WO2011148464A1 - Cooling device for internal combustion engine - Google Patents

Cooling device for internal combustion engine Download PDF

Info

Publication number
WO2011148464A1
WO2011148464A1 PCT/JP2010/058833 JP2010058833W WO2011148464A1 WO 2011148464 A1 WO2011148464 A1 WO 2011148464A1 JP 2010058833 W JP2010058833 W JP 2010058833W WO 2011148464 A1 WO2011148464 A1 WO 2011148464A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
cooling water
internal combustion
combustion engine
pump
Prior art date
Application number
PCT/JP2010/058833
Other languages
French (fr)
Japanese (ja)
Inventor
夕加里 荒木
信峯 竹内
Original Assignee
トヨタ自動車 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車 株式会社 filed Critical トヨタ自動車 株式会社
Priority to PCT/JP2010/058833 priority Critical patent/WO2011148464A1/en
Publication of WO2011148464A1 publication Critical patent/WO2011148464A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/164Controlling of coolant flow the coolant being liquid by thermostatic control by varying pump speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/162Controlling of coolant flow the coolant being liquid by thermostatic control by cutting in and out of pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/32Engine outcoming fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/33Cylinder head temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/34Heat exchanger incoming fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/48Engine room temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/08Cabin heater

Definitions

  • the present invention relates to a cooling device for an internal combustion engine in which the circulation of the cooling water is stopped until the temperature of the cooling water reaches a predetermined temperature in order to promote warm-up of the internal combustion engine.
  • a water-cooling type cooling device that cools a cylinder block or a cylinder head by circulating cooling water through a water jacket formed inside the internal combustion engine.
  • the engine cooling system of such a cooling device is constituted by a water jacket, a pump, a radiator, a cooling water passage that communicates the water jacket with the radiator, and a thermostat that regulates the flow rate of the cooling water flowing into the radiator.
  • the cooling device described in Patent Document 1 employs such an electric pump and stops the operation of the electric pump and stops the circulation of the cooling water until the temperature of the cooling water reaches a predetermined temperature at the time of starting the engine or the like. I am doing so.
  • the cooling device described above when the temperature of the cooling water reaches a predetermined temperature, the operation of the electric pump is started and the circulation of the cooling water is started.
  • the circulation of the cooling water is started in this way, the cooling water existing outside the internal combustion engine in the engine cooling system, for example, the cooling water stagnating in the cooling water passage communicating the water jacket and the radiator. Etc. will flow into the internal combustion engine.
  • the cooling water existing outside the internal combustion engine does not receive the engine heat, and therefore is considerably lower than the temperature of the cooling water in the internal combustion engine. Therefore, when such low-temperature cooling water flows into the internal combustion engine due to the start of circulation of the cooling water, the temperature of the internal combustion engine rapidly decreases, and a thermal shock is applied to the internal combustion engine. When a thermal shock is applied to the internal combustion engine in this manner, the durability of the internal combustion engine may decrease due to thermal stress, and the sealing performance of cooling water or lubricating oil may decrease.
  • the present invention has been made in view of such conventional circumstances, and an object thereof is to suppress a thermal shock to the internal combustion engine that may occur when the circulation stop of the cooling water is released.
  • the present invention provides an engine cooling system in which cooling water circulates, a temperature detection unit that detects a first temperature that is the temperature of the cooling water in the internal combustion engine, and without depending on the engine operating state
  • An internal combustion engine cooling device comprising: a pump capable of changing a discharge amount of the cooling water; and a control unit that controls the pump so that the circulation of the cooling water is stopped when the first temperature is lower than a predetermined temperature.
  • the control unit determines a discharge amount of the pump when the circulation stop of the cooling water is released at a temperature of the cooling water existing outside the internal combustion engine in the engine cooling system and the temperature during the circulation stop.
  • a setting process for setting based on a certain second temperature is performed.
  • the discharge amount of the pump when the cooling water circulation stop is released is the temperature of the cooling water existing outside the internal combustion engine in the engine cooling system and the temperature during the circulation stop. 2 Set based on temperature. For this reason, the amount of cooling water having a temperature lower than that of the internal combustion engine flows into the internal combustion engine is set according to the temperature of the cooling water existing outside the internal combustion engine when the circulation is stopped. Therefore, it is possible to suppress a thermal shock to the internal combustion engine that may occur when the circulation stop of the cooling water is released.
  • the present invention can be embodied in such a manner that the control unit decreases the discharge amount of the pump as the second temperature is lower.
  • the amount of cooling water flowing into the internal combustion engine can be reduced as the temperature of the cooling water flowing into the internal combustion engine is lower. Therefore, the thermal shock to the internal combustion engine can be appropriately suppressed.
  • the present invention embodies this in an aspect in which the control unit sets the discharge amount of the pump when the circulation stop of the cooling water is released based on one of the outside air temperature and the intake air temperature. be able to.
  • the temperature of the cooling water existing outside the internal combustion engine and the second temperature when the circulation is stopped can be directly detected by a sensor or the like.
  • the second temperature is substantially the same as the outside air temperature or the intake air temperature. Therefore, as in the same configuration, a sensor for detecting the second temperature is provided by setting the discharge amount of the pump when the cooling water circulation stop is released based on either the outside air temperature or the intake air temperature. Therefore, the discharge amount can be set according to the second temperature.
  • control unit performs a correction process for correcting the discharge amount of the pump set by the setting process so as to increase as the first temperature at the time of starting the engine increases.
  • the second temperature is substantially the same as the outside air temperature or the intake air temperature.
  • the cooling water circulates during or after warm-up.
  • the second temperature is higher than the outside air temperature or the intake air temperature.
  • the discharge amount is larger than the discharge amount set based on either the outside air temperature or the intake air temperature. Even if the amount is set, there is a low possibility that the thermal shock as described above is greatly applied.
  • the second temperature is higher than the outside air temperature or the intake air temperature as the first temperature at the start of the engine (the temperature of the cooling water in the internal combustion engine) is higher.
  • the discharge amount of the pump set based on the second temperature is corrected so as to increase as the first temperature at the start of the engine increases. Accordingly, when the pump discharge amount is set based on the outside air temperature or the intake air temperature, it is possible to prevent the pump discharge amount from being unnecessarily reduced when the cooling water circulation is started. .
  • the following inconvenience can be suppressed. That is, when the cooling water in the internal combustion engine reaches the predetermined temperature, the circulation of the cooling water is started. At that time, the temperature of the cooling water flowing into the internal combustion engine is relatively high and the inflow amount is small. In some cases, less heat is transferred from the internal combustion engine to the cooling water. For this reason, the temperature increase rate of the internal combustion engine does not greatly change before the start of the circulation of the cooling water, and in some cases, there is a concern that the temperature of the internal combustion engine may overshoot the optimum temperature.
  • the According to this configuration since it is possible to suppress that the discharge amount of the pump when starting the circulation of the cooling water is unnecessarily reduced, it is possible to suppress the occurrence of such an overshoot. Become.
  • the engine cooling system includes a radiator that cools the cooling water, and a switching unit that switches between circulation and suspension of the cooling water to the radiator according to the temperature of the cooling water,
  • the predetermined temperature may be embodied in such a manner that the switching unit is set to a temperature lower than the temperature of the cooling water at which the circulation of the cooling water to the radiator is started by the switching unit.
  • the cooling water flows into the internal combustion engine without being cooled by the radiator between the start of the circulation of the cooling water and the start of the circulation of the cooling water to the radiator. Therefore, it is possible to more suitably suppress the low-temperature cooling water from flowing into the internal combustion engine when starting the circulation of the cooling water.
  • the control unit cools the driving mode of the pump after the first temperature reaches the predetermined temperature until the first temperature reaches a second predetermined temperature higher than the predetermined temperature.
  • the pump is driven in a low flow rate mode in which the discharge amount is limited, and when the first temperature becomes equal to or higher than the second predetermined temperature, the driving mode of the pump This can be embodied in such a manner that the operation is changed to a continuous operation in which the cooling water is continuously discharged.
  • the operation of the pump is started.
  • the pump is first driven in a low flow rate mode in which the drive mode is intermittent operation and the discharge amount is limited to a low flow rate.
  • the cooling water is circulated in a state where the pump discharge amount is limited to a low flow rate, so that the thermal shock that may be caused by the low-temperature cooling water flowing into the high-temperature internal combustion engine is appropriately prevented. Can be relaxed. Further, by circulating the cooling water, local boiling of the cooling water in the vicinity of the high temperature portion of the internal combustion engine can be suppressed.
  • the pump is intermittently operated, so that the average discharge amount of the pump in a predetermined period can be set to an extremely low flow rate. Accordingly, it is possible to circulate a suitable amount of cooling water in order to reduce the thermal shock when the cooling water in the low temperature state flows into the internal combustion engine in the high temperature state while suppressing local boiling of the cooling water.
  • the driving mode of the pump is changed to continuous operation, and the pump discharge amount is increased as compared with the previous low flow rate mode.
  • a sufficient circulation amount of the cooling water can be secured, and the engine cooling system can be cooled in accordance with the engine temperature state at that time even after complete warm-up.
  • an electric pump can be employed, or a mechanical drive pump coupled to the engine output shaft via a clutch and driven by the engine output shaft can be employed.
  • a mechanically driven pump when the clutch is engaged, the pump discharge amount is determined based on the rotation of the engine drive shaft.
  • the clutch when the clutch is in the disengaged state, discharge of the cooling water by the pump is stopped regardless of the rotational state of the engine drive shaft. Further, by intermittently engaging the clutch, the drive mode of the pump can be intermittently operated.
  • FIG. 1 is a schematic configuration diagram showing an internal combustion engine and a cooling device thereof according to a first embodiment of the present invention.
  • the flowchart which shows the drive processing procedure of the electric pump in the embodiment.
  • the flowchart which shows the discharge amount setting process sequence of the electric pump in the embodiment.
  • the graph which shows the relationship between intake temperature and the discharge amount of an electric pump.
  • the timing chart which shows the example about the drive mode of the electric pump in the embodiment.
  • the flowchart which shows the discharge amount setting process sequence of the electric pump in 2nd Embodiment.
  • the graph which shows the relationship between the cooling water temperature at the time of a start, and the discharge amount correction value of an electric pump.
  • the graph which shows the relationship between the discharge amount of the electric pump and intake air temperature in the modification of 1st Embodiment.
  • the graph which shows the relationship between the discharge amount correction value of the electric pump in the modification of 2nd Embodiment, the cooling water temperature at the time of a stop, and an engine stop time.
  • the schematic block diagram which shows the modification of the water pump of 1st Embodiment.
  • a cooling device for an internal combustion engine 10 mounted on a vehicle generally includes a water jacket 13 formed around an engine combustion chamber 10a inside a cylinder block 11 and a cylinder head 12, and the water jacket 13.
  • An electric pump 23 for discharging cooling water to the jacket 13 and a main passage 24 and a sub passage 27 for circulating the cooling water in the water jacket 13 back to the electric pump 23 are constituted.
  • the main passage 24 connects the water jacket 13 and the electric pump 23 via the radiator 21 and the thermostat 22.
  • the radiator 21 releases heat of the cooling water to the outside by performing heat exchange between the cooling water and the outside air.
  • the thermostat 22 is a temperature-sensitive type in which the position of the valve body provided therein changes according to the temperature of the cooling water, and the circulation and stoppage of the cooling water to the radiator 21 depend on the position of the valve body. It functions as a switching unit that can be switched.
  • the valve body of the thermostat 22 is kept closed when the temperature of the cooling water is lower than the valve opening start temperature. When the temperature of the cooling water reaches the valve opening start temperature, the valve body is gradually opened, and when the temperature of the cooling water reaches the full valve opening temperature, the valve body is kept open at the maximum opening. Is done.
  • the sub passage 27 connects the water jacket 13 and the electric pump 23 via the thermal device system 14 and the thermostat 22.
  • the thermal device system 14 includes various devices that use heat of cooling water such as a heater core, a heating passage of a throttle body, and an EGR cooler.
  • the sub passage 27 is always in communication with the electric pump 23 regardless of whether the thermostat 22 is open or closed. Therefore, when the thermostat 22 is in the closed state, the cooling water discharged from the electric pump 23 to the water jacket 13 flows through the sub passage 27 including the thermal equipment system 14 and is returned to the electric pump 23, and again the water jacket 13. Discharged. On the other hand, the cooling water does not flow into the radiator 21 through the main passage 24.
  • the cooling water discharged from the electric pump 23 to the water jacket 13 is returned to the electric pump 23 from the sub-passage 27 and then again watered. It is discharged to the jacket 13.
  • the cooling water flows from the water jacket 13 through the main passage 24 including the radiator 21, is returned to the electric pump 23, and is discharged to the water jacket 13 again.
  • the electric pump 23 sucks and discharges the cooling water when the impeller connected to the output shaft of the motor rotates.
  • the amount of cooling water discharged from the electric pump 23 increases as the rotational speed of the output shaft (hereinafter referred to as pump rotational speed) increases.
  • the pump rotation speed changes according to the ratio between the energization time and the energization stop time of the motor (hereinafter referred to as duty ratio DT), and increases as the duty ratio DT increases.
  • the motor of the electric pump 23 is connected to the control device 91, and the driving mode of the motor is controlled through the control device 91.
  • the control device 91 selects a continuous operation for continuously discharging cooling water and an intermittent operation for intermittently discharging cooling water as the driving mode of the electric pump 23.
  • the circulation amount of the cooling water is adjusted by changing the discharge amount of the electric pump 23.
  • the circulation amount of the cooling water is adjusted by changing the ratio of the driving period that is the period for discharging the cooling water and the stopping period that is the period for stopping the cooling water discharge. Is done.
  • the main passage 24, the sub passage 27, the water jacket 13, the electric pump 23, the thermostat 22, the radiator 21, and the thermal equipment system 14 constitute an engine cooling system.
  • the control device 91 includes a water temperature sensor 92 that is provided in the vicinity of the outlet of the water jacket 13 and detects the temperature of the cooling water in the internal combustion engine 10 (hereinafter referred to as the first cooling water temperature) THW1, and the intake passage of the internal combustion engine 10. Is connected to an intake air temperature sensor 93 for detecting intake air temperature (hereinafter referred to as intake air temperature) THA. Various other sensors such as a rotation speed sensor 94 that detects the engine rotation speed are also connected to the control device 91. The control device 91 controls the driving mode of the electric pump 23 based on the detection values of these sensors.
  • the intake air temperature THA changes with a certain degree of correlation with the outside air temperature, and is therefore used as a substitute value for the outside air temperature.
  • the water temperature sensor 92 constitutes the temperature detection unit that detects the first temperature that is the temperature of the cooling water in the internal combustion engine 10.
  • the control device 91 When the temperature of the internal combustion engine 10 is low, such as during a cold start, the control device 91 promotes warming up of the internal combustion engine 10 by stopping the driving of the electric pump 23 and stopping the circulation of the cooling water. The wall surface temperature of the combustion chamber 10a is maintained at a high temperature to reduce heat loss and thus improve fuel efficiency. Then, after the first cooling water temperature THW1 rises to a predetermined reference temperature and the warm-up of the internal combustion engine 10 has progressed to some extent, the control device 91 performs an electric pump to cool the internal combustion engine 10 with the cooling water. 23 is driven to start circulating the cooling water.
  • the cooling water stagnating in the sub-passage 27 has not received the engine heat until then, and therefore is considerably lower than the temperature of the cooling water in the internal combustion engine 10. Therefore, when such low-temperature cooling water flows into the internal combustion engine 10, the temperature of the internal combustion engine 10 rapidly decreases and a thermal shock is applied to the internal combustion engine 10. When a thermal shock is applied to the internal combustion engine 10 in this way, the durability of the internal combustion engine is reduced due to thermal stress, or the cooling water or lubricating oil seal is caused by the difference in the amount of thermal contraction between the cylinder head 12 and the cylinder block 11. There is a risk of performance degradation.
  • the cylinder head 12 is formed with an exhaust port through which high-temperature exhaust flows.
  • the volume of the cylinder head 12 is smaller than that of the cylinder block. Therefore, the temperature of the cylinder head 12 tends to be higher than that of the cylinder block 11, and the thermal shock as described above tends to act on the cylinder head 12 more strongly than the cylinder block 11.
  • control device 91 executes a pump driving process shown in FIG.
  • the series of processing shown in FIG. 2 is repeatedly executed by the control device 91 every predetermined calculation cycle from the time of engine start.
  • the control device 91 determines whether or not the first cooling water temperature THW1 is equal to or higher than the first reference temperature TX1 (S10).
  • the first reference temperature TX1 is a first value indicating whether the internal combustion engine 10 is in a low temperature state, more specifically, whether there is a possibility of local boiling of cooling water in the vicinity of the engine combustion chamber 10a. As a value for determination by comparison with the cooling water temperature THW1, it is set in advance through a test or the like.
  • the first reference temperature TX1 is set to a temperature lower than the valve opening start temperature of the thermostat 22.
  • the control device 91 stops driving the electric pump 23 because the internal combustion engine 10 is in a low temperature state (S50). ). As a result, the circulation of the cooling water is stopped and the warm-up of the internal combustion engine 10 is promoted.
  • the control device 91 determines whether or not the first coolant temperature THW1 is equal to or higher than the second reference temperature TX2.
  • the second reference temperature TX2 is a value for determining whether or not the warm-up of the internal combustion engine 10 is completed by comparing with the first coolant temperature THW1, and is set in advance through a test or the like.
  • the second reference temperature TX2 is set to a temperature higher than the first reference temperature TX1.
  • the second reference temperature TX2 is set to a temperature lower than the complete valve opening temperature of the thermostat 22.
  • the control device 91 sets the electric pump 23 in the normal mode. (S30). In this normal mode, the control device 91 sets the discharge amount QN of the electric pump 23 based on parameters indicating the engine operation state such as the first coolant temperature THW1, the engine load, and the engine rotation speed, and the set discharge amount. The electric pump 23 is continuously operated so as to obtain QN.
  • the control device 91 turns the electric pump 23 off.
  • the control device 91 executes the discharge amount setting process shown in FIG. 3, and controls the drive of the electric pump 23 so as to achieve the set discharge amount.
  • control device 91 After setting the drive mode of the electric pump 23 in steps S30, S40, and S50, the control device 91 once ends this process.
  • the control device 91 that performs the pump driving process and the discharge amount setting process constitutes the control unit.
  • This discharge amount setting process is executed by the control device 91 when the low flow rate mode is executed.
  • the control device 91 first reads the intake air temperature THA (S100). Then, the control device 91 calculates the discharge amount QL of the electric pump 23 based on the intake air temperature THA (S110), and this process is terminated.
  • step S110 as shown in FIG. 4, the discharge amount QL is calculated to be smaller as the intake air temperature THA is lower.
  • the reason for setting the discharge amount QL in this manner is as follows.
  • the temperature of the cooling water existing outside the internal combustion engine 10 in the engine cooling system and the temperature when the cooling water is circulated and stopped is defined as a second temperature THW2. That is, the temperature of the cooling water stagnating in the sub passage 27 while the cooling water circulation is stopped is set to the second temperature THW2.
  • the second temperature THW2 is substantially the same as the outside air temperature or the intake air temperature when the internal combustion engine 10 is started from a cold state. Therefore, it is possible to estimate the second temperature THW2 based on the intake air temperature THA.
  • step S110 the discharge amount QL is decreased as the intake air temperature THA is lower, that is, as the second temperature THW2 is lower. Therefore, the amount of cooling water flowing into the internal combustion engine 10 is reduced as the temperature of the cooling water flowing into the internal combustion engine 10 is lower due to the start of the circulation of the cooling water. Therefore, the rapid temperature drop of the internal combustion engine 10 due to the start of the cooling water circulation is appropriately suppressed, and the thermal shock to the internal combustion engine 10 is suppressed.
  • the control device 91 When the discharge amount QL is set in step S110, the control device 91 is electrically driven based on the discharge amount QL set based on the intake air temperature THA just before the cooling water circulation stop is canceled in the previous step S40.
  • the pump 23 is driven in the low flow rate mode. In this low flow rate mode, the ratio of the drive period, which is a period for discharging cooling water, and the stop period, which is a period for stopping discharge of cooling water, is adjusted so that the discharge amount QL is obtained.
  • the discharge amount when the electric pump 23 is driven in the low flow rate mode is fixed to the discharge amount QL.
  • the temperature of the cooling water at the highest temperature in the internal combustion engine 10 for example, the temperature of the cooling water in the vicinity of the combustion chamber of the cylinder head 12
  • the discharge amount can also be set. That is, it was estimated that a suitable amount of cooling water was circulated in order to avoid the occurrence of thermal shock and increase in heat loss as described above while suppressing the occurrence of local cooling water boiling.
  • the discharge amount QL may be corrected based on the temperature.
  • the discharge amount QL of the electric pump 23 is set based on the intake air temperature THA at that time, and the coolant is circulated in the low flow rate mode. Is started.
  • the driving of the electric pump 23 is stopped until the first cooling water temperature THW1 reaches the second reference temperature TX2. Then, when the first coolant temperature THW1 reaches the second reference temperature TX2 (time t2), that is, when the warm-up of the internal combustion engine 10 is completed, the electric pump 23 continues without executing the low flow rate mode.
  • the first coolant temperature THW1 rapidly decreases as shown by a one-dot chain line in FIG.
  • the thermal shock as described above acts on the internal combustion engine 10. .
  • the driving of the electric pump 23 is started in the low flow rate mode in consideration of the temperature of the cooling water flowing into the internal combustion engine 10 at the time t1 as described above. Therefore, although the rate of increase in the temperature of the cooling water is decreased, the rapid decrease in the first cooling water temperature THW1 is suppressed and the thermal shock is also suppressed.
  • the circulation of the cooling water is started, so that the cooling water stagnated in the sub passage 27 flows into the internal combustion engine 10,
  • the temperature of the cooling water in the passage 27 gradually increases.
  • the first cooling water temperature THW1 gradually increases in temperature although the rate of temperature increase is lower than before the start of circulation of the cooling water.
  • the discharge amount of the electric pump 23 when the cooling water circulation stop is released is the temperature of the cooling water existing outside the internal combustion engine 10 in the engine cooling system and the temperature during the circulation stop. Two temperatures are set based on THW2. Therefore, the amount of cooling water having a temperature lower than that of the internal combustion engine 10 flows into the internal combustion engine 10 is set according to the temperature of the cooling water existing outside the internal combustion engine 10 when the circulation is stopped. Accordingly, it is possible to suppress a thermal shock to the internal combustion engine 10 that may occur when the circulation stop of the cooling water is released.
  • the discharge amount QL is variably set so that the discharge amount QL of the electric pump 23 decreases as the second temperature THW2 is lower.
  • the amount of cooling water flowing into the internal combustion engine 10 can be reduced as the temperature of the cooling water flowing into the internal combustion engine 10 with the start of circulation of the cooling water is lower. Therefore, the thermal shock to the internal combustion engine 10 can be appropriately suppressed.
  • the temperature of the cooling water existing outside the internal combustion engine 10 in the engine cooling system and the second temperature THW2 when the circulation is stopped can be directly detected by a sensor or the like.
  • the second temperature THW2 is substantially the same as the outside air temperature or the intake air temperature THA.
  • the discharge amount QL is set on the basis of the intake air temperature THA, so that the discharge amount QL corresponding to the second temperature THW2 can be set without providing a sensor for detecting the second temperature THW2. Will be able to.
  • the first reference temperature TX1 for starting the low flow rate mode is set lower than the valve opening start temperature of the thermostat 22. Therefore, the cooling water flows into the internal combustion engine 10 without being cooled by the radiator 21 after the cooling water circulation is started until the cooling water circulation to the radiator 21 is started. Therefore, it is possible to more suitably suppress the low-temperature cooling water from flowing into the internal combustion engine 10 at the start of the cooling water circulation.
  • the electric pump 23 is driven until the first coolant temperature THW1 reaches the second reference temperature TX2 higher than the first reference temperature TX1.
  • the mode is driven in a low flow rate mode in which the discharge amount is limited as an intermittent operation in which cooling water is intermittently discharged. Further, when the first cooling water temperature THW1 becomes equal to or higher than the second reference temperature TX2, the driving mode of the electric pump 23 is changed to the continuous operation in which the cooling water is continuously discharged.
  • the operation of the electric pump 23 is started.
  • the electric pump 23 is driven in a low flow rate mode in which the drive mode is intermittent operation and the discharge amount is limited to a low flow rate.
  • the thermal shock that may be generated when the cooling water in the low temperature state flows into the internal combustion engine 10 in the high temperature state. Can be moderated appropriately.
  • the cooling water by circulating the cooling water, it is possible to suppress local boiling of the cooling water near the high temperature portion of the internal combustion engine 10 (for example, near the combustion chamber of the cylinder head 12). Moreover, since the electric pump 23 is intermittently operated in this low flow rate mode, the average discharge amount of the electric pump 23 in a predetermined period can be set to an extremely low flow rate. Therefore, it is possible to distribute a suitable amount of cooling water in order to mitigate the thermal shock when the cooling water in the low temperature state flows into the internal combustion engine 10 in the high temperature state while suppressing local boiling of the cooling water. .
  • the driving mode of the electric pump 23 is changed to continuous operation, and the discharge amount of the electric pump 23 is increased as compared with the previous low flow rate mode.
  • a sufficient circulation amount of the cooling water can be secured, and the engine cooling system can be cooled in accordance with the engine temperature state at that time even after complete warm-up.
  • This embodiment is configured as a partial modification of the discharge amount setting process of the first embodiment. Details of the changed configuration will be described below.
  • symbol is attached
  • the second temperature THW2 becomes substantially the same as the outside air temperature or the intake air temperature THA.
  • the cooling water is in the middle of the warm-up or after the completion of the warm-up. Circulation is performed, and there is a possibility that the second temperature THW2 is higher than the outside air temperature or the intake air temperature THA.
  • the second temperature THW2 may be higher than the outside air temperature or the intake air temperature THA. Therefore, in the present embodiment, the discharge amount QL of the electric pump 23 set based on the second temperature THW2 is corrected so as to increase as the first coolant temperature THW1 at the time of engine start increases. .
  • FIG. 6 shows a processing procedure of the discharge amount setting process in the present embodiment. This discharge amount setting process is also executed by the control device 91 when the low flow rate mode is executed, as in the first embodiment.
  • the control device 91 reads the starting coolant temperature THW1s, which is the first coolant temperature THW1 immediately after the engine is started, and the current intake air temperature THA (S200).
  • the control device 91 stores the first cooling water temperature THW1 detected by the water temperature sensor 92 immediately after the engine is started in the storage device, and in step S200, the first cooling water temperature THW1 stored in the storage device is stored. Read as the starting coolant temperature THW1s.
  • the control device 91 calculates the discharge amount QL of the electric pump 23 based on the intake air temperature THA (S210).
  • the setting of the discharge amount QL performed in step S210 is the same as the setting of the discharge amount QL performed in step S110. That is, as shown in FIG. 4, the control device 91 calculates the discharge amount QL to be smaller as the intake air temperature THA is lower.
  • the control device 91 calculates a discharge amount correction value QLH based on the starting coolant temperature THW1s (S220). As shown in FIG. 7, the control device 91 sets the discharge amount correction value QLH so that the discharge amount correction value QLH increases as the starting coolant temperature THW1s increases. The minimum value of the discharge amount correction value QLH is “1”.
  • control device 91 corrects the discharge amount QL by multiplying the discharge amount QL calculated in step S210 by the discharge amount correction value QLH calculated in step S220 (S230). And the control apparatus 91 complete
  • the discharge amount QL of the electric pump 23 set based on the intake air temperature THA increases as the starting coolant temperature THW1s increases. It is corrected to.
  • the control device 91 drives the electric pump 23 in the low flow rate mode based on the corrected discharge amount QL in the previous step S40.
  • the ratio of the drive period, which is a period for discharging cooling water, and the stop period, which is a period for stopping discharge of cooling water, is adjusted so that the discharge amount QL is obtained.
  • the following functions and effects can be obtained in addition to the functions and effects described in (1) to (5) above.
  • (6) The discharge amount QL of the electric pump 23 set based on the intake air temperature THA is corrected so as to increase as the starting coolant temperature THW1s increases. Therefore, in the case where the discharge amount QL of the electric pump 23 is set based on the intake air temperature THA, it is possible to prevent the discharge amount QL of the electric pump 23 from being unnecessarily reduced when the circulation of the cooling water is started. become able to.
  • the following inconvenience can be suppressed. That is, when the cooling water in the internal combustion engine 10 reaches the first reference temperature TX1, circulation of the cooling water is started. At that time, the temperature of the cooling water flowing into the internal combustion engine 10 is relatively high, and When the inflow amount is small, the amount of heat transferred from the internal combustion engine 10 to the cooling water decreases. Therefore, the temperature increase rate of the internal combustion engine 10 does not change significantly before the start of the circulation of the cooling water, and in some cases, the temperature of the internal combustion engine 10 overshoots the optimum temperature. Concerned. In this regard, according to the present embodiment, it is possible to suppress the discharge amount QL of the electric pump 23 when starting the circulation of the cooling water from being unnecessarily reduced. It becomes possible to suppress.
  • the discharge amount QL is continuously variably set so that the discharge amount QL increases as the intake air temperature THA increases.
  • a plurality of temperature regions may be set for the intake air temperature THA, and the discharge amount QL may be set for each temperature region.
  • temperature regions THA1 to THA5 are set in ascending order of temperature. Then, the discharge amount QL is set for each of the temperature regions THA1 to THA5. At this time, the discharge amount QL corresponding to the higher temperature region is set so that the value becomes larger. In this case, the discharge amount QL can be set with a simpler configuration.
  • the discharge amount correction value QLH is set based on the starting coolant temperature THW1s.
  • the first cooling water temperature THW1 at the time of starting the engine is such that the longer the elapsed time from when the internal combustion engine 10 is stopped until it is started, or the first cooling water temperature THW1 when the internal combustion engine 10 is stopped. The lower, the lower. Therefore, as shown in FIG. 9, the first coolant temperature when the engine stop time PST, which is the elapsed time from when the internal combustion engine 10 is stopped to when it is started, is longer, or when the internal combustion engine 10 is stopped.
  • the discharge amount correction value QLH may be set so that the discharge amount correction value QLH increases as the stop-time cooling water temperature THW1p, which is THW1, is lower. Even in this case, the effect according to the second embodiment can be obtained.
  • the discharge amount correction value QLH for correcting the discharge amount QL is set based on the starting coolant temperature THW1s.
  • the intake air temperature THA may be corrected based on the starting coolant temperature THW1s.
  • the intake air temperature correction value THAH is calculated based on the starting coolant temperature THW1s.
  • the intake air temperature correction value THAH is variably set so that the value increases as the starting coolant temperature THW1s increases.
  • the minimum value of the intake air temperature correction value THAH is “1”.
  • the intake air temperature THA is calculated by multiplying the intake air temperature THA by the intake air temperature correction value THAH.
  • the corrected intake air temperature THA is calculated such that the value increases as the starting coolant temperature THW1s increases. That is, as the first coolant temperature THW1 at the time of starting the engine is higher, the second temperature THW2 may be higher than the intake air temperature THA.
  • the second temperature THW2 is substituted according to the tendency.
  • the intake air temperature THA used as a value is corrected.
  • the discharge amount QL is set in the manner shown in FIG. Also in this case, since the discharge amount QL of the electric pump 23 can be corrected so as to increase as the starting coolant temperature THW1s is higher, the operational effect according to the second embodiment can be obtained.
  • the second temperature THW2 is substantially the same as the outside air temperature or the intake air temperature. Therefore, when an outside air temperature sensor is provided, the discharge amount QL of the electric pump 23 in the low flow rate mode may be set based on the outside air temperature instead of the intake air temperature THA.
  • a sensor is provided for detecting the temperature of the cooling water existing outside the internal combustion engine 10 while the cooling water circulation is stopped, for example, the cooling water stagnating in the sub-passage 27.
  • the discharge amount QL may be set based on the two temperature THW2. Thus, when the second temperature THW2 is actually detected, the discharge amount QL can be set to an appropriate value with higher accuracy.
  • the electric pump 23 is intermittently operated to realize an extremely low flow rate.
  • the electric pump may be continuously operated so as to obtain the discharge amount QL in the low flow rate mode.
  • the valve opening start temperature of the thermostat 22 and the first reference temperature TX1 may be the same. Even in this case, the effects described in (1) to (3), (5), and (6) can be obtained.
  • FIG. 10 shows an example of a configuration when a mechanical drive pump is employed.
  • the mechanically driven pump includes a water pump 230 having an input shaft 235 that rotates integrally with an impeller, and a clutch mechanism that is connected to the input shaft 235 and whose engagement state is switched by an actuator 310. 300 and a pulley 400 connected to the clutch mechanism 300.
  • the pulley 400 rotates integrally with the pulley 600 connected to the crankshaft 50 of the internal combustion engine 10 via the belt 500. Further, the engagement state of the clutch mechanism 300 is switched by controlling the operation of the actuator 310 by the control device 91.
  • the discharge amount of the pump is determined based on the rotation of the crankshaft.
  • the clutch mechanism 300 is in the released state, discharge of the cooling water by the pump is stopped regardless of the rotation state of the crankshaft. Further, by intermittently engaging the clutch mechanism 300, the drive mode of the pump can be intermittently operated.

Abstract

A cooling device for an internal combustion engine, configured so that coolant circulation is stopped until the temperature of the coolant reaches a predetermined temperature, wherein thermal shock to the internal combustion engine, which is likely to occur when the stop of the coolant circulation is cancelled, is reduced. An internal combustion engine (10) is provided with: a main passage (24) and a sub-passage (27) which form the engine cooling system; a coolant temperature sensor (92) which detects a first temperature which is the temperature of the coolant within the internal combustion engine (10); and an electric pump (23). A control device (91) controls the electric pump (23) so that the coolant circulation is stopped when the first temperature is lower than a predetermined temperature. Also, the control device (91) sets the discharge amount of the coolant which is discharged from the electric pump (23) when the stop of the coolant circulation is cancelled, the setting being performed on the basis of the temperature of the coolant within the sub-passage (27) when the coolant circulation is being stopped.

Description

内燃機関の冷却装置Cooling device for internal combustion engine
 本発明は、内燃機関の暖機を促進するために、冷却水の温度が所定温度に達するまで冷却水の循環を停止するようにした内燃機関の冷却装置に関する。 The present invention relates to a cooling device for an internal combustion engine in which the circulation of the cooling water is stopped until the temperature of the cooling water reaches a predetermined temperature in order to promote warm-up of the internal combustion engine.
 内燃機関の冷却装置として、内燃機関の内部に形成されたウォータジャケットに冷却水を循環させることにより、シリンダブロックやシリンダヘッドを冷却する水冷式の冷却装置が一般に知られている。通常、こうした冷却装置の機関冷却系は、ウォータジャケット、ポンプ、ラジエータ、ウォータジャケットとラジエータとを連通する冷却水通路、及びラジエータに流入する冷却水の流量を調量するサーモスタットによって構成されている。 As a cooling device for an internal combustion engine, a water-cooling type cooling device that cools a cylinder block or a cylinder head by circulating cooling water through a water jacket formed inside the internal combustion engine is generally known. Normally, the engine cooling system of such a cooling device is constituted by a water jacket, a pump, a radiator, a cooling water passage that communicates the water jacket with the radiator, and a thermostat that regulates the flow rate of the cooling water flowing into the radiator.
 ところで、近年、冷却水を循環させるポンプとして、機関運転状態に依存することなく冷却水の吐出量を変更することのできるポンプ、例えば電動ポンプなどが実用化されている。 By the way, in recent years, as a pump for circulating the cooling water, a pump capable of changing the discharge amount of the cooling water without depending on the engine operation state, for example, an electric pump has been put into practical use.
 例えば、特許文献1に記載の冷却装置では、こうした電動ポンプを採用し、機関始動時等において冷却水の温度が所定温度に達するまでは電動ポンプの運転を停止して冷却水の循環を停止するようにしている。 For example, the cooling device described in Patent Document 1 employs such an electric pump and stops the operation of the electric pump and stops the circulation of the cooling water until the temperature of the cooling water reaches a predetermined temperature at the time of starting the engine or the like. I am doing so.
 こうした冷却装置のように、機関運転中において冷却水の循環を停止すると、内燃機関内の冷却水は同内燃機関内において停滞する。従って、内燃機関内の冷却水の温度は、機関熱によって早期に高温化される。そのため、内燃機関の暖機が促進される。 When the circulation of the cooling water is stopped while the engine is operating as in such a cooling device, the cooling water in the internal combustion engine is stagnated in the internal combustion engine. Therefore, the temperature of the cooling water in the internal combustion engine is quickly raised by engine heat. Therefore, warming up of the internal combustion engine is promoted.
特開2002-161748号公報JP 2002-161748 A
 ところで、上述した冷却装置では、冷却水の温度が所定温度に達すると電動ポンプの運転が開始されて冷却水の循環が開始される。このように冷却水の循環が開始されると、機関冷却系内において内燃機関の外部に存在していた冷却水、例えばウォータジャケットとラジエータとを連通する冷却水通路内で停滞していた冷却水などが内燃機関に流入するようになる。 By the way, in the cooling device described above, when the temperature of the cooling water reaches a predetermined temperature, the operation of the electric pump is started and the circulation of the cooling water is started. When the circulation of the cooling water is started in this way, the cooling water existing outside the internal combustion engine in the engine cooling system, for example, the cooling water stagnating in the cooling water passage communicating the water jacket and the radiator. Etc. will flow into the internal combustion engine.
 この内燃機関の外部に存在していた冷却水は機関熱を受熱していないために、内燃機関内の冷却水の温度よりもかなり低くなっている。従って、そのような低温の冷却水が同冷却水の循環開始によって内燃機関内に流入すると、内燃機関の温度が急速に低下してしまい、同内燃機関には熱衝撃が加わってしまう。このようにして内燃機関に熱衝撃が加わると、熱応力によって内燃機関の耐久性が低下したり、冷却水あるいは潤滑油のシール性能が低下したりするおそれがある。 The cooling water existing outside the internal combustion engine does not receive the engine heat, and therefore is considerably lower than the temperature of the cooling water in the internal combustion engine. Therefore, when such low-temperature cooling water flows into the internal combustion engine due to the start of circulation of the cooling water, the temperature of the internal combustion engine rapidly decreases, and a thermal shock is applied to the internal combustion engine. When a thermal shock is applied to the internal combustion engine in this manner, the durability of the internal combustion engine may decrease due to thermal stress, and the sealing performance of cooling water or lubricating oil may decrease.
 この発明は、こうした従来の実情に鑑みてなされたものであり、その目的は、冷却水の循環停止が解除されたときに生じるおそれのある内燃機関への熱衝撃を抑えることにある。 The present invention has been made in view of such conventional circumstances, and an object thereof is to suppress a thermal shock to the internal combustion engine that may occur when the circulation stop of the cooling water is released.
 上記目的を達成するため、本発明は、冷却水が循環する機関冷却系と、内燃機関内の冷却水の温度である第1温度を検出する温度検出部と、機関運転状態に依存することなく冷却水の吐出量を変更可能なポンプと、前記第1温度が所定温度よりも低いときには冷却水の循環が停止するように前記ポンプを制御する制御部とを備える内燃機関の冷却装置において、前記制御部は、冷却水の循環停止が解除されたときの前記ポンプの吐出量を、前記機関冷却系内において前記内燃機関の外部に存在する冷却水の温度であって前記循環停止中の温度である第2温度に基づいて設定する設定処理を行うようにしている。 In order to achieve the above object, the present invention provides an engine cooling system in which cooling water circulates, a temperature detection unit that detects a first temperature that is the temperature of the cooling water in the internal combustion engine, and without depending on the engine operating state An internal combustion engine cooling device comprising: a pump capable of changing a discharge amount of the cooling water; and a control unit that controls the pump so that the circulation of the cooling water is stopped when the first temperature is lower than a predetermined temperature. The control unit determines a discharge amount of the pump when the circulation stop of the cooling water is released at a temperature of the cooling water existing outside the internal combustion engine in the engine cooling system and the temperature during the circulation stop. A setting process for setting based on a certain second temperature is performed.
 同構成によれば、冷却水の循環停止が解除されたときのポンプの吐出量が、機関冷却系内において内燃機関の外部に存在する冷却水の温度であって循環停止中の温度である第2温度に基づいて設定される。そのため、内燃機関よりも温度の低い冷却水が同内燃機関に流入するときの量は、循環停止中において内燃機関の外部に存在していた冷却水の温度に応じて設定される。従って、冷却水の循環停止が解除されたときに生じるおそれのある内燃機関への熱衝撃を抑えることができるようになる。 According to this configuration, the discharge amount of the pump when the cooling water circulation stop is released is the temperature of the cooling water existing outside the internal combustion engine in the engine cooling system and the temperature during the circulation stop. 2 Set based on temperature. For this reason, the amount of cooling water having a temperature lower than that of the internal combustion engine flows into the internal combustion engine is set according to the temperature of the cooling water existing outside the internal combustion engine when the circulation is stopped. Therefore, it is possible to suppress a thermal shock to the internal combustion engine that may occur when the circulation stop of the cooling water is released.
 なお、同構成では、冷却水の循環停止が解除される直前での第2温度に基づいてポンプの吐出量を設定することが望ましい。
 また、本発明は、前記制御部は、前記第2温度が低いときほど前記ポンプの吐出量を少なくする、といった態様にてこれを具体化することができる。
In this configuration, it is desirable to set the pump discharge amount based on the second temperature immediately before the cooling water circulation stop is released.
Further, the present invention can be embodied in such a manner that the control unit decreases the discharge amount of the pump as the second temperature is lower.
 同構成によれば、内燃機関に流入する冷却水の温度が低いときほど、その冷却水が内燃機関に流入する量を少なくすることができる。従って、内燃機関への熱衝撃を適切に抑えることができるようになる。 According to this configuration, the amount of cooling water flowing into the internal combustion engine can be reduced as the temperature of the cooling water flowing into the internal combustion engine is lower. Therefore, the thermal shock to the internal combustion engine can be appropriately suppressed.
 本発明は、前記制御部は、冷却水の循環停止が解除されたときの前記ポンプの吐出量を外気温度及び吸気温度のいずれか一方に基づいて設定する、といった態様にてこれを具体化することができる。 The present invention embodies this in an aspect in which the control unit sets the discharge amount of the pump when the circulation stop of the cooling water is released based on one of the outside air temperature and the intake air temperature. be able to.
 機関冷却系内において内燃機関の外部に存在する冷却水の温度であって循環停止されているときの上記第2温度はセンサなどで直接検出することも可能である。一方、冷間状態から内燃機関が始動された場合などでは、上記第2温度は外気温度や吸気温度とほぼ同一の温度になっている。そこで、同構成によるように、冷却水の循環停止が解除されたときのポンプの吐出量を外気温度及び吸気温度のいずれか一方に基づいて設定することにより、第2温度を検出するセンサを設けることなく、同第2温度に応じた吐出量の設定を行うことができるようになる。 In the engine cooling system, the temperature of the cooling water existing outside the internal combustion engine and the second temperature when the circulation is stopped can be directly detected by a sensor or the like. On the other hand, when the internal combustion engine is started from a cold state, the second temperature is substantially the same as the outside air temperature or the intake air temperature. Therefore, as in the same configuration, a sensor for detecting the second temperature is provided by setting the discharge amount of the pump when the cooling water circulation stop is released based on either the outside air temperature or the intake air temperature. Therefore, the discharge amount can be set according to the second temperature.
 本発明は、前記制御部は、前記設定処理によって設定された前記ポンプの吐出量を、機関始動時の前記第1温度が高いときほど多くなるように補正する補正処理を行う、といった態様にてこれを具体化することができる。 In the aspect of the present invention, the control unit performs a correction process for correcting the discharge amount of the pump set by the setting process so as to increase as the first temperature at the time of starting the engine increases. This can be embodied.
 冷間状態から内燃機関が始動された場合には、上記第2温度は、外気温度や吸気温度とほぼ同一の温度になる。一方、暖機途中や暖機完了後に内燃機関が停止されて、その後冷間状態になる前に内燃機関が再始動された場合には、暖機途中や暖機完了後において冷却水の循環が行われており、上記第2温度が外気温度や吸気温度よりも高くなっている可能性がある。このようなときは、第2温度と内燃機関内の冷却水との温度差が比較的小さくなっているため、外気温度及び吸気温度のいずれか一方に基づいて設定される吐出量よりも多い吐出量を設定しても、上述したような熱衝撃が大きく加わる可能性は低い。 When the internal combustion engine is started from a cold state, the second temperature is substantially the same as the outside air temperature or the intake air temperature. On the other hand, if the internal combustion engine is stopped during warm-up or after completion of warm-up, and then restarted before the engine becomes cold, the cooling water circulates during or after warm-up. There is a possibility that the second temperature is higher than the outside air temperature or the intake air temperature. In such a case, since the temperature difference between the second temperature and the cooling water in the internal combustion engine is relatively small, the discharge amount is larger than the discharge amount set based on either the outside air temperature or the intake air temperature. Even if the amount is set, there is a low possibility that the thermal shock as described above is greatly applied.
 ここで、機関始動時の第1温度(内燃機関内の冷却水の温度)が高いときほど、上記第2温度は外気温度や吸気温度よりも高くなっている可能性がある。そのため、同構成では、第2温度に基づいて設定されたポンプの吐出量を、機関始動時の第1温度が高いときほど多くなるように補正するようにしている。従って、外気温度や吸気温度に基づいてポンプの吐出量を設定する場合において、冷却水の循環を開始するときのポンプの吐出量が不必要に少なくされるといったことを抑えることができるようになる。 Here, there is a possibility that the second temperature is higher than the outside air temperature or the intake air temperature as the first temperature at the start of the engine (the temperature of the cooling water in the internal combustion engine) is higher. For this reason, in this configuration, the discharge amount of the pump set based on the second temperature is corrected so as to increase as the first temperature at the start of the engine increases. Accordingly, when the pump discharge amount is set based on the outside air temperature or the intake air temperature, it is possible to prevent the pump discharge amount from being unnecessarily reduced when the cooling water circulation is started. .
 そのため、例えば次のような不都合の発生を抑えることもできる。すなわち、内燃機関内の冷却水が上記所定温度に達すると冷却水の循環が開始されるのであるが、そのときに内燃機関に流入する冷却水の温度が比較的高く、かつ流入量が少量である場合には、内燃機関から冷却水へ移動する熱量が少なくなる。そのため、内燃機関の温度上昇速度は、冷却水の循環開始前と大きく変わることがなく、場合によっては、内燃機関の温度が最適な温度に対してオーバーシュートしてしまうといった不都合の発生が懸念される。この点同構成によれば、冷却水の循環を開始するときのポンプの吐出量が不必要に少なくされるといったことを抑えることができるため、そのようなオーバーシュートの発生を抑えることが可能になる。 Therefore, for example, the following inconvenience can be suppressed. That is, when the cooling water in the internal combustion engine reaches the predetermined temperature, the circulation of the cooling water is started. At that time, the temperature of the cooling water flowing into the internal combustion engine is relatively high and the inflow amount is small. In some cases, less heat is transferred from the internal combustion engine to the cooling water. For this reason, the temperature increase rate of the internal combustion engine does not greatly change before the start of the circulation of the cooling water, and in some cases, there is a concern that the temperature of the internal combustion engine may overshoot the optimum temperature. The According to this configuration, since it is possible to suppress that the discharge amount of the pump when starting the circulation of the cooling water is unnecessarily reduced, it is possible to suppress the occurrence of such an overshoot. Become.
 本発明は、前記機関冷却系は、冷却水を冷却するラジエータと、前記ラジエータへの冷却水の循環及び循環停止を冷却水の温度に応じて切り替える切り替え部とを備えており、
 前記所定温度は、前記切り替え部によって前記ラジエータへの冷却水の循環が開始される冷却水の温度よりも低い温度に設定される、といった態様にてこれを具体化することができる。
The present invention, the engine cooling system includes a radiator that cools the cooling water, and a switching unit that switches between circulation and suspension of the cooling water to the radiator according to the temperature of the cooling water,
The predetermined temperature may be embodied in such a manner that the switching unit is set to a temperature lower than the temperature of the cooling water at which the circulation of the cooling water to the radiator is started by the switching unit.
 同構成によれば、冷却水の循環が開始されてから、ラジエータへの冷却水の循環が開始されるまでの間では、冷却水がラジエータで冷却されることなく内燃機関に流入する。従って、冷却水の循環開始時において低温の冷却水が内燃機関に流入することをより好適に抑えることができる。 According to this configuration, the cooling water flows into the internal combustion engine without being cooled by the radiator between the start of the circulation of the cooling water and the start of the circulation of the cooling water to the radiator. Therefore, it is possible to more suitably suppress the low-temperature cooling water from flowing into the internal combustion engine when starting the circulation of the cooling water.
 本発明は、前記制御部は、前記第1温度が前記所定温度に達した後、同第1温度が前記所定温度よりも高い第2の所定温度に達するまでは、前記ポンプの駆動態様を冷却水が間欠的に吐出される間欠運転としてその吐出量が制限された低流量モードにて前記ポンプを駆動し、前記第1温度が前記第2の所定温度以上となったときには前記ポンプの駆動態様を冷却水が連続的に吐出される連続運転に変更する、といった態様にてこれを具体化することができる。 In the present invention, the control unit cools the driving mode of the pump after the first temperature reaches the predetermined temperature until the first temperature reaches a second predetermined temperature higher than the predetermined temperature. As the intermittent operation in which water is intermittently discharged, the pump is driven in a low flow rate mode in which the discharge amount is limited, and when the first temperature becomes equal to or higher than the second predetermined temperature, the driving mode of the pump This can be embodied in such a manner that the operation is changed to a continuous operation in which the cooling water is continuously discharged.
 同構成によれば、冷却水の循環を停止している状態から冷却水の温度が上昇して所定温度に達すると、ポンプの運転が開始される。この場合、まずポンプは、その駆動態様が間欠運転とされるとともに吐出量が低流量に制限された低流量モードにて駆動される。このようにポンプの吐出量が低流量に制限された状態で冷却水の循環が行われるため、低温状態の冷却水が高温状態の内燃機関に流入することで生じるおそれのある熱衝撃を適切に緩和することができる。また、冷却水が循環されることにより、内燃機関の高温部近傍等における局所的な冷却水の沸騰を抑制することもできる。しかもこの低流量モードにおいては、ポンプが間欠運転されるため、所定期間におけるポンプの平均吐出量を極低流量に設定することができる。従って、局所的な冷却水の沸騰を抑制しつつ、低温状態の冷却水が高温状態の内燃機関に流入する際の熱衝撃を緩和する上で好適な量の冷却水を流通させることができる。 According to the same configuration, when the temperature of the cooling water rises from a state where the circulation of the cooling water is stopped and reaches a predetermined temperature, the operation of the pump is started. In this case, the pump is first driven in a low flow rate mode in which the drive mode is intermittent operation and the discharge amount is limited to a low flow rate. In this way, the cooling water is circulated in a state where the pump discharge amount is limited to a low flow rate, so that the thermal shock that may be caused by the low-temperature cooling water flowing into the high-temperature internal combustion engine is appropriately prevented. Can be relaxed. Further, by circulating the cooling water, local boiling of the cooling water in the vicinity of the high temperature portion of the internal combustion engine can be suppressed. In addition, in this low flow rate mode, the pump is intermittently operated, so that the average discharge amount of the pump in a predetermined period can be set to an extremely low flow rate. Accordingly, it is possible to circulate a suitable amount of cooling water in order to reduce the thermal shock when the cooling water in the low temperature state flows into the internal combustion engine in the high temperature state while suppressing local boiling of the cooling water.
 そして、冷却水の温度が更に上昇すると、ポンプの駆動態様が連続運転に変更され、先の低流量モードよりもポンプの吐出量が増大される。その結果、冷却水の循環量を十分に確保することができ、完全暖機後も含めそのときどきの機関温度状態に即したかたちで機関冷却系を冷却することができるようになる。 Then, when the temperature of the cooling water further rises, the driving mode of the pump is changed to continuous operation, and the pump discharge amount is increased as compared with the previous low flow rate mode. As a result, a sufficient circulation amount of the cooling water can be secured, and the engine cooling system can be cooled in accordance with the engine temperature state at that time even after complete warm-up.
 また、本発明のポンプとしては、電動式のポンプを採用したり、クラッチを介して機関出力軸に連結されて同機関出力軸により駆動される機械駆動式のポンプを採用したりすることができる。なお、機械駆動式のポンプにおいては、クラッチが係合状態のときには、機関駆動軸の回転に基づいてポンプの吐出量が決定される。一方、クラッチが解放状態のときには、機関駆動軸の回転状態にかかわらず、ポンプによる冷却水の吐出は停止される。また、クラッチの係合を断続的に行うことにより、ポンプの駆動態様を間欠運転にすることができる。 Further, as the pump of the present invention, an electric pump can be employed, or a mechanical drive pump coupled to the engine output shaft via a clutch and driven by the engine output shaft can be employed. . In a mechanically driven pump, when the clutch is engaged, the pump discharge amount is determined based on the rotation of the engine drive shaft. On the other hand, when the clutch is in the disengaged state, discharge of the cooling water by the pump is stopped regardless of the rotational state of the engine drive shaft. Further, by intermittently engaging the clutch, the drive mode of the pump can be intermittently operated.
本発明にかかる第1実施形態の内燃機関及びその冷却装置を示す概略構成図。1 is a schematic configuration diagram showing an internal combustion engine and a cooling device thereof according to a first embodiment of the present invention. 同実施形態における電動ポンプの駆動処理手順を示すフローチャート。The flowchart which shows the drive processing procedure of the electric pump in the embodiment. 同実施形態における電動ポンプの吐出量設定処理手順を示すフローチャート。The flowchart which shows the discharge amount setting process sequence of the electric pump in the embodiment. 吸気温度と電動ポンプの吐出量との関係を示すグラフ。The graph which shows the relationship between intake temperature and the discharge amount of an electric pump. 同実施形態における電動ポンプの駆動態様についてその一例を示すタイミングチャート。The timing chart which shows the example about the drive mode of the electric pump in the embodiment. 第2実施形態における電動ポンプの吐出量設定処理手順を示すフローチャート。The flowchart which shows the discharge amount setting process sequence of the electric pump in 2nd Embodiment. 始動時の冷却水温度と電動ポンプの吐出量補正値との関係を示すグラフ。The graph which shows the relationship between the cooling water temperature at the time of a start, and the discharge amount correction value of an electric pump. 第1の実施形態の変形例における電動ポンプの吐出量と吸気温度との関係を示すグラフ。The graph which shows the relationship between the discharge amount of the electric pump and intake air temperature in the modification of 1st Embodiment. 第2実施形態の変形例における電動ポンプの吐出量補正値と、停止時冷却水温度と、機関停止時間との関係を示すグラフ。The graph which shows the relationship between the discharge amount correction value of the electric pump in the modification of 2nd Embodiment, the cooling water temperature at the time of a stop, and an engine stop time. 第1実施形態のウォータポンプの変形例を示す概略構成図。The schematic block diagram which shows the modification of the water pump of 1st Embodiment.
 (第1実施形態)
 以下、図1~図5を参照して、本発明にかかる冷却装置を具体化した第1実施形態を説明する。
(First embodiment)
A first embodiment of a cooling device according to the present invention will be described below with reference to FIGS.
 図1に示すように、車両に搭載される内燃機関10の冷却装置は、大きくは、シリンダブロック11及びシリンダヘッド12の内部において機関燃焼室10aの周囲に形成されたウォータジャケット13と、このウォータジャケット13に冷却水を吐出する電動ポンプ23と、このウォータジャケット13内の冷却水を電動ポンプ23に戻して循環させるためのメイン通路24及びサブ通路27とによって構成されている。 As shown in FIG. 1, a cooling device for an internal combustion engine 10 mounted on a vehicle generally includes a water jacket 13 formed around an engine combustion chamber 10a inside a cylinder block 11 and a cylinder head 12, and the water jacket 13. An electric pump 23 for discharging cooling water to the jacket 13 and a main passage 24 and a sub passage 27 for circulating the cooling water in the water jacket 13 back to the electric pump 23 are constituted.
 メイン通路24は、ウォータジャケット13と電動ポンプ23とをラジエータ21及びサーモスタット22を介して接続している。このラジエータ21は、冷却水と外気との間で熱交換を行うことにより冷却水の熱を外部に放出するものである。 The main passage 24 connects the water jacket 13 and the electric pump 23 via the radiator 21 and the thermostat 22. The radiator 21 releases heat of the cooling water to the outside by performing heat exchange between the cooling water and the outside air.
 サーモスタット22は、内部に設けられた弁体の位置が冷却水の温度に応じて変化する感温式のものであり、ラジエータ21への冷却水の循環及び循環停止が弁体の位置に応じて切り替えられる切り替え部として機能する。サーモスタット22の弁体は、冷却水の温度が開弁開始温度未満のときには閉弁状態に保持される。そして、冷却水の温度が開弁開始温度に達すると弁体は徐々に開弁されていき、冷却水の温度が完全開弁温度に達すると弁体は最大開度にて開弁状態に保持される。 The thermostat 22 is a temperature-sensitive type in which the position of the valve body provided therein changes according to the temperature of the cooling water, and the circulation and stoppage of the cooling water to the radiator 21 depend on the position of the valve body. It functions as a switching unit that can be switched. The valve body of the thermostat 22 is kept closed when the temperature of the cooling water is lower than the valve opening start temperature. When the temperature of the cooling water reaches the valve opening start temperature, the valve body is gradually opened, and when the temperature of the cooling water reaches the full valve opening temperature, the valve body is kept open at the maximum opening. Is done.
 一方、サブ通路27は、ウォータジャケット13と電動ポンプ23とを熱機器系14及びサーモスタット22を介して接続している。この熱機器系14は、ヒータコア、スロットルボディの加熱通路、EGRクーラといった冷却水の熱を利用する種々の機器を含んでいる。サブ通路27は、サーモスタット22の開閉状態にかかわらず常に電動ポンプ23と連通状態になっている。したがって、サーモスタット22が閉弁状態にあるときには、電動ポンプ23からウォータジャケット13に吐出された冷却水は熱機器系14を含めたサブ通路27を流れて電動ポンプ23に戻され、再びウォータジャケット13に吐出される。一方、メイン通路24を通じてラジエータ21に冷却水が流入することはない。 On the other hand, the sub passage 27 connects the water jacket 13 and the electric pump 23 via the thermal device system 14 and the thermostat 22. The thermal device system 14 includes various devices that use heat of cooling water such as a heater core, a heating passage of a throttle body, and an EGR cooler. The sub passage 27 is always in communication with the electric pump 23 regardless of whether the thermostat 22 is open or closed. Therefore, when the thermostat 22 is in the closed state, the cooling water discharged from the electric pump 23 to the water jacket 13 flows through the sub passage 27 including the thermal equipment system 14 and is returned to the electric pump 23, and again the water jacket 13. Discharged. On the other hand, the cooling water does not flow into the radiator 21 through the main passage 24.
 これに対して、サーモスタット22が開弁状態にあるときには、電動ポンプ23からウォータジャケット13に吐出された冷却水は、先と同様に、サブ通路27から電動ポンプ23に戻された後、再びウォータジャケット13に吐出される。これに加え、冷却水は、ウォータジャケット13からラジエータ21を含めたメイン通路24を流れて電動ポンプ23に戻され、再びウォータジャケット13に吐出される。 On the other hand, when the thermostat 22 is in the valve open state, the cooling water discharged from the electric pump 23 to the water jacket 13 is returned to the electric pump 23 from the sub-passage 27 and then again watered. It is discharged to the jacket 13. In addition to this, the cooling water flows from the water jacket 13 through the main passage 24 including the radiator 21, is returned to the electric pump 23, and is discharged to the water jacket 13 again.
 電動ポンプ23は、モータの出力軸に連結された羽根車が回転することにより冷却水を吸引及び吐出する。電動ポンプ23の冷却水の吐出量は、出力軸の回転速度(以下、ポンプ回転速度という)が大きくなるにつれて増量される。ポンプ回転速度は、モータの通電時間と通電停止時間との比(以下、デューティ比DTという)に応じて変化し、デューティ比DTが大きくなるにつれて増加される。 The electric pump 23 sucks and discharges the cooling water when the impeller connected to the output shaft of the motor rotates. The amount of cooling water discharged from the electric pump 23 increases as the rotational speed of the output shaft (hereinafter referred to as pump rotational speed) increases. The pump rotation speed changes according to the ratio between the energization time and the energization stop time of the motor (hereinafter referred to as duty ratio DT), and increases as the duty ratio DT increases.
 電動ポンプ23のモータは制御装置91に接続されており、制御装置91を通じてモータの駆動態様が制御される。例えば、制御装置91は、電動ポンプ23の駆動態様として、冷却水を連続的に吐出する連続運転と、冷却水を間欠的に吐出する間欠運転とを選択する。 The motor of the electric pump 23 is connected to the control device 91, and the driving mode of the motor is controlled through the control device 91. For example, the control device 91 selects a continuous operation for continuously discharging cooling water and an intermittent operation for intermittently discharging cooling water as the driving mode of the electric pump 23.
 連続運転が選択された場合には、電動ポンプ23の吐出量を変更することにより冷却水の循環量が調節される。一方、間欠運転が選択された場合には、冷却水を吐出する期間である駆動期間と冷却水の吐出を停止する期間である停止期間との比を変更することで冷却水の循環量が調節される。 When the continuous operation is selected, the circulation amount of the cooling water is adjusted by changing the discharge amount of the electric pump 23. On the other hand, when intermittent operation is selected, the circulation amount of the cooling water is adjusted by changing the ratio of the driving period that is the period for discharging the cooling water and the stopping period that is the period for stopping the cooling water discharge. Is done.
 本実施形態では、メイン通路24、サブ通路27、ウォータジャケット13、電動ポンプ23、サーモスタット22、ラジエータ21、及び熱機器系14によって機関冷却系が構成されている。 In this embodiment, the main passage 24, the sub passage 27, the water jacket 13, the electric pump 23, the thermostat 22, the radiator 21, and the thermal equipment system 14 constitute an engine cooling system.
 制御装置91には、ウォータジャケット13の出口近傍に設けられて内燃機関10内の冷却水の温度(以下、第1冷却水温度という)THW1を検出する水温センサ92や、内燃機関10の吸気通路に設けられて吸入空気の温度(以下、吸気温度という)THAを検出する吸気温センサ93が接続されている。制御装置91には、機関回転速度を検出する回転速度センサ94など、その他の各種センサも接続されている。制御装置91は、これら各センサの検出値に基づいて電動ポンプ23の駆動態様を制御する。なお、吸気温度THAは外気温度とある程度の相関を有して変化するため、外気温度の代替値として用いられる。また、水温センサ92は、内燃機関10内の冷却水の温度である第1温度を検出する上記温度検出部を構成している。 The control device 91 includes a water temperature sensor 92 that is provided in the vicinity of the outlet of the water jacket 13 and detects the temperature of the cooling water in the internal combustion engine 10 (hereinafter referred to as the first cooling water temperature) THW1, and the intake passage of the internal combustion engine 10. Is connected to an intake air temperature sensor 93 for detecting intake air temperature (hereinafter referred to as intake air temperature) THA. Various other sensors such as a rotation speed sensor 94 that detects the engine rotation speed are also connected to the control device 91. The control device 91 controls the driving mode of the electric pump 23 based on the detection values of these sensors. The intake air temperature THA changes with a certain degree of correlation with the outside air temperature, and is therefore used as a substitute value for the outside air temperature. Further, the water temperature sensor 92 constitutes the temperature detection unit that detects the first temperature that is the temperature of the cooling water in the internal combustion engine 10.
 次に、制御装置91による電動ポンプ23の駆動制御について説明する。
 制御装置91は、冷間始動時など内燃機関10の温度が低いときには、電動ポンプ23の駆動を停止して冷却水の循環を停止させることにより、内燃機関10の暖機を促進するとともに、機関燃焼室10aの壁面温度を高温に維持して熱損失の低減、ひいては燃費の向上を図るようにしている。そして、制御装置91は、第1冷却水温度THW1が所定の基準温度にまで上昇して内燃機関10の暖機がある程度進行した後は、冷却水による内燃機関10の冷却を行うために電動ポンプ23を駆動して冷却水の循環を開始する。
Next, drive control of the electric pump 23 by the control device 91 will be described.
When the temperature of the internal combustion engine 10 is low, such as during a cold start, the control device 91 promotes warming up of the internal combustion engine 10 by stopping the driving of the electric pump 23 and stopping the circulation of the cooling water. The wall surface temperature of the combustion chamber 10a is maintained at a high temperature to reduce heat loss and thus improve fuel efficiency. Then, after the first cooling water temperature THW1 rises to a predetermined reference temperature and the warm-up of the internal combustion engine 10 has progressed to some extent, the control device 91 performs an electric pump to cool the internal combustion engine 10 with the cooling water. 23 is driven to start circulating the cooling water.
 ところで、このように冷却水の循環が開始されると、機関冷却系内において内燃機関10の外部に存在していた冷却水、すなわちサブ通路27内で停滞していた冷却水が内燃機関に流入するようになる。 By the way, when the circulation of the cooling water is started in this way, the cooling water existing outside the internal combustion engine 10 in the engine cooling system, that is, the cooling water stagnating in the sub passage 27 flows into the internal combustion engine. To come.
 このサブ通路27内で停滞していた冷却水はそれまで機関熱を受熱していないために、内燃機関10内の冷却水の温度よりもかなり低くなっている。従って、そのような低温の冷却水が内燃機関10内に流入すると、内燃機関10の温度が急速に低下してしまい、内燃機関10に熱衝撃が加わるようになる。このように内燃機関10に熱衝撃が加わると、熱応力によって内燃機関の耐久性が低下したり、シリンダヘッド12及びシリンダブロック11の熱収縮量の違いに起因して冷却水あるいは潤滑油のシール性能が低下したりするおそれがある。 The cooling water stagnating in the sub-passage 27 has not received the engine heat until then, and therefore is considerably lower than the temperature of the cooling water in the internal combustion engine 10. Therefore, when such low-temperature cooling water flows into the internal combustion engine 10, the temperature of the internal combustion engine 10 rapidly decreases and a thermal shock is applied to the internal combustion engine 10. When a thermal shock is applied to the internal combustion engine 10 in this way, the durability of the internal combustion engine is reduced due to thermal stress, or the cooling water or lubricating oil seal is caused by the difference in the amount of thermal contraction between the cylinder head 12 and the cylinder block 11. There is a risk of performance degradation.
 なお、シリンダヘッド12には、高温の排気が流れる排気ポートが形成されている。そして、一般にシリンダヘッド12の体積はシリンダブロックよりも小さくなっている。従って、シリンダヘッド12の温度はシリンダブロック11よりも高い傾向にあり、上述したような熱衝撃は、シリンダブロック11よりもシリンダヘッド12に対して強く作用する傾向がある。 The cylinder head 12 is formed with an exhaust port through which high-temperature exhaust flows. In general, the volume of the cylinder head 12 is smaller than that of the cylinder block. Therefore, the temperature of the cylinder head 12 tends to be higher than that of the cylinder block 11, and the thermal shock as described above tends to act on the cylinder head 12 more strongly than the cylinder block 11.
 そこで、上記熱衝撃を抑制するために、制御装置91は、図2に示すポンプ駆動処理を実行する。なお、図2に示す一連の処理は、制御装置91によって機関始動時から所定の演算周期毎に繰り返し実行される。 Therefore, in order to suppress the thermal shock, the control device 91 executes a pump driving process shown in FIG. The series of processing shown in FIG. 2 is repeatedly executed by the control device 91 every predetermined calculation cycle from the time of engine start.
 本処理が開始されるとまず、制御装置91は、第1冷却水温度THW1が第1基準温度TX1以上であるか否かを判定する(S10)。この第1基準温度TX1は、内燃機関10が低温状態にあるか否か、より詳細には機関燃焼室10aの近傍等における局所的な冷却水の沸騰が生じるおそれがあるか否かを第1冷却水温度THW1との比較によって判断するための値として、試験等を通じて予め設定されている。また、第1基準温度TX1は、サーモスタット22の開弁開始温度よりも低い温度が設定されている。 When this process is started, first, the control device 91 determines whether or not the first cooling water temperature THW1 is equal to or higher than the first reference temperature TX1 (S10). The first reference temperature TX1 is a first value indicating whether the internal combustion engine 10 is in a low temperature state, more specifically, whether there is a possibility of local boiling of cooling water in the vicinity of the engine combustion chamber 10a. As a value for determination by comparison with the cooling water temperature THW1, it is set in advance through a test or the like. The first reference temperature TX1 is set to a temperature lower than the valve opening start temperature of the thermostat 22.
 そして、第1冷却水温度THW1が第1基準温度TX1未満である場合には(S10:NO)、内燃機関10が低温状態にあるため、制御装置91は電動ポンプ23の駆動を停止する(S50)。その結果、冷却水の循環が停止されて内燃機関10の暖機が促進される。 When the first coolant temperature THW1 is lower than the first reference temperature TX1 (S10: NO), the control device 91 stops driving the electric pump 23 because the internal combustion engine 10 is in a low temperature state (S50). ). As a result, the circulation of the cooling water is stopped and the warm-up of the internal combustion engine 10 is promoted.
 一方、第1冷却水温度THW1が第1基準温度TX1以上である場合には(S10:YES)、制御装置91は、第1冷却水温度THW1が第2基準温度TX2以上であるか否かを判定する(S20)。この第2基準温度TX2は、内燃機関10の暖機が完了したか否かを第1冷却水温度THW1との比較によって判断するための値であり、試験等を通じて予め設定されている。なお、第2基準温度TX2は、第1基準温度TX1よりも高い温度に設定されている。また、第2基準温度TX2は、サーモスタット22の完全開弁温度よりも低い温度が設定されている。 On the other hand, when the first coolant temperature THW1 is equal to or higher than the first reference temperature TX1 (S10: YES), the control device 91 determines whether or not the first coolant temperature THW1 is equal to or higher than the second reference temperature TX2. Determine (S20). The second reference temperature TX2 is a value for determining whether or not the warm-up of the internal combustion engine 10 is completed by comparing with the first coolant temperature THW1, and is set in advance through a test or the like. The second reference temperature TX2 is set to a temperature higher than the first reference temperature TX1. The second reference temperature TX2 is set to a temperature lower than the complete valve opening temperature of the thermostat 22.
 そして、第1冷却水温度THW1が第2基準温度TX2以上である場合には(S20:YES)、内燃機関10の暖機が完了しているために、制御装置91は電動ポンプ23を通常モードで駆動する(S30)。この通常モードでは、制御装置91は、第1冷却水温度THW1、機関負荷、機関回転速度といった機関運転状態を示すパラメータに基づき、電動ポンプ23の吐出量QNを設定し、その設定された吐出量QNが得られるように電動ポンプ23を連続運転する。 When the first cooling water temperature THW1 is equal to or higher than the second reference temperature TX2 (S20: YES), since the warm-up of the internal combustion engine 10 is completed, the control device 91 sets the electric pump 23 in the normal mode. (S30). In this normal mode, the control device 91 sets the discharge amount QN of the electric pump 23 based on parameters indicating the engine operation state such as the first coolant temperature THW1, the engine load, and the engine rotation speed, and the set discharge amount. The electric pump 23 is continuously operated so as to obtain QN.
 一方、第1冷却水温度THW1が第2基準温度TX2未満である場合には(S20:NO)、内燃機関10の暖機が完了していないと判断されて、制御装置91は電動ポンプ23を低流量モードで駆動する(S40)。この低流量モードでは、図3に示す吐出量設定処理を制御装置91は実行し、その設定された吐出量となるように電動ポンプ23の駆動を制御する。 On the other hand, when the first cooling water temperature THW1 is lower than the second reference temperature TX2 (S20: NO), it is determined that the warm-up of the internal combustion engine 10 has not been completed, and the control device 91 turns the electric pump 23 off. Drive in the low flow rate mode (S40). In this low flow rate mode, the control device 91 executes the discharge amount setting process shown in FIG. 3, and controls the drive of the electric pump 23 so as to achieve the set discharge amount.
 このようにステップS30、S40、S50において電動ポンプ23の駆動態様を設定した後、制御装置91は本処理を一旦終了する。
 上記ポンプ駆動処理及び吐出量設定処理を行う制御装置91は、上記制御部を構成する。
Thus, after setting the drive mode of the electric pump 23 in steps S30, S40, and S50, the control device 91 once ends this process.
The control device 91 that performs the pump driving process and the discharge amount setting process constitutes the control unit.
 次に、図3を参照して上記吐出量設定処理を説明する。この吐出量設定処理は、低流量モードが実行されるときに制御装置91によって実行される。
 本処理が開始されるとまず、制御装置91は、吸気温度THAを読み込む(S100)。そして、制御装置91は、吸気温度THAに基づいて電動ポンプ23の吐出量QLを算出して(S110)、本処理は終了される。このステップS110では、図4に示すように、吸気温度THAが低いときほど吐出量QLは少なくなるように算出する。このような態様で吐出量QLを設定する理由は以下による。
Next, the discharge amount setting process will be described with reference to FIG. This discharge amount setting process is executed by the control device 91 when the low flow rate mode is executed.
When this process is started, the control device 91 first reads the intake air temperature THA (S100). Then, the control device 91 calculates the discharge amount QL of the electric pump 23 based on the intake air temperature THA (S110), and this process is terminated. In step S110, as shown in FIG. 4, the discharge amount QL is calculated to be smaller as the intake air temperature THA is lower. The reason for setting the discharge amount QL in this manner is as follows.
 まず、機関冷却系内において内燃機関10の外部に存在する冷却水の温度であって、冷却水が循環停止されているときの温度を第2温度THW2と定義する。つまり冷却水の循環停止中にサブ通路27内で停滞している冷却水の温度を第2温度THW2とする。この第2温度THW2は、冷間状態から内燃機関10が始動された場合などでは、外気温度や吸気温度とほぼ同一の温度になっている。従って、吸気温度THAに基づいて第2温度THW2を推定することが可能である。 First, the temperature of the cooling water existing outside the internal combustion engine 10 in the engine cooling system and the temperature when the cooling water is circulated and stopped is defined as a second temperature THW2. That is, the temperature of the cooling water stagnating in the sub passage 27 while the cooling water circulation is stopped is set to the second temperature THW2. The second temperature THW2 is substantially the same as the outside air temperature or the intake air temperature when the internal combustion engine 10 is started from a cold state. Therefore, it is possible to estimate the second temperature THW2 based on the intake air temperature THA.
 そしてステップS110では、吸気温度THAが低いときほど、すなわち第2温度THW2が低いときほど吐出量QLが少なくされる。従って、冷却水の循環が開始されることにより内燃機関10に流入してくる冷却水の温度が低いときほど、その冷却水が内燃機関10に流入する量は少なくされる。従って、冷却水の循環開始による内燃機関10の急激な温度低下が適切に抑制されて、内燃機関10への熱衝撃が抑えられる。 In step S110, the discharge amount QL is decreased as the intake air temperature THA is lower, that is, as the second temperature THW2 is lower. Therefore, the amount of cooling water flowing into the internal combustion engine 10 is reduced as the temperature of the cooling water flowing into the internal combustion engine 10 is lower due to the start of the circulation of the cooling water. Therefore, the rapid temperature drop of the internal combustion engine 10 due to the start of the cooling water circulation is appropriately suppressed, and the thermal shock to the internal combustion engine 10 is suppressed.
 ステップS110にて吐出量QLが設定されると、制御装置91は、先のステップS40において、冷却水の循環停止が解除される直前の吸気温度THAに基づき設定された吐出量QLに基づいて電動ポンプ23を低流量モードで駆動する。この低流量モードでは、吐出量QLが得られるように、冷却水を吐出する期間である駆動期間と冷却水の吐出を停止する期間である停止期間との比が調整される。 When the discharge amount QL is set in step S110, the control device 91 is electrically driven based on the discharge amount QL set based on the intake air temperature THA just before the cooling water circulation stop is canceled in the previous step S40. The pump 23 is driven in the low flow rate mode. In this low flow rate mode, the ratio of the drive period, which is a period for discharging cooling water, and the stop period, which is a period for stopping discharge of cooling water, is adjusted so that the discharge amount QL is obtained.
 なお、本実施形態では、低流量モードで電動ポンプ23が駆動されるときの吐出量は上記吐出量QLに固定される。この他、内燃機関10内において最も温度が高くなる部位の冷却水の温度(例えばシリンダヘッド12の燃焼室近傍における冷却水の温度など)を推定することができる場合には、次のようにして吐出量を設定することもできる。すなわち局所的な冷却水の沸騰の発生を抑制しつつ、上述したような熱衝撃の発生及び熱損失の増大を回避する上で好適な量の冷却水が循環されるように、その推定された温度に基づいて上記吐出量QLを補正するようにしてもよい。 In this embodiment, the discharge amount when the electric pump 23 is driven in the low flow rate mode is fixed to the discharge amount QL. In addition, when the temperature of the cooling water at the highest temperature in the internal combustion engine 10 (for example, the temperature of the cooling water in the vicinity of the combustion chamber of the cylinder head 12) can be estimated, the following is performed. The discharge amount can also be set. That is, it was estimated that a suitable amount of cooling water was circulated in order to avoid the occurrence of thermal shock and increase in heat loss as described above while suppressing the occurrence of local cooling water boiling. The discharge amount QL may be corrected based on the temperature.
 次に、図5を参照して、上記低流量モードの作用を説明する。
 冷間状態にあった内燃機関10が始動されると(時刻t0)、第1冷却水温度THW1が第1基準温度TX1に達するまで(時刻t1)、電動ポンプ23の駆動は停止されることにより、冷却水の循環は停止される。そのため、内燃機関10内の冷却水の温度は徐々に上昇していき、このときの上昇速度は、冷却水を始動直後から循環させる場合と比較して速くなる。
Next, the operation of the low flow rate mode will be described with reference to FIG.
When the internal combustion engine 10 in the cold state is started (time t0), the drive of the electric pump 23 is stopped until the first coolant temperature THW1 reaches the first reference temperature TX1 (time t1). The cooling water circulation is stopped. Therefore, the temperature of the cooling water in the internal combustion engine 10 gradually rises, and the rising speed at this time becomes faster than the case where the cooling water is circulated immediately after starting.
 そして、第1冷却水温度THW1が第1基準温度TX1に達すると(時刻t1)、そのときの吸気温度THAに基づいて電動ポンプ23の吐出量QLが設定されて低流量モードによる冷却水の循環が開始される。 When the first coolant temperature THW1 reaches the first reference temperature TX1 (time t1), the discharge amount QL of the electric pump 23 is set based on the intake air temperature THA at that time, and the coolant is circulated in the low flow rate mode. Is started.
 ここで、第1冷却水温度THW1が上記第2基準温度TX2に達するまでは電動ポンプ23の駆動を停止する。そして、第1冷却水温度THW1が第2基準温度TX2に達した時点で(時刻t2)、すなわち内燃機関10の暖機が完了した時点で、低流量モードを実行することなく電動ポンプ23の連続運転を開始する場合には、図5に一点鎖線で示すように、第1冷却水温度THW1が急激に低下する。このように第1冷却水温度THW1が急激に低下する場合には、内燃機関10内の冷却水の温度も急激に低下しているため、内燃機関10には上述したような熱衝撃が作用する。 Here, the driving of the electric pump 23 is stopped until the first cooling water temperature THW1 reaches the second reference temperature TX2. Then, when the first coolant temperature THW1 reaches the second reference temperature TX2 (time t2), that is, when the warm-up of the internal combustion engine 10 is completed, the electric pump 23 continues without executing the low flow rate mode. When the operation is started, the first coolant temperature THW1 rapidly decreases as shown by a one-dot chain line in FIG. As described above, when the first cooling water temperature THW1 is rapidly decreased, the temperature of the cooling water in the internal combustion engine 10 is also rapidly decreased. Therefore, the thermal shock as described above acts on the internal combustion engine 10. .
 この点、本実施形態では、上述したように時刻t1において、内燃機関10に流入する冷却水の温度を考慮した低流量モードにて電動ポンプ23の駆動が開始される。従って、冷却水の温度の上昇速度は低下するものの、第1冷却水温度THW1の急激な低下が抑制されて上記熱衝撃も抑制される。 In this respect, in the present embodiment, the driving of the electric pump 23 is started in the low flow rate mode in consideration of the temperature of the cooling water flowing into the internal combustion engine 10 at the time t1 as described above. Therefore, although the rate of increase in the temperature of the cooling water is decreased, the rapid decrease in the first cooling water temperature THW1 is suppressed and the thermal shock is also suppressed.
 この低流量モードによる電動ポンプ23の駆動が開始されると、冷却水の循環が開始されることにより、サブ通路27内で停滞していた冷却水は内燃機関10に流入するようになり、サブ通路27内の冷却水の温度は徐々に高くなっていく。また、第1冷却水温度THW1は、冷却水の循環開始前に比べて温度の上昇速度が低くなるものの、徐々にその温度は高くなっていく。 When the driving of the electric pump 23 in the low flow rate mode is started, the circulation of the cooling water is started, so that the cooling water stagnated in the sub passage 27 flows into the internal combustion engine 10, The temperature of the cooling water in the passage 27 gradually increases. In addition, the first cooling water temperature THW1 gradually increases in temperature although the rate of temperature increase is lower than before the start of circulation of the cooling water.
 そして、サブ通路27内の冷却水の温度が上記開弁開始開度に達すると(時刻t3)、サーモスタット22は開弁し始める。そして、サブ通路27内の冷却水の温度が上記完全開弁温度に達すると(時刻t4)、サーモスタット22は全開状態になる。 Then, when the temperature of the cooling water in the sub passage 27 reaches the valve opening start opening (time t3), the thermostat 22 starts to open. Then, when the temperature of the cooling water in the sub passage 27 reaches the full valve opening temperature (time t4), the thermostat 22 is fully opened.
 このようにサーモスタット22が全開状態になった後、第1冷却水温度THW1が上記第2基準温度TX2に達すると、通常モードによる電動ポンプ23の連続運転が開始されて吐出量QNとなるように電動ポンプ23の駆動が制御される(時刻t5)。 After the thermostat 22 is fully opened in this way, when the first cooling water temperature THW1 reaches the second reference temperature TX2, the continuous operation of the electric pump 23 in the normal mode is started to become the discharge amount QN. The drive of the electric pump 23 is controlled (time t5).
 以上説明したように、本実施形態によれば、次の作用効果を得ることができる。
(1)冷却水の循環停止が解除されたときの電動ポンプ23の吐出量を、機関冷却系内において内燃機関10の外部に存在する冷却水の温度であって循環停止中の温度である第2温度THW2に基づいて設定するようにしている。そのため、内燃機関10よりも温度の低い冷却水が内燃機関10に流入するときの量は、循環停止中において内燃機関10の外部に存在していた冷却水の温度に応じて設定される。従って、冷却水の循環停止が解除されたときに生じるおそれのある内燃機関10への熱衝撃を抑えることができるようになる。
(2)第2温度THW2が低いときほど、電動ポンプ23の吐出量QLが少なくなるように同吐出量QLを可変設定するようにしている。従って、冷却水の循環開始に伴って内燃機関10に流入する冷却水の温度が低いときほど、その冷却水が内燃機関10に流入する量を少なくすることができる。そのため、内燃機関10への熱衝撃を適切に抑えることができるようになる。
(3)機関冷却系内において内燃機関10の外部に存在する冷却水の温度であって循環停止されているときの上記第2温度THW2はセンサなどで直接検出することも可能である。一方、冷間状態から内燃機関10が始動された場合などでは、上記第2温度THW2は外気温度や吸気温度THAとほぼ同一の温度になっている。そこで、吸気温度THAに基づいて吐出量QLを設定するようにしており、これにより第2温度THW2を検出するセンサを設けることなく、同第2温度THW2に応じた吐出量QLの設定を行うことができるようになる。
(4)低流量モードを開始する第1基準温度TX1を、サーモスタット22の開弁開始温度よりも低く設定するようにしている。そのため、冷却水の循環が開始されてから、ラジエータ21への冷却水の循環が開始されるまでの間では、冷却水がラジエータ21で冷却されることなく内燃機関10に流入する。従って、冷却水の循環開始時において低温の冷却水が内燃機関10に流入することをより好適に抑えることができる。
(5)第1冷却水温度THW1が第1基準温度TX1に達した後、第1冷却水温度THW1が第1基準温度TX1よりも高い第2基準温度TX2に達するまでは、電動ポンプ23の駆動態様を冷却水が間欠的に吐出される間欠運転としてその吐出量が制限された低流量モードで駆動するようにしている。また、第1冷却水温度THW1が第2基準温度TX2以上となったときには電動ポンプ23の駆動態様を冷却水が連続的に吐出される連続運転に変更するようにしている。
As described above, according to the present embodiment, the following operational effects can be obtained.
(1) The discharge amount of the electric pump 23 when the cooling water circulation stop is released is the temperature of the cooling water existing outside the internal combustion engine 10 in the engine cooling system and the temperature during the circulation stop. Two temperatures are set based on THW2. Therefore, the amount of cooling water having a temperature lower than that of the internal combustion engine 10 flows into the internal combustion engine 10 is set according to the temperature of the cooling water existing outside the internal combustion engine 10 when the circulation is stopped. Accordingly, it is possible to suppress a thermal shock to the internal combustion engine 10 that may occur when the circulation stop of the cooling water is released.
(2) The discharge amount QL is variably set so that the discharge amount QL of the electric pump 23 decreases as the second temperature THW2 is lower. Therefore, the amount of cooling water flowing into the internal combustion engine 10 can be reduced as the temperature of the cooling water flowing into the internal combustion engine 10 with the start of circulation of the cooling water is lower. Therefore, the thermal shock to the internal combustion engine 10 can be appropriately suppressed.
(3) The temperature of the cooling water existing outside the internal combustion engine 10 in the engine cooling system and the second temperature THW2 when the circulation is stopped can be directly detected by a sensor or the like. On the other hand, when the internal combustion engine 10 is started from a cold state, the second temperature THW2 is substantially the same as the outside air temperature or the intake air temperature THA. Therefore, the discharge amount QL is set on the basis of the intake air temperature THA, so that the discharge amount QL corresponding to the second temperature THW2 can be set without providing a sensor for detecting the second temperature THW2. Will be able to.
(4) The first reference temperature TX1 for starting the low flow rate mode is set lower than the valve opening start temperature of the thermostat 22. Therefore, the cooling water flows into the internal combustion engine 10 without being cooled by the radiator 21 after the cooling water circulation is started until the cooling water circulation to the radiator 21 is started. Therefore, it is possible to more suitably suppress the low-temperature cooling water from flowing into the internal combustion engine 10 at the start of the cooling water circulation.
(5) After the first coolant temperature THW1 reaches the first reference temperature TX1, the electric pump 23 is driven until the first coolant temperature THW1 reaches the second reference temperature TX2 higher than the first reference temperature TX1. The mode is driven in a low flow rate mode in which the discharge amount is limited as an intermittent operation in which cooling water is intermittently discharged. Further, when the first cooling water temperature THW1 becomes equal to or higher than the second reference temperature TX2, the driving mode of the electric pump 23 is changed to the continuous operation in which the cooling water is continuously discharged.
 従って、冷却水の循環を停止している状態から冷却水の温度が上昇して第1基準温度TX1に達すると、電動ポンプ23の運転が開始される。この場合、まず電動ポンプ23は、その駆動態様が間欠運転とされるとともに吐出量が低流量に制限された低流量モードにて駆動される。このように電動ポンプ23の吐出量が低流量に制限された状態で冷却水の循環が行われるため、低温状態の冷却水が高温状態の内燃機関10に流入することで生じるおそれのある熱衝撃を適切に緩和することができる。また、冷却水が循環されることにより、内燃機関10の高温部近傍(例えばシリンダヘッド12の燃焼室近傍など)等における局所的な冷却水の沸騰を抑制することもできる。しかもこの低流量モードにおいては、電動ポンプ23が間欠運転されるため、所定期間における電動ポンプ23の平均吐出量を極低流量に設定することができる。従って、局所的な冷却水の沸騰を抑制しつつ、低温状態の冷却水が高温状態の内燃機関10に流入する際の熱衝撃を緩和する上で好適な量の冷却水を流通させることができる。 Therefore, when the temperature of the cooling water rises from the state where the circulation of the cooling water is stopped and reaches the first reference temperature TX1, the operation of the electric pump 23 is started. In this case, first, the electric pump 23 is driven in a low flow rate mode in which the drive mode is intermittent operation and the discharge amount is limited to a low flow rate. Thus, since the cooling water is circulated in a state where the discharge amount of the electric pump 23 is limited to a low flow rate, the thermal shock that may be generated when the cooling water in the low temperature state flows into the internal combustion engine 10 in the high temperature state. Can be moderated appropriately. Further, by circulating the cooling water, it is possible to suppress local boiling of the cooling water near the high temperature portion of the internal combustion engine 10 (for example, near the combustion chamber of the cylinder head 12). Moreover, since the electric pump 23 is intermittently operated in this low flow rate mode, the average discharge amount of the electric pump 23 in a predetermined period can be set to an extremely low flow rate. Therefore, it is possible to distribute a suitable amount of cooling water in order to mitigate the thermal shock when the cooling water in the low temperature state flows into the internal combustion engine 10 in the high temperature state while suppressing local boiling of the cooling water. .
 そして、冷却水の温度が更に上昇すると、電動ポンプ23の駆動態様が連続運転に変更されて、先の低流量モードよりも電動ポンプ23の吐出量が増大される。その結果、冷却水の循環量を十分に確保することができ、完全暖機後も含めそのときどきの機関温度状態に即したかたちで機関冷却系を冷却することができるようになる。 Then, when the temperature of the cooling water further rises, the driving mode of the electric pump 23 is changed to continuous operation, and the discharge amount of the electric pump 23 is increased as compared with the previous low flow rate mode. As a result, a sufficient circulation amount of the cooling water can be secured, and the engine cooling system can be cooled in accordance with the engine temperature state at that time even after complete warm-up.
 (第2実施形態)
 次に、図6及び図7を参照して、本発明にかかる冷却装置を具体化した第2実施形態を説明する。
(Second Embodiment)
Next, a second embodiment in which the cooling device according to the present invention is embodied will be described with reference to FIGS.
 本実施形態は、第1実施形態の吐出量設定処理を一部変更したものとして構成されている。以下、変更された構成についての詳細を示す。なお、その他の点については第1実施形態と同様の構成が採用されているため、共通する構成については同一の符号を付してその説明を省略する。 This embodiment is configured as a partial modification of the discharge amount setting process of the first embodiment. Details of the changed configuration will be described below. In addition, since the structure similar to 1st Embodiment is employ | adopted about the other point, about the common structure, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
 上述したように、冷間状態から内燃機関10が始動された場合には、上記第2温度THW2は、外気温度や吸気温度THAとほぼ同一の温度になる。
 一方、暖機途中や暖機完了後に内燃機関10が停止されて、その後冷間状態になる前に内燃機関10が再始動された場合には、暖機途中や暖機完了後において冷却水の循環が行われており、上記第2温度THW2が外気温度や吸気温度THAよりも高くなっている可能性がある。このようなときは、第2温度THW2と内燃機関10内の冷却水との温度差が比較的小さくなっているため、吸気温度THAに基づいて設定される吐出量QLよりも多い吐出量を設定しても、上述したような熱衝撃が大きく加わる可能性は低い。
As described above, when the internal combustion engine 10 is started from a cold state, the second temperature THW2 becomes substantially the same as the outside air temperature or the intake air temperature THA.
On the other hand, when the internal combustion engine 10 is stopped during the warm-up or after the completion of the warm-up, and then restarted before the engine is in the cold state, the cooling water is in the middle of the warm-up or after the completion of the warm-up. Circulation is performed, and there is a possibility that the second temperature THW2 is higher than the outside air temperature or the intake air temperature THA. In such a case, since the temperature difference between the second temperature THW2 and the cooling water in the internal combustion engine 10 is relatively small, a discharge amount larger than the discharge amount QL set based on the intake air temperature THA is set. Even so, there is a low possibility that the thermal shock as described above is greatly applied.
 ここで、機関始動時の第1冷却水温度THW1(内燃機関内の冷却水の温度)が高いときほど、上記第2温度THW2は外気温度や吸気温度THAよりも高くなっている可能性がある。そのため、本実施形態では、第2温度THW2に基づいて設定された電動ポンプ23の吐出量QLを、機関始動時の第1冷却水温度THW1が高いときほど多くなるように補正するようにしている。 Here, as the first cooling water temperature THW1 (the temperature of the cooling water in the internal combustion engine) at the time of starting the engine is higher, the second temperature THW2 may be higher than the outside air temperature or the intake air temperature THA. . Therefore, in the present embodiment, the discharge amount QL of the electric pump 23 set based on the second temperature THW2 is corrected so as to increase as the first coolant temperature THW1 at the time of engine start increases. .
 図6に、本実施形態における吐出量設定処理の処理手順を示す。この吐出量設定処理も、第1実施形態と同様に、低流量モードが実行されるときに制御装置91によって実行される。 FIG. 6 shows a processing procedure of the discharge amount setting process in the present embodiment. This discharge amount setting process is also executed by the control device 91 when the low flow rate mode is executed, as in the first embodiment.
 本処理が開始されるとまず、制御装置91は、機関始動直後の第1冷却水温度THW1である始動時冷却水温度THW1s及び現在の吸気温度THAを読み込む(S200)。なお、制御装置91は、機関始動直後に水温センサ92で検出された第1冷却水温度THW1を記憶装置に記憶しており、このステップS200では記憶装置に記憶された第1冷却水温度THW1を始動時冷却水温度THW1sとして読み込む。 When this process is started, first, the control device 91 reads the starting coolant temperature THW1s, which is the first coolant temperature THW1 immediately after the engine is started, and the current intake air temperature THA (S200). The control device 91 stores the first cooling water temperature THW1 detected by the water temperature sensor 92 immediately after the engine is started in the storage device, and in step S200, the first cooling water temperature THW1 stored in the storage device is stored. Read as the starting coolant temperature THW1s.
 そして、制御装置91は、吸気温度THAに基づいて電動ポンプ23の吐出量QLを算出する(S210)。このステップS210で行われる吐出量QLの設定は、上記ステップS110で行われる吐出量QLの設定と同一である。つまり、先の図4に示したように、制御装置91は、吸気温度THAが低いときほど吐出量QLは少なくなるように算出する。 Then, the control device 91 calculates the discharge amount QL of the electric pump 23 based on the intake air temperature THA (S210). The setting of the discharge amount QL performed in step S210 is the same as the setting of the discharge amount QL performed in step S110. That is, as shown in FIG. 4, the control device 91 calculates the discharge amount QL to be smaller as the intake air temperature THA is lower.
 次に、制御装置91は、始動時冷却水温度THW1sに基づいて吐出量補正値QLHを算出する(S220)。図7に示すように、制御装置91は、始動時冷却水温度THW1sが高いときほど吐出量補正値QLHが大きくなるように同吐出量補正値QLHを設定する。なお、吐出量補正値QLHの最小値は「1」である。 Next, the control device 91 calculates a discharge amount correction value QLH based on the starting coolant temperature THW1s (S220). As shown in FIG. 7, the control device 91 sets the discharge amount correction value QLH so that the discharge amount correction value QLH increases as the starting coolant temperature THW1s increases. The minimum value of the discharge amount correction value QLH is “1”.
 次に、制御装置91は、ステップS210で算出された吐出量QLに対してステップS220で算出された吐出量補正値QLHを乗算して吐出量QLを補正する(S230)。そして、制御装置91は、本処理を終了する。 Next, the control device 91 corrects the discharge amount QL by multiplying the discharge amount QL calculated in step S210 by the discharge amount correction value QLH calculated in step S220 (S230). And the control apparatus 91 complete | finishes this process.
 このように、吐出量QLに吐出量補正値QLHを乗算することにより、吸気温度THAに基づいて設定された電動ポンプ23の吐出量QLは、始動時冷却水温度THW1sが高いときほど多くなるように補正される。 In this way, by multiplying the discharge amount QL by the discharge amount correction value QLH, the discharge amount QL of the electric pump 23 set based on the intake air temperature THA increases as the starting coolant temperature THW1s increases. It is corrected to.
 そして、ステップS230で吐出量QLが補正されると、制御装置91は、先のステップS40において、その補正された吐出量QLに基づいて電動ポンプ23を低流量モードで駆動する。この低流量モードでは、吐出量QLが得られるように、冷却水を吐出する期間である駆動期間と冷却水の吐出を停止する期間である停止期間との比が調整される。 Then, when the discharge amount QL is corrected in step S230, the control device 91 drives the electric pump 23 in the low flow rate mode based on the corrected discharge amount QL in the previous step S40. In this low flow rate mode, the ratio of the drive period, which is a period for discharging cooling water, and the stop period, which is a period for stopping discharge of cooling water, is adjusted so that the discharge amount QL is obtained.
 以上説明した本実施形態によれば、上記(1)~(5)に記載の作用効果に加え、次の作用効果も得ることができる。
(6)吸気温度THAに基づいて設定された電動ポンプ23の吐出量QLを、始動時冷却水温度THW1sが高いときほど多くなるように補正するようにしている。従って、吸気温度THAに基づいて電動ポンプ23の吐出量QLを設定する場合において、冷却水の循環を開始するときの電動ポンプ23の吐出量QLが不必要に少なくされるといったことを抑えることができるようになる。
According to the present embodiment described above, the following functions and effects can be obtained in addition to the functions and effects described in (1) to (5) above.
(6) The discharge amount QL of the electric pump 23 set based on the intake air temperature THA is corrected so as to increase as the starting coolant temperature THW1s increases. Therefore, in the case where the discharge amount QL of the electric pump 23 is set based on the intake air temperature THA, it is possible to prevent the discharge amount QL of the electric pump 23 from being unnecessarily reduced when the circulation of the cooling water is started. become able to.
 そのため、例えば次のような不都合の発生を抑えることもできる。すなわち、内燃機関10内の冷却水が上記第1基準温度TX1に達すると冷却水の循環が開始されるのであるが、そのときに内燃機関10に流入する冷却水の温度が比較的高く、かつ流入量が少量である場合には、内燃機関10から冷却水へ移動する熱量が少なくなる。従って、内燃機関10の温度上昇速度は、冷却水の循環開始前と大きく変わることがなく、場合によっては、内燃機関10の温度が最適な温度に対してオーバーシュートしてしまうといった不都合の発生が懸念される。この点、本実施形態によれば、冷却水の循環を開始するときの電動ポンプ23の吐出量QLが不必要に少なくされるといったことを抑えることができるため、そのようなオーバーシュートの発生を抑えることが可能になる。 Therefore, for example, the following inconvenience can be suppressed. That is, when the cooling water in the internal combustion engine 10 reaches the first reference temperature TX1, circulation of the cooling water is started. At that time, the temperature of the cooling water flowing into the internal combustion engine 10 is relatively high, and When the inflow amount is small, the amount of heat transferred from the internal combustion engine 10 to the cooling water decreases. Therefore, the temperature increase rate of the internal combustion engine 10 does not change significantly before the start of the circulation of the cooling water, and in some cases, the temperature of the internal combustion engine 10 overshoots the optimum temperature. Concerned. In this regard, according to the present embodiment, it is possible to suppress the discharge amount QL of the electric pump 23 when starting the circulation of the cooling water from being unnecessarily reduced. It becomes possible to suppress.
 (その他の実施形態)
 なお、本発明の実施態様は上記各実施形態にて例示した態様に限られるものではなく、これを例えば以下に示すように変更して実施することもできる。また以下の各変形例は、上記各実施形態についてのみ適用されるものではなく、異なる変形例同士を互いに組み合わせて実施することもできる。
(Other embodiments)
In addition, the embodiment of the present invention is not limited to the embodiment exemplified in each of the above-described embodiments, and can be implemented by changing it as shown below, for example. The following modifications are not applied only to the above embodiments, and different modifications can be combined with each other.
 ・第1及び第2実施形態では、先の図4に示したように、吸気温度THAが高いときほど吐出量QLが多くなるように同吐出量QLを連続的に可変設定するようにした。この他、吸気温度THAについて複数の温度領域を設定して、各温度領域毎にそれぞれ吐出量QLを設定するようにしてもよい。 In the first and second embodiments, as shown in FIG. 4, the discharge amount QL is continuously variably set so that the discharge amount QL increases as the intake air temperature THA increases. In addition, a plurality of temperature regions may be set for the intake air temperature THA, and the discharge amount QL may be set for each temperature region.
 例えば図8に示すように、温度の低い順に温度領域THA1~THA5を設定する。そして、温度領域THA1~THA5毎に吐出量QLを設定する。このときには、高い温度領域に対応する吐出量QLほどその値が大きくなるように設定する。この場合には、吐出量QLの設定をより簡易な構成で行うことができる。 For example, as shown in FIG. 8, temperature regions THA1 to THA5 are set in ascending order of temperature. Then, the discharge amount QL is set for each of the temperature regions THA1 to THA5. At this time, the discharge amount QL corresponding to the higher temperature region is set so that the value becomes larger. In this case, the discharge amount QL can be set with a simpler configuration.
 ・第2実施形態では、始動時冷却水温度THW1sに基づいて吐出量補正値QLHを設定するようにした。この機関始動時の第1冷却水温度THW1は、内燃機関10が停止されてから始動されるまでの経過時間が長いときほど、あるいは内燃機関10が停止されたときの第1冷却水温度THW1が低いときほど、低くなる。そこで、図9に示すように、内燃機関10が停止されてから始動されるまでの経過時間である機関停止時間PSTが長いときほど、あるいは内燃機関10が停止されたときの第1冷却水温度THW1である停止時冷却水温THW1pが低いときほど、吐出量補正値QLHが大きくなるように同吐出量補正値QLHを設定するようにしてもよい。この場合でも、第2実施形態に準じた作用効果を得ることができる。 In the second embodiment, the discharge amount correction value QLH is set based on the starting coolant temperature THW1s. The first cooling water temperature THW1 at the time of starting the engine is such that the longer the elapsed time from when the internal combustion engine 10 is stopped until it is started, or the first cooling water temperature THW1 when the internal combustion engine 10 is stopped. The lower, the lower. Therefore, as shown in FIG. 9, the first coolant temperature when the engine stop time PST, which is the elapsed time from when the internal combustion engine 10 is stopped to when it is started, is longer, or when the internal combustion engine 10 is stopped. The discharge amount correction value QLH may be set so that the discharge amount correction value QLH increases as the stop-time cooling water temperature THW1p, which is THW1, is lower. Even in this case, the effect according to the second embodiment can be obtained.
 ・第2実施形態では、始動時冷却水温度THW1sに基づき、吐出量QLを補正する吐出量補正値QLHを設定するようにした。この他、始動時冷却水温度THW1sに基づいて吸気温度THAを補正するようにしてもよい。 In the second embodiment, the discharge amount correction value QLH for correcting the discharge amount QL is set based on the starting coolant temperature THW1s. In addition, the intake air temperature THA may be corrected based on the starting coolant temperature THW1s.
 例えば、始動時冷却水温度THW1sに基づいて吸気温度補正値THAHを算出する。この吸気温度補正値THAHは、始動時冷却水温度THW1sが高いときほどその値が大きくなるように可変設定する。また、吸気温度補正値THAHの最小値は「1」とする。そして、吸気温度THAに吸気温度補正値THAHを乗算して補正後の吸気温度THAを算出する。このようにして吸気温度THAを補正することにより、補正後の吸気温度THAは、始動時冷却水温度THW1sが高いときほどその値が大きくなるように算出される。つまり、機関始動時の第1冷却水温度THW1が高いときほど、上記第2温度THW2は吸気温度THAよりも高くなっている可能性があるため、その傾向に合わせて、第2温度THW2の代用値として利用している吸気温度THAが補正される。そして、この補正後の吸気温度THAに基づき、先の図4に示した態様で吐出量QLを設定する。この場合にも、電動ポンプ23の吐出量QLは、始動時冷却水温度THW1sが高いときほど多くなるように補正することができるため、第2実施形態に準じた作用効果が得られる。 For example, the intake air temperature correction value THAH is calculated based on the starting coolant temperature THW1s. The intake air temperature correction value THAH is variably set so that the value increases as the starting coolant temperature THW1s increases. The minimum value of the intake air temperature correction value THAH is “1”. Then, the intake air temperature THA is calculated by multiplying the intake air temperature THA by the intake air temperature correction value THAH. By correcting the intake air temperature THA in this way, the corrected intake air temperature THA is calculated such that the value increases as the starting coolant temperature THW1s increases. That is, as the first coolant temperature THW1 at the time of starting the engine is higher, the second temperature THW2 may be higher than the intake air temperature THA. Therefore, the second temperature THW2 is substituted according to the tendency. The intake air temperature THA used as a value is corrected. Then, based on the corrected intake air temperature THA, the discharge amount QL is set in the manner shown in FIG. Also in this case, since the discharge amount QL of the electric pump 23 can be corrected so as to increase as the starting coolant temperature THW1s is higher, the operational effect according to the second embodiment can be obtained.
 ・上述したように、冷間状態から内燃機関10が始動された場合などでは、第2温度THW2は、外気温度や吸気温度とほぼ同一の温度になっている。そこで、外気温度センサを備えている場合には、吸気温度THAに代えて、低流量モードにおける電動ポンプ23の吐出量QLを外気温度に基づいて設定するようにしてもよい。 As described above, when the internal combustion engine 10 is started from a cold state, the second temperature THW2 is substantially the same as the outside air temperature or the intake air temperature. Therefore, when an outside air temperature sensor is provided, the discharge amount QL of the electric pump 23 in the low flow rate mode may be set based on the outside air temperature instead of the intake air temperature THA.
 また、冷却水の循環停止中において内燃機関10の外部に存在する冷却水、例えばサブ通路27内で停滞している冷却水の温度を検出するセンサを設け、このセンサで検出された実際の第2温度THW2に基づいて吐出量QLを設定するようにしてもよい。このように第2温度THW2を実際に検出する場合には、吐出量QLをより精度よく適切な値に設定することができる。 In addition, a sensor is provided for detecting the temperature of the cooling water existing outside the internal combustion engine 10 while the cooling water circulation is stopped, for example, the cooling water stagnating in the sub-passage 27. The discharge amount QL may be set based on the two temperature THW2. Thus, when the second temperature THW2 is actually detected, the discharge amount QL can be set to an appropriate value with higher accuracy.
 ・低流量モードでは、極低流量を具現化するために電動ポンプ23を間欠運転するようにした。この他、連続運転によっても極低流量を具現化することのできる電動ポンプを採用する場合には、低流量モードにおいて吐出量QLが得られるようにその電動ポンプを連続運転するようにしてもよい。 In the low flow mode, the electric pump 23 is intermittently operated to realize an extremely low flow rate. In addition, when an electric pump capable of realizing an extremely low flow rate even by continuous operation is employed, the electric pump may be continuously operated so as to obtain the discharge amount QL in the low flow rate mode. .
 ・サーモスタット22の開弁開始温度と上記第1基準温度TX1とを同一にしてもよい。この場合でも、上記(1)~(3)、(5)、及び(6)に記載の作用効果を得ることができる。 The valve opening start temperature of the thermostat 22 and the first reference temperature TX1 may be the same. Even in this case, the effects described in (1) to (3), (5), and (6) can be obtained.
 ・サーモスタット22として感温式のものを採用したが、これを電子制御式のサーモスタットに変更することもできる。
 ・冷却水を循環させるためのウォータポンプとして、電動ポンプ23を採用した。この他、クラッチを介して機関出力軸に連結されて同機関出力軸により駆動される機械駆動式のポンプを採用したりすることができる。図10に、機械駆動式のポンプを採用した場合の構成についてその一例を示す。この図10に示すように、機械駆動式のポンプは、羽根車と一体回転する入力軸235を備えたウォータポンプ230と、入力軸235に接続されて係合状態がアクチュエータ310によって切り替えられるクラッチ機構300と、同クラッチ機構300に接続されたプーリ400とで構成されている。そして、プーリ400は、ベルト500を介して内燃機関10のクランクシャフト50に接続されたプーリ600と一体回転する。また、制御装置91によってアクチュエータ310の作動が制御されることのよってクラッチ機構300の係合状態の切り替えが行われる。
-Although a thermosensitive type was adopted as the thermostat 22, it can be changed to an electronically controlled thermostat.
-The electric pump 23 was adopted as a water pump for circulating the cooling water. In addition, a mechanically driven pump that is connected to the engine output shaft via a clutch and driven by the engine output shaft may be employed. FIG. 10 shows an example of a configuration when a mechanical drive pump is employed. As shown in FIG. 10, the mechanically driven pump includes a water pump 230 having an input shaft 235 that rotates integrally with an impeller, and a clutch mechanism that is connected to the input shaft 235 and whose engagement state is switched by an actuator 310. 300 and a pulley 400 connected to the clutch mechanism 300. The pulley 400 rotates integrally with the pulley 600 connected to the crankshaft 50 of the internal combustion engine 10 via the belt 500. Further, the engagement state of the clutch mechanism 300 is switched by controlling the operation of the actuator 310 by the control device 91.
 この機械駆動式のポンプでは、クラッチ機構300が係合状態のときには、クランクシャフトの回転に基づいてポンプの吐出量が決定される。一方、クラッチ機構300が解放状態のときには、クランクシャフトの回転状態にかかわらず、ポンプによる冷却水の吐出は停止される。また、クラッチ機構300の係合を断続的に行うことにより、ポンプの駆動態様を間欠運転にすることができる。 In this mechanically driven pump, when the clutch mechanism 300 is engaged, the discharge amount of the pump is determined based on the rotation of the crankshaft. On the other hand, when the clutch mechanism 300 is in the released state, discharge of the cooling water by the pump is stopped regardless of the rotation state of the crankshaft. Further, by intermittently engaging the clutch mechanism 300, the drive mode of the pump can be intermittently operated.
 10…内燃機関、10a…機関燃焼室、11…シリンダブロック、12…シリンダヘッド、13…ウォータジャケット、14…熱機器系、21…ラジエータ、22…サーモスタット、23…電動ポンプ、24…メイン通路、27…サブ通路、50…クランクシャフト、91…制御装置、92…水温センサ、93…吸気温センサ、94…回転速度センサ、230…ウォータポンプ、235…入力軸、300…クラッチ機構、310…アクチュエータ、400…プーリ、500…ベルト、600…プーリ。 DESCRIPTION OF SYMBOLS 10 ... Internal combustion engine, 10a ... Engine combustion chamber, 11 ... Cylinder block, 12 ... Cylinder head, 13 ... Water jacket, 14 ... Thermal equipment system, 21 ... Radiator, 22 ... Thermostat, 23 ... Electric pump, 24 ... Main passage, 27 ... sub-passage, 50 ... crankshaft, 91 ... control device, 92 ... water temperature sensor, 93 ... intake air temperature sensor, 94 ... rotational speed sensor, 230 ... water pump, 235 ... input shaft, 300 ... clutch mechanism, 310 ... actuator , 400 ... pulley, 500 ... belt, 600 ... pulley.

Claims (8)

  1. 冷却水が循環する機関冷却系と、
     内燃機関内の冷却水の温度である第1温度を検出する温度検出部と、
     機関運転状態に依存することなく冷却水の吐出量を変更可能なポンプと、
     前記第1温度が所定温度よりも低いときには冷却水の循環が停止するように前記ポンプを制御する制御部と
     を備える内燃機関の冷却装置において、
     前記制御部は、冷却水の循環停止が解除されたときの前記ポンプの吐出量を、前記機関冷却系内において前記内燃機関の外部に存在する冷却水の温度であって前記循環停止中の温度である第2温度に基づいて設定する設定処理を行う
     ことを特徴とする内燃機関の冷却装置。
    An engine cooling system through which cooling water circulates;
    A temperature detection unit that detects a first temperature that is a temperature of cooling water in the internal combustion engine;
    A pump capable of changing the discharge amount of cooling water without depending on the engine operating state;
    A cooling device for an internal combustion engine comprising: a control unit that controls the pump so that the circulation of cooling water stops when the first temperature is lower than a predetermined temperature;
    The controller controls the discharge amount of the pump when the cooling water circulation stop is released, the temperature of the cooling water existing outside the internal combustion engine in the engine cooling system, and the temperature during the circulation stop. A cooling apparatus for an internal combustion engine, wherein a setting process for setting based on the second temperature is performed.
  2. 前記制御部は、前記第2温度が低いときほど前記ポンプの吐出量を少なくする
     請求項1に記載の内燃機関の冷却装置。
    The cooling device for an internal combustion engine according to claim 1, wherein the control unit decreases the discharge amount of the pump as the second temperature is lower.
  3. 前記制御部は、冷却水の循環停止が解除されたときの前記ポンプの吐出量を外気温度及び吸気温度のいずれか一方に基づいて設定する
     請求項1または2に記載の内燃機関の冷却装置。
    The cooling device for an internal combustion engine according to claim 1 or 2, wherein the control unit sets the discharge amount of the pump when the circulation stop of the cooling water is released based on either the outside air temperature or the intake air temperature.
  4. 前記制御部は、前記設定処理によって設定された前記ポンプの吐出量を、機関始動時の前記第1温度が高いときほど多くなるように補正する補正処理を行う
     請求項3に記載の内燃機関の冷却装置。
    The internal combustion engine according to claim 3, wherein the control unit performs a correction process for correcting the discharge amount of the pump set by the setting process so as to increase as the first temperature at the time of starting the engine increases. Cooling system.
  5. 前記機関冷却系は、冷却水を冷却するラジエータと、前記ラジエータへの冷却水の循環及び循環停止を冷却水の温度に応じて切り替える切り替え部とを備えており、
     前記所定温度は、前記切り替え部によって前記ラジエータへの冷却水の循環が開始される冷却水の温度よりも低い温度に設定される
     請求項1~4のいずれか1項に記載の内燃機関の冷却装置。
    The engine cooling system includes a radiator that cools the cooling water, and a switching unit that switches between circulating and stopping the cooling water according to the temperature of the cooling water.
    The cooling of the internal combustion engine according to any one of claims 1 to 4, wherein the predetermined temperature is set to a temperature lower than a temperature of the cooling water at which the circulation of the cooling water to the radiator is started by the switching unit. apparatus.
  6. 前記制御部は、前記第1温度が前記所定温度に達した後、同第1温度が前記所定温度よりも高い第2の所定温度に達するまでは、前記ポンプの駆動態様を冷却水が間欠的に吐出される間欠運転としてその吐出量が制限された低流量モードにて前記ポンプを駆動し、前記第1温度が前記第2の所定温度以上となったときには前記ポンプの駆動態様を冷却水が連続的に吐出される連続運転に変更する
     請求項1~5のいずれか1項に記載の内燃機関の冷却装置。
    After the first temperature reaches the predetermined temperature, the control unit intermittently cools the drive mode of the pump until the first temperature reaches a second predetermined temperature higher than the predetermined temperature. When the pump is driven in a low flow rate mode in which the discharge amount is limited as an intermittent operation to be discharged to the pump, and the first temperature becomes equal to or higher than the second predetermined temperature, the pump is driven by cooling water. The cooling device for an internal combustion engine according to any one of claims 1 to 5, wherein the operation is changed to a continuous operation in which the discharge is continuously performed.
  7. 前記ポンプは電動式のポンプである
     請求項1~6のいずれか1項に記載の内燃機関の冷却装置。
    The cooling apparatus for an internal combustion engine according to any one of claims 1 to 6, wherein the pump is an electric pump.
  8. 前記ポンプはクラッチを介して機関出力軸に連結されて同機関出力軸により駆動される機械駆動式のポンプである
     請求項1~6のいずれか1項に記載の内燃機関の冷却装置。
    The cooling apparatus for an internal combustion engine according to any one of claims 1 to 6, wherein the pump is a mechanically driven pump that is connected to an engine output shaft via a clutch and driven by the engine output shaft.
PCT/JP2010/058833 2010-05-25 2010-05-25 Cooling device for internal combustion engine WO2011148464A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/058833 WO2011148464A1 (en) 2010-05-25 2010-05-25 Cooling device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/058833 WO2011148464A1 (en) 2010-05-25 2010-05-25 Cooling device for internal combustion engine

Publications (1)

Publication Number Publication Date
WO2011148464A1 true WO2011148464A1 (en) 2011-12-01

Family

ID=45003472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058833 WO2011148464A1 (en) 2010-05-25 2010-05-25 Cooling device for internal combustion engine

Country Status (1)

Country Link
WO (1) WO2011148464A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013224643A (en) * 2012-04-23 2013-10-31 Toyota Motor Corp Control apparatus of cooling system
WO2015125428A1 (en) * 2014-02-24 2015-08-27 株式会社デンソー Cooling device for internal combustion engine
JP2018048650A (en) * 2017-12-28 2018-03-29 日立オートモティブシステムズ株式会社 Cooling device for internal combustion engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000220457A (en) * 1999-01-28 2000-08-08 Toyota Motor Corp Cooling system for vehicle engine
JP2002161748A (en) * 2000-11-27 2002-06-07 Denso Corp Automobile electric water pumping device
JP2008121435A (en) * 2006-11-08 2008-05-29 Aisin Seiki Co Ltd Vehicle cooling system
JP2010065608A (en) * 2008-09-10 2010-03-25 Mitsubishi Motors Corp Cooling system of internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000220457A (en) * 1999-01-28 2000-08-08 Toyota Motor Corp Cooling system for vehicle engine
JP2002161748A (en) * 2000-11-27 2002-06-07 Denso Corp Automobile electric water pumping device
JP2008121435A (en) * 2006-11-08 2008-05-29 Aisin Seiki Co Ltd Vehicle cooling system
JP2010065608A (en) * 2008-09-10 2010-03-25 Mitsubishi Motors Corp Cooling system of internal combustion engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013224643A (en) * 2012-04-23 2013-10-31 Toyota Motor Corp Control apparatus of cooling system
WO2015125428A1 (en) * 2014-02-24 2015-08-27 株式会社デンソー Cooling device for internal combustion engine
JP2015158170A (en) * 2014-02-24 2015-09-03 株式会社デンソー Internal combustion engine cooling apparatus
US10113474B2 (en) 2014-02-24 2018-10-30 Denso Corporation Cooling device for internal combustion engine
DE112015000934B4 (en) 2014-02-24 2021-07-29 Denso Corporation Cooling device for internal combustion engine
JP2018048650A (en) * 2017-12-28 2018-03-29 日立オートモティブシステムズ株式会社 Cooling device for internal combustion engine

Similar Documents

Publication Publication Date Title
JP4682863B2 (en) Engine cooling system
US8794193B2 (en) Engine cooling device
JP4876202B2 (en) Control device for variable water pump
US9677458B2 (en) Temperature control device for internal combustion engine
JP5239972B2 (en) Engine cooling system
JP2006214280A (en) Cooling device of engine
JP2008169750A (en) Control device for electric water pump
KR20110063167A (en) Variable water pump control system and method
JP6645459B2 (en) Cooling fluid circulation system for in-vehicle internal combustion engine
JP4529709B2 (en) Engine cooling system
JP2006214281A (en) Cooling device of engine
JP5338761B2 (en) Cooling device for in-vehicle internal combustion engine
WO2011148464A1 (en) Cooling device for internal combustion engine
JP4975153B2 (en) Cooling device for internal combustion engine
US9869223B2 (en) Flexible engine metal warming system and method for an internal combustion engine
JP5337544B2 (en) Engine coolant circulation system
JP2010096020A (en) Control device of electrical water pump
JP2013060819A (en) Engine warm-up method at cold starting time
JP5598369B2 (en) Cooling device for internal combustion engine
JP6443824B2 (en) Engine cooling system
JP5863360B2 (en) Control device for internal combustion engine
JP2010242525A (en) Control device for water pump
JP5196014B2 (en) Engine cooling system
JP2011027012A (en) Device for controlling circulation amount of oil in internal combustion engine
JP2011214565A (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10852135

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10852135

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP