WO2011148836A1 - 無線リソース設定方法、無線通信システム、無線基地局、およびプログラム - Google Patents

無線リソース設定方法、無線通信システム、無線基地局、およびプログラム Download PDF

Info

Publication number
WO2011148836A1
WO2011148836A1 PCT/JP2011/061401 JP2011061401W WO2011148836A1 WO 2011148836 A1 WO2011148836 A1 WO 2011148836A1 JP 2011061401 W JP2011061401 W JP 2011061401W WO 2011148836 A1 WO2011148836 A1 WO 2011148836A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio
band
adjacent
wireless
candidate
Prior art date
Application number
PCT/JP2011/061401
Other languages
English (en)
French (fr)
Inventor
信清 貴宏
石井 直人
大輔 太田
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to CN201180026522.3A priority Critical patent/CN102918907B/zh
Priority to US13/697,487 priority patent/US8965435B2/en
Priority to JP2012517228A priority patent/JP5765337B2/ja
Priority to EP11786535.2A priority patent/EP2579660B1/en
Publication of WO2011148836A1 publication Critical patent/WO2011148836A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/26TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
    • H04W52/267TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service] taking into account the information rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/22Negotiating communication rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal

Definitions

  • the present invention relates to a radio control technique, and more particularly to a radio resource setting technique for setting radio resources that can be allocated to radio communication.
  • the same radio band (hereinafter referred to as a band) is generally used between cells. Therefore, strong interference (hereinafter referred to as adjacent cell interference) is received from the adjacent cell regardless of whether it is uplink or downlink.
  • adjacent cell interference strong interference
  • the channel quality does not deteriorate.
  • transmission is performed simultaneously to the wireless terminal near the cell boundary using the same band in the adjacent cell, the communication quality is greatly deteriorated because the level difference between the desired signal and the interference signal from the adjacent cell is small. The same applies to the uplink.
  • Non-patent Document 1 describes that ICIC is intended to control interference between adjacent cells, and it is necessary to consider information of other cells such as resource usage status and traffic load.
  • FFR Frequency Fractional Reuse
  • a priority band is set in each cell so as to be different between adjacent cells.
  • the radio terminal reports channel quality information to the radio base station.
  • the wireless base station uses the channel quality information to determine whether a wireless terminal that is less affected by adjacent cell interference (hereinafter referred to as a center wireless terminal) or a wireless terminal that is significantly affected by adjacent cell interference (hereinafter referred to as an edge wireless terminal). Determine. And when it determines with an edge radio
  • the center wireless terminal does not limit the bandwidth that can be allocated.
  • the scheduler allocates radio resources according to the channel quality from the bands that can be allocated by each radio terminal (see, for example, Non-Patent Document 2).
  • the priority band By setting the priority band so that it does not overlap with the adjacent cell, adjacent cell interference can be suppressed. Therefore, improvement in the throughput of the edge wireless terminal is expected by improving the channel quality of the priority band.
  • LOAD INFORMATION is defined as a method for notifying the priority band between radio base stations (see, for example, Non-Patent Document 3). It can be notified by downlink RNTP (Relative Narrowband Tx Power), and uplink can be notified by HighIIInterference Indication (HII). RNTP and HII notification information is created for each PRB (Physical Resource Block) number, which is the minimum bandwidth allocation unit of the user channel. For example, RNTP is set to 1 for the PBR as the priority band.
  • PRB Physical Resource Block
  • Non-Patent Document 3 describes that “1 indicates that transmission power is not guaranteed”, and notifies a PRB number that does not guarantee consideration of interference given to neighboring cells.
  • FIG. 14 is an explanatory diagram showing a radio resource setting operation in the related technology.
  • FIG. 15 is an example of priority band allocation.
  • FIG. 16A is a setting example of radio resources that can be allocated to the radio terminal UE1.
  • FIG. 16B is a setting example of radio resources that can be allocated to the radio terminal UE2.
  • the radio base station BS1 manages the cell C11
  • the radio base station BS2 manages the cell 21
  • the radio base station BS3 manages the cell 31 as its own communication area.
  • a plurality of cells can be managed, but only one cell is shown for simplicity.
  • a circle indicates an effective range in which radio waves reach due to the directivity of the antenna for each of the radio base stations BS1, BS2, and BS3.
  • the radio terminal UE1 belongs to the cell C11, and is an edge radio terminal having the cell C31 as an adjacent cell.
  • the radio terminal UE2 is a center radio terminal belonging to the cell C31.
  • the transmission power of each band assigned to the same wireless terminal is the same.
  • the band that can be allocated is divided into f1, f2, and f3, and set as the priority bands of the cells C11, C21, and C31, respectively.
  • Each priority band is composed of 3 PRBs.
  • 3GPP TS 36.300 V8.9.0 2009-06
  • 3GPP TSG RAN E-UTRA and E-UTRAN Overall description, pp.86 3GPP TSG RAN R1-06928, Performance evaluation of uplink interference avoidance techniques, Freescale Semiconductor 3GPP TS 36.423 V8.6.0 (2009-06), 3GPP TSG RAN EUTRAN X2AP, pp27, 48-49 3GPP TS 36.213 V8.8.0 (2009-09), 3GPP TSG RAN EUTRAN Physical layer procedures, pp25-26, 27-32
  • FIG. 17 is an explanatory diagram showing a radio resource setting operation after a lapse of time from FIG.
  • the radio terminal UE3 is generated in the cell C21 from the state of FIG.
  • the radio terminal UE3 is an edge radio terminal adjacent to the cell C11.
  • FIG. 18 is a setting example of radio resources that can be allocated to the radio terminal UE1 (after receiving PNTP).
  • the cell C21 is not an adjacent cell for the edge radio terminal UE1, the interference level received from the cell C21 remains low. Further, since the RNTP has been notified to the cell C31, it is not expected that the interference received by the edge radio terminal UE1 is further reduced. Therefore, in the above case, as shown in FIG. 18, the channel quality of the priority band f1 of the edge radio terminal UE1 is not improved, only the band is limited, and the throughput of the edge radio terminal UE1 is greatly degraded. Resulting in. Further, when the transmission power and the band are changed according to the priority band setting of the adjacent cell, the same problem occurs in the uplink.
  • the present invention is for solving such problems, and provides a radio resource setting technology capable of maximizing the throughput of radio terminals existing in the local station communication area while suppressing interference with adjacent cells.
  • the purpose is to do.
  • the radio resource setting method is prioritized in an adjacent communication area based on a notification from an adjacent radio base station in an adjacent communication area adjacent to the local communication area of the radio base station.
  • Communication to acquire channel quality related to wireless communication with a wireless base station in the wireless terminal based on a prioritized bandwidth acquisition step for acquiring an adjacent preferred bandwidth to be used and a notification from a wireless terminal existing in the local station communication area In the first candidate band selected as a candidate from the first radio band including the adjacent priority band among the radio bands usable in the local station communication area, the channel quality acquisition step and the first transmission power with the channel quality
  • the first transmission rate when transmitting to the wireless terminal is calculated, and the second wireless band that does not include the adjacent priority band among the wireless bands that can be used in the local station communication area is calculated.
  • a radio communication system includes a radio base station and a radio terminal existing in the own station communication area of the radio base station, and the radio base station has an adjacent communication area adjacent to the own station communication area.
  • a priority band acquisition unit that acquires an adjacent priority band that is used preferentially in the adjacent communication area by notification from the adjacent radio base station, and radio communication between the radio terminal and the radio base station by notification from the radio terminal
  • the first radio transmission rate is calculated when the first transmission power is transmitted to the radio terminal with the first transmission power, and the second radio band not including the adjacent priority band among the radio bands usable in the local station communication area
  • the radio base station determines the adjacent priority band to be used preferentially in the adjacent communication area by notification from the adjacent radio base station in the adjacent communication area adjacent to the local communication area of the radio base station.
  • a prioritized bandwidth acquisition unit to acquire, a communication channel quality acquisition unit to acquire a communication channel quality related to wireless communication with a wireless base station in the wireless terminal by notification from a wireless terminal existing in the local station communication area, and local station communication The first case where the first candidate band selected as a candidate from the first radio band including the adjacent priority band among the radio bands usable in the area is transmitted to the radio terminal with the first transmission power with the channel quality.
  • a transmission rate calculation unit that calculates a second transmission rate when transmitted to the wireless terminal using the second transmission power, a first radio resource that includes the first transmission power and the first candidate band,
  • a radio resource setting unit configured to set, as a radio resource that can be allocated to a radio terminal, a radio resource having a higher transmission rate obtained by calculation among the second radio resources including the transmission power and the second candidate band; It has.
  • the program according to the present invention is a program for causing a computer to function as each unit constituting the above-described radio base station.
  • the combination of the transmission power and the communication band at the higher transmission rate can be set as a radio resource that can be allocated to the radio terminal. Therefore, it is possible to maximize the throughput of the wireless terminal existing in the local station communication area while suppressing the interference given to the adjacent cell.
  • FIG. 1 is a flowchart showing a radio resource setting process showing the features of the present invention.
  • FIG. 2 is a block diagram illustrating a configuration of the wireless communication system according to the first embodiment.
  • FIG. 3 is an example of radio resource allocation.
  • FIG. 4 is an explanatory diagram showing a radio resource setting operation in the present embodiment.
  • FIG. 5 is a flowchart showing the wireless terminal determination process.
  • FIG. 6 is a flowchart showing adjacent cell priority band setting processing.
  • FIG. 7 is a flowchart showing the self-cell priority band setting process.
  • FIG. 8 is an example of RNTP notification.
  • FIG. 9 is a flowchart showing the radio resource setting process.
  • FIG. 10A is a radio resource setting example (Tput_DecF).
  • FIG. 10B is a radio resource setting example (Tput_DecP).
  • FIG. 11 is an example of radio resource allocation used for transmission rate calculation.
  • FIG. 12 is a flowchart illustrating radio resource setting processing of the radio communication system 1 according to the second embodiment.
  • FIG. 13 is a block diagram illustrating a configuration of a wireless communication system according to the third embodiment.
  • FIG. 14 is an explanatory diagram showing a radio resource setting operation in the related art.
  • FIG. 15 is an example of priority band allocation.
  • FIG. 16A is a setting example of radio resources that can be allocated to the radio terminal UE1.
  • FIG. 16B is a setting example of radio resources that can be allocated to the radio terminal UE2.
  • FIG. 17 is an explanatory diagram showing a radio resource setting operation after a lapse of time from FIG.
  • FIG. 18 is a setting example of radio resources that can be allocated to the radio terminal UE1 (after receiving PNTP).
  • a radio base station configuring a radio communication system executes radio resource setting processing shown in FIG. 1 when setting radio resources that can be allocated to radio terminals existing in the local station communication area.
  • the wireless base station acquires an adjacent priority band that is used preferentially in the adjacent communication area by notification from an adjacent wireless base station in an adjacent communication area adjacent to the local communication area (step S100). Subsequently, the wireless base station acquires the communication channel quality related to the wireless communication with the wireless base station in the wireless terminal based on the notification from the wireless terminal (step S101).
  • the radio base station performs the first transmission with the channel quality in the first candidate band selected as a candidate from the first radio band including the adjacent priority band among the radio bands usable in the local station communication area.
  • a first transmission rate when transmitting to the wireless terminal by power is calculated (step S102).
  • the radio base station uses the second transmission power with the channel quality in the second candidate band selected as a candidate from the second radio band that does not include the adjacent priority band among the radio bands that can be used in the local station communication area.
  • To calculate the second transmission rate for transmission to the wireless terminal step S103).
  • the radio base station compares the first transmission rate with the second transmission rate (step S104), and if the first transmission rate is greater than the second transmission rate (step S104: NO). Then, the first transmission power and the first candidate band are set as radio resources in the radio terminal (step S105), and the series of radio resource setting processes is terminated. On the other hand, when the first transmission rate is equal to or lower than the second transmission rate (step S104: YES), the second transmission power and the second candidate band are set as radio resources in the radio terminal (step S106). Then, a series of radio resource setting processing is terminated.
  • the combination of the transmission power and the communication band at the higher transmission rate can be set as a radio resource that can be allocated to the radio terminal. Therefore, it is possible to maximize the throughput of the wireless terminal existing in the local station communication area while suppressing the interference given to the adjacent cell.
  • the radio communication system 1 includes a plurality of radio base stations 100 and a plurality of radio terminals 200 existing within the communication area of the radio base station 100.
  • the radio base station 100 is a radio communication device that performs radio communication with the radio terminal 200 existing in the local station communication area, and is connected to a communication network (not shown) via a wired line.
  • a communication network not shown
  • RB Resource Block
  • the radio base station 100 includes, as main functional units, a base station operation unit 101, a radio terminal determination unit 102, a priority band setting unit 103, a radio resource setting unit 104, a scheduler 105, a transmission buffer 106, A reference signal generation unit 107 and an adjacent cell information notification unit 108 are provided.
  • the radio base station 100 manages three cells C11, C12, and C13 as its own communication area, and cell processing units 100A, 100B, and 100C corresponding to the cells C11, C12, and C13, respectively.
  • the base station operation unit 101, the radio terminal determination unit 102, the priority band setting unit 103, the radio resource setting unit 104, the scheduler 105, the transmission buffer 106, the reference signal generation unit 107, and the neighboring cell information notification unit 108 described above It is prepared.
  • the base station operation unit 101 performs priority communication in the own cell (own station communication area) and the neighboring cell (adjacent communication area) by performing data communication with the adjacent radio base station connected via the communication network.
  • a function for exchanging various types of information such as information related to the band (corresponding to step S100 in FIG. 1), and data communication with the wireless terminal 200, the received power of the reference signal measured by the wireless terminal 200, the communication channel quality, and the like
  • the function of acquiring the various information (corresponding to step S101 in FIG. 1).
  • the base station operation unit 101 has a function equivalent to that of a radio base station that is generally used in a radio communication system, and its configuration and operation are well known, and thus description thereof is omitted.
  • the wireless terminal determination unit 102 is based on the received power (RSRP: ReferenceRSSignal Received Power) of the reference signal at the wireless terminal 200 acquired by the base station operation unit 101, and is a wireless terminal (hereinafter, edge wireless) that is greatly influenced by adjacent cell interference. Terminal) or a wireless terminal having a small influence (hereinafter referred to as a center wireless terminal).
  • RSRP ReferenceRSSignal Received Power
  • the determination result is notified to the priority band setting unit 103 and the radio resource setting unit 104 via the base station operation unit 101.
  • the priority band setting unit 103 has a function of setting the priority band of the own cell, a function of notifying the priority band of the own cell to the adjacent cell, and a priority indicating the adjacent priority band in the adjacent cell acquired by the base station operation unit 101. It has a function of holding bandwidth information.
  • the radio resource setting unit 104 uses transmission power P (u) used for radio communication as radio resources that can be allocated to the radio terminal u (200) in accordance with the presence / absence of RNTP notification from the neighboring cell and the calculation result of the transmission rate. It has a function (corresponding to steps S102 to S106 in FIG. 1) of selecting (determining) [dBm] and the band f (u) and setting them in a storage unit (not shown).
  • the scheduler 105 determines the transmission power and the band to be allocated to the radio terminal 200 from the allocatable radio resources set in the storage unit by the radio resource setting unit 104, and transmits the data in the transmission buffer 106 as a data signal based on the allocation result. It has the function to do.
  • MCS Modulation and Coding Scheme
  • CQI Channel Quality Information
  • the transmission buffer 106 has a function of accumulating data to be transmitted to the wireless terminal 200 that has arrived from the network, together with management information such as arrival time and a wireless terminal number to be transmitted.
  • the reference signal generation unit 107 has a function of transmitting a reference signal serving as a reference for channel quality information from the base station operation unit 101 to the radio terminal 200 at a predetermined timing.
  • the neighboring cell information notification unit 108 has a function of transmitting neighboring cell information such as a neighboring cell number from the base station operation unit 101 to the radio terminal 200.
  • radio base station 100 base station operation unit 101, radio terminal determination unit 102, priority band setting unit 103, radio resource setting unit 104, scheduler 105, reference signal generation unit 107, and adjacent cell information notification unit About 108, you may implement
  • the program may be read in advance from an external device connected to the radio base station 100 via a communication line or a recording medium individually connected to the radio base station 100 and stored in the storage unit.
  • the wireless terminal 200 is provided with a terminal operating unit 201 and a reception intensity measuring unit 202 as main functional units.
  • the terminal operation unit 201 has a function equivalent to that of a wireless terminal generally used in a wireless communication system, and since its configuration and operation are well known, description thereof is omitted.
  • the reception strength measurement unit 202 has a function of measuring the channel quality from the reference signal received from the radio base station 100 and reporting the channel quality information to the terminal operation unit 201 as channel quality information.
  • the reception strength measurement unit 202 has a function of measuring the RSRP and CQI of the own cell and the neighboring cell as communication path quality information based on the notification from the neighboring cell information notification unit 108.
  • CQI varies depending on the magnitude of other cell interference. Therefore, when the load of other cells is low, the CQI is high.
  • the channel quality information measured by the reception intensity measurement unit 202 is transmitted from the terminal operation unit 201 to the radio base station.
  • the priority band setting unit 103 of the cell C11 sets the band f1 when setting the priority band.
  • the cell C21 sets the band f2 as the priority band
  • the cell C31 sets the band f3 as the priority band.
  • a 3-sector cell is assumed, and that different priority bands can be set between adjacent cells.
  • band f1, f2, and f3 are each composed of three PRBs.
  • the band f1 is composed of three PRBs having PRB numbers 1, 2, and 3.
  • the transmission power can be set for each wireless terminal. For the same wireless terminal, the same transmission power is assigned for each band.
  • the wireless terminal determination unit 102 determines whether the wireless terminal u is an edge wireless terminal or a center wireless terminal by the wireless terminal determination process shown in FIG.
  • the wireless terminal determination unit 102 calculates the minimum value ⁇ RSRP [dB] of the RSRQ difference between the own cell and the adjacent cell (step S11).
  • the minimum RSRQ difference ⁇ RSRP between the own cell and the neighboring cell (U) is obtained by the following equation (1).
  • max ⁇ is a function for selecting the maximum value.
  • ⁇ RSRQ (u) RSRQ_serv (u) ⁇ max ⁇ RSRQ_neig (u, j) ⁇ (1)
  • the wireless terminal determination unit 102 compares the obtained ⁇ RSRQ (u) with a threshold value Th_RSRQ [dB] (step S12). ⁇ RSRQ (u) ⁇ Th_RSRQ (2)
  • step S12 when ⁇ RSRP is less than Th_RSRQ (step S12: YES), since the reception quality difference between the reference signal of the own cell and the adjacent cell is small, the wireless terminal u is an edge wireless terminal that is greatly affected by the adjacent cell interference. Determination is made (step S13). On the other hand, when ⁇ RSRP is equal to or greater than Th_RSRP (step S12: NO), the wireless terminal u is determined to be a center wireless terminal that is less affected by adjacent cell interference (step S14).
  • the priority band setting unit 103 executes the adjacent cell priority band setting process of FIG. 6 at a predetermined cycle. First, the priority band setting unit 103 confirms whether or not RNTP has been received from a neighboring cell within a predetermined time after the previous process (step S21), and if no RNTP has been received (step S21: NO), the priority band The setting unit 103 ends the adjacent cell priority band setting process. On the other hand, when RNTP is received (step S21: YES), the priority band setting unit 103 confirms whether the band notified by RNTP is the priority band in the own cell (step S22).
  • the priority band setting unit 103 executes the own cell priority band setting process of FIG. 7 at a predetermined cycle. First, the priority band setting unit 103 determines whether there is an edge wireless terminal in its own cell based on the result of the wireless terminal determination unit 102 (step S31). If there is an edge wireless terminal in the own cell (step S31: YES), the priority band setting unit 103 sets the band f1 as the priority band of the own cell and notifies the neighboring cell of the RNTP (step S31). S32), a series of own cell priority band setting processing ends.
  • the priority band setting unit 103 determines whether the priority band has been set (step S33).
  • the priority band setting unit 103 releases the set priority band (step S34), and ends a series of own cell priority band setting processes. Opening the priority band means not setting the priority band.
  • the series of own cell priority band setting processing is terminated.
  • the own cell priority band setting process is not limited to these processing procedures, and may be performed, for example, for each report of channel quality information from a wireless terminal.
  • the case where the RNTP is notified to the neighboring cell only when the priority band is set has been described as an example.
  • the present invention is not limited to this.
  • the RNTP is periodically reported to the neighboring cell. May be.
  • the radio resource setting unit 104 executes the radio resource setting process of FIG. 9 when setting radio resources that can be allocated by the radio terminal u.
  • the radio resource setting unit 104 determines whether there is a band set as the priority band of the adjacent cell among the bands that can be allocated by the cell C11 (step S41).
  • the transmission power is not reduced, and the entire band is set as an assignable band.
  • the radio resource setting unit 104 determines whether or not the radio terminal u is an edge radio terminal (step S43).
  • ⁇ E (u) represents the amount of power to be reduced.
  • the radio resource setting unit 104 calculates transmission rates Tput_DecF and Tput_DecP based on the channel quality reported from the radio terminal 200 ( Step S45). The calculation method of Tput_DecF and Tput_DecP will be described later.
  • the radio resource setting unit 104 compares Tput_DecF with Tput_DecP (step S46).
  • Tput_DecF is equal to or greater than Tput_DecP (step S46: YES)
  • step S46 NO
  • the radio resource setting unit 104 proceeds to step S44 and, as shown in FIG.
  • u) Pmax (u) ⁇ E (u)
  • the combination of the transmission power P (u) having the higher transmission rate and the communication band f (u) is set as the radio resource that can be allocated to the radio terminal u. Therefore, the throughput can be maximized while suppressing the interference to the priority band of the adjacent cell.
  • Transmission rate calculation processing Next, a transmission rate calculation method executed by the radio resource setting unit 104 in step S45 of the radio resource setting process of FIG. 9 described above will be described.
  • the MCS assigned to the same wireless terminal is the same for each RB.
  • the transmission data size (TBS: Transport Block Size) can be calculated using the TBS index and the number of assigned RBs with reference to a lookup table (see, for example, Non-Patent Document 4).
  • the TBS index can be uniquely determined using the MCS index with reference to the lookup table (Non-Patent Document 4).
  • the MCS index can be calculated by referring to the lookup table and using the effective SINR (SignalSignto Interference plus Noise Ratio) of the data signal.
  • the effective SINR is the channel quality of the assigned RB calculated in consideration of the dispersion and variation of the SINR of each RB, and is acquired from the radio terminal 200 via the base station operation unit 101.
  • this lookup table is created by link level simulation simulating a physical layer.
  • the SINR (SINR_pdsch) [dB] of the data signal can be calculated by the following equation (3).
  • the SINR (SINR_rs) [dB] of the reference signal is calculated using CQI with reference to a lookup table. Generally, this lookup table is also created by link level simulation simulating a physical layer.
  • P_rs [dBm] represents the transmission power of the reference signal.
  • SINR_pdsch (u) [dB] SINR_rs (u) [dB] + (P (u) ⁇ P_rs) (3)
  • the transmission rate can be calculated using the CQI, the allocation candidate RB (Cand_RBs), and the transmission power P (u).
  • a transmission rate calculation example will be described.
  • FIG. 3 is used for Cand_RBs, four calculation methods will be described, taking as an example the case where the wireless terminal u that is the transmission rate calculation target is the edge wireless terminal UE1 of FIG.
  • the transmission rate is Tput_DecF
  • Pmax (u) is used as the transmission power P (u)
  • Tput_DecP Pmax (u) ⁇ E (u) is used as the transmission power P (u).
  • N_Cand_RBs the number of allocation candidate RBs.
  • the first calculation method uses Wideband CQI as CQI and uses a band that can be allocated as Cand_RBs.
  • Wideband CQI represents the channel quality when transmitted in the entire band.
  • CQI uses a common value for Tput_DecF and Tput_DecP.
  • N_Cand_RBs is 9.
  • the second calculation method is a method using Wideband CQI as CQI and using the average number of assigned RBs (N_Ave_Alloc_RBs) of wireless terminals as N_Cand_RBs.
  • N_Ave_Alloc_RBs is calculated as an arithmetic average of a predetermined interval using past allocation results.
  • the averaging method may be another method such as a weighted average.
  • N_Cand_RBs is calculated according to the following equation (4).
  • floor () is a function that returns an integer value by truncating the decimal part.
  • N_Use_RBs floor (N_Ave_Alloc_RBs) (4)
  • N_Cand_RBs is 2 and 4, respectively.
  • the processing load increases to calculate N_Ave_Alloc_RBs as compared with the first calculation method, but a value close to the actual transmission rate expected at the time of scheduling can be estimated.
  • the third calculation method if it is performed every scheduling period, radio resources having a high transmission rate can be reliably allocated, so that throughput can be maximized, but the processing load further increases.
  • the fourth calculation method is a method in which a narrowband CQI is used as the CQI, and an unassigned RB is used from among the bands that can be assigned to the Cand_RBs according to the assignment status of the scheduler 105.
  • the narrowband CQI represents the channel quality when transmitted by a predetermined one or more consecutive RBs, that is, the channel quality of a part of the band.
  • the radio base station 100 communication is performed in the first candidate band selected as a candidate from the first radio band including the adjacent priority band among the radio bands usable in the local station communication area.
  • a first transmission rate is calculated when the transmission quality is transmitted to the radio terminal 200 with the first transmission power in the path quality, and the candidate is selected from the second radio band not including the adjacent priority band among the radio bands usable in the local station communication area.
  • the second transmission rate is calculated when the channel quality is transmitted to the wireless terminal with the second transmission power, and the first transmission band and the first candidate band are calculated.
  • the radio resource with the higher transmission rate obtained by calculation is allocated to the radio terminal 200. It is obtained so as to set as a possible radio resources.
  • the transmission power is a narrow band in which interference between the first radio resource whose transmission power is reduced and interference is reduced and the adjacent priority band does not occur.
  • a radio resource having a high transmission rate can be set as a radio resource that can be allocated to the radio terminal 200. Therefore, it is possible to maximize the throughput of the radio terminal 200 existing in the local station communication area while suppressing the interference to the adjacent cell.
  • the second transmission power may be larger than the first transmission power.
  • a transmission band used for transmission from the radio base station 100 to the radio terminal 200 may be used as the candidate band.
  • the candidate band may be calculated from an average value of bandwidths allocated to the radio terminal 200 in the past.
  • a band that is not assigned to any wireless terminal at the time of transmission rate calculation may be used as the candidate band.
  • the transmission rate may be calculated assuming different MCS for each RB.
  • the same transmission power is assigned to each band for the same wireless terminal, but the present invention is not limited to this.
  • the transmission power may be changed for each allocated band.
  • the RSRP difference between the own cell and the neighboring cell is used for the determination of the edge wireless terminal, but the present invention is not limited to this.
  • the ratio of the total received power to the received power of the reference signal (RSRQ: Reference Signal Received Quality) may be used.
  • the ratio (SINR) of interference power and noise power with respect to the received power of the reference signal may be used.
  • a path loss calculated from the difference between the received power and the transmitted power of the reference signal may be used.
  • the signal for measuring the received power is not limited to the reference signal, and may be a notification signal.
  • wireless communications system 1 concerning the 2nd Embodiment of this invention is demonstrated.
  • the radio terminal is an edge radio terminal, and the edge radio terminal and the center The difference is that both wireless terminals are targeted.
  • Other configurations of the wireless communication system according to the present embodiment are the same as those in the first embodiment, and a detailed description thereof is omitted here.
  • the radio resource setting unit 104 executes the radio resource setting process of FIG. 12 when setting radio resources that can be allocated by the radio terminal u.
  • the radio resource setting unit 104 determines whether there is a band set as the priority band of the adjacent cell among the bands that can be allocated by the cell C11 (step S41).
  • the transmission power is not reduced, and the entire band is set as an assignable band.
  • the radio resource setting unit 104 is reported from the radio terminal 200 regardless of whether or not the radio terminal u is an edge radio terminal.
  • the transmission rates Tput_DecF and Tput_DecP are calculated based on the communication channel quality (step S45).
  • the radio resource setting unit 104 compares Tput_DecF with Tput_DecP (step S46).
  • Tput_DecF is equal to or greater than Tput_DecP (step S46: YES)
  • step S46 NO
  • the radio resource setting unit 104 proceeds to step S44 and, as shown in FIG.
  • u) Pmax (u) ⁇ E (u)
  • the combination of the transmission power P (u) with the higher transmission rate and the communication band f (u) can be set as a radio resource that can be allocated to the radio terminal u, so that it is possible to further improve the throughput while suppressing interference given to the priority band of the adjacent cell.
  • the radio base station 100 of the radio communication system 1 according to the present embodiment is provided with a scheduler 111 instead of the scheduler 105, and a reception intensity measurement unit instead of the transmission buffer 106. 112 is provided.
  • a reference signal generation unit 211, a data transmission unit 212, and a data generation unit 213 are added to the wireless terminal 200 of the wireless communication system 1 according to the present embodiment.
  • the scheduler 111 has a function of determining radio resources to be allocated to the radio terminal 200 from radio resources that can be allocated set by the radio resource setting unit 104 and transmitting scheduling information to the radio terminal 200 based on the allocation result.
  • the MCS used for calculation of the transmission rate is determined based on the channel quality measured by the reception strength measuring unit 112.
  • the reception intensity measurement unit 112 has a function of measuring the channel quality from the reference signal received from the wireless terminal 200.
  • the reference signal generation unit 211 has a function of transmitting a reference signal from the terminal operation unit 201 to the radio base station 100 at a predetermined timing in order to measure the channel quality serving as a reference of MCS assigned by the scheduler 111.
  • the data transmission unit 212 has a function of transmitting data of the data generation unit 213 to the radio base station based on the scheduling information received from the radio base station 100.
  • the data generation unit 213 has a function of generating data transmitted by the wireless terminal 200 and storing it together with management information such as the generation time.
  • the radio resource setting process executed in the radio communication system 1 according to the present embodiment is the same as that of the first embodiment described with reference to FIG. 9 described above, but differs in the transmission rate calculation process. That is, the radio resource setting unit 104 according to the present embodiment uses the reception band measured for reception from the radio terminal 200 to the radio base station 100 as the effective SINR used when calculating the MCS index. Use the channel quality for.
  • the radio base station 100 is provided with the reception strength measuring unit 112 that measures the channel quality from the reference signal from the radio terminal 200, and the radio resource setting unit 104 has the reception strength measuring unit 112. Since the first transmission rate (Tput_DecP) and the second transmission rate (Tput_DecF) are calculated on the basis of the channel quality measured in step 1, high transmission is performed in the uplink from the radio terminal 200 to the radio base station 100. A combination of the rate transmission power and the communication band can be set as a radio resource that can be allocated to the radio terminal 200.
  • the wireless terminal uses the first transmission power with the communication channel quality.
  • a radio resource setting method comprising: setting a radio resource having a higher transmission rate as a radio resource assignable to the radio terminal.
  • the radio base station is A priority band acquisition unit for acquiring an adjacent priority band preferentially used in the adjacent communication area by notification from an adjacent radio base station of the adjacent communication area adjacent to the local station communication area; By the notification from the wireless terminal, a channel quality acquisition unit that acquires channel quality related to radio communication with the radio base station in the radio terminal; In the first candidate band selected as a candidate from the first radio band including the adjacent priority band among the radio bands usable in the local station communication area, the wireless terminal uses the first transmission power with the communication channel quality.
  • a transmission rate calculation unit for calculating a second transmission rate when transmitted to the wireless terminal with the second transmission power at the channel quality; Of the first radio resource composed of the first transmission power and the first candidate band, and the second radio resource composed of the second transmission power and the second candidate band, obtained by the calculation.
  • a radio communication system comprising: a radio resource setting unit that sets a radio resource having a higher transmission rate as a radio resource that can be allocated to the radio terminal.
  • a priority band acquisition unit for acquiring an adjacent priority band preferentially used in the adjacent communication area by notification from the adjacent radio base station of the adjacent communication area adjacent to the local communication area of the radio base station;
  • a communication channel quality acquisition unit that acquires a communication channel quality related to wireless communication with the wireless base station in the wireless terminal by notification from the wireless terminal existing in the local station communication area;
  • the wireless terminal uses the first transmission power with the communication channel quality.
  • a transmission rate calculation unit for calculating a second transmission rate when transmitted to the wireless terminal with the second transmission power at the channel quality; Of the first radio resource composed of the first transmission power and the first candidate band, and the second radio resource composed of the second transmission power and the second candidate band, obtained by the calculation.
  • a radio base station comprising: a radio resource setting unit configured to set a radio resource having a higher transmission rate as a radio resource that can be allocated to the radio terminal.
  • SYMBOLS 1 ... Wireless communication system, 100 ... Wireless base station, 100A, 100B, 100C ... Cell processing part, 101 ... Base station operation

Abstract

 無線基地局(100)において、隣接優先帯域を含む第1の無線帯域から候補として選択した第1の候補帯域において、通信路品質で第1の送信電力により無線端末へ送信した場合の第1の送信レートを計算し、隣接優先帯域を含まない第2無線帯域から候補として選択した第2の候補帯域において、通信路品質で第2の送信電力により無線端末(200)へ送信した場合の第2の送信レートを計算し、第1の送信電力および第1の候補帯域からなる第1の無線リソースと、第2の送信電力および第2の候補帯域からなる第2の無線リソースのうち、計算で得られた送信レートが高いほうの無線リソースを、無線端末(200)に割り当て可能な無線リソースとして設定する。これにより、隣接セルへ与える干渉の抑制を実現しながら、自局通信エリア内に存在する無線端末のスループットを最大化できる。

Description

無線リソース設定方法、無線通信システム、無線基地局、およびプログラム
 本発明は、無線制御技術に関し、特に無線通信に対して割り当て可能な無線リソースを設定する無線リソース設定技術に関する。
 3GPP(3rd Generation Partnership Project)において標準化がなされているLTE(Long Term Evolution)などのセルラ環境では、無線基地局を複数配置することを前提としており、各無線基地局は自局の通信エリア内の無線端末と通信を行う。この通信エリアをセルと呼ぶが、アンテナに指向性を持たせることでセルを複数に分割することもできる。この分割された領域をセクタセルと呼ぶ。以下ではセルとはセクタセルを指すものとする。
 LTEでは、一般にセル間で同一の無線帯域(以下、帯域という)が使用される。従って、上りリンクか下りリンクかに関わらず、隣接セルから強い干渉(以下、隣接セル干渉という)を受けることになる。例えば、下りリンクの場合、無線基地局近傍の無線端末は、無線基地局が受信する希望信号と隣接セルからの干渉信号のレベル差が大きいため、通信路品質は劣化しない。しかし、セル境界近傍の無線端末に、隣接セルにおいて同時に同一の帯域を使って送信すると、希望信号と隣接セルからの干渉信号のレベル差が小さいため、通信品質が大きく劣化してしまう。上りリンクも同様である。
 隣接セル干渉の問題を解決する関連技術として、LTEではICIC(Inter-cell Interference Coordination) の適用が期待されている(例えば、非特許文献1など参照)。この非特許文献1には、ICICは隣接セル間の干渉を制御することを目的としており、リソース使用状態やトラヒック負荷など、他セルの情報の考慮が必要になると記載されている。ICICの実現方法の1つとして、FFR(Frequency Fractional Reuse)技術がある。
 FFRの基本動作を説明する。まず、隣接セル間で異なるように、各セルで優先帯域を設定する。次に、無線端末は、通信路品質情報を無線基地局に報告する。無線基地局は、通信路品質情報を用いて、隣接セル干渉による影響が小さい無線端末(以下、センタ無線端末という)か、隣接セル干渉による影響が大きい無線端末(以下、エッジ無線端末という)かを判定する。そして、エッジ無線端末と判定された場合、割り当て可能な帯域を自セルの優先帯域に制限する。センタ無線端末は割り当て可能な帯域を制限しない。スケジューラは、各無線端末が割り当て可能な帯域の中から、通信路品質に応じて、無線リソースを割り当てる(例えば、非特許文献2など参照)。優先帯域を隣接セルと重複しないように設定することで、隣接セル干渉を抑制できるので、優先帯域の通信路品質の向上により、エッジ無線端末のスループットの改善が期待される。
 また、優先帯域を動的に設定することも可能である。優先帯域を無線基地局間で通知する方法として、LOAD INFORMATIONが規定されている(例えば、非特許文献3等参照)。下りリンクRNTP(Relative Narrowband Tx Power)により通知でき、上りリンクはHII(High Interference Indication)により通知できる。RNTPやHIIの通知情報は、ユーザチャネルの帯域最小割り当て単位であるPRB(Physical Resource Block)番号毎に作成する。例えば、優先帯域とするPBRについては、RNTPを1と設定する。非特許文献3では、「1は送信電力の保証はしないことを示す」と記載されており、隣接セルに与える干渉の考慮を保証しないPRB番号を通知する。
 図14は、関連技術における無線リソース設定動作を示す説明図である。図15は、優先帯域の割り当て例である。図16Aは、無線端末UE1に対する割り当て可能な無線リソースの設定例である。図16Bは、無線端末UE2に対する割り当て可能な無線リソースの設定例である。
 図14において、無線基地局BS1はセルC11を、無線基地局BS2はセル21を、無線基地局BS3はセル31をそれぞれ自局の通信エリアとして管理している。これら無線基地局BS1,BS2,BS3については複数のセルを管理できるが簡単のため1つのセルのみを図示している。円は、各無線基地局BS1,BS2,BS3について、アンテナの指向性により電波が届く有効範囲を示している。これら円が重なる範囲にセル境界がある。
 図14の例では無線端末が2つ存在している。このうち、無線端末UE1はセルC11に属しており、セルC31を隣接セルとするエッジ無線端末とする。無線端末UE2はセルC31に属しているセンタ無線端末とする。また、LTEの場合、同一無線端末に割り当てる各帯域の送信電力は同一である。図15に示すように、割り当て可能な帯域をf1、f2、f3に3分割し、それぞれセルC11、C21、C31の優先帯域に設定する。各優先帯域は3PRBから構成されている。
 図14では、セルC11にエッジ無線端末UE1が存在するため、無線基地局BS1はその隣接セルであるC31の無線基地局BS3に、帯域f1に関してRNTP=1を通知する。この時、セルC11ではRNTPを受信していないため、図16Aのように、エッジ無線端末UE1の帯域も送信電力も制限しない。一方、RNTPの通知を受けた無線基地局BS3では、セルC31による隣接セルへの干渉を抑制するため、セルC11の優先帯域f1の送信電力を削減する。そのため、図16Bのように、センタ無線端末UE2は送信電力をΔEだけ削減し、全帯域から割り当てる。
3GPP TS 36.300 V8.9.0 (2009-06), 3GPP TSG RAN E-UTRA and E-UTRAN Overall description, pp.86 3GPP TSG RAN R1-06928, Performance evaluation of uplink interference avoidance techniques, Freescale Semiconductor 3GPP TS 36.423 V8.6.0 (2009-06), 3GPP TSG RAN EUTRAN X2AP, pp27,48-49 3GPP TS 36.213 V8.8.0 (2009-09), 3GPP TSG RAN EUTRAN Physical layer procedures, pp25-26, 27-32
 しかしながら、このような関連技術では、無線端末のスループットが大きく劣化する問題があった。
 その理由を下りリンクを例にして説明する。図17は、図14から時間経過後における無線リソース設定動作を示す説明図である。図17において、図14の状態からセルC21に無線端末UE3が発生している。無線端末UE3は、セルC11と隣接するエッジ無線端末とする。
 まず、無線基地局BS2は、セルC21にエッジ無線端末UE3が存在するため、その隣接セルであるセルC11の無線基地局BS1に、帯域f2に関してRNTP=1を通知する。このRNTPの通知を受けた無線基地局BS1は、セルC11について、エッジ無線端末UE1への割り当て帯域f2を制限する。図18は、無線端末UE1(PNTP受信後)に対する割り当て可能な無線リソースの設定例である。
 しかし、エッジ無線端末UE1にとって、セルC21は隣接セルではないため、セルC21から受ける干渉レベルは小さいままである。また、セルC31へはRNTPを通知済みであるため、エッジ無線端末UE1が受ける干渉が更に低減されることは期待できない。
 従って、上記の場合には、図18に示すように、エッジ無線端末UE1の優先帯域f1のチャネル品質は改善せず、帯域だけが制限されることになり、エッジ無線端末UE1のスループットが大きく劣化してしまう。また、隣接セルの優先帯域の設定に応じて、送信電力と帯域を変更する場合、上りリンクも同様の問題が発生する。
 本発明はこのような課題を解決するためのものであり、隣接セルへ与える干渉の抑制を実現しながら、自局通信エリア内に存在する無線端末のスループットを最大化できる無線リソース設定技術を提供することを目的としている。
 このような目的を達成するために、本発明にかかる無線リソース設定方法は、無線基地局の自局通信エリアに隣接する隣接通信エリアの隣接無線基地局からの通知により、当該隣接通信エリアで優先的に使用される隣接優先帯域を取得する優先帯域取得ステップと、自局通信エリアに存在する無線端末からの通知により、当該無線端末における無線基地局との無線通信に関する通信路品質を取得する通信路品質取得ステップと、自局通信エリアで利用可能な無線帯域のうち隣接優先帯域を含む第1の無線帯域から候補として選択した第1の候補帯域において、通信路品質で第1の送信電力により無線端末へ送信した場合の第1の送信レートを計算し、自局通信エリアで利用可能な無線帯域のうち隣接優先帯域を含まない第2無線帯域から候補として選択した第2の候補帯域において、通信路品質で第2の送信電力により無線端末へ送信した場合の第2の送信レートを計算する送信レート計算ステップと、第1の送信電力および第1の候補帯域からなる第1の無線リソースと、第2の送信電力および第2の候補帯域からなる第2の無線リソースのうち、計算で得られた送信レートが高いほうの無線リソースを、無線端末に割り当て可能な無線リソースとして設定する無線リソース設定ステップとを備えている。
 また、本発明にかかる無線通信システムは、無線基地局と、当該無線基地局の自局通信エリアに存在する無線端末とを備え、無線基地局は、自局通信エリアに隣接する隣接通信エリアの隣接無線基地局からの通知により、当該隣接通信エリアで優先的に使用される隣接優先帯域を取得する優先帯域取得部と、無線端末からの通知により、当該無線端末における無線基地局との無線通信に関する通信路品質を取得する通信路品質取得部と、自局通信エリアで利用可能な無線帯域のうち隣接優先帯域を含む第1の無線帯域から候補として選択した第1の候補帯域において、通信路品質で第1の送信電力により無線端末へ送信した場合の第1の送信レートを計算し、自局通信エリアで利用可能な無線帯域のうち隣接優先帯域を含まない第2無線帯域から候補として選択した第2の候補帯域において、通信路品質で第2の送信電力により無線端末へ送信した場合の第2の送信レートを計算する送信レート計算部と、第1の送信電力および第1の候補帯域からなる第1の無線リソースと、第2の送信電力および第2の候補帯域からなる第2の無線リソースのうち、計算で得られた送信レートが高いほうの無線リソースを、無線端末に割り当て可能な無線リソースとして設定する無線リソース設定部とを備えている。
 また、本発明にかかる無線基地局は、無線基地局の自局通信エリアに隣接する隣接通信エリアの隣接無線基地局からの通知により、当該隣接通信エリアで優先的に使用される隣接優先帯域を取得する優先帯域取得部と、自局通信エリアに存在する無線端末からの通知により、当該無線端末における無線基地局との無線通信に関する通信路品質を取得する通信路品質取得部と、自局通信エリアで利用可能な無線帯域のうち隣接優先帯域を含む第1の無線帯域から候補として選択した第1の候補帯域において、通信路品質で第1の送信電力により無線端末へ送信した場合の第1の送信レートを計算し、自局通信エリアで利用可能な無線帯域のうち隣接優先帯域を含まない第2無線帯域から候補として選択した第2の候補帯域において、通信路品質で第2の送信電力により無線端末へ送信した場合の第2の送信レートを計算する送信レート計算部と、第1の送信電力および第1の候補帯域からなる第1の無線リソースと、第2の送信電力および第2の候補帯域からなる第2の無線リソースのうち、計算で得られた送信レートが高いほうの無線リソースを、無線端末に割り当て可能な無線リソースとして設定する無線リソース設定部とを備えている。
 また、本発明にかかるプログラムは、コンピュータを、前述した無線基地局を構成する各部として機能させるためのプログラムである。
 本発明によれば、隣接優先帯域を含む第1の候補帯域を用いた場合に得られる第1の送信レートと、隣接優先帯域を含まない第2の候補帯域を用いた場合に得られる第2の送信レートとを比較して、いずれか高い送信レートの送信電力と通信帯域の組み合わせを、無線端末の割り当て可能な無線リソースとして設定することができる。したがって、隣接セルへ与える干渉の抑制を実現しながら、自局通信エリア内に存在する無線端末のスループットを最大化することが可能となる。
図1は、本発明の特徴を示す無線リソース設定処理を示すフローチャートである。 図2は、第1の実施形態にかかる無線通信システムの構成を示すブロック図である。 図3は、無線リソース割り当て例である。 図4は、本実施形態における無線リソース設定動作を示す説明図である。 図5は、無線端末判定処理を示すフローチャートである。 図6は、隣接セル優先帯域設定処理を示すフローチャートである。 図7は、自セル優先帯域設定処理を示すフローチャートである。 図8は、RNTPの通知例である。 図9は、無線リソース設定処理を示すフローチャートである。 図10Aは、無線リソース設定例(Tput_DecF)である。 図10Bは、無線リソース設定例(Tput_DecP)である。 図11は、送信レート計算に用いる無線リソース割り当て例である。 図12は、第2の実施形態にかかる無線通信システム1の無線リソース設定処理を示すフローチャートである。 図13は、第3の実施形態にかかる無線通信システムの構成を示すブロック図である。 図14は、関連技術における無線リソース設定動作を示す説明図である。 図15は、優先帯域の割り当て例である。 図16Aは、無線端末UE1に対する割り当て可能な無線リソースの設定例である。 図16Bは、無線端末UE2に対する割り当て可能な無線リソースの設定例である。 図17は、図14から時間経過後における無線リソース設定動作を示す説明図である。 図18は、無線端末UE1(PNTP受信後)に対する割り当て可能な無線リソースの設定例である。
[本発明の特徴]
 まず、図1を参照して、本発明にかかる無線通信システムの特徴について説明する。
 無線通信システムを構成する無線基地局は、自局通信エリア内に存在する無線端末に割り当て可能な無線リソースを設定する際、図1に示す無線リソース設定処理を実行する。
 まず、無線基地局は、自局通信エリアに隣接する隣接通信エリアの隣接無線基地局からの通知により、当該隣接通信エリアで優先的に使用される隣接優先帯域を取得する(ステップS100)。
 続いて、無線基地局は、無線端末からの通知により、当該無線端末における無線基地局との無線通信に関する通信路品質を取得する(ステップS101)。
 次に、無線基地局は、自局通信エリアで利用可能な無線帯域のうち隣接優先帯域を含む第1の無線帯域から候補として選択した第1の候補帯域において、通信路品質で第1の送信電力により無線端末へ送信した場合の第1の送信レートを計算する(ステップS102)。
 また、無線基地局は、自局通信エリアで利用可能な無線帯域のうち隣接優先帯域を含まない第2無線帯域から候補として選択した第2の候補帯域において、通信路品質で第2の送信電力により無線端末へ送信した場合の第2の送信レートを計算する(ステップS103)。
 この後、無線基地局は、第1の送信レートと第2の送信レートとを比較し(ステップS104)、第1の送信レートが第2の送信レートより大きい場合には(ステップS104:NO)、第1の送信電力と第1の候補帯域とを無線リソースとして無線端末へ設定し(ステップS105)、一連の無線リソース設定処理を終了する。
 一方、第1の送信レートが第2の送信レート以下の場合には(ステップS104:YES)、第2の送信電力と第2の候補帯域とを無線リソースとして無線端末へ設定し(ステップS106)、一連の無線リソース設定処理を終了する。
 これにより、隣接優先帯域を含む第1の候補帯域を用いた場合に得られる第1の送信レートと、隣接優先帯域を含まない第2の候補帯域を用いた場合に得られる第2の送信レートとを比較して、いずれか高い送信レートの送信電力と通信帯域の組み合わせを、無線端末の割り当て可能な無線リソースとして設定することができる。したがって、隣接セルへ与える干渉の抑制を実現しながら、自局通信エリア内に存在する無線端末のスループットを最大化することが可能となる。
 次に、本発明の実施形態について図面を参照して説明する。
[第1の実施形態]
 まず、図2~図4を参照して、本発明の第1の実施形態にかかる無線通信システムについて説明する。
 この無線通信システム1は、複数の無線基地局100と、これら無線基地局100の自局通信エリア内に存在する複数の無線端末200とで構成されている。
 無線基地局100は、自局通信エリア内に存在する無線端末200との間で無線通信を行う無線通信装置であり、有線回線を介して通信ネットワーク(図示せず)と接続されている。
 ここでは、無線通信システム1において、LTEにて策定されたセル構成が適用されているものとし、帯域の割り当て単位をRB(Resource Block)と呼ぶ。また、本実施例は、LTEの下りリンクを例に説明する。
[無線基地局の構成]
 まず、図2を参照して、本実施形態にかかる無線通信システム1の構成について詳細に説明する。
 無線基地局100には、主な機能部として、基地局動作部101と、無線端末判定部102と、優先帯域設定部103と、無線リソース設定部104と、スケジューラ105と、送信バッファ106と、リファレンス信号発生部107と、隣接セル情報通知部108とが設けられている。
 図2の例では、無線基地局100において3つのセルC11、C12、C13を自局通信エリアとして管理しており、これらセルC11、C12、C13のそれぞれに対応するセル処理部100A,100B,100Cごとに、前述した基地局動作部101、無線端末判定部102、優先帯域設定部103、無線リソース設定部104、スケジューラ105、送信バッファ106、リファレンス信号発生部107、および隣接セル情報通知部108が用意されている。
 基地局動作部101は、通信ネットワークを介して接続された隣接無線基地局とデータ通信を行うことにより、自セル(自局通信エリア)および隣接セル(隣接通信エリア)で優先的に使用する優先帯域に関する情報などの各種情報をやり取りとする機能(図1のステップS100に相当)と、無線端末200とデータ通信を行うことにより、無線端末200で測定したリファレンス信号の受信電力や通信路品質などの各種情報を取得する機能(図1のステップS101に相当)とを有している。このほか、基地局動作部101は、無線通信システムにおいて一般的に用いられる無線基地局と同等の機能を有しており、その構成及び動作については周知であるのでその説明を省略する。
 無線端末判定部102は、基地局動作部101で取得した無線端末200でのリファレンス信号の受信電力(RSRP:Reference Signal Received Power)に基づき、隣接セル干渉による影響が大きい無線端末(以下、エッジ無線端末)か、影響が小さい無線端末(以下、センタ無線端末)かを判定する機能を有する。判定結果は、基地局動作部101を介して、優先帯域設定部103と無線リソース設定部104に通知される。
 優先帯域設定部103は、自セルの優先帯域を設定する機能と、自セルの優先帯域を隣接セルに通知する機能と、基地局動作部101で取得した隣接セルでの隣接優先帯域を示す優先帯域情報を保持する機能を有する。
 無線リソース設定部104は、隣接セルからのRNTPの通知の有無や送信レートの計算結果に応じて、無線端末u(200)に割り当て可能な無線リソースとして、無線通信に用いる送信電力P(u)[dBm]と帯域f(u)を選択(決定)し、記憶部(図示せず)へ設定する機能(図1のステップS102~S106に相当)を有する。
 スケジューラ105は、無線リソース設定部104で記憶部に設定した割り当て可能な無線リソースから、無線端末200に割り当てる送信電力と帯域を決定し、割り当て結果に基づいて送信バッファ106のデータをデータ信号により送信する機能を有する。この際、MCS(Modulation and Coding Scheme)は、無線端末200から報告されたCQI(Channel Quality Information)に基づいて決定する。MCSが高いほど、高い送信レートでの送信が可能となる。
 送信バッファ106は、ネットワークから到着した無線端末200に送信するデータを到着時刻や送信する無線端末番号などの管理情報とともに、蓄積する機能を有する。
 リファレンス信号発生部107は、通信路品質情報の基準となるリファレンス信号を所定のタイミングで基地局動作部101から無線端末200に送信する機能を有する。
 隣接セル情報通知部108は、隣接セル番号などの隣接セル情報を基地局動作部101から無線端末200に送信する機能を有する。
 無線基地局100におけるこれら機能部のうち、基地局動作部101、無線端末判定部102、優先帯域設定部103、無線リソース設定部104、スケジューラ105、リファレンス信号発生部107、および隣接セル情報通知部108については、それぞれの機能部の一部または全てを、CPUでプログラムを実行させてなる演算処理部により実現してもよい。この際、プログラムは、通信回線を介して無線基地局100に接続された外部装置や、無線基地局100に個別接続された記録媒体から、予め読み込んで記憶部に格納しておけばよい。
[無線端末の構成]
 無線端末200は、主な機能部として、端末動作部201と受信強度測定部202が設けられている。
 端末動作部201は、無線通信システムにおいて一般的に用いられる無線端末と同等の機能を有しており、その構成及び動作については周知であるのでその説明を省略する。
 受信強度測定部202は、無線基地局100から受信したリファレンス信号から通信路品質を測定し、通信路品質情報として端末動作部201に報告する機能を有する。
 本実施形態において、受信強度測定部202は、隣接セル情報通知部108からの通知に基づいて、通信路品質情報として自セルと隣接セルのRSRPとCQIを測定する機能を有する。CQIは他セル干渉の大きさによって変動する。従って、他セルの負荷が低い場合、CQIは高くなる。受信強度測定部202が測定した通信路品質情報は、端末動作部201より無線基地局に送信される。
[各セルの帯域]
 次に、図3および図4を参照して、無線基地局100に設けた各セルの帯域について説明する。
 図3に示すように、セルC11の優先帯域設定部103は、優先帯域を設定する場合、帯域f1を設定する。同様に、セルC21は帯域f2を優先帯域として設定し、セルC31は帯域f3を優先帯域として設定する。ここでは、3セクタセルを仮定し、隣接セル間で異なる優先帯域が設定できると仮定する。
 また、図4に示すように、セルC11が割り当て可能な全帯域をf_all=f1+f2+f3とする。帯域f1、f2、f3はそれぞれ3つのPRBから構成されている。例えば、帯域f1は、PRB番号1、2、3の3つのPRBから構成されている。
 また、送信電力は無線端末毎に設定できるものとする。同一無線端末に対しては、帯域毎に同じ送信電力を割り当てるものとする。
[第1の実施形態の動作]
 次に、本実施形態にかかる無線通信システムの動作として、割り当て可能な無線リソースを決定するための動作について説明する。
[無線端末判定処理]
 無線端末判定部102は、無線端末uから報告された通信路品質に基づいて、図5に示す無線端末判定処理により、無線端末uがエッジ無線端末かセンタ無線端末かを判定する。
 無線端末判定部102は、まず、自セルと隣接セルとのRSRQ差の最小値ΔRSRP[dB]を計算する(ステップS11)。
 ここで、自セルuのRSQをRSRQ_serv(u)[dB]とし、隣接セルjのRSRQをRSRQ_neig(u,j)[dB]とした場合、自セルと隣接セルとのRSRQ差の最小値ΔRSRP(u)は、次の式(1)で求められる。なお、max{}は最大値を選択する関数である。
 ΔRSRQ(u)=RSRQ_serv(u)-max{RSRQ_neig(u,j)} …(1)
 次に、無線端末判定部102は、次の式(2)に示すように、得られたΔRSRQ(u)をしきい値Th_RSRQ[dB]と比較する(ステップS12)。
 ΔRSRQ(u)<Th_RSRQ …(2)
 ここで、ΔRSRPがTh_RSRQ未満である場合(ステップS12:YES)、自セルと隣接セルのリファレンス信号の受信品質差が小さいため、無線端末uは隣接セル干渉による影響が大きいエッジ無線端末であると判定する(ステップS13)。
 一方、ΔRSRPがTh_RSRP以上である場合(ステップS12:NO)、無線端末uは隣接セル干渉による影響が小さいセンタ無線端末であると判定する(ステップS14)。
[隣接セル優先帯域設定処理]
 優先帯域設定部103は、所定周期で図6の隣接セル優先帯域設定処理を実行する。
 まず、優先帯域設定部103は、前回処理以降の所定時間内に隣接セルからRNTPを受信したか確認し(ステップS21)、RNTPを受信していない場合には(ステップS21:NO)、優先帯域設定部103は、この隣接セル優先帯域設定処理を終了する。
 一方、RNTPを受信している場合には(ステップS21:YES)、優先帯域設定部103は、RNTPで通知された帯域が自セルで優先帯域かどうか確認する(ステップS22)。
 ここで、RNTPで通知された帯域が自セルで優先帯域でない場合(ステップS22:NO)、優先帯域設定部103は、RNTP=1として通知された帯域を隣接セルの優先帯域として記憶し(ステップS23)、一連の隣接セル優先帯域設定処理を終了する。
 また、RNTPで通知された帯域が自セルで優先帯域である場合(ステップS22:YES)、優先帯域設定部103は、隣接セルの優先帯域を設定せずに、一連の隣接セル優先帯域設定処理を終了する。
[自セル優先帯域設定処理]
 優先帯域設定部103は、所定周期で図7の自セル優先帯域設定処理を実行する。
 まず、優先帯域設定部103は、無線端末判定部102の結果に基づいて、自セル内にエッジ無線端末が存在するか判定する(ステップS31)。
 ここで、自セル内にエッジ無線端末が存在する場合(ステップS31:YES)、優先帯域設定部103は、帯域f1を自セルの優先帯域として設定して、隣接セルにRNTPを通知し(ステップS32)、一連の自セル優先帯域設定処理を終了する。
 一方、自セル内にエッジ無線端末が存在しない場合(ステップS31:NO)、優先帯域設定部103は、優先帯域を設定済みか判定する(ステップS33)。
 ここで、優先帯域を設定済みの場合(ステップS33:YES)、優先帯域設定部103は、設定されている優先帯域を開放し(ステップS34)、一連の自セル優先帯域設定処理を終了する。優先帯域を開放するとは優先帯域を設定しないことを指す。
 また、優先帯域が設定されていない場合(ステップS33:NO)、一連の自セル優先帯域設定処理を終了する。
 なお、本実施形態において、自セル優先帯域設定処理はこれら処理手順に限定されるものではなく、例えば無線端末からの通信路品質情報の報告毎に行ってもよい。また、実施形態では、優先帯域を設定した場合にのみ隣接セルへRNTPを通知する場合を例として説明したが、これに限定されるものではなく、例えば隣接セルに対して周期的にRNTPを通知してもよい。
 図8では、セルC11から通知するRNTPとセルC11の隣接セルC21から通知されるRNTPの例が示されている。
 セルC11の優先帯域はf1なのでPRB番号=1、2、3に関してRNTPを1と設定する。セル21の優先帯域はf2なのでPRB番号=4、5、6に関してRNTPが1と設定され、セルC21から通知される。
[無線リソース設定処理]
 無線リソース設定部104は、無線端末uの割り当て可能な無線リソースを設定する場合、図9の無線リソース設定処理を実行する。
 まず、無線リソース設定部104は、セルC11が割り当て可能な帯域の中に隣接セルの優先帯域として設定されている帯域があるか判定する(ステップS41)。ここで、隣接セルの優先帯域として設定されている帯域がない場合(ステップS41:NO)、無線リソース設定部104は、送信電力をP(u)=Pmax(u)に設定するとともに、割り当て可能な帯域をf(u)=f_all=f1+f2+f3に設定し(ステップS42)、一連の無線リソース設定処理を終了する。この場合、隣接セルへ与える干渉を低減する必要がないので送信電力を削減せず、全帯域を割り当て可能な帯域とする。
 一方、隣接セルの優先帯域として設定されている帯域がある場合(ステップS41:YES)、無線リソース設定部104は、無線端末uがエッジ無線端末か否か判定する(ステップS43)。ここで、エッジ無線端末でない場合(ステップS43:NO)、無線リソース設定部104は、図10Bに示すように、無線端末200の無線リソースとして、送信電力をP(u)=Pmax(u)-ΔE(u)に設定するとともに、通信帯域をf(u)=f_allに設定し(ステップS44)、一連の無線リソース設定処理を終了する。この場合、通信路品質は低くないと予想されるので送信電力を削減し、その代わり全帯域を割り当て可能とする。ΔE(u)は削減する電力量を表す。
 また、無線端末uがエッジ無線端末である場合(ステップS43:YES)、無線リソース設定部104は、無線端末200から報告される通信路品質に基づいて、送信レートTput_DecF、Tput_DecPをそれぞれ計算する(ステップS45)。Tput_DecFとTput_DecPの計算方法は後述する。
 Tput_DecFは、通信路品質を維持するために送信電力を削減せずにP(u)=Pmax(u)(第2の送信電力)に設定するが、隣接セルの優先帯域に与える干渉を低減するために、割り当て可能な帯域を隣接セルの優先帯域以外であるf(u)=f_all-f_neig(u)(第2の候補帯域)に設定する場合に期待される送信レート(第2の送信レート)である。
 f_neigは、隣接セルから通知された優先帯域を表す。例えば、図4の無線端末UE1の場合、セルC21からf2を優先帯域として通知されているので、f_neig(u)はf2、即ちPRB番号4、5、6が設定されている。従って、f(u)はf_all-f_neig=f1+f3となる。
 一方、Tput_DecPは、隣接セルの優先帯域に与える干渉を低減するために送信電力を削減してP(u)=Pmax(u)-ΔE(u)(第1の送信電力)に設定するが、スループットの劣化を抑制するために、割り当て可能な帯域を隣接セルの優先帯域を含めたf(u)=f_all(第1の候補帯域)に設定した場合に期待される送信レート(第1の送信レート)である。
 この後、無線リソース設定部104は、Tput_DecFとTput_DecPとを比較する(ステップS46)。ここで、Tput_DecFがTput_DecP以上である場合(ステップS46:YES)、図10Aに示すように、無線リソース設定部104は、無線端末200の無線リソースとして、送信電力をP(u)=Pmax(u)に設定するとともに、通信帯域をf(u)=f_all-f_neig(u)に設定し(ステップS47)、一連の無線リソース設定処理を終了する。
 一方、Tput_DecFがTput_DecP未満である場合(ステップS46:NO)、無線リソース設定部104は、ステップS44へ移行して、図10Bに示すように、無線端末200の無線リソースとして、送信電力をP(u)=Pmax(u)-ΔE(u)に設定するとともに、通信帯域をf(u)=f_allに設定し、一連の無線リソース設定処理を終了する。
 このようにして、図9の無線リソース設定処理によれば、送信レートの高い方の送信電力P(u)と通信帯域f(u)の組み合わせを無線端末uの割り当て可能な無線リソースとして設定することができるので、隣接セルの優先帯域へ与える干渉を抑制しながら、スループットを最大化できる。
[送信レート計算処理]
 次に、前述した図9の無線リソース設定処理のステップS45において、無線リソース設定部104が実行する送信レートの計算方法について説明する。
 ここでは、同一無線端末に対して割り当てるMCSは各RBで同一とする。また、送信データサイズ(TBS:Transport Block Size)は、ルックアップテーブルを参照して、TBSインデックスと割り当てRB数を用いて計算できる(例えば、非特許文献4など参照)。
 この際、TBSインデックスは、ルックアップテーブル(非特許文献4)を参照して、MCSインデックスを用いて一意に決定できる。また、MCSインデックスは、ルックアップテーブルを参照して、データ信号の実効SINR(Signal to Interference plus Noise Ratio)を用いて計算できる。実効SINRとは、各RBのSINRの分散やばらつきを考慮して計算された割り当てRBの通信路品質であり、基地局動作部101を介して無線端末200から取得したものである。一般的には、このルックアップテーブルは物理レイヤを模擬したリンクレベルシミュレーションにより作成する。
 データ信号のSINR(SINR_pdsch)[dB]は、次の式(3)で計算できる。リファレンス信号のSINR(SINR_rs)[dB]は、ルックアップテーブルを参照して、CQIを用いて計算する。一般的には、このルックアップテーブルも物理レイヤを模擬したリンクレベルシミュレーションにより作成する。P_rs[dBm]はリファレンス信号の送信電力を表す。
 SINR_pdsch(u)[dB]=SINR_rs(u)[dB]+(P(u)-P_rs)…(3)
 以上より、送信レートは、CQI、割り当て候補RB(Cand_RBs)、および送信電力P(u)を用いて計算できる。
 次に、送信レートの計算例について説明する。ここでは、Cand_RBsは図3を想定し、送信レートの算出対象である無線端末uが図4のエッジ無線端末UE1である場合を例として、4つの計算方法ついてそれぞれ説明する。
 各計算方法における前提条件として、図3に示すように、エッジ無線端末UE1が存在するセルC11における割り当て可能な全帯域は、f_all=f1+f2+f3とし、隣接セルから通知された優先帯域はf_neig=f2とする。また、送信レートがTput_DecFの場合は送信電力P(u)としてPmax(u)を用い、送信レートがTput_DecPの場合は送信電力P(u)としてPmax(u)-ΔE(u)を用いる。なお、割り当て候補RB数をN_Cand_RBsとする。
 第1の計算方法は、CQIとしてWideband CQIを用いるとともに、Cand_RBsとして割り当て可能な帯域を用いる方法である。
 この場合、Wideband CQIは、全帯域で送信した場合の通信路品質を表す。CQIは、Tput_DecFとTput_DecPで共通の値を用いる。Tput_DecFの場合、Cand_RBs=f(u)=f_all-f_neig=f1+f3となる。従って、N_Cand_RBsは6となる。一方、Tput_DecPの場合、Cand_RBs=f(u)=f_allなので、N_Cand_RBsは9となる。
 第2の計算方法は、CQIとしてWideband CQIを用い、N_Cand_RBsとして無線端末の平均割り当てRB数(N_Ave_Alloc_RBs)を用いる方法である。
 この場合、N_Ave_Alloc_RBsは、過去の割り当て結果を用いて、所定区間の相加平均で計算する。平均化方法は、例えば重み付け平均など、他の方法でもよい。
 ここでは、Tput_DecFが高いと判定されて、P(u)=Pmax(u)とf(u)=f_all-f_neig(u)を設定された無線端末のN_Ave_Alloc_RBsをN_Ave_Alloc_RBs_DecFとする。また、Tput_DecPが高いと判定されて、P(u)=Pmax(u)-ΔE(u)とf(u)=f_allを設定された無線端末のN_Ave_Alloc_RBsをN_Ave_Alloc_RBs_DecPとする。
 この際、N_Cand_RBsは次の式(4)に従って計算する。floor()は小数点以下を切り捨てて整数値を返す関数である。
 N_Use_RBs=floor(N_Ave_Alloc_RBs) …(4)
 この式(4)によれば、例えば、N_Ave_Alloc_RBs_DecF=2.1、N_Ave_Alloc_RBs_DecP=4.3の場合、N_Cand_RBsはそれぞれ、2、4となる。
 この第2の計算方法によれば、第1の計算方法と比較して、N_Ave_Alloc_RBsを計算するために処理負荷は増加するが、スケジューリング時で期待される実際の送信レートに近い値を推定できる。
 第3の計算方法は、CQIとしてWideband CQIを用い、スケジューラ105の割り当て状況に応じて、Cand_RBsに割り当て可能な帯域のうち、いずれの無線端末にも割り当てていない、未割り当てのRBを用いる方法である。
 図11の斜線部のPRB番号=3、6、7を割り当て済みとする。この時、送信レートがTput_DecFの場合、割り当て可能な帯域はf(u)=f_allなので、実際に割り当て可能なRBのPRB番号は1、2、4、5、8、9となり、N_Cand_RBsは6となる。
 一方、送信レートがTput_DecPの場合、割り当て可能な帯域はf(u)=f_all-f_neigなので、実際に割り当て可能なRBのPRB番号は1、2、8、9となり、N_Cand_RBsは4となる。
 この第3の計算方法によれば、スケジューリング周期毎に実施すれば、送信レートが高い無線リソースを確実に割り当てることができるので、スループットを最大化できるが、処理負荷はさらに増加する。また、スケジューリング周期毎に送信電力を変更できるシステムでの適用が前提となる。
 第4の計算方法は、CQIとしてNarrowband CQIを用い、スケジューラ105の割り当て状況に応じて、Cand_RBsに割り当て可能な帯域のうち未割り当てのRBを用いる方法である。
 この場合、Narrowband CQIは、所定の1つ以上の連続したRBで送信した場合の通信路品質、すなわち一部の帯域の通信路品質を表す。Narrowband CQIを用いることで、実効SINRの計算精度が向上するので、送信レートの計算精度も向上する。
[第1の実施形態の効果]
 このように、本実施形態は、無線基地局100において、自局通信エリアで利用可能な無線帯域のうち隣接優先帯域を含む第1の無線帯域から候補として選択した第1の候補帯域において、通信路品質で第1の送信電力により無線端末200へ送信した場合の第1の送信レートを計算し、自局通信エリアで利用可能な無線帯域のうち隣接優先帯域を含まない第2無線帯域から候補として選択した第2の候補帯域において、通信路品質で第2の送信電力により無線端末へ送信した場合の第2の送信レートを計算し、第1の送信電力および第1の候補帯域からなる第1の無線リソースと、第2の送信電力および第2の候補帯域からなる第2の無線リソースのうち、計算で得られた送信レートが高いほうの無線リソースを、無線端末200に割り当て可能な無線リソースとして設定するようにしたものである。
 これにより、隣接優先帯域との干渉が発生しうる広い帯域ではあるが送信電力を抑えて干渉を低減した第1の無線リソースと、隣接優先帯域との干渉が発生しない狭い帯域ではあるが送信電力が大きい第2の無線リソースのうち、得られる送信レートが高い無線リソースを、無線端末200の割り当て可能な無線リソースとして設定することができる。したがって、隣接セルへ与える干渉の抑制を実現しながら、自局通信エリア内に存在する無線端末200のスループットを最大化することが可能となる。
 また、本実施形態では、第2送信電力として、第1送信電力よりも大きいものを用いるようにしてもよい。
 また、本実施形態では、候補帯域として、無線基地局100から無線端末200への送信に用いる送信帯域を用いるようにしてもよい。
 また、本実施形態では、候補帯域として、無線端末200に対して過去に割り当てられた帯域幅の平均値から計算するようにしてもよい。
 また、本実施形態では、候補帯域として、送信レート計算時にいずれの無線端末にも割り当てていない帯域を用いるようにしてもよい。
 また、本実施形態では、通信路品質として、自局通信エリアで利用可能な無線帯域のうちのすべての帯域に関する通信路品質を用いてもよい。
 また、本実施形態では、通信路品質として、自局通信エリアで利用可能な無線帯域のうちの一部の帯域に関する通信路品質を用いてもよい。
 また、本実施形態では、LTEを想定したために、同一無線端末に対して割り当てるMCSは各RBで同一としたが、本発明はこれに限るものではない。他の無線通信システムに本発明を適用する場合、RB毎に異なるMCSを想定して、送信レートを計算してもよい。
 また、本発明は、LTEを想定したため、同一無線端末に対しては、帯域毎に同じ送信電力を割り当てるとしたが、本発明はこれに限るものではない。他の無線通信システムに本発明を適用する場合、割り当て帯域毎に送信電力を変えてもよい。
 また、本実施形態では、エッジ無線端末の判定に、自セルと隣接セルのRSRP差を用いたが、本発明はこれに限るものではない。例えば、リファレンス信号の受信電力に対する全受信電力の比(RSRQ:Reference Signal Received Quality)を用いてもよい。さらには、リファレンス信号の受信電力に対する干渉電力と雑音電力の比(SINR)を用いてもよい。さらには、リファレンス信号の受信電力と送信電力の差から計算したパスロスを用いてもよい。ここで、受信電力を測定する信号としては、リファレンス信号に限るものではなく、報知信号でもよい。
[第2の実施形態]
 次に、本発明の第2の実施形態にかかる無線通信システム1について説明する。
 第1の実施形態と比較して、本実施形態では、無線リソース設定部104において、無線リソースを設定する場合、無線端末がエッジ無線端末か否かを判断しておらず、エッジ無線端末とセンタ無線端末の両方が対象となる点が異なる。本実施形態にかかる無線通信システムのその他の構成については、第1の実施形態と同様であり、ここでの詳細な説明は省略する。
[第2の実施形態の動作]
 次に、図12を参照して、本実施形態にかかる無線通信システム1の動作について説明する。
 無線リソース設定部104は、無線端末uの割り当て可能な無線リソースを設定する場合、図12の無線リソース設定処理を実行する。
 まず、無線リソース設定部104は、セルC11が割り当て可能な帯域の中に隣接セルの優先帯域として設定されている帯域があるか判定する(ステップS41)。ここで、隣接セルの優先帯域として設定されている帯域がない場合(ステップS41:NO)、無線リソース設定部104は、送信電力をP(u)=Pmax(u)に設定するとともに、割り当て可能な帯域をf(u)=f_all=f1+f2+f3に設定し(ステップS42)、一連の無線リソース設定処理を終了する。この場合、隣接セルへ与える干渉を低減する必要がないので送信電力を削減せず、全帯域を割り当て可能な帯域とする。
 一方、隣接セルの優先帯域として設定されている帯域がある場合(ステップS41:YES)、無線リソース設定部104は、無線端末uがエッジ無線端末か否かにかかわらず、無線端末200から報告される通信路品質に基づいて、送信レートTput_DecF、Tput_DecPをそれぞれ計算する(ステップS45)。
 この後、無線リソース設定部104は、Tput_DecFとTput_DecPとを比較する(ステップS46)。ここで、Tput_DecFがTput_DecP以上である場合(ステップS46:YES)、図10Aに示すように、無線リソース設定部104は、無線端末200の無線リソースとして、送信電力をP(u)=Pmax(u)に設定するとともに、通信帯域をf(u)=f_all-f_neig(u)に設定し(ステップS47)、一連の無線リソース設定処理を終了する。
 一方、Tput_DecFがTput_DecP未満である場合(ステップS46:NO)、無線リソース設定部104は、ステップS44へ移行して、図10Bに示すように、無線端末200の無線リソースとして、送信電力をP(u)=Pmax(u)-ΔE(u)に設定するとともに、通信帯域をf(u)=f_allに設定し、一連の無線リソース設定処理を終了する。
 このようにして、図9の無線リソース設定処理によれば、無線端末がエッジ無線端末か否かに関わらず、送信レートの高い方の送信電力P(u)と通信帯域f(u)の組み合わせを無線端末uの割り当て可能な無線リソースとして設定することができるので、隣接セルの優先帯域へ与える干渉を抑制しながら、更にスループット改善することが可能となる。
[第3の実施形態]
 次に、図13を参照して、本発明の第3の実施形態にかかる無線通信システム1について説明する。
 本実施形態にかかる無線通信システム1の無線基地局100には、第1の実施形態と比較して、スケジューラ105に代えてスケジューラ111が設けられており、送信バッファ106に代えて受信強度測定部112が設けられている。
 本実施形態にかかる無線通信システム1の無線端末200には、第1の実施形態と比較して、リファレンス信号発生部211、データ送信部212、およびデータ発生部213が追加されている。
 スケジューラ111は、無線リソース設定部104で設定した割り当て可能な無線リソースから、無線端末200に割り当てる無線リソースを決定し、割り当て結果に基づいて無線端末200にスケジューリング情報を送信する機能を有する。この際、送信レートの算出に用いるMCSは、受信強度測定部112で測定された通信路品質に基づいて決定する。
 受信強度測定部112は、無線端末200から受信したリファレンス信号から通信路品質を測定する機能を有している。
 リファレンス信号発生部211は、スケジューラ111が割り当てるMCSの基準となる通信路品質を測定するための、リファレンス信号を所定のタイミングで端末動作部201から無線基地局100へ送信する機能を有している。
 データ送信部212は、無線基地局100から受信したスケジューリング情報に基づき、データ発生部213のデータを無線基地局に送信する機能を有している。
 データ発生部213は、無線端末200が送信するデータを発生し、発生時刻などの管理情報とともに、蓄積する機能を有している。
[第3の実施形態の動作]
 次に、図9を参照して、本実施形態にかかる無線通信システム1の動作について説明する。本実施形態にかかる無線通信システム1で実行する無線リソース設定処理は、前述の図9で説明した第1の実施形態と同様であるが、送信レート計算処理について異なる。
 すなわち、本実施形態にかかる無線リソース設定部104は、MCSインデックスを算出する際に用いる実効SINRとして、受信強度測定部112で計測した、無線端末200から無線基地局100への受信に用いる受信帯域に関する通信路品質を用いる。
[第3の実施形態の効果]
 このように、本実施形態では、無線基地局100に、無線端末200からのリファレンス信号から通信路品質を計測する受信強度測定部112を設け、無線リソース設定部104において、この受信強度測定部112で計測した通信路品質に基づき、第1の送信レート(Tput_DecP)と第2の送信レート(Tput_DecF)とを算出するようにしたので、無線端末200から無線基地局100への上りリンクにおいて高い送信レートの送信電力と通信帯域の組み合わせを、無線端末200の割り当て可能な無線リソースとして設定することができる。
[実施形態の拡張]
 以上、実施形態を参照して本発明を説明したが、本発明は上記実施形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解しうる様々な変更をすることができる。
 また、各実施形態は、前述した無線通信システムに限定されるものではなく、例えば、周波数多重を適用するFDMA(Frequency Division Multiple Access)方式を用いた他の無線通信システムにも適用できる。
[付記]
 以下、本発明の特徴を付記する。
(付記1)
 無線基地局の自局通信エリアに隣接する隣接通信エリアの隣接無線基地局からの通知により、当該隣接通信エリアで優先的に使用される隣接優先帯域を取得する優先帯域取得ステップと、
 前記自局通信エリアに存在する無線端末からの通知により、当該無線端末における前記無線基地局との無線通信に関する通信路品質を取得する通信路品質取得ステップと、
 前記自局通信エリアで利用可能な無線帯域のうち前記隣接優先帯域を含む第1の無線帯域から候補として選択した第1の候補帯域において、前記通信路品質で第1の送信電力により前記無線端末へ送信した場合の第1の送信レートを計算し、前記自局通信エリアで利用可能な無線帯域のうち前記隣接優先帯域を含まない第2無線帯域から候補として選択した第2の候補帯域において、前記通信路品質で第2の送信電力により前記無線端末へ送信した場合の第2の送信レートを計算する送信レート計算ステップと、
 前記第1の送信電力および前記第1の候補帯域からなる第1の無線リソースと、前記第2の送信電力および前記第2の候補帯域からなる第2の無線リソースのうち、前記計算で得られた送信レートが高いほうの無線リソースを、前記無線端末に割り当て可能な無線リソースとして設定する無線リソース設定ステップと
 を備えることを特徴とする無線リソース設定方法。
(付記2)
 付記1に記載の無線リソース設定方法において、
 前記第2送信電力は、前記第1送信電力よりも大きいことを特徴とする無線リソース設定方法。
(付記3)
 付記1または付記2に記載の無線リソース設定方法において、
 前記候補帯域は、前記無線基地局から前記無線端末への送信に用いる送信帯域からなることを特徴とする無線リソース設定方法。
(付記4)
 付記1または付記2に記載の無線リソース設定方法において、
 前記候補帯域は、前記無線端末に対して過去に割り当てられた帯域幅の平均値から計算することを特徴とする無線リソース設定方法。
(付記5)
 付記1または付記2に記載の無線リソース設定方法において、
 前記候補帯域は、前記送信レート計算時にいずれの無線端末にも割り当てていない帯域からなることを特徴とする無線リソース設定方法。
(付記6)
 付記1~付記5のいずれか1つに記載の無線リソース設定方法において、
 前記通信路品質は、前記自局通信エリアで利用可能な無線帯域のうちのすべての帯域に関する通信路品質であることを特徴とする無線リソース設定方法。
(付記7)
 付記1~付記5のいずれか1つに記載の無線リソース設定方法において、
 前記通信路品質は、前記自局通信エリアで利用可能な無線帯域のうちの一部の帯域に関する通信路品質であることを特徴とする無線リソース設定方法。
(付記8)
 無線基地局と、当該無線基地局の自局通信エリアに存在する無線端末とを備え、
 前記無線基地局は、
 前記自局通信エリアに隣接する隣接通信エリアの隣接無線基地局からの通知により、当該隣接通信エリアで優先的に使用される隣接優先帯域を取得する優先帯域取得部と、
 前記無線端末からの通知により、当該無線端末における前記無線基地局との無線通信に関する通信路品質を取得する通信路品質取得部と、
 前記自局通信エリアで利用可能な無線帯域のうち前記隣接優先帯域を含む第1の無線帯域から候補として選択した第1の候補帯域において、前記通信路品質で第1の送信電力により前記無線端末へ送信した場合の第1の送信レートを計算し、前記自局通信エリアで利用可能な無線帯域のうち前記隣接優先帯域を含まない第2無線帯域から候補として選択した第2の候補帯域において、前記通信路品質で第2の送信電力により前記無線端末へ送信した場合の第2の送信レートを計算する送信レート計算部と、
 前記第1の送信電力および前記第1の候補帯域からなる第1の無線リソースと、前記第2の送信電力および前記第2の候補帯域からなる第2の無線リソースのうち、前記計算で得られた送信レートが高いほうの無線リソースを、前記無線端末に割り当て可能な無線リソースとして設定する無線リソース設定部と
 を備えることを特徴とする無線通信システム。
(付記9)
 無線基地局の自局通信エリアに隣接する隣接通信エリアの隣接無線基地局からの通知により、当該隣接通信エリアで優先的に使用される隣接優先帯域を取得する優先帯域取得部と、
 前記自局通信エリアに存在する無線端末からの通知により、当該無線端末における前記無線基地局との無線通信に関する通信路品質を取得する通信路品質取得部と、
 前記自局通信エリアで利用可能な無線帯域のうち前記隣接優先帯域を含む第1の無線帯域から候補として選択した第1の候補帯域において、前記通信路品質で第1の送信電力により前記無線端末へ送信した場合の第1の送信レートを計算し、前記自局通信エリアで利用可能な無線帯域のうち前記隣接優先帯域を含まない第2無線帯域から候補として選択した第2の候補帯域において、前記通信路品質で第2の送信電力により前記無線端末へ送信した場合の第2の送信レートを計算する送信レート計算部と、
 前記第1の送信電力および前記第1の候補帯域からなる第1の無線リソースと、前記第2の送信電力および前記第2の候補帯域からなる第2の無線リソースのうち、前記計算で得られた送信レートが高いほうの無線リソースを、前記無線端末に割り当て可能な無線リソースとして設定する無線リソース設定部と
 を備えることを特徴とする無線基地局。
(付記10)
 コンピュータを、付記9に記載の無線基地局を構成する各部として機能させるためのプログラム。
 1…無線通信システム、100…無線基地局、100A,100B,100C…セル処理部、101…基地局動作部、102…無線端末判定部、103…優先帯域設定部、104…無線リソース設定部、105,111…スケジューラ、106…送信バッファ、107…リファレンス信号発生部、108…隣接セル情報通知部、112…受信強度測定部、200…無線端末、201…端末動作部、202…受信強度測定部、211…リファレンス信号発生部、212…データ送信部、213…データ発生部。

Claims (10)

  1.  無線基地局の自局通信エリアに隣接する隣接通信エリアの隣接無線基地局からの通知により、当該隣接通信エリアで優先的に使用される隣接優先帯域を取得する優先帯域取得ステップと、
     前記自局通信エリアに存在する無線端末からの通知により、当該無線端末における前記無線基地局との無線通信に関する通信路品質を取得する通信路品質取得ステップと、
     前記自局通信エリアで利用可能な無線帯域のうち前記隣接優先帯域を含む第1の無線帯域から候補として選択した第1の候補帯域において、前記通信路品質で第1の送信電力により前記無線端末へ送信した場合の第1の送信レートを計算し、前記自局通信エリアで利用可能な無線帯域のうち前記隣接優先帯域を含まない第2無線帯域から候補として選択した第2の候補帯域において、前記通信路品質で第2の送信電力により前記無線端末へ送信した場合の第2の送信レートを計算する送信レート計算ステップと、
     前記第1の送信電力および前記第1の候補帯域からなる第1の無線リソースと、前記第2の送信電力および前記第2の候補帯域からなる第2の無線リソースのうち、前記計算で得られた送信レートが高いほうの無線リソースを、前記無線端末に割り当て可能な無線リソースとして設定する無線リソース設定ステップと
     を備えることを特徴とする無線リソース設定方法。
  2.  請求項1に記載の無線リソース設定方法において、
     前記第2送信電力は、前記第1送信電力よりも大きいことを特徴とする無線リソース設定方法。
  3.  請求項1に記載の無線リソース設定方法において、
     前記候補帯域は、前記無線基地局から前記無線端末への送信に用いる送信帯域からなることを特徴とする無線リソース設定方法。
  4.  請求項1に記載の無線リソース設定方法において、
     前記候補帯域は、前記無線端末に対して過去に割り当てられた帯域幅の平均値から計算することを特徴とする無線リソース設定方法。
  5.  請求項1に記載の無線リソース設定方法において、
     前記候補帯域は、前記送信レート計算時にいずれの無線端末にも割り当てていない帯域からなることを特徴とする無線リソース設定方法。
  6.  請求項1に記載の無線リソース設定方法において、
     前記通信路品質は、前記自局通信エリアで利用可能な無線帯域のうちのすべての帯域に関する通信路品質であることを特徴とする無線リソース設定方法。
  7.  請求項1に記載の無線リソース設定方法において、
     前記通信路品質は、前記自局通信エリアで利用可能な無線帯域のうちの一部の帯域に関する通信路品質であることを特徴とする無線リソース設定方法。
  8.  無線基地局と、当該無線基地局の自局通信エリアに存在する無線端末とを備え、
     前記無線基地局は、
     前記自局通信エリアに隣接する隣接通信エリアの隣接無線基地局からの通知により、当該隣接通信エリアで優先的に使用される隣接優先帯域を取得する優先帯域取得部と、
     前記無線端末からの通知により、当該無線端末における前記無線基地局との無線通信に関する通信路品質を取得する通信路品質取得部と、
     前記自局通信エリアで利用可能な無線帯域のうち前記隣接優先帯域を含む第1の無線帯域から候補として選択した第1の候補帯域において、前記通信路品質で第1の送信電力により前記無線端末へ送信した場合の第1の送信レートを計算し、前記自局通信エリアで利用可能な無線帯域のうち前記隣接優先帯域を含まない第2無線帯域から候補として選択した第2の候補帯域において、前記通信路品質で第2の送信電力により前記無線端末へ送信した場合の第2の送信レートを計算する送信レート計算部と、
     前記第1の送信電力および前記第1の候補帯域からなる第1の無線リソースと、前記第2の送信電力および前記第2の候補帯域からなる第2の無線リソースのうち、前記計算で得られた送信レートが高いほうの無線リソースを、前記無線端末に割り当て可能な無線リソースとして設定する無線リソース設定部と
     を備えることを特徴とする無線通信システム。
  9.  無線基地局の自局通信エリアに隣接する隣接通信エリアの隣接無線基地局からの通知により、当該隣接通信エリアで優先的に使用される隣接優先帯域を取得する優先帯域取得部と、
     前記自局通信エリアに存在する無線端末からの通知により、当該無線端末における前記無線基地局との無線通信に関する通信路品質を取得する通信路品質取得部と、
     前記自局通信エリアで利用可能な無線帯域のうち前記隣接優先帯域を含む第1の無線帯域から候補として選択した第1の候補帯域において、前記通信路品質で第1の送信電力により前記無線端末へ送信した場合の第1の送信レートを計算し、前記自局通信エリアで利用可能な無線帯域のうち前記隣接優先帯域を含まない第2無線帯域から候補として選択した第2の候補帯域において、前記通信路品質で第2の送信電力により前記無線端末へ送信した場合の第2の送信レートを計算する送信レート計算部と、
     前記第1の送信電力および前記第1の候補帯域からなる第1の無線リソースと、前記第2の送信電力および前記第2の候補帯域からなる第2の無線リソースのうち、前記計算で得られた送信レートが高いほうの無線リソースを、前記無線端末に割り当て可能な無線リソースとして設定する無線リソース設定部と
     を備えることを特徴とする無線基地局。
  10.  コンピュータを、請求項9に記載の無線基地局を構成する各部として機能させるためのプログラム。
PCT/JP2011/061401 2010-05-28 2011-05-18 無線リソース設定方法、無線通信システム、無線基地局、およびプログラム WO2011148836A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180026522.3A CN102918907B (zh) 2010-05-28 2011-05-18 无线资源设置方法、无线通信系统和无线基站
US13/697,487 US8965435B2 (en) 2010-05-28 2011-05-18 Wireless resource setting method, wireless communication system, wireless base station, and program
JP2012517228A JP5765337B2 (ja) 2010-05-28 2011-05-18 無線リソース設定方法、無線通信システム、無線基地局、およびプログラム
EP11786535.2A EP2579660B1 (en) 2010-05-28 2011-05-18 Wireless resource setting method, wireless communication system, wireless base state, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010122433 2010-05-28
JP2010-122433 2010-05-28

Publications (1)

Publication Number Publication Date
WO2011148836A1 true WO2011148836A1 (ja) 2011-12-01

Family

ID=45003827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061401 WO2011148836A1 (ja) 2010-05-28 2011-05-18 無線リソース設定方法、無線通信システム、無線基地局、およびプログラム

Country Status (5)

Country Link
US (1) US8965435B2 (ja)
EP (1) EP2579660B1 (ja)
JP (1) JP5765337B2 (ja)
CN (1) CN102918907B (ja)
WO (1) WO2011148836A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013131805A (ja) * 2011-12-20 2013-07-04 Fujitsu Ltd 通信システム、通信方法、及び基地局
JP2014086943A (ja) * 2012-10-25 2014-05-12 Fujitsu Ltd 基地局、通信システムおよび通信方法
JP2015512594A (ja) * 2012-04-06 2015-04-27 ゼットティーイー コーポレイション ロング・ターム・エボリューション・システムの物理下りリンク制御チャネル品質の測定方法及び装置
JP2016523065A (ja) * 2013-05-29 2016-08-04 株式会社東芝 セルラネットワークのセルに位置するユーザデバイスに無線リソースブロックを割り当てるためのコントローラ
JP2017225167A (ja) * 2017-08-09 2017-12-21 株式会社東芝 セルラネットワークのセルに位置するユーザデバイスに無線リソースブロックを割り当てるためのコントローラ
JP2018157264A (ja) * 2017-03-15 2018-10-04 株式会社東芝 無線通信装置

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8395985B2 (en) 2011-07-25 2013-03-12 Ofinno Technologies, Llc Time alignment in multicarrier OFDM network
US9237537B2 (en) 2012-01-25 2016-01-12 Ofinno Technologies, Llc Random access process in a multicarrier base station and wireless device
US9161322B2 (en) 2012-01-25 2015-10-13 Ofinno Technologies, Llc Configuring base station and wireless device carrier groups
US8964780B2 (en) * 2012-01-25 2015-02-24 Ofinno Technologies, Llc Sounding in multicarrier wireless communications
US11943813B2 (en) 2012-04-01 2024-03-26 Comcast Cable Communications, Llc Cell grouping for wireless communications
US20130259008A1 (en) 2012-04-01 2013-10-03 Esmael Hejazi Dinan Random Access Response Process in a Wireless Communications
US9215678B2 (en) 2012-04-01 2015-12-15 Ofinno Technologies, Llc Timing advance timer configuration in a wireless device and a base station
US8958342B2 (en) 2012-04-17 2015-02-17 Ofinno Technologies, Llc Uplink transmission power in a multicarrier wireless device
US8964593B2 (en) 2012-04-16 2015-02-24 Ofinno Technologies, Llc Wireless device transmission power
US8971280B2 (en) 2012-04-20 2015-03-03 Ofinno Technologies, Llc Uplink transmissions in a wireless device
US11825419B2 (en) 2012-04-16 2023-11-21 Comcast Cable Communications, Llc Cell timing in a wireless device and base station
EP2839705B1 (en) 2012-04-16 2017-09-06 Comcast Cable Communications, LLC Cell group configuration for uplink transmission in a multicarrier wireless device and base station with timing advance groups
US11252679B2 (en) 2012-04-16 2022-02-15 Comcast Cable Communications, Llc Signal transmission power adjustment in a wireless device
US11582704B2 (en) 2012-04-16 2023-02-14 Comcast Cable Communications, Llc Signal transmission power adjustment in a wireless device
US9179425B2 (en) 2012-04-17 2015-11-03 Ofinno Technologies, Llc Transmit power control in multicarrier communications
US9210619B2 (en) 2012-06-20 2015-12-08 Ofinno Technologies, Llc Signalling mechanisms for wireless device handover
US9179457B2 (en) 2012-06-20 2015-11-03 Ofinno Technologies, Llc Carrier configuration in wireless networks
US9113387B2 (en) 2012-06-20 2015-08-18 Ofinno Technologies, Llc Handover signalling in wireless networks
US11622372B2 (en) 2012-06-18 2023-04-04 Comcast Cable Communications, Llc Communication device
US9107206B2 (en) 2012-06-18 2015-08-11 Ofinne Technologies, LLC Carrier grouping in multicarrier wireless networks
US8971298B2 (en) 2012-06-18 2015-03-03 Ofinno Technologies, Llc Wireless device connection to an application server
US11882560B2 (en) 2012-06-18 2024-01-23 Comcast Cable Communications, Llc Carrier grouping in multicarrier wireless networks
US9084228B2 (en) 2012-06-20 2015-07-14 Ofinno Technologies, Llc Automobile communication device
US9654272B2 (en) * 2013-03-08 2017-05-16 Electronics & Telecommunications Research Institute Method for multi-input multi-output communication in large-scale antenna system
US10009053B2 (en) * 2013-09-27 2018-06-26 Qualcomm Incorporated Measurement and signaling for network assistance to enable data-IC in small cell clusters
EP3046355B1 (en) * 2013-10-30 2019-04-03 Huawei Technologies Co., Ltd. Spectrum allocation method and spectrum allocation apparatus
CN104661321A (zh) * 2013-11-15 2015-05-27 中兴通讯股份有限公司 通信链路管理方法、设备和系统
TWI505741B (zh) * 2014-01-03 2015-10-21 Ind Tech Res Inst 基地台及其資源分配方法
JP6091477B2 (ja) * 2014-11-04 2017-03-08 京セラドキュメントソリューションズ株式会社 画像処理装置、通信条件設定方法
CN110505041B (zh) * 2018-05-17 2021-08-06 中国移动通信有限公司研究院 信息上报方法、数据传输方法、用户设备及网络侧设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004159345A (ja) * 2002-11-07 2004-06-03 Samsung Electronics Co Ltd 移動通信システムにおけるofdm周波数再使用方法
JP2008048148A (ja) * 2006-08-16 2008-02-28 Nec Corp 移動通信システム及びその周波数割り当て方法並びにそれに用いる基地局

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100456758C (zh) * 2000-12-15 2009-01-28 昂达博思公司 具有基于组的副载波分配的多载波通信方法
KR100511554B1 (ko) * 2003-09-02 2005-08-31 한국전자통신연구원 Ofdma fdd 기반 시스템에서의 순방향 채널 구성방법 및 순방향 채널 할당 방법
ES2298696T3 (es) 2004-05-04 2008-05-16 Alcatel Lucent Metodo de coordinacion de la interferencia intercelular con planificacion de potencia en un sistema de comunicacion movil ofdm.
EP1782578B1 (en) * 2004-08-12 2015-05-27 InterDigital Technology Corporation Method and access point for controlling access to a wireless communication medium
JP2007259346A (ja) * 2006-03-24 2007-10-04 Toshiba Corp 無線通信システムとその無線通信端末
JP2007274094A (ja) * 2006-03-30 2007-10-18 Toshiba Corp 基地局、無線端末および無線通信方法
CN101286786B (zh) * 2007-04-11 2013-03-20 中兴通讯股份有限公司 一种通过调度进行同频组网干扰抑制的方法
CN101690291B (zh) 2007-11-27 2012-11-14 中兴通讯股份有限公司 借用邻小区频谱资源及通道资源的下行传输系统及方法
US8768372B2 (en) * 2008-02-13 2014-07-01 Qualcomm Incorporated Sector interference management based on inter-sector performance
CN102356682B (zh) * 2009-03-16 2014-12-03 松下电器(美国)知识产权公司 无线通信终端装置、无线通信基站装置以及资源区域设定方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004159345A (ja) * 2002-11-07 2004-06-03 Samsung Electronics Co Ltd 移動通信システムにおけるofdm周波数再使用方法
JP2008048148A (ja) * 2006-08-16 2008-02-28 Nec Corp 移動通信システム及びその周波数割り当て方法並びにそれに用いる基地局

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"3GPP TS 36.300 V8.9.0 (2009-06", 3GPP TSG RAN E-UTRA AND E-UTRAN OVERALL, June 2009 (2009-06-01), pages 86
3GPP TS 36.213 V8.8.0, September 2009 (2009-09-01), pages 25 - 26,27-32
3GPP TS 36.423 V8.6.0, June 2009 (2009-06-01), pages 27,48 - 49
See also references of EP2579660A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013131805A (ja) * 2011-12-20 2013-07-04 Fujitsu Ltd 通信システム、通信方法、及び基地局
JP2015512594A (ja) * 2012-04-06 2015-04-27 ゼットティーイー コーポレイション ロング・ターム・エボリューション・システムの物理下りリンク制御チャネル品質の測定方法及び装置
JP2014086943A (ja) * 2012-10-25 2014-05-12 Fujitsu Ltd 基地局、通信システムおよび通信方法
JP2016523065A (ja) * 2013-05-29 2016-08-04 株式会社東芝 セルラネットワークのセルに位置するユーザデバイスに無線リソースブロックを割り当てるためのコントローラ
US10433299B2 (en) 2013-05-29 2019-10-01 Kabushiki Kaisha Toshiba Controller for allocating radio resource blocks to user devices located in cells of a cellular network
JP2018157264A (ja) * 2017-03-15 2018-10-04 株式会社東芝 無線通信装置
JP2017225167A (ja) * 2017-08-09 2017-12-21 株式会社東芝 セルラネットワークのセルに位置するユーザデバイスに無線リソースブロックを割り当てるためのコントローラ

Also Published As

Publication number Publication date
US8965435B2 (en) 2015-02-24
JP5765337B2 (ja) 2015-08-19
US20130072246A1 (en) 2013-03-21
EP2579660B1 (en) 2018-01-10
EP2579660A1 (en) 2013-04-10
CN102918907A (zh) 2013-02-06
JPWO2011148836A1 (ja) 2013-07-25
EP2579660A4 (en) 2016-10-26
CN102918907B (zh) 2015-06-17

Similar Documents

Publication Publication Date Title
JP5765337B2 (ja) 無線リソース設定方法、無線通信システム、無線基地局、およびプログラム
US11075738B2 (en) Fractional frequency reuse schemes assigned to radio nodes in an LTE network
KR101629519B1 (ko) 셀룰러 통신 시스템의 셀간 간섭 제어를 위해 자원 할당을 스케줄링하는 방법 및 장치와 그 기지국
KR101229322B1 (ko) 간섭 조정 방법 및 액세스 네트워크 장치
JP5678113B2 (ja) 協力通信方法及び装置
KR101586642B1 (ko) 향상된 인터-셀 간접 제어
US20140106769A1 (en) Interference Coordination Method and Base Station
JP6274439B2 (ja) 通信路品質推定方法、無線通信システム、基地局及びプログラム
EP2494808A1 (en) Radio resource scheduling for intra-system interference coordination in wireless communication systems
US9241280B2 (en) Methods and arrangements for testing a transmission parameter value in a wireless communication system
KR20140118150A (ko) 동적 자원 할당 방법 및 장치
JP6020815B2 (ja) 設定装置、通信システム、基地局及びプログラム
US10512093B2 (en) Service-specific scheduling in cellular networks
US10278202B2 (en) Coordinated scheduling in a cellular network
JP2013192056A (ja) 基地局、無線通信システム、無線リソース制御方法、及びプログラム
CN108886463B (zh) 用于使网络节点能够在电信网络中执行无线电操作任务的方法、系统和装置
Turyagyenda et al. Energy efficient coordinated radio resource management: a two player sequential game modelling for the long-term evolution downlink
KR101502136B1 (ko) 무선 통신 시스템 및 그 시스템에서의 무선 자원 스케줄링 방법
US20190098636A1 (en) Interference based resource allocation
Kim et al. Hierarchical approach to interference mitigation in multi-cell downlink orthogonal frequency-division multiple-access networks with low feedback

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180026522.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11786535

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012517228

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13697487

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011786535

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE