WO2011147229A1 - 交换环路的动态调整方法及网络设备 - Google Patents

交换环路的动态调整方法及网络设备 Download PDF

Info

Publication number
WO2011147229A1
WO2011147229A1 PCT/CN2011/072551 CN2011072551W WO2011147229A1 WO 2011147229 A1 WO2011147229 A1 WO 2011147229A1 CN 2011072551 W CN2011072551 W CN 2011072551W WO 2011147229 A1 WO2011147229 A1 WO 2011147229A1
Authority
WO
WIPO (PCT)
Prior art keywords
link
cost
network device
current
switching loop
Prior art date
Application number
PCT/CN2011/072551
Other languages
English (en)
French (fr)
Inventor
姜维
张骏
刘冠葳
鲍微
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US13/699,153 priority Critical patent/US9071538B2/en
Priority to EP11786001.5A priority patent/EP2566114B1/en
Publication of WO2011147229A1 publication Critical patent/WO2011147229A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/18Loop-free operations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/22Alternate routing

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and a network device for dynamically adjusting a switching loop. Background technique
  • the aggregation network is mainly composed of data aggregation switches.
  • a data aggregation switch it is easy to generate a Layer 2 switching loop in the aggregation network.
  • Figure 1 shows the switching loops generated by three data aggregation switches in a converged network.
  • the Layer 2 protocol such as Spanning Tree Protocol (STP) and Ethernet Automatic Protection Switching (EAPS), is used to link the link. Parameters such as cost select and block the network redundant link, causing the link to be disconnected.
  • STP Spanning Tree Protocol
  • EAPS Ethernet Automatic Protection Switching
  • the disconnected link After the link is disconnected in the above manner, the disconnected link is still physically connected.
  • the disconnected link cannot transmit service data, but can still transmit protocol packets.
  • the link cost in the current protocol is determined by the transmission efficiency of the link, and the transmission efficiency of the link is determined by the link type.
  • Common link types can mainly include optical fiber transmission, cable transmission, etc.
  • a link with an initial transmission efficiency of 10M has an initial link cost of 2000000; a link with an initial transmission efficiency of 100M, The initial link cost of the link is 200000; the initial transmission efficiency is 1000M, and the initial link cost of the link is 20000.
  • the Layer 2 protocol such as the STP protocol and the EAPS protocol can be used to disconnect the link with poor initial link cost in the switching loop according to the initial link cost of the link. That is, the link with a lower initial transmission efficiency, so that the link with the lowest initial link cost of the link in the switching loop is used as the primary link (ie, the link with the initial transmission efficiency of the link is high). road).
  • the present invention proposes a dynamic adjustment of a switching loop, in which the link of the actual link cost is used as the primary link in the related art to affect the transmission efficiency and reliability of the aggregation network.
  • the method and the aggregation access device can avoid the problem that the transmission efficiency and reliability of the network are affected by the actual link cost difference of the primary link in the related art, and the transmission efficiency of the primary link is ensured.
  • the present invention provides a method for dynamically adjusting a switching loop, the method comprising: determining, by a network device in a switching loop, a current link cost of all links connected to the network device, wherein the network device is configured according to The initial link cost and link adjustment parameters of the link determine the a current link cost of the link; the network device acquires a current link cost of all links in the switching loop, and determines an active link of the switching loop, where the primary link The current link cost is less than or equal to the predetermined link cost.
  • the determining the primary link of the switching loop is: determining, by using the link that minimizes the current link cost in the switching loop, as the primary link of the switching loop.
  • the link adjustment parameter may include one of the following: a packet loss rate of the link, and a frame error rate of the link.
  • the network device can obtain the number of sent and received messages through an Operation Management and Maintenance Protocol (OAM).
  • OAM Operation Management and Maintenance Protocol
  • the method may further include: preferentially determining, as the link that needs to be blocked, the link with the highest link cost in the switching loop.
  • the present invention also provides a network device, including: a first determining module, a second determining module, where a first determining module, configured to determine a current link cost of all links connected to the network device, where the network device determines the chain according to an initial link cost and a link adjustment parameter of the link a current link cost of the path; a second determining module, configured to acquire a current link cost of all links in the switching loop where the network device is located, and determine a primary link of the switching loop, where The current link cost of the primary link is less than or equal to the predetermined link cost.
  • the second determining module is specifically configured to preferentially determine a link with the lowest link cost in the switching loop as the primary link of the switching loop, and preferentially use the switching ring.
  • the link with the highest link cost in the current path is determined to be the link that needs to be blocked.
  • the link with the actual link cost is determined as the active link according to the current link cost, and the related technology is avoided. Because the link with poor current link cost is used as the primary link to affect the overall transmission efficiency of the network, the adjustment of the switching loop can be reasonably optimized to improve the transmission efficiency and reliability of the primary link and the entire network. Sex. DRAWINGS
  • FIG. 1 is a schematic diagram of a convergence ring network according to the related art
  • FIG. 2 is a flowchart of a method for adjusting a switching loop according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a convergence ring network networking according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of adjusting a ring path through an STP protocol according to an adjustment method of a switching loop according to an embodiment of the present invention
  • FIG. 5 is a flow chart of adjusting a ring path of an exchange loop through an EAPS protocol according to an embodiment of the present invention
  • FIG. 6 is a block diagram of a convergence access device in accordance with an embodiment of the present invention. detailed description
  • the present invention provides a solution to the problem that the transmission efficiency and the reliability of the aggregation network are affected by the link with the actual transmission efficiency (that is, the link cost difference) in the related art in the related art.
  • a switching loop adjustment scheme can dynamically adjust the switching ring path of each layer (for example, the aggregation layer) in the switching loop, so that the network device in the link can actually link according to the current link cost.
  • the cost-effective link is determined to be the primary link, which avoids the problem that the link transmission cost is affected by the link with poor current link cost as the primary link in the related art. Optimization to improve the transmission efficiency and reliability of the primary link as well as the entire network.
  • FIG. 2 is a flowchart of a method for adjusting a switching loop according to an embodiment of the present invention. As shown in FIG. 1, the method includes the following steps:
  • Step S201 The network device in the switching loop determines a current link cost of all links connected to the network device, where the network device determines a current link of the link according to an initial link cost of the link and a link adjustment parameter.
  • the cost can be a specific value).
  • Step S203 The network device acquires a current link cost of all links in the switching loop, and determines an active link of the switching loop, where the current link cost of the primary link is less than or equal to a predetermined link cost, that is, The link in the switching loop whose current link cost is better than the predetermined link cost is determined as the primary link of the switching loop.
  • the foregoing process refers to the current link cost that accurately reflects the actual condition of the link when determining the primary link, thereby enabling the current link according to the current link.
  • the cost of the link with the actual link cost is determined as the primary link, which avoids the problem of affecting the overall transmission efficiency of the network due to the link with the current link cost being the primary link in the related art.
  • the adjustment of the road is rationally optimized to improve the transmission efficiency and reliability of the primary link and the entire network.
  • a link can connect two network devices to each other.
  • the network device at either end of the link can determine the current link cost of the link.
  • the network link devices at both ends of the link can determine the current link cost of the link, and average, weight, or otherwise process the results obtained by the two devices, and the final result is used as the current chain of the link.
  • Road cost is the cost that uses the current link cost of the link cost that accurately reflects the actual condition of the link when determining the primary link, thereby enabling the current link according to the current link
  • the link with the lowest link cost in the switching loop can be preferentially determined as the primary link of the switching loop.
  • the link adjustment parameter that is referenced may be a packet loss rate of the link, or may be a frame error rate of the link.
  • the network device can determine the current link cost of a link according to the following formula:
  • A' A / (l - V), where A is the current link cost of the link of the link, A is the initial link cost of the link, and V is the link adjustment parameter of the link, 0 V ⁇ 1.
  • the link adjustment parameter is the packet loss rate of the link. you can calculate the packet loss rate according to the following formula.
  • V ( P - Q ) /P, where P is the number of packets sent by the other network device connected to the network device through the link to the network device, and Q is the number of packets received by the network device from another network device.
  • network device B sends a data message to network device A, and network device B notifies the total number of data packets sent to network device A.
  • the packet loss rate on link 1 can be determined.
  • the network device B receives the packet sent by the network device A via the link, and according to the actually received packet. The number and the total number of packets sent by network device A determine the packet loss rate on the link.
  • the above-mentioned network device A or B generally obtains the number of received and sent packets through the OAM protocol.
  • the link adjustment parameter is the error frame rate of the link
  • the error frame rate V is calculated according to the following formula:
  • V S/(S+D), where S is the number of bad frames received by the network device from another network device over a link, and D is the time that the network device receives through the link within the time period. The number of good frames from another network device.
  • network device A is connected to network device B through link 1, at this time, network device B sends a data frame to network device A, and network device A according to the number of good frames it receives from network device B (ie, The above D), and the network device A can determine the frame error rate of the link 1 according to the number of good frames it receives from the network device B (ie, the above S), and then the network device A determines the link 1 Current link cost.
  • the network device B When the devices at both ends of the link perform the determination of the current link cost, or only the network device B determines, the network device B receives the data frame sent by the network device A via the link, and the network device B receives the good frame according to the actual situation.
  • the number of frames and the number of bad frames enable the frame rate to be determined, and the network device B determines the current link cost of the link.
  • the link with the highest link cost in the switching loop can be preferentially determined as the link that needs to be blocked, that is, the current link cost in the switching loop is the worst.
  • the link is determined to be a link that needs to be blocked.
  • the link cost of the local end and the opposite end may be obtained based on the OAM link monitoring function of the Ethernet; the end link cost for the ring network routing is dynamically allocated or dynamically adjusted by the link cost (ie, , analyze the current link cost of each link).
  • the foregoing processing may be applied to each layer in the switching loop.
  • the processing performed by the network device may be implemented by the aggregation access device, and the updated terminal is used.
  • the link cost dynamically adjusts the path of the Layer 2 switched ring network. (The path mentioned in this paper does not mean that all links in all switching loops must be in an unblocked state, because the physical link between network devices is always Exist, so even if some links in the switching loop are in the blocking state, that is, the service data cannot be transmitted, the switching loop at this time is still the path).
  • FIG. 3 multiple aggregation accesses are shown.
  • the links between devices, that is, data aggregation switches, are based on the OAM protocol.
  • the present invention is described by taking the aggregation access device as a data aggregation switch, and the STP protocol family and the EAPS protocol in the layer 2 switching ring network as an example.
  • the STP protocol family includes STP, RSTP, MSTP, etc., but It is not limited thereto, and other ring network routing protocols can still be implemented by the present invention and still be within the protection scope of the present invention.
  • FIG. 4 is a flowchart of a process for dynamically adjusting a ring network by using an STP protocol according to an embodiment of the present invention. As shown in FIG. 4, the following processing is included:
  • Step 401 Initialize a link cost of the configured link.
  • the initial link cost and other cost of configuring the link between each two data aggregation switches are initialized, where the initial link cost of the link is determined by the link transmission efficiency, and the initial link transmission efficiency is only It is determined by the link type, where the initial transmission efficiency of the link may be 10M or 100M or 1000M.
  • the link type where the initial transmission efficiency of the link may be 10M or 100M or 1000M.
  • other costs can include switch ID, switch excellent Predecessor, port priority, etc.
  • Step 402 opening a ring network routing protocol STP
  • Step 403 Enable a protocol link cost change monitoring task.
  • each data aggregation switch it is mainly to monitor link dynamic parameters of each link connected to the data aggregation switch in a certain period of time, for example, a packet loss rate, a frame error rate, and the like.
  • Step 404 the OAM protocol is enabled.
  • the OAM protocol needs to be enabled at the same time on the data aggregation switch of the data aggregation switch and the data aggregation switch at the opposite end, and the corresponding link dynamic parameters are configured to make the OAM protocol function normally.
  • Step 405 Enable an OAM protocol link monitoring task.
  • the OAM protocol link monitoring task of each data aggregation switch monitors link dynamic parameters of the link, such as packet loss rate and frame error rate, in a certain period of time, and according to the link dynamic parameter link.
  • the initial transmission efficiency is adjusted to obtain the current transmission efficiency of the link. The method of adjusting the transmission efficiency will be described below.
  • the initial transmission efficiencies of link 1, link 2, and link 3 are 10M, 100M, and 1000M, respectively.
  • the corresponding link cost is A.
  • the transmission efficiency of link 3 is the best, and the transmission efficiency of link 1 is the worst.
  • the calculation method of the packet loss rate has been described in detail above, and will not be described here. Calculate the current link cost for each link by the following formula:
  • Step 406 After the data aggregation switch calculates the current link cost of the link, the data aggregation switch determines whether the current link cost of the link has changed. If the change occurs, the process proceeds to step 408. Otherwise, the process proceeds to step 407.
  • Step 407 returning to the OAM protocol link monitoring task, and starting new monitoring within a predetermined time.
  • Step 408 the data aggregation switch updates the current link cost of the link, and proceeds to step 409.
  • Step 409 reselecting the ring network path and returning to the OAM protocol link monitoring task; specifically, the ring network routing protocol reselects the path of the ring network according to the updated link cost of each link, for example, preferentially exchanges
  • the link with the lowest link cost in the loop is the primary link of the Layer 2 switched ring network, and the link with the highest cost of the current link in the switching ring is preferentially used as the chain to be blocked in the Layer 2 switched ring network. Road to reduce the link cost of Layer 2 data services and ensure the reliability of service data transmission.
  • the EAPS protocol performs ring network routing through link on and off. Considering the effect of link efficiency in the present invention, a field can be added to the EAPS protocol packet: slaveLinkCost, which indicates the link cost of the alternate link.
  • FIG. 5 is a flowchart of a process for dynamically adjusting a ring network by using an EAPS protocol according to an embodiment of the present invention. As shown in FIG. 5, the method includes the following steps:
  • Step 501 Initially configure an initial link cost and other cost between each two data aggregation switches.
  • the step is similar to step 401, and details are not described herein.
  • the ring routing control unit may initialize the configuration link. Link cost.
  • Step 502 Open the ring network routing protocol EAPS.
  • the ring routing protocol EAPS selects an active channel according to the default master-slave configuration, and blocks the alternate channel.
  • the link cost of each link of the entire network is Is the same, the cost of passing the only alternate link on the entire network in the protocol message, That is, slaveLinkCost.
  • Step 503 start a protocol link cost change monitoring task, and perform step 504 and step
  • the range of protocol link costs is related to the specific ring routing protocol.
  • the traditional method is based on link continuity. This step is the processing method of the traditional Layer 2 switching ring network. If the link is detected to change, the ring network routing operation will be performed.
  • Step 504 Perform link continuity monitoring to determine whether the link is up or down. If yes, go to step 506; otherwise, go to step 505.
  • Step 505 Return the link cost change monitoring task if the link is not changed. Step 506, reselecting the ring path, and then performing step 507.
  • Step 507 After selecting the ring network path, returning the link cost change monitoring task.
  • Step 508 the OAM protocol is started, and the step is executed in parallel with step 504 after the step 503 is performed.
  • the OAM protocol needs to be enabled at both the local end and the peer end, and the corresponding parameters are configured to make the 0 AM protocol operate normally.
  • Step 509 Enable an OAM link monitoring task.
  • the OAM protocol link monitoring task monitors the transmission efficiency of the link in the most recent period, such as packet loss rate and frame error rate.
  • step 510 it is determined whether the transmission efficiency of the link changes. If the link transmission efficiency does not change, step 511 is performed. If the link transmission efficiency changes, step 512 is performed.
  • Step 511 returning an OAM protocol link monitoring task.
  • Step 512 Determine whether the alternate link cost is less than or equal to the currently changed link cost.
  • the monitoring result exceeds the preset threshold, it will be based on the revised criteria.
  • linkCost' linkCost / ( 1 - lossRate).
  • step 512 If linkCost' > slaveLinkCost (that is, the result of the determination in step 512 is that slaveLinkCost is not better than the link cost), it is considered that the current link has no backup link, and the current change link can be considered as "broken", and then Re-selecting the ring path and updating the slaveLinkCost will ensure that the slaveLinkCost is the most costly of all links.
  • linkCost' the result of the decision in step 512 is that slaveLinkCost is better than the link cost
  • the current link is considered to be better than the standby link, and the current change link can be considered "on" and then re-established. Select the ring path and update the slaveLinkCost
  • step 515 is performed, otherwise step 513 is performed.
  • step 513 if the current change link is "off”, step 506 and step 514 are performed. Step 514, returning an OAM protocol link monitoring task.
  • Step 515 If the current change link is "on”, step 514 is performed to return to the OAM protocol link monitoring task.
  • the transmission efficiency and reliability of the Layer 2 data service are improved by selecting the link with the best transmission efficiency (ie, the link with the lowest link cost) as the path of the Layer 2 switching ring network.
  • FIG. 6 is a block diagram of a network device according to an embodiment of the present invention. As shown in FIG. 6, a network device according to an embodiment of the present invention includes:
  • a first determining module 61 configured to determine a current link cost of all links connected to the network device, where the network device determines the link according to an initial link cost of the link and a link adjustment parameter Current link cost;
  • the second determining module 62 is configured to obtain a current link cost of all links in the switching loop where the network device is located, and determine a primary link of the switching loop, where the current link cost of the primary link is less than or Equal to the predetermined link cost.
  • the link adjustment parameter includes one of the following: a packet loss rate of the link, and a frame error rate of the link.
  • the second determining module 62 may be specifically configured to preferentially determine a link with the lowest link cost in the switching loop as the primary link of the switching loop, and preferentially determine the link with the highest link cost in the switching loop. For links that need to be blocked.
  • one link can connect two network devices to each other, and when determining the current link cost of the link, the network device at either end of the link can determine the chain.
  • the current link cost of the road According to requirements, the network link devices at both ends of the link can determine the current link cost of the link, and average, weight, or otherwise process the results obtained by the two devices, and the final result is used as the current chain of the link. Road cost.
  • the first determining module 61 can be configured to directly determine the current link cost of all links of the local network device, and can also be configured to determine the link cost of a portion of the designated link of the local network device.
  • the current link cost can be determined by the network devices at both ends, and the current chain obtained by the two network devices is obtained.
  • the path cost is processed to obtain the current link cost of the link.
  • the process can be determined only by one of the devices. The process of determining the frame rate, packet loss rate, and other parameters has been described before, and is not repeated here. .
  • the network device may be based on Ethernet
  • the OAM link monitoring function determines the current link cost of the Layer 2 link. Therefore, when the network device is applied to the Layer 2 network, the first determining module 61 can dynamically monitor the link cost by using the OAM protocol, that is, The link monitoring function of the Ethernet OAM protocol can be enabled to dynamically monitor the link cost of the link and report it to the second determining module 62 for subsequent processing.
  • the second determining module 62 can implement the Layer 2 switching ring network.
  • the routing determination and dynamic adjustment wherein when the first determining module 61 reports the current link cost of the link to the second determining module 62, the second determining module 62 can update the cost of the entire ring network, and according to The updated link cost re-selects the ring path, effectively improving the link cost and reliability of the Layer 2 data service, and the second determining module 62 is also capable of initializing the link cost of the link, ie, the above step 401 can be performed. Processing.
  • the foregoing network device should also include a data exchange unit for implementing basic Ethernet service layer 2 switching, and capable of performing traffic scheduling, and also capable of monitoring service attributes such as QoS of the link.
  • the link with the actual link cost can be determined as the main chain according to the current link cost by referring to the current link cost that can accurately reflect the actual condition of the link.
  • the link of the actual link cost difference is taken as the primary link due to the link selection with reference to the initial link cost, thereby affecting the overall transmission efficiency of the network, and the adjustment of the switching loop can be performed.
  • the link with excellent current link cost is the path of the Layer 2 switched ring network, blocking the link with poor current link cost, improving the transmission efficiency and reliability of the active link and the entire network;
  • the real-time monitoring of the link cost is performed, and the switching loop is continuously updated and adjusted to ensure the transmission efficiency of the entire network in real time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Description

交换环路的动态调整方法及网络设备 技术领域
本发明涉及通信领域, 尤其涉及一种交换环路的动态调整方法及网络 设备。 背景技术
目前, 汇聚网络主要由数据汇聚交换机组成。 但是, 目前在使用数据 汇聚交换机时, 很容易在汇聚网络中产生 2层交换环路。 例如, 图 1示出 了三个数据汇聚交换机在汇聚网络组网中产生的交换环路。
为了解决汇聚网络中的 2层交换环路问题,主要通过生成树协议( STP, Spanning Tree Protocol )、 以太网自动保护开关 ( EAPS, Ethernet Automatic Protection Switching )等 2层协议, 根据链路的链路代价等参数选择并阻塞 网络冗余链路, 使该链路断开。
通过上述方式将链路断开后, 断开的链路在物理上仍然是连通的, 断 开的链路不能进行业务数据的传输, 但是仍然能够进行协议报文的传输。
目前协议中的链路代价是由链路的传输效率决定的, 而链路的传输效 率是由链路类型单一决定的。 常见的链路类型主要可以包括光纤传输、 电 缆传输等, 一旦汇聚网络被建立, 每两个数据汇聚交换机之间的链路类型 就是固定的, 而链路类型一旦固定, 链路的初始传输效率就能够确定, 链 路的初始传输效率一旦固定, 链路的链路代价就能够确定。 一般来说, 链 路的传输效率与链路的链路代价成反比, 例如, 初始传输效率为 10M的链 路, 该链路的初始链路代价为 2000000; 初始传输效率为 100M的链路, 该 链路的初始链路代价为 200000; 初始传输效率为 1000M的链路, 该链路的 初始链路代价为 20000。 为了解决汇聚网络中的 2层交换环路问题,通常可釆用 STP协议、 EAPS 协议等 2层协议根据链路的初始链路代价断开交换环路中初始链路代价较 差的链路(即, 链路的初始传输效率较低的链路), 从而将交换环路中链路 的初始链路代价最小的链路作为主用链路(即, 链路的初始传输效率较高 的链路)。
但是, 在上述冗余链路阻塞 (断开) 方案中, 选择交换环路时只考虑 了链路的链路类型 (即, 相应的初始链路代价), 而没有考虑链路的链路代 价的动态变化, 因此, 可能会使初始链路代价较小但实际传输效率较差的 链路被选为主用链路, 而其他虽然初始链路代价较大但实际传输效率更好 的链路则被断开而处于阻塞状态, 从而影响汇聚网络中业务传输的效率和 可靠性。
类似地, 对于交换环路中的其他层面, 同样会出现类似的问题。
针对相关技术中在进行交换环路阻塞时将实际链路代价差的链路作为 主用链路而影响汇聚网络的传输效率以及可靠性的问题, 目前尚未提出有 效的解决方案。 发明内容
针对相关技术中在进行交换环路阻塞时将实际链路代价差的链路作为 主用链路而影响汇聚网络的传输效率以及可靠性的问题, 本发明提出了一 种交换环路的动态调整方法和汇聚接入设备, 能够避免相关技术中由于主 用链路的实际链路代价差而影响网络的传输效率和可靠性的问题, 保证主 用链路的传输效率。
本发明的技术方案是这样实现的:
本发明提供了一种交换环路的动态调整方法, 该方法包括: 交换环路 中的网络设备确定与所述网络设备相连接的所有链路的当前链路代价, 其 中, 所述网络设备根据所述链路的初始链路代价和链路调整参数确定所述 链路的当前链路代价; 所述网络设备获取所述交换环路中所有链路的当前 链路代价, 并确定所述交换环路的主用链路, 其中, 所述主用链路的当前 链路代价小于或等于预定链路代价。
上述方案中, 所述确定所述交换环路的主用链路为: 优先将所述交换 环路中当前链路代价最小的链路确定为所述交换环路的主用链路。
上述方案中, 所述链路调整参数可以包括以下之一: 链路的丟包率、 链路的错帧率。
上述方案中, 所述网络设备根据所述链路的初始链路代价和链路调整 参数确定所述链路的当前链路代价为: A, = A / (1 _ V), 其中, A,为所述链 路的链路当前链路代价, A为所述链路的初始链路代价, V 为所述链路的 链路调整参数, 0 V < 1。
上述方案中, 如果链路调整参数为链路的丟包率, 则根据下述公式计 算丟包率 V: V= ( P - Q ) /P, 其中, P为通过所述链路与所述网络设备连 接的另一网络设备向所述网络设备发送的报文数量, Q 为所述网络设备从 所述另一网络设备接收到的报文数量。
上述方案中, 所述网络设备可以通过操作管理维护协议(OAM )获得 收发报文的数量。
上述方案中, 如果链路调整参数为链路的错帧率, 则根据下述公式计 算错帧率 V: V=S/ ( S+D ), 其中, S为一时间段内所述网络设备通过所述 链路接收到的来自另一网络设备的坏帧的数量, D 为所述时间段内所述网 络设备通过所述链路接收到的来自所述另一网络设备的好帧的数量。
上述方案中, 该方法还可以包括: 优先将所述交换环路中当前链路代 价最大的链路确定为需要被阻塞的链路。
本发明还提供了一种网络设备, 包括: 第一确定模块、 第二确定模块; 其中, 第一确定模块, 用于确定与所述网络设备相连接的所有链路的当前链 路代价, 其中, 所述网络设备根据所述链路的初始链路代价和链路调整参 数确定所述链路的当前链路代价; 第二确定模块, 用于获取所述网络设备 所在的交换环路中所有链路的当前链路代价, 并确定所述交换环路的主用 链路, 其中, 所述主用链路的当前链路代价小于或等于预定链路代价。
上述方案中, 所述第一确定模块根据以下公式确定所述链路的当前链 路代价: A, = A / (1 - V), 其中, A,为所述链路的链路当前链路代价, A为 所述链路的初始链路代价, V为所述链路的链路调整参数, 0 V < 1。
上述方案中, 所述第二确定模块, 具体用于优先将所述交换环路中当 前链路代价最小的链路确定为所述交换环路的主用链路, 并优先将所述交 换环路中当前链路代价最大的链路确定为需要被阻塞的链路。
借助于本发明的上述技术方案, 通过参照能够准确反映链路实际状况 的当前链路代价, 能够根据当前链路代价将实际链路代价优的链路确定为 主用链路, 避免了相关技术中由于将当前链路代价差的链路作为主用链路 而影响网络整体传输效率的问题, 能够对交换环路的调整进行合理的优化, 提高主用链路以及整个网络的传输效率和可靠性。 附图说明
图 1是根据相关技术的汇聚环网组网的示意图;
图 2是根据本发明实施例的交换环路的调整方法的流程图;
图 3是根据本发明实施例的汇聚环网组网的示意图;
图 4是根据本发明实施例的交换环路的调整方法通过 STP协议调整环 网通路的流程图;
图 5是根据本发明实施例的交换环路的调整方法通过 EAPS协议调整 环网通路的流程图;
图 6是根据本发明实施例的汇聚接入设备的框图。 具体实施方式
针对相关技术中在进行交换环路阻塞时将实际传输效率低(即, 链路 代价差) 的链路作为主用链路而影响汇聚网络的传输效率以及可靠性的问 题, 本发明实施例提供了一种交换环路的调整方案, 能够对交换环路中各 个层面 (例如, 汇聚层) 的交换环网通路进行动态调整, 使得链路中的网 络设备能够根据当前链路代价将实际链路代价优的链路确定为主用链路, 避免了相关技术中由于将当前链路代价差的链路作为主用链路而影响网络 整体传输效率的问题, 能够对交换环路的调整进行合理的优化, 提高主用 链路以及整个网络的传输效率和可靠性。
下面结合附图对本发明进行详细说明。
图 2是根据本发明实施例的交换环路的调整方法的流程图, 如图 1所 示, 该方法包括以下步骤:
步骤 S201 , 交换环路中的网络设备确定与网络设备相连接的所有链路 的当前链路代价, 其中, 网络设备根据链路的初始链路代价和链路调整参 数确定链路的当前链路代价(可以是一个具体的数值)。
步骤 S203 , 网络设备获取交换环路中所有链路的当前链路代价, 并确 定交换环路的主用链路, 其中, 主用链路的当前链路代价小于或等于预定 链路代价, 即, 将交换环路中当前链路代价优于预定链路代价的链路确定 为交换环路的主用链路。
相比于相关技术中基于初始链路代价确定主用链路的方案, 上述处理 在确定主用链路时, 参照了能够准确反映链路实际状况的当前链路代价, 从而能够根据当前链路代价将实际链路代价优的链路确定为主用链路, 避 免了相关技术中由于将当前链路代价差的链路作为主用链路而影响网络整 体传输效率的问题, 能够对交换环路的调整进行合理的优化, 提高主用链 路以及整个网络的传输效率和可靠性。 在交换环路中, 一条链路能够将两个网络设备彼此相连, 在进行链路 当前链路代价的确定时, 该链路任意一端的网络设备就能够确定该链路的 当前链路代价。 根据需要, 也可以由链路两端的网络设备均确定链路的当 前链路代价, 并对两个设备得到的结果进行平均、 加权或其他处理, 将最 终得到的结果作为该链路的当前链路代价。
并且, 为了保证主用链路的传输效率, 可以优先将交换环路中当前链 路代价最小的链路确定为交换环路的主用链路。
下面将详细描述网络设备确定与其连接的链路的当前链路代价的过 程。
可选地, 在确定链路的当前链路代价时, 所参照的链路调整参数可以 是该链路的丟包率, 也可以是该链路的错帧率。
并且, 网络设备可以根据以下公式确定一个链路的当前链路代价:
A' = A / (l - V), 其中, A,为该链路的链路当前链路代价, A为链路的 初始链路代价, V为链路的链路调整参数, 0 V < 1。
如果链路调整参数为链路的丟包率, 则可以根据下述公式计算丟包率
V:
V= ( P - Q ) /P, 其中, P为通过链路与网络设备连接的另一网络设备 向网络设备发送的报文数量, Q 为网络设备从另一网络设备接收到的报文 数量。
例如, 假设网络设备 A通过链路 1连接至网络设备 B, 此时, 网络设 备 B会向网络设备 A发送数据报文, 并且网络设备 B会将其向网络设备 A 发送的数据报文总数通知给网络设备 A, 网络设备 A根据其实际从网络设 备 B接收的数据报文数量(即, 上述的 Q )、 以及网络设备 B通知的网络设 备 B实际向网络设备 A发送的数据报文的总数(即, 上述的 P ), 就能够确 定链路 1上的丟包率。 在链路两端的设备均进行当前链路代价的确定、 或仅由网络设备 B进 行确定时, 网络设备 B同样会接收网络设备 A经该链路发送的报文, 并根 据实际接收的报文数量和网络设备 A发送的报文总数确定该链路上的丟包 率。
上述的网络设备 A或 B—般通过 OAM协议获得收发报文的数量。 另外, 如果链路调整参数为链路的错帧率, 则根据下述公式计算错帧 率 V:
V=S/ ( S+D ), 其中, S为一时间段内网络设备通过链路接收到的来自 另一网络设备的坏帧的数量, D 为时间段内网络设备通过链路接收到的来 自另一网络设备的好帧的数量。
具体地, 同样假设网络设备 A通过链路 1连接至网络设备 B , 此时, 网络设备 B会向网络设备 A发送数据帧, 网络设备 A根据其从网络设备 B 接收的好帧的数量(即, 上述的 D )、 以及网络设备 A根据其从网络设备 B 接收的好帧的数量(即, 上述的 S ), 就能够确定链路 1的错帧率, 进而由 网络设备 A确定链路 1的当前链路代价。
在链路两端的设备均进行当前链路代价的确定、 或仅由网络设备 B进 行确定时, 网络设备 B会接收网络设备 A经该链路发送的数据帧, 网络设 备 B根据实际接收好帧的数量和坏帧的数量就能够确定错帧率, 进而由网 络设备 B确定链路的当前链路代价。
在确定了链路的当前链路代价之后, 可以优先将交换环路中当前链路 代价最大的链路确定为需要被阻塞的链路, 即, 将交换环路中当前链路代 价最差的链路确定为需要被阻塞的链路。
应当注意, 在以上描述中, 给出了根据错帧率或丟包率确定当前链路 代价的具体实施方式, 在实际应用中, 可以将链路的其他参数作为确定当 前链路代价所参照的依据, 并且, 根据实际选择参数的不同, 确定过程中 所釆用的公式也并不局限于 A, = A / (1 - V), 本文不再——列举。
优选地,在上述处理中,可以基于以太网的 OAM链路监控功能获取本 端和对端的链路代价; 由链路代价动态分配或动态调整用于环网选路的端 链路代价(即, 对各个链路的当前链路代价进行分析)。
上述处理可以引用于交换环路中的各个层面, 例如, 在将上述处理应 用于汇聚层(即, 2层)时, 可以由汇聚接入设备实现上述网络设备执行的 处理, 并使用更新的端链路代价动态调整 2层交换环网的通路(其中, 本 文出现提到的通路并不是指所有交换环路中所有的链路都必须处于未阻塞 状态, 由于网络设备之间的物理链路始终存在, 所以, 即使交换环路中的 部分链路处于阻塞状态, 即, 不能传输业务数据, 但此时的交换环路仍旧 是通路), 此时, 如图 3所示, 多个汇聚接入设备、 即数据汇聚交换机之间 的链路均基于 OAM协议。
为了清楚描述本发明, 下面以汇聚接入设备为数据汇聚交换机、 以及 2 层交换环网中 STP协议族和 EAPS协议为例对本发明进行说明, 其中 STP 协议族包括 STP, RSTP, MSTP等, 但并不限于此, 对于其他环网选路协 议, 仍可通过本发明实现, 并仍在本发明的保护范围之内。
实例 1
图 4是本发明实施例的通过 STP协议动态调整环网的处理流程图, 如 图 4所示, 包括以下处理:
步骤 401 , 初始化配置链路的链路代价;
具体的, 初始化配置每两个数据汇聚交换机之间的链路的初始链路代 价及其它代价, 其中, 链路的初始链路代价是由链路传输效率决定的, 而 初始链路传输效率仅由链路类型决定, 其中, 链路的初始传输效率可以为 10M或 100M或 1000M, 链路的初始传输效率的数量值越大, 链路的初始 链路代价越小, 即代表该链路越优, 其它代价可包括交换机 ID, 交换机优 先级, 端口优先级等。
步骤 402 , 开启环网选路协议 STP;
这里, 根据协议 STP, 会根据默认的链路代价和其它代价进行有选择 性的阻塞, 维持网络中唯一的一条 L2数据业务通道。
步骤 403 , 开启协议链路代价变化监测任务;
本步骤中, 对于每个数据汇聚交换机, 主要是监测与该数据汇聚交换 机相连接的每个链路在一定时间段内的链路动态参数, 例如, 丟包率、 错 帧率等。
步骤 404, 开启 OAM协议;
在具体实施时, 需要在数据汇聚交换机的本端及对端的数据汇聚交换 机同时开启 OAM协议, 并且配置好相应的链路动态参数, 使 OAM协议正 常运转起来。
步骤 405 , 开启 OAM协议链路监测任务;
本步骤中,每个数据汇聚交换机的 OAM协议链路监测任务是在一定时 间段内监测链路的链路动态参数, 例如丟包率, 错帧率等, 并根据链路动 态参数链路的初始传输效率进行调整, 得到链路的当前传输效率。 下面对 传输效率的调整方法进行说明。
以图 1为例,假设链路 1、链路 2、链路 3的初始传输效率分别为 10M、 100M、 1000M, 对应的链路代价为 A, 由于传输效率的数值越大, 对应的 链路代价越小, 代表链路的传输效率越高, 这样, 链路 3的传输效率最好, 链路 1 的传输效率最差。 监测链路的链路动态参数, 例如, 可以监测丟包 率(即 lossRate, 0 <= lossRate < 1 ), 丟包率的计算方法在上文中已经详细 说明, 这里不再赘述, 此时, 可以通过下述公式计算各链路的当前链路代 价:
当前链路代价 A, = A / (1 - lossRate)„ 步骤 406,数据汇聚交换机通过步骤 405计算出链路的当前链路代价后, 判断链路的当前链路代价是否发生了变化,如果发生变化,则进入步骤 408, 否则进入步骤 407。
步骤 407, 返回至 OAM协议链路监测任务, 并在预定的时间内开始新 的监测。
步骤 408,数据汇聚交换机更新链路的当前链路代价,并进入步骤 409。 步骤 409, 重新选择环网通路, 并返回至 OAM协议链路监测任务; 具体地, 环网选路协议会根据各链路更新后的链路代价重新选择环网 的通路, 例如, 优先将交换环路中当前链路代价最小的链路作为 2层交换 环网的主用链路, 并优先将交换环路中当前链路代价最大的链路作为 2层 交换环网中需要被阻塞的链路, 以降低 2层数据业务的链路代价, 并保证 业务数据传输的可靠性。
实例 2
本发明在 EAPS协议中的应用:
EAPS协议是通过链路通断进行环网选路的,考虑本发明中链路效率的 影响, 可以在 EAPS协议报文中增加一个字段: slaveLinkCost, 表示备用链 路的链路代价。
图 5是本发明实施例的通过 EAPS协议动态调整环网的处理流程图, 如图 5所示, 包括以下步骤:
步骤 501 ,初始化配置每两个数据汇聚交换机之间的初始链路代价及其 它代价, 该步骤与步骤 401 类似, 这里不再赘述, 具体地, 可以通过环网 选路控制单元初始化配置链路的链路代价。
步骤 502 ,开启环网选路协议 EAPS ,在具体实施时,环网选路协议 EAPS 会根据默认的主从配置选择一条主用通道, 阻塞备用通道, 此时全网各个 链路的链路代价是相同的, 协议报文中传递全网唯一的备用链路的代价, 即 slaveLinkCost。
步骤 503 , 开启协议链路代价变化监测任务, 并执行步骤 504和步骤
508。
在具体实施时, 协议链路代价的范围是和具体环网选路协议相关的, 例如在 EAPS中, 传统的方法是基于链路通断的。 本步骤是传统 2层交换 环网的处理方式, 如果监测到链路的通断发生了变化, 则会进行重新的环 网选路操作。
步骤 504,进行链路通断的监测,判断链路通断是否发生变化,如果是, 则执行步骤 506; 否则执行步骤 505。
步骤 505,在链路通断没有变化的情况下,返回链路代价变化监测任务。 步骤 506, 重新选择环网通路, 之后执行步骤 507。
步骤 507, 选择完环网通路后, 返回链路代价变化监测任务。
步骤 508, 开启 OAM协议, 该步骤是在步骤 503执行后与步骤 504并 行执行的。
在具体实施时,需要在本端及对端同时开启 OAM协议,并且配置好相 应的参数, 使 0 AM协议正常的运转起来。
步骤 509, 开启 OAM协议链路监测任务。
在具体实施时, OAM协议链路监测任务监测最近一段时间内链路的传 输效率, 如丟包率, 错帧率等。
步骤 510, 判断链路的传输效率是否发生变化, 如果链路传输效率没有 变化, 则执行步骤 511 , 如果链路传输效率发生变化, 则执行步骤 512。
步骤 511 , 返回 OAM协议链路监测任务。
步骤 512, 判断备用链路代价是否小于或等于当前发生变化的链路代 价。
在具体实施时, 当监测结果超过预先设定的门限时, 会根据修正准则 动态更新端的链路代价。 以下面一种修正准则简单说明一下: 假设链路的链路代价初始为 linkCost (其中数值越 d、代表越优, 初始时 全网的链路代价都是一样的, 并且 linkCost = slaveLinkCost ), 链路的丟包 率为 lossRate ( 0 <= lossRate < 1 ), 则修正准则可定义为:
更新后的链路代价 linkCost' = linkCost / ( 1 - lossRate)。
如果 linkCost' > slaveLinkCost (即, 在步骤 512 中判断结果为 slaveLinkCost不优于链路代价), 则认为当前链路没有备用链路优, 可以将 当前变化链路认为是 "断" 的, 然后进行重新选择环网通路, 同时更新 slaveLinkCost, 即保证 slaveLinkCost为所有链路中的代价最大。
如果 linkCost' < slaveLinkCost (即, 在步骤 512 中判断结果为 slaveLinkCost优于链路代价), 则认为当前链路比备用链路优, 可以将当前 变化链路认为是 "通" 的, 然后进行重新选择环网通路, 同时更新 slaveLinkCost„
也就是说, 如果步骤 512的判断结果为 slaveLinkCost优于链路代价, 则执行步骤 515 , 否则执行步骤 513。
步骤 513 , 当前变化链路是 "断" 的, 则执行步骤 506和步骤 514。 步骤 514, 返回 OAM协议链路监测任务。
步骤 515 , 当前变化链路是 "通" 的, 则执行步骤 514, 以返回 OAM 协议链路监测任务。
这样, 通过选择传输效率最好的链路(即, 链路代价最小的链路)作 为 2层交换环网的通路, 以提高 2层数据业务的传输效率及可靠性。
图 6是根据本发明实施例的网络设备的框图, 如图 6所示, 根据本发 明实施例的网络设备包括:
第一确定模块 61 , 用于确定与网络设备相连接的所有链路的当前链路 代价, 其中, 网络设备根据链路的初始链路代价和链路调整参数确定链路 的当前链路代价;
第二确定模块 62, 用于获取网络设备所在的交换环路中所有链路的当 前链路代价, 并确定交换环路的主用链路, 其中, 主用链路的当前链路代 价小于或等于预定链路代价。
其中, 链路调整参数包括以下之一: 链路的丟包率、 链路的错帧率。 第一确定模块 61可以参照以下公式, 从而根据链路的初始链路代价和 链路调整参数确定链路的当前链路代价: A, = A / (1 - V), 其中, A,为链路 的链路当前链路代价, A为链路的初始链路代价, V 为链路的链路调整参 数, ( V < 1。
第二确定模块 62具体可以用于优先将交换环路中当前链路代价最小的 链路确定为交换环路的主用链路, 并优先将交换环路中当前链路代价最大 的链路确定为需要被阻塞的链路。
在包含多个上述网络设备的交换环路中, 一条链路能够将两个网络设 备彼此相连, 在进行链路当前链路代价的确定时, 该链路任意一端的网络 设备就能够确定该链路的当前链路代价。 根据需要, 也可以由链路两端的 网络设备均确定链路的当前链路代价, 并对两个设备得到的结果进行平均、 加权或其他处理, 将最终得到的结果作为该链路的当前链路代价。 因此, 第一确定模块 61可以被配置为直接确定本网络设备的所有链路的当前链路 代价, 也可以被配置为确定本网络设备的部分指定链路的链路代价。
在由多台根据本发明实施例的网络设备组成的交换环路中, 对于每个 链路, 可以由两端的网络设备均进行当前链路代价的确定, 并对两个网络 设备得到的当前链路代价进行处理, 得到最终该链路的当前链路代价; 也 可以仅由其中的一个设备进行确定, 根据错帧率、 丟包率以及其他参数进 行确定的过程之前已经描述, 这里不再重复。
由于在实际应用中, 根据本发明实施例的网络设备可以基于以太网的 OAM链路监控功能确定 2层链路的当前链路代价, 因此, 在将上述网络设 备应用于 2层网络时, 第一确定模块 61具体可以利用 OAM协议对链路代 价进行动态监控, 即, 能够开启以太网 OAM协议的链路监测功能, 动态监 测链路的链路代价, 并及时上报给第二确定模块 62, 以便进行后续处理, 第二确定模块 62具体可以实现 2层交换环网的选路备份及动态调整,其中, 在第一确定模块 61将链路的当前链路代价上报到第二确定模块 62时, 第 二确定模块 62就能够对整个环网的代价进行更新, 并根据更新的链路代价 重新进行环网通路的选择, 有效提高 2层数据业务的链路代价及可靠性, 并且第二确定模块 62还能够初始化链路的链路代价, 即, 能够执行上述步 骤 401的处理。
并且, 上述网络设备还应当包含数据交换单元, 用于实现基本的以太 网业务 2层交换, 并且能够进行流量调度, 同时还能够监控链路的 QoS等 业务属性。
综上所述, 借助于本发明的上述技术方案, 通过参照能够准确反映链 路实际状况的当前链路代价, 从而能够根据当前链路代价将实际链路代价 优的链路确定为主用链路, 避免了相关技术中由于参照初始链路代价进行 链路选择而将实际链路代价差的链路作为主用链路、 进而影响网络整体传 输效率的问题, 能够对交换环路的调整进行合理的优化, 开启当前链路代 价优的链路为 2层交换环网的通路, 阻塞当前链路代价差的链路, 提高主 用链路以及整个网络的传输效率和可靠性; 并且, 可以进行链路代价的实 时监控, 对交换环路不断进行更新和调整, 从而实时保证整个网络的传输 效率。
以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在 本发明的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包 含在本发明的保护范围之内。

Claims

权利要求书
1. 一种交换环路的动态调整方法, 其特征在于, 该方法包括: 交换环路中的网络设备确定与所述网络设备相连接的所有链路的当前 链路代价, 其中, 所述网络设备根据所述链路的初始链路代价和链路调整 参数确定所述链路的当前链路代价;
所述网络设备获取所述交换环路中所有链路的当前链路代价, 并确定 所述交换环路的主用链路, 其中, 所述主用链路的当前链路代价小于或等 于预定链路代价。
2. 根据权利要求 1所述的动态调整方法, 其特征在于, 所述确定所述 交换环路的主用链路为:
优先将所述交换环路中当前链路代价最小的链路确定为所述交换环路 的主用链路。
3. 根据权利要求 1所述的动态调整方法, 其特征在于, 所述链路调整 参数包括以下之一: 链路的丟包率、 链路的错帧率。
4. 根据权利要求 1所述的动态调整方法, 其特征在于, 所述网络设备 根据所述链路的初始链路代价和链路调整参数确定所述链路的当前链路代 价为:
A' = A / (l - V), 其中, A,为所述链路的链路当前链路代价, A为所述 链路的初始链路代价, V为所述链路的链路调整参数, 0 V < 1。
5. 根据权利要求 4所述的动态调整方法, 其特征在于, 如果链路调整 参数为链路的丟包率, 则根据下述公式计算丟包率 V:
V= ( P - Q ) /P, 其中, P为通过所述链路与所述网络设备连接的另一 网络设备向所述网络设备发送的报文数量, Q 为所述网络设备从所述另一 网络设备接收到的报文数量。
6. 根据权利要求 5所述的动态调整方法, 其特征在于, 所述网络设备 通过操作管理维护协议获得收发报文的数量。
7. 根据权利要求 4所述的动态调整方法, 其特征在于, 如果链路调整 参数为链路的错帧率, 则根据下述公式计算错帧率 V:
V=S/ ( S+D ), 其中, S为一时间段内所述网络设备通过所述链路接收 到的来自另一网络设备的坏帧的数量, D 为所述时间段内所述网络设备通 过所述链路接收到的来自所述另一网络设备的好帧的数量。
8. 根据权利要求 1至 7中任一项所述的动态调整方法, 其特征在于, 该方法还包括:
优先将所述交换环路中当前链路代价最大的链路确定为需要被阻塞的 链路。
9. 一种网络设备, 其特征在于, 包括: 第一确定模块、 第二确定模块; 其中,
第一确定模块, 用于确定与所述网络设备相连接的所有链路的当前链 路代价, 其中, 所述网络设备根据所述链路的初始链路代价和链路调整参 数确定所述链路的当前链路代价;
第二确定模块, 用于获取所述网络设备所在的交换环路中所有链路的 当前链路代价, 并确定所述交换环路的主用链路, 其中, 所述主用链路的 当前链路代价小于或等于预定链路代价。
10. 根据权利要求 9所述的网络设备, 其特征在于, 所述链路调整参数 包括以下之一: 链路的丟包率、 链路的错帧率。
11. 根据权利要求 9所述的网络设备, 其特征在于, 所述第一确定模块 根据以下公式确定所述链路的当前链路代价:
A' = A / (l - V), 其中, A,为所述链路的链路当前链路代价, A为所述 链路的初始链路代价, V为所述链路的链路调整参数, 0 V < 1。
12. 根据权利要求 9至 11中任一项所述的网络设备, 其特征在于, 所 述第二确定模块, 具体用于优先将所述交换环路中当前链路代价最小的链 路确定为所述交换环路的主用链路, 并优先将所述交换环路中当前链路代 价最大的链路确定为需要被阻塞的链路。
PCT/CN2011/072551 2010-05-24 2011-04-08 交换环路的动态调整方法及网络设备 WO2011147229A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/699,153 US9071538B2 (en) 2010-05-24 2011-04-08 Method for dynamically adjusting switching loop and network equipment
EP11786001.5A EP2566114B1 (en) 2010-05-24 2011-04-08 Method and network equipment for dynamically adjusting switching loop

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010189509.7 2010-05-24
CN201010189509A CN101860484A (zh) 2010-05-24 2010-05-24 交换环路的动态调整方法及网络设备

Publications (1)

Publication Number Publication Date
WO2011147229A1 true WO2011147229A1 (zh) 2011-12-01

Family

ID=42946149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/072551 WO2011147229A1 (zh) 2010-05-24 2011-04-08 交换环路的动态调整方法及网络设备

Country Status (4)

Country Link
US (1) US9071538B2 (zh)
EP (1) EP2566114B1 (zh)
CN (1) CN101860484A (zh)
WO (1) WO2011147229A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8165224B2 (en) * 2007-03-22 2012-04-24 Research In Motion Limited Device and method for improved lost frame concealment
CN101860484A (zh) * 2010-05-24 2010-10-13 中兴通讯股份有限公司 交换环路的动态调整方法及网络设备
CN105471728A (zh) * 2014-09-12 2016-04-06 中兴通讯股份有限公司 一种信息传递主隧道的替代隧道的选择方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1606850A (zh) * 2001-03-12 2005-04-13 光网络公司 动态分配的环路保护和恢复技术中的带宽保留再使用
CN1859049A (zh) * 2005-04-29 2006-11-08 华为技术有限公司 获取最优共享保护路径的方法
CN101651600A (zh) * 2008-08-14 2010-02-17 中国移动通信集团设计院有限公司 网格网络中更新链路代价的方法和装置
CN101860484A (zh) * 2010-05-24 2010-10-13 中兴通讯股份有限公司 交换环路的动态调整方法及网络设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6034946A (en) * 1997-04-15 2000-03-07 International Business Machines Corporation Selection of routing paths in data communications networks to satisfy multiple requirements
US6771700B1 (en) * 1999-10-09 2004-08-03 Qualcomm Incorporated Method and apparatus for minimizing total transmission energy in a communication system employing retransmission of frame received in error
CN1567891B (zh) * 2003-06-20 2010-04-21 华为技术有限公司 一种实现对数据业务传输路径选择的方法
JP2005086460A (ja) * 2003-09-09 2005-03-31 Nec Corp 経路設計装置及びその方法並びにプログラム
JP4737035B2 (ja) * 2006-10-30 2011-07-27 日本電気株式会社 QoSルーティング方法およびQoSルーティング装置
JP5508292B2 (ja) * 2008-03-11 2014-05-28 トムソン ライセンシング 無線マルチホップ・メッシュ・ネットワークにおけるアソシエーション、ルーティング、およびレート割当ての統合

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1606850A (zh) * 2001-03-12 2005-04-13 光网络公司 动态分配的环路保护和恢复技术中的带宽保留再使用
CN1859049A (zh) * 2005-04-29 2006-11-08 华为技术有限公司 获取最优共享保护路径的方法
CN101651600A (zh) * 2008-08-14 2010-02-17 中国移动通信集团设计院有限公司 网格网络中更新链路代价的方法和装置
CN101860484A (zh) * 2010-05-24 2010-10-13 中兴通讯股份有限公司 交换环路的动态调整方法及网络设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2566114A4 *

Also Published As

Publication number Publication date
EP2566114A1 (en) 2013-03-06
US20130064130A1 (en) 2013-03-14
EP2566114B1 (en) 2016-12-14
EP2566114A4 (en) 2015-08-19
CN101860484A (zh) 2010-10-13
US9071538B2 (en) 2015-06-30

Similar Documents

Publication Publication Date Title
CN107959633B (zh) 一种工业实时网络中基于价格机制的多路径负载均衡方法
US10673741B2 (en) Control device discovery in networks having separate control and forwarding devices
Sharma et al. In-band control, queuing, and failure recovery functionalities for openflow
EP2720418B1 (en) Lacp link switching and data transmission method and device
EP2451207B1 (en) Method for bandwidth information notification, method for service processing, network node and communication system
US9628389B2 (en) Dynamic, asymmetric rings
EP2475131B1 (en) Method for bandwidth information notification, method for service processing, network node and communication system
WO2015090036A1 (zh) 捆绑链路的配置处理、配置方法及装置
WO2015090027A1 (zh) 业务节点间业务处理方法及装置
Soetens et al. SDN-based management of heterogeneous home networks
KR20180122513A (ko) Sdn 기반 네트워크 가상화 플랫폼의 네트워크 하이퍼바이저에서 트래픽 엔지니어링 방법 및 프레임워크
WO2011147229A1 (zh) 交换环路的动态调整方法及网络设备
JP4467500B2 (ja) ネットワーク中継装置
WO2013131585A1 (en) Method and system for controlling flow of notifications within a telecommunications network
WO2012152139A1 (zh) 一种基于生存时间控制的保护倒换优化方法和装置
CN101453387A (zh) 一种资源状态监控方法及装置以及通信网络
CN117811991A (zh) 一种基于闭环的拥塞反馈和探测实现多域云网的算路方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11786001

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13699153

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011786001

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011786001

Country of ref document: EP