WO2011145802A2 - Ultrasonic atomic force microscope device - Google Patents

Ultrasonic atomic force microscope device Download PDF

Info

Publication number
WO2011145802A2
WO2011145802A2 PCT/KR2011/002048 KR2011002048W WO2011145802A2 WO 2011145802 A2 WO2011145802 A2 WO 2011145802A2 KR 2011002048 W KR2011002048 W KR 2011002048W WO 2011145802 A2 WO2011145802 A2 WO 2011145802A2
Authority
WO
WIPO (PCT)
Prior art keywords
cantilever
displacement
image
unit
sample piece
Prior art date
Application number
PCT/KR2011/002048
Other languages
French (fr)
Korean (ko)
Other versions
WO2011145802A3 (en
Inventor
박익근
박태성
곽동열
Original Assignee
서울과학기술대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울과학기술대학교 산학협력단 filed Critical 서울과학기술대학교 산학협력단
Publication of WO2011145802A2 publication Critical patent/WO2011145802A2/en
Publication of WO2011145802A3 publication Critical patent/WO2011145802A3/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/24AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes
    • G01Q60/32AC mode
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/022Fluid sensors based on microsensors, e.g. quartz crystal-microbalance [QCM], surface acoustic wave [SAW] devices, tuning forks, cantilevers, flexural plate wave [FPW] devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/036Analysing fluids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Definitions

  • the present invention relates to an ultrasonic atom microscope device, and more particularly, to evaluate nanoscale surface images, surface elastic properties, and surface defects using ultrasonic waves, an optical beam capable of accurately measuring displacement of a cantilever oscillating at a contact resonance frequency.
  • An ultrasonic atomic microscope device capable of measuring a change in contact resonance frequency due to a change in elastic characteristics of a specimen by using a displacement sensor.
  • Nanotechnology is the technology that can maximize the value of future high-tech industries such as next-generation machinery, semiconductor, biotechnology, energy, aerospace and environment, and has become the most important core technology that plays a pivotal role in these industries. In addition, the development speed of such nanotechnology is growing faster than ever.
  • the role of measurement technology is more important than in the existing industry, but in the nano scale measurement technology, the unit of material becomes nanoscale, and even the measurement of mechanical properties on the surface plays an important role in material properties. More precise measurement technology is required.
  • This technique is a scanning probe microscope (SPM) method, which has many differences from the existing electron microscope method, but can observe the surface with nano-level resolution in air.
  • SPM scanning probe microscope
  • the scanning probe microscopy requires a more accurate analysis, and not only image analysis but also mechanical properties on the surface.
  • mechanical properties of the surface can be measured by X-ray or neutron diffraction, but there are considerable difficulties in improving reliability and precision due to the difficulty of many analysis conditions such as sample, environment, and measurement method. It is true.
  • the present invention can accurately measure the displacement of the cantilever without being affected by external vibration by measuring the displacement of the cantilever vibrated by the piezoelectric element through an optical beam displacement sensor. It is an object of the present invention to provide an ultrasonic atom microscope device.
  • the present invention when the contact cantilever is vibrated at the resonant frequency can receive an optimal phase signal from the vibration displacement of the cantilever including the elastic characteristics of the sample piece, and accurately measures the amplitude of the cantilever to perform the topography of the sample piece. It is an object of the present invention to provide an ultrasonic atom microscope device which can be efficiently obtained.
  • an object of the present invention is to provide an ultrasonic atom microscope device capable of improving the resolution of the elastic characteristic image of the sample piece by extracting the amplitude and phase information from the received signal including the change in the resonance frequency.
  • an object of the present invention is to provide an ultrasonic atomic microscope device capable of collecting and providing data for measuring the micro-defects of the surface layer portion generated in the nano- and thin-film device.
  • the cantilever in the ultrasonic atomic force microscope device provided with a contact cantilever for receiving the resonant frequency signal and performing ultrasonic excitation on the specimen, the cantilever is vibrated by applying the resonance frequency signal to the cantilever.
  • a control driver including a function generator to lock and obtain and amplify the vibration signal of the cantilever;
  • a cantilever head unit which detects the laser light irradiated from the laser arranged on the surface of the cantilever and reflected on the sample piece by a displacement sensor arranged to be divided into a plurality of regions, and measures displacement information of the cantilever;
  • a displacement measuring unit including a cantilever drive unit for maintaining a contact force of the cantilever with respect to the sample piece; And controlling the operation of the control driver and the displacement measuring unit, and using the vibration signal amplified by the lock-in amplifier unit and the displacement information sensed by the displacement measuring unit, the nano-sized sample piece image and the elastic characteristic image. It can include a microcomputer that can be created.
  • An image acquisition unit for acquiring a topography of the specimen piece by the vibration signal of the cantilever; And an image control unit controlling the precision of the topography of the sample piece by adjusting the movement of the cantilever.
  • the displacement sensor is characterized in that a plurality of optical beam-displacement sensors.
  • the nano-sized sample piece image and the elastic characteristic image are amplitude and phase images generated by using a difference between a vibration signal amplified by the lock-in amplifier and a signal for displacement information sensed by the displacement measuring unit. .
  • a piezoelectric element is installed in the support part connected to the function generator, and the cantilever is vibrated by the vibration of the support part.
  • the micom is characterized in that the input of the parameters relating to the scan speed and size of the cantilever, the magnitude of the contact force of the tip of the cantilever and the sample piece.
  • the microcomputer is connected to a display unit capable of displaying the generated nano-sized sample piece image and the elastic characteristic image.
  • the displacement of the cantilever oscillated by the piezoelectric element is measured through the optical beam displacement sensor, the displacement of the cantilever can be accurately measured without being influenced by external vibration.
  • the contact cantilever when the contact cantilever is vibrated at a resonant frequency, it is possible to receive an optimal phase signal from the vibration displacement of the cantilever including the elastic characteristics of the sample piece, and to accurately measure the amplitude of the cantilever to topography of the sample piece. Can be efficiently obtained.
  • FIG. 1 is a block diagram showing the structure of the ultrasonic microscope according to the present invention.
  • Figure 2 is a view for explaining the process of obtaining a nano-size elastic image of the specimen using the ultrasonic atomic microscope device according to the present invention.
  • Nanoscale images of properties can be provided.
  • the microscopic analysis that can analyze the surface of the representative material is well known electron microscopy (ie SEM, TEM, AES, SIMS, etc.).
  • electron microscopy can be used for precise analysis, it has a limited local observation range (nano or micro size) and is limited to microscopic characterization of materials.
  • they can only be operated in ultra-high vacuum (10 -6 to 10 -9 Torr), so in order to broaden the scope of application, it is urgent needed for a wide range of product level and analytical technology in air or water.
  • nano- and thin-film materials can measure the mechanical properties of surfaces using X-rays or neutron diffraction. .
  • FIG. 1 is a block diagram showing the structure of an ultrasonic atom microscope device according to the present invention
  • Figure 2 is a view for explaining a process of obtaining a nano-size elastic image of the sample using the ultrasonic atom microscope device according to the present invention.
  • the ultrasonic atomic microscope device As shown in Figure 1 and 2, the ultrasonic atomic microscope device according to the present invention, based on the atomic force microscope (Atomic Force Microscopy; AFM) receives a resonant frequency signal to perform ultrasonic excitation to the specimen piece 300 Ultrasonic Atom Microscope Apparatus equipped with a contact cantilever 123, the control driver 100, the displacement measuring unit 200, the microcomputer 400, the image acquisition unit (not shown), the image control unit (not shown), the display unit ( Not shown).
  • AFM atomic Force Microscopy
  • the atomic force microscope used in the present ultrasonic atomic microscope device by using the interaction between the surface of the sample piece 300 and the probe by bringing a fine probe close to the sample piece 300, various types including the shape of the sample piece 300 It is an AFM that finds out the characteristics. Specifically, a probe is installed at the far end of the cantilever 123, and when the probe is brought close to the sample piece 300, the interaction between the atoms at the tip of the probe and the atoms of the sample piece 300 is lost. Will occur. By such interaction, the resonance frequency of the cantilever 123 is changed, and the bending degree or the resonance frequency change of the cantilever 123 is measured by a laser or a photodiode PSPD.
  • the probe When the probe is moved in a predetermined direction through feedback control so that the force between the atoms sensed is kept constant, the probe follows the height of the specimen piece 300, where the height of each recorded position indicates the image shape of the sample. do.
  • the specimen piece 300 is moved in the xy direction by the XY driver 122, and the probe attached to the cantilever 123 is moved in the vertical direction, that is, the z direction by the Z driver 121. Will be moved.
  • the control driver 100 applies a resonant frequency signal to the cantilever 123 to generate a function generator 210 to vibrate the cantilever 123, and a lock-in amplifier to acquire and amplify the vibration signal of the cantilever 123. 220.
  • the function generator 210 is a device for generating a resonant frequency mode according to the shape of the cantilever 123, and is controlled by the microcomputer 400 and attached to a piezoelectric ceramic device attached to the cantilever 123. The electrical signal is transmitted to generate vibrations in the cantilever 123.
  • the lock-in amplifier 220 may be controlled by the microcomputer 400 and obtain amplitude and phase signals from the cantilever 123 vibrated by the piezoelectric element. In this case, the lock-in amplifier 220 may use a high voltage amplifier, process the digital signal converted by the analog-to-digital converter by a proportional-integration control algorithm, and then convert the processed digital signal by the digital-to-analog converter. Amplified by receiving the analog signal.
  • the displacement measuring unit 200 is a displacement sensor (not shown) for dividing the laser light irradiated from the laser arranged on the surface of the cantilever 123 and reflected on the sample piece 300 into a plurality of regions.
  • the cantilever head unit 140 detects and measures displacement information of the cantilever 123, and a cantilever drive unit 120 that maintains contact force with respect to the specimen piece 300 of the cantilever 123.
  • the controller 130 may further include a controller 130 controlling the cantilever driver 120 by a proportional-integral feedback algorithm. In this case, the controller 130 controls the driving unit 120 of the atomic force microscope by a proportional-integral feedback algorithm, and precisely adjusts the displacement of the cantilever 123 so as to obtain a nanoscale surface image of the sample piece 300. It is also designed to be measurable.
  • the displacement sensor is preferably a plurality of optical beam-displacement sensors.
  • the displacement of the cantilever 123 vibrating by the piezoelectric element is measured through the optical beam displacement sensor, the displacement of the cantilever 123 can be accurately measured without being influenced by external vibration. Can be.
  • the head 140 and the driver 120 of the atomic force microscope are designed to measure and control the displacement of the cantilever 123. That is, the head 140 measures the laser signal reflected by the optical beam-displacement sensor by aligning the laser on the surface of the cantilever 123, and the optical beam-displacement sensor measures the precise displacement of the cantilever 123. It is divided into four areas in total.
  • the driving unit 120 maintains a constant contact force set in the microcomputer 400 to obtain a nanoscale image of the specimen piece 300.
  • the microcomputer 400 controls the operations of the control driver 100 and the displacement measuring unit 200, and the displacement sensed by the vibration signal and the displacement measuring unit 200 amplified by the lock-in amplifier 220. Through the information, the nano-sized sample piece 300 image and the elastic characteristic image can be generated. At this time, the nano-sized specimen piece 300 image and the elastic characteristic image is based on the vibration signal amplified by the lock-in amplifier 220 of the control driving unit 100 and the displacement information detected by the displacement measuring unit 200 Amplitude and phase images generated using the difference in signal for. In addition, the microcomputer 400 controls input of parameters related to the scan speed and size of the cantilever 123 and the magnitude of the contact force between the probe of the cantilever 123 and the specimen piece 300.
  • the microcomputer 400 controls input of various parameters such as gain, scan speed and size, and contact force, display of measured values, and generation of ultrasonic waves. Input by using a keyboard or a mouse method, and displays the measured value (displacement of the cantilever 123 in contact with the material surface) by numerical data or graphs, and controls for the generation of ultrasonic waves.
  • the computer may be configurable using a general personal computer.
  • microcomputer 400 may be connected to a display unit (not shown) to display the generated nano-sized sample piece 300 image and the elastic characteristic image.
  • the microcomputer 400 controls input of various parameters such as gain, scan size, scan speed, and contact force, display of measured values, and generation of ultrasonic waves, and displays nanoscale surface images with various data values and graphs. And the elastic characteristic image can be displayed.
  • the microcomputer 400 is connected to the image acquisition unit (not shown) and the image control unit (not shown), to obtain the topography of the specimen piece 300 by the vibration signal of the cantilever 123, the cantilever 123
  • the precision of the topography of the sample piece 300 can be controlled by adjusting the movement of the sample.
  • the ultrasonic atom microscope device configured as described above, using the contact cantilever 123 resonated by ultrasonic excitation, not only the image of the specimen piece 300, but also the elastic characteristics of the specimen piece 300 are nanoscale. It can be measured with high precision and has the effect of enabling mechanical properties of nano and thin film materials to be measured.
  • the ultrasonic atomic microscope apparatus when the contact cantilever 123 is vibrated at a resonance frequency, an optimal phase signal can be received from the vibration displacement of the cantilever 123 including the elastic characteristics of the specimen piece 300.
  • the topography of the sample piece 300 can be efficiently obtained by accurately measuring the amplitude of the cantilever 123.
  • the ultrasonic atomic force microscope device it is possible to image the elastic characteristics of the specimen piece 300 by accurately measuring the change in the resonance frequency caused by the contact of the cantilever 123 and the specimen piece 300 by the ultrasonic excitation. .
  • the amplitude and phase information can be extracted from the received signal including the change of the resonance frequency to improve the resolution of the elastic characteristic image of the sample piece 300, and furthermore, to the nano and thin film devices. Data may be collected and provided to measure the microdefects occurring in the surface layer.
  • the cantilever 123 vibrating in the resonant frequency mode by the vibration of the support part with the piezoelectric element controlled by the function generator 210 is in contact with the specimen piece 300.
  • the cantilever 123 is controlled to have a constant contact force through the microcomputer 400, and the cantilever 123 is moved to obtain an image of a predetermined region.
  • the displacement information of the cantilever 123 obtained in a certain area is transmitted to the microcomputer 400 through the head portion 140 of the atomic force microscope is used as data for obtaining the specimen piece 300 image.
  • the displacement information of the cantilever 123 received from the head unit 140 includes amplitude and phase information of the corresponding region, and this signal is compared with the original signal by the lock-in amplifier 220. You can also measure the difference with the received signal to obtain an image of amplitude and phase.
  • the measuring principle of the elastic characteristic image of the ultrasonic atomic microscope device using the resonant frequency mode of the contact type cantilever 123 by ultrasonic excitation the cantilever 123 while the cantilever 123 is scanning the sample piece 300
  • the tip is affected by the interaction force between the probe-sample surface of the various cantilever 123, such as van der Waals force, attractive capillary force, and repulsive force input. Therefore, the interaction force between the probe and the material of the cantilever 123 changes the effective stiffness coefficient of the cantilever 123.
  • the resonance frequency of the cantilever 123 is changed by the interaction between the probe and the sample piece of the cantilever 123, and in the case of the sample piece 300 having the locally different surface characteristics by these characteristics, It generates a change in the amplitude of relative vibration in the surface region, which is caused by the interaction force between the tip and the material.
  • nanoscale elastic images of the specimen piece 300 can be obtained by using the displacement change of the cantilever 123 due to the change in the resonance frequency of the cantilever 123 due to the interaction force, the non-destructive evaluation on the thin film structure. Applicable to
  • the displacement of the cantilever 123 and the sample piece 300 image measured by the optical beam-displacement sensor are simultaneously displayed by the microcomputer 400, and the data is stored to analyze the elastic characteristics of the thin film structure. It can be used as data to do this.
  • the present invention relates to an ultrasonic atom microscope device, and more particularly, to evaluate nanoscale surface images, surface elastic properties and surface defects using ultrasonic waves, an optical beam capable of accurately measuring displacement of a cantilever oscillating at a contact resonance frequency.
  • An ultrasonic atomic microscope device capable of measuring a change in contact resonance frequency due to a change in elastic characteristics of a specimen by using a displacement sensor.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

The present invention relates to an ultrasonic atomic force microscope device. The ultrasonic atomic force microscope device according to the present invention has a contact-type cantilever for emitting ultrasonic waves onto a sample piece after receiving a resonant frequency signal, and includes: a control driving unit including a function generating unit vibrating the cantilever by applying the resonant frequency signal to the cantilever, and a lock-in amplifier unit obtaining and amplifying a vibration signal of the cantilever; a displacement measuring device including a cantilever head unit measuring displacement information of the cantilever by detecting a laser beam reflected onto the sample piece after being projected from a laser aligned on the surface of the cantilever by means of displacement sensors arranged so as to be divided into a plurality of areas, and a cantilever driving unit maintaining the contacting force exerted on the sample piece of the cantilever; and a microcomputer controlling the operations of the control driving unit and the displacement measuring unit and generating a nanoscale sample piece image and elastic property image using the displacement information detected through the vibration signal amplified by the lock-in amplifier unit and the displacement information detected by the displacement measuring unit.

Description

초음파 원자현미경장치Ultrasonic Atomic Force Microscope
본 발명은 초음파 원자현미경장치에 관한 것으로서, 특히 초음파를 이용한 나노스케일 표면이미지, 표면탄성특성 및 표면 결함을 평가하기 위하여, 접촉 공진주파수로 진동하는 캔틸레버의 변위를 정밀하게 측정할 수 있는 광학 빔-변위 센서를 이용하여 시료편의 탄성특성 변화에 의한 접촉 공진주파수의 변화를 측정할 수 있는 초음파 원자현미경장치에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic atom microscope device, and more particularly, to evaluate nanoscale surface images, surface elastic properties, and surface defects using ultrasonic waves, an optical beam capable of accurately measuring displacement of a cantilever oscillating at a contact resonance frequency. An ultrasonic atomic microscope device capable of measuring a change in contact resonance frequency due to a change in elastic characteristics of a specimen by using a displacement sensor.
나노기술은 차세대 기계, 반도체, 바이오, 에너지, 항공우주, 환경 등 미래첨단산업의 가치를 극대화할 수 있는 기술이며, 이들 산업의 중추적인 역할을 하는 가장 중요한 핵심기술이 되었다. 또한, 이러한 나노기술의 발전 속도는 그 어느 때 보다 빠른 속도로 성장해 가고 있는 실정이다.Nanotechnology is the technology that can maximize the value of future high-tech industries such as next-generation machinery, semiconductor, biotechnology, energy, aerospace and environment, and has become the most important core technology that plays a pivotal role in these industries. In addition, the development speed of such nanotechnology is growing faster than ever.
나노기술은 기존산업에 비해 측정기술의 역할이 더욱 중요시되고 있으나, 나노스케일 영역의 측정기술은 소재를 구성하는 단위가 나노스케일로 작아지면서 표면에서의 기계적 물성 측정까지도 소재특성에 지대한 역할을 하게 되므로 보다 정밀한 측정기술이 요구된다. In nano technology, the role of measurement technology is more important than in the existing industry, but in the nano scale measurement technology, the unit of material becomes nanoscale, and even the measurement of mechanical properties on the surface plays an important role in material properties. More precise measurement technology is required.
기존의 소재산업의 경우 분석을 위한 수많은 현미경분석기술이 개발되어왔고, 현재 이들 또한 지속적인 발전을 위해 부단한 노력을 기울이고 있는 실정이다. 대표적인 소재의 표면을 분석 할 수 있는 현미경분석으로는 잘 알려진 것이 전자현미경분석법(즉, SEM, TEM, AES, SIMS, 등)이다. 하지만, 이러한 전자현미경분석법은 시험편을 준비하고 관찰하는 데 많은 시간과 경비가 소요됨은 물론이고, 공간과 환경적인 제약이 크다는 문제점이 있다. 특히, 이러한 전자현미경분석법은 10-6 내지 10-9 Torr의 초 고진공상태에서만 조작이 가능하므로, 실제적으로 그 응용범위를 넓히기 위해선 제품수준의 광범위한 영역과 공기 혹은 수중에서의 분석기술이 절실하다고 할 수 있다. In the case of the existing material industry, a number of microscopic analysis techniques have been developed for analysis, and now they are also making constant efforts for continuous development. Microscopic analysis of the surface of a typical material is well known electron microscopy (ie SEM, TEM, AES, SIMS, etc.). However, such an electron microscope method has a problem that it takes a lot of time and expense to prepare and observe the test piece, as well as a large space and environmental constraints. In particular, the electron microscopy can be operated only in ultra-high vacuum of 10 -6 to 10 -9 Torr. Therefore, in order to broaden the scope of application, it is necessary to analyze a wide range of product level and analysis technology in air or water. Can be.
이러한 문제점을 해결한 것으로 1980년대 혁신적인 기술이 개발되었다. 이 기술은 주사탐침현미경(SPM, Scanning Probe Microscopy)법으로서, 기존의 전자현미경법과는 많은 차이는 있지만, 공기 중에서 나노수준의 분해능을 갖고 표면을 관찰할 수 있다. 이러한 주사탐침현미경법은 이후 많은 분야에 적용되어 현재는 나노 및 박막기술에 큰 기여를 하고 있는 실정이다. In order to solve these problems, innovative technologies were developed in the 1980s. This technique is a scanning probe microscope (SPM) method, which has many differences from the existing electron microscope method, but can observe the surface with nano-level resolution in air. Such scanning probe microscopy has been applied to many fields since now, the situation is making a significant contribution to the nano and thin film technology.
또한, 이러한 주사탐침현미경법은 보다 정밀한 분석이 요구되고 있으며, 이미지 분석뿐만 아니라 표면에서의 기계적 물성까지도 요구되고 있다. 현재 나노와 박막소재의 경우, X-선, 혹은 중성자 회절을 이용하여 표면의 기계적 물성 측정이 가능하지만, 시료, 환경, 측정법 등 많은 분석조건의 어려움으로 신뢰성과 정밀성을 향상시키는 데는 상당한 어려움이 있는 실정이다. In addition, the scanning probe microscopy requires a more accurate analysis, and not only image analysis but also mechanical properties on the surface. In the case of nano and thin film materials, mechanical properties of the surface can be measured by X-ray or neutron diffraction, but there are considerable difficulties in improving reliability and precision due to the difficulty of many analysis conditions such as sample, environment, and measurement method. It is true.
따라서, 표면분석을 위한 표면 이미지 관찰 외에 표면에서의 정밀도 높은 기계적 물성 평가기술이 요구되고 있다.Therefore, in addition to the observation of the surface image for surface analysis, there is a need for a technique for evaluating high precision mechanical properties on the surface.
상기와 같은 문제점을 해결하기 위하여, 본 발명은 압전소자에 의해 진동하는 캔틸레버의 변위를 광학 빔-변위 센서를 통하여 측정하는 것에 의하여, 캔틸레버의 변위를 외부 진동에 영향을 받지 않고 정밀하게 측정할 수 있는 초음파 원자현미경장치를 제공하는 것을 그 목적으로 한다.In order to solve the above problems, the present invention can accurately measure the displacement of the cantilever without being affected by external vibration by measuring the displacement of the cantilever vibrated by the piezoelectric element through an optical beam displacement sensor. It is an object of the present invention to provide an ultrasonic atom microscope device.
또한, 본 발명은, 접촉식 캔틸레버가 공진 주파수로 진동될 때 시료편의 탄성특성을 포함하는 캔틸레버의 진동변위로부터 최적의 위상신호를 수신할 수 있고, 캔틸레버의 진폭을 정확하게 측정하여 시료편의 토포그래피를 효율적으로 얻을 수 있는 초음파 원자현미경장치를 제공하는 것을 그 목적으로 한다.In addition, the present invention, when the contact cantilever is vibrated at the resonant frequency can receive an optimal phase signal from the vibration displacement of the cantilever including the elastic characteristics of the sample piece, and accurately measures the amplitude of the cantilever to perform the topography of the sample piece. It is an object of the present invention to provide an ultrasonic atom microscope device which can be efficiently obtained.
또한, 본 발명은, 초음파 가진에 의한 캔틸레버와 시료편의 접촉에 따른 공진주파수의 변화를 정밀하게 측정하여 시료편의 탄성특성을 이미지화할 수 있는 초음파 원자현미경장치를 제공하는 것을 그 목적으로 한다.It is also an object of the present invention to provide an ultrasonic atomic microscope apparatus capable of imaging the elastic characteristics of a sample piece by precisely measuring the change in the resonant frequency caused by the contact of the cantilever and the sample piece due to the ultrasonic excitation.
또한, 본 발명은, 공진주파수의 변화를 포함하는 수신신호로부터 진폭 및 위상정보를 추출하여 시료편의 탄성특성 이미지의 분해능을 향상시킬 수 있는 초음파 원자현미경장치를 제공하는 것을 그 목적으로 한다.In addition, an object of the present invention is to provide an ultrasonic atom microscope device capable of improving the resolution of the elastic characteristic image of the sample piece by extracting the amplitude and phase information from the received signal including the change in the resonance frequency.
또한, 본 발명은, 나노 및 박막소자에 발생하는 표층부의 미세결함을 측정하기 위한 데이터를 수집하고 제공할 수 있는 초음파 원자현미경장치를 제공하는 것을 그 목적으로 한다.In addition, an object of the present invention is to provide an ultrasonic atomic microscope device capable of collecting and providing data for measuring the micro-defects of the surface layer portion generated in the nano- and thin-film device.
본 발명에 따른 초음파 원자현미경장치는, 공진 주파수 신호를 입력받아 시료편에 초음파 가진을 수행하는 접촉식 캔틸레버가 설치된 초음파 원자현미경장치에 있어서, 상기 캔틸레버에 상기 공진주파수 신호를 인가하여 상기 캔틸레버를 진동시키는 함수발생부와, 상기 캔틸레버의 진동신호를 획득하여 증폭하는 락-인 증폭부를 포함하는 제어구동부; 상기 캔틸레버의 표면에 정렬된 레이저로부터 조사되어 상기 시료편에 반사된 레이저 광을, 복수 개의 영역으로 분할되어 배치되는 변위센서에 의하여, 감지하여 상기 캔틸레버의 변위정보를 측정하는 캔틸레버 헤드부와, 상기 캔틸레버의 상기 시료편에 대한 접촉력을 유지시키는 캔틸레버 구동부를 포함하는 변위측정부; 및 상기 제어구동부 및 상기 변위측정부의 동작을 제어하고, 상기 락-인 증폭부에 의하여 증폭된 진동신호와 상기 변위측정부에 의하여 감지된 변위정보를 통하여 나노크기의 시료편 이미지와 탄성특성이미지를 생성할 수 있는 마이컴을 포함할 수 있다.In the ultrasonic atomic force microscope device according to the present invention, in the ultrasonic atomic force microscope device provided with a contact cantilever for receiving the resonant frequency signal and performing ultrasonic excitation on the specimen, the cantilever is vibrated by applying the resonance frequency signal to the cantilever. A control driver including a function generator to lock and obtain and amplify the vibration signal of the cantilever; A cantilever head unit which detects the laser light irradiated from the laser arranged on the surface of the cantilever and reflected on the sample piece by a displacement sensor arranged to be divided into a plurality of regions, and measures displacement information of the cantilever; A displacement measuring unit including a cantilever drive unit for maintaining a contact force of the cantilever with respect to the sample piece; And controlling the operation of the control driver and the displacement measuring unit, and using the vibration signal amplified by the lock-in amplifier unit and the displacement information sensed by the displacement measuring unit, the nano-sized sample piece image and the elastic characteristic image. It can include a microcomputer that can be created.
상기 캔틸레버의 진동신호에 의하여 상기 시료편의 토포그래피를 획득하는 영상획득부; 및 상기 캔틸레버의 이동을 조절하여 상기 시료편의 토포그래피의 정밀도를 제어하는 영상제어부;를 더 포함할 수 있다.An image acquisition unit for acquiring a topography of the specimen piece by the vibration signal of the cantilever; And an image control unit controlling the precision of the topography of the sample piece by adjusting the movement of the cantilever.
상기 변위센서는 복수 개의 광학 빔-변위 센서인 것을 특징으로 한다.The displacement sensor is characterized in that a plurality of optical beam-displacement sensors.
상기 나노크기의 시료편 이미지와 탄성특성이미지는 상기 락-인 증폭부에 의하여 증폭된 진동신호와 상기 변위측정부에 의하여 감지된 변위정보에 대한 신호의 차이를 이용하여 생성된 진폭 및 위상 이미지이다.The nano-sized sample piece image and the elastic characteristic image are amplitude and phase images generated by using a difference between a vibration signal amplified by the lock-in amplifier and a signal for displacement information sensed by the displacement measuring unit. .
상기 함수발생기에 연결되는 지지부에 압전소자가 설치되어 있고, 상기 캔틸레버는 상기 지지부의 진동에 의하여 진동되는 것을 특징으로 한다.A piezoelectric element is installed in the support part connected to the function generator, and the cantilever is vibrated by the vibration of the support part.
상기 마이컴은, 상기 캔틸레버의 스캔 속도 및 크기, 상기 캔틸레버의 팁과 상기 시료편의 접촉력의 크기에 관한 파라미터의 입력을 제어하는 것을 특징으로 한다.The micom is characterized in that the input of the parameters relating to the scan speed and size of the cantilever, the magnitude of the contact force of the tip of the cantilever and the sample piece.
상기 마이컴은 상기 생성된 나노크기의 시료편 이미지와 탄성특성이미지를 표시할 수 있는 표시부에 연결되어 있는 것을 특징으로 한다.The microcomputer is connected to a display unit capable of displaying the generated nano-sized sample piece image and the elastic characteristic image.
상기한 바와 같이, 본 발명에 의하면, 압전소자에 의해 진동하는 캔틸레버의 변위를 광학 빔-변위 센서를 통하여 측정하고 있기 때문에, 캔틸레버의 변위를 외부 진동에 영향을 받지 않고 정밀하게 측정할 수 있다.As described above, according to the present invention, since the displacement of the cantilever oscillated by the piezoelectric element is measured through the optical beam displacement sensor, the displacement of the cantilever can be accurately measured without being influenced by external vibration.
또한, 본 발명에 의하면, 접촉식 캔틸레버가 공진 주파수로 진동될 때 시료편의 탄성특성을 포함하는 캔틸레버의 진동변위로부터 최적의 위상신호를 수신할 수 있고, 캔틸레버의 진폭을 정확하게 측정하여 시료편의 토포그래피를 효율적으로 얻을 수 있다.In addition, according to the present invention, when the contact cantilever is vibrated at a resonant frequency, it is possible to receive an optimal phase signal from the vibration displacement of the cantilever including the elastic characteristics of the sample piece, and to accurately measure the amplitude of the cantilever to topography of the sample piece. Can be efficiently obtained.
또한, 본 발명에 의하면, 초음파 가진에 의한 캔틸레버와 시료편의 접촉에 따른 공진주파수의 변화를 정밀하게 측정하여 시료편의 탄성특성을 이미지화할 수 있다.In addition, according to the present invention, it is possible to image the elastic characteristics of the sample piece by accurately measuring the change in the resonance frequency according to the contact of the cantilever and the sample piece due to the ultrasonic excitation.
또한, 본 발명에 의하면, 공진주파수의 변화를 포함하는 수신신호로부터 진폭 및 위상정보를 추출하여 시료편의 탄성특성 이미지의 분해능을 향상시킬 수 있다.In addition, according to the present invention, it is possible to improve the resolution of the elastic characteristic image of the sample piece by extracting the amplitude and phase information from the received signal including the change in the resonance frequency.
또한, 본 발명에 의하면, 나노 및 박막소자에 발생하는 표층부의 미세결함을 측정하기 위한 데이터를 수집하고 제공할 수 있다.In addition, according to the present invention, it is possible to collect and provide data for measuring the micro-defects of the surface layer portion generated in the nano and thin film elements.
이상과 같은 본 발명에 대한 해결하고자 하는 과제, 과제 해결 수단, 효과 외의 구체적인 사항들은 다음에 기재할 실시예 및 도면들에 포함되어 있다. 본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.Specific matters other than the problem to be solved, the problem solving means, and the effects of the present invention as described above are included in the following embodiments and the drawings. Advantages and features of the present invention, and methods for achieving them will become apparent with reference to the embodiments described below in detail in conjunction with the accompanying drawings. Like reference numerals refer to like elements throughout.
도 1은 본 발명에 따른 초음파 원자현미경장치의 구조를 나타내는 블록도.1 is a block diagram showing the structure of the ultrasonic microscope according to the present invention.
도 2는 본 발명에 따른 초음파 원자현미경장치를 이용하여 시료편의 나노크기의 탄성이미지를 얻는 과정을 설명하기 위한 도면. Figure 2 is a view for explaining the process of obtaining a nano-size elastic image of the specimen using the ultrasonic atomic microscope device according to the present invention.
이하 본 발명의 실시예에 대하여 첨부한 도면을 참조하여 상세하게 설명하기로 한다. 다만, 첨부된 도면은 본 발명의 내용을 보다 쉽게 개시하기 위하여 설명되는 것일 뿐, 본 발명의 범위가 첨부된 도면의 범위로 한정되는 것이 아님은 이 기술분야의 통상의 지식을 가진 자라면 용이하게 알 수 있을 것이다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the accompanying drawings are only described in order to more easily disclose the contents of the present invention, but the scope of the present invention is not limited to the scope of the accompanying drawings that will be readily available to those of ordinary skill in the art. You will know.
한편, 기계. 정보통신, 바이오, 에너지, 항공우주 등의 첨단산업 분야에서 마이크로, 나노, 박막기술은 이들 산업의 중추적인 역할을 하는 가장 중요한 핵심요소로 이들을 조작하고 분석하는 조작 및 분석기술에 필수적인 소재 표면의 탄성특성에 대한 나노스케일 이미지를 제공할 수 있다.Meanwhile, the machine. In the high-tech industries such as telecommunications, biotechnology, energy, and aerospace, micro, nano and thin-film technology are the most important key elements that play a pivotal role in these industries. Nanoscale images of properties can be provided.
또한, 대표적인 소재의 표면을 분석할 수 있는 현미경분석으로는 잘 알려진 것이 전자현미경분석법(즉, SEM, TEM, AES, SIMS, 등)이다. 하지만 이들은 시험편을 준비하고 관찰하는 데는 많은 시간과 경비가 소요됨은 물론이고 공간과 환경적인 제약이 크다고 하겠다. 이러한 전자현미경분석법은, 비록 정밀성 있는 분석을 할 수는 있지만, 상당히 국부적인 관찰범위(나노 혹은 마이크로 크기)로 소재의 미시적인 특성평가에 제한적으로 응용될 뿐이다. 특히, 이들은 초고진공상태 (10-6~10-9 Torr)에서만 조작이 가능하므로 실제적으로 그 응용범위를 넓히기 위해선 제품수준의 광범위한 영역과 공기 혹은 수중에서의 분석기술이 절실하다고 할 수 있다. 현재 나노와 박막소재의 경우 X-선, 혹은 중성자회절을 이용하여 표면의 기계적 물성 측정이 가능하지만, 시료, 환경, 측정법 등 많은 분석조건의 어려움으로 신뢰성과 정밀성을 향상시키는 데는 상당한 어려움을 안고 있다. In addition, the microscopic analysis that can analyze the surface of the representative material is well known electron microscopy (ie SEM, TEM, AES, SIMS, etc.). However, they are not only time-consuming and expensive to prepare and observe, but also have large space and environmental constraints. Although electron microscopy can be used for precise analysis, it has a limited local observation range (nano or micro size) and is limited to microscopic characterization of materials. In particular, they can only be operated in ultra-high vacuum (10 -6 to 10 -9 Torr), so in order to broaden the scope of application, it is desperately needed for a wide range of product level and analytical technology in air or water. Currently, nano- and thin-film materials can measure the mechanical properties of surfaces using X-rays or neutron diffraction. .
이하 본 발명에서는 이들의 모든 문제점을 해결할 수 있는 방법으로 초음파 원자현미경장치를 사용하여, 나노스케일 표면 이미지뿐만 아니라 탄성특성을 측정가능하도록 할 수 있다.In the present invention, by using an ultrasonic atomic microscope device as a way to solve all these problems, it is possible to measure not only the nanoscale surface image but also the elastic properties.
도 1은 본 발명에 따른 초음파 원자현미경장치의 구조를 나타내는 블록도이고, 도 2는 본 발명에 따른 초음파 원자현미경장치를 이용하여 시료편의 나노크기의 탄성이미지를 얻는 과정을 설명하기 위한 도면이다.1 is a block diagram showing the structure of an ultrasonic atom microscope device according to the present invention, Figure 2 is a view for explaining a process of obtaining a nano-size elastic image of the sample using the ultrasonic atom microscope device according to the present invention.
도 1 및 도 2에 도시된 바와 같이, 본 발명에 따른 초음파 원자현미경장치는, 원자현미경(Atomic Force Microscopy; AFM)을 기반으로 하여 공진 주파수 신호를 입력받아 시료편(300)에 초음파 가진을 수행하는 접촉식 캔틸레버(123)가 설치된 초음파 원자현미경장치이고, 제어구동부(100), 변위측정부(200), 마이컴(400), 영상획득부(미도시), 영상제어부(미도시), 표시부(미도시)를 포함한다. 한편, 이하에서의 본 발명에 대한 설명과 도 1 및 도 2의 도시는 본 발명에 필수적이고 신규한 구성을 위주로 설명하거나 이를 위하여 개략적으로 도시하고 있고, 상기의 구성을 이루는 세부적인 구성들은 본 발명의 요지와 무관한 것이기 때문에, 이에 관한 설명 및 도시는 생략하기로 한다.As shown in Figure 1 and 2, the ultrasonic atomic microscope device according to the present invention, based on the atomic force microscope (Atomic Force Microscopy; AFM) receives a resonant frequency signal to perform ultrasonic excitation to the specimen piece 300 Ultrasonic Atom Microscope Apparatus equipped with a contact cantilever 123, the control driver 100, the displacement measuring unit 200, the microcomputer 400, the image acquisition unit (not shown), the image control unit (not shown), the display unit ( Not shown). On the other hand, the following description of the present invention and the illustration of Figures 1 and 2 are essential for the present invention described or outlined for this purpose mainly for this purpose, and the detailed configuration constituting the above configuration is the present invention Since it is irrelevant to the gist of the description, the description and illustration thereof will be omitted.
한편, 본 초음파 원자현미경장치에 사용되는 원자현미경은, 미세한 탐침을 시료편(300)에 근접시켜 시료편(300)의 표면과 탐침 사이의 상호작용을 이용하여 시료편(300) 형상을 비롯한 다양한 특성을 알아내는 AFM이다. 구체적으로 설명하자면, 캔틸레버(123)(Cantilever)의 맨 끝에 탐침이 설치되어 있고, 이러한 탐침을 시료편(300)에 근접시키면 탐침 끝의 원자와 시료편(300)의 원자들 사이에 상호작용이 발생하게 되는 것이다. 이러한 상호작용에 의하여 캔틸레버(123)의 공명진동수가 변화하여 캔틸레버(123)의 휨 정도나 공명진동수 변화를 레이저(Laser) 또는 포토다이오드(PSPD)에 의하여 측정된다. 이렇게 감지된 원자 사이의 힘이 일정하게 유지되도록 피드백 제어를 통하여 탐침을 소정 방향으로 움직이면 탐침은 시료편(300)의 높낮이를 따라가게 되며, 이때 기록된 각 위치의 높낮이가 시료 형상을 나타내는 이미지가 된다. 본 발명에서는, 보다 정밀한 이미지를 얻기 위하여 시료편(300)을 X-Y 구동부(122)에 의하여 x-y방향으로 움직이고, 캔틸레버(123)에 부착된 탐침을 Z구동부(121)에 의하여 수직방향, 즉 z방향으로 움직여주게 된다.On the other hand, the atomic force microscope used in the present ultrasonic atomic microscope device, by using the interaction between the surface of the sample piece 300 and the probe by bringing a fine probe close to the sample piece 300, various types including the shape of the sample piece 300 It is an AFM that finds out the characteristics. Specifically, a probe is installed at the far end of the cantilever 123, and when the probe is brought close to the sample piece 300, the interaction between the atoms at the tip of the probe and the atoms of the sample piece 300 is lost. Will occur. By such interaction, the resonance frequency of the cantilever 123 is changed, and the bending degree or the resonance frequency change of the cantilever 123 is measured by a laser or a photodiode PSPD. When the probe is moved in a predetermined direction through feedback control so that the force between the atoms sensed is kept constant, the probe follows the height of the specimen piece 300, where the height of each recorded position indicates the image shape of the sample. do. In the present invention, in order to obtain a more accurate image, the specimen piece 300 is moved in the xy direction by the XY driver 122, and the probe attached to the cantilever 123 is moved in the vertical direction, that is, the z direction by the Z driver 121. Will be moved.
제어구동부(100)는, 캔틸레버(123)에 공진주파수 신호를 인가하여 캔틸레버(123)를 진동시키는 함수발생부(210)와, 캔틸레버(123)의 진동신호를 획득하여 증폭하는 락-인 증폭부(220)를 포함한다. The control driver 100 applies a resonant frequency signal to the cantilever 123 to generate a function generator 210 to vibrate the cantilever 123, and a lock-in amplifier to acquire and amplify the vibration signal of the cantilever 123. 220.
여기서, 함수발생부(210)는 캔틸레버(123)의 형상에 따른 공진 주파수 모드를 발생하기 위한 장치로서, 마이컴(400)에 의해 제어되며 캔틸레버(123)에 부착된 압전소자(piezoelectric ceramic device)에 전기적인 신호를 송신하여 캔틸레버(123)에 진동을 발생시킨다. 또한, 락-인 증폭부(220)는 마이컴(400)에 의해 제어되고, 압전소자에 의해 진동되는 캔틸레버(123)로부터 진폭 및 위상신호를 얻을 수 있다. 이때, 락-인 증폭부(220)는 고전압 증폭기가 사용될 수 있고, 아날로그 디지털 변환기에 의하여 변환된 디지털 신호를 비례-적분 제어 알고리즘에 의하여 처리한 후, 처리된 디지털 신호를 디지털 아날로그 변환기에 의하여 변환된 아날로그 신호를 공급받아 증폭하여준다.Here, the function generator 210 is a device for generating a resonant frequency mode according to the shape of the cantilever 123, and is controlled by the microcomputer 400 and attached to a piezoelectric ceramic device attached to the cantilever 123. The electrical signal is transmitted to generate vibrations in the cantilever 123. In addition, the lock-in amplifier 220 may be controlled by the microcomputer 400 and obtain amplitude and phase signals from the cantilever 123 vibrated by the piezoelectric element. In this case, the lock-in amplifier 220 may use a high voltage amplifier, process the digital signal converted by the analog-to-digital converter by a proportional-integration control algorithm, and then convert the processed digital signal by the digital-to-analog converter. Amplified by receiving the analog signal.
변위측정부(200)는, 캔틸레버(123)의 표면에 정렬된 레이저(Laser)로부터 조사되어 시료편(300)에 반사된 레이저 광을, 복수 개의 영역으로 분할되어 배치되는 변위센서(미도시)에 의하여, 감지하여 캔틸레버(123)의 변위정보를 측정하는 캔틸레버 헤드부(140)와, 캔틸레버(123)의 시료편(300)에 대한 접촉력을 유지시키는 캔틸레버 구동부(120)를 포함한다. 또한, 비례-적분 피드백 알고리즘에 의한 캔틸레버 구동부(120)를 제어하는 제어부(130)를 더 포함할 수 있다. 이때, 제어부(130)는 비례-적분 피드백 알고리즘에 의한 원자현미경의 구동부(120)를 제어하는 것이고, 시료편(300)의 나노스케일 표면 이미지를 얻을 수 있도록 캔틸레버(123)의 변위를 정밀하게 조절할 뿐만 아니라 측정 가능하도록 설계되어 있다. 한편, 변위센서는 복수 개의 광학 빔-변위 센서인 것이 바람직하다. The displacement measuring unit 200 is a displacement sensor (not shown) for dividing the laser light irradiated from the laser arranged on the surface of the cantilever 123 and reflected on the sample piece 300 into a plurality of regions. The cantilever head unit 140 detects and measures displacement information of the cantilever 123, and a cantilever drive unit 120 that maintains contact force with respect to the specimen piece 300 of the cantilever 123. The controller 130 may further include a controller 130 controlling the cantilever driver 120 by a proportional-integral feedback algorithm. In this case, the controller 130 controls the driving unit 120 of the atomic force microscope by a proportional-integral feedback algorithm, and precisely adjusts the displacement of the cantilever 123 so as to obtain a nanoscale surface image of the sample piece 300. It is also designed to be measurable. On the other hand, the displacement sensor is preferably a plurality of optical beam-displacement sensors.
따라서, 본 발명에 의하면, 압전소자에 의해 진동하는 캔틸레버(123)의 변위를 광학 빔-변위 센서를 통하여 측정하고 있기 때문에, 캔틸레버(123)의 변위를 외부 진동에 영향을 받지 않고 정밀하게 측정할 수 있다.Therefore, according to the present invention, since the displacement of the cantilever 123 vibrating by the piezoelectric element is measured through the optical beam displacement sensor, the displacement of the cantilever 123 can be accurately measured without being influenced by external vibration. Can be.
보다 상세하게 설명하자면, 원자 현미경의 헤드부(140)와 구동부(120)는 캔틸레버(123)의 변위를 측정하고 제어할 수 있도록 설계되어 있다. 즉, 헤드부(140)는 캔틸레버(123) 표면에 레이저를 정렬하여 광학 빔-변위 센서에 의해 반사되는 레이저 신호를 측정하고, 광학 빔-변위 센서는 정밀한 캔틸레버(123)의 변위를 측정하기 위해 총 4개의 영역으로 분할되어 있다. 또한, 구동부(120)는 시료편(300)의 나노스케일 이미지를 얻기 위하여 마이컴(400)에서 설정한 접촉력을 일정하게 유지시킨다.In more detail, the head 140 and the driver 120 of the atomic force microscope are designed to measure and control the displacement of the cantilever 123. That is, the head 140 measures the laser signal reflected by the optical beam-displacement sensor by aligning the laser on the surface of the cantilever 123, and the optical beam-displacement sensor measures the precise displacement of the cantilever 123. It is divided into four areas in total. In addition, the driving unit 120 maintains a constant contact force set in the microcomputer 400 to obtain a nanoscale image of the specimen piece 300.
마이컴(400)은, 제어구동부(100) 및 변위측정부(200)의 동작을 제어하고, 락-인 증폭부(220)에 의하여 증폭된 진동신호와 변위측정부(200)에 의하여 감지된 변위정보를 통하여 나노크기의 시료편(300) 이미지와 탄성특성이미지를 생성할 수 있다. 이때, 나노크기의 시료편(300) 이미지와 탄성특성이미지는 제어구동부(100)의 락-인 증폭부(220)에 의하여 증폭된 진동신호와 변위측정부(200)에 의하여 감지된 변위정보에 대한 신호의 차이를 이용하여 생성된 진폭 및 위상 이미지이다. 또한, 마이컴(400)은, 캔틸레버(123)의 스캔 속도 및 크기, 캔틸레버(123)의 탐침과 시료편(300)의 접촉력의 크기에 관한 파라미터(parameter)의 입력을 제어한다. The microcomputer 400 controls the operations of the control driver 100 and the displacement measuring unit 200, and the displacement sensed by the vibration signal and the displacement measuring unit 200 amplified by the lock-in amplifier 220. Through the information, the nano-sized sample piece 300 image and the elastic characteristic image can be generated. At this time, the nano-sized specimen piece 300 image and the elastic characteristic image is based on the vibration signal amplified by the lock-in amplifier 220 of the control driving unit 100 and the displacement information detected by the displacement measuring unit 200 Amplitude and phase images generated using the difference in signal for. In addition, the microcomputer 400 controls input of parameters related to the scan speed and size of the cantilever 123 and the magnitude of the contact force between the probe of the cantilever 123 and the specimen piece 300.
보다 상세하게 설명하자면, 본 마이컴(400)은, 게인, 스캔 속도 및 크기, 접촉력 등의 각종 파라미터 입력, 측정된 값의 표시, 초음파 발생을 제어하는 것으로, 측정자에 의하여 측정 및 제어에 관한 명령어를 키보드나 마우스 방식을 이용하여 입력하며, 측정된 값(소재 표면에 접촉된 캔틸레버(123)의 변위)을 수치적 데이터나 그래프 등으로 표시하고, 초음파의 발생에 관한 제어를 하도록 구성된다 이때, 제어컴퓨터는 일반 퍼스널(personal) 컴퓨터를 이용하여 구성 가능할 것이다.In more detail, the microcomputer 400 controls input of various parameters such as gain, scan speed and size, and contact force, display of measured values, and generation of ultrasonic waves. Input by using a keyboard or a mouse method, and displays the measured value (displacement of the cantilever 123 in contact with the material surface) by numerical data or graphs, and controls for the generation of ultrasonic waves. The computer may be configurable using a general personal computer.
또한, 마이컴(400)은 표시부(미도시)에 연결되어 상기 생성된 나노크기의 시료편(300) 이미지와 탄성특성이미지를 표시할 수 있게 한다. In addition, the microcomputer 400 may be connected to a display unit (not shown) to display the generated nano-sized sample piece 300 image and the elastic characteristic image.
따라서, 본 마이컴(400)은 게인, 스캔 사이즈, 스캔 속도, 접촉력 등의 각종 파라미터 입력, 측정된 값의 표시, 초음파 발생을 제어하는 역할을 하고, 각종 데이터 수치나 그래프 등으로 나노스케일의 표면이미지와 탄성특성이미지를 나타낼 수 있게 된다.Accordingly, the microcomputer 400 controls input of various parameters such as gain, scan size, scan speed, and contact force, display of measured values, and generation of ultrasonic waves, and displays nanoscale surface images with various data values and graphs. And the elastic characteristic image can be displayed.
한편, 마이컴(400)에는 영상획득부(미도시)와 영상제어부(미도시)가 연결되어, 캔틸레버(123)의 진동신호에 의하여 시료편(300)의 토포그래피를 획득하고, 캔틸레버(123)의 이동을 조절하여 시료편(300)의 토포그래피의 정밀도를 제어할 수 있다.On the other hand, the microcomputer 400 is connected to the image acquisition unit (not shown) and the image control unit (not shown), to obtain the topography of the specimen piece 300 by the vibration signal of the cantilever 123, the cantilever 123 The precision of the topography of the sample piece 300 can be controlled by adjusting the movement of the sample.
따라서, 상기와 같이 구성된 본 초음파 원자현미경장치에 의하면, 초음파 가진을 통해 공진된 접촉식 캔틸레버(123)를 이용하여 시료편(300)의 이미지뿐만 아니라, 시료편(300)의 탄성특성을 나노스케일로 측정할 수 있어 정밀도가 우수하며 나노와 박막소재표면의 기계적 물성측정이 가능하도록 하는 효과가 있다. 또한, 본 초음파 원자현미경장치에 의하면, 접촉식 캔틸레버(123)가 공진 주파수로 진동될 때 시료편(300)의 탄성특성을 포함하는 캔틸레버(123)의 진동변위로부터 최적의 위상신호를 수신할 수 있고, 캔틸레버(123)의 진폭을 정확하게 측정하여 시료편(300)의 토포그래피를 효율적으로 얻을 수 있다. 또한, 본 초음파 원자현미경장치에 의하면, 초음파 가진에 의한 캔틸레버(123)와 시료편(300)의 접촉에 따른 공진주파수의 변화를 정밀하게 측정하여 시료편(300)의 탄성특성을 이미지화할 수 있다. 또한, 본 초음파 원자현미경장치에 의하면, 공진주파수의 변화를 포함하는 수신신호로부터 진폭 및 위상정보를 추출하여 시료편(300)의 탄성특성 이미지의 분해능을 향상시킬 수 있고, 나아가 나노 및 박막소자에 발생하는 표층부의 미세결함을 측정하기 위한 데이터를 수집하고 제공할 수 있다.Therefore, according to the ultrasonic atom microscope device configured as described above, using the contact cantilever 123 resonated by ultrasonic excitation, not only the image of the specimen piece 300, but also the elastic characteristics of the specimen piece 300 are nanoscale. It can be measured with high precision and has the effect of enabling mechanical properties of nano and thin film materials to be measured. In addition, according to the ultrasonic atomic microscope apparatus, when the contact cantilever 123 is vibrated at a resonance frequency, an optimal phase signal can be received from the vibration displacement of the cantilever 123 including the elastic characteristics of the specimen piece 300. In addition, the topography of the sample piece 300 can be efficiently obtained by accurately measuring the amplitude of the cantilever 123. In addition, according to the ultrasonic atomic force microscope device, it is possible to image the elastic characteristics of the specimen piece 300 by accurately measuring the change in the resonance frequency caused by the contact of the cantilever 123 and the specimen piece 300 by the ultrasonic excitation. . In addition, according to the ultrasonic atom microscope device, the amplitude and phase information can be extracted from the received signal including the change of the resonance frequency to improve the resolution of the elastic characteristic image of the sample piece 300, and furthermore, to the nano and thin film devices. Data may be collected and provided to measure the microdefects occurring in the surface layer.
상기와 같이 구성된 본 초음파 원자현미경장치의 작용을 설명하면 다음과 같다.Referring to the operation of the ultrasonic atomic microscope device configured as described above are as follows.
우선, 함수발생부(210)에 의해 제어되는 압전소자가 부착된 지지부의 진동에 의해 공진 주파수 모드로 진동하는 캔틸레버(123)가 시료편(300)에 접촉하고 있다.First, the cantilever 123 vibrating in the resonant frequency mode by the vibration of the support part with the piezoelectric element controlled by the function generator 210 is in contact with the specimen piece 300.
이후, 마이컴(400)을 통해 캔틸레버(123)를 일정한 접촉력을 가지는 상태로 제어하고, 일정 부위 영역의 이미지를 얻기 위해 캔틸레버(123)를 이동시킨다.Thereafter, the cantilever 123 is controlled to have a constant contact force through the microcomputer 400, and the cantilever 123 is moved to obtain an image of a predetermined region.
다음으로, 일정 부위 영역에서 얻은 캔틸레버(123)의 변위정보는 원자현미경의 헤드부(140)를 거쳐 마이컴(400)으로 전달된 측정값은 시료편(300) 이미지를 얻기 위한 데이터로 활용된다.Next, the displacement information of the cantilever 123 obtained in a certain area is transmitted to the microcomputer 400 through the head portion 140 of the atomic force microscope is used as data for obtaining the specimen piece 300 image.
이와 같이, 헤드부(140)에서 수신된 캔틸레버(123)의 변위정보는 해당 영역의 진폭과 위상 정보를 포함하는데, 이러한 신호는 락-인 증폭부(220)에 의하여 원래의 신호와 비교되고, 또한 수신된 신호와의 차이를 측정하여 진폭과 위상에 대한 이미지를 얻을 수 있다.As such, the displacement information of the cantilever 123 received from the head unit 140 includes amplitude and phase information of the corresponding region, and this signal is compared with the original signal by the lock-in amplifier 220. You can also measure the difference with the received signal to obtain an image of amplitude and phase.
여기서, 초음파 가진에 의한 접촉식 캔틸레버(123)의 공진 주파수 모드를 이용한 초음파 원자현미경장치의 탄성 특성이미지의 측정원리를 설명하면, 캔틸레버(123)가 시료편(300)을 주사하는 동안 캔틸레버(123) 팁은 반데르발스력, 인력적인 모세관력, 그리고 척력의 압입력 등의 다양한 캔틸레버(123)의 탐침-시료편 표면간의 상호작용력의 영향을 받게 된다. 따라서, 이러한 캔틸레버(123)의 탐침-소재간의 상호작용력은 캔틸레버(123)의 유효강성계수를 변화시키게 된다. 즉, 캔틸레버(123)의 탐침-시료편간의 상호작용에 의해 캔틸레버(123)의 공진주파수는 변화되게 되고, 이러한 특성에 의해 국부적으로 서로 다른 표면특성을 갖는 시료편(300)의 경우, 서로 다른 표면영역에서 상대적인 진동의 진폭 변화를 발생시키는데 이는 팁-소재간의 상호작용력에 의해 나타나는 현상이다.Here, the measuring principle of the elastic characteristic image of the ultrasonic atomic microscope device using the resonant frequency mode of the contact type cantilever 123 by ultrasonic excitation, the cantilever 123 while the cantilever 123 is scanning the sample piece 300 The tip is affected by the interaction force between the probe-sample surface of the various cantilever 123, such as van der Waals force, attractive capillary force, and repulsive force input. Therefore, the interaction force between the probe and the material of the cantilever 123 changes the effective stiffness coefficient of the cantilever 123. That is, the resonance frequency of the cantilever 123 is changed by the interaction between the probe and the sample piece of the cantilever 123, and in the case of the sample piece 300 having the locally different surface characteristics by these characteristics, It generates a change in the amplitude of relative vibration in the surface region, which is caused by the interaction force between the tip and the material.
이와 같이, 상호작용력에 의한 캔틸레버(123)의 공진주파수의 변화로 인한 캔틸레버(123)의 변위변화를 이용하여, 시료편(300)의 나노스케일 탄성이미지를 얻을 수 있기 때문에, 박막 구조에 비파괴평가에 응용할 수 있다.As described above, since nanoscale elastic images of the specimen piece 300 can be obtained by using the displacement change of the cantilever 123 due to the change in the resonance frequency of the cantilever 123 due to the interaction force, the non-destructive evaluation on the thin film structure. Applicable to
이때, 광학 빔-변위센서에 의해 측정된 캔틸레버(123)의 변위 및 시료편(300) 이미지가 마이컴(400)에 의해 동시에 표시되는 것과 함께, 그 데이터를 저장하여, 박막 구조의 탄성특성을 분석하기 위한 데이터로 활용할 수 있는 것이다.At this time, the displacement of the cantilever 123 and the sample piece 300 image measured by the optical beam-displacement sensor are simultaneously displayed by the microcomputer 400, and the data is stored to analyze the elastic characteristics of the thin film structure. It can be used as data to do this.
이와 같이, 상술한 본 발명의 기술적 구성은 본 발명이 속하는 기술분야의 당업자가 본 발명의 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다.As such, the technical configuration of the present invention described above can be understood by those skilled in the art that the present invention can be implemented in other specific forms without changing the technical spirit or essential features of the present invention.
그러므로 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해되어야 하고, 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타나며, 특허청구범위의 의미 및 범위 그리고 그 등가개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.Therefore, the exemplary embodiments described above are to be understood as illustrative and not restrictive in all respects, and the scope of the present invention is indicated by the following claims rather than the detailed description, and the meaning and scope of the claims and their All changes or modifications derived from equivalent concepts should be construed as being included in the scope of the present invention.
본 발명은 초음파 원자현미경장치에 관한 것으로서, 특히 초음파를 이용한 나노스케일 표면이미지, 표면탄성특성 및 표면 결함을 평가하기 위하여, 접촉 공진주파수로 진동하는 캔틸레버의 변위를 정밀하게 측정할 수 있는 광학 빔-변위 센서를 이용하여 시료편의 탄성특성 변화에 의한 접촉 공진주파수의 변화를 측정할 수 있는 초음파 원자현미경장치에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic atom microscope device, and more particularly, to evaluate nanoscale surface images, surface elastic properties and surface defects using ultrasonic waves, an optical beam capable of accurately measuring displacement of a cantilever oscillating at a contact resonance frequency. An ultrasonic atomic microscope device capable of measuring a change in contact resonance frequency due to a change in elastic characteristics of a specimen by using a displacement sensor.

Claims (7)

  1. 공진 주파수 신호를 입력받아 시료편(300)에 초음파 가진을 수행하는 접촉식 캔틸레버(123)가 설치된 초음파 원자현미경장치에 있어서,In the ultrasonic atomic microscope device provided with a contact cantilever 123 for receiving the resonant frequency signal and performing ultrasonic excitation on the specimen piece 300,
    상기 캔틸레버(123)에 상기 공진주파수 신호를 인가하여 상기 캔틸레버(123)를 진동시키는 함수발생부(210)와, 상기 캔틸레버(123)의 진동신호를 획득하여 증폭하는 락-인 증폭부(220)를 포함하는 제어구동부(100);The function generator 210 for vibrating the cantilever 123 by applying the resonance frequency signal to the cantilever 123, and the lock-in amplifier 220 for acquiring and amplifying the vibration signal of the cantilever 123. Control driving unit 100 comprising a;
    상기 캔틸레버(123)의 표면에 정렬된 레이저(Laser)로부터 조사되어 상기 시료편(300)에 반사된 레이저 광을, 복수 개의 영역으로 분할되어 배치되는 변위센서에 의하여, 감지하여 상기 캔틸레버(123)의 변위정보를 측정하는 캔틸레버 헤드부(140)와, 상기 캔틸레버(123)의 상기 시료편(300)에 대한 접촉력을 유지시키는 캔틸레버 구동부(120)를 포함하는 변위측정부(200); 및The cantilever 123 is detected by a displacement sensor disposed by dividing the laser light reflected from the laser arranged on the surface of the cantilever 123 and reflected on the sample piece 300 into a plurality of regions. A displacement measuring unit (200) including a cantilever head unit (140) for measuring displacement information of the cantilever drive unit (120) for maintaining a contact force with respect to the specimen piece (300) of the cantilever (123); And
    상기 제어구동부(100) 및 상기 변위측정부(200)의 동작을 제어하고, 상기 락-인 증폭부(220)에 의하여 증폭된 진동신호와 상기 변위측정부(200)에 의하여 감지된 변위정보를 통하여 나노크기의 시료편(300) 이미지와 탄성특성이미지를 생성할 수 있는 마이컴(400)을 포함하는 초음파 원자현미경장치.The operation of the control driver 100 and the displacement measuring unit 200 is controlled, and the vibration signal amplified by the lock-in amplifier 220 and the displacement information detected by the displacement measuring unit 200. Ultrasonic atomic microscope device comprising a microcomputer (400) capable of generating a nano-sized sample piece 300 image and the elastic characteristic image.
  2. 제1항에 있어서,The method of claim 1,
    상기 캔틸레버(123)의 진동신호에 의하여 상기 시료편(300)의 토포그래피를 획득하는 영상획득부; 및An image acquisition unit for acquiring a topography of the specimen piece 300 by the vibration signal of the cantilever 123; And
    상기 캔틸레버(123)의 이동을 조절하여 상기 시료편(300)의 토포그래피의 정밀도를 제어하는 영상제어부;를 더 포함하는 초음파 원자현미경장치.And an image control unit for controlling the topography of the specimen piece 300 by adjusting the movement of the cantilever 123.
  3. 제1항에 있어서,The method of claim 1,
    상기 변위센서는 복수 개의 광학 빔-변위 센서인 초음파 원자현미경장치.And the displacement sensor is a plurality of optical beam-displacement sensors.
  4. 제1항에 있어서,The method of claim 1,
    상기 나노크기의 시료편(300) 이미지와 탄성특성이미지는 상기 락-인 증폭부(220)에 의하여 증폭된 진동신호와 상기 변위측정부(200)에 의하여 감지된 변위정보에 대한 신호의 차이를 이용하여 생성된 진폭 및 위상 이미지인 초음파 원자현미경장치.The nano-sized sample piece 300 image and the elastic characteristic image is the difference between the vibration signal amplified by the lock-in amplifier 220 and the signal for the displacement information detected by the displacement measuring unit 200 Ultrasonic atomic force microscope device that is an amplitude and phase image generated using.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 4,
    상기 함수발생부(210)에 연결되는 지지부에 압전소자가 설치되어 있고, 상기 캔틸레버(123)는 상기 지지부의 진동에 의하여 진동되는 초음파 원자현미경장치.A piezoelectric element is installed in the support portion connected to the function generator 210, and the cantilever 123 is vibrated by the vibration of the support.
  6. 제1항에 있어서,The method of claim 1,
    상기 마이컴(400)은, 상기 캔틸레버(123)의 스캔 속도 및 크기, 상기 캔틸레버(123)의 팁과 상기 시료편(300)의 접촉력의 크기에 관한 파라미터의 입력을 제어하는 초음파 원자현미경장치.The microcomputer 400, the ultrasonic atomic microscope device for controlling the input of the parameters regarding the scan speed and size of the cantilever 123, the contact force of the tip of the cantilever 123 and the specimen piece 300.
  7. 제6항에 있어서,The method of claim 6,
    상기 마이컴(400)은 상기 생성된 나노크기의 시료편(300) 이미지와 탄성특성이미지를 표시할 수 있는 표시부에 연결되어 있는 초음파 원자현미경장치.The microcomputer 400 is connected to the display unit capable of displaying the generated nano-sized sample piece 300 image and the elastic characteristic image.
PCT/KR2011/002048 2010-05-17 2011-03-25 Ultrasonic atomic force microscope device WO2011145802A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0045982 2010-05-17
KR1020100045982A KR101112505B1 (en) 2010-05-17 2010-05-17 Ultrasonic atomic force microscopy apparatus

Publications (2)

Publication Number Publication Date
WO2011145802A2 true WO2011145802A2 (en) 2011-11-24
WO2011145802A3 WO2011145802A3 (en) 2012-02-23

Family

ID=44992156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/002048 WO2011145802A2 (en) 2010-05-17 2011-03-25 Ultrasonic atomic force microscope device

Country Status (2)

Country Link
KR (1) KR101112505B1 (en)
WO (1) WO2011145802A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101656185B1 (en) * 2015-06-02 2016-09-09 서울과학기술대학교 산학협력단 A signal analyzing method of a acoustic microscope
CN111337710A (en) * 2020-02-20 2020-06-26 罗浩维 Piezoelectric force microscope data reading and measuring system, device and method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101410221B1 (en) * 2012-05-23 2014-06-20 서울과학기술대학교 산학협력단 Ultrasonic atomic force microscopy apparatus
EP3349019A1 (en) * 2017-01-13 2018-07-18 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Method of and system for performing detection on or characterization of a sample
KR102093989B1 (en) 2018-10-05 2020-03-26 동의대학교 산학협력단 Apparatus for measuring physical properties of thin films at high frequencies

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08233837A (en) * 1995-02-24 1996-09-13 Hitachi Ltd Proximity ultrasonic microscope
US20060075807A1 (en) * 2002-12-18 2006-04-13 Palo Alto Research Center Incorporated Alignment-tolerant lens structures for acoustic force actuation of cantilevers
US7584653B2 (en) * 2003-08-11 2009-09-08 Veeco Instruments, Inc. System for wide frequency dynamic nanomechanical analysis

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08233837A (en) * 1995-02-24 1996-09-13 Hitachi Ltd Proximity ultrasonic microscope
US20060075807A1 (en) * 2002-12-18 2006-04-13 Palo Alto Research Center Incorporated Alignment-tolerant lens structures for acoustic force actuation of cantilevers
US7584653B2 (en) * 2003-08-11 2009-09-08 Veeco Instruments, Inc. System for wide frequency dynamic nanomechanical analysis

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PARK, TAE SEONG ET AL.: 'Vibro-Contact Analysis of Ultrasonic Atomic Force Microscopy Tip' JOURNAL OF NONDESTRUCTIVE TEST vol. 30, no. 2, April 2010, pages 132 - 138 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101656185B1 (en) * 2015-06-02 2016-09-09 서울과학기술대학교 산학협력단 A signal analyzing method of a acoustic microscope
CN111337710A (en) * 2020-02-20 2020-06-26 罗浩维 Piezoelectric force microscope data reading and measuring system, device and method

Also Published As

Publication number Publication date
WO2011145802A3 (en) 2012-02-23
KR101112505B1 (en) 2012-02-14
KR20110126344A (en) 2011-11-23

Similar Documents

Publication Publication Date Title
US7603891B2 (en) Multiple frequency atomic force microscopy
CN107449939B (en) Multi-parameter synchronous measurement method by adopting magnetic drive peak force modulation atomic force microscope
US7584653B2 (en) System for wide frequency dynamic nanomechanical analysis
EP2864798B1 (en) Method and apparatus of electrical property measurement using an afm operating in peak force tapping mode
US8220066B2 (en) Vibration compensation in probe microscopy
WO2011145802A2 (en) Ultrasonic atomic force microscope device
KR20090087876A (en) Probe assembly for a scanning probe microscope
US8869311B2 (en) Displacement detection mechanism and scanning probe microscope using the same
CN106645807B (en) Photoelectric coupling environment controllable atomic force microscopic test system
Rangelow et al. Piezoresistive and self-actuated 128-cantilever arrays for nanotechnology applications
JP5061013B2 (en) Apparatus structure and scanning probe microscope having the structure
JP4812019B2 (en) Sample handling device
JP2000346784A (en) Viscoelasticity distribution measurement method
Andany et al. An atomic force microscope integrated with a helium ion microscope for correlative nanoscale characterization
US7009414B2 (en) Atomic force microscope and method for determining properties of a sample surface using an atomic force microscope
Kwoka et al. Soft piezoresistive cantilevers for adhesion force measurements
Świadkowski et al. Near-zero contact force atomic force microscopy investigations using active electromagnetic cantilevers
KR101410221B1 (en) Ultrasonic atomic force microscopy apparatus
WO2008156722A1 (en) Material property measurements using multiple frequency atomic forece microsocopy
Kaliannan et al. Scanning probe microscope
Ahtaiba et al. Restoration of an AFM height image using a deflection image at different scanning speeds
JP2024520387A (en) AFM imaging with creep correction
Ahtaiba Proposed Combining Process Technique by Summing the Topographical Height Image and the Deflection Image with a Weight Function at Different Scanning Speeds
Wakiyama Three-dimensional morphology measurements of ultra-small regions with the AFM5500M probe microscope
KR100636011B1 (en) Defect detection apparatus

Legal Events

Date Code Title Description
NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11783684

Country of ref document: EP

Kind code of ref document: A2