula (1). Moreover, it can be an antibacterial and antifungal agent having excellent water resistance, heat discoloration resistance, and BHT / NOx gas discoloration resistance.

また、本発明は、上記抗菌抗かび剤により抗菌抗かび性を付与された抗菌抗かび性製品を提供する。   The present invention also provides an antibacterial and antifungal product imparted with antibacterial and antifungal properties by the above antibacterial and antifungal agent.

本発明によれば、抗菌性及び抗かび性を十分有し、なおかつ耐水性、耐熱変色性及び耐BHT/NOxガス変色性に優れた抗菌抗かび剤及びそれを用いて得られる抗菌抗かび性製品を提供することが可能になる。   According to the present invention, an antibacterial and antifungal agent having sufficient antibacterial and antifungal properties, and excellent in water resistance, heat discoloration resistance and BHT / NOx gas discoloration property, and antibacterial and antifungal properties obtained by using the same It becomes possible to provide products.

本実施形態に係る抗菌抗かび剤は、下記一般式(1)で表されるモノマーを含む組成物を重合させて得られるカチオン性ポリマーを含有する。   The antibacterial and antifungal agent according to the present embodiment contains a cationic polymer obtained by polymerizing a composition containing a monomer represented by the following general formula (1).

Figure 2013203697
Figure 2013203697

式(1)中、R、R及びRは、それぞれ独立に、炭素数1〜22のアルキル基若しくはヒドロキシアルキル基、炭素数2〜22のアルケニル基若しくはヒドロキシアルケニル基、又は、−(AO)−Hで表される基である。 In formula (1), R 1 , R 2 and R 3 each independently represent an alkyl group or hydroxyalkyl group having 1 to 22 carbon atoms, an alkenyl group or hydroxyalkenyl group having 2 to 22 carbon atoms, or-( AO) is a group represented by k- H.

炭素数1〜22のアルキル基は直鎖状でも分岐鎖状であってもよい。このようなアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基、イコシル基及びドコシル基が挙げられる。   The alkyl group having 1 to 22 carbon atoms may be linear or branched. Examples of such alkyl groups include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, dodecyl, tetradecyl, hexadecyl, octadecyl, icosyl. Groups and docosyl groups.

炭素数1〜22のヒドロキシアルキル基は直鎖状であっても分岐鎖状であってもよい。このようなヒドロキシアルキル基としては、例えば、2−ヒドロキシエチル基、2−ヒドロキシプロピル基、4−ヒドロキシブチル基及び10−ヒドロキシオクタデシル基が挙げられる。   The hydroxyalkyl group having 1 to 22 carbon atoms may be linear or branched. Examples of such a hydroxyalkyl group include a 2-hydroxyethyl group, a 2-hydroxypropyl group, a 4-hydroxybutyl group, and a 10-hydroxyoctadecyl group.

炭素数2〜22のアルケニル基は直鎖状でも分岐鎖状であってもよい。このようなアルケニル基としては、例えば、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、ノネニル基、デセニル基、ドデセニル基、テトラデセニル基、ヘキサデセニル基、オクタデセニル基、イコセニル基及びドコセニル基が挙げられる。   The alkenyl group having 2 to 22 carbon atoms may be linear or branched. Examples of such alkenyl groups include propenyl, butenyl, pentenyl, hexenyl, heptenyl, octenyl, nonenyl, decenyl, dodecenyl, tetradecenyl, hexadecenyl, octadecenyl, icosenyl and dococenyl. Groups.

炭素数2〜22のヒドロキシアルケニル基は直鎖状であっても分岐鎖状であってもよい。このようなヒドロキシアルケニル基としては、例えば、3−ヒドロキシプロペニル基及び12−ヒドロキシ−9−オクタデセニル基が挙げられる。   The C2-C22 hydroxyalkenyl group may be linear or branched. Examples of such a hydroxyalkenyl group include a 3-hydroxypropenyl group and a 12-hydroxy-9-octadecenyl group.

−(AO)−Hで表される基において、AOは炭素数2〜4のアルキレンオキシ基である。kはAOの平均付加モル数を示し、2〜4である。 In the group represented by — (AO) k —H, AO is an alkyleneoxy group having 2 to 4 carbon atoms. k shows the average addition mole number of AO, and is 2-4.

AOとしては、エチレンオキシ基、プロピレンオキシ基、ブチレンオキシ基等が挙げられる。複数あるAOは同一であっても、異なってもよい。すなわち、複数あるAOは、炭素数2〜4のアルキレンオキサイドが1種のみで付加重合してなる構造であってもよいし、2種以上でブロック付加重合又はランダム付加重合してなる構造であってもよい。抗菌性及び抗かび性がより優れるという観点から、複数あるAOは、エチレンオキシ基、プロピレンオキシ基のいずれかの単独付加構造、又は、それらのブロック付加構造若しくはランダム付加構造が好ましい。   Examples of AO include an ethyleneoxy group, a propyleneoxy group, and a butyleneoxy group. A plurality of AOs may be the same or different. That is, the plurality of AOs may have a structure in which an alkylene oxide having 2 to 4 carbon atoms is addition-polymerized with only one kind, or a structure in which two or more kinds are subjected to block addition polymerization or random addition polymerization. May be. From the viewpoint of more excellent antibacterial and antifungal properties, the plurality of AOs are preferably a single addition structure of either an ethyleneoxy group or a propyleneoxy group, or a block addition structure or a random addition structure thereof.

抗菌性及び抗かび性がより優れるという観点から、式(1)中のR、R、Rの内、少なくとも一つが炭素数8〜22のアルキル基、アルケニル基、ヒドロキシアルキル基及びヒドロキシアルケニル基等の長鎖の基(長鎖基)であり、少なくとも一つが炭素数1〜4のアルキル基、アルケニル基、ヒドロキシアルキル基及びヒドロキシアルケニル基等の短鎖の基(短鎖基)であることが好ましい。さらに、抗菌性及び抗かび性がより優れるという観点から、長鎖基は、炭素数8〜18のアルキル基又はアルケニル基であることが好ましく、短鎖基は炭素数1〜4のアルキル基又はヒドロキシアルキル基であることが好ましい。 From the viewpoint of more excellent antibacterial and antifungal properties, at least one of R 1 , R 2 and R 3 in formula (1) is an alkyl group, alkenyl group, hydroxyalkyl group and hydroxy group having 8 to 22 carbon atoms. A long-chain group (long-chain group) such as an alkenyl group, at least one of which is a short-chain group (short-chain group) such as an alkyl group having 1 to 4 carbon atoms, an alkenyl group, a hydroxyalkyl group, or a hydroxyalkenyl group Preferably there is. Furthermore, from the viewpoint of more excellent antibacterial and antifungal properties, the long chain group is preferably an alkyl group or alkenyl group having 8 to 18 carbon atoms, and the short chain group is an alkyl group having 1 to 4 carbon atoms or A hydroxyalkyl group is preferred.

は、−C(O)−で表される基、−R−O−C(O)−で表される基又は炭素数1〜6のアルキレン基である。Rは、炭素数1〜6のアルキレン基である。 R 4 is a group represented by —C (O) —, a group represented by —R 6 —O—C (O) —, or an alkylene group having 1 to 6 carbon atoms. R 6 is an alkylene group having 1 to 6 carbon atoms.

抗菌性及び抗かび性がより優れるという観点から、Rは、−C(O)−で表される基、−R−O−C(O)−で表される基(Rは、炭素数1〜6のアルキレン基)又はメチレン基であることが好ましい。 From the viewpoint of more excellent antibacterial properties and antifungal properties, R 4 represents a group represented by —C (O) —, a group represented by —R 6 —O—C (O) — (R 6 represents An alkylene group having 1 to 6 carbon atoms) or a methylene group is preferable.

は水素又は炭素数1〜4のアルキル基であり、抗菌性及び抗かび性がより優れるという観点から、Rは水素原子又はメチル基であることが好ましい。 R 5 is hydrogen or an alkyl group having 1 to 4 carbon atoms, and R 5 is preferably a hydrogen atom or a methyl group from the viewpoint of more excellent antibacterial and antifungal properties.

n−はn価のアニオンであり、nは1〜3の整数である。上記アニオンとしては、4級アンモニウム化合物と対イオンを形成することができるアニオンであれば特に制限はなく、例えば、ギ酸、酢酸、プロピオン酸、グルコン酸、乳酸、フマル酸、マレイン酸及びアジピン酸等の一価又は多価カルボン酸が脱プロトン化して生成するアニオン、アルキルリン酸エステルアニオン、アルキル硫酸エステルアニオン、アルキルスルホンアニオン、ハロゲンアニオン、硫酸イオン、硝酸イオン、並びに、リン酸イオンが挙げられる。中でも、抗菌性及び抗かび性がより優れることから、塩素イオン、臭素イオン及び硫酸イオンが好ましい。 X n− is an n-valent anion, and n is an integer of 1 to 3. The anion is not particularly limited as long as it can form a counter ion with a quaternary ammonium compound. For example, formic acid, acetic acid, propionic acid, gluconic acid, lactic acid, fumaric acid, maleic acid, adipic acid, and the like Anion, alkyl phosphate ester anion, alkyl sulfate ester anion, alkyl sulfone anion, halogen anion, sulfate ion, nitrate ion, and phosphate ion produced by deprotonation of a monovalent or polyvalent carboxylic acid. Of these, chlorine ions, bromine ions, and sulfate ions are preferred because of their superior antibacterial and antifungal properties.

上記式(1)で表されるモノマーは、例えば、下記一般式(2)で表される化合物と3
級アミンの中和物とを反応させることによって得ることができる。式(2)中、R、Rは前述の通りである。
The monomer represented by the above formula (1) is, for example, a compound represented by the following general formula (2) and 3
It can be obtained by reacting with a neutralized product of a secondary amine. In formula (2), R 4 and R 5 are as described above.

Figure 2013203697
Figure 2013203697

式(2)中のRが−C(O)−で表される基であるグリシジル化合物としては、例えば、グリシジルアクリレート、グリシジルメタクリレート等が挙げられる。 Examples of the glycidyl compound in which R 4 in the formula (2) is a group represented by —C (O) — include glycidyl acrylate and glycidyl methacrylate.

式(2)中のRが−R−O−C(O)−で表される基であるグリシジル化合物としては、例えば、2−グリシジルオキシエチルアクリレート、2−グリシジルオキシエチルメタクリレート、4−ヒドロキシブチルアクリレートグリシジルエーテル、4−ヒドロキシブチルメタクリレートグリシジルエーテル等が挙げられる。 Examples of the glycidyl compound in which R 4 in the formula (2) is a group represented by —R 6 —O—C (O) — include 2-glycidyloxyethyl acrylate, 2-glycidyloxyethyl methacrylate, 4- Examples thereof include hydroxybutyl acrylate glycidyl ether and 4-hydroxybutyl methacrylate glycidyl ether.

式(2)中のRが炭素数1〜6のアルキレン基、又は炭素数2〜6のアルケニレン基であるグリシジル化合物としては、例えば、アリルグリシジルエーテル等が挙げられる。 Examples of the glycidyl compound in which R 4 in the formula (2) is an alkylene group having 1 to 6 carbon atoms or an alkenylene group having 2 to 6 carbon atoms include allyl glycidyl ether.

これらの中でも、抗菌性及び抗かび性がより優れるという観点から、グリシジルアクリレート、グリシジルメタクリレート及びアリルグリシジルエーテルが好ましい。   Among these, glycidyl acrylate, glycidyl methacrylate, and allyl glycidyl ether are preferable from the viewpoint that antibacterial properties and antifungal properties are more excellent.

上記3級アミンは、式(1)中のR、R、Rに対応する基を有する3級アミンである。 The tertiary amine is a tertiary amine having groups corresponding to R 1 , R 2 and R 3 in the formula (1).

上記3級アミンの中和物を得るために用いられる酸は、式(1)のXn−を産出する酸であってよく、このような酸としては、例えば、塩酸、硫酸、燐酸及び硝酸等の無機酸、ギ酸、酢酸、プロピオン酸、グルコン酸、乳酸、フマル酸、マレイン酸及びアジピン酸等の1価又は多価カルボン酸、アルキルスルホン酸、アルキル硫酸エステル、アルキルリン酸、並びに、アルキルリン酸エステルが挙げられる。 Acid used to obtain the neutralized product of the tertiary amine may be an acid that produce X n- in the formula (1), as such acids are, for example, hydrochloric acid, sulfuric acid, phosphoric acid and nitric acid Inorganic acids such as formic acid, acetic acid, propionic acid, gluconic acid, lactic acid, fumaric acid, maleic acid and adipic acid, etc., alkylsulfonic acid, alkylsulfuric acid ester, alkylphosphoric acid, and alkyl A phosphate ester is mentioned.

式(2)で表されるグリシジル化合物と上記3級アミンの中和物との反応は、上記グリシジル化合物のアクリロイル基又はメタクリロイル基の二重結合部分の重合反応を抑えながら行うことが好ましい。このための方法としては、従来公知のアクリル酸エステル系モノマー又はメタアクリル酸エステル系モノマーの製法における重合禁止方法が挙げられる。すなわち、反応系に、重合禁止剤を添加する方法や、5〜10容量%の酸素を含む気体組成物や空気等を通じることによって窒素などの不活性ガス雰囲気下で反応を行わない方法が挙げられる。上記重合禁止剤としてはハイドロキノン、ハイドロキノンモノメチルエーテル、フェノチアジン等、公知のものが挙げられる。重合禁止剤の添加量は、反応物の総量に対し0.01〜5質量%、好ましくは0.05〜1.0質量%の範囲である。   The reaction between the glycidyl compound represented by the formula (2) and the neutralized product of the tertiary amine is preferably performed while suppressing the polymerization reaction of the double bond portion of the acryloyl group or methacryloyl group of the glycidyl compound. As a method for this, the polymerization prohibition method in the manufacturing method of a conventionally well-known acrylate-type monomer or a methacrylic acid ester-type monomer is mentioned. That is, a method in which a polymerization inhibitor is added to the reaction system, and a method in which the reaction is not performed in an inert gas atmosphere such as nitrogen by passing a gas composition containing 5 to 10% by volume of oxygen, air, or the like. It is done. Examples of the polymerization inhibitor include known ones such as hydroquinone, hydroquinone monomethyl ether, and phenothiazine. The addition amount of a polymerization inhibitor is 0.01-5 mass% with respect to the total amount of a reaction material, Preferably it is the range of 0.05-1.0 mass%.

式(1)で表されるモノマーを含む組成物を重合させることによって、本実施形態に係る抗菌抗かび剤に用いるカチオン性ポリマーを得ることができる。上記カチオン性ポリマーは、式(1)で表されるモノマーを単独で重合させて得られるカチオン性ポリマーであってもよいし、必要に応じて他のモノマーと共重合させて得られるカチオン性ポリマーであってもよい。式(1)で表されるモノマーを単独で重合させて得られるカチオン性ポリマーとしては、例えば下記一般式(3)で表されるカチオン性ポリマーが挙げられる。ここでmは、繰り返し単位の数を示し、2以上の整数であり、かつ、使用するモノマーの種類及び後述するカチオン性ポリマーの重量平均分子量から算出される範囲の整数であることが好ましい。カチオン性ポリマーが共重合体である場合、例えば、下記一般式(3)におけるmが1である構造単位を含む共重合体が挙げられる。この場合、共重合体は前記構造単位を2以上含み、かつ、使用するモノマーの種類、使用するモノマーの割合及び後述するカチオン性ポリマーの重量平均分子量から算出される範囲で含むことが好ましい。なお、本明細書において、式(1)で表されるモノマーを単独で重合させるの意味には、式(1)で表されるモノマーを2種以上重合する場合が包含される。また、式(1)で表されるモノマーを共重合させるの意味は、式(1)で表されるモノマーを当該モノマー以外のモノマーと重合させる場合をいう。   The cationic polymer used for the antibacterial and antifungal agent according to the present embodiment can be obtained by polymerizing the composition containing the monomer represented by the formula (1). The cationic polymer may be a cationic polymer obtained by polymerizing the monomer represented by formula (1) alone, or may be obtained by copolymerizing with another monomer as necessary. It may be. Examples of the cationic polymer obtained by polymerizing the monomer represented by the formula (1) alone include a cationic polymer represented by the following general formula (3). Here, m represents the number of repeating units, is an integer of 2 or more, and is preferably an integer in a range calculated from the type of monomer used and the weight average molecular weight of the cationic polymer described later. When the cationic polymer is a copolymer, for example, a copolymer containing a structural unit in which m in the following general formula (3) is 1 can be mentioned. In this case, the copolymer preferably includes two or more of the structural units, and includes within a range calculated from the type of monomer used, the proportion of the monomer used, and the weight average molecular weight of the cationic polymer described below. In the present specification, the meaning of polymerizing the monomer represented by the formula (1) alone includes a case where two or more monomers represented by the formula (1) are polymerized. The meaning of copolymerizing the monomer represented by the formula (1) refers to the case where the monomer represented by the formula (1) is polymerized with a monomer other than the monomer.

Figure 2013203697
Figure 2013203697

式(1)で表されるモノマーでは耐水性が不十分であるが、式(1)で表されるモノマーを単独で重合させて得られるカチオン性ポリマー、又は式(1)で表されるモノマーと他のモノマーとを共重合させて得られるカチオン性ポリマーを用いることによって、優れた耐水性を有する抗菌抗かび剤を得ることができる。   The monomer represented by the formula (1) has insufficient water resistance, but the cationic polymer obtained by polymerizing the monomer represented by the formula (1) alone, or the monomer represented by the formula (1) By using a cationic polymer obtained by copolymerizing a monomer with other monomers, an antibacterial and antifungal agent having excellent water resistance can be obtained.

式(1)で表されるモノマーと共重合させる他のモノマーとしては、式(1)で表されるモノマーと共重合することの出来るモノマーであれば特に制限されことはなく、1種又は2種以上を使用してよい。他のモノマーと共重合する場合、式(1)で表されるモノマーは1種又は2種以上を使用することができる。   The other monomer to be copolymerized with the monomer represented by the formula (1) is not particularly limited as long as it is a monomer that can be copolymerized with the monomer represented by the formula (1). More than seeds may be used. When copolymerizing with another monomer, the monomer represented by Formula (1) can use 1 type (s) or 2 or more types.

そのような他のモノマーとしては、例えば、ラジカル重合が可能な不飽和炭化水素基を有する化合物が挙げられる。そのような化合物としては、例えば、アルキル基の炭素数が2〜18のメタクリル酸アルキル、アルキル基の炭素数が1〜18のアクリル酸アルキル、アクリル酸及びメタクリル酸等のα,β−不飽和酸、マレイン酸、フマル酸及びイタコン酸等の不飽和基含有二価カルボン酸並びにそれらのアルキルエステル、スチレン、α−メチルスチレン及びベンゼン環に置換基を有するスチレン等の芳香族ビニル化合物、アクリロニトリル及びメタクリロニトリル等のシアン化ビニル化合物、アクリルアミド及びメタクリルアミド等のアミド化合物、並びに、グリシジルアクリレート、グリシジルメタアクリレート及びアリルグリシジルエーテル等のグリシジル化合物を好適に用いることができる。   Examples of such other monomers include compounds having an unsaturated hydrocarbon group capable of radical polymerization. Examples of such a compound include α, β-unsaturation such as alkyl methacrylate having 2 to 18 carbon atoms in the alkyl group, alkyl acrylate having 1 to 18 carbon atoms in the alkyl group, acrylic acid, and methacrylic acid. Unsaturated divalent carboxylic acids such as acid, maleic acid, fumaric acid and itaconic acid and their alkyl esters, styrene, α-methylstyrene and aromatic vinyl compounds such as styrene having a substituent on the benzene ring, acrylonitrile and Vinyl cyanide compounds such as methacrylonitrile, amide compounds such as acrylamide and methacrylamide, and glycidyl compounds such as glycidyl acrylate, glycidyl methacrylate and allyl glycidyl ether can be suitably used.

式(1)で表されるモノマーと他のモノマーとを共重合させて本実施形態に係るカチオン性ポリマーを得る場合、式(1)で表されるモノマーは、全モノマーの総質量に対して20質量%以上であることが好ましく、50質量%以上であることがより好ましい。式(1)で表されるモノマーが、全モノマーの総質量に対して20質量%未満であると、十分な抗菌性及び抗かび性が得られない傾向がある。また、50質量%以上であると、モノマー使用量に対する抗菌性及び抗かび性の向上がより優れる傾向がある。   When the monomer represented by the formula (1) is copolymerized with another monomer to obtain the cationic polymer according to this embodiment, the monomer represented by the formula (1) is based on the total mass of all monomers. It is preferably 20% by mass or more, and more preferably 50% by mass or more. When the monomer represented by the formula (1) is less than 20% by mass with respect to the total mass of all monomers, sufficient antibacterial properties and antifungal properties tend not to be obtained. Moreover, there exists a tendency for the improvement of the antibacterial property with respect to the monomer usage-amount and antifungal property to be more excellent in it being 50 mass% or more.

本実施形態に係るカチオン性ポリマーの重量平均分子量は特に制限はないが、1000以上であることが好ましい。重量平均分子量が1000未満である場合は、耐水性が不十分となる傾向がある。また、上記カチオン性ポリマーの重量平均分子量は、100000以下であることが好ましい。重量平均分子量が100000を超えると、上記カチオン性ポリマーを得るための重合反応時間が長くなる一方で、抗菌性及び抗かび性の更なる向上が期待できない傾向がある。また、得られるカチオン性ポリマーの粘度が高くなり過ぎて取り扱いが著しく困難となる傾向がある。抗菌性、抗かび性及び耐水性と、コスト及び取り扱いのし易さのバランスから、上記カチオン性ポリマーの重量平均分子量は1000〜50000であることが好ましい。   The weight average molecular weight of the cationic polymer according to this embodiment is not particularly limited, but is preferably 1000 or more. When the weight average molecular weight is less than 1000, the water resistance tends to be insufficient. The cationic polymer preferably has a weight average molecular weight of 100,000 or less. When the weight average molecular weight exceeds 100,000, the polymerization reaction time for obtaining the cationic polymer becomes longer, but further improvement in antibacterial and antifungal properties tends not to be expected. Also, the resulting cationic polymer tends to be too difficult to handle due to excessively high viscosity. From the balance of antibacterial property, antifungal property, water resistance, cost and ease of handling, the cationic polymer preferably has a weight average molecular weight of 1,000 to 50,000.

なお、上記カチオン性ポリマーの重量平均分子量は、分子量既知のポリエチレングリコールを標準物質として、ゲル・パーミエーション・クロマトグラフィーによって測定することができる。   The weight average molecular weight of the cationic polymer can be measured by gel permeation chromatography using polyethylene glycol having a known molecular weight as a standard substance.

式(1)で表されるモノマーを単独で、又は他のモノマーと共に重合させる反応は、従来公知の重合反応を適用することができる。例えば、式(1)で表されるモノマーを、単独で又は他のモノマーと混合し、場合によっては水、溶剤などを配合し、重合開始剤を添加することによって重合することができる。すなわち、式(1)で表されるモノマー、及び、必要に応じて、他のモノマー、水などの溶剤、重合開始剤を含有させた組成物を重合することによって、本実施形態に係るカチオン性ポリマーを得ることができる。上記重合開始剤としては、例えば、公知の熱重合開始剤や光重合開始剤を用いることができる。   A conventionally known polymerization reaction can be applied to the reaction of polymerizing the monomer represented by the formula (1) alone or with other monomers. For example, the monomer represented by the formula (1) can be polymerized by mixing it alone or with other monomers, optionally adding water, a solvent or the like, and adding a polymerization initiator. That is, the cationic property according to the present embodiment is obtained by polymerizing the monomer represented by the formula (1) and, if necessary, another monomer, a solvent such as water, and a composition containing a polymerization initiator. A polymer can be obtained. As the polymerization initiator, for example, a known thermal polymerization initiator or photopolymerization initiator can be used.

上記熱重合開始剤としては、従来公知のアクリル酸又はメタアクリル酸系モノマー重合開始剤を使用できる。例えば、過硫酸ナトリウム、過硫酸カリウム及び過硫酸アンモニウム等の無機過酸化物、tert−ヒドロパーオキサイド、ベンゾイルパーオキサイド及びジ−tert−ブチルパーオキサイド等の有機過酸化物、これらの過酸化物に還元剤を組み合わせた共役酸化−還元系開始剤、並びに、アゾビスイソブチロニトリル、2,2’−アゾビス(2−メチルプロピオンアミジン)二塩酸等の活性アゾ化合物が挙げられる。これらの熱重合開始剤は1種を単独で用いてもよいし2種以上を併用してもよい。   As the thermal polymerization initiator, conventionally known acrylic acid or methacrylic acid monomer polymerization initiators can be used. For example, inorganic peroxides such as sodium persulfate, potassium persulfate and ammonium persulfate, organic peroxides such as tert-hydroperoxide, benzoyl peroxide and di-tert-butyl peroxide, reduced to these peroxides Conjugated oxidation-reduction initiators combined with an agent, and active azo compounds such as azobisisobutyronitrile and 2,2′-azobis (2-methylpropionamidine) dihydrochloride. These thermal polymerization initiators may be used individually by 1 type, and may use 2 or more types together.

上記光重合開始剤としては、光照射によって分解しラジカルを発生する従来公知の光重合開始剤を使用することができ、例えば、ベンゾイン及びベンゾインメチルエーテル等のベンゾイン類、ベンゾフェノン、メチルベンゾフェノン、4,4’−ジクロロベンゾフェノン及び4,4’−ビスジエチルアミノベンゾフェノン等のベンゾフェノン類、アセトフェノン、2,2−ジメトキシ−2−フェニルアセトフェノン、2,2−ジエトキシ−2−フェニルアセトフェノン、1−ヒドロキシシクロヘキシルフェニルケトン、N,N−ジメチルアミノアセトフェノン及び2−メチル−1−[4−(メチルチオ)フェニル]−2−モルフォリノプロパン−1−オン等のアセトフェノン類、2−メチルアントラキノン、2−エチルアントラキノン、1−クロロアントラキノン、2−アミルアントラキノン及び2−アミノアントラキノン等のアントラキノン類、2,4−ジメチルチオキサントン、2,4−ジエチルチオキサントン、2−クロロチオキサントン、2,4−ジイソプロピルチオキサントン及び2−イソプロピルチオキサントン等のチオキサントン類、並びに、アセトフェノンジメチルケタール及びベンジルジメチルケタール等のケタール類を挙げることができる。これらの光重合開始剤は、1種を単独で用いてもよいし2種以上を併用してもよい。   As the photopolymerization initiator, conventionally known photopolymerization initiators that decompose by light irradiation to generate radicals can be used. For example, benzoins such as benzoin and benzoin methyl ether, benzophenone, methylbenzophenone, 4, Benzophenones such as 4′-dichlorobenzophenone and 4,4′-bisdiethylaminobenzophenone, acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 1-hydroxycyclohexyl phenyl ketone, Acetophenones such as N, N-dimethylaminoacetophenone and 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-methylanthraquinone, 2-ethylanthraquinone, 1- Anthraquinones such as loloanthraquinone, 2-amylanthraquinone and 2-aminoanthraquinone, thioxanthones such as 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2-chlorothioxanthone, 2,4-diisopropylthioxanthone and 2-isopropylthioxanthone And ketals such as acetophenone dimethyl ketal and benzyl dimethyl ketal. These photoinitiators may be used individually by 1 type, and may use 2 or more types together.

これらの熱光重合開始剤又は光重合開始剤に加えて、チオール類、ホスフィン類、安息香酸類及び第3級アミン類等の連鎖移動剤、重合促進剤等を併用することができる。更には加熱と光照射との併用で重合反応を行うために、熱重合開始剤、光重合開始剤及びそれらに対する連鎖移動剤、重合促進剤等を併用しても良い。   In addition to these thermal photopolymerization initiators or photopolymerization initiators, chain transfer agents such as thiols, phosphines, benzoic acids and tertiary amines, polymerization accelerators and the like can be used in combination. Furthermore, in order to carry out the polymerization reaction by the combined use of heating and light irradiation, a thermal polymerization initiator, a photopolymerization initiator, a chain transfer agent for them, a polymerization accelerator and the like may be used in combination.

本実施形態に係るカチオン性ポリマーの重量平均分子量は、反応時間、反応温度、反応モル比、重合開始剤等によって調整することができる。   The weight average molecular weight of the cationic polymer according to this embodiment can be adjusted by the reaction time, reaction temperature, reaction molar ratio, polymerization initiator, and the like.

特に重合開始剤の使用量が重量平均分子量に大きく影響する場合が多く、重合開始剤の量が多いほど、得られるカチオン性ポリマーの重量平均分子量は小さくなる傾向がある。また重合反応の反応温度としては、例えば、5〜150℃が挙げられる。重合反応の反応時間は長い程、得られるカチオン性ポリマーの重量平均分子量が大きくなる傾向がある。   In particular, the amount of the polymerization initiator used often greatly affects the weight average molecular weight, and the larger the amount of the polymerization initiator, the smaller the weight average molecular weight of the resulting cationic polymer. Moreover, as reaction temperature of a polymerization reaction, 5-150 degreeC is mentioned, for example. The longer the reaction time of the polymerization reaction, the larger the weight average molecular weight of the resulting cationic polymer.

本実施形態に係る抗菌抗かび剤には、本実施形態に係るカチオン性ポリマーの他に、従来公知の抗菌抗かび性を有する化合物が添加されていてもよい。そのような化合物としては、例えば、塩化ベンザルコニウム及び塩化セチルピリジニウム等の低分子有機系抗菌剤、5−クロロ−2−[2,4−ジクロロフェノキシル]フェノール及び3,4,4’−トリクロロカルバニリド等のハロゲン系抗菌剤、銀及び亜鉛等の無機系抗菌剤、並びに、キトサン及びポリリジン等の天然物系抗菌剤が挙げられる。   In addition to the cationic polymer according to this embodiment, a conventionally known antibacterial and antifungal compound may be added to the antibacterial and antifungal agent according to the present embodiment. Examples of such compounds include low molecular organic antibacterial agents such as benzalkonium chloride and cetylpyridinium chloride, 5-chloro-2- [2,4-dichlorophenoxyl] phenol, and 3,4,4′- Examples include halogen antibacterial agents such as trichlorocarbanilide, inorganic antibacterial agents such as silver and zinc, and natural antibacterial agents such as chitosan and polylysine.

本実施形態に係る抗菌抗かび剤は、その用途に応じて、非イオン活性剤、アニオン活性剤及びカチオン活性剤等の界面活性剤、アクリル系樹脂、ウレタン系樹脂、エポキシ系樹脂、ポリアミド系樹脂及びシリコーン系樹脂等のバインダー樹脂、ヘキシレンジイソシアネート及びトルエンジイソシアネート等のイソシアネート化合物、これらをブロックさせたブロックイソシアネート化合物等の架橋剤、柔軟剤、平滑剤、浸透剤、均染剤、制電剤、キレート剤、酸化防止剤、消泡剤、溶剤、並びに、水等の他の成分を更に含有することができる。   The antibacterial and antifungal agent according to this embodiment is a surfactant such as a nonionic active agent, an anionic active agent, and a cationic active agent, an acrylic resin, a urethane resin, an epoxy resin, and a polyamide resin, depending on the application. And binder resins such as silicone resins, isocyanate compounds such as hexylene diisocyanate and toluene diisocyanate, cross-linking agents such as blocked isocyanate compounds obtained by blocking these, softeners, smoothing agents, penetrating agents, leveling agents, antistatic agents, Chelating agents, antioxidants, antifoaming agents, solvents, and other components such as water can be further contained.

上記溶剤としては、特に限定されるものではないが、例えば、メタノール、エタノール、イソプロピルアルコール及びブタノール等の低級アルコール、エチレングリコール、ジエチレングリコール、プロピレングリコール、ヘキサメチレングリコール及びヘキシレングリコール等のグリコール、並びに、グリセリン及びソルビトール等の多価アルコールが挙げられる。   The solvent is not particularly limited, for example, lower alcohols such as methanol, ethanol, isopropyl alcohol and butanol, glycols such as ethylene glycol, diethylene glycol, propylene glycol, hexamethylene glycol and hexylene glycol, and Examples include polyhydric alcohols such as glycerin and sorbitol.

本実施形態に係る抗菌抗かび剤を用いて、繊維、樹脂成形品等の種々の対象物に抗菌抗かび性を付与することによって、本実施形態に係る抗菌抗かび性製品を得ることができる。このような抗菌抗かび性製品は、種々の細菌やかびに対して有効な抗菌性及び抗かび性を発現することができる。また、このような抗菌抗かび性製品は、所望の対象物に抗菌抗かび加工を施すために用いられるものであってもよい。   The antibacterial and antifungal product according to the present embodiment can be obtained by imparting antibacterial and antifungal properties to various objects such as fibers and resin molded products using the antibacterial and antifungal agent according to the present embodiment. . Such antibacterial and antifungal products can exhibit effective antibacterial and antifungal properties against various bacteria and fungi. Moreover, such an antibacterial and antifungal product may be used for applying an antibacterial and antifungal process to a desired object.

抗菌抗かび性製品としては、例えば、液状洗剤、液状石けん、噴霧用液体、その他の液状製品、接着剤、ゲル状製品、コーティング剤、樹脂用添加剤、繊維製品、紙製品及び樹脂製品が挙げられる。   Antibacterial and antifungal products include, for example, liquid detergents, liquid soaps, spray liquids, other liquid products, adhesives, gel products, coating agents, resin additives, textile products, paper products and resin products. It is done.

本実施形態の液状洗剤は、本実施形態の抗菌抗かび剤を、本発明に係るカチオン性ポリマーの含有量が液状洗剤の全質量に対して0.1〜5質量%となる割合で含むことができる。上記含有量が0.1質量%未満では十分な抗菌抗かび効果が発揮され難く、5質量%を超えて使用しても抗菌抗かび性の更なる向上は少なく経済的ではない。本実施形態の液状洗剤は、種々の細菌やかびに対して有効な抗菌抗かび性を有し、台所、浴室、洗面所及びトイレ等の水回り、並びに、洗濯機などに使用されることで細菌やかびに起因する変色や異臭を抑制することができる。また、液状洗剤が繊維用洗剤である場合、繊維における細菌やかびに起因する変色や異臭を抑制することができる。また、本実施形態の液状洗剤は、液状洗剤に使われる従来公知の成分を含むことができる。そのような成分としては、例えば、界面活性剤、上述のような従来公知の抗菌抗かび性を有する化合物、柔軟剤及び漂白剤が挙げられる。   The liquid detergent of the present embodiment contains the antibacterial and antifungal agent of the present embodiment in such a ratio that the content of the cationic polymer according to the present invention is 0.1 to 5% by mass with respect to the total mass of the liquid detergent. Can do. When the content is less than 0.1% by mass, a sufficient antibacterial and antifungal effect is hardly exhibited, and even when the content exceeds 5% by mass, further improvement of the antibacterial and antifungal property is small and not economical. The liquid detergent of this embodiment has antibacterial and antifungal properties that are effective against various bacteria and fungi, and is used in kitchens, bathrooms, bathrooms, toilets, etc., and in washing machines. Discoloration and nasty smell caused by bacteria and fungi can be suppressed. Moreover, when a liquid detergent is a detergent for textiles, the discoloration and nasty smell resulting from the bacteria and mold | fungi in a fiber can be suppressed. Moreover, the liquid detergent of this embodiment can contain a conventionally well-known component used for a liquid detergent. Such components include, for example, surfactants, conventionally known antibacterial and antifungal compounds, softeners and bleaching agents.

本実施形態の液状石けんは、本実施形態の抗菌抗かび剤を、本発明に係るカチオン性ポリマーの含有量が液状石けん全質量に対して0.1〜5質量%となる割合で含むことができる。上記含有量が0.1質量%未満では十分な抗菌抗かび効果が発揮され難く、5質量%を超えて使用しても抗菌抗かび性の更なる向上は少なく経済的ではない。本実施形態の液状石けんは、種々の細菌やかびに対して有効な抗菌抗かび性を有し、洗浄対象における細菌やかびに起因する変色や異臭を抑制することができる。液状石けんの用途としては、家庭用洗濯、工業用洗濯、洗顔、手洗い、及び身体洗浄(ボディーソープなど)等が挙げられる。本実施形態の液状石けんは、液状石けんに使われる従来公知の成分を含むことができる。そのような成分としては、界面活性剤、上述のような従来公知の抗菌抗かび性を有する化合物、保湿剤及び安定剤が挙げられる。   The liquid soap of this embodiment may contain the antibacterial and antifungal agent of this embodiment in a proportion such that the content of the cationic polymer according to the present invention is 0.1 to 5% by mass with respect to the total mass of the liquid soap. it can. When the content is less than 0.1% by mass, a sufficient antibacterial and antifungal effect is hardly exhibited, and even when the content exceeds 5% by mass, further improvement of the antibacterial and antifungal property is small and not economical. The liquid soap of this embodiment has antibacterial and antifungal properties effective against various bacteria and fungi, and can suppress discoloration and off-flavor caused by bacteria and fungi in the object to be cleaned. Examples of the use of liquid soap include household laundry, industrial laundry, face washing, hand washing, body washing (body soap, etc.) and the like. The liquid soap of this embodiment can contain conventionally known components used for liquid soap. Examples of such components include a surfactant, a compound having a conventionally known antibacterial and antifungal property as described above, a humectant, and a stabilizer.

本実施形態の噴霧用液体は、本実施形態の抗菌抗かび剤を、本発明に係るカチオン性ポリマーの含有量が噴霧用液体の全質量に対して0.1〜90質量%となる割合で含むことができる。上記含有量が0.1質量%未満では十分な抗菌抗かび効果が発揮され難く、5質量%を超えて使用しても抗菌抗かび性の更なる向上は少なく経済的ではない。このような噴霧用液体は、本発明に係るカチオン性ポリマーを、水、エタノール若しくはイソプロパノール等の低級アルコール、又はこれらの混合溶媒などで希釈することによって得ることができる。本実施形態の噴霧用液体を、台所、浴室、洗面所及びトイレ等の水回りの壁、床並びにそれらにある物品、寝具、衣類、カーペット、靴、紙、プラスチック製品、陶器、並びに、フィルターなどの細菌やかびが発生する可能性がある箇所に適量噴霧することによって、細菌やかびに起因する変色や異臭を抑えることができる。また、本実施形態の噴霧用液体によれば、対象物に抗菌抗かび加工を施すことができる。   The liquid for spraying according to the present embodiment is an antibacterial antifungal agent according to the present embodiment at a ratio where the content of the cationic polymer according to the present invention is 0.1 to 90% by mass with respect to the total mass of the liquid for spraying. Can be included. When the content is less than 0.1% by mass, a sufficient antibacterial and antifungal effect is hardly exhibited, and even when the content exceeds 5% by mass, further improvement of the antibacterial and antifungal property is small and not economical. Such a spraying liquid can be obtained by diluting the cationic polymer according to the present invention with water, a lower alcohol such as ethanol or isopropanol, or a mixed solvent thereof. The liquid for spraying of the present embodiment is used for the walls, floors and articles, bedding, clothing, carpets, shoes, paper, plastic products, ceramics, filters, etc. in the kitchens, bathrooms, toilets and toilets. By spraying an appropriate amount on the area where there is a possibility of generation of bacteria and mold, discoloration and off-flavor caused by bacteria and mold can be suppressed. Moreover, according to the liquid for spraying of this embodiment, an antibacterial and antifungal process can be given to a target object.

本実施形態の噴霧用液体は、例えば、消臭剤、繊維用処理剤、紙用処理剤、樹脂用処理剤、抗菌剤及び抗かび剤として用いることができる。   The spray liquid of this embodiment can be used, for example, as a deodorant, a fiber treatment agent, a paper treatment agent, a resin treatment agent, an antibacterial agent, and an antifungal agent.

また、上記以外の液状製品としては、例えば、機械油、繊維用処理剤及び紙用処理剤が挙げられる。これらの液状製品は、本実施形態の抗菌抗かび剤を、本発明に係るカチオン性ポリマーの含有量が液状製品の全質量に対して0.01〜5質量%となる割合で含むことができる。上記含有量が0.1質量%未満では十分な抗菌抗かび効果が発揮され難く、5質量%を超えて使用しても抗菌抗かび性の更なる向上は少なく経済的ではない。本実施形態の液状製品は、種々の細菌やかびに対し有効な抗菌抗かび性を有し、細菌やかびに起因する変色や異臭が発生しにくいものになり得る。   Moreover, as liquid products other than the above, for example, machine oils, fiber processing agents, and paper processing agents can be mentioned. These liquid products can contain the antibacterial and antifungal agent of the present embodiment in a proportion such that the content of the cationic polymer according to the present invention is 0.01 to 5% by mass with respect to the total mass of the liquid product. . When the content is less than 0.1% by mass, a sufficient antibacterial and antifungal effect is hardly exhibited, and even when the content exceeds 5% by mass, further improvement of the antibacterial and antifungal property is small and not economical. The liquid product of the present embodiment has antibacterial and antifungal properties effective against various bacteria and fungi, and can be unlikely to cause discoloration and off-flavor due to bacteria and fungi.

本実施形態の接着剤は、本実施形態の抗菌抗かび剤を、本発明に係るカチオン性ポリマーの含有量が接着剤の全質量に対して、0.1〜5質量%となる割合で含むことができる。上記含有量が0.1質量%未満では十分な抗菌抗かび効果が発揮され難く、5質量%を超えて使用しても抗菌抗かび性の更なる向上効果は少なく経済的ではない。このような本実施形態の接着剤は、本実施形態の抗菌抗かび剤を、公知の接着剤等に混合することで得ることができる。公知の接着剤に使用される成分としては、例えば、スチレン・ブタジエン共重合体及びメタクリレート・ブタジエン重合体等の共役ジエン系共重合体ラテックス、アクリル酸エステル又はメタクリル酸エステルの重合体、それらの共重合体などのビニル系重合体ラテックス、ポリアミド樹脂、水系ポリウレタン樹脂、石油樹脂、テルペン樹脂、ポリビニルアルコール、カルボキシ変性ポリビニルアルコール、シリコーン変性ポリビニルアルコール、アマイド変性ポリビニルアルコール、スルホン酸変性ポリビニルアルコール、ポリビニルピロリドン無水マレイン酸樹脂、メラミン樹脂、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシメチルセルロース、酸化澱粉等の変性澱粉、デキストリン、ゼラチン、カゼイン、並びに、大豆蛋白質が挙げられる。本実施形態の接着剤は、種々の細菌やかびに対して有効な抗菌抗かび性を有し、細菌やかびに起因する変色や異臭が発生しにくいものになり得る。   The adhesive of the present embodiment includes the antibacterial and antifungal agent of the present embodiment at a ratio in which the content of the cationic polymer according to the present invention is 0.1 to 5% by mass with respect to the total mass of the adhesive. be able to. When the content is less than 0.1% by mass, a sufficient antibacterial and antifungal effect is hardly exhibited, and even when used in excess of 5% by mass, the effect of further improving the antibacterial and antifungal property is small and not economical. Such an adhesive of this embodiment can be obtained by mixing the antibacterial and antifungal agent of this embodiment with a known adhesive or the like. Examples of components used in known adhesives include conjugated diene copolymer latexes such as styrene / butadiene copolymers and methacrylate / butadiene polymers, polymers of acrylic acid esters or methacrylic acid esters, and copolymers thereof. Polymer-based vinyl polymer latex, polyamide resin, water-based polyurethane resin, petroleum resin, terpene resin, polyvinyl alcohol, carboxy-modified polyvinyl alcohol, silicone-modified polyvinyl alcohol, amide-modified polyvinyl alcohol, sulfonic acid-modified polyvinyl alcohol, polyvinylpyrrolidone anhydrous Maleic acid resin, melamine resin, carboxymethylcellulose, hydroxyethylcellulose, hydroxymethylcellulose, modified starch such as oxidized starch, dextrin, gelatin, casein, In beauty, like soy protein. The adhesive of the present embodiment has antibacterial and antifungal properties effective against various bacteria and fungi, and can hardly cause discoloration and off-flavor caused by bacteria and fungi.

本実施形態のゲル状製品としては、例えば、ゲル状芳香剤、ゲル状消臭剤、湿布薬及びゲル状石けんが挙げられる。これらのゲル状製品は、本実施形態の抗菌抗かび剤を、本発明に係るカチオン性ポリマーの含有量がゲル状製品の全質量に対して0.01〜5質量%となる割合で含むことができる。上記含有量が0.1質量%未満では十分な抗菌抗かび効果が発揮され難く、5質量%を超えて使用しても抗菌性及び抗かび性の更なる向上は少なく経済的ではない。本実施形態のゲル状製品は、種々の細菌やかびに対し有効な抗菌性及び抗かび性を有し、細菌やかびに起因する変色や異臭が発生しにくいものになり得る。   As a gel-like product of this embodiment, a gel-like fragrance | flavor, a gel-like deodorant, a poultice, and a gel-like soap are mentioned, for example. These gel-like products contain the antibacterial and antifungal agent of the present embodiment in a proportion such that the content of the cationic polymer according to the present invention is 0.01 to 5% by mass with respect to the total mass of the gel-like product. Can do. If the content is less than 0.1% by mass, a sufficient antibacterial and antifungal effect is hardly exhibited, and even if it is used in excess of 5% by mass, further improvement in antibacterial and antifungal properties is small and not economical. The gel-like product of this embodiment has antibacterial and antifungal properties that are effective against various bacteria and fungi, and can be unlikely to cause discoloration and off-flavor due to bacteria and fungi.

本実施形態のコーティング剤は、本実施形態の抗菌抗かび剤を、本発明に係るカチオン性ポリマーの含有量がコーティング剤の全質量に対して0.1〜90質量%となる割合で含むことができる。本実施形態のコーティング剤によれば、繊維製品、紙製品及びプラスチックや陶器などの硬質材料表面にコーティングされることで、対象物に抗菌抗かび加工を施すことができ、対象物における細菌やかびに起因する変色や異臭を抑制することができる。コーティング方法としては、従来公知の方法を採用することができ、例えば、ロールコーティング、刷毛塗り及び噴霧が挙げられる。本実施形態のコーティング剤に含まれる他の成分としては、例えば、アクリル樹脂及びウレタン樹脂等のバインダー、増粘剤、制電剤、酸化防止剤及び分散剤が挙げられる。本実施形態のコーティング剤の対象物への付与量は、本発明に係るカチオン性ポリマーが対象物に0.1〜20g/mとなるような量が好ましい。0.1g/m未満では十分な抗菌抗かび性が得られ難く、20g/mを超えて使用しても抗菌抗かび性の更なる向上は少なく、経済的ではない。本実施形態のコーティング剤は、例えば、繊維用処理剤、紙用処理剤及び樹脂用処理剤として用いることができる。 The coating agent of the present embodiment contains the antibacterial and antifungal agent of the present embodiment in such a ratio that the content of the cationic polymer according to the present invention is 0.1 to 90% by mass with respect to the total mass of the coating agent. Can do. According to the coating agent of this embodiment, antibacterial and antifungal processing can be performed on an object by coating on the surface of hard materials such as textiles, paper products, plastics, and ceramics, and bacteria and fungi on the object can be applied. Discoloration and off-flavor caused by can be suppressed. As the coating method, a conventionally known method can be employed, and examples thereof include roll coating, brush coating, and spraying. Examples of other components contained in the coating agent of the present embodiment include binders such as acrylic resins and urethane resins, thickeners, antistatic agents, antioxidants, and dispersants. The amount of the coating agent applied to the object of the present embodiment is preferably such that the cationic polymer according to the present invention is 0.1 to 20 g / m 2 on the object. If it is less than 0.1 g / m 2, it is difficult to obtain sufficient antibacterial and antifungal properties, and even if it is used in excess of 20 g / m 2 , further improvement in antibacterial and antifungal properties is small, which is not economical. The coating agent of this embodiment can be used as, for example, a fiber treating agent, a paper treating agent, and a resin treating agent.

本実施形態の樹脂用添加剤は、添加される樹脂に本発明に係るカチオン性ポリマーが0.01〜1質量%となる割合で添加されるように、本実施形態の抗菌抗かび剤を含むことができる。添加される本発明に係るカチオン性ポリマーの濃度が樹脂に対し0.01質量%未満では十分な抗菌抗かび効果が発揮され難く、1質量%を超えても抗菌抗かび性の更なる向上は難しく、経済的ではない。   The additive for resin of the present embodiment includes the antibacterial and antifungal agent of the present embodiment so that the cationic polymer according to the present invention is added to the added resin at a ratio of 0.01 to 1% by mass. be able to. When the concentration of the cationic polymer according to the present invention added is less than 0.01% by mass with respect to the resin, sufficient antibacterial and antifungal effect is difficult to be exhibited. Difficult and not economical.

本実施形態の樹脂用添加剤によれば、樹脂類を含む樹脂組成物に練り込む等の方法によって、樹脂製品に抗菌及び抗かび加工を施すことができる。用いる樹脂としては特に制限されず、例えば、アクリル樹脂、スチレン樹脂、メラミン樹脂、ウレタン樹脂、フェノール樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリアセタール、フッ素樹脂、シリコーン樹脂、酢酸ビニル樹脂、塩化ビニル樹脂、エポキシ樹脂、ポリエステル樹脂、ポリアミド樹脂、ABS樹脂、ポリカーボネート樹脂及び酢酸セルロースが挙げられる。本実施形態の樹脂用添加剤に含まれる他の成分としては、例えば、制電剤、酸化防止剤及び分散剤が挙げられる。   According to the additive for resin of this embodiment, an antibacterial and antifungal process can be applied to a resin product by a method such as kneading into a resin composition containing resins. The resin to be used is not particularly limited. For example, acrylic resin, styrene resin, melamine resin, urethane resin, phenol resin, polyethylene resin, polypropylene resin, polyacetal, fluorine resin, silicone resin, vinyl acetate resin, vinyl chloride resin, epoxy resin , Polyester resin, polyamide resin, ABS resin, polycarbonate resin and cellulose acetate. Examples of other components contained in the resin additive of the present embodiment include antistatic agents, antioxidants, and dispersants.

本実施形態の樹脂製品としては、上記コーティング剤や樹脂用添加剤によって抗菌抗かび加工が施された樹脂製品を挙げることができる。   Examples of the resin product of this embodiment include a resin product that has been subjected to antibacterial and antifungal processing with the above coating agent or resin additive.

本実施形態の抗菌抗かび性繊維製品は、コーティング、噴霧、浸漬処理、パディング(dip−nip)処理などの公知の方法で、本実施形態の抗菌抗かび剤を繊維に付着させて抗菌抗かび加工をすることによって、製造することができる。本実施形態の抗菌抗かび性繊維製品としては、各種素材、各種形態の繊維製品等が挙げられる。例えば、繊維製品の素材としては、綿、麻、羊毛及び絹等の天然繊維、レーヨン、キュプラ及びテンセル(商標)等の再生セルロース繊維、アセテート及びプロミックスなどの半合成繊維、ポリアミド繊維、ポリエステル繊維、アクリル繊維、ポリオレフィン繊維、ポリ塩化ビニル繊維、ポリイミド繊維及びポリウレタン繊維等の合成繊維、並びに、これらの繊維の複合繊維などが挙げられる。また、繊維製品の形態としては、例えば、短繊維、長繊維、糸、織物、編物、不織布、わた、スライバー及びトップが挙げられる。   The antibacterial and antifungal fiber product of the present embodiment is prepared by attaching the antibacterial and antifungal agent of the present embodiment to the fiber by a known method such as coating, spraying, dipping, and padding (dip-nip). It can be manufactured by processing. Examples of the antibacterial and antifungal fiber product of the present embodiment include various materials and various forms of fiber products. For example, textile materials include natural fibers such as cotton, hemp, wool and silk, regenerated cellulose fibers such as rayon, cupra and tencel (trademark), semi-synthetic fibers such as acetate and promix, polyamide fibers and polyester fibers. And synthetic fibers such as acrylic fiber, polyolefin fiber, polyvinyl chloride fiber, polyimide fiber and polyurethane fiber, and composite fibers of these fibers. Moreover, as a form of a textile product, a short fiber, a long fiber, a thread | yarn, a textile fabric, a knitted fabric, a nonwoven fabric, cotton, a sliver, and a top are mentioned, for example.

上記抗菌抗かび加工がコーティングの場合、例えば、本実施形態の抗菌抗かび剤として、本発明に係るカチオン性ポリマーをウレタン樹脂やアクリル樹脂等のバインダー、増粘剤等に混合した繊維用処理剤を使用することができる。この場合、繊維用処理剤における本発明に係るカチオン性ポリマーの含有量が繊維用処理剤の全質量に対して0.1〜10質量%であることが好ましい。上記抗菌抗かび加工が噴霧の場合、例えば、本実施形態の抗菌抗かび剤として、本発明に係るカチオン性ポリマーの濃度が10〜90質量%の溶液を使用して噴霧処理することが好ましい。このときの溶媒としては、水、メタノール、エタノール、イソプロピルアルコール及びブタノール等の低級アルコール、エチレングリコール、ジエチレングリコール、プロピレングリコール、ヘキサメチレングリコール及びヘキシレングリコール等のグリコール、グリセリン及びソルビトール等の多価アルコール、並びに、アセトン及びメチルエチルケトン等のケトン類が挙げられる。   When the antibacterial and antifungal process is a coating, for example, as an antibacterial and antifungal agent of the present embodiment, a fiber treatment agent in which the cationic polymer according to the present invention is mixed with a binder such as a urethane resin or an acrylic resin, a thickener, or the like. Can be used. In this case, the content of the cationic polymer according to the present invention in the fiber treatment agent is preferably 0.1 to 10% by mass with respect to the total mass of the fiber treatment agent. When the antibacterial and antifungal processing is spraying, for example, it is preferable to use a solution having a cationic polymer concentration of 10 to 90% by mass as the antibacterial and antifungal agent of the present embodiment. As the solvent at this time, water, lower alcohols such as methanol, ethanol, isopropyl alcohol and butanol, glycols such as ethylene glycol, diethylene glycol, propylene glycol, hexamethylene glycol and hexylene glycol, polyhydric alcohols such as glycerin and sorbitol, And ketones, such as acetone and methyl ethyl ketone, are mentioned.

繊維製品にコーティング又は噴霧する場合、本発明に係るカチオン性ポリマーが対象物に不揮発分で0.1〜20g/mとなるように付与されることが好ましい。0.1g/m未満では十分な抗菌抗かび効果が発揮され難く、20g/mを超えて使用しても抗菌性及び抗かび性の更なる向上効果は少なく経済的ではない。 When the textile product is coated or sprayed, the cationic polymer according to the present invention is preferably applied to the object so that the nonvolatile content is 0.1 to 20 g / m 2 . If it is less than 0.1 g / m 2, it is difficult to exhibit a sufficient antibacterial and antifungal effect, and even if it is used in excess of 20 g / m 2 , the effect of further improving antibacterial and antifungal properties is small and not economical.

上記抗菌抗かび加工が浸漬処理又はパディング処理の場合、例えば、本実施形態の抗菌抗かび剤として、本発明に係るカチオン性ポリマーを含む処理浴を作製し、抗菌抗かび加工する方法が挙げられる。処理浴中の本発明に係るカチオン性ポリマーの濃度は、上記カチオン性ポリマーが対象物に不揮発分で0.1〜20g/mとなるように付与される濃度が好ましい。0.1g/m未満では十分な抗菌抗かび効果が発揮され難く、20g/mを超えて使用しても抗菌抗かび性の更なる向上効果は少なく経済的ではない。 When the antibacterial and antifungal treatment is dipping or padding, for example, as the antibacterial and antifungal agent of the present embodiment, a method of preparing a treatment bath containing the cationic polymer according to the present invention and performing an antibacterial and antifungal treatment may be mentioned. . The concentration of the cationic polymer according to the present invention in the treatment bath is preferably a concentration at which the cationic polymer is applied to the object so that the non-volatile content is 0.1 to 20 g / m 2 . If it is less than 0.1 g / m 2, it is difficult to exhibit a sufficient antibacterial and antifungal effect. Even if it is used in excess of 20 g / m 2 , the effect of further improving the antibacterial and antifungal properties is small and not economical.

本実施形態の抗菌抗かび性紙製品は、本実施形態の抗菌抗かび剤を紙に付与することによって製造することができる。紙への付与方法としては、例えば、パルプ化工程、離解工程、叩解工程、薬品などを配合する調成工程、抄紙工程などの紙を製造する工程において本実施形態の抗菌抗かび剤を添加する方法や、本実施形態の抗菌抗かび剤を含む紙用処理剤を調製し、該処理剤を出来上がった紙にコーティング、噴霧、含浸処理、パディング処理などの方法によって、付与する方法等が挙げられる。抗菌性及び抗かび性がより優れるという観点から、本実施形態の抗菌抗かび性紙製品の製造方法としては、本実施形態の抗菌抗かび剤を含む紙用処理剤を調製し、紙にコーティング、噴霧、含浸処理、パディング処理などの方法で、本実施形態の抗菌抗かび剤を付与する方法が好ましい。上記紙用処理剤としては、例えば上述の液状製品としての紙用処理剤が挙げられる。   The antibacterial and antifungal paper product of the present embodiment can be produced by applying the antibacterial and antifungal agent of the present embodiment to paper. As an application method to the paper, for example, the antibacterial and antifungal agent of the present embodiment is added in a process of manufacturing paper such as a pulping process, a disaggregation process, a beating process, a preparation process in which chemicals are blended, and a papermaking process. And a method for applying a treatment agent for paper containing the antibacterial and antifungal agent of the present embodiment and applying the treatment agent to the finished paper by a method such as coating, spraying, impregnation treatment, padding treatment, etc. . From the viewpoint of more excellent antibacterial and antifungal properties, as a method for producing the antibacterial and antifungal paper product of this embodiment, a paper treatment agent containing the antibacterial and antifungal agent of this embodiment is prepared and coated on paper A method of applying the antibacterial and antifungal agent of the present embodiment by a method such as spraying, impregnation treatment or padding treatment is preferred. Examples of the paper processing agent include the paper processing agent as the liquid product described above.

本実施形態の抗菌抗かび剤の紙への付与量としては、例えば本実施形態の抗菌抗かび剤を紙の製造工程にて付与する場合、本発明に係るカチオン性ポリマーがパルプの全質量に対して0.01〜10質量%となるように付与される量が好ましく、0.1〜5質量%となるように付与される量がより好ましい。また、紙にコーティング、噴霧、含浸処理又はパディング処理を施す場合、本発明に係るカチオン性ポリマーがパルプの全質量に対して0.01〜10質量%となるように付与される量が好ましく、0.1〜1質量%となるように付与される量がより好ましい。付与方法が紙へのコーティングの場合、コーティングに用いられる装置としては特に限定されず、例えば、エアナイフコーター、ロールコーター、ブレードコーター、リバースロールコーター、バーコーター、サイズプレスコーター、カーテンコーター及びゲートロールコーターが挙げられる。   As an application amount of the antimicrobial and antifungal agent of the present embodiment to the paper, for example, when the antimicrobial and antifungal agent of the present embodiment is applied in the paper manufacturing process, the cationic polymer according to the present invention is added to the total mass of the pulp. The amount given to be 0.01 to 10% by mass is preferable, and the amount given to be 0.1 to 5% by mass is more preferable. Further, when the paper is subjected to coating, spraying, impregnation treatment or padding treatment, an amount given so that the cationic polymer according to the present invention is 0.01 to 10% by mass with respect to the total mass of the pulp is preferable. The amount given to be 0.1 to 1% by mass is more preferable. When the application method is coating on paper, the apparatus used for coating is not particularly limited. For example, air knife coater, roll coater, blade coater, reverse roll coater, bar coater, size press coater, curtain coater and gate roll coater Is mentioned.

本実施形態の抗菌抗かび性紙製品に使用するパルプは特に制限はなく、例えば、広葉樹及び針葉樹等から得られる木材パルプ、バガス、ケナフ及び竹パルプ等の植物繊維、レーヨン及びポリエステル等の合成高分子繊維、繊維状無機材料、並びに、古紙再生パルプが挙げられる。   The pulp used for the antibacterial and antifungal paper product of the present embodiment is not particularly limited, and for example, synthetic fibers such as wood fiber, bagasse, kenaf and bamboo pulp obtained from hardwoods and conifers, rayon and polyester, etc. Examples include molecular fibers, fibrous inorganic materials, and recycled paper recycled pulp.

以下、実施例を挙げて本発明をさらに説明するが、本発明はこれらの実施例により何ら限定されるものではない。なお、本実施例における固形分とは、試料を105℃で3時間、加熱した後の残分をいう。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further, this invention is not limited at all by these Examples. In addition, solid content in a present Example means the residue after heating a sample at 105 degreeC for 3 hours.

I.抗菌抗かび成分の製造
以下の実施例及び比較例に示す方法で、カチオン性ポリマー等の抗菌抗かび成分を得た。なお、得られたポリマーの重量平均分子量は、ゲル・パーミエーション・クロマトグラフ[カラム:東ソー(株)社製、TSKgel G3000PW−CP]を用い、ポリエチレングリコールを標準物質とし、溶離液に硝酸ナトリウム0.1M水溶液を用いて測定した。モノマーを含む組成物の固形分の全アミン価は、以下の方法で測定した。すなわち、固形分が適量(5g程度)含まれる量の上記組成物を、共栓三角フラスコ100mlに秤量し、そこにアセチル化剤(無水酢酸(試薬1級)及び氷酢酸(試薬1級)の容量比が3:7の混合物)を50ml加え、軽く栓をし、100℃のオイルバスに、時々振りながら30分間漬けておいた。それをN/10過塩素標準液を用いて滴定し、得られた滴定値と以下の式によって全アミン価を算出した。式中、Aは滴定に要したN/10過塩素標準液の量(滴定値)(ml)を示し、Sは組成物の固形分量(g)を示す。
全アミン価=(A×5.61)/S
I. Production of antibacterial and antifungal components Antibacterial and antifungal components such as cationic polymers were obtained by the methods shown in the following examples and comparative examples. The weight average molecular weight of the obtained polymer was determined using gel permeation chromatograph [Column: TSKgel G3000PW-CP] manufactured by Tosoh Corporation, using polyethylene glycol as a standard substance, and sodium nitrate as an eluent. Measured using 1M aqueous solution. The total amine value of the solid content of the composition containing the monomer was measured by the following method. That is, the above composition containing an appropriate amount (about 5 g) of solid content was weighed into 100 ml of a stoppered Erlenmeyer flask, and an acetylating agent (acetic anhydride (reagent grade 1) and glacial acetic acid (reagent grade 1) were added there. 50 ml of a mixture with a volume ratio of 3: 7) was added, lightly stoppered, and immersed in a 100 ° C. oil bath for 30 minutes with occasional shaking. It was titrated with N / 10 perchlorine standard solution, and the total amine value was calculated by the obtained titration value and the following formula. In the formula, A represents the amount (titration value) (ml) of the N / 10 perchlorine standard solution required for titration, and S represents the solid content (g) of the composition.
Total amine number = (A × 5.61) / S

[実施例1]
(モノマーM−1及びカチオン性ポリマーP−1の製造)
温度計と冷却コンデンサーとを取り付けた4つ口フラスコに、ジメチルベヘニルアミン(全アミン価:157、全アミン価から求めた分子量:357、178.5g、0.5モル)と、溶剤としてイソプロピルアルコール(70g)とを入れた。そこに、塩酸の35質量%水溶液(53.1g、塩酸0.51モル)を反応混合物に滴下し撹拌しながら加え、中和した。次に、重合禁止剤としてハイドロキノンモノメチルエーテル(0.015g)を反応混合物に添加し、均一に溶解するまで撹拌し、液中へ空気の吹き込みを行った。
[Example 1]
(Production of Monomer M-1 and Cationic Polymer P-1)
In a four-necked flask equipped with a thermometer and a cooling condenser, dimethylbehenylamine (total amine value: 157, molecular weight determined from total amine value: 357, 178.5 g, 0.5 mol) and isopropyl alcohol as a solvent (70 g) was added. Thereto, a 35% by mass aqueous solution of hydrochloric acid (53.1 g, hydrochloric acid 0.51 mol) was added dropwise to the reaction mixture with stirring, and neutralized. Next, hydroquinone monomethyl ether (0.015 g) as a polymerization inhibitor was added to the reaction mixture, stirred until it was uniformly dissolved, and air was blown into the liquid.

70〜75℃の温度にてグリシジルメタクリレート(71.1g、0.5モル)を約2時間かけて反応混合物に滴下した。滴下終了後、70〜75℃の温度にて約4時間、反応させ、モノマーM−1を含む組成物を得た。得られた組成物の固形分の全アミン価は4.0であった。   Glycidyl methacrylate (71.1 g, 0.5 mol) was added dropwise to the reaction mixture over about 2 hours at a temperature of 70-75 ° C. After completion of dropping, the reaction was carried out at a temperature of 70 to 75 ° C. for about 4 hours to obtain a composition containing the monomer M-1. The total amine value of the solid content of the obtained composition was 4.0.

次に、温度計と冷却コンデンサーとを取り付けた4つ口フラスコに、窒素ガス気流下にて、イオン交換水(300g、1回目)と、固形分20gが含まれる量の上記組成物とを入れ、撹拌しながら35〜45℃になるまで加熱した。重合開始剤として2,2’−アゾビス(2−メチルプロピオンアミンアミジン)二塩酸(0.05g)をイオン交換水(0.5g)に溶解し、それを反応混合物に滴下しながら徐々に温度を上げていった。約48℃で、さらにイオン交換水(800g、2回目)を反応混合物に入れ、48〜52℃にて3時間重合反応を行い、カチオン性ポリマーP−1を含む組成物を得た。得られた組成物は半透明高粘度の液体であり、カチオン性ポリマーP−1の重量平均分子量は9000であった。   Next, in a four-necked flask equipped with a thermometer and a cooling condenser, ion exchange water (300 g, first time) and the above composition containing 20 g of solid content are placed under a nitrogen gas stream. The mixture was heated to 35 to 45 ° C. with stirring. As a polymerization initiator, 2,2′-azobis (2-methylpropionamineamidine) dihydrochloric acid (0.05 g) was dissolved in ion-exchanged water (0.5 g), and the temperature was gradually increased while dropping it into the reaction mixture. It was raised. Ion exchange water (800 g, second time) was further added to the reaction mixture at about 48 ° C., and a polymerization reaction was performed at 48 to 52 ° C. for 3 hours to obtain a composition containing the cationic polymer P-1. The obtained composition was a translucent high-viscosity liquid, and the weight average molecular weight of the cationic polymer P-1 was 9000.

[実施例2]
(モノマーM−2及びカチオン性ポリマーP−2の製造)
ジメチルベヘニルアミン(178.5g、0.5モル)をジメチルステアリルアミン(全アミン価:186.5、全アミン価から求めた分子量:301、150.5g、0.5モル)に換えたこと以外は実施例1と同様にして、モノマーM−2を含む組成物を得た。得られた組成物の固形分の全アミン価は3.6であった。
[Example 2]
(Production of Monomer M-2 and Cationic Polymer P-2)
Other than changing dimethylbehenylamine (178.5 g, 0.5 mol) to dimethylstearylamine (total amine value: 186.5, molecular weight determined from total amine value: 301, 150.5 g, 0.5 mol) Obtained a composition containing monomer M-2 in the same manner as in Example 1. The total amine value of the solid content of the obtained composition was 3.6.

次に、モノマーM−1を含む組成物を、モノマーM−2を含む上記組成物に換え、2回目に添加するイオン交換水の量を800gから600gに換えたこと以外は実施例1と同様にして、カチオン性ポリマーP−2を含む組成物を得た。得られた組成物は半透明高粘度の液体であり、カチオン性ポリマーP−2の重量平均分子量は9200であった。   Next, the composition containing monomer M-1 was replaced with the composition containing monomer M-2, and the amount of ion-exchanged water added for the second time was changed from 800 g to 600 g, as in Example 1. Thus, a composition containing the cationic polymer P-2 was obtained. The resulting composition was a translucent high-viscosity liquid, and the weight average molecular weight of the cationic polymer P-2 was 9,200.

[実施例3]
(モノマーM−3及びカチオン性ポリマーP−3の製造)
ジメチルベヘニルアミン(178.5g、0.5モル)をジメチルパルミチルアミン(全アミン価:205.5、全アミン価から求めた分子量:273、136.5g、0.5モル)に換えたこと以外は実施例1と同様にして、モノマーM−3を含む組成物を得た。得られた組成物の固形分の全アミン価は3.0であった。
[Example 3]
(Production of Monomer M-3 and Cationic Polymer P-3)
Dimethylbehenylamine (178.5 g, 0.5 mol) was replaced with dimethylpalmitylamine (total amine value: 205.5, molecular weight determined from total amine value: 273, 136.5 g, 0.5 mol). Except for this, a composition containing monomer M-3 was obtained in the same manner as in Example 1. The total amine value of the solid content of the obtained composition was 3.0.

次に、モノマーM−1を含む組成物を、モノマーM−3を含む上記組成物に換え、2回目に添加するイオン交換水の量を800gから600gに換えたこと以外は実施例1と同様にして、カチオン性ポリマーP−3を含む組成物を得た。得られた組成物は半透明高粘度の液体であり、カチオン性ポリマーP−3の重量平均分子量は11000であった。   Next, the composition containing monomer M-1 was replaced with the composition containing monomer M-3, and the amount of ion-exchanged water added for the second time was changed from 800 g to 600 g, as in Example 1. Thus, a composition containing the cationic polymer P-3 was obtained. The resulting composition was a translucent high viscosity liquid, and the weight average molecular weight of the cationic polymer P-3 was 11,000.

[実施例4]
(モノマーM−4及びカチオン性ポリマーP−4の製造)
ジメチルベヘニルアミン178.5g、0.5モル)をジメチルミリスチルアミン(全アミン価:229、全アミン価から求めた分子量:245、122.5g、0.5モル)に換えたこと以外は実施例1と同様にして、モノマーM−4を含む組成物を得た。得られた組成物の固形分の全アミン価は3.2であった。
[Example 4]
(Production of Monomer M-4 and Cationic Polymer P-4)
Example except that dimethyl behenylamine 178.5 g (0.5 mol) was replaced with dimethyl myristylamine (total amine value: 229, molecular weight determined from total amine value: 245, 122.5 g, 0.5 mol) In the same manner as in Example 1, a composition containing monomer M-4 was obtained. The total amine value of the solid content of the obtained composition was 3.2.

次に、モノマーM−1を含む組成物を、モノマーM−4を含む上記組成物に換え、2回目に添加するイオン交換水の量を800gから600gに換えたこと以外は実施例1と同様にして、カチオン性ポリマーP−4を含む組成物を得た。得られた組成物は半透明高粘度の液体であり、カチオン性ポリマーP−4の重量平均分子量は11000であった。   Next, the composition containing monomer M-1 was replaced with the composition containing monomer M-4, and the amount of ion-exchanged water added for the second time was changed from 800 g to 600 g, as in Example 1. Thus, a composition containing the cationic polymer P-4 was obtained. The resulting composition was a translucent high-viscosity liquid, and the weight average molecular weight of the cationic polymer P-4 was 11,000.

[実施例5]
(モノマーM−5及びカチオン性ポリマーP−5−1の製造)
ジメチルベヘニルアミン(178.5g、0.5モル)をジメチルラウリルアミン(全アミン価:261、全アミン価から求めた分子量:215、107.5g、0.5モル)に換えたこと以外は実施例1と同様にして、モノマーM−5を含む組成物を得た。得られた組成物の固形分の全アミン価は2.8であった。
[Example 5]
(Production of Monomer M-5 and Cationic Polymer P-5-1)
Except for replacing dimethylbehenylamine (178.5 g, 0.5 mol) with dimethyllaurylamine (total amine value: 261, molecular weight determined from total amine value: 215, 107.5 g, 0.5 mol) In the same manner as in Example 1, a composition containing monomer M-5 was obtained. The total amine value of the solid content of the obtained composition was 2.8.

次に、モノマーM−1を含む組成物を、モノマーM−5を含む上記組成物に換え、2回目に添加するイオン交換水の量を800gから400gに換え、重合開始剤(2,2’−アゾビス(2−メチルプロピオンアミンアミジン)二塩酸)の使用量を0.05gから0.025gに換えたこと以外は実施例1と同様にして、カチオン性ポリマーP−5−1を含む組成物を得た。得られた組成物は半透明高粘度の液体であり、カチオン性ポリマーP−5−1の重量平均分子量は20000であった。   Next, the composition containing monomer M-1 is replaced with the above composition containing monomer M-5, the amount of ion-exchanged water added for the second time is changed from 800 g to 400 g, and a polymerization initiator (2,2 ′ -A composition containing the cationic polymer P-5-1 in the same manner as in Example 1 except that the amount of azobis (2-methylpropionamineamidine) dihydrochloride) used was changed from 0.05 g to 0.025 g. Got. The resulting composition was a translucent high-viscosity liquid, and the weight average molecular weight of the cationic polymer P-5-1 was 20,000.

[実施例6]
(カチオン性ポリマーP−5−2の製造)
モノマーM−1を含む組成物を、モノマーM−5を含む組成物に換え、2回目に添加するイオン交換水の量を800gから400gに換えたこと以外は実施例1と同様にして、カチオン性ポリマーP−5−2を含む組成物を得た。得られた組成物は半透明高粘度の液体であり、カチオン性ポリマーP−5−2の重量平均分子量は10900であった。
[Example 6]
(Production of Cationic Polymer P-5-2)
In the same manner as in Example 1, except that the composition containing the monomer M-1 was replaced with the composition containing the monomer M-5, and the amount of ion-exchanged water added the second time was changed from 800 g to 400 g. A composition containing the functional polymer P-5-2 was obtained. The obtained composition was a translucent high-viscosity liquid, and the weight average molecular weight of the cationic polymer P-5-2 was 10900.

[実施例7]
(カチオン性ポリマーP−5−3の製造)
モノマーM−1を含む組成物を、モノマーM−5を含む組成物に換え、2回目に添加するイオン交換水の量を800gから400gに換え、重合開始剤(2,2’−アゾビス(2−メチルプロピオンアミンアミジン)二塩酸)の使用量を0.05gから0.1gに換えたこと以外は実施例1と同様にして、カチオン性ポリマーP−5−3を含む組成物を得た。得られた化合物は半透明高粘度の液体であり、カチオン性ポリマーP−5−3の重量平均分子量は3900であった。
[Example 7]
(Production of cationic polymer P-5-3)
The composition containing the monomer M-1 is replaced with the composition containing the monomer M-5, and the amount of ion-exchanged water added in the second time is changed from 800 g to 400 g, and the polymerization initiator (2,2′-azobis (2 -A composition containing the cationic polymer P-5-3 was obtained in the same manner as in Example 1 except that the amount of methyl propionamine amidine) dihydrochloride) used was changed from 0.05 g to 0.1 g. The obtained compound was a translucent high-viscosity liquid, and the weight average molecular weight of the cationic polymer P-5-3 was 3900.

[実施例8]
(カチオン性ポリマーP−5−4の製造)
温度計と冷却コンデンサーとを取り付けた4つ口フラスコに、窒素ガス気流下、イソプロピルアルコール(90g)と、固形分が30g含まれる量の実施例5で得られたモノマーM−5を含む組成物とを入れ、35〜45℃になるまで加熱した。重合開始剤としてアゾビスイソブチロニトリル(0.05g)をアセトン(0.5g)に溶解し、それを反応混合物に滴下しながら徐々に温度を上げていった。約48℃で、更にイソプロピルアルコール(210g)を反応混合物に入れ、48〜52℃にて3時間重合反応を行い、カチオン性ポリマーP−5−4を含む組成物を得た。得られた組成物は半透明高粘度の液体であり、カチオン性ポリマーP−5−4の重量平均分子量は19000であった。
[Example 8]
(Production of cationic polymer P-5-4)
A composition containing the monomer M-5 obtained in Example 5 in an amount containing 30 g of isopropyl alcohol (90 g) and a solid content in a four-necked flask equipped with a thermometer and a cooling condenser under a nitrogen gas stream. And heated to 35-45 ° C. As a polymerization initiator, azobisisobutyronitrile (0.05 g) was dissolved in acetone (0.5 g), and the temperature was gradually raised while dropping it into the reaction mixture. Isopropyl alcohol (210 g) was further added to the reaction mixture at about 48 ° C., and a polymerization reaction was carried out at 48 to 52 ° C. for 3 hours to obtain a composition containing the cationic polymer P-5-4. The resulting composition was a translucent high-viscosity liquid, and the weight average molecular weight of the cationic polymer P-5-4 was 19000.

[実施例9]
(モノマーM−6及びカチオン性ポリマーP−6の製造)
ジメチルベヘニルアミン(178.5g、0.5モル)をジメチルココナットアミン(花王(株)社製、商品名:ファーミンDM−24C、全アミン価:246、全アミン価から求めた分子量:228、114g、0.5モル)に換えたこと以外は、実施例1と同様にしてモノマーM−6を含む組成物を得た。得られた組成物の固形分の全アミン価は3.0であった。
[Example 9]
(Production of Monomer M-6 and Cationic Polymer P-6)
Dimethylbehenylamine (178.5 g, 0.5 mol) was obtained from dimethyl coconutamine (manufactured by Kao Corporation, trade name: Farmin DM-24C, total amine number: 246, molecular weight determined from total amine number: 228, 114 g, 0.5 mol) A composition containing the monomer M-6 was obtained in the same manner as in Example 1 except that the composition was changed. The total amine value of the solid content of the obtained composition was 3.0.

次に、モノマーM−1を含む組成物を、モノマーM−6を含む上記組成物に換え、1回目に添加したイオン交換水の量を300gから200gに換え、2回目に添加したイオン交換水の量を800gから400gに換えたこと以外は実施例1と同様にして、カチオン性ポリマーP−6を含む組成物を得た。得られた組成物は半透明高粘度の液体であり、カチオン性ポリマーP−6の重量平均分子量は10500であった。   Next, the composition containing monomer M-1 is replaced with the above composition containing monomer M-6, and the amount of ion-exchanged water added at the first time is changed from 300 g to 200 g, and ion-exchanged water added at the second time. A composition containing the cationic polymer P-6 was obtained in the same manner as in Example 1 except that the amount of was changed from 800 g to 400 g. The resulting composition was a translucent high-viscosity liquid, and the weight average molecular weight of the cationic polymer P-6 was 10,500.

[実施例10]
(モノマーM−7及びカチオン性ポリマーP−7の製造)
ジメチルベヘニルアミン(178.5g、0.5モル)をジメチルデシルアミン(全アミン価:298、全アミン価から求めた分子量:188、94g、0.5モル)に換えたこと以外は、実施例1と同様にしてモノマーM−7を含む組成物を得た。得られた組成物の固形分の全アミン価は3.1であった。
[Example 10]
(Production of Monomer M-7 and Cationic Polymer P-7)
Example except that dimethylbehenylamine (178.5 g, 0.5 mol) was replaced with dimethyldecylamine (total amine value: 298, molecular weight determined from total amine value: 188, 94 g, 0.5 mol) In the same manner as in Example 1, a composition containing the monomer M-7 was obtained. The total amine value of the solid content of the obtained composition was 3.1.

次に、モノマーM−1を含む組成物を、モノマーM−7を含む上記組成物に換え、1回目に添加したイオン交換水の量を300gから200gに換え、2回目に添加したイオン交換水の量を800gから200gに換えたこと以外は実施例1と同様にして、カチオン性ポリマーP−7を含む組成物を得た。得られた組成物は半透明高粘度の液体であり、カチオン性ポリマーP−7の重量平均分子量は10200であった。   Next, the composition containing monomer M-1 is replaced with the composition containing monomer M-7, and the amount of ion-exchanged water added at the first time is changed from 300 g to 200 g, and ion-exchanged water added at the second time. A composition containing the cationic polymer P-7 was obtained in the same manner as in Example 1 except that the amount of was changed from 800 g to 200 g. The resulting composition was a translucent high-viscosity liquid, and the weight average molecular weight of the cationic polymer P-7 was 10200.

[実施例11]
(モノマーM−8及びカチオン性ポリマーP−8の製造)
ジメチルベヘニルアミン(178.5g、0.5モル)をジメチルオクチルアミン(全アミン価:351、全アミン価から求めた分子量:160、80g、0.5モル)に換えたこと以外は、実施例1と同様にしてモノマーM−8を含む組成物を得た。得られた組成物の固形分の全アミン価は4.3であった。
[Example 11]
(Production of Monomer M-8 and Cationic Polymer P-8)
Example except that dimethylbehenylamine (178.5 g, 0.5 mol) was replaced with dimethyloctylamine (total amine value: 351, molecular weight determined from total amine value: 160, 80 g, 0.5 mol) In the same manner as in Example 1, a composition containing monomer M-8 was obtained. The total amine value of the solid content of the obtained composition was 4.3.

次に、モノマーM−1を含む組成物を、モノマーM−8を含む上記組成物に換え、1回目に添加したイオン交換水の量を300gから200gに換え、2回目に添加したイオン交換水の量を800gから200gに換えたこと以外は実施例1と同様にして、カチオン性ポリマーP−8を含む組成物を得た。得られた組成物は半透明高粘度の液体であり、カチオン性ポリマーP−8の重量平均分子量は9500であった。   Next, the composition containing monomer M-1 is replaced with the composition containing monomer M-8, and the amount of ion-exchanged water added at the first time is changed from 300 g to 200 g, and ion-exchanged water added at the second time. A composition containing the cationic polymer P-8 was obtained in the same manner as in Example 1 except that the amount of was changed from 800 g to 200 g. The resulting composition was a translucent high-viscosity liquid, and the weight average molecular weight of the cationic polymer P-8 was 9,500.

[実施例12]
(モノマーM−9及びカチオン性ポリマーP−9の製造)
ジメチルベヘニルアミン(178.5g、0.5モル)をトリメチルアミン(全アミン価:59.1、29.5g、0.5モル)に換えたこと以外は、実施例1と同様にしてモノマーM−9を含む組成物を得た。得られた組成物の固形分の全アミン価は8.8であった。
[Example 12]
(Production of Monomer M-9 and Cationic Polymer P-9)
In the same manner as in Example 1, except that dimethylbehenylamine (178.5 g, 0.5 mol) was replaced with trimethylamine (total amine value: 59.1, 29.5 g, 0.5 mol), monomer M- A composition containing 9 was obtained. The total amine value of the solid content of the obtained composition was 8.8.

次に、モノマーM−1を含む組成物を、固形分が23g含まれる量の上記モノマーM−9を含む組成物に換え、1回目に添加したイオン交換水の量を300gから200gに換え、2回目に添加したイオン交換水の量を800gから200gに換えたこと以外は実施例1と同様にして、カチオン性ポリマーP−9を含む組成物を得た。得られた組成物は半透明高粘度の液体であり、カチオン性ポリマーP−9の重量平均分子量は4000であった。   Next, the composition containing the monomer M-1 is replaced with a composition containing the monomer M-9 in an amount containing 23 g of solid content, and the amount of ion-exchanged water added for the first time is changed from 300 g to 200 g. A composition containing the cationic polymer P-9 was obtained in the same manner as in Example 1 except that the amount of ion-exchanged water added the second time was changed from 800 g to 200 g. The resulting composition was a translucent high-viscosity liquid, and the weight average molecular weight of the cationic polymer P-9 was 4000.

[実施例13]
(モノマーM−10及びカチオン性ポリマーP−10の製造)
ジメチルベヘニルアミン(178.5g、0.5モル)をN−メチルジエタノールアミン(全アミン価:119.2、59.6g、0.5モル)に換えたこと以外は、実施例1と同様にしてモノマーM−10を含む組成物を得た。得られた組成物の固形分の全アミン価は固形分で7.0であった。
[Example 13]
(Production of Monomer M-10 and Cationic Polymer P-10)
Example 1 was followed except that dimethylbehenylamine (178.5 g, 0.5 mol) was replaced with N-methyldiethanolamine (total amine number: 119.2, 59.6 g, 0.5 mol). A composition containing monomer M-10 was obtained. The total amine value of the solid content of the obtained composition was 7.0 in solid content.

次に、モノマーM−1を含む組成物を、固形分が21g含まれる量の上記モノマーM−10を含む組成物に換え、1回目に添加したイオン交換水の量を300gから200gに換え、2回目に添加したイオン交換水の量を800gから200gに換えたこと以外は実施例1と同様にして、カチオン性ポリマーP−10を含む組成物を得た。得られた組成物は半透明高粘度の液体であり、カチオン性ポリマーP−10の重量平均分子量は3700であった。   Next, the composition containing the monomer M-1 is replaced with a composition containing the monomer M-10 in an amount containing 21 g of solid content, and the amount of ion-exchanged water added for the first time is changed from 300 g to 200 g. A composition containing the cationic polymer P-10 was obtained in the same manner as in Example 1 except that the amount of ion-exchanged water added the second time was changed from 800 g to 200 g. The resulting composition was a translucent high-viscosity liquid, and the weight average molecular weight of the cationic polymer P-10 was 3700.

[実施例14]
(モノマーM−11及びカチオン性ポリマーP−11の製造)
耐圧反応容器に、ステアリルアミン(全アミン価:209、全アミン価から求めた分子量:268.4、268.4g、1モル)を入れ、内部を窒素ガスで置換し、加熱昇温した。その後、温度140〜150℃、圧力392kpa以下の条件に保ちながら、エチレンオキシド(88g、2モル)を約2時間かけて耐圧反応容器に吹き込み、ジヒドロキシエチルステアリルアミンを得た。
[Example 14]
(Production of Monomer M-11 and Cationic Polymer P-11)
Stearylamine (total amine value: 209, molecular weight determined from total amine value: 268.4, 268.4 g, 1 mol) was placed in a pressure-resistant reaction vessel, the inside was replaced with nitrogen gas, and the temperature was increased by heating. Thereafter, while maintaining the temperature of 140 to 150 ° C. and the pressure of 392 kpa or less, ethylene oxide (88 g, 2 mol) was blown into the pressure resistant reactor over about 2 hours to obtain dihydroxyethyl stearylamine.

温度計と冷却コンデンサーとを取り付けた4つ口フラスコに、得られたジヒドロキシエチルステアリルアミン(178.2g、0.5モル)と、溶剤としてイソプロピルアルコール(50g)とを入れた。さらに、塩酸の35質量%水溶液(53.1g、塩酸0.51モル)を反応混合物に滴下して中和した。重合禁止剤としてハイドロキノンモノメチルエーテル(0.015g)を反応混合物に添加し、均一に溶解するまで撹拌し、液中へ空気の吹き込みを行った。   The obtained dihydroxyethyl stearylamine (178.2 g, 0.5 mol) and isopropyl alcohol (50 g) as a solvent were placed in a four-necked flask equipped with a thermometer and a cooling condenser. Further, a 35% by mass aqueous solution of hydrochloric acid (53.1 g, hydrochloric acid 0.51 mol) was added dropwise to the reaction mixture for neutralization. Hydroquinone monomethyl ether (0.015 g) was added to the reaction mixture as a polymerization inhibitor, stirred until it was uniformly dissolved, and air was blown into the liquid.

温度70〜75℃にてグリシジルメタクリレート(71.1g、0.5モル)を約1.5時間かけて反応混合物に滴下した。滴下終了後、70〜75℃にて約4時間反応させ、モノマーM−11を含む組成物を得た。得られた組成物の固形分の全アミン価は5.4であった。   Glycidyl methacrylate (71.1 g, 0.5 mol) was added dropwise to the reaction mixture over about 1.5 hours at a temperature of 70-75 ° C. After completion of the dropwise addition, the mixture was reacted at 70 to 75 ° C. for about 4 hours to obtain a composition containing monomer M-11. The total amine value of the solid content of the obtained composition was 5.4.

次に、モノマーM−1を含む組成物を、モノマーM−11を含む上記組成物に換え、2回目に添加したイオン交換水の量を800gから600gに換えたこと以外は実施例1と同様にして、カチオン性ポリマーP−11を含む組成物を得た。得られた組成物は半透明高粘度の液体であり、カチオン性ポリマーP−11の重量平均分子量は5000であった。   Next, the composition containing monomer M-1 was replaced with the composition containing monomer M-11, and the amount of ion-exchanged water added the second time was changed from 800 g to 600 g, as in Example 1. Thus, a composition containing the cationic polymer P-11 was obtained. The obtained composition was a translucent high-viscosity liquid, and the weight average molecular weight of the cationic polymer P-11 was 5000.

[実施例15]
(モノマーM−12及びカチオン性ポリマーP−12の製造)
ステアリルアミン(268.4g、1モル)をラウリルアミン(全アミン価:300、全アミン価から求めた分子量:187、187g、1モル)に換えたこと以外は、実施例14と同様にしてモノマーM−12を含む組成物を得た。得られた組成物の固形分の全アミン価は5.0であった。
[Example 15]
(Production of Monomer M-12 and Cationic Polymer P-12)
Monomer in the same manner as in Example 14 except that stearylamine (268.4 g, 1 mol) was changed to laurylamine (total amine value: 300, molecular weight determined from total amine value: 187, 187 g, 1 mol). A composition containing M-12 was obtained. The total amine value of the solid content of the obtained composition was 5.0.

次に、モノマーM−1を含む組成物を、モノマーM−12を含む上記組成物に換え、1回目に添加したイオン交換水の量を300gから200gに換え、2回目に添加したイオン交換水の量を800gから400gに換えたこと以外は実施例1と同様にして、カチオン性ポリマーP−12を含む組成物を得た。得られた組成物は半透明高粘度の液体であり、カチオン性ポリマーP−12の重量平均分子量は4500であった。   Next, the composition containing monomer M-1 is replaced with the above composition containing monomer M-12, and the amount of ion-exchanged water added at the first time is changed from 300 g to 200 g, and ion-exchanged water added at the second time. A composition containing the cationic polymer P-12 was obtained in the same manner as in Example 1 except that the amount of was changed from 800 g to 400 g. The resulting composition was a translucent high-viscosity liquid, and the weight average molecular weight of the cationic polymer P-12 was 4500.

[実施例16]
(モノマーM−13及びカチオン性ポリマーP−13の製造)
ステアリルアミン(268.4g、1モル)をラウリルアミン(全アミン価:300、全アミン価から求めた分子量:187、187g、1モル)に換え、エチレンオキシド(88g、2モル)をプロピレンオキシド(116g、2モル)に換えたこと以外は、実施例14と同様にしてモノマーM−13を含む組成物を得た。得られた組成物の固形分の全アミン価は6.0であった。
[Example 16]
(Production of Monomer M-13 and Cationic Polymer P-13)
Stearylamine (268.4 g, 1 mol) was replaced with laurylamine (total amine value: 300, molecular weight determined from total amine value: 187, 187 g, 1 mol), and ethylene oxide (88 g, 2 mol) was replaced with propylene oxide (116 g). The composition containing the monomer M-13 was obtained in the same manner as in Example 14 except that the amount was changed to 2 mol). The total amine value of the solid content of the obtained composition was 6.0.

次に、モノマーM−1を含む組成物を、モノマーM−13を含む上記組成物に換え、1回目に添加したイオン交換水の量を300gから200gに換え、2回目に添加したイオン交換水の量を800gから400gに換えたこと以外は実施例1と同様にして、カチオン性ポリマーP−13を含む組成物を得た。得られた組成物は半透明高粘度の液体であり、カチオン性ポリマーP−13の重量平均分子量は4600であった。   Next, the composition containing monomer M-1 is replaced with the composition containing monomer M-13, and the amount of ion-exchanged water added at the first time is changed from 300 g to 200 g, and ion-exchanged water added at the second time. A composition containing the cationic polymer P-13 was obtained in the same manner as in Example 1 except that the amount of was changed from 800 g to 400 g. The resulting composition was a translucent high-viscosity liquid, and the weight average molecular weight of the cationic polymer P-13 was 4600.

[実施例17]
(モノマーM−14及びカチオン性ポリマーP−14の製造)
耐圧反応容器に、ラウリルアミン(全アミン価:300、全アミン価から求めた分子量:187、93.5g、0.5モル)を入れ、内部を窒素ガスで置換し、昇温した。その後、温度140〜150℃、圧力392kpa以下の条件に保ちながら、エチレンオキシド(44g、1モル)を約2時間かけて耐圧反応容器に吹き込み、ジヒドロキシエチルラウリルアミンを得た。
[Example 17]
(Production of Monomer M-14 and Cationic Polymer P-14)
Laurylamine (total amine value: 300, molecular weight determined from total amine value: 187, 93.5 g, 0.5 mol) was placed in a pressure-resistant reaction vessel, the inside was replaced with nitrogen gas, and the temperature was raised. Thereafter, while maintaining the temperature of 140 to 150 ° C. and the pressure of 392 kpa or less, ethylene oxide (44 g, 1 mol) was blown into the pressure resistant reactor over about 2 hours to obtain dihydroxyethyl laurylamine.

次に、得られたジヒドロキシエチルラウリルアミンを冷却し、水酸化ナトリウム(0.2g)を入れ、120℃にて30分間減圧脱水した。その後、内部を窒素ガスで置換し、加熱昇温した。温度140〜150℃、圧力392kpa以下の条件に保ちながら、プロピレンオキシド(58g、1モル)を約2時間かけて耐圧反応容器に吹き込み、ラウリルアミンのエチレンオキシド−プロピレンオキシドブロック付加物(EOPOブロック付加物)を得た。   Next, the obtained dihydroxyethyl laurylamine was cooled, sodium hydroxide (0.2 g) was added, and dehydrated under reduced pressure at 120 ° C. for 30 minutes. Thereafter, the inside was replaced with nitrogen gas, and the temperature was raised by heating. Propylene oxide (58 g, 1 mol) was blown into the pressure-resistant reaction vessel over about 2 hours while maintaining the temperature of 140 to 150 ° C. and the pressure of 392 kpa or less, and ethylene oxide-propylene oxide block adduct of laurylamine (EOPO block adduct). )

温度計と冷却コンデンサーとを取り付けた4つ口フラスコに、得られたラウリルアミンのEOPOブロック付加物(97.8g、0.25モル)と、溶剤としてイソプロピルアルコール(50g)とを入れた。その後、塩酸の35質量%水溶液(26.6g、塩酸0.255モル)を反応混合物に滴下して中和した。重合禁止剤としてハイドロキノンモノメチルエーテル(0.015g)を反応混合物に添加し、均一に溶解するまで撹拌し、液中へ空気の吹き込みを行った。   The resulting EOPO block adduct of laurylamine (97.8 g, 0.25 mol) and isopropyl alcohol (50 g) as a solvent were placed in a four-necked flask equipped with a thermometer and a cooling condenser. Thereafter, a 35% by mass aqueous solution of hydrochloric acid (26.6 g, hydrochloric acid 0.255 mol) was added dropwise to the reaction mixture to neutralize it. Hydroquinone monomethyl ether (0.015 g) was added to the reaction mixture as a polymerization inhibitor, stirred until it was uniformly dissolved, and air was blown into the liquid.

温度70〜75℃にてグリシジルメタクリレート(35.6g、0.25モル)を約1.5時間かけて反応混合物に滴下した。滴下終了後、70〜75℃にて約4時間反応させ、モノマーM−14を含む組成物を得た。得られた組成物の固形分の全アミン価は6.2あった。   Glycidyl methacrylate (35.6 g, 0.25 mol) was added dropwise to the reaction mixture over about 1.5 hours at a temperature of 70-75 ° C. After completion of the dropwise addition, the mixture was reacted at 70 to 75 ° C. for about 4 hours to obtain a composition containing monomer M-14. The total amine value of the solid content of the obtained composition was 6.2.

次に、モノマーM−1を含む組成物を、モノマーM−14を含む上記組成物に換え、1回目に添加したイオン交換水の量を300gから200gに換え、2回目に添加したイオン交換水の量を800gから400gに換えたこと以外は実施例1と同様にして、カチオン性ポリマーP−14を含む組成物を得た。得られた組成物は半透明高粘度の液体であり、カチオン性ポリマーP−14の重量平均分子量は5100であった。   Next, the composition containing monomer M-1 is replaced with the composition containing monomer M-14, and the amount of ion-exchanged water added at the first time is changed from 300 g to 200 g, and ion-exchanged water added at the second time. A composition containing the cationic polymer P-14 was obtained in the same manner as in Example 1 except that the amount of was changed from 800 g to 400 g. The resulting composition was a translucent high-viscosity liquid, and the weight average molecular weight of the cationic polymer P-14 was 5100.

[実施例18]
(モノマーM−15及びカチオン性ポリマーP−15の製造)
ジメチルベヘニルアミン(178.5g、0.5モル)をジメチルステアリルアミン(全アミン価:186.5、アミン価から求めた分子量:301、150.5g、0.5モル)に換え、グリシジルメタクリレート(71.1g、0.5モル)を、アリルグリシジルエーテル(57.1g、0.5モル)に換えたこと以外は、実施例1と同様にしてモノマーM−15を含む組成物を得た。得られた組成物の固形分の全アミン価は5.5であった。
[Example 18]
(Production of Monomer M-15 and Cationic Polymer P-15)
Dimethylbehenylamine (178.5 g, 0.5 mol) was replaced with dimethylstearylamine (total amine value: 186.5, molecular weight determined from amine value: 301, 150.5 g, 0.5 mol), and glycidyl methacrylate ( 71.1 g, 0.5 mol) was replaced with allyl glycidyl ether (57.1 g, 0.5 mol) in the same manner as in Example 1 to obtain a composition containing monomer M-15. The total amine value of the solid content of the obtained composition was 5.5.

次に、モノマーM−1を含む組成物を、モノマーM−15を含む上記組成物に換え、2回目に添加したイオン交換水の量を800gから600gに換えたこと以外は実施例1と同様にして、カチオン性ポリマーP−15を含む組成物を得た。得られた化合物は半透明高粘度の液体であり、カチオン性ポリマーP−15の重量平均分子量は4500であった。   Next, the composition containing monomer M-1 was replaced with the composition containing monomer M-15, and the amount of ion-exchanged water added the second time was changed from 800 g to 600 g, as in Example 1. Thus, a composition containing the cationic polymer P-15 was obtained. The obtained compound was a translucent high-viscosity liquid, and the weight average molecular weight of the cationic polymer P-15 was 4500.

[実施例19]
(モノマーM−16及びカチオン性ポリマーP−16の製造)
ジメチルベヘニルアミン(178.5g、0.5モル)をジメチルミリスチルアミン(全アミン価:229、全アミン価から求めた分子量:245、122.5g、0.5モル)に換え、グリシジルメタクリレート(71.1g、0.5モル)を、アリルグリシジルエーテル(57.1g、0.5モル)に換えたこと以外は、実施例1と同様にしてモノマーM−18を含む組成物を得た。得られた組成物の固形分の全アミン価は4.7であった。
[Example 19]
(Production of Monomer M-16 and Cationic Polymer P-16)
Dimethylbehenylamine (178.5 g, 0.5 mol) was replaced with dimethylmyristylamine (total amine value: 229, molecular weight determined from total amine value: 245, 122.5 g, 0.5 mol), and glycidyl methacrylate (71 0.1 g, 0.5 mol) was changed to allyl glycidyl ether (57.1 g, 0.5 mol) in the same manner as in Example 1 to obtain a composition containing monomer M-18. The total amine value of the solid content of the obtained composition was 4.7.

次に、モノマーM−1を含む組成物を、モノマーM−16を含む上記組成物に換え、2回目に添加したイオン交換水の量を800gから600gに換えたこと以外は実施例1と同様にして、カチオン性ポリマーP−16を含む組成物を得た。得られた組成物は半透明高粘度の液体であり、カチオン性ポリマーP−16の重量平均分子量は4800であった。   Next, the composition containing monomer M-1 was replaced with the composition containing monomer M-16, and the amount of ion-exchanged water added the second time was changed from 800 g to 600 g, as in Example 1. Thus, a composition containing the cationic polymer P-16 was obtained. The resulting composition was a translucent high-viscosity liquid, and the weight average molecular weight of the cationic polymer P-16 was 4800.

[実施例20]
(モノマーM−17及びカチオン性ポリマーP−17−1の製造)
ジメチルベヘニルアミン(178.5g、0.5モル)を、ジメチルラウリルアミン(全アミン価:261、全アミン価から求めた分子量:215、107.5g、0.5モル)に換え、グリシジルメタクリレート(71.1g、0.5モル)を、アリルグリシジルエーテル(57.1g、0.5モル)に換えたこと以外は、実施例1と同様にしてモノマーM−17を含む組成物を得た。得られた組成物の固形分の全アミン価は4.4であった。
[Example 20]
(Production of Monomer M-17 and Cationic Polymer P-17-1)
Dimethylbehenylamine (178.5 g, 0.5 mol) was replaced with dimethyllaurylamine (total amine value: 261, molecular weight determined from total amine value: 215, 107.5 g, 0.5 mol), and glycidyl methacrylate ( 71.1 g, 0.5 mol) was replaced with allyl glycidyl ether (57.1 g, 0.5 mol) in the same manner as in Example 1 to obtain a composition containing monomer M-17. The total amine value of the solid content of the obtained composition was 4.4.

次に、モノマーM−1を含む組成物を、モノマーM−17を含む上記組成物に換え、2回目に添加したイオン交換水の量を800gから400gに換え、重合開始剤(2,2’−アゾビス(2−メチルプロピオンアミンアミジン)二塩酸)の使用量を0.05gから0.025gに換えたこと以外は実施例1と同様にして、カチオン性ポリマーP−17−1を含む組成物を得た。得られた組成物は半透明高粘度の液体であり、カチオン性ポリマーP−17−1の重量平均分子量は8900であった。   Next, the composition containing the monomer M-1 was replaced with the above composition containing the monomer M-17, and the amount of ion-exchanged water added the second time was changed from 800 g to 400 g, and the polymerization initiator (2,2 ′ -A composition containing the cationic polymer P-17-1 in the same manner as in Example 1 except that the amount of azobis (2-methylpropionamineamidine) dihydrochloride) used was changed from 0.05 g to 0.025 g. Got. The obtained composition was a translucent high-viscosity liquid, and the weight average molecular weight of the cationic polymer P-17-1 was 8,900.

[実施例21]
(カチオン性ポリマーP−17−2の製造)
モノマーM−1を含む組成物を、モノマーM−17を含む上記組成物に換え、2回目に添加したイオン交換水の量を800gから400gに換えたこと以外は実施例1と同様にして、カチオン性ポリマーP−17−2を含む組成物を得た。得られた組成物は半透明高粘度の液体であり、カチオン性ポリマーP−17−2の重量平均分子量は5000であった。
[Example 21]
(Production of cationic polymer P-17-2)
Except that the composition containing the monomer M-1 was replaced with the above composition containing the monomer M-17 and the amount of ion-exchanged water added the second time was changed from 800 g to 400 g, the same as in Example 1, A composition containing the cationic polymer P-17-2 was obtained. The resulting composition was a translucent high-viscosity liquid, and the weight average molecular weight of the cationic polymer P-17-2 was 5000.

[実施例22]
(カチオン性ポリマーP−17−3の製造)
モノマーM−1を含む組成物を、モノマーM−17を含む上記組成物に換え、2回目に添加したイオン交換水の量を800gから400gに換え、重合開始剤(2,2’−アゾビス(2−メチルプロピオンアミンアミジン)二塩酸)の使用量を0.05gから0.1gに換えたこと以外は実施例1と同様にして、カチオン性ポリマーP−17−3を含む組成物を得た。得られた組成物は半透明高粘度の液体であり、カチオン性ポリマーP−17−3の重量平均分子量は3000であった。
[Example 22]
(Production of cationic polymer P-17-3)
The composition containing monomer M-1 was replaced with the above composition containing monomer M-17, and the amount of ion-exchanged water added the second time was changed from 800 g to 400 g, and the polymerization initiator (2,2′-azobis ( A composition containing the cationic polymer P-17-3 was obtained in the same manner as in Example 1 except that the amount of 2-methylpropionamine amidine) dihydrochloride) used was changed from 0.05 g to 0.1 g. . The obtained composition was a translucent high-viscosity liquid, and the weight average molecular weight of the cationic polymer P-17-3 was 3000.

[実施例23]
(カチオン性ポリマーP−17−4の製造)
温度計と冷却コンデンサーとを取り付けた4つ口フラスコに、窒素ガス気流下、イソプロピルアルコール(30g)と、固形分が30g含まれる量の上記モノマーM−17を含む組成物とを入れ、35〜45℃になるまで加熱した。重合開始剤としてアゾビスイソブチロニトリル(0.05g)をアセトン(0.5g)に溶解し、それを反応混合物に滴下しながら徐々に温度を上げていった。約48℃で、更にイソプロピルアルコール(30g)を反応混合物に入れ、48〜52℃にて3時間重合反応を行い、カチオン性ポリマーP−17−4を含む組成物を得た。得られた組成物は半透明高粘度の液体であり、カチオン性ポリマーP−17−4の重量平均分子量は7400であった。
[Example 23]
(Production of cationic polymer P-17-4)
In a four-necked flask equipped with a thermometer and a cooling condenser, under a nitrogen gas stream, isopropyl alcohol (30 g) and a composition containing the monomer M-17 in an amount containing 30 g of solid content are placed. Heated to 45 ° C. As a polymerization initiator, azobisisobutyronitrile (0.05 g) was dissolved in acetone (0.5 g), and the temperature was gradually raised while dropping it into the reaction mixture. Isopropyl alcohol (30 g) was further added to the reaction mixture at about 48 ° C., and a polymerization reaction was performed at 48 to 52 ° C. for 3 hours to obtain a composition containing the cationic polymer P-17-4. The obtained composition was a translucent high-viscosity liquid, and the weight average molecular weight of the cationic polymer P-17-4 was 7400.

[実施例24]
(モノマーM−18及びカチオン性ポリマーP−18の製造)
ジメチルベヘニルアミン(178.5g、0.5モル)を、ジメチルデシルアミン(全アミン価:298、全アミン価から求めた分子量:188、94g、0.5モル)に換え、グリシジルメタクリレート(71.1g、0.5モル)を、アリルグリシジルエーテル(57.1g、0.5モル)に換えたこと以外は、実施例1と同様にしてモノマーM−18を含む組成物を得た。得られた組成物の固形分の全アミン価は5.0であった。
[Example 24]
(Production of Monomer M-18 and Cationic Polymer P-18)
Dimethylbehenylamine (178.5 g, 0.5 mol) was replaced with dimethyldecylamine (total amine value: 298, molecular weight determined from total amine value: 188, 94 g, 0.5 mol), and glycidyl methacrylate (71. 1 g, 0.5 mol) was replaced with allyl glycidyl ether (57.1 g, 0.5 mol) in the same manner as in Example 1 to obtain a composition containing monomer M-18. The total amine value of the solid content of the obtained composition was 5.0.

次に、モノマーM−1を含む組成物を、モノマーM−18を含む上記組成物に換え、1回目に添加したイオン交換水の量を300gから200gに換え、2回目に添加したイオン交換水の量を800gから400gに換えたこと以外は実施例1と同様にして、カチオン性ポリマーP−18を含む組成物を得た。得られた組成物は半透明高粘度の液体であり、カチオン性ポリマーP−18の重量平均分子量は3500であった。   Next, the composition containing monomer M-1 is replaced with the above composition containing monomer M-18, and the amount of ion-exchanged water added at the first time is changed from 300 g to 200 g, and ion-exchanged water added at the second time. A composition containing the cationic polymer P-18 was obtained in the same manner as in Example 1 except that the amount of was changed from 800 g to 400 g. The resulting composition was a translucent high-viscosity liquid, and the weight average molecular weight of the cationic polymer P-18 was 3,500.

[実施例25]
(モノマーM−19及びカチオン性ポリマーP−19の製造)
ジメチルベヘニルアミン(178.5g、0.5モル)を、ジメチルオクチルアミン(全アミン価:351、アミン価から求めた分子量:160、80g、0.5モル)に換え、グリシジルメタクリレート(71.1g、0.5モル)を、アリルグリシジルエーテル(57.1g、0.5モル)に換えたこと以外は、実施例1と同様にしてモノマーM−19を得た。得られた組成物の固形分の全アミン価は6.4であった。
[Example 25]
(Production of Monomer M-19 and Cationic Polymer P-19)
Dimethylbehenylamine (178.5 g, 0.5 mol) was replaced with dimethyloctylamine (total amine value: 351, molecular weight determined from amine value: 160, 80 g, 0.5 mol), and glycidyl methacrylate (71.1 g). , 0.5 mol) was replaced with allyl glycidyl ether (57.1 g, 0.5 mol) in the same manner as in Example 1 to obtain monomer M-19. The total amine value of the solid content of the obtained composition was 6.4.

次に、モノマーM−1を含む組成物を、モノマーM−19を含む上記組成物に換え、1回目に添加したイオン交換水の量を300gから200gに換え、2回目に添加したイオン交換水の量を800gから200gに換えたこと以外は実施例1と同様にして、カチオン性ポリマーP−19を含む組成物を得た。得られた組成物は半透明高粘度の液体であり、カチオン性ポリマーP−19の重量平均分子量は3300であった。   Next, the composition containing monomer M-1 is replaced with the composition containing monomer M-19, and the amount of ion-exchanged water added at the first time is changed from 300 g to 200 g, and ion-exchanged water added at the second time. A composition containing the cationic polymer P-19 was obtained in the same manner as in Example 1 except that the amount of was changed from 800 g to 200 g. The resulting composition was a translucent high-viscosity liquid, and the weight average molecular weight of the cationic polymer P-19 was 3300.

[実施例26]
(モノマーM−20及びカチオン性ポリマーP−20の製造)
耐圧反応容器に、ラウリルアミン(全アミン価:300、全アミン価から求めた分子量:187、187g、1モル)を入れ、内部を窒素ガスで置換し、加熱昇温した。その後、温度140〜150℃、圧力392kpa以下の条件に保ちながら、エチレンオキシド(88g、2モル)を約2時間かけて耐圧反応容器に吹き込み、ジヒドロキシエチルラウリルアミンを得た。
[Example 26]
(Production of Monomer M-20 and Cationic Polymer P-20)
Laurylamine (total amine value: 300, molecular weight determined from total amine value: 187, 187 g, 1 mol) was placed in a pressure-resistant reaction vessel, the inside was replaced with nitrogen gas, and the temperature was raised. Thereafter, while maintaining the temperature of 140 to 150 ° C. and the pressure of 392 kpa or less, ethylene oxide (88 g, 2 mol) was blown into the pressure resistant reactor over about 2 hours to obtain dihydroxyethyl laurylamine.

温度計と冷却コンデンサーとを取り付けた4つ口フラスコに、得られたジヒドロキシエチルラウリルアミン(137.5g、0.5モル)と、溶剤としてイソプロピルアルコール(50g)とを入れ、塩酸の35質量%水溶液(53.1g、塩酸0.51モル)を滴下して中和した。重合禁止剤としてハイドロキノンモノメチルエーテル(0.015g)を反応混合物に添加し、均一に溶解するまで撹拌し、液中へ空気の吹き込みを行った。   Into a four-necked flask equipped with a thermometer and a cooling condenser, the obtained dihydroxyethyl laurylamine (137.5 g, 0.5 mol) and isopropyl alcohol (50 g) as a solvent were placed, and 35% by mass of hydrochloric acid. An aqueous solution (53.1 g, hydrochloric acid 0.51 mol) was added dropwise for neutralization. Hydroquinone monomethyl ether (0.015 g) was added to the reaction mixture as a polymerization inhibitor, stirred until it was uniformly dissolved, and air was blown into the liquid.

温度70〜75℃にてアリルグリシジルエーテル(57.1g、0.5モル)を約1.5時間かけて反応混合物に滴下した。滴下終了後、70〜75℃にて約4時間反応させ、モノマーM−20を含む組成物を得た。得られた組成物の固形分の全アミン価は6.0であった。   Allyl glycidyl ether (57.1 g, 0.5 mol) was added dropwise to the reaction mixture over about 1.5 hours at a temperature of 70-75 ° C. After completion of dropping, the mixture was reacted at 70 to 75 ° C. for about 4 hours to obtain a composition containing monomer M-20. The total amine value of the solid content of the obtained composition was 6.0.

次に、モノマーM−1を含む組成物を、モノマーM−20を含む上記組成物に換え、1回目に添加したイオン交換水の量を300gから200gに換え、2回目に添加したイオン交換水の量を800gから400gに換えたこと以外は実施例1と同様にして、カチオン性ポリマーP−20を含む組成物を得た。得られた組成物は半透明高粘度の液体であり、カチオン性ポリマーP−20の重量平均分子量は3000であった。   Next, the composition containing monomer M-1 is replaced with the above composition containing monomer M-20, and the amount of ion-exchanged water added at the first time is changed from 300 g to 200 g, and ion-exchanged water added at the second time. A composition containing the cationic polymer P-20 was obtained in the same manner as in Example 1 except that the amount of was changed from 800 g to 400 g. The obtained composition was a translucent high-viscosity liquid, and the weight average molecular weight of the cationic polymer P-20 was 3000.

[実施例27]
(モノマーM−21及びカチオン性ポリマーP−21の製造)
耐圧反応容器に、ラウリルアミン(全アミン価:300、全アミン価から求めた分子量:187、93.5g、0.5モル)と水酸化ナトリウム(0.2g)とを入れ、内部を窒素ガスで置換し、昇温した。その後、温度140〜150℃、圧力392kpa以下の条件に保ちながら、エチレンオキシド(44g、1モル)及びプロピレンオキシド(58g、1モル)の混合物を約2時間かけて耐圧反応容器に吹き込み、ラウリルアミンのEOPOランダム付加物を得た。
[Example 27]
(Production of Monomer M-21 and Cationic Polymer P-21)
Laurylamine (total amine value: 300, molecular weight determined from total amine value: 187, 93.5 g, 0.5 mol) and sodium hydroxide (0.2 g) are placed in a pressure-resistant reaction vessel, and the inside is filled with nitrogen gas The temperature was raised. Thereafter, a mixture of ethylene oxide (44 g, 1 mol) and propylene oxide (58 g, 1 mol) was blown into the pressure-resistant reaction vessel over about 2 hours while maintaining a temperature of 140 to 150 ° C. and a pressure of 392 kpa or less. An EOPO random adduct was obtained.

温度計と冷却コンデンサーとを取り付けた4つ口フラスコに、得られたラウリルアミンのEOPOランダム付加物(97.8g、0.25モル)と、溶剤としてイソプロピルアルコール(50g)とを入れ、塩酸の35質量%水溶液(26.6g、塩酸0.255モル)を滴下して中和した。重合禁止剤としてハイドロキノンモノメチルエーテル(0.015g)を反応混合物に添加し、均一に溶解するまで撹拌し、液中へ空気の吹き込みを行った。   In a four-necked flask equipped with a thermometer and a cooling condenser, the EOPO random adduct of laurylamine (97.8 g, 0.25 mol) and isopropyl alcohol (50 g) as a solvent were placed. A 35 mass% aqueous solution (26.6 g, hydrochloric acid 0.255 mol) was added dropwise for neutralization. Hydroquinone monomethyl ether (0.015 g) was added to the reaction mixture as a polymerization inhibitor, stirred until it was uniformly dissolved, and air was blown into the liquid.

温度70〜75℃にてアリルグリシジルエーテル(28.5g、0.25モル)を約1.5時間かけて反応混合物に滴下した。滴下終了後、70〜75℃にて約4時間反応させ、モノマーM−21を含む組成物を得た。得られた組成物の固形分の全アミン価は6.3であった。   Allyl glycidyl ether (28.5 g, 0.25 mol) was added dropwise to the reaction mixture over about 1.5 hours at a temperature of 70-75 ° C. After completion of dropping, the mixture was reacted at 70 to 75 ° C. for about 4 hours to obtain a composition containing the monomer M-21. The total amine value of the solid content of the obtained composition was 6.3.

次に、モノマーM−1を含む組成物を、モノマーM−21を含む上記組成物に換え、1回目に添加したイオン交換水の量を300gから200gに換え、2回目に添加したイオン交換水の量を800gから400gに換えたこと以外はカチオン性ポリマーP−1と同様にして、カチオン性ポリマーP−21を含む組成物を得た。得られた組成物は半透明高粘度の液体であり、カチオン性ポリマーP−21の重量平均分子量は3500であった。   Next, the composition containing monomer M-1 is replaced with the above composition containing monomer M-21, and the amount of ion-exchanged water added at the first time is changed from 300 g to 200 g, and ion-exchanged water added at the second time. A composition containing the cationic polymer P-21 was obtained in the same manner as the cationic polymer P-1, except that the amount of was changed from 800 g to 400 g. The obtained composition was a translucent high-viscosity liquid, and the weight average molecular weight of the cationic polymer P-21 was 3,500.

[実施例28]
(モノマーM−22及びカチオン性ポリマーP−22の製造)
ジメチルベヘニルアミン(178.5g、0.5モル)を、ジメチルラウリルアミン(全アミン価:261、全アミン価から求めた分子量:215、107.5g、0.5モル)に換え、グリシジルメタクリレート(71.1g、0.5モル)を、4−ヒドロキシブチルアクリレートグリシジルエーテル(72g、0.5モル)に換えたこと以外は、実施例1と同様にしてモノマーM−22を含む組成物を得た。得られた組成物の固形分の全アミン価は8.1であった。
[Example 28]
(Production of Monomer M-22 and Cationic Polymer P-22)
Dimethylbehenylamine (178.5 g, 0.5 mol) was replaced with dimethyllaurylamine (total amine value: 261, molecular weight determined from total amine value: 215, 107.5 g, 0.5 mol), and glycidyl methacrylate ( 71.1 g, 0.5 mol) was replaced with 4-hydroxybutyl acrylate glycidyl ether (72 g, 0.5 mol) in the same manner as in Example 1 to obtain a composition containing monomer M-22. It was. The total amine value of the solid content of the obtained composition was 8.1.

次に、モノマーM−1を含む組成物を、モノマーM−22を含む上記組成物に換え、1回目に添加したイオン交換水の量を300gから200gに換え、2回目に添加したイオン交換水の量を800gから400gに換えたこと以外は実施例1と同様にして、カチオン性ポリマーP−22を含む組成物を得た。得られた組成物は半透明高粘度の液体であり、カチオン性ポリマーP−22の重量平均分子量は9800であった。   Next, the composition containing monomer M-1 is replaced with the above composition containing monomer M-22, and the amount of ion-exchanged water added at the first time is changed from 300 g to 200 g, and ion-exchanged water added at the second time. A composition containing the cationic polymer P-22 was obtained in the same manner as in Example 1 except that the amount of was changed from 800 g to 400 g. The obtained composition was a translucent high-viscosity liquid, and the weight average molecular weight of the cationic polymer P-22 was 9800.

[実施例29]
(モノマーM−23及びカチオン性ポリマーP−23の製造)
ジメチルベヘニルアミン(178.5g、0.5モル)をジメチルラウリルアミン(全アミン価:261、全アミン価から求めた分子量:215、107.5g、0.5モル)に換え、塩酸の35質量%水溶液(53.1g、塩酸0.51モル)を、濃硫酸98%品(50g、硫酸0.5モル)に換えたこと以外は、実施例1と同様にしてモノマーM−23を含む組成物を得た。得られた組成物の固形分の全アミン価は3.3であった。
[Example 29]
(Production of Monomer M-23 and Cationic Polymer P-23)
Dimethylbehenylamine (178.5 g, 0.5 mol) was replaced with dimethyllaurylamine (total amine value: 261, molecular weight determined from total amine value: 215, 107.5 g, 0.5 mol), and 35 mass of hydrochloric acid. % Aqueous solution (53.1 g, hydrochloric acid 0.51 mol) was replaced with a concentrated sulfuric acid 98% product (50 g, sulfuric acid 0.5 mol) in the same manner as in Example 1 except for the composition containing monomer M-23 I got a thing. The total amine value of the solid content of the obtained composition was 3.3.

次に、モノマーM−1を含む組成物を、モノマーM−23を含む上記組成物に換え、1回目に添加したイオン交換水の量を300gから200gに換え、2回目に添加したイオン交換水の量を800gから400gに換えたこと以外はカチオン性ポリマーP−1と同様にして、カチオン性ポリマーP−23を含む組成物を得た。得られた組成物は半透明高粘度の液体であり、カチオン性ポリマーP−23の重量平均分子量は11100であった。   Next, the composition containing monomer M-1 is replaced with the above composition containing monomer M-23, and the amount of ion-exchanged water added at the first time is changed from 300 g to 200 g, and ion-exchanged water added at the second time. A composition containing the cationic polymer P-23 was obtained in the same manner as the cationic polymer P-1, except that the amount of was changed from 800 g to 400 g. The resulting composition was a translucent high-viscosity liquid, and the weight average molecular weight of the cationic polymer P-23 was 11100.

[実施例30]
(カチオン性ポリマーP−24の製造)
温度計と冷却コンデンサーとを取り付けた4つ口フラスコに、窒素ガス気流下にて、イオン交換水(300g、1回目)と、モノマーM−2を含む組成物及びモノマーM−5を含む組成物の混合物(それぞれの固形分10gを含む量)を入れ、撹拌しながら35〜45℃になるまで加熱した。
[Example 30]
(Production of Cationic Polymer P-24)
In a four-necked flask equipped with a thermometer and a cooling condenser, in a nitrogen gas stream, ion exchange water (300 g, first time), a composition containing monomer M-2 and a composition containing monomer M-5 Were added (amount containing 10 g of each solid content) and heated to 35-45 ° C. with stirring.

重合開始剤として2,2’−アゾビス(2−メチルプロピオンアミンアミジン)二塩酸(0.05g)をイオン交換水(0.5g)に溶解し、それを反応混合物に滴下しながら徐々に温度を上げていった。約48℃で、さらにイオン交換水(600g、2回目)を反応混合物に入れ、48〜52℃にて3時間重合反応を行い、カチオン性ポリマーP−24を含む組成物を得た。得られた組成物は半透明高粘度の液体であり、カチオン性ポリマーP−24の重量平均分子量は9200であった。   As a polymerization initiator, 2,2′-azobis (2-methylpropionamineamidine) dihydrochloric acid (0.05 g) was dissolved in ion-exchanged water (0.5 g), and the temperature was gradually increased while dropping it into the reaction mixture. It was raised. Ion exchange water (600 g, second time) was further added to the reaction mixture at about 48 ° C., and a polymerization reaction was performed at 48 to 52 ° C. for 3 hours to obtain a composition containing the cationic polymer P-24. The resulting composition was a translucent high viscosity liquid, and the weight average molecular weight of the cationic polymer P-24 was 9,200.

[実施例31]
(カチオン性ポリマーP−25の製造)
モノマーM−2を含む組成物及びモノマーM−5を含む組成物を、モノマーM−16を含む組成物及びモノマーM−17を含む組成物に換えたこと以外は実施例29と同様にして、カチオン性ポリマーP−25を含む組成物を得た。得られた組成物は半透明高粘度の液体であり、カチオン性ポリマーP−25の重量平均分子量は4900であった。
[Example 31]
(Production of cationic polymer P-25)
As in Example 29, except that the composition containing monomer M-2 and the composition containing monomer M-5 were replaced with a composition containing monomer M-16 and a composition containing monomer M-17, A composition containing the cationic polymer P-25 was obtained. The resulting composition was a translucent high-viscosity liquid, and the weight average molecular weight of the cationic polymer P-25 was 4900.

[実施例32]
(カチオン性ポリマーP−26の製造)
モノマーM−2を含む組成物及びモノマーM−5を含む組成物を、モノマーM−2(固形分10gを含む量)を含む組成物及びアクリル酸メチル(10g)に換え、1回目に添加したイオン交換水の量を300gから150gに換え、2回目に添加したイオン交換水の量を600gから300gに換えたこと以外は実施例29と同様にして、カチオン性ポリマーP−26を含む組成物を得た。得られた組成物は半透明高粘度の液体であり、カチオン性ポリマーP−26の重量平均分子量は33000であった。
[Example 32]
(Production of cationic polymer P-26)
The composition containing the monomer M-2 and the composition containing the monomer M-5 were replaced with the composition containing the monomer M-2 (containing 10 g of solid content) and methyl acrylate (10 g), and added for the first time. A composition containing the cationic polymer P-26 in the same manner as in Example 29 except that the amount of ion-exchanged water was changed from 300 g to 150 g and the amount of ion-exchanged water added the second time was changed from 600 g to 300 g. Got. The obtained composition was a translucent high-viscosity liquid, and the weight average molecular weight of the cationic polymer P-26 was 33,000.

[実施例33]
(カチオン性ポリマーP−27の製造)
モノマーM−2を含む組成物及びモノマーM−5を含む組成物を、固形分が10g含まれる量のモノマーM−5を含む組成物及びアクリル酸メチル(10g)に換え、1回目に添加するイオン交換水の量を300gから100gに換え、2回目に添加するイオン交換水の量を600gから300gに換えたこと以外は実施例29と同様にして、カチオン性ポリマーP−27を含む組成物を得た。得られた組成物は半透明高粘度の液体であり、カチオン性ポリマーP−27の重量平均分子量は34000であった。
[Example 33]
(Production of cationic polymer P-27)
The composition containing the monomer M-2 and the composition containing the monomer M-5 are replaced with the composition containing the monomer M-5 and methyl acrylate (10 g) in an amount containing 10 g of solids and added for the first time. A composition containing the cationic polymer P-27 in the same manner as in Example 29 except that the amount of ion-exchanged water was changed from 300 g to 100 g and the amount of ion-exchanged water added the second time was changed from 600 g to 300 g. Got. The resulting composition was a translucent high viscosity liquid, and the weight average molecular weight of the cationic polymer P-27 was 34,000.

[実施例34]
(カチオン性ポリマーP−28の製造)
モノマーM−2を含む組成物及びモノマーM−5を含む組成物を、固形分が10g含まれる量のモノマーM−12を含む組成物及びアクリル酸メチル(10g)に換え、1回目に添加するイオン交換水の量を300gから100gに換え、2回目に添加するイオン交換水の量を600gから300gに換えたこと以外は実施例29と同様にして、カチオン性ポリマーP−28を含む組成物を得た。得られた組成物は半透明高粘度の液体であり、カチオン性ポリマーP−28の重量平均分子量は12000であった。
[Example 34]
(Production of cationic polymer P-28)
The composition containing monomer M-2 and the composition containing monomer M-5 are replaced with the composition containing monomer M-12 and methyl acrylate (10 g) in an amount containing 10 g of solids, and added first time. A composition containing the cationic polymer P-28 in the same manner as in Example 29 except that the amount of ion-exchanged water was changed from 300 g to 100 g and the amount of ion-exchanged water added the second time was changed from 600 g to 300 g. Got. The resulting composition was a translucent high viscosity liquid, and the weight average molecular weight of the cationic polymer P-28 was 12,000.

[実施例35]
(カチオン性ポリマーP−29の製造)
モノマーM−2を含む組成物及びモノマーM−5を含む組成物を、固形分が10g含まれる量のモノマーM−16を含む組成物及びアクリル酸メチル(10g)に換えたこと以外は実施例29と同様にして、カチオン性ポリマーP−29を含む組成物を得た。得られた組成物は半透明高粘度の液体であり、カチオン性ポリマーP−29の重量平均分子量は9700であった。
[Example 35]
(Production of cationic polymer P-29)
Example except that the composition containing monomer M-2 and the composition containing monomer M-5 were replaced with a composition containing monomer M-16 in an amount containing 10 g of solid content and methyl acrylate (10 g). In the same manner as in Example 29, a composition containing the cationic polymer P-29 was obtained. The resulting composition was a translucent high-viscosity liquid, and the weight average molecular weight of the cationic polymer P-29 was 9700.

[実施例36]
(カチオン性ポリマーP−30の製造)
モノマーM−2を含む組成物及びモノマーM−5を含む組成物を、固形分が10g含まれる量のモノマーM−17を含む組成物及びアクリル酸メチル(10g)に換え、1回目に添加するイオン交換水の量を300gから100gに換え、2回目に添加するイオン交換水の量を600gから300gに換えたこと以外は実施例29と同様にして、カチオン性ポリマーP−30を含む組成物を得た。得られた組成物は半透明高粘度の液体であり、カチオン性ポリマーP−30の重量平均分子量は12000であった。
[Example 36]
(Production of cationic polymer P-30)
The composition containing the monomer M-2 and the composition containing the monomer M-5 are replaced with the composition containing the monomer M-17 and the methyl acrylate (10 g) in an amount containing 10 g of solids, and added first time. A composition containing the cationic polymer P-30 in the same manner as in Example 29 except that the amount of ion-exchanged water was changed from 300 g to 100 g and the amount of ion-exchanged water added the second time was changed from 600 g to 300 g. Got. The resulting composition was a translucent high-viscosity liquid, and the weight average molecular weight of the cationic polymer P-30 was 12,000.

[実施例37]
(カチオン性ポリマーP−31の製造)
モノマーM−2を含む組成物及びモノマーM−5を含む組成物を、固形分が10g含まれる量のモノマーM−20を含む組成物及びアクリル酸メチル(10g)に換え、1回目に添加するイオン交換水の量を300gから100gに換え、2回目に添加するイオン交換水の量を600gから300gに換えたこと以外は実施例29と同様にして、カチオン性ポリマーP−31を含む組成物を得た。得られた組成物は半透明高粘度の液体であり、カチオン性ポリマーP−31の重量平均分子量は11000であった。
[Example 37]
(Production of cationic polymer P-31)
The composition containing monomer M-2 and the composition containing monomer M-5 are added to the composition containing monomer M-20 and methyl acrylate (10 g) in an amount containing 10 g of solids and added for the first time. A composition containing the cationic polymer P-31 in the same manner as in Example 29 except that the amount of ion-exchanged water was changed from 300 g to 100 g and the amount of ion-exchanged water added the second time was changed from 600 g to 300 g. Got. The resulting composition was a translucent high-viscosity liquid, and the weight average molecular weight of the cationic polymer P-31 was 11,000.

[実施例38]
(カチオン性ポリマーP−32の製造)
モノマーM−2を含む組成物及びモノマーM−5を含む組成物を、固形分が15g含まれる量のモノマーM−5を含む組成物及びアクリル酸メチル(5g)に換え、1回目に添加するイオン交換水の量を300gから150gに換え、2回目に添加するイオン交換水の量を600gから450gに換えたこと以外は実施例29と同様にして、カチオン性ポリマーP−32を含む組成物を得た。得られた組成物は半透明高粘度の液体であり、カチオン性ポリマーP−32の重量平均分子量は22000であった。
[Example 38]
(Production of cationic polymer P-32)
The composition containing monomer M-2 and the composition containing monomer M-5 are replaced with the composition containing monomer M-5 and methyl acrylate (5 g) in an amount containing 15 g of solids, and added for the first time. A composition containing the cationic polymer P-32 in the same manner as in Example 29 except that the amount of ion-exchanged water was changed from 300 g to 150 g and the amount of ion-exchanged water added the second time was changed from 600 g to 450 g. Got. The resulting composition was a translucent high viscosity liquid, and the weight average molecular weight of the cationic polymer P-32 was 22,000.

[実施例39]
(カチオン性ポリマーP−33の製造)
モノマーM−2を含む組成物及びモノマーM−5を含む組成物を、固形分が15g含まれる量のモノマーM−17を含む組成物及びアクリル酸メチル(5g)に換え、1回目に添加するイオン交換水の量を300gから150gに換え、2回目に添加するイオン交換水の量を600gから450gに換えたこと以外は実施例29と同様にして、カチオン性ポリマーP−33を含む組成物を得た。得られた組成物は半透明高粘度の液体であり、カチオン性ポリマーP−33の重量平均分子量は8000であった。
[Example 39]
(Production of cationic polymer P-33)
The composition containing the monomer M-2 and the composition containing the monomer M-5 are replaced with the composition containing the monomer M-17 in an amount containing 15 g of solid content and methyl acrylate (5 g), and added for the first time. A composition containing the cationic polymer P-33 in the same manner as in Example 29 except that the amount of ion-exchanged water was changed from 300 g to 150 g and the amount of ion-exchanged water added the second time was changed from 600 g to 450 g. Got. The resulting composition was a translucent high-viscosity liquid, and the weight average molecular weight of the cationic polymer P-33 was 8,000.

[実施例40]
(カチオン性ポリマーP−34の製造)
モノマーM−2を含む組成物及びモノマーM−5を含む組成物を、固形分が15g含まれる量のモノマーM−5を含む組成物及びメタクリル酸(5g)に換え、1回目に添加するイオン交換水の量を300gから150gに換え、2回目に添加するイオン交換水の量を600gから450gに換えたこと以外は実施例29と同様にして、カチオン性ポリマーP−34を含む組成物を得た。得られた組成物は半透明高粘度の液体であり、カチオン性ポリマーP−34の重量平均分子量は24000であった。
[Example 40]
(Production of cationic polymer P-34)
Ion added for the first time by replacing the composition containing monomer M-2 and the composition containing monomer M-5 with the composition containing monomer M-5 and methacrylic acid (5 g) in an amount of 15 g of solid content. A composition containing the cationic polymer P-34 was prepared in the same manner as in Example 29 except that the amount of exchange water was changed from 300 g to 150 g and the amount of ion exchange water added the second time was changed from 600 g to 450 g. Obtained. The resulting composition was a translucent high viscosity liquid, and the weight average molecular weight of the cationic polymer P-34 was 24,000.

[実施例41]
(カチオン性ポリマーP−35の製造)
モノマーM−2を含む組成物及びモノマーM−5を含む組成物を、固形分が15g含まれる量のモノマーM−17を含む組成物及びメタクリル酸(5g)に換え、1回目に添加するイオン交換水の量を300gから150gに換え、2回目に添加するイオン交換水の量を600gから450gに換えたこと以外は実施例29と同様にして、カチオン性ポリマーP−35を含む組成物を得た。得られた組成物は半透明高粘度の液体であり、カチオン性ポリマーP−35の重量平均分子量は8100であった。
[Example 41]
(Production of cationic polymer P-35)
Ion added for the first time by replacing the composition containing monomer M-2 and the composition containing monomer M-5 with the composition containing monomer M-17 and methacrylic acid (5 g) in an amount containing 15 g of solid content. A composition containing the cationic polymer P-35 was prepared in the same manner as in Example 29 except that the amount of exchange water was changed from 300 g to 150 g and the amount of ion exchange water added the second time was changed from 600 g to 450 g. Obtained. The resulting composition was a translucent high-viscosity liquid, and the weight average molecular weight of the cationic polymer P-35 was 8100.

[実施例42]
(カチオン性ポリマーP−36の製造)
モノマーM−2を含む組成物及びモノマーM−5を含む組成物を、固形分が5g含まれる量のモノマーM−5を含む組成物及びアクリル酸メチル(10g)に換え、1回目に添加するイオン交換水の量を300gから150gに換え、2回目に添加するイオン交換水の量を600gから300gに換えたこと以外は実施例29と同様にして、カチオン性ポリマーP−36を含む組成物を得た。得られた組成物は半透明高粘度の液体であり、カチオン性ポリマーP−36の重量平均分子量は89000であった。
[Example 42]
(Production of cationic polymer P-36)
The composition containing monomer M-2 and the composition containing monomer M-5 are added to the composition containing monomer M-5 and methyl acrylate (10 g) in an amount containing 5 g of solids, and added for the first time. A composition containing the cationic polymer P-36 in the same manner as in Example 29 except that the amount of ion-exchanged water was changed from 300 g to 150 g and the amount of ion-exchanged water added the second time was changed from 600 g to 300 g. Got. The resulting composition was a translucent high-viscosity liquid, and the weight average molecular weight of the cationic polymer P-36 was 89000.

[比較例1]
(モノマーM−7)
実施例7で得られたモノマーM−7を抗菌抗かび成分として用いた。
[Comparative Example 1]
(Monomer M-7)
Monomer M-7 obtained in Example 7 was used as an antibacterial and antifungal component.

[比較例2]
(モノマーM−12)
実施例15で得られたモノマーM−12を抗菌抗かび成分として用いた。
[Comparative Example 2]
(Monomer M-12)
Monomer M-12 obtained in Example 15 was used as an antibacterial and antifungal component.

[比較例3]
(モノマーM−13)
実施例16で得られたモノマーM−13を抗菌抗かび成分として用いた。
[Comparative Example 3]
(Monomer M-13)
Monomer M-13 obtained in Example 16 was used as an antibacterial and antifungal component.

[比較例4]
(モノマーM−17)
実施例20で得られたモノマーM−17を抗菌抗かび成分として用いた。
[Comparative Example 4]
(Monomer M-17)
Monomer M-17 obtained in Example 20 was used as an antibacterial and antifungal component.

[比較例5]
(ポリ[オキシエチレン(ジメチルイミノ)エチレン(ジメチルイミノ)エチレンジクロライド](表中は、P’と略記する)の製造)
N,N,N’,N’−テトラメチル−1,2−エチレンジアミン(116g、1モル)と、ビス(2−クロロエチル)エーテル(143g、1モル)とを混合し、95℃で20時間反応させ、ポリ[オキシエチレン(ジメチルイミノ)エチレン(ジメチルイミノ)エチレンジクロライド]を得た。得られたポリ[オキシエチレン(ジメチルイミノ)エチレン(ジメチルイミノ)エチレンジクロライド]の重量平均分子量は10000であった。
[Comparative Example 5]
(Production of poly [oxyethylene (dimethylimino) ethylene (dimethylimino) ethylene dichloride] (abbreviated as P ′ in the table))
N, N, N ′, N′-tetramethyl-1,2-ethylenediamine (116 g, 1 mol) and bis (2-chloroethyl) ether (143 g, 1 mol) were mixed and reacted at 95 ° C. for 20 hours. To obtain poly [oxyethylene (dimethylimino) ethylene (dimethylimino) ethylene dichloride]. The obtained poly [oxyethylene (dimethylimino) ethylene (dimethylimino) ethylene dichloride] had a weight average molecular weight of 10,000.

[比較例6]
(塩化ベンザルコニウム)
塩化ベンザルコニウムを抗菌抗かび成分として用いた。
[Comparative Example 6]
(Benzalkonium chloride)
Benzalkonium chloride was used as an antibacterial and antifungal component.

[比較例7]
(ポリヘキサメチレンビグアナイド塩酸塩)
ポリヘキサメチレンビグアナイド塩酸塩を抗菌抗かび成分として用いた。
[Comparative Example 7]
(Polyhexamethylene biguanide hydrochloride)
Polyhexamethylene biguanide hydrochloride was used as an antibacterial antifungal component.

[比較例8]
(ジンクピリチオン)
ジンクピリチオンを抗菌抗かび成分として用いた。
[Comparative Example 8]
(Zinc pyrithione)
Zinc pyrithione was used as an antibacterial antifungal ingredient.

II.抗菌抗かび成分の評価
試験菌及び試験かびは以下のものを用いた。
(試験菌)
黄色ブドウ球菌(Staphylococcus aureus ATCC 6538P)
肺炎桿菌(Klebsiella pneumoniae NBRC13277)
大腸菌(Escherichia coli NBRC3301)
緑膿菌(Pseudomonase areruginosa NBRC3080)
メシチリン耐性黄色ブドウ球菌(Methicillin−resistant Staphylococcus aureus IID1677、表1〜4中ではMRSAと略す。)
II. The following test bacteria and test fungi were used for evaluation of antibacterial and antifungal ingredients .
(Test bacteria)
Staphylococcus aureus ATCC 6538P
Klebsiella pneumoniae (Klebsiella pneumoniae NBRC13277)
E. coli (Escherichia coli NBRC3301)
Pseudomonas aeruginosa (Pseudomonase areruginosa NBRC3080)
Methicillin-resistant Staphylococcus aureus (Methicillin-resistant Staphylococcus aureus IID1677, abbreviated as MRSA in Tables 1-4)

(試験かび)
黒麹黴(Aspergillus niger NBRC105650)
黒黴(Cladosporium cladosporioides NBRC6348)
青黴(Penicillium citrinum NBRC6352)
白癬菌(Trichophyton mentagrophytes NBRC3240)
(Test mold)
Black persimmon (Aspergillus niger NBRC105650)
Black Panther (Cladosporium cladosporiodes NBRC6348)
Blue fox (Penicillium citrinum NBRC6352)
Trichophyton mentagrophytes NBRC3240

(評価1.抗菌抗かび剤の最小発育阻止濃度試験)
抗菌抗かび剤として、実施例1、4、6、10、15、18、19、21、24、26、28若しくは42、又は、比較例5若しくは6で得られた抗菌抗かび成分を含む水溶液をそれぞれ作製した。これらの抗菌抗かび成分と水について、「わかりやすい真菌(かび)検査法と汚染防止対策(株式会社テクノシステム)、第II編わかりやすい真菌(かび)検査法、第6章抗かび試験、第4節防かび剤の効力試験」に準拠して、上記の試験菌と試験かびに対する最小発育阻止濃度(mg/L)を測定した。
(Evaluation 1. Anti-antifungal agent minimum inhibitory concentration test)
As an antibacterial and antifungal agent, an aqueous solution containing the antibacterial and antifungal component obtained in Examples 1, 4, 6, 10, 15, 18, 19, 21, 24, 26, 28 or 42, or Comparative Example 5 or 6. Were prepared. Regarding these antibacterial and antifungal ingredients and water, “Easy-to-understand fungus test method and anti-contamination measures (Techno System Co., Ltd.), Part II Easy-to-understand fungus test method, Chapter 6 Antifungal test, Section 4 Based on “Efficacy test of fungicides”, the minimum inhibitory concentration (mg / L) for the above-mentioned test bacteria and test fungi was measured.

抗菌抗かび成分の濃度が、2.5、5、10、25、50、125、250、500又は1000mg/Lである水溶液を用意し、これらの中で試験菌又は試験かびの発育が完全に阻止された最低濃度を最小発育阻止濃度とした。なお、実施例で得られたカチオン性ポリマーの水溶液における濃度は固形分換算での濃度である。その結果を表1〜4に示す。最小発育阻止濃度が小さいほど、抗菌抗かび性があることを表す。なお、抗菌抗かび剤における実施例のカチオン性ポリマーの濃度は固形分の濃度であり、試験菌又は試験かびの培養条件は下記のようにした。   Prepare an aqueous solution in which the concentration of the antibacterial antifungal component is 2.5, 5, 10, 25, 50, 125, 250, 500 or 1000 mg / L, in which the growth of the test bacteria or test fungus is completely The lowest concentration that was inhibited was taken as the minimum growth inhibitory concentration. In addition, the density | concentration in the aqueous solution of the cationic polymer obtained in the Example is a density | concentration in conversion of solid content. The results are shown in Tables 1-4. The smaller the minimum inhibitory concentration, the more antibacterial and antifungal. In addition, the concentration of the cationic polymer of the examples in the antibacterial and antifungal agent is the solid content, and the culture conditions of the test bacteria or the test fungus were as follows.

培養条件
試験菌 :37℃、48時間、普通寒天培地
試験かび:25℃、2又は7日間、ポテト・デキストロース寒天培地
Culture condition test bacteria: 37 ° C., 48 hours, normal agar medium test mold: 25 ° C., 2 or 7 days, potato dextrose agar medium

Figure 2013203697
Figure 2013203697

Figure 2013203697
Figure 2013203697

Figure 2013203697
Figure 2013203697

Figure 2013203697
Figure 2013203697

(評価2.綿製品及びポリエステル繊維製品の抗菌性試験及び耐水性試験)
実施例及び比較例で得られた抗菌抗かび成分の濃度(実施例及び比較例5のカチオン性ポリマーにおいては固形分の濃度)が0.2質量%である水溶液を作製し、処理液とした。得られた処理液にポリエステルポンジ白布又は綿メリヤス白布を浸し、ピックアップ70%にてマングルで絞った。抗菌抗かび成分の付与量はポリエステルポンジ白布又は綿メリヤス白布に対して0.14質量%であった。次いで、ポリエステルポンジ白布については、120℃で2分間加熱乾燥し、更に180℃で30秒間熱処理し、加工布を得た。一方、綿メリヤス白布については、120℃で2分間加熱乾燥し、更に150℃で1分間熱処理し、加工布を得た。
(Evaluation 2. Antibacterial test and water resistance test of cotton products and polyester fiber products)
An aqueous solution having a concentration of the antibacterial and antifungal component obtained in Examples and Comparative Examples (concentration of solid content in the cationic polymers of Examples and Comparative Examples 5) of 0.2% by mass was prepared and used as a treatment liquid. . A polyester ponji white cloth or cotton knitted white cloth was dipped in the obtained treatment liquid, and wrung with a pickle at 70%. The application amount of the antibacterial and antifungal component was 0.14% by mass with respect to the polyester ponji white cloth or the cotton knitted white cloth. Next, the polyester ponge white cloth was heat-dried at 120 ° C. for 2 minutes and further heat-treated at 180 ° C. for 30 seconds to obtain a processed cloth. On the other hand, the cotton knitted white cloth was heat-dried at 120 ° C. for 2 minutes and further heat-treated at 150 ° C. for 1 minute to obtain a processed cloth.

得られた加工布の洗濯前(L−0)における黄色ブドウ菌の静菌活性値を、JIS L 1902(2008)の定量試験法に従って求め、抗菌性を調べた。その結果を表5及び表6に示す。静菌活性値が2.2より大きい場合に抗菌効果があると判定した。また、加工布の洗濯10回後(L−10)における黄色ブドウ菌の静菌活性値も測定し、耐水性を調べた。その結果を表5及び表6に示す。なお、静菌活性値測定では黄色ブドウ菌を供試菌とし、洗濯方法は、JIS L 0217(1995)付表1の103法に従った。   The bacteriostatic activity value of Staphylococcus aureus before washing (L-0) of the obtained processed fabric was determined according to the quantitative test method of JIS L 1902 (2008), and the antibacterial property was examined. The results are shown in Tables 5 and 6. When the bacteriostatic activity value was larger than 2.2, it was determined that there was an antibacterial effect. In addition, the bacteriostatic activity value of Staphylococcus aureus 10 times after washing the processed cloth (L-10) was also measured to examine the water resistance. The results are shown in Tables 5 and 6. In the measurement of the bacteriostatic activity value, S. aureus was used as a test bacterium, and the washing method was in accordance with method 103 of JIS L 0217 (1995) Appendix Table 1.

Figure 2013203697
Figure 2013203697

Figure 2013203697
Figure 2013203697

(評価3.綿製品の抗かび性試験)
実施例1、4、6、10、15、18、19、21、24、26、28若しくは42、又は、比較例5若しくは6の抗菌抗かび成分の濃度(実施例のカチオン性ポリマーにおいては固形分の濃度)が0.2質量%である水溶液をそれぞれ作製し、処理液とした。得られた処理液に綿メリヤス白布を浸し、ピックアップ70%にてマングルで絞った。綿メリヤス白布に対する抗菌抗かび成分の付与量は0.14質量%であった。次いで、120℃で2分間加熱乾燥し、更に150℃で1分間熱処理し、加工布を得た。得られた加工布の抗かび活性値を以下の方法によって求めた。その結果を表7〜10に示す。抗かび活性値が2.0より大きい場合に抗かび効果があると判定した。
(Evaluation 3. Antifungal test of cotton products)
Example 1, 4, 6, 10, 15, 18, 19, 21, 24, 26, 28 or 42, or the concentration of the antibacterial and antifungal component of Comparative Example 5 or 6 (solid in the cationic polymer of the examples) An aqueous solution having a concentration of 0.2% by mass was prepared as a treatment solution. A cotton knitted white cloth was soaked in the resulting treatment solution and wrung with a mangle at a pickup of 70%. The amount of the antibacterial and antifungal component applied to the cotton knitted white fabric was 0.14% by mass. Subsequently, it heat-dried at 120 degreeC for 2 minutes, and also heat-processed at 150 degreeC for 1 minute, and obtained the work cloth. The antifungal activity value of the obtained processed cloth was determined by the following method. The results are shown in Tables 7-10. When the antifungal activity value was larger than 2.0, it was determined that there was an antifungal effect.

(抗かび活性値の算出方法)
社団法人繊維評価技術協議会のJECF301「抗かび加工繊維製品認証基準」に準拠して以下のように行った。
加工布及び未加工布における、接種直後の黒麹黴が産生するATP量と、接種して42時間培養した後の黒麹黴が産生するATP量とを、ルミノメーター(キッコーマン食品(株)製、商品名:ルミテスターC−110)を用いて測定し、測定したATP量の常用対数値を求めた。この試験を3回行い、3回の常用対数値の平均値を用い、以下の式によって抗かび活性値を算出した。抗かび活性値が2.0より大きい場合には抗かび効果があると判定した。
抗かび活性値=(F−F)−(F−F
:未加工布に黒麹黴を接種した直後における、黒麹黴が産生するATP量の常用対数値の平均値(3検体)
:未加工布に黒麹黴を接種して42時間培養した後における、黒麹黴が産生するATP量の常用対数値の平均値(3検体)
:加工布に黒麹黴を接種した直後における、黒麹黴が産生するATP量の常用対数値の平均値(3検体)
:加工布に黒麹黴を接種して42時間培養した後における、黒麹黴が産生するATP量の常用対数値の平均値(3検体)
(Calculation method of antifungal activity value)
This was carried out as follows in accordance with JIS F301 “Anti-fungal processed fiber product certification standards” of the Japan Textile Evaluation Technology Council.
Luminometer (Kikkoman Foods Co., Ltd. product) shows the amount of ATP produced by black cocoon immediately after inoculation and the amount of ATP produced by black cocoon after 42 hours of inoculation in processed and unprocessed cloth. , Trade name: Lumitester C-110), and the common logarithm of the measured ATP amount was determined. This test was repeated three times, and the antifungal activity value was calculated by the following formula using the average value of three common logarithmic values. When the antifungal activity value was larger than 2.0, it was determined that there was an antifungal effect.
Antifungal activity value = (F b −F a ) − (F c −F 0 )
F a : Average value of common logarithm values of ATP amount produced by black camellia (3 samples) immediately after inoculating black cloth on untreated cloth
F b : Average value of the common logarithm of the amount of ATP produced by black candy after inoculating black candy on a raw cloth and culturing for 42 hours (3 samples)
F 0 : Average value of common logarithm values of the amount of ATP produced by black shark immediately after inoculation of black candy on processed cloth (3 samples)
F c : Average value of common logarithm values of ATP amount produced by black camellia after inoculating black straw on a processed cloth and culturing for 42 hours (3 samples)

(評価4.綿製品の熱変色試験)
評価3と同様にして、加工布を得た。得られた加工布及び抗菌抗かび加工をしていない綿メリヤス白布を、120℃又は180℃で1分間熱処理し、白度を測定した。白度は、分光測色計(ミノルタ(株)社製、CM−3700d)を用い、光源D65、視野10度の条件で測定した。その結果を表7〜10に示す。白度が、未加工の綿メリヤス白布のものより小さいほど、変色があると判定した。
(Evaluation 4. Thermal discoloration test of cotton products)
Work cloth was obtained in the same manner as in Evaluation 3. The obtained processed cloth and a cotton knitted white cloth not subjected to antibacterial and antifungal treatment were heat-treated at 120 ° C. or 180 ° C. for 1 minute, and the whiteness was measured. Whiteness was measured using a spectrocolorimeter (Minolta Co., Ltd., CM-3700d) under conditions of a light source D65 and a visual field of 10 degrees. The results are shown in Tables 7-10. It was determined that there was discoloration as the whiteness was smaller than that of an untreated cotton knitted white fabric.

(評価5.綿製品のBHT/NOx変色試験)
評価3と同様にして、加工布を得た。得られた加工布及び抗菌抗かび加工をしていない綿メリヤス白布を、BHT(0.05g)の入った2Lの密閉系内に入れ、50℃で24時間放置し、加工布及び未加工布にBHTを付着させた。得られたBHT付き加工布及び未加工布について、JIS L 0855(2005)(弱試験(1サイクル試験))に準拠して試験を行った。室温にて24時間NOxをBHT付き加工布又は未加工布に暴露した。その後、BHT付き加工布及び未加工布について、分光測色計(ミノルタ(株)社製、CM−3700d)を用い、光源D65、視野10度の条件で測定した。L表色系におけるb値を求め、加工布と未加工布とのb値の差(Δb値)を算出した。その結果を表7〜10に示す。Δb値が小さいほど、変色が抑えられていると判定した。
(Evaluation 5. BHT / NOx discoloration test of cotton products)
Work cloth was obtained in the same manner as in Evaluation 3. The obtained processed cloth and a white cotton cloth that has not been antibacterial and antifungal processed are placed in a 2 L sealed system containing BHT (0.05 g) and left at 50 ° C. for 24 hours. BHT was attached to the surface. The obtained processed fabric with BHT and unprocessed fabric were tested in accordance with JIS L 0855 (2005) (weak test (1 cycle test)). NOx was exposed to BHT treated or untreated fabric for 24 hours at room temperature. Then, it measured on condition of the light source D65 and the visual field of 10 degree | times about the processed cloth with BHT, and a non-processed cloth using the spectrocolorimeter (Minolta Co., Ltd. make, CM-3700d). The b value in the L * a * b * color system was obtained, and the difference (Δb value) between the b value of the processed cloth and the unprocessed cloth was calculated. The results are shown in Tables 7-10. It was determined that discoloration was suppressed as the Δb value was smaller.

(評価6.抗菌抗かび加工したポリエステルフィルムの抗菌性及び抗かび性試験)
実施例1、4、6、10、15、18、19、21、24、26、28、42若しくは比較例5で得られた抗菌抗かび成分を含むイソプロピルアルコール溶液、又は、比較例6で得られた抗菌抗かび成分を含む水溶液をそれぞれ作製した。上記抗菌抗かび成分を含むイソプロピルアルコール溶液又は水溶液を、ポリエステルフィルム(帝人デュポンフィルム(株)社製、商品名:テイジンテトロンフィルム、銘柄G2)に、0.5g/mとなるようにスプレー塗布した。なお、実施例のカチオン性ポリマーにおいては固形分での塗布量である。スプレー塗布後、抗菌抗かび成分を含むイソプロピルアルコール溶液を塗布したポリエステルフィルムについては室温にて30分間乾燥し、加工ポリエステルフィルムを得た。一方、抗菌抗かび成分の水溶液を塗布したポリエステルフィルムについては、100℃で30分間乾燥し、加工ポリエステルフィルムを得た。
(Evaluation 6. Antibacterial and antifungal test of antibacterial and antifungal polyester film)
Example 1, 4, 6, 10, 15, 18, 19, 21, 24, 26, 28, 42 or isopropyl alcohol solution containing the antibacterial and antifungal component obtained in Comparative Example 5 or obtained in Comparative Example 6 An aqueous solution containing the antibacterial and antifungal component thus prepared was prepared. Spray application of the isopropyl alcohol solution or aqueous solution containing the above antibacterial and antifungal component onto a polyester film (Teijin DuPont Films Co., Ltd., trade name: Teijin Tetron Film, Brand G2) to 0.5 g / m 2 did. In addition, in the cationic polymer of an Example, it is the coating amount in solid content. After spray coating, the polyester film coated with an isopropyl alcohol solution containing an antibacterial and antifungal component was dried at room temperature for 30 minutes to obtain a processed polyester film. On the other hand, about the polyester film which apply | coated the aqueous solution of the antibacterial antifungal component, it dried for 30 minutes at 100 degreeC, and obtained the process polyester film.

得られた加工ポリエステルフィルム及び抗菌抗かび加工をしていない未加工ポリエステルフィルムの黄色ブドウ球菌に対する抗菌活性値を、JIS Z 2801(2010)に従って求め、抗菌性を調べた。その結果を表7〜10に示す。抗菌活性値が2.0より大きい場合に抗菌効果があると判定した。また、黒麹黴に対する抗かび活性値を上記の方法によって求め、抗かび性を調べた。その結果を表7〜10に示す。抗かび活性値が2.0より大きい場合に抗かび効果があると判定した。   The antibacterial activity value against Staphylococcus aureus of the obtained processed polyester film and the unprocessed polyester film not subjected to antibacterial and antifungal processing was determined according to JIS Z 2801 (2010), and the antibacterial property was examined. The results are shown in Tables 7-10. When the antibacterial activity value was larger than 2.0, it was determined that there was an antibacterial effect. Moreover, the antifungal activity value with respect to black shark was calculated | required by said method, and antifungal property was investigated. The results are shown in Tables 7-10. When the antifungal activity value was larger than 2.0, it was determined that there was an antifungal effect.

(評価7.抗菌抗かび加工ポリエステルフィルムの熱変色試験)
評価6と同様にして、加工ポリエステルフィルムを得た。得られた加工ポリエステルフィルム及び抗菌抗かび加工をしていない未加工のポリエステルフィルムを、100℃又は180℃にて1分間熱処理し、その後測色し、L表色系におけるb値を求め、加工ポリエステルフィルムと未加工ポリエステルフィルムのb値の差(Δb値)を算出した。その結果を表7〜10に示す。Δb値が小さいほど、変色が抑えられていることを表す。なお、測色は、分光測色計(ミノルタ(株)社製、CM−3700d)を用い、光源D65、視野10度で行った。
(Evaluation 7. Thermal discoloration test of antibacterial and antifungal polyester film)
In the same manner as in Evaluation 6, a processed polyester film was obtained. The obtained processed polyester film and an unprocessed polyester film not subjected to antibacterial and antifungal processing were heat-treated at 100 ° C. or 180 ° C. for 1 minute, and then subjected to colorimetry, and b in the L * a * b * color system The value was calculated | required and the difference ((DELTA) b value) of b value of a process polyester film and an unprocessed polyester film was computed. The results are shown in Tables 7-10. The smaller the Δb value, the more the color change is suppressed. Color measurement was performed using a spectrocolorimeter (CM-3700d, manufactured by Minolta Co., Ltd.) with a light source D65 and a visual field of 10 degrees.

(評価8.抗菌抗かび加工ポリエステルフィルムの耐水性試験)
実施例6、21、28、42若しくは比較例5で得られた抗菌抗かび成分を含むイソプロピルアルコール溶液、又は、比較例6で得られた抗菌抗かび成分を含む水溶液をそれぞれ作製した。上記抗菌抗かび成分を含むイソプロピルアルコール溶液又は水溶液を、ポリエステルフィルム(帝人デュポンフィルム(株)社製、商品名:テイジンテトロンフィルム、銘柄G2)に、固形分で0.5g/mとなるようにスプレー塗布した。なお、実施例のカチオン性ポリマーにおいては固形分での塗布量である。スプレー塗布後、実施例6、21、28、42又は比較例5で得られた抗菌抗かび成分を含むイソプロピルアルコール溶液を塗布したポリエステルフィルムについては室温にて30分間乾燥し、加工ポリエステルフィルムを得た。一方、比較例6で得られた抗菌抗かび成分を含む水溶液を塗布したポリエステルフィルムについては100℃にて30分間乾燥し、加工ポリエステルフィルムを得た。
(Evaluation 8. Water resistance test of antibacterial and antifungal polyester film)
The isopropyl alcohol solution containing the antibacterial and antifungal component obtained in Examples 6, 21, 28 and 42 or Comparative Example 5 or the aqueous solution containing the antibacterial and antifungal component obtained in Comparative Example 6 was prepared. An isopropyl alcohol solution or an aqueous solution containing the antibacterial and antifungal component is applied to a polyester film (manufactured by Teijin DuPont Films Co., Ltd., trade name: Teijin Tetron Film, Brand G2) at a solid content of 0.5 g / m 2. Was spray applied. In addition, in the cationic polymer of an Example, it is the coating amount in solid content. After spray coating, the polyester film coated with the isopropyl alcohol solution containing the antibacterial and antifungal component obtained in Examples 6, 21, 28, 42 or Comparative Example 5 is dried at room temperature for 30 minutes to obtain a processed polyester film. It was. On the other hand, the polyester film coated with the aqueous solution containing the antibacterial and antifungal component obtained in Comparative Example 6 was dried at 100 ° C. for 30 minutes to obtain a processed polyester film.

得られた加工ポリエステルフィルムを水中に1時間浸漬し、その後室温にて乾燥した。その後、評価6におけるポリエステルフィルムの抗菌及び抗かび性試験と同様にして抗菌及び抗かび性試験を行った。その結果を表7〜10に示す。   The obtained processed polyester film was immersed in water for 1 hour and then dried at room temperature. Thereafter, an antibacterial and antifungal test was conducted in the same manner as the antibacterial and antifungal test of the polyester film in Evaluation 6. The results are shown in Tables 7-10.

(評価9.抗菌抗かび成分練り込み型樹脂製品の抗菌、抗かび性及び熱変色試験)
実施例6、21、28、42又は比較例5で得られた抗菌抗かび成分(1質量部)と、ポリプロピレン樹脂(住友化学(株)社製、商品名:住友ノーブレンH−501、100質量部)とを、ラボプラストミル((株)東洋精機製作所社製)を用いて210℃で5分間混練した。なお、実施例のカチオン性ポリマーにおいては固形分での量である。その後、小型成形機で150mm(縦)×150mm(横)×0.5mm(厚さ)の加工樹脂製品を作製した。また、抗菌抗かび成分を添加せず上記ポリプロピレン樹脂のみを用いて上記と同様にして未加工樹脂製品を作製した。これらの加工樹脂製品又は未加工樹脂製品について、上述の「(6)ポリエステルフィルムの抗菌及び抗かび性試験」と同様にして抗菌及び抗かび性試験を行った。その結果を表7〜10に示す。また、得られた加工樹脂製品又は未加工樹脂製品を目視し、下記基準に基づいて熱変色性を評価した。その結果を表7〜10に示す。
A:未加工樹脂製品と同様の色
B:未加工樹脂製品と比べ着色有り
(Evaluation 9. Antibacterial, antifungal and thermal discoloration test of antibacterial and antifungal component kneaded resin products)
Antibacterial and antifungal component (1 part by mass) obtained in Examples 6, 21, 28, 42 or Comparative Example 5 and polypropylene resin (manufactured by Sumitomo Chemical Co., Ltd., trade name: Sumitomo Nobrene H-501, 100 mass) Part) was kneaded at 210 ° C. for 5 minutes using a lab plast mill (manufactured by Toyo Seiki Seisakusho Co., Ltd.). In addition, in the cationic polymer of an Example, it is the quantity in solid content. Thereafter, a processed resin product of 150 mm (length) × 150 mm (width) × 0.5 mm (thickness) was produced with a small molding machine. In addition, a raw resin product was prepared in the same manner as described above using only the polypropylene resin without adding the antibacterial and antifungal component. These processed resin products or unprocessed resin products were subjected to antibacterial and antifungal tests in the same manner as in the above-mentioned “(6) Antibacterial and antifungal test of polyester film”. The results are shown in Tables 7-10. Moreover, the obtained processed resin product or unprocessed resin product was visually observed, and thermal discoloration was evaluated based on the following criteria. The results are shown in Tables 7-10.
A: Same color as raw resin product B: Colored compared to raw resin product

Figure 2013203697
Figure 2013203697

Figure 2013203697
Figure 2013203697

Figure 2013203697
Figure 2013203697

Figure 2013203697
Figure 2013203697

本発明の抗菌抗かび剤により、優れた耐久性のある抗菌性及び抗かび性を有する抗菌抗かび製品を得ることができる。これにより、台所、浴室、洗面所、トイレなどの水回りの床や壁、繊維製品などに抗菌及び抗かび加工を施し、菌やかびによる変色や異臭などの問題を防ぐことが可能となる。   With the antibacterial and antifungal agent of the present invention, an antibacterial and antifungal product having excellent and durable antibacterial and antifungal properties can be obtained. This makes it possible to apply antibacterial and antifungal treatments to floors and walls around water, such as kitchens, bathrooms, toilets, and toilets, and textile products, thereby preventing problems such as discoloration and off-flavors due to fungi and fungi.

また、本発明の抗菌抗かび剤は、熱による変色やBHT/NOxガスによる変色が抑えられることから、淡色の繊維に処理した場合や淡色の樹脂に練り込んだ場合などに、変色の問題を防ぐことができる。   In addition, since the antibacterial and antifungal agent of the present invention can suppress discoloration due to heat and discoloration due to BHT / NOx gas, it has a problem of discoloration when processed into a light-colored fiber or kneaded into a light-colored resin. Can be prevented.

Claims (2)

下記一般式(1)で表されるモノマーを含む組成物を重合させて得られるカチオン性ポリマーを含有する、抗菌抗かび剤。
Figure 2013203697

[式(1)中、R、R及びRはそれぞれ独立に、炭素数1〜22のアルキル基若しくはヒドロキシアルキル基、炭素数2〜22のアルケニル基若しくはヒドロキシアルケニル基、又は、−(AO)−Hで表される基を示し、前記AOは炭素数2〜4のアルキレンオキシ基を示し、kはAOの平均付加モル数を示し、2〜4であり、Rは−C(O)−で表される基、−R−O−C(O)−で表される基又は炭素数1〜6のアルキレン基を示し、Rは炭素数1〜6のアルキレン基を示し、Rは水素又は炭素数1〜4のアルキル基を示し、Xn−はn価のアニオンを示し、nは1〜3の整数であり、複数あるAOは同一であっても、異なってもよい。]
The antibacterial antifungal agent containing the cationic polymer obtained by polymerizing the composition containing the monomer represented by following General formula (1).
Figure 2013203697

Wherein (1), R 1, R 2 and R 3 are each independently an alkyl group or hydroxyalkyl group having 1 to 22 carbon atoms, an alkenyl group or hydroxy alkenyl group having 2 to 22 carbon atoms, or - ( a group represented by AO) k -H, wherein AO represents an alkyleneoxy group having 2 to 4 carbon atoms, k represents an average addition mole number of AO, is 2-4, R 4 is -C A group represented by (O) —, a group represented by —R 6 —O—C (O) — or an alkylene group having 1 to 6 carbon atoms, wherein R 6 represents an alkylene group having 1 to 6 carbon atoms. R 5 represents hydrogen or an alkyl group having 1 to 4 carbon atoms, X n- represents an n-valent anion, n represents an integer of 1 to 3, and a plurality of AOs may be the same or different May be. ]
請求項1に記載の抗菌抗かび剤により抗菌抗かび性を付与されたことを特徴とする抗菌抗かび性製品。
An antibacterial and antifungal product, which has been given antibacterial and antifungal properties by the antibacterial and antifungal agent according to claim 1.
JP2012074486A 2012-03-28 2012-03-28 Antibacterial and antifungal agent and antibacterial and antifungal product Pending JP2013203697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012074486A JP2013203697A (en) 2012-03-28 2012-03-28 Antibacterial and antifungal agent and antibacterial and antifungal product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012074486A JP2013203697A (en) 2012-03-28 2012-03-28 Antibacterial and antifungal agent and antibacterial and antifungal product

Publications (1)

Publication Number Publication Date
JP2013203697A true JP2013203697A (en) 2013-10-07

Family

ID=49523189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012074486A Pending JP2013203697A (en) 2012-03-28 2012-03-28 Antibacterial and antifungal agent and antibacterial and antifungal product

Country Status (1)

Country Link
JP (1) JP2013203697A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015091860A1 (en) * 2013-12-20 2015-06-25 L'oreal Use of at least one hydroxypropyltrialkylammonium derivative as deodorant agent
WO2017038276A1 (en) * 2015-08-31 2017-03-09 富士フイルム株式会社 Photocurable composition, cured material, member, and device
CN108329411A (en) * 2018-04-27 2018-07-27 南京大学 A kind of composite function resin and preparation method and application
JP2018150310A (en) * 2015-09-30 2018-09-27 株式会社日本触媒 Antibacterial agent
JP2019065442A (en) * 2017-09-29 2019-04-25 株式会社日本触媒 Fiber treatment agent
CN114920863A (en) * 2022-06-21 2022-08-19 水木聚力接枝新技术(深圳)有限责任公司 Amphiphilic long paraffin quaternary ammonium salt polymer disinfectant, preparation method thereof and disinfectant
JP7430516B2 (en) 2018-11-12 2024-02-13 株式会社日本触媒 anti-fungal agent

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015091860A1 (en) * 2013-12-20 2015-06-25 L'oreal Use of at least one hydroxypropyltrialkylammonium derivative as deodorant agent
FR3015239A1 (en) * 2013-12-20 2015-06-26 Oreal USE OF AT LEAST ONE HYDROXYPROPYL TRIALKYLAMMONIUM DERIVATIVE AS DEODORANT AGENT
WO2017038276A1 (en) * 2015-08-31 2017-03-09 富士フイルム株式会社 Photocurable composition, cured material, member, and device
JP2018150310A (en) * 2015-09-30 2018-09-27 株式会社日本触媒 Antibacterial agent
JP2019065442A (en) * 2017-09-29 2019-04-25 株式会社日本触媒 Fiber treatment agent
JP7161856B2 (en) 2017-09-29 2022-10-27 株式会社日本触媒 Fiber treatment agent
CN108329411A (en) * 2018-04-27 2018-07-27 南京大学 A kind of composite function resin and preparation method and application
JP2021520443A (en) * 2018-04-27 2021-08-19 南京大学 Multifunctional resin and its manufacturing method and application
JP7153286B2 (en) 2018-04-27 2022-10-14 南京大学 Multifunctional resin and its production method and application
JP7430516B2 (en) 2018-11-12 2024-02-13 株式会社日本触媒 anti-fungal agent
CN114920863A (en) * 2022-06-21 2022-08-19 水木聚力接枝新技术(深圳)有限责任公司 Amphiphilic long paraffin quaternary ammonium salt polymer disinfectant, preparation method thereof and disinfectant
CN114920863B (en) * 2022-06-21 2023-11-24 水木聚力接枝新技术(深圳)有限责任公司 Amphiphilic long-chain alkane quaternary ammonium salt high-molecular disinfectant, preparation method thereof and disinfectant

Similar Documents

Publication Publication Date Title
JP2013203697A (en) Antibacterial and antifungal agent and antibacterial and antifungal product
US11723359B2 (en) Disposable antimicrobial wipes and methods of making
WO1998012369A1 (en) Chitosan-containing acrylic fibers and process for preparing the same
CN108602773B (en) Compounds, polymers and coating formulations comprising at least one N-halamine precursor, a cationic center and a coating binding group
JP6726100B2 (en) Process for producing antibacterial/antifungal processed products and antibacterial/antifungal processed products obtained thereby
CA3092529A1 (en) Organic antimicrobial textile
JP2001278716A (en) Antimicrobial agent for fiber and antimicrobial fiber product
JP2007513262A (en) Fiber treated with antibacterial agent
JP2011246415A (en) Antibacterial and antifungal agent and antibacterial and antifungal product
CN106488702A (en) Antimicrobial surface coating
KR20170020762A (en) Liquid antimicrobial comprising a water-soluble polymer and a water-soluble antimicrobial agent
WO2018085564A2 (en) 3-in-one fabric conditioners and softeners comprising antimicrobial agents
WO2023003839A1 (en) Antimicrobial finish for textiles
EP2951245B1 (en) Crosslinked plastic material with intrinsic antimicrobial effect on the basis of unsaturated polyester
US5154947A (en) Method for applying biocidal clothes dryer additive to laundered fabrics
JP7161856B2 (en) Fiber treatment agent
EP0709507B1 (en) Sanitiser in polymer and its use in non-wovens
US9512559B2 (en) Method for conferring antimicrobial activity to a substrate
JP3165235B2 (en) Antibacterial processed fiber product and its processing method
JP6270622B2 (en) Antibacterial and antifungal agent for textile and method for producing antibacterial and antifungal fiber product
KR102459230B1 (en) Antibacterial composition for textiles with imporved resistance to laundering
US20190254282A1 (en) Non-Leaching Surface Sanitizer and Wipe with Improved Washability and/or Absorbency
JP3710952B2 (en) Antibacterial agents for textile products and antibacterial processed textile products
JPH05331235A (en) Antimicrobial resin, its production and antimicrobial fiber structure
TW200521287A (en) Pretreatment of cellulosic textile