WO2011145844A2 - Fluid pump having waterproof structure - Google Patents

Fluid pump having waterproof structure Download PDF

Info

Publication number
WO2011145844A2
WO2011145844A2 PCT/KR2011/003576 KR2011003576W WO2011145844A2 WO 2011145844 A2 WO2011145844 A2 WO 2011145844A2 KR 2011003576 W KR2011003576 W KR 2011003576W WO 2011145844 A2 WO2011145844 A2 WO 2011145844A2
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
housing
stator
support shaft
disposed
Prior art date
Application number
PCT/KR2011/003576
Other languages
French (fr)
Korean (ko)
Other versions
WO2011145844A3 (en
Inventor
김병수
Original Assignee
주식회사 아모텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아모텍 filed Critical 주식회사 아모텍
Priority to US13/698,332 priority Critical patent/US20130064695A1/en
Publication of WO2011145844A2 publication Critical patent/WO2011145844A2/en
Publication of WO2011145844A3 publication Critical patent/WO2011145844A3/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/021Units comprising pumps and their driving means containing a coupling
    • F04D13/024Units comprising pumps and their driving means containing a coupling a magnetic coupling
    • F04D13/027Details of the magnetic circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0666Units comprising pumps and their driving means the pump being electrically driven the motor being of the plane gap type

Definitions

  • the present invention relates to a waterproof fluid pump that can block the flow of fluid, such as water into the motor at the source.
  • a water pump motor is used as a driving source of a water pump used to drive a water pump installed in a drainage tank of a washing machine or to supply cooling water to an engine.
  • a water pump equipped with such a water pump motor is always fitted directly with water. It works in the environment it touches.
  • a motor pump or stator having a mechanical seal structure for the purpose of protecting the motor from water when water inside the water pump is drained to the outside or to prevent bearing failure, belt life shortening, etc. due to cooling water leakage.
  • Canned motor pump (canned motor pump) having a can cover structure for sealing the is used.
  • the canned motor pump has a problem in that water is submerged in the rotor and thus affects the rotation of the rotor, thereby degrading motor efficiency.
  • the conventional canned motor pump structure has a problem that the assembly productivity is low because the impeller's rotary shaft is integrally formed with the rotary shaft of the motor and thus the motor and the pump unit cannot be assembled and tested, respectively.
  • the can cover of the canned motor pump has a problem in that it is not easy to be combined with the stator core when assembling the stator by forming a PPS material.
  • the molding cost is increased by inserting the exterior of the stator using a bulk mold compound (BMC) and simultaneously adopting a double sealing structure by a sealing cover for PPS material.
  • BMC bulk mold compound
  • an object of the present invention is to provide a fluid pump that can realize a slim structure by employing an axial type coreless BLDC motor as a drive motor for driving an impeller.
  • Another object of the present invention is to provide a fluid pump capable of blocking the inflow of water into the motor while suppressing axial vibration by adopting a double rotor structure in an axial type coreless BLDC motor.
  • Still another object of the present invention is to form a coreless stator and a support shaft integrally with the pump housing so that a separate waterproofing process can be omitted, thereby setting the magnetic gap between the rotor and the stator of the drive motor to an optimal state.
  • An object of the present invention is to provide a fluid pump capable of improving efficiency.
  • Still another object of the present invention is to provide a fluid pump capable of sealing the driving motor without any additional device, thereby reducing the manufacturing cost.
  • the fluid pump includes a first housing and a second housing coupled to each other, a support shaft fixed to the second housing, an impeller accommodated in the first housing and pumping fluid; A stator fixed to the second housing, a first rotor disposed inside the second housing, rotatably supported on the support shaft, and disposed to face one side of the stator, and fixed to the impeller, And a second rotor disposed to face the other side.
  • the support shaft is formed integrally with an insert molding on the upper plate of the second housing, the upper side is located inside the first housing, the lower side is located inside the second housing.
  • a driver for applying a driving signal to the stator is accommodated in the second housing.
  • the stator is characterized in that the coreless type.
  • the stator may be integrally fixed to the upper plate of the second housing by insert molding.
  • the first rotor and the second rotor includes a plurality of magnets composed of divided pieces or ring magnets in which the N pole and the S pole are divided and magnetized.
  • the first rotor and the second rotor is characterized in that the surfaces facing each other are arranged to have the opposite polarity.
  • the first rotor includes a rotor support rotatably supported by a support shaft positioned inside the second housing, a plurality of magnets fixed to the rotor support, and an annular back yoke formed on a rear surface of the magnet.
  • the second rotor is a rotor support rotatably supported on a support shaft located inside the first housing and fixed to an impeller, a plurality of magnets fixed to the rotor support, and an annular bag formed on a rear surface of the magnet. Contains yoke.
  • the first rotor and the second rotor is characterized in that rotatably supported on the support shaft by a sleeve bearing.
  • the fluid pump of the present invention can realize a slim structure having a size of 1/2 compared to the core type drive motor by employing an axial type coreless BLDC motor as a drive motor for driving the impeller.
  • the fluid pump of the present invention can suppress axial vibration by employing a double rotor structure in an axial type coreless BLDC motor.
  • the fluid pump of the present invention integrally forms the coreless stator and the support shaft in the pump housing, integrally forms the first rotor with the impeller, and arranges the second rotor outside the pump housing so that water flows into the drive motor. Can be blocked.
  • a separate waterproofing process can be omitted, thereby setting the magnetic gap between the rotor and the stator of the drive motor to an optimal state and thus improving the efficiency of the motor. Can improve.
  • FIG. 1 is an axial cross-sectional view of a fluid pump according to an embodiment of the present invention.
  • FIG. 2 is a view showing a disposition relationship between a coil of a stator and a magnet of a rotor in a motor employed in the fluid pump of FIG. 1.
  • FIG. 3 is a cross-sectional view of the stator of the motor of FIG. 1.
  • FIG. 4 is a plan view of the rotor of the motor of FIG.
  • FIG. 1 is a cross-sectional view of a fluid pump according to an embodiment of the present invention
  • FIG. 2 is a view showing an arrangement relationship between a coil of a stator and a magnet of a rotor in a motor employed in the fluid pump of FIG. 1
  • FIG. 3 is FIG. 1. Is a cross-sectional view of the stator of the motor of FIG. 4, and FIG. 4 is a plan view of the rotor of the motor of FIG.
  • a fluid pump according to an embodiment of the present invention includes a pump housing 10, a motor 1, and an impeller 43.
  • the pump housing 10 may be sealed to an open lower side of the first housing 15 having the inlet 15a through which the fluid is introduced and the outlet 15b through which the fluid is discharged, and the first housing 15. And a second housing 14 to be mounted.
  • the motor 1 and the driver 36 for driving the motor 1 are built in the second housing 14, and the cover 11 is sealably coupled to the open lower side of the second housing 14. do.
  • At least three fixing extension parts 11b and 14b protrude between the cover 11 and the second housing 14 to fasten the fixing screw or the fixing bolt to the coupling hole, and the cover 11
  • the cylindrical protrusion 11a protrudes from the upper side of the cover 11 between the second housing 14 and the sealing O-ring 35a is inserted into the outer circumferential surface of the second housing 14.
  • At least three fixing extension parts 14c and 15d protrude from each other between the second housing 14 and the first housing 15 so that the fixing screws or fixing bolts may be fastened to the coupling holes.
  • a sealing O-ring 35b is inserted into a recess formed in the outer circumferential surface of the second housing 14 to seal between the first housing 15 and the second housing 14.
  • An inlet 15a through which fluid is introduced is formed in the upper center of the first housing 15, and an outlet 15b through which the pumped fluid is discharged is formed at a side of the first housing 15, and an inlet 15a and the inlet 15a.
  • An impeller 43 is disposed in the fluid flow passage P between the outlets 15b.
  • the first housing 15 is extended so that an open bottom has a wider space than the inlet 15a so that the impeller 43 can be disposed in the fluid flow passage P.
  • An insertion portion 14d inserted into the lower inner surface of the first housing 15 is formed above the second housing 14.
  • the impeller 43 has a disk-like body 43a and a plurality of wings radially formed in the body 43a to discharge fluid such as water flowing from the inlet 15a through the outlet 15b disposed on the side. (43b).
  • the support shaft 27 is integrally formed by being embedded in the upper plate 14a of the second housing 14 at the time of insert molding in order to mold the second housing 14.
  • the support shaft 27 is integrally formed with the upper plate 14a of the second housing 14, the fluid may be blocked from flowing into the inner space of the second housing 14.
  • the lower end of the support shaft 27 is inserted into the press-in portion 11c formed in the center of the cover 11, and the stopper 44 is coupled to the upper end of the support shaft 27 to prevent the impeller 43 from being separated. .
  • an axial including a coreless stator 26 and double rotors 20 and 30 arranged in symmetrical structures on both sides of the stator 26 as driving means for rotationally driving the impeller 43.
  • a type BLDC motor 1 is adopted.
  • the coreless stator 26 for example, when forming the second housing 14 of the six coils (26b) wound on a square bobbin (26a) of a rhombic shape, respectively. It is embedded in the top plate 14a and integrated in the insert molding method.
  • the six coils 26b may be molded by a resin insulating material in a state in which the six coils 26b are connected to the auxiliary PCB so as to facilitate mutual connection between the coils.
  • the coil 26b of the stator 26 is, for example, three coils divided into six in the three-phase driving method is wound on the bobbin 26a and connected to the Y method in the auxiliary PCB, 2 in the two-phase driving method. Coils 26b are wound in eight and connected in series.
  • the coil 26b forms the stator 26 in a state where the exposed portion of the coil is sealed with a resin insulating material, reliable insulation is also achieved between the coils 26b wound on the bobbin 26a, and moistureproof, vibration absorbing, and corrosion resistance Is also excellent.
  • the through hole 14e through which the support shaft 27 passes is formed in the upper plate 14a of the second housing 14, and the support shaft 27 is integrally fixed to the second housing 14 by an insert molding method.
  • the fluid can be blocked from leaking through the through hole 14e.
  • the double rotors 20 and 30 are composed of a first rotor 20 and a second rotor 30 which are arranged with an air gap in a symmetrical structure on both sides of the stator 26.
  • the first rotor 20 is located inside the second housing 14, and the second rotor 30 is located inside the first housing 15 and is rotatably supported by the support shaft 27, respectively.
  • the first sleeve bearing 34a is disposed between the first rotor 20 and the support shaft 27, and the second sleeve bearing 34b is disposed between the second rotor 30 and the support shaft 27.
  • the first sleeve bearing 34a and the second sleeve bearing 34b may preferably use an oilless bearing such as a carbon bearing or a plastic bearing in consideration of contact with the fluid.
  • the first rotor 20 includes a plurality of magnets 22 arranged in parallel with one side of the stator 26 at a predetermined distance, and an annular shape disposed on the rear surface of the magnets 22 to form a magnetic circuit.
  • the back yoke 21 and the rotor support 23 are fixed to the magnet 22 and the back yoke 21 integrally, and are rotatably supported by the support shaft 27.
  • the rotor support 23 integrally forms the magnet 22 and the back yoke 21 in an insert molding manner.
  • the second rotor 30 includes a plurality of magnets 32 arranged in parallel with the other side of the stator at a predetermined distance and an annular back yoke disposed on the rear surface of the magnets 32 to form a magnetic circuit. 31 and a rotor support 33 which integrally fixes the magnet 32 and the back yoke 31 and is rotatably supported by the support shaft 37.
  • the rotor support 33 is formed integrally with the magnet 32, the back yoke 31 and the impeller 43 in an insert molding method.
  • the mutual arrangement relationship between the magnets 22 and 32 and the coils 26b of the stator 26 is such that the disc-shaped magnets 22 and 32 are bobbins 26a, that is, square bobbin coils 26b.
  • the stator 26 includes six coils 26b, and eight N-pole and S-pole magnets 22 and 32 are alternately arranged in the first rotor 20 and the second rotor 30, respectively. .
  • the first rotor 20 and the second rotor 30 are composed of a plurality of N-pole and S-pole divided magnet pieces as shown in FIG. 4, or N-pole and S-pole are split magnetized in a ring-shaped magnet. It is also possible to use magnets.
  • the stator 26 embeds a plurality of coils 26b in the center of the upper plate 14a of the second housing 14 when insert molding the second housing 14 so as to be integral with the second housing 14. Is formed.
  • stator 26 is integrally formed inside the second housing 14 by insert molding, water may be blocked from flowing into the stator 26.
  • the stator 26 receives a driving signal for the stator coil 26b from the driver 36 embedded in the second housing 14.
  • a magnetic field is formed in a predetermined setting direction.
  • the magnets 22 and 32 of the first rotor 20 and the second rotor 30 are disposed with opposite polarities, the magnets 22 and 32 of the first rotor 20 and the second rotor 30 may be disposed at opposite polarities. The same repulsive force or suction force is applied between 32 and coil 26b.
  • the repulsive force and the suction force between the magnets 22 and 32 and the coil 26b act in opposite directions to cancel each other so that the axial vibration is kept to a minimum while the first rotor 20 and the second rotor 30 are kept.
  • the fluid pump according to the embodiment of the present invention employs an axial type coreless BLDC motor as the motor 1 for driving the impeller 43, and thus the motor size is about 1/2 the weight of the conventional core type motor. It is possible to realize a slim structure with about 1/3 reduction.
  • the fluid pump according to an embodiment adopts the double rotor type in the axial type coreless BLDC motor and moves the coreless stator 26 and the support shaft 27 to the second housing of the pump housing 10. It can be integrally formed with 14) to realize complete waterproofing of the motor 1.
  • the fluid pump according to one embodiment canned the conventional sealing cand cover by integrally forming the coreless stator 26 and the support shaft 27 in the second housing 14 of the pump housing 10. It is possible to omit a separate waterproofing process such as a cover), which causes the magnetic gap between the first rotor 20 and the second rotor 30 and the stator 26 of the motor 1 to be set to an optimal state. Efficiency can be improved and manufacturing cost can be reduced.
  • the fluid pump according to the embodiment can minimize the components required to drive and support the impeller 43, thereby reducing cost and improving durability.
  • the coreless stator is used in order to achieve a slim structure while adopting the axial type BLDC motor as the impeller driving motor 1, but it is also possible to use the core type stator. .
  • the coil 26b is wound around the bobbin 26a in the coreless stator, but a bobbinless type coil may be applied to further slim down the coreless stator.
  • the fluid pump mechanically separates between the motor generating the rotational force and the impeller pumping the fluid, and uses the magnetic force to transmit the rotational force of the motor to the impeller so as to naturally waterproof the motor. It can be applied to a fluid pump requiring sealing of a motor such as a water pump or fuel pump.

Abstract

The fluid pump of the present invention includes: a first housing and a second housing coupled with each other; a supporting shaft fixed to the second housing; an impeller received in the first housing which pumps fluid; a stator fixed to the second housing; a first rotor arranged inside the second housing, rotatably supported by the supporting shaft, and disposed in the second housing to face one side surface of the stator; and a second rotor fixed to the impeller and disposed to face the other side surface of the stator. It is possible to realize a slim structure by employing an axial type BLDC motor as a motor for driving the impeller and to improve the waterproof performance of the motor by forming the stator of the motor to be buried in the housing.

Description

방수구조를 갖는 유체 펌프Water resistant fluid pump
본 발명은 모터 내부로 물 등의 유체가 유입되는 것을 원천적으로 차단할 수 있는 방수형 유체 펌프에 관한 것이다. The present invention relates to a waterproof fluid pump that can block the flow of fluid, such as water into the motor at the source.
일반적으로 워터펌프 모터는 세탁기의 배수조에 설치된 워터펌프를 구동하거나 엔진의 냉각수 순환공급을 위해 사용하는 워터펌프의 구동원으로 사용되며, 이러한 워터펌프 모터를 장착한 워터 펌프는 내부에 항상 물과 직접 맞닿아 있는 환경에서 작동한다. Generally, a water pump motor is used as a driving source of a water pump used to drive a water pump installed in a drainage tank of a washing machine or to supply cooling water to an engine. A water pump equipped with such a water pump motor is always fitted directly with water. It works in the environment it touches.
따라서, 워터펌프 내부의 물이 외부로 배수될 때 또는 냉각수 누수로 인한 베어링 고장, 벨트 수명단축 등을 막기 위하여 물로부터 모터를 보호하기 위한 목적으로 메카니컬 실(mechanical seal) 구조를 갖는 모터 펌프 또는 스테이터를 실링시키는 캔드 커버 구조를 갖는 캔드 모터 펌프(canned motor pump)가 사용되고 있다.Therefore, a motor pump or stator having a mechanical seal structure for the purpose of protecting the motor from water when water inside the water pump is drained to the outside or to prevent bearing failure, belt life shortening, etc. due to cooling water leakage. Canned motor pump (canned motor pump) having a can cover structure for sealing the is used.
상기 캔드 모터 펌프를 제안한 미국 특허 제4,277,115호 등에서는 캔드 커버가 스테이터만을 실링하는 구조이므로 물이 로터에 잠기기 때문에 회전축을 지지하는 베어링의 내구성에 악영향을 미치며, 또한 로터와 스테이터 사이에 배치된 캔드 커버로 인하여 자기갭을 최적으로 유지할 수 없어 효율이 떨어지는 문제를 갖게 된다.In the U.S. Patent No. 4,277,115, which proposes the canned motor pump, since the can cover covers only the stator, water is immersed in the rotor, which adversely affects the durability of a bearing supporting the rotating shaft, and a can cover disposed between the rotor and the stator. As a result, the magnetic gap cannot be optimally maintained, resulting in a problem of low efficiency.
또한, 상기 캔드 모터 펌프는 물이 로터에 잠기기 때문에 로터의 회전에 영향을 미치어 모터 효율이 저하되는 문제가 있다.In addition, the canned motor pump has a problem in that water is submerged in the rotor and thus affects the rotation of the rotor, thereby degrading motor efficiency.
더욱이, 종래의 캔드 모터 펌프 구조는 임펠러의 회전축이 모터의 회전축과 일체로 구성되어 있어 모터와 펌프부를 각각 조립하여 시험할 수 없었기 때문에 조립생산성이 낮은 문제가 있다.Moreover, the conventional canned motor pump structure has a problem that the assembly productivity is low because the impeller's rotary shaft is integrally formed with the rotary shaft of the motor and thus the motor and the pump unit cannot be assembled and tested, respectively.
또한, 상기 캔드 모터 펌프의 캔드 커버는 PPS 재질로 성형하여 스테이터와 조립할 때 스테이터 코어와의 결합이 용이하지 못한 문제가 있다.In addition, the can cover of the canned motor pump has a problem in that it is not easy to be combined with the stator core when assembling the stator by forming a PPS material.
더욱이, 종래에는 스테이터의 외부를 BMC(Bulk Mould Compound)를 사용하여 인서트 몰딩함과 동시에 PPS 재질의 실링용 캔드 커버에 의해 2중 실링 구조를 채용함에 따라 제조 비용이 증가하는 문제가 있다.In addition, conventionally, the molding cost is increased by inserting the exterior of the stator using a bulk mold compound (BMC) and simultaneously adopting a double sealing structure by a sealing cover for PPS material.
따라서, 본 발명의 목적은 액시얼 타입의 코어리스형 BLDC 모터를 임펠러 구동용 구동 모터로 채용함에 의해 슬림형 구조를 실현할 수 있는 유체 펌프를 제공하는 데 있다. Accordingly, an object of the present invention is to provide a fluid pump that can realize a slim structure by employing an axial type coreless BLDC motor as a drive motor for driving an impeller.
본 발명의 다른 목적은 액시얼 타입의 코어리스형 BLDC 모터에서 더블 로터 구조를 채용함에 의해 축방향 진동을 억제하면서도 모터 내부로 물이 유입되는 것을 원천적으로 차단할 수 있는 유체 펌프를 제공하는 데 있다.Another object of the present invention is to provide a fluid pump capable of blocking the inflow of water into the motor while suppressing axial vibration by adopting a double rotor structure in an axial type coreless BLDC motor.
본 발명의 또 다른 목적은 코어레스형 스테이터와 지지축을 펌프 하우징에 일체로 형성함에 의해 별도의 방수처리를 생략할 수 있고 이로 인해 구동 모터의 로터와 스테이터 사이의 자기갭을 최적 상태로 설정하여 모터의 효율화를 도모할 수 있는 유체 펌프를 제공하는 데 있다. Still another object of the present invention is to form a coreless stator and a support shaft integrally with the pump housing so that a separate waterproofing process can be omitted, thereby setting the magnetic gap between the rotor and the stator of the drive motor to an optimal state. An object of the present invention is to provide a fluid pump capable of improving efficiency.
본 발명의 또다른 목적은 별도의 추가장치 없이 구동 모터에 대한 실링이 가능하여 제조비용을 절감할 수 있는 유체 펌프를 제공하는 데 있다. Still another object of the present invention is to provide a fluid pump capable of sealing the driving motor without any additional device, thereby reducing the manufacturing cost.
일 실시예에 따른 상기한 바와 같이, 유체 펌프는 상호 결합되는 제1하우징 및 제2하우징과, 상기 제2하우징에 고정되는 지지축과, 상기 제1하우징에 수용되고 유체를 펌핑하는 임펠러와, 상기 제2하우징에 고정되는 스테이터와, 상기 제2하우징 내부에 배치되고 상기 지지축에 회전 가능하게 지지되며 상기 스테이터의 일측면과 대향되게 배치되는 제1로터와, 상기 임펠러에 고정되고 상기 스테이터의 타측면과 대향되게 배치되는 제2로터를 포함한다.As described above, the fluid pump includes a first housing and a second housing coupled to each other, a support shaft fixed to the second housing, an impeller accommodated in the first housing and pumping fluid; A stator fixed to the second housing, a first rotor disposed inside the second housing, rotatably supported on the support shaft, and disposed to face one side of the stator, and fixed to the impeller, And a second rotor disposed to face the other side.
상기 지지축은 상기 제2하우징의 상판에 인서트 몰딩으로 일체로 형성되어 상측은 제1하우징 내부에 위치되고, 하측은 제2하우징 내부에 위치되는 것을 특징으로 한다.The support shaft is formed integrally with an insert molding on the upper plate of the second housing, the upper side is located inside the first housing, the lower side is located inside the second housing.
상기 제2하우징 내부에는 스테이터에 대한 구동신호를 인가하는 드라이버가 수용되는 것을 특징으로 한다.A driver for applying a driving signal to the stator is accommodated in the second housing.
상기 스테이터는 코어리스 타입인 것을 특징으로 한다.The stator is characterized in that the coreless type.
상기 스테이터는 제2하우징의 상판에 인서트 몰딩에 의해 일체로 고정되는 것을 특징으로 한다.The stator may be integrally fixed to the upper plate of the second housing by insert molding.
상기 제1로터 및 제2로터는 분할편으로 이루어진 다수의 자석 또는 N극 및 S극이 분할 착자된 링형 자석을 포함한다.The first rotor and the second rotor includes a plurality of magnets composed of divided pieces or ring magnets in which the N pole and the S pole are divided and magnetized.
상기 제1로터 및 제2로터는 서로 마주보는 면이 서로 반대 극성을 갖도록 배치되는 것을 특징으로 한다.The first rotor and the second rotor is characterized in that the surfaces facing each other are arranged to have the opposite polarity.
상기 제1로터는 제2하우징 내부에 위치되는 지지축에 회전 가능하게 지지되는 로터 지지체와, 상기 로터 지지체에 고정되는 복수의 자석과, 상기 자석의 배면에 형성되는 환형의 백 요크를 포함한다.The first rotor includes a rotor support rotatably supported by a support shaft positioned inside the second housing, a plurality of magnets fixed to the rotor support, and an annular back yoke formed on a rear surface of the magnet.
상기 제2로터는 상기 제1하우징 내부에 위치되는 지지축에 회전 가능하게 지지되고 임펠러에 고정되는 로터 지지체와, 상기 로터 지지체에 고정되는 복수의 자석과, 상기 자석의 배면에 형성되는 환형의 백 요크를 포함한다.The second rotor is a rotor support rotatably supported on a support shaft located inside the first housing and fixed to an impeller, a plurality of magnets fixed to the rotor support, and an annular bag formed on a rear surface of the magnet. Contains yoke.
상기 제1로터 및 제2 로터는 슬리브 베어링을 의해 지지축에 회전 가능하게 지지되는 것을 특징으로 한다.The first rotor and the second rotor is characterized in that rotatably supported on the support shaft by a sleeve bearing.
상기한 바와 같이, 본 발명의 유체 펌프는 액시얼 타입의 코어리스형 BLDC 모터를 임펠러 구동용 구동 모터로 채용함에 의해 코어 타입의 구동 모터에 비해 1/2 크기의 슬림형 구조를 실현할 수 있다. As described above, the fluid pump of the present invention can realize a slim structure having a size of 1/2 compared to the core type drive motor by employing an axial type coreless BLDC motor as a drive motor for driving the impeller.
또한, 본 발명의 유체 펌프는 액시얼 타입의 코어리스형 BLDC 모터에서 더블 로터 구조를 채용함에 의해 축방향 진동을 억제할 수 있다.In addition, the fluid pump of the present invention can suppress axial vibration by employing a double rotor structure in an axial type coreless BLDC motor.
또한, 본 발명의 유체 펌프는 코어리스형 스테이터와 지지축을 펌프 하우징에 일체로 형성하고, 제1로터를 임펠러와 일체로 형성하며 제2로터를 펌프 하우징 외부에 배치하여 구동 모터로 물이 유입되는 것을 차단할 수 있다.In addition, the fluid pump of the present invention integrally forms the coreless stator and the support shaft in the pump housing, integrally forms the first rotor with the impeller, and arranges the second rotor outside the pump housing so that water flows into the drive motor. Can be blocked.
더욱이, 본 발명에서는 코어레스형 스테이터와 지지축을 펌프 하우징에 일체로 형성함에 의해 별도의 방수처리를 생략할 수 있고 이로 인해 구동 모터의 로터와 스테이터 사이의 자기갭을 최적 상태로 설정하여 모터의 효율을 향상시킬 수 있다. Furthermore, in the present invention, by separately forming the coreless stator and the support shaft in the pump housing, a separate waterproofing process can be omitted, thereby setting the magnetic gap between the rotor and the stator of the drive motor to an optimal state and thus improving the efficiency of the motor. Can improve.
또한, 본 발명에서는 실링용 캔드 커버(canned cover)와 같은 별도의 방수구조를 채용할 필요가 없이 모터에 대한 실링이 가능하여 제조비용을 절감할 수 있다. In addition, in the present invention, it is possible to seal the motor without a separate waterproof structure such as a canned cover for sealing can reduce the manufacturing cost.
도 1은 본 발명의 일 실시예에 따른 유체 펌프의 축방향 단면도이다. 1 is an axial cross-sectional view of a fluid pump according to an embodiment of the present invention.
도 2는 도 1의 유체 펌프에 채용된 모터에서 스테이터의 코일과 로터의 자석 간의 배치 관계를 보여주는 도면이다.FIG. 2 is a view showing a disposition relationship between a coil of a stator and a magnet of a rotor in a motor employed in the fluid pump of FIG. 1.
도 3은 도 1의 모터의 스테이터의 단면도이다.3 is a cross-sectional view of the stator of the motor of FIG. 1.
도 4는 도 1의 모터의 로터의 평면도이다.4 is a plan view of the rotor of the motor of FIG.
이하, 첨부한 도면을 참조하여 본 발명의 실시예를 상세히 설명한다. Hereinafter, with reference to the accompanying drawings will be described an embodiment of the present invention;
도 1은 본 발명의 일 실시예에 따른 유체 펌프의 단면도이고, 도 2는 도 1의 유체 펌프에 채용된 모터에서 스테이터의 코일과 로터의 자석 간의 배치 관계를 보여주는 도면이고, 도 3은 도 1의 모터의 스테이터의 단면도이고, 도 4는 도 1의 모터의 로터의 평면도이다. 1 is a cross-sectional view of a fluid pump according to an embodiment of the present invention, FIG. 2 is a view showing an arrangement relationship between a coil of a stator and a magnet of a rotor in a motor employed in the fluid pump of FIG. 1, and FIG. 3 is FIG. 1. Is a cross-sectional view of the stator of the motor of FIG. 4, and FIG. 4 is a plan view of the rotor of the motor of FIG.
도 1 내지 도 4를 참고하면, 본 발명의 일 실시예에 따른 유체 펌프는 크게 펌프 하우징(10), 모터(1) 및 임펠러(43)를 포함한다. 1 to 4, a fluid pump according to an embodiment of the present invention includes a pump housing 10, a motor 1, and an impeller 43.
상기 펌프 하우징(10)은 유체가 유입되는 유입구(15a)와 유체가 배출되는 배출구(15b)가 형성되는 제1하우징(15)과, 상기 제1하우징(15)의 개방된 하측에 밀봉 가능하게 장착되는 제2하우징(14)으로 구성된다. The pump housing 10 may be sealed to an open lower side of the first housing 15 having the inlet 15a through which the fluid is introduced and the outlet 15b through which the fluid is discharged, and the first housing 15. And a second housing 14 to be mounted.
제2하우징(14)의 내부에는 모터(1) 및 모터(1)를 구동하기 위한 드라이버(36)가 내장되고, 제2하우징(14)의 개방된 하측에는 커버(11)가 밀봉 가능하게 결합된다. The motor 1 and the driver 36 for driving the motor 1 are built in the second housing 14, and the cover 11 is sealably coupled to the open lower side of the second housing 14. do.
상기 커버(11)와 제2하우징(14) 사이에는 적어도 3개의 고정용 연장부(11b,14b)가 돌출되어 결합구멍에 고정나사 또는 고정볼트의 체결이 이루어지고, 또한, 상기 커버(11)와 제2하우징(14) 사이에는 상기 커버(11)의 상부로 원통형의 돌출부(11a)가 돌출되며, 제2하우징(14)과 대향하는 외주면에는 실링용 O-링(35a)이 삽입된다. At least three fixing extension parts 11b and 14b protrude between the cover 11 and the second housing 14 to fasten the fixing screw or the fixing bolt to the coupling hole, and the cover 11 The cylindrical protrusion 11a protrudes from the upper side of the cover 11 between the second housing 14 and the sealing O-ring 35a is inserted into the outer circumferential surface of the second housing 14.
제2하우징(14)과 제1하우징(15) 사이에는 상호 고정 결합을 위해 적어도 3개의 고정용 연장부(14c,15d)가 돌출되어 결합구멍에 고정나사 또는 고정볼트의 체결이 이루어진다. 또한, 제2하우징(14)의 외주면에 형성된 요홈에 실링용 O-링(35b)이 삽입되어 제1하우징(15)과 제2하우징(14) 사이를 밀봉한다. At least three fixing extension parts 14c and 15d protrude from each other between the second housing 14 and the first housing 15 so that the fixing screws or fixing bolts may be fastened to the coupling holes. In addition, a sealing O-ring 35b is inserted into a recess formed in the outer circumferential surface of the second housing 14 to seal between the first housing 15 and the second housing 14.
제1하우징(15)의 상측 중앙에 유체가 유입되는 유입구(15a)가 형성되고, 제1하우징(15)의 측면에 펌핑된 유체가 배출되는 배출구(15b)가 형성되며, 유입구(15a)와 배출구(15b) 사이의 유체 흐름 통로(P)에는 임펠러(43)가 배치된다.An inlet 15a through which fluid is introduced is formed in the upper center of the first housing 15, and an outlet 15b through which the pumped fluid is discharged is formed at a side of the first housing 15, and an inlet 15a and the inlet 15a. An impeller 43 is disposed in the fluid flow passage P between the outlets 15b.
제1하우징(15)은 유체 흐름 통로(P)에 임펠러(43)가 배치될 수 있도록 개방된 하단이 유입구(15a)보다 더 넓은 공간을 확보하도록 확장된다.The first housing 15 is extended so that an open bottom has a wider space than the inlet 15a so that the impeller 43 can be disposed in the fluid flow passage P. FIG.
제2하우징(14)의 상측에는 제1하우징(15)의 하측 내면에 삽입되는 삽입부(14d)가 형성된다. An insertion portion 14d inserted into the lower inner surface of the first housing 15 is formed above the second housing 14.
임펠러(43)는 유입구(15a)로부터 유입되는 물과 같은 유체를 측면에 배치된 배출구(15b)를 통하여 배출하도록 원판 형태의 몸체(43a)와, 몸체(43a)에 방사상으로 형성되는 다수의 날개(43b)를 포함한다.The impeller 43 has a disk-like body 43a and a plurality of wings radially formed in the body 43a to discharge fluid such as water flowing from the inlet 15a through the outlet 15b disposed on the side. (43b).
지지축(27)은 제2하우징(14)을 성형하기 위하여 인서트 몰딩(Insert molding)할 때 제2하우징(14)의 상판(14a)에 매입되어 일체로 형성된다.The support shaft 27 is integrally formed by being embedded in the upper plate 14a of the second housing 14 at the time of insert molding in order to mold the second housing 14.
따라서, 지지축(27)은 제2하우징(14)의 상판(14a)에 일체로 형성되어 있기 때문에 제2하우징(14)의 내부공간으로 유체가 유입되는 것을 차단할 수 있다.Therefore, since the support shaft 27 is integrally formed with the upper plate 14a of the second housing 14, the fluid may be blocked from flowing into the inner space of the second housing 14.
지지축(27)의 하단은 커버(11)의 중앙에 형성된 압입부(11c)에 삽입되고, 지지축(27)의 상단에는 임펠러(43)의 이탈을 방지하기 위한 스토퍼(44)가 결합된다.The lower end of the support shaft 27 is inserted into the press-in portion 11c formed in the center of the cover 11, and the stopper 44 is coupled to the upper end of the support shaft 27 to prevent the impeller 43 from being separated. .
한편, 본 발명에서는 상기 임펠러(43)를 회전 구동하기 위한 구동수단으로서 코어레스형 스테이터(26)와, 스테이터(26)의 양측에 대칭 구조로 배치된 더블 로터(20,30)로 이루어진 액시얼 타입의 BLDC 모터(1)를 채용하고 있다.Meanwhile, in the present invention, an axial including a coreless stator 26 and double rotors 20 and 30 arranged in symmetrical structures on both sides of the stator 26 as driving means for rotationally driving the impeller 43. A type BLDC motor 1 is adopted.
상기 코어리스형 스테이터(26)는 도 2 및 도 3과 같이, 예를 들어, 각각 마름모꼴 형상의 각형 보빈(26a)에 권선된 6개의 코일(26b)을 제2하우징(14)을 성형할 때 상판(14a)에 매입하여 인서트 몰딩(Insert molding) 방식으로 일체화시킨다.2 and 3, the coreless stator 26, for example, when forming the second housing 14 of the six coils (26b) wound on a square bobbin (26a) of a rhombic shape, respectively. It is embedded in the top plate 14a and integrated in the insert molding method.
이 경우, 상기 6개의 코일(26b)은 코일들 사이의 상호 결선이 용이하게 이루어지도록 보조 PCB에 결선된 상태로 수지 절연재료에 의해 성형될 수 있다. In this case, the six coils 26b may be molded by a resin insulating material in a state in which the six coils 26b are connected to the auxiliary PCB so as to facilitate mutual connection between the coils.
상기 스테이터(26)의 코일(26b)은 예를 들어, 3상 구동 방식에서는 3개의 코일이 6개로 나뉘어져서 보빈(26a)에 권선되어 보조 PCB에서 Y방식으로 결선되며, 2상 구동 방식에서는 2개의 코일(26b)이 8개로 권선되어 직렬방식으로 결선된다. The coil 26b of the stator 26 is, for example, three coils divided into six in the three-phase driving method is wound on the bobbin 26a and connected to the Y method in the auxiliary PCB, 2 in the two-phase driving method. Coils 26b are wound in eight and connected in series.
상기 코일(26b)은 코일의 노출 부분이 수지 절연 재료로 실링된 상태로 스테이터(26)를 형성하므로 보빈(26a)에 권취된 코일(26b) 간에도 확실한 절연이 이루어지며, 방습, 진동 흡수성 및 내식성도 우수하다. Since the coil 26b forms the stator 26 in a state where the exposed portion of the coil is sealed with a resin insulating material, reliable insulation is also achieved between the coils 26b wound on the bobbin 26a, and moistureproof, vibration absorbing, and corrosion resistance Is also excellent.
제2하우징(14)의 상판(14a)에는 지지축(27)이 통과하는 관통홀(14e)이 형성되고, 지지축(27)이 인서트 몰딩 방식으로 제2하우징(14)에 일체로 고정되므로 관통홀(14e)을 통해 유체가 누수되는 것을 차단할 수 있다. Since the through hole 14e through which the support shaft 27 passes is formed in the upper plate 14a of the second housing 14, and the support shaft 27 is integrally fixed to the second housing 14 by an insert molding method. The fluid can be blocked from leaking through the through hole 14e.
더블 로터(20,30)는 스테이터(26)의 양측에 대칭 구조로 에어갭을 두고 배치되는 제1로터(20)와 제2로터(30)로 구성된다. 제1로터(20)는 제2하우징(14) 내부에 위치되고, 제2로터(30)는 제1하우징(15) 내부에 위치되며 각각 지지축(27)에 회전 가능하게 지지된다. The double rotors 20 and 30 are composed of a first rotor 20 and a second rotor 30 which are arranged with an air gap in a symmetrical structure on both sides of the stator 26. The first rotor 20 is located inside the second housing 14, and the second rotor 30 is located inside the first housing 15 and is rotatably supported by the support shaft 27, respectively.
제1로터(20)와 지지축(27) 사이에는 제1슬리브 베어링(34a)이 배치되고, 제2로터(30)와 지지축(27) 사이에는 제2슬리브 베어링(34b)이 배치된다. The first sleeve bearing 34a is disposed between the first rotor 20 and the support shaft 27, and the second sleeve bearing 34b is disposed between the second rotor 30 and the support shaft 27.
제1슬리브 베어링(34a)과 제2슬리브 베어링(34b)은 유체와 접촉이 이루어지는 것을 고려하여 카본 베어링 또는 플라스틱 베어링과 같은 오일리스 베어링을 사용하는 것이 바람직하다.The first sleeve bearing 34a and the second sleeve bearing 34b may preferably use an oilless bearing such as a carbon bearing or a plastic bearing in consideration of contact with the fluid.
상기 제1로터(20)는 상기 스테이터(26)의 일측면과 소정거리 이격되어 평행하게 배치되는 복수의 자석(22)과, 상기 자석(22)의 배면에 배치되어 자기회로를 형성하는 환형의 백 요크(21)와, 자석(22)과 백 요크(21)를 일체로 고정시키고 지지축(27)에 회전 가능하게 지지되는 로터 지지체(23)를 포함한다.The first rotor 20 includes a plurality of magnets 22 arranged in parallel with one side of the stator 26 at a predetermined distance, and an annular shape disposed on the rear surface of the magnets 22 to form a magnetic circuit. The back yoke 21 and the rotor support 23 are fixed to the magnet 22 and the back yoke 21 integrally, and are rotatably supported by the support shaft 27.
여기에서, 로터 지지체(23)는 인서트 몰딩 방식으로 자석(22)과 백 요크(21)를 일체로 형성한다. Here, the rotor support 23 integrally forms the magnet 22 and the back yoke 21 in an insert molding manner.
상기 제2로터(30)는 스터이터의 타측면과 소정거리 이격되어 평행하게 배치되는 복수의 자석(32)과, 상기 자석(32)의 배면에 배치되어 자기회로를 형성하는 환형의 백 요크(31)와, 자석(32)과 백 요크(31)를 일체로 고정시키고 지지축(37)에 회전 가능하게 지지되는 로터 지지체(33)를 포함한다.The second rotor 30 includes a plurality of magnets 32 arranged in parallel with the other side of the stator at a predetermined distance and an annular back yoke disposed on the rear surface of the magnets 32 to form a magnetic circuit. 31 and a rotor support 33 which integrally fixes the magnet 32 and the back yoke 31 and is rotatably supported by the support shaft 37.
여기에서, 로터 지지체(33)는 인서트 몰딩 방식으로 자석(32), 백 요크(31) 및 임펠러(43)와 일체로 형성된다. Here, the rotor support 33 is formed integrally with the magnet 32, the back yoke 31 and the impeller 43 in an insert molding method.
상기 자석(22,32)과 스테이터(26)의 코일(26b) 간의 상호 배치 관계는 도 2에 도시된 바와 같이 디스크형 자석(22,32)이 보빈(26a) 즉, 각형 보빈 코일(26b)에 대향하여 배치된 구조를 이룬다.The mutual arrangement relationship between the magnets 22 and 32 and the coils 26b of the stator 26 is such that the disc-shaped magnets 22 and 32 are bobbins 26a, that is, square bobbin coils 26b. A structure arranged opposite to
상기 스테이터(26)는 6개의 코일(26b)을 포함하며, 제1로터(20) 및 제2로터(30)는 각각 8개의 N극 및 S극 자석(22,32)이 교대로 배치되어 있다.The stator 26 includes six coils 26b, and eight N-pole and S- pole magnets 22 and 32 are alternately arranged in the first rotor 20 and the second rotor 30, respectively. .
이 경우, 상기 제1로터(20) 및 제2로터(30)는 도 4와 같이 다수의 N극 및 S극의 분할 자석편으로 이루어지거나 또는 링형상의 자석에 N극 및 S극이 분할 착자된 자석을 사용하는 것도 가능하다. In this case, the first rotor 20 and the second rotor 30 are composed of a plurality of N-pole and S-pole divided magnet pieces as shown in FIG. 4, or N-pole and S-pole are split magnetized in a ring-shaped magnet. It is also possible to use magnets.
스테이터(26)는 제2하우징(14)을 성형하기 위하여 인서트 몰딩할 때 다수의 코일(26b)을 제2하우징(14)의 상판(14a)의 중앙에 매입하여 제2하우징(14)과 일체로 형성된다. The stator 26 embeds a plurality of coils 26b in the center of the upper plate 14a of the second housing 14 when insert molding the second housing 14 so as to be integral with the second housing 14. Is formed.
이와 같이, 스테이터(26)는 인서트 몰딩에 의해 제2하우징(14) 내부에 일체로 형성되므로 스테이터(26)로 물이 유입되는 것을 원천적으로 차단할 수 있다. As described above, since the stator 26 is integrally formed inside the second housing 14 by insert molding, water may be blocked from flowing into the stator 26.
스테이터(26)는 제2하우징(14)에 내장된 드라이버(36)로부터 스테이터 코일(26b)에 대한 구동신호를 인가 받는다.The stator 26 receives a driving signal for the stator coil 26b from the driver 36 embedded in the second housing 14.
상기와 같이 구성된 본 발명의 유체 펌프에 대한 동작을 설명하면 다음과 같다.Referring to the operation of the fluid pump of the present invention configured as described above are as follows.
본 발명의 일 실시예에 따른 모터(1)의 코일(26b)에 드라이버(36)로부터 구동 전류가 인가되면 소정의 설정 방향으로 자장이 형성된다. 여기에서, 제1로터(20)와 제2로터(30)의 자석(22,32)이 서로 반대 극성으로 배치되어 있다면 상기 제1로터(20)및 제2로터(30)의 자석(22,32)과 코일(26b) 사이에는 서로 동일한 반발력 또는 흡인력이 작용하게 된다. When a driving current is applied from the driver 36 to the coil 26b of the motor 1 according to an embodiment of the present invention, a magnetic field is formed in a predetermined setting direction. Here, if the magnets 22 and 32 of the first rotor 20 and the second rotor 30 are disposed with opposite polarities, the magnets 22 and 32 of the first rotor 20 and the second rotor 30 may be disposed at opposite polarities. The same repulsive force or suction force is applied between 32 and coil 26b.
따라서, 자석(22,32)과 코일(26b) 사이의 반발력과 흡인력이 서로 반대 방향으로 작용하여 서로 상쇄되어 축방향의 진동은 최소로 유지시키면서 제1로터(20) 및 제2로터(30)를 지지축(27)을 중심으로 회전시킨다. 상기 제1로터(20) 및 제2로터(30)의 회전으로 인하여 상기 제2로터(30)와 일체로 형성된 임펠러(43)도 회전하게 되고, 그 결과 상기 유입구(15a)로 유입된 유체가 펌핑되어 배출구(15b)로 배출된다. Accordingly, the repulsive force and the suction force between the magnets 22 and 32 and the coil 26b act in opposite directions to cancel each other so that the axial vibration is kept to a minimum while the first rotor 20 and the second rotor 30 are kept. Rotate around the support shaft (27). Due to the rotation of the first rotor 20 and the second rotor 30, the impeller 43 integrally formed with the second rotor 30 also rotates, and as a result, the fluid introduced into the inlet 15a Pumped and discharged to the outlet (15b).
일 실시예에 따른 유체 펌프는 임펠러(43)를 구동하는 모터(1)로 액시얼 타입의 코어레스형 BLDC 모터를 채용함에 의해 일반적인 코어 타입의 모터에 비해 모터의 크기는 약 1/2, 무게는 약 1/3 정도로 줄인 슬림형 구조를 실현할 수 있다. The fluid pump according to the embodiment of the present invention employs an axial type coreless BLDC motor as the motor 1 for driving the impeller 43, and thus the motor size is about 1/2 the weight of the conventional core type motor. It is possible to realize a slim structure with about 1/3 reduction.
또한, 일 실시예에 따른 유체 펌프는 액시얼 타입의 코어레스형 BLDC 모터에서 더블 로터 타입을 채용하면서 코어레스형 스테이터(26)와 지지축(27)을 펌프 하우징(10)의 제2하우징(14)에 일체로 형성하여 모터(1)에 대한 완전한 방수를 실현할 수 있다. In addition, the fluid pump according to an embodiment adopts the double rotor type in the axial type coreless BLDC motor and moves the coreless stator 26 and the support shaft 27 to the second housing of the pump housing 10. It can be integrally formed with 14) to realize complete waterproofing of the motor 1.
더욱이, 일 실시예에 따른 유체 펌프는 코어레스형 스테이터(26)와 지지축(27)을 펌프 하우징(10)의 제2하우징(14)에 일체로 형성함에 의해 종래의 실링용 캔드 커버(canned cover)와 같은 별도의 방수처리를 생략할 수 있고 이로 인해 모터(1)의 제1로터(20) 및 제2 로터(30)와 스테이터(26) 사이의 자기갭을 최적 상태로 설정하여 모터의 효율화를 도모할 수 있고, 제조비용을 절감할 수 있다. Moreover, the fluid pump according to one embodiment canned the conventional sealing cand cover by integrally forming the coreless stator 26 and the support shaft 27 in the second housing 14 of the pump housing 10. It is possible to omit a separate waterproofing process such as a cover), which causes the magnetic gap between the first rotor 20 and the second rotor 30 and the stator 26 of the motor 1 to be set to an optimal state. Efficiency can be improved and manufacturing cost can be reduced.
또한, 일 실시예에 따른 유체 펌프는 임펠러(43)를 구동 및 지지하는 데 필요한 구성부품을 최소화하는 것이 가능하여 원가절감과 함께 내구성 향상을 도모할 수 있다. In addition, the fluid pump according to the embodiment can minimize the components required to drive and support the impeller 43, thereby reducing cost and improving durability.
상기한 일 실시예에서는, 액시얼 타입의 BLDC 모터를 임펠러 구동용 구동 모터(1)로 채용하면서 슬림형 구조를 도모하기 위하여 코어레스형 스테이터를 사용하고 있으나, 코어 타입의 스테이터를 사용하는 것도 가능하다.In the above-described embodiment, the coreless stator is used in order to achieve a slim structure while adopting the axial type BLDC motor as the impeller driving motor 1, but it is also possible to use the core type stator. .
상기한 일 실시예서는, 코어레스형 스테이터에 보빈(26a)에 코일(26b)이 권선된 것을 사용하는 것을 예시하고 있으나, 더욱더 슬림화를 기하기 위하여 보빈레스 타입의 코일을 적용하는 것도 가능하다.In the above-described embodiment, the coil 26b is wound around the bobbin 26a in the coreless stator, but a bobbinless type coil may be applied to further slim down the coreless stator.
이상에서는 본 발명을 특정의 바람직한 실시예를 예로 들어 도시하고 설명하였으나, 본 발명은 상기한 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.In the above, the present invention has been illustrated and described with reference to specific preferred embodiments, but the present invention is not limited to the above-described embodiments and the general knowledge in the technical field to which the present invention pertains without departing from the spirit of the present invention. Various changes and modifications will be made by those who possess.
본 발명의 일 실시예에 따른 유체펌프는 회전력을 발생시키는 모터와, 유체를 펌핑하는 임펠러 사이를 기구적으로 분리하고, 자력을 이용하여 모터의 회전력이 임펠러로 전달되도록 하여 모터를 원천적으로 방수할 수 있어 워터 펌프 또는 연료 펌프와 같은 모터의 실링이 요구되는 유체 펌프에 응용 가능하다.The fluid pump according to an embodiment of the present invention mechanically separates between the motor generating the rotational force and the impeller pumping the fluid, and uses the magnetic force to transmit the rotational force of the motor to the impeller so as to naturally waterproof the motor. It can be applied to a fluid pump requiring sealing of a motor such as a water pump or fuel pump.

Claims (11)

  1. 상호 결합되는 제1하우징 및 제2하우징;A first housing and a second housing coupled to each other;
    상기 제2하우징에 고정되는 지지축;A support shaft fixed to the second housing;
    상기 제1하우징에 수용되고 유체를 펌핑하는 임펠러;An impeller accommodated in the first housing and pumping fluid;
    상기 제2하우징에 고정되는 스테이터;A stator fixed to the second housing;
    상기 제2하우징 내부에 배치되고 상기 지지축에 회전 가능하게 지지되며 상기 스테이터의 일측면과 마주보게 배치되는 제1로터; 및 A first rotor disposed inside the second housing and rotatably supported by the support shaft and disposed to face one side of the stator; And
    상기 임펠러에 고정되고 상기 지지축에 회전 가능하게 지지되며 상기 스테이터의 타측면과 마주보게 배치되는 제2로터를 포함하는 유체 펌프.And a second rotor fixed to the impeller and rotatably supported on the support shaft and disposed to face the other side of the stator.
  2. 제1항에 있어서, The method of claim 1,
    상기 지지축은 상기 제2하우징의 상판에 인서트 몰딩으로 일체로 형성되어, 상측은 제1하우징 내부에 위치되고, 하측은 제2하우징 내부에 위치되는 것을 특징으로 하는 유체 펌프. The support shaft is integrally formed with an insert molding on the upper plate of the second housing, the upper side is located inside the first housing, the lower side is located within the second housing.
  3. 제1항에 있어서, The method of claim 1,
    상기 제2하우징 내부에는 스테이터에 대한 구동신호를 인가하는 드라이버가 수용되는 것을 특징으로 하는 유체 펌프.And a driver for applying a driving signal to the stator in the second housing.
  4. 제1항에 있어서, The method of claim 1,
    상기 스테이터는 코어리스 타입인 것을 특징으로 하는 유체 펌프. The stator is a fluid pump, characterized in that the coreless type.
  5. 제1항에 있어서, The method of claim 1,
    상기 스테이터는 제2하우징의 상판에 인서트 몰딩에 의해 일체로 고정되는 것을 특징으로 하는 유체 펌프. The stator is a fluid pump, characterized in that integrally fixed to the upper plate of the second housing by insert molding.
  6. 제1항에 있어서, The method of claim 1,
    상기 제1로터 및 제2로터는 분할편으로 이루어진 다수의 자석 또는 N극 및 S극이 분할 착자된 링형 자석을 포함하는 것을 특징으로 하는 유체 펌프.The first rotor and the second rotor is a fluid pump, characterized in that it comprises a plurality of magnets consisting of a split piece or a ring magnet in which the N and S poles are divided and magnetized.
  7. 제1항에 있어서, The method of claim 1,
    상기 제1로터 및 제2로터는 서로 마주보는 면이 서로 반대 극성을 갖도록 배치되는 것을 특징으로 하는 유체 펌프.The first rotor and the second rotor is a fluid pump, characterized in that the surfaces facing each other are arranged with the opposite polarity.
  8. 제1항에 있어서, The method of claim 1,
    상기 제1로터는 제2하우징 내부에 위치되는 지지축에 회전 가능하게 지지되는 로터 지지체와, 상기 로터 지지체에 고정되는 복수의 자석과, 상기 자석의 배면에 배치되는 백 요크를 포함하는 유체 펌프.The first rotor includes a rotor support rotatably supported by a support shaft positioned inside the second housing, a plurality of magnets fixed to the rotor support, and a back yoke disposed on the back of the magnet.
  9. 제1항에 있어서, The method of claim 1,
    상기 제2로터는 상기 제1하우징 내부에 위치되는 지지축에 회전 가능하게 지지되고 임펠러에 고정되는 로터 지지체와, 상기 로터 지지체에 고정되는 복수의 자석과, 상기 자석의 배면에 배치되는 백 요크를 포함하는 유체 펌프. The second rotor may include a rotor support rotatably supported by a support shaft positioned inside the first housing and fixed to an impeller, a plurality of magnets fixed to the rotor support, and a back yoke disposed on a rear surface of the magnet. Including a fluid pump.
  10. 제1항에 있어서, The method of claim 1,
    상기 제1로터 및 제2로터는 슬리브 베어링을 의해 상기 지지축에 회전 가능하게 지지되는 것을 특징으로 하는 유체 펌프.And the first rotor and the second rotor are rotatably supported on the support shaft by a sleeve bearing.
  11. 회전력을 발생하도록 스테이터와, 상기 스테이터의 양쪽에 배치된 제1로터 및 제2로터를 구비하는 액시얼 타입의 모터;  An axial type motor having a stator and a first rotor and a second rotor disposed on both sides of the stator to generate rotational force;
    유체가 출입하는 유입구 및 배출구가 형성되고 제2로터가 수용되는 제1하우징; A first housing formed with an inlet and outlet through which fluid flows in and with a second rotor accommodated therein;
    상기 제1로터가 수용되고 상판에 상기 스테이터가 일체로 매입 형성되는 제2 하우징;A second housing accommodating the first rotor and having the stator integrally embedded in the upper plate;
    상기 제2하우징의 상판을 관통하여 배치되고 상측에 제1로터가 회전 가능하게 지지되고, 하측에 제2로터를 회전 가능하게 지지되는 지지축; 및 A support shaft disposed through the upper plate of the second housing, the first rotor rotatably supported on the upper side, and the second rotor rotatably supported on the lower side; And
    상기 제1하우징에 수용되고 상기 제1로터와 일체로 형성되어 유체를 펌핑하는 임펠러를 포함하는 유체 펌프. And an impeller housed in the first housing and integrally formed with the first rotor to pump the fluid.
PCT/KR2011/003576 2010-05-19 2011-05-16 Fluid pump having waterproof structure WO2011145844A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/698,332 US20130064695A1 (en) 2010-05-19 2011-05-16 Fluid pump having waterproof structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100046714A KR101237023B1 (en) 2010-05-19 2010-05-19 Perfect Waterproof Fluid Pump
KR10-2010-0046714 2010-05-19

Publications (2)

Publication Number Publication Date
WO2011145844A2 true WO2011145844A2 (en) 2011-11-24
WO2011145844A3 WO2011145844A3 (en) 2012-03-22

Family

ID=44992188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/003576 WO2011145844A2 (en) 2010-05-19 2011-05-16 Fluid pump having waterproof structure

Country Status (3)

Country Link
US (1) US20130064695A1 (en)
KR (1) KR101237023B1 (en)
WO (1) WO2011145844A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2498925A (en) * 2012-01-06 2013-08-07 Richard Weatherley Vane pump with magnetic coupling
CN104471253A (en) * 2012-06-11 2015-03-25 阿莫泰克有限公司 Water pump

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101430372B1 (en) * 2013-11-05 2014-08-13 윤권중 Scrubber circulating pump
KR20160017437A (en) * 2014-08-06 2016-02-16 한승주 Magnetic field-induced Power Transmission Device
TW201634817A (en) * 2015-03-30 2016-10-01 林聖梁 Water pump device
CN106762694B (en) * 2016-12-12 2017-09-15 华中科技大学 A kind of miniature hydraulic suspension mechanical pump
CN107448396A (en) * 2017-08-04 2017-12-08 臧林 A kind of electromechanical integral pump
CN110159588A (en) * 2019-05-10 2019-08-23 深圳兴奇宏科技有限公司 Pump housing rotor and its fluid pump
KR102560648B1 (en) * 2021-09-08 2023-07-26 주식회사 현대케피코 Sealing structure of centrifugal pump
CN113738657B (en) * 2021-11-03 2022-03-15 西安泵阀总厂有限公司 Rare earth permanent magnet motor driven centrifugal pump and self-lubricating method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0674184A (en) * 1992-07-06 1994-03-15 Ouken Seiko Kk Centrifugal pump
JP2540329Y2 (en) * 1991-03-18 1997-07-02 応研精工株式会社 Rotary pump
JP2004068730A (en) * 2002-08-07 2004-03-04 Asahi Kogyo Kk Pump
JP2006274915A (en) * 2005-03-29 2006-10-12 Nidec Sankyo Corp Magnetic coupling pump device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3172364A (en) * 1962-10-01 1965-03-09 P G Products Mfg Co Inc Pump
US3299819A (en) * 1964-12-07 1967-01-24 Flo Mac Inc Magnetic drive
US4806080A (en) * 1983-07-06 1989-02-21 Ebara Corporation Pump with shaftless impeller
JP2008184901A (en) 2007-01-26 2008-08-14 Mitsuba Corp Motor-driven pump
DE102008064099B4 (en) * 2008-12-19 2016-05-04 Bühler Motor GmbH Centrifugal pump with a fixed axis

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2540329Y2 (en) * 1991-03-18 1997-07-02 応研精工株式会社 Rotary pump
JPH0674184A (en) * 1992-07-06 1994-03-15 Ouken Seiko Kk Centrifugal pump
JP2004068730A (en) * 2002-08-07 2004-03-04 Asahi Kogyo Kk Pump
JP2006274915A (en) * 2005-03-29 2006-10-12 Nidec Sankyo Corp Magnetic coupling pump device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2498925A (en) * 2012-01-06 2013-08-07 Richard Weatherley Vane pump with magnetic coupling
CN104471253A (en) * 2012-06-11 2015-03-25 阿莫泰克有限公司 Water pump

Also Published As

Publication number Publication date
WO2011145844A3 (en) 2012-03-22
US20130064695A1 (en) 2013-03-14
KR101237023B1 (en) 2013-02-25
KR20110127311A (en) 2011-11-25

Similar Documents

Publication Publication Date Title
WO2011145844A2 (en) Fluid pump having waterproof structure
WO2011145842A2 (en) Fluid pump
WO2012157935A2 (en) Water-pump motor using a waterproof stator, and water pump
KR101117553B1 (en) Waterproof Water Pump Motor and Water Pump Using the Same
WO2013187618A1 (en) Water pump
WO2012064119A2 (en) Water pump for vehicle
CN1941569B (en) Sealed electric-motor and sealed pump
SG189750A1 (en) Over-molded liquid cooled three-stack motor
WO2011145843A2 (en) Waterproof fluid pump
WO2015020438A1 (en) Water pump
WO2014003287A1 (en) Electric water pump
KR101236884B1 (en) rising type underwater motor pump using a magnetic field
CN107620714A (en) Electronic water pump
WO2011021828A2 (en) Water pump motor, and water pump using same
KR101169790B1 (en) Waterproof Water Pump Motor
CN110242582A (en) Pump installation
KR20030000520A (en) Apparatus for sensing rotor position of brushless motor
CN107666215A (en) Electronic water pump
WO2024049093A1 (en) Slim disk drive device for friction generator
WO2018008896A1 (en) Water pump
WO2022191572A1 (en) Motor
CN218603322U (en) Partition retainer and motor including the same
CN214958988U (en) Shaftless motor and water pump
CN211535886U (en) Magnetic suspension pump
CN117498606A (en) Magnetic coupling power transmission split submersible motor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13698332

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11783726

Country of ref document: EP

Kind code of ref document: A2