WO2011145065A1 - Plaques creuses d'echange thermique - Google Patents

Plaques creuses d'echange thermique Download PDF

Info

Publication number
WO2011145065A1
WO2011145065A1 PCT/IB2011/052181 IB2011052181W WO2011145065A1 WO 2011145065 A1 WO2011145065 A1 WO 2011145065A1 IB 2011052181 W IB2011052181 W IB 2011052181W WO 2011145065 A1 WO2011145065 A1 WO 2011145065A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow
walls
plate
polymer
plates
Prior art date
Application number
PCT/IB2011/052181
Other languages
English (en)
Inventor
Jean-Paul Domen
Ermete Masciotra
Roger Le Cren
Joël BEAULIEU
Original Assignee
Tmw
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR1002075A external-priority patent/FR2960288A1/fr
Priority claimed from FR1004470A external-priority patent/FR2967488A1/fr
Application filed by Tmw filed Critical Tmw
Priority to EP11724463A priority Critical patent/EP2572152A1/fr
Publication of WO2011145065A1 publication Critical patent/WO2011145065A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • F28F21/065Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material the heat-exchange apparatus employing plate-like or laminated conduits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/04Extrusion blow-moulding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/006Constructions of heat-exchange apparatus characterised by the selection of particular materials of glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/64Heating or cooling preforms, parisons or blown articles
    • B29C49/6604Thermal conditioning of the blown article
    • B29C2049/6606Cooling the article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/12Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2307/00Use of elements other than metals as reinforcement
    • B29K2307/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2309/00Use of inorganic materials not provided for in groups B29K2303/00 - B29K2307/00, as reinforcement
    • B29K2309/08Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/18Heat-exchangers or parts thereof

Definitions

  • the invention relates to hollow heat exchange plates, manufactured according to an industrial process, commonly used in a particular technical field, but totally ignored in the field of heat exchange between a fluid, liquid or gas, and certain hot sources, such as those formed by another fluid, radiation or a surface in contact.
  • the invention relates to a hollow plate intended to constitute an elementary heat exchanger between a fluid and a hot source; the hollow plate having been obtained by extrusion blow molding of a glassy or polymeric parison and comprising:
  • the connecting heads comprise plugs, which can be removed to be replaced by means for incorporating or reattaching to the connection heads, collectors associated with this plate.
  • the plate comprises:
  • transition zones between the connection heads and the central part comprising partitions, formed by welded pinches of the parison, adapted to provide the fluid with substantially uniform local flow rates in the channels of the central portion; and to give adequate rigidity to the walls of these areas.
  • the plate has been made of a polymer loaded with suitable fibers, in particular glass or carbon.
  • the walls of the plate comprise stiffening reliefs giving these walls an embossed appearance
  • each of these embossed walls constitutes an alignment of alternating bosses, with facets with steep slopes and contours having ridges oriented in oblique or perpendicular directions to this alignment;
  • the thickness and width of the walls of the plate are coordinated to give these walls overall rigidity, adapted to the particular use of the hollow plate.
  • the facets of the alternative bosses are in the form of trapezoids and isosceles triangles, assembled to form alignments of alternating reliefs and valleys, in the form of roofs with four slopes, with slightly leveled edges;
  • each of these facets comprises at least one welded elongated pinch, arranged in the direction of flow of the fluids, for dividing the surfaces of these facets into at least two parts thus subjected to reduced flexural stresses.
  • the connecting heads are sections of ducts, each consisting of a pair of polymer inserts welded to the ends of the hollow plate during blowing; these inserts are provided with a central opening, with a circular or oblong periphery, provided with a contour in relief and with several grooves of the same section, arranged in the part of this periphery directed towards the inside of the hollow plate;
  • the thickness and the width of the walls of these channels are coordinated to give these walls a rigidity adapted to the particular use of the plate;
  • the connecting heads are necks adapted to be sealingly connected to external conduits.
  • the front face of the central portion of the hollow plate is a smooth surface continuous, flat or arched;
  • the partitions separating the channels are segmented and welded to the wall of this front face by unilateral pinching of the parison;
  • the openings between channels, formed between two segments of partitions, are arranged staggered to give a certain transverse rigidity to the hollow plate.
  • the two walls of the hollow plate have facets comprising in their centers elongated external reliefs, of determined height, having a length which is small compared to the dimensions of these facets; the external reliefs having oblique orientations with respect to the alignment of the bosses of the walls and the reliefs of the facets of a wall having an orientation opposite to that of the reliefs of the corresponding facets of the other wall;
  • the plate has undergone crosslinking, in particular by ionizing radiation.
  • the invention also relates to a heat exchanger, such as:
  • the raised contours of the edges of these sections of stacked ducts have successively been welded together to constitute the two external collectors of this heat exchanger; two connections being welded to the contours in relief of the edges of the duct sections of the last plate of this stack;
  • the invention also relates to:
  • a solar water heater comprising a solar radiation sensor consisting of a previous extruded-blown plate, with embossed walls or flat walls, dark polymer, including black.
  • a photovoltaic module mounting and cooling panel being an extruded-blown, glass or polymer flat-bottomed hollow plate, the hollow plate being adapted to receive a suitable flow rate of ambient air, circulating in an open circuit, either water at a temperature close to ambient, circulating in open or closed circuit.
  • a mounting and cooling panel for electronic circuits being a hollow, extruded-blown, front plate with polymer flat walls, this hollow plate being adapted to receive a suitable flow rate of ambient air, circulating in an open circuit, or water at a temperature close to ambient, circulating in open or closed circuit.
  • a hollow plate intended to constitute an elementary heat exchanger between a fluid and a hot source
  • each channel of such a hollow plate comprise or not stiffening reliefs
  • these walls have a thickness and a co-ordinate width, to ensure them a sufficient rigidity leu r allowing to maintain a substantially uniform and constant internal separation, in two inverse ranges of differential pressures and temperatures , depending on the material used.
  • This hollow plate is: either globally flat or more or less arched, longitudinally and / or transversely.
  • the channels are bordered by partitions formed by welded pinches of the parison.
  • connection heads are adapted to be incorporated or attached to two outer conduits, associated with the hollow plate to enter and exit a fluid;
  • the transition zones comprise partitions formed by welded nips of the parison, these partitions being adapted to ensure substantially uniform local flow rates to the fluid circulating in the channel or channels and to give an appropriate rigidity to the walls of these zones.
  • inverted ranges it means that the maximum value of the differential pressure, authorized for a given hollow plate, decreases when the temperature of the authorized temperature for this plate increases.
  • the choice of the differential pressure and the temperature of use is a compromise made in the context of these inverted ranges.
  • the extent of each of the ranges of the differential pressures and maximum permissible temperatures for these plates is particularly great.
  • these plates are made of a polymer loaded with suitable fibers, in particular glass or carbon.
  • this device has undergone a complementary crosslinking operation, in particular by exposure to ionizing radiation.
  • a first type of hollow heat exchange plate manufactured by blow molding a parison, made of polymer or glass, between the jaws of a suitable mold, is characterized in that:
  • each channel of these hollow plates comprise stiffening reliefs giving them a waffled appearance
  • each of these embossed walls is an alignment of alternating bosses with facets with steep slopes and contours comprising ridges oriented in oblique directions and / or perpendicular to this alignment;
  • each channel The thickness and the width of the walls of each channel are coordinated to give these walls overall rigidity adapted to the particular use of the plate.
  • the connecting heads of these hollow plates are sections of ducts
  • these sections consist of two pairs of inserts welded to the ends of the hollow plate during its blowing;
  • These inserts have a central opening, an outer face with a contour in relief and an inner face having a plurality of grooves, arranged in the portion directed towards the inside of the plate;
  • a new heat exchanger between fluids is characterized in that:
  • the heat exchanger consists of hollow plates, polymer or glass, with mouths welded to two external collectors;
  • these walls are provided with an embossed central part, lateral flanges comprising a step determining the half internal thickness of the hollow plate, and zones of transition between this central part and the two mouths;
  • the embossed central portion comprises one or more alignments of alternating bosses, with facets with steep slopes, creating a large number of sharp edges, oriented in oblique directions and / or perpendicular to these alignments;
  • the internal and external gaps between the facets facing the stacked hollow plates are uniform and substantially constant in the range of the differential pressures and the permitted temperatures.
  • the channels of the hollow plates, with embossed walls and welded edges, of such a heat exchanger between fluids have relatively thin and wide walls (typically 1 mm and 10 cm), to which their reliefs and their alternating stiffening recesses provide remarkable rigidity , allowing relatively high differential pressures (a few bars). This allows these channels to be relatively wide (10 cm) and to have, between their walls, a spacing (1 to 2 mm), free of any shim, virtually constant. Such channels are adapted to perform efficient heat exchange between two fluids.
  • edges of the dihedrons, formed between them by the sloping facets of these plates, provide another particularly interesting result, that of notably increasing (+ 60%) the apparent thermal conductivity of the fluid which circulates between these hollow plates, stacked to form a heat exchanger thermal.
  • a heat exchanger is perfectly satisfactory for many applications, but its manufacturing process gives it a relatively high production cost. This imposes a very limited diffusion and, consequently, justifies the development and realization, by another manufacturing process, of hollow elemental heat exchange plates, having the same functional characteristics as the previous ones but none of their defects.
  • the manufacture of a hollow heat exchange plate is a particularly interesting technology transfer by significantly lowering the cost of manufacturing such hollow plates produced in series.
  • it is interesting by the wide scope of use it provides hollow plates embossed walls made of polymer.
  • the extruded-blown hollow plates with embossed walls, made of glass they can be manufactured according to specific steps, derived from those implemented for hollow polymer plates. But as the areas of application of heat exchangers, incorporating such hollow glass plates, are now indeterminate, the subject will not be further treated here.
  • the open ends of the external collectors of such a heat exchanger are then provided with connections, generally threaded, welded in the same way as the faces of the collector sections.
  • the diameter of these connections is adapted to the flow rate of the fluid to flow in the hollow plate.
  • the thickness of the outer collector sections determines the width of the gap between the bosses belonging to two contiguous plates stacked at constant pitch to form a heat exchanger between fluids. From a standard manufacturing thickness, it is easy to weld an intermediate ring to each section, to obtain any particular gap separating the bosses of two adjacent plates. As for the appropriate mold, it consists of two symmetrical jaws of relatively simple design.
  • the facets of the alternating bosses of each channel of its central part are in the form of trapezoids and isosceles triangles, assembled to form an alignment of alternating reliefs and valleys, in the form of roofs with four slopes, with slightly leveled edges;
  • each of these facets comprises at least one elongate welded nip, arranged in the fluid flow direction, for dividing the surfaces of these facets into at least two parts subjected to substantially equal reduced bending stresses.
  • the two walls of the channels of the hollow plate have facets comprising in their centers elongated external reliefs of determined height, having a length that is small compared with the dimensions of these facets;
  • these external reliefs have oblique orientations with respect to the alignment of the bosses of the walls and the reliefs of the facets of one wall have an orientation opposite to that of the reliefs of the corresponding facets of the other wall;
  • the external reliefs facing two adjacent plates are adapted to be joined together, so as to constitute a constant spacer between the plates and a double flow deflector; of fluid, in the form of braces.
  • the thicknesses of the walls of the channels of these hollow plates are uniform, even along these ridges. This prevents the formation of mechanically weak areas in the walls of the hollow plates and thus allows them to operate at relatively high differential pressures.
  • any heat exchanger incorporating hollow plates made of a polymer with a known limit of use, can maintain its efficiency in the presence of a maximum differential pressure allowed about four times stronger than in the absence of these welded nips.
  • the authorized value of the internal overpressure of these plates is notably increased.
  • the external reliefs corresponding facets of two adjacent hollow plates are joined and form braces constituting abutments for the walls of these plates. This prevents any increase in the initial gap between hollow plates, caused by an internal overpressure, greater than that normally allowed by the stiffeners of the walls and by the welded nips of the facets. In this way, this internal overpressure is practically doubled.
  • the turbulence of the fluid flowing between the hollow plates is greater because of the deflecting obstacles, constituted by the two contiguous external reliefs forming braces; which results in an increased thermal coupling between the two fluids concerned and therefore in a complementary increase in the heat conductance of the exchanger.
  • the dimensions of the central portions of the hollow-walled polymer hollow plates vary greatly depending on the intended applications: a total thickness of between 3 and 10 mm, thick walls of 0.6 to 2 mm, a width and a length of 5 mm. about 100 cm or more if the extrusion blow molding machines available allow it.
  • such a hollow plate may comprise short channels ( ⁇ 10 cm), medium or long (2 m) for each of its possible widths: small ( ⁇ 10 cm), medium or large (1 m).
  • the width of these embossed-wall channels will be about 2.5 cm for small-area plates and at most about 10 cm for large-area plates.
  • the thickness of the polymer walls of the hollow plates according to the invention is in practice determined by their particular applications (thermal conductance, differential pressure and temperature) and by reasons of mechanical strength, weight and cost.
  • the number of channels of a hollow plate with embossed walls can go from the unit when it is narrow to a dozen or more when it is wide.
  • the bosses their width is that of the channels of the hollow plate and their height, about 15% of this width.
  • the number of welded pinches to be made in the facets of these bosses may equal 2 for the largest (at most 10 cm wide) and for smaller ( ⁇ 2 cm wide), it can be zero.
  • a simple modeling makes it possible to optimize the combination, thickness of the walls and number of nips per facet, to minimize the deflection and the stresses. The calculation shows that one or two welded pinches, arranged in its trapezoid and triangular facets, divide by ten the maximum deflection of these facets, which would result from their absence.
  • the internal thickness to be given to the hollow plates with embossed walls of a heat exchanger varies with the nature of the fluid circulating inside, this internal thickness being significantly lower for the liquids than for the gases.
  • the range of these internal thicknesses, as well as the range of the gaps between the stacked hollow plates of a heat exchanger, generally ranges from 0.5 to 3 mm for a liquid and from 2 to 12 mm for a gas.
  • the temperature is relatively low (T ⁇ 100 ° C)
  • the following areas are concerned: heating of swimming pools, heat pumps, condensation of water vapor, cooling of various liquids, corrosive or not, cooling of thermal engines and recovery energy from liquids or hot gases discharged.
  • the temperature is relatively high (100 ⁇ T ⁇ 300 ° C)
  • the polymer heat exchangers used will have undergone prior crosslinking and the areas will then be: recovery of the energy of the fumes and cooling of the exhaust gases of the diesel engines (EGR).
  • EGR exhaust gases of the diesel engines
  • these different heat exchangers may be assembled in series and in parallel to form assemblies having thermal conductances volume of several tens of kilowatts per degree and per m 3 .
  • the hollow polymer plates according to the invention Due to their relatively thin walls, the hollow polymer plates according to the invention have a reduced weight, which minimizes the cost of the heat exchangers that incorporate them. Moreover, despite the reduced thermal conductivity of the polymers, the reduced wall thickness of these heat exchangers actually gives them a thermal conductance comparable to that of water, which is also of low conductivity and of much greater thickness, which circulates inside. In addition, since the polymers are indifferent to most corrosive fluids, the heat exchangers that use them are authorized for use in fields hitherto reserved for heat exchangers made of titanium or specific alloys, relatively expensive. According to the invention, a second type of hollow heat exchange plate, made by extrusion blow molding of a parison, made of polymer or glass, between the jaws of a suitable mold, is characterized in that:
  • the thickness and the width of the walls of the channels are coordinated to give these walls a rigidity adapted to the particular use of the plate;
  • the connecting heads are necks, adapted to be sealingly connected to external conduits.
  • such an extruded-blown hollow plate made of glass or polymer, is further characterized in that: - The front face of the central portion of the hollow plate is a smooth surface continuous, flat or arched;
  • partition walls of the channels are segmented and welded to the wall of this front face by unilateral pinching of the parison;
  • the openings between channels, formed between two segments of partitions, are arranged staggered to give a certain transverse rigidity to the hollow plate.
  • these new hollow heat exchange plates with flat or arched walls, satisfactory longitudinal and transverse stiffness (staggered trough), are likely to be suitable for many applications in very different industrial fields. others.
  • these extruded-blown hollow plates, with flat polymer walls are immediately usable right out of the mold.
  • appropriate values will be chosen for the surfaces of the hollow plates as well as for the number and internal sections of their channels.
  • the walls will be in a glass more or less thick (1 to 3 mm) or a more or less thin polymer (0.5 to 1, 5 mm).
  • the hot springs concerned are not necessarily fluids but also heat dissipating surfaces or radiation, solar or infrared.
  • the hollow plates of polymer, flat-walled, arched or embossed may be used alone or juxtaposed (and no longer stacked) to form the thermal sensors of various conventional devices perfected.
  • an improved solar water heater is characterized in that its thermal sensor is an extruded-blown hollow plate, with flat walls, in dark polymer, in particular black
  • such a solar water heater is particularly interesting because it has replaced the black heat sensor, universally used until now (metal pipes and fins), by a thin hollow plate (typically thick 0.5 at 1 cm) with an appropriate unit area (typically 100 dm 2 ), made of less heavy polymer, less expensive and just as effective, because of the small thicknesses of the polymer walls of the hollow plate and the water flowing therethrough.
  • a thin hollow plate typically thick 0.5 at 1 cm
  • an appropriate unit area typically 100 dm 2
  • such a water heater has a good efficiency and, moreover, a great ease of use. installation, due to the reduced total weight of the assembly. In this context, we will notice two neighboring situations.
  • An extruded-blown hollow plate, with black polymer embossed walls, provided with a pair of connectors, makes it possible to produce a water heater equivalent to the previous one.
  • a device, similar to this flat-wall solar water heater, comprising a hollow plate and, if appropriate, solid protective plates, made of suitable glass, may be suitable if it is desired to recover a portion of the thermal energy of the infrared radiation. at elevated temperatures, produced in some industries processing molten solids.
  • a panel for mounting and cooling, for a photovoltaic module is characterized in that:
  • this panel is an extruded-blown hollow plate, made of glass or polymer, with a perfectly flat front face;
  • this hollow plate is adapted to receive a suitable flow rate of ambient air, circulating in open circuit, or water at a temperature close to ambient, circulating in open or closed circuit.
  • a photovoltaic module is a special glass plate resistant to hailstones, in which the fragile photovoltaic cells are incorporated.
  • any photovoltaic module is glued on a single tempered glass plate of appropriate thickness, in order to give good mechanical strength to the photovoltaic panel thus formed.
  • the electric power, available per unit area is significantly increased. Indeed, it is estimated that the electric power produced by a standard photovoltaic cell, which is at best about 18% of the solar power captured, decreases by about 0.5% per degree when its temperature rises above of 20 ° C. With conventional cooling, by air flow circulating in natural convection, the cell temperature stabilizes at about 60 ° C. With improved photovoltaic panels according to the invention, by stabilizing the temperature of the cells at 25 ° C for example, the increase in available electrical power is close to 20%. This represents a particularly interesting return on investment.
  • the means associated with the hollow plate may be a simple fan of appropriate power, installed upstream of one of the connection necks.
  • a cooler will be used which advantageously comprises a water / air heat exchanger of the type described above: a stack of extruded-blown hollow plates in polymer, with embossed walls.
  • a mounting and cooling panel in particular for electronic circuits, is characterized in that:
  • this panel comprises a hollow extruded-blown polymer plate with a perfectly flat front face
  • this hollow plate is adapted to receive a suitable flow rate of ambient air, circulating in open circuit, or water at a temperature close to ambient, circulating in open or closed circuit.
  • such a panel is particularly effective and inexpensive, especially for mounting and cooling processors.
  • FIG. 1 represents:
  • FIG. 2 represents:
  • FIG. 3 represents the front view of a second hollow plate with embossed walls, according to the invention.
  • FIG. 4 represents a perspective view of a heat exchanger formed by the assembly of hollow plates of FIG. 1;
  • FIG. 5 represents the rear face of a flat-faced hollow plate according to the invention.
  • FIG. 6 represents the profile of a flat-faced hollow plate according to the invention.
  • FIG. 1A represents the front view of a hollow plate 12 with embossed walls made of extruded-blown polymer.
  • FIG. 1B is the section of this plate according to a BB line.
  • the central zone of the hollow plate 12 has a generally rectangular shape and measures 300 mm between its parallel edges 14-16 and 200 mm between its lateral edges 18-20, with 360 mm between them. extreme edges of its two sections of external collectors 22-24.
  • the hollow plate 12 comprises two embossed-walled channels 26-28 forming two identical contiguous alignments of alternating bosses, separated by a rectilinear central nip 30, 3 mm wide.
  • each boss alignment comprises seven alternations, four recesses 32 1-4 and three bumps 32 5-7 , the hollows being represented in gray in the front view A.
  • the thickness of the embossed walls 13a-b of the hollow plate 12 (section B) is 1 mm and its internal thickness 13c is 3 mm.
  • each recess and bump is in the form of a roof with four slopes having four oblique edges 33, strongly inclined, and four facets comprising (1) two symmetrical lateral trapezoids 34 1-2 for the recesses and 36i - 2 for bumps, all with a large base of 40 mm, (2) between the peaks of two contiguous bosses, a connecting rhombus formed by two flattened isosceles triangles coplanar, respectively referenced 38i -2 for the hollows and 40i -2 for bumps, all with a large side of 90 mm, (3) a longitudinal ridge slightly leveled 42, between two symmetrical trapezes, for the hollows and 44 for the bumps, these two peaks being 15 mm long and 14 mm high.
  • the lateral edges 18-20 of the hollow plate 12 are separated from the large bases of the trapeziums 34-36 by a welded-walled edge 19, 5 mm wide, followed by two connecting ramps 21 with the interior of the plate.
  • the side edges of the corners, the quasi rectangle formed by the plate 12, are cut to form hooks 23 for easy suspension of the plate.
  • each of the connecting ramps 21 bypasses a flexible external relief 25 of one of the walls of the plate 12.
  • the difference between two vertices facing these external reliefs 25 is very small. slightly greater than the assembly pitch of the hollow plates, which makes these reliefs contiguous and improves the mechanical strength of the exchanger.
  • FIG. 1C The view along the line of cross-section CC (FIG. 1A) of two hollow plates 12 12 2 , juxtaposed in a heat exchanger, is represented in FIG. 1C.
  • This figure shows the internal thickness 13c (2 mm) of these plates. , the thickness of their walls 13a-b (1mm), the welded nips 48 made in the four trapeziums 36 of two bumps, belonging to the two rows 26-28, and the gap 54, 6mm wide, which separates these two plates 1-2 1-2 juxtaposed.
  • each of the sections 22-24 of external collectors, of the hollow plate 12 incorporates a pair of circular inserts 58-60 which, after having been welded to the external faces of the walls of this plate, have an internal diameter final 30 mm.
  • Each pair of inserts is divided into two semi-circular parts, respectively external and internal to the hollow plate 12.
  • the inner portion comprises lateral radial ducts 62a-b and central 63a-b.
  • the lateral ducts 62a-b open out in front and along oblique nips 64a-b and 66a-b, arranged welded in the two connection zones 68-70 of these sections 22-24 and isosceles triangular ends 38 of the part embossed central hollow plate 12.
  • the central ducts 63a-b open on either side of the central nip 30.
  • the recesses 32 1-4 and the alternating bumps 32 5-7 of a plate 12 appear on each side of its rectilinear central portion 56, which has at its two ends the inserts 58 -60 which form the individual sections 22-24 of the external collectors of this plate.
  • the thickness of this central portion 56 is 4 mm and that of these collector sections 22-24, 10 mm, the latter thickness being the assembly pitch of the hollow plates 12, stacked in a heat exchanger.
  • the profile view D shows that, from each section of collector, formed by the assembly of the inserts 58-60, the protruding edge 19 of the walls of the hollow plate 12 spring, welded between these inserts.
  • FIG. 2 shows, at A, a circular ring insert 58, made of polymer, intended to be assembled in pairs, to form an individual section 22-24 of external collector of a hollow plate 12.
  • a circular ring insert 58 made of polymer, intended to be assembled in pairs, to form an individual section 22-24 of external collector of a hollow plate 12.
  • the inner semi-circular portion 76 comprises two pairs of radial grooves, lateral 78a b and central 80a-b and three partition walls 82, 84, 86 between these grooves, the central partition 84 having a lug 85 which allows a perfect placement of each insert 58 in a jaw of the plate manufacturing mold.
  • B in this figure 2 is shown a sectional view of the insert 58, in which the central opening 72 appears, as well as the lateral groove 78b and the central groove 80b. On the outer face of this insert 58, there appears a circular relief 88, intended to be welded to an identical circular relief of the collector section of the contiguous hollow plate.
  • FIG. 2C is shown (transparent), the front view of the end 61 of a rela-tively large extruded-blown hollow plate, six wide channels of 10 cm.
  • This end 61 comprises an elongate collector section and a connection zone 57.
  • Two elongated inserts, with walls welded by the parison, constitute this section, which has an oblong central opening 73, with a periphery comprising two parts, the one rounded 75, external to the hollow plate, and the other 77, elongate internal, which comprises twelve conduits 79 1-12 , of the same section, regularly distributed and separated from each other by eleven partitions 83i-n.
  • connection zone 57 Eleven substantially parallel and equidistant welded oblique nips formed in the connection zone 57 follow these eleven partitions 83-1-11 and connect the collector section 73-75-77 to the central zone of the hollow plate. .
  • This second embodiment of the manifold sections of the extruded-blown hollow plates is suitable for hollow plates having a number of channels greater than two.
  • an improved distribution of the flow of the external fluid is ensured in the spaces separating the hollow plates.
  • FIG. 3 is the front view of a hollow plate 92 with embossed walls, according to the invention, which has the dimensions and all the functional characteristics of the hollow plate 12 of FIG. 1.
  • the embossed central portion of this second Hollow plate 92 has two channels 94-96, forming two contiguous identical alignments of alternating bosses, separated by a narrow rectilinear partition 98 (3 mm).
  • Each boss has the shape of a roof with four slopes having four oblique edges, such as 99, strongly inclined and four facets constituted by (1) two isosceles lateral flattened triangles, such 100 for the hollows and 102 for the reliefs, (2) two coplanar trapezoids 104-106 forming a hexagon link, such as 105, between the extreme peaks of two alternating bosses, (3) a transverse ridge, such as 108, for the recessed bosses and 1 10 for the raised bosses. These two bosses have the same height.
  • the hollows of this plate 92 are shown in gray.
  • each of the trapezoids 104-106 of a connecting hexagon such as 05 and 107, two welded nips 1 14-1 16 are formed, which substantially connect the peaks of the bosses, are parallel to the flow direction of the fluid and share these hexagons in three substantially equal areas.
  • a welded pinch 1 18-120 therein arranging two substantially equal surfaces.
  • the functions of the hollow plate 92 differ from those of the hollow plate 12 of FIG. 1 by the presence, in the center of the connecting hexes 105 and 107, of oblique elongated external reliefs, such as 1 15 and 1 17.
  • 105-107 connecting hexes have 10 cm wide and the welded nips 1 14-1 16, 4 cm apart.
  • the outer reliefs 15 and 17 are 10 mm long, 5 mm wide, 2.6 mm high and 30 ° orientations, relative to the direction of flow of the fluid between the hollow embossed plates 92. a heat exchanger. Their spacing in such an exchanger is 5 mm, slightly less than twice the height of these external reliefs.
  • the external reliefs in reverse orientations 1 15-1 17, belonging to two adjacent hollow plates of a heat exchanger are found contiguous and they then form a brace whose branches are at the same time shims between the hollow plates of this heat exchanger and the double fluid flow deflectors.
  • This increases the allowable internal overpressure as well as the flow turbulence which improves the thermal coupling between the two fluids passing through the heat exchanger.
  • the presence of these dual-function external reliefs 1 15-1 17 is particularly advantageous when the hollow plates 12, with lateral trapezoids and connecting rhombus according to FIG. 1, or the hollow plates 92, with lateral triangles and connecting hexagons according to FIG. Figure 3, have large dimensions, 100 x 200 cm for example. Improved thermal conductance and satisfactory overall rigidity are thus ensured for high-power heat exchangers formed by the stacking of large hollow plates comprising such external reliefs.
  • a heat exchanger 122 is constituted by the welded stack of the collector sections 22-24 of nineteen hollow plates 12 (or 92) made of polymer.
  • the sections of the last plate are equipped with threaded pipes 124.
  • Each plate 12 comprises two rows of alternating bosses, in four-pitched roofs, consisting of pairs of trapezoids 36 and pairs of coplanar isosceles triangles 38, forming transition diamonds between a hollow and a bump. These triangles and trapezes have internal pinching 48-50 increasing their stiffness.
  • This exchanger 122 is a compact block in the form of a parallelepiped of 12 dm 3 , having a thermal conductance between water and air of about 200 W / ° C and 400 W / ° C between water and water.
  • this heat exchanger can treat fluids at high temperatures (150 ° C for a polyethylene HDPE and 400 ° C for a polyamide) significantly larger than the melting temperature before crosslinking.
  • Several techniques are available for effecting this crosslinking, in particular ionizing radiation.
  • the differential pressure allowed for the heat exchanger 122 having walls 1 mm thick is about 4 bars, when the polymer used for the parison is loaded with fiberglass or carbon. But these maximum possible values of temperature and differential pressure can not be simultaneous, the ranges of these two values being necessarily reversed. A compromise will be necessary in each particular case.
  • FIG. 5 shows the view of the rear face of an extruded-blown hollow plate 130, comprising a central portion 132 devoid of any stiffening relief, two transition zones 134 1-2 and two necks 136i -2 , with circular section.
  • the central flat and smooth 132 to 80 cm long, 40 cm wide a total thickness of 5 mm.
  • This central portion 132 is occupied by sixteen narrow channels 138i-i 6 , with thick walls of 1 mm.
  • These sixteen channels 138 are 22 mm wide and 3 mm internal thickness.
  • These channels 138 are separated from each other by fifteen 140i_i lines 5 of segmented double walls 142, resulting welded pinching of the parison.
  • These double partitions 142 are 18 cm long, wide and 3 mm high, their individual thickness and spacing being 1 mm.
  • the gaps between two segments of a line of partitions constitute openings 144 between two adjacent channels, such as 138
  • These openings 144 are arranged in staggered rows and are 6 cm long.
  • the upstream and downstream transition zones 134 1-2 connect the ends of the central zone 132 to the two external connection necks 136i -2 .
  • the 134i area is occupied by fifteen different partitions 146i_i 5 bordering sixteen conduits of uniform distribution of the incoming flow and lead to fifteen 140i_i lines 5 of partitions 142 separating the segments sixteen channels 138i-i 6.
  • the downstream transition zone 134 2 is identical to the upstream zone 134 and occupied by fifteen convergent partitions 148i-i 5 .
  • the profile view of a hollow plate 130 shows a central portion 132 and two threaded necks 136i -2 .
  • the central portion 132 to 40 cm wide and 80 cm long, a thickness of 5 mm, a flat front wall and smooth, 1 mm.
  • the necks 136i -2 are 4 cm in diameter and high and they are fixed perpendicularly to the rear wall of the plate.
  • FIG. 7 which shows enlarged portions of three typical cross sections A, B, C of the hollow plate 1 30, this plate has a front face 150 perfectly flat, and a rear face 152 on which open the outer hollow segments 154 , 1 mm wide, internal double segmented partitions 142.
  • each segment 142 separating two contiguous channels results from a unilateral nipping of the parison which has formed two internal partitions 158i -2 , 1 mm thick, spaced apart. 1 mm and 3 mm high.
  • the common end 160 of these two partitions 158 is welded to the wall of the front face 150 of the hollow plate 130.
  • FIG. 5 and the three sections A, B and C of FIG. 7 show that the staggered arrangement adopted for the openings 144 has the first result of inserting a wall end of the rear face 1 52 between two hollow segments. 1 54 belonging to two adjacent lines of segmented partitions 142 1-15 . This prevents the hollow segments 154 from opening and forces the hollow plate 130 to be able to take only a small transverse arrow, during handling.
  • the second result of this staggered arrangement is to constitute continuous sequences (see section B), of contiguous portions of the offset segments 142 of the double partitions 140. These continuous sequences avoid any longitudinal stiffness defect in the hollow plate 130.
  • the thermal sensor will be a hollow plate, according to the invention, with flat or embossed walls, black polymer.
  • a hollow plate according to the invention with flat walls of polymer or glass, if necessary, quenched after molding.
  • a hollow plate with flat polymer walls will be used.
  • a cooler will be constituted, which will comprise an extruded-blown hollow plate, traversed by a current of ambient air, circulating in an open circuit, or by a water current at a temperature close to ambient, operating in open or closed circuit.
  • the invention is not limited to the examples illustrated by the attached figures.
  • the first embodiment of the invention is not limited to the dimensions of the hollow-walled hollow plates 10 and 92 described in FIGS. 1 and 3 or to the exchanger thermal 122 of Figure 4 which incorporates them. Indeed, when these hollow plates have significantly larger dimensions than those of these two plates, described by way of non-limiting examples, the number of channels increases since their maximum width is of the order of one decimeter, as the number of bosses in each channel. Moreover, the dimensions of these bosses can be modified depending on the differential pressures to be borne, and more generally the specifications of the exchanger to achieve. On the other hand, when the dimensions of the plates are appreciably lower than those of the two plates 12-92 described, the height of these bosses decreases accordingly.
  • the fluid flows are laminar and the efficiency of the heat exchange performed is however large.
  • these plates are large (typically> 50 dm 2 )
  • these thicknesses and / or these deviations can be large (typically up to 2 cm for the deviations).
  • the Reynolds number which derives from these dimensions and fluid velocities that pass through the exchanger, is such that the flows are turbulent.
  • transition zones 134 1-2 may have variants.
  • these zones can be incorporated in the hollow plate 130, in the form of internal collectors, in the form of two long, inverted, symmetrical right triangles into which the channels of a perfectly rectangular hollow plate, having a central part in parallelogram shape and necks arranged at both ends of a diagonal of the plate.
  • Partitions similar to partitions 146-148, intended to distribute the flow rates evenly between the channels, will be arranged inside these internal reader columns.
  • a modeling will optimize lengths and locations of the segments of these partitions.
  • the two necks may have an oblong base, similar to that of the insert of Figure 2C, and a threaded cylindrical end of reduced diameter.
  • the flat-wall extruded-blown hollow plate 130 may have dimensions different from those indicated.
  • the Stammseu r 138i- walls of channels 16 of a hollow plate 130 will typically between 0.5 and 1.5 mm for a polymer plate and between 1 and 3 mm for a glass plate.
  • the typical internal thickness of these channels it will be between 1 and 3 mm for a polymer plate and between 3 and 9 mm for a glass plate.
  • the typical width of these channels will be between two and five centimeters
  • the typical length of the partition segments 142 will be between one and two decimetres and that of the openings 144 between two channels, four to five times lower than the previous.
  • the width and length of a hollow plate 130 may be increased depending on the capacities of the extrusion blow molding equipment available.
  • An extruded-blown hollow plate with a polymer wall without any stiffening relief may have a central part with curved faces, one internal and smooth, and the other external and having the hollow of the internal partitions. These partitions may not be segmented to provide this curved hollow plate a certain transverse flexibility allowing it to be perfectly applied on a curved surface to cool.
  • Such a curved hollow plate may in particular constitute a shell with hollow walls, adapted to be attached to identical shells, to form a cylindrical envelope with hollow walls.
  • This envelope will constitute the thermal sensor of a water cooler, closely surrounding a hot cylindrical body, subjected to a temperature ceiling.
  • This cylindrical body may be an electric motor of a few kW, to provide a mechanical power greater than that permitted by conventional cooling by natural convection of the ambient air.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

Cette plaque creuse (12) est fabrique par extrusion-soufflage dune paraison en polymère ou en verre, entre les deux mâchoires d'un moule approprié. Elle comporte une zone centrale, occupe par plusieurs canaux internes parallèles (26-28), ainsi que des têtes de raccordement externe (22-24) et des zones de transition (68-70) entre ces têtes et cette zone centrale. Les parois de chaque canal comportent ou non des reliefs raidisseurs et, dans les deux cas, elles ont une épaisseur et une largeur coordonnes pour leur assurer une rigidité suffisante leur permettant de conserver un écart interne sensiblement uniforme et constant, dans deux plages inverses de pressions différentielles et de températures, détermines par le type de matériau utilisé. Des changeurs thermiques entre fluides sont constitués par l'empilement pas constant de plaques creuses en polymère, parois gaufres, dotes de têtes de raccordement (22-24) constituant des tronçons de conduits, soudés les uns aux autres, pour former des collecteurs. Divers dispositifs perfectionnés peuvent être réalisés avec des plaques creuses parois planes, en polymère ou en verre, utilises seules ou juxtaposes coplanaires. Applications : Echangeurs thermiques entre fluides; Chauffe-eau solaire; Panneaux de montage et de refroidissement pour modules photovoltaïques; Panneaux de montage et de refroidissement pour circuits électroniques.

Description

PLAQUES CREUSES D'ECHANGE THERMIQUE
L'invention concerne des plaques creuses d'échange thermique, fabriquées selon un procédé industriel, couramment utilisé dans un domaine technique particulier, mais totalement ignoré dans le domaine des échanges thermiques entre un fluide, liquide ou gaz, et certaines sources chaudes, telles q ue celles constituées par un autre flu ide, u n rayonnement ou une surface en contact.
L'invention se rapporte à une plaque creuse, destinée à constituer un échangeur thermique élémentaire entre un fluide et une source chaude ; la plaque creuse ayant été obtenue par extrusion-soufflage d'une paraison vitreuse ou polymère et comportant :
- une partie centrale occupée par un canal unique ou par plusieurs canaux ; et
- sur des extrémités opposées de la partie centrale, des têtes de raccordement externe.
Selon une variante, les têtes de raccordement comportent des bouchons, lesquels peuvent être enlevés pour être remplacer par des moyens destinés à incorporer ou rattacher aux têtes de raccordement, des collecteurs associés à cette plaque.
Selon une variante, la plaque comprend :
- dans la partie centrale, une pluralité de canaux séparés par des cloisons, formées par des pincements soudés de la paraison ;
- des zones de transition entre les têtes de raccordement et la partie centrale, les zones de transition comportant des cloisons, formées par des pincements soudés de la paraison, adaptées à assurer à ce fluide des débits locaux sensiblement uniformes dans les canaux de la partie centrale et à donner une rigidité appropriée aux parois de ces zones.
Selon une variante, la plaque a été réalisée en un polymère chargé en fibres appropriées, notamment de verre ou de carbone.
Selon une variante :
- les parois de la plaque comportent des reliefs raidisseurs donnant à ces parois un aspect gaufré ;
- chacune de ces parois gaufrées constitue un alignement de bossages alternatifs, dotés de facettes à fortes pentes et à contours comportant des arêtes orientées dans des directions obliques ou perpendiculaires à cet alignement ;
- l'épaisseur et la largeur des parois de la plaque sont coordonnées pour conférer à ces parois une rigidité globale, adaptée à l'usage particulier de la plaque creuse.
Selon une variante : - les facettes des bossages alternatifs ont la forme de trapèzes et de triangles isocèles, assemblés pour former des alignements de reliefs et de creux alternés, en forme de toits à quatre pentes, dotés d'arêtes légèrement arasées ;
- chacune de ces facettes comporte au moins un pincement allongé soudé, disposé dans le sens d'écoulement des fluides, pour diviser les surfaces de ces facettes en au moins deux parties ainsi soumises à des contraintes de flexion réduites.
Selon une variante :
- les têtes de raccordement sont des tronçons de conduits, chacun constitué par une paire d'inserts en polymère, soudés aux extrémités de la plaque creuse lors de son soufflage ; - ces inserts sont dotés d'une ouverture centrale, à pourtour circulaire ou oblong, doté d'un contour en relief et de plusieurs rainures de même section, aménagées dans la partie de ce pourtour dirigée vers l'intérieur de la plaque creuse ;
- ces deux paires d'inserts ont préalablement été portées à une température proche de leur température de fusion, avant d'être installées dans des logements pratiqués dans les deux mâchoires du moule ;
- des conduits internes, résultant de la paraison soudée aux parois des rainures de chaque paire d'inserts, débouchent sur des passages entre les cloisons aménagées dans les zones de transition, le cas échéant.
Selon une variante :
- les parois de la partie centrale de cette plaque creuse sont dépourvues de tout relief raidisseur ;
- l'épaisseur et la largeur des parois de ces canaux sont coordonnées pour conférer à ces parois une rigidité adaptée à l'usage particulier de la plaque;
- les têtes de raccordement sont des goulots adaptés à être reliés d'une manière étanche à des conduits externes.
Selon une variante :
- la face avant de la partie centrale de la plaque creuse est une surface lisse continue, plane ou cambrée ;
- les cloisons séparant les canaux sont segmentées et soudées à la paroi de cette face avant, par des pincements unilatéraux de la paraison ;
- les segments creux, formés par ces cloisons, débouchent sur la face arrière de la partie centrale ;
- les ouvertures entre canaux, constituées entre deux segments de cloisons, sont disposées en quinconce, pour donner une certaine rigidité transversale à la plaque creuse.
Selon une variante : - les deux parois de la plaque creuse ont des facettes comportant en leurs centres des reliefs externes allongés, de hauteur déterminée, ayant une longueur faible par rapport aux dimensions de ces facettes ; les reliefs externes ayant des orientations obliques par rapport à l'alignement des bossages des parois et les reliefs des facettes d'une paroi ayant une orientation inverse de celle des reliefs des facettes correspondantes de l'autre paroi ;
- dans un échangeur thermique, formé par un empilement de telles plaques creuses, les reliefs externes en regard de deux plaques voisines sont adaptés à se retrouver jointifs, de façon à constituer, une cale d'écartement constant entre plaques et un double déflecteur d'écoulement de fluide, en forme de croisillon.
Selon une variante, la plaque a subi une réticulation, notamment par rayonnement ionisant.
L'invention se rapporte aussi à un échangeur thermique, tel que :
- il est constitué par un empilement à pas constant de plusieurs plaques creuses précédentes en polymère ou ;
- dans cet empilement de plaques creuses, des bouchons de moulage des tronçons de conduits ont été préalablement enlevés, sauf les bouchons externes de la première plaque ;
- le cas échéant, les contours en relief, des bords de ces tronçons de conduits empilés, ont été successivement soudés les uns aux autres, pour constituer les deux collecteurs externes de cet échangeur thermique ; deux raccords étant soudés aux contours en relief des bords des tronçons de conduits de la dernière plaque de cet empilement ;
- il a subi éventuellement une réticulation, notamment par rayonnement ionisant.
L'invention se rapporte encore à :
- un chauffe-eau solaire, comportant un capteur de rayonnement solaire constitué par une plaque creuse précédente extrudée-soufflée, à parois gaufrées ou à parois planes, en polymère sombre, notamment noir.
- un panneau de montage et de refroidissement de module photovoltaïque étant une plaque creuse précédent extrudée-soufflée, à parois planes en verre ou en polymère, la plaque creuse étant adaptée à recevoir un débit approprié soit d'air ambiant, circulant en circuit ouvert, soit d'eau à température proche de l'ambiante, circulant en circuit ouvert ou fermé. - un panneau de montage et de refroidissement pour circuits électroniques étant une plaque creuse précédent extrudée-soufflée, à parois planes en polymère, cette plaque creuse étant adaptée à recevoir un débit approprié soit d'air ambiant, circulant en circuit ouvert, soit d'eau à température proche de l'ambiante, circulant en circuit ouvert ou fermé.
Selon un aspect de la présente invention, une plaque creuse, destinée à constituer un échangeur thermique élémentaire entre un fluide et une source chaude,
est caractérisée en ce que : - elle comporte une partie centrale, occupée par un canal unique ou par plusieurs canaux, des têtes de raccordement externe et des zones de transition entre ces têtes et cette partie centrale ;
- elle a été fabriquée par extrusion-soufflage d'une paraison, en verre ou en polymère, entre les deux mâchoires d'un moule approprié.
Selon des caractéristiques complémentaires,
- les parois de chaque canal d'une telle plaque creuse comportent ou non des reliefs raidisseurs ;
- dans l'un et l'autre cas, ces parois ont une épaisseur et une largeur coordonnées, pour leur assurer une rigidité suffisante leu r permettant de conserver un écartement interne sensiblement uniforme et constant, dans deux plages inversées de pressions différentielles et de températures, dépendant du matériau utilisé.
- cette plaque creuse est : soit globalement plane soit plus ou moins cambrée, longitudinalement et/ou transversalement.
Selon d'autres caractéristiques,
- les canaux sont bordés par des cloisons formées par des pincements soudés de la paraison.
- les têtes de raccordement sont adaptées à être incorporées ou rattachées à deux conduits externes, associés à la plaque creuse pour y faire entrer puis sortir un fluide ;
- les zones de transition comportent des cloisons formées par des pincements soudés de la paraison, ces cloisons étant adaptées à assurer des débits locaux sensiblement uniformes au fluide circulant dans le ou les canaux et à donner une rigidité appropriée aux parois de ces zones.
Grâce à ces différentes dispositions, on réalise un transfert technologique particulièrement intéressant du procédé d'extrusion-soufflage d'une paraison dans u n domaine totalement étranger à son domaine habituel d'emploi. En effet ce procédé, universellement utilisé pour la fabrication industrielle des bouteilles et des bidons en verre ou en polymère, est selon l'invention désormais mis en œuvre pour la fabrication de plaques creuses d'échange thermique. Dans ces conditions, on peut réaliser en série, à coût satisfaisant, des échangeurs thermiques efficaces entre un fluide et différentes sources chaudes (liquides, gaz, surfaces ou rayonnements). A cet effet, différents types de plaques creuses extrudées-soufflées seront développés pour satisfaire des besoins industriels jusqu'alors négligés pour des raisons économiques. Pour cela, les plaques creuses en polymère auront ou non des parois dotées de reliefs raidisseurs et en général elles seront globalement planes. Quant aux plaques creuses en polymère, destinées à être mises en contact avec des surfaces courbes, elles seront dépourvues de reliefs raidisseurs et elles seront, en totalité ou en partie, plus ou moins cambrées longitudinalement et/ou transversalement.
Les spécifications techniques imposées par ces applications nouvelles déterminent les caractéristiques coordonnées (épaisseur et largeur, avec ou sans reliefs raidisseurs) des parois des canaux de ces plaques creuses. Leur synergie donne à ces canaux l'épaisseur interne constante appropriée, indispensable à l'obtention d'échanges thermiques efficaces entre la source chaude et le fluide. En outre, grâce aux cloisons des zones de transition, qui répartissent le débit de fluide entrant en débits locaux sensiblement uniformes, ces débits locaux se retrouvent en ce même état dans les différents canaux. Par ailleurs, ces cloisons donnent aux parois des zones de transition une rigidité appropriée qui leur permet de supporter sans dommages les pressions différentielles plus ou moins élevées, imposées à la zone centrale.
Pour ce qui est de l'expression « plages inversées », elle signifie que la valeur maximale de la pression différentielle, autorisée pour une plaque creuse donnée, diminue lorsque s'élève celle de la température autorisée pour cette plaque. En pratique, pour toute plaque creuse selon l'invention, le choix de la pression différentielle et de la température d'utilisation est un compromis fait dans le cadre de ces plages inversées. Et, grâce à la possibilité d'utiliser un verre ou un polymère approprié pour fabriquer ces nouvelles plaques creuses, l'étendue de chacune des plages des pressions différentielles et de températures maximales autorisées pour ces plaques est particulièrement grande.
Selon une première caractéristique additionnelle de l'invention, pour augmenter la pression différentielle autorisée des plaques creuses extrudées-soufflées en polymère, ces plaques sont réalisées en un polymère chargé en fibres appropriées, notamment de verre ou de carbone.
Selon une seconde caractéristique additionnelle de l'invention, pour augmenter la température autorisée de tout dispositif incorporant une ou plusieurs plaques creuses extrudées-soufflées en polymère, ce dispositif a subi une opération complémentaire de réticulation, notamment par exposition à des rayonnements ionisants.
Grâce à la première de ces dispositions, la pression différentielle maximale autorisée pour les fluides circulant dans de telles plaques creuses peut être augmentée d'environ 30%. Et, grâce à la seconde, la température maximale autorisée pour ces mêmes fluides peut être très supérieure à la température de fusion du polymère non réticulé. Ces deux dispositions étant antinomiques, des compromis sont nécessaires dans le cadre des plages inversées visées plus haut. Selon l'invention, un premier type de plaques creuses d'échange thermique, fabriquées par extrusion-soufflage d'une paraison, en polymère ou en verre, entre les mâchoires d'un moule approprié, est caractérisé en ce que :
- les parois de chaque canal de ces plaques creuses comportent des reliefs raidisseurs leur donnant un aspect gaufré ;
- chacune de ces parois gaufrées est un alignement de bossages alternatifs dotés de facettes à fortes pentes et à contours comprenant des arêtes orientées dans des directions obliques et/ou perpendiculaires à cet alignement ;
- l'épaisseur et la largeur des parois de chaque canal sont coordonnées pour conférer à ces parois une rigidité globale adaptée à l'usage particulier de la plaque.
Selon des caractéristiques complémentaires de ces plaques creuses à parois gaufrées,
- les têtes de raccordement de ces plaques creuses sont des tronçons de conduits ;
- ces tronçons sont constitués par deux paires d'inserts soudés aux extrémités de la plaque creuse lors de son soufflage ;
- ces inserts possèdent une ouverture centrale, une face externe dotée d'un contour en relief et une face interne comportant plusieurs rainures, aménagées dans la partie dirigée vers l'intérieur de la plaque ;
- ces deux paires d'inserts ont préalablement été portées à une température proche de leur température de fusion, avant d'être installées dans des logements pratiqués dans les deux mâchoires du moule ;
- des conduits internes, résultant de la paraison soudée aux parois des rainures de chaque paire d'inserts, débouchent sur des passages entre les cloisons aménagées dans les zones de transition.
Selon l'invention, un nouvel échangeur thermique entre fluides est caractérisé en ce que :
- il est constitué par un empilement à pas constant de plusieurs de ces plaques creuses extrudées soufflées à parois gaufrées;
- les bouchons externes de moulage des tronçons de conduits de la première plaque de cet empilement ont été conservés, les bouchons internes de cette première plaque et tous les bouchons des autres plaques ont été enlevés ;
- les faces externes des tronçons de conduits de ces plaques creuses ont été successivement soudées les unes aux autres, pour constituer leurs collecteurs externes ;
- un raccord est soudé à chacune des faces externes des tronçons de conduits de la dernière plaque de cet échangeur. Ce premier type de plaques creuses extrudées-soufflées est un perfectionnement apporté aux plaques creuses à parois gaufrées de deux échangeurs thermiques entre fluides, décrits dans le brevet européen EP 2 032 928, déposé le 21/12/2007 et accordé le 09/09/2009, appartenant à la société TET, aujourd'hui fusionnée avec le présent déposant.
Dans ce brevet européen,
- l'échangeur thermique est constitué par des plaques creuses, en polymère ou en verre, dotées d'embouchures soudées à deux collecteurs externes ;
- les parois de ces plaques ont été réalisées par thermoformage puis découpe d'une feuille;
- ces parois sont dotées d'une partie centrale gaufrée, de rebords latéraux comportant une marche déterminant la demie épaisseur interne de la plaque creuse, et de zones d e transition entre cette partie centrale et les deux embouchures ;
- les bords latéraux des deux parois de ces plaques creuses sont soudés;
- la partie centrale gaufrée comporte un ou plusieurs alignements de bossages alternatifs, dotés de facettes à fortes pentes, créant un nombre important d'arêtes vives, orientées dans des directions obliques et/ou perpendiculaires à ces alignements ;
- les écarts internes et externes entre les facettes en regard des plaques creuses empilées, sont uniformes et sensiblement constants, dans la plage des pressions différentielles et des températures autorisées.
Les canaux des plaques creuses, à parois gaufrées et bords soudés, d'un tel échangeur thermique entre fluides, possèdent des parois relativement minces et larges (typiquement 1 mm et 10 cm), auxquelles leurs reliefs et leurs creux raidisseurs alternés apportent une rigidité remarquable, autorisant des pressions différentielles relativement élevées (quelques bars). Ce qui permet à ces canaux d'être relativement larges (10 cm) et d'avoir, entre leurs parois, un écartement (1 à 2 mm), libre de toute cale, pratiquement constant. De tels canaux sont adaptés à réaliser des échanges thermiques efficaces entre deux fluides. Les arêtes des dièdres, que forment entre elles les facettes pentues de ces plaques, fournissent un autre résultat particulièrement intéressant, celui de notablement augmenter (+ 60%) la conductivité thermique apparente du fluide qui circule entre ces plaques creuses, empilées pour former un échangeur thermique. U n tel éch angeur thermique est parfaitement satisfaisant pour de nombreuses applications, mais son procédé de fabrication lui donne un coût de production relativement élevé. Ce qui lui impose une diffusion très limitée et, en conséquence, justifie le développement et la réalisation, par un autre procédé de fabrication, de plaques creuses d'échange thermique élémentaire, ayant les mêmes caractéristiques fonctionnelles que les précédentes mais aucun de leurs défauts.
En effet, la fabrication d'une plaque creuse d'échange thermique, par extrusion- soufflage d'une paraison, constitue un transfert de technologie particulièrement intéressant par l'abaissement notable du coût de fabrication de telles plaques creuses réalisées en série. En outre, il est intéressant par les possibilités d'emploi étendues qu'il apporte aux plaques creuses à parois gaufrées réalisées en polymère. Quant aux plaques creuses extrudées- soufflées à parois gaufrées, réalisées en verre, elles pourront être fabriquées selon des étapes spécifiques, dérivées de celles mises en œuvre pour des plaques creuses en polymère. Mais, comme les domaines d'application des échangeurs thermiques, incorporant de telles plaques creuses en verre, sont aujourd'hui indéterminés, le sujet ne sera pas davantage traité ici.
Les plaques creuses extrudées-soufflées, à parois gaufrées en polymère, sont extraites de leur moule sous une forme quasi définitive. Pour toutes ces plaques creuses, sauf la première d'un échangeur thermique, il suffit en effet de délivrer les deux faces des tronçons de collecteurs des bouchons de moulage formés par la paraison aux extrémités de ces tronçons. Pour passer d'un lot de telles plaques creuses en polymère, à un échangeur thermique, immédiatement utilisable, il suffit de faire effectuer, par une machine spécifique relativement simple, des empilements soudés des deux tronçons de collecteurs externes. A cet effet, des contours en relief, moulés sur les faces des inserts incorporés à ces tronçons, sont préalablement portés, par un chauffage approprié, à une température proche de celle de fusion du polymère concerné. Les extrémités ouvertes des collecteurs externes d'un tel échangeur thermique sont ensuite dotées de raccords, généralement filetés, soudés de la même façon que les faces des tronçons de collecteurs. Le diamètre de ces raccords est adapté au débit du fluide devant circuler dans la plaque creuse. L'épaisseur des tronçons de collecteurs externes détermine la largeur de l'écart entre les bossages appartenant à deux plaques contiguës, empilées à pas constant pour former un échangeur thermique entre fluides. A partir d'une épaisseur standard de fabrication, il est aisé de souder un anneau intercalaire à chaque tronçon, pour obtenir tout écart particulier séparant les bossages de deux plaques voisines. Quant au moule approprié, il est constitué par deux mâchoires symétriques de conception relativement simple.
Par ailleurs, grâce aux deux paires d'inserts assemblés pour constituer les deux tronçons de collecteurs externes, on dispose d'une solution à plusieurs avantages. Tout d'abord, elle donne aux tronçons de collecteurs de chaque plaque creuse, une rigidité et une planéité suffisantes pour leur permettre d'être correctement empilés. Ensuite, les conduits, formés par deux inserts soudés à la paraison soufflée, et les cloisons des zones de transition coopèrent pour assurer une répartition équilibrée des débits de fluide à l'intérieur de la partie centrale de la plaque creuse. A l'inverse, un regroupement de ces débits partagés se produit en sortie. Selon des caractéristiques complémentaires d'une telle plaque creuse à parois gaufrées,
- les facettes des bossages alternatifs de chaque canal de sa partie centrale ont la forme de trapèzes et de triangles isocèles, assemblés pour former un alignement de reliefs et de creux alternés, en forme de toits à quatre pentes, dotés d'arêtes légèrement arasées ;
- chacune de ces facettes comporte au moins un pincement allongé soudé, aménagé dans le sens d'écoulement des fluides, pour diviser les surfaces de ces facettes en au moins deux parties soumises à des contraintes de flexion réduites sensiblement égales.
Selon d'autres caractéristiques complémentaires,
- les deux parois des canaux de la plaque creuse ont des facettes comportant en leurs centres des reliefs externes allongés de hauteur déterminée, ayant une longueur faible par rapport aux dimensions de ces facettes ;
- ces reliefs externes ont des orientations obliques par rapport à l'alignement des bossages des parois et les reliefs des facettes d'une paroi ont une orientation inverse de celle des reliefs des facettes correspondantes de l'autre paroi ;
- dans un échangeur thermique formé par un empilement de ces plaques creuses, les reliefs externes en regard de deux plaques voisines sont adaptés à se retrouver jointifs, de façon à constituer, une cale d'écartement constant entre plaques et un double déflecteur d'écoulement de fluide, en forme de croisillons.
Grâce au léger arasement des crêtes de jonction des facettes, les épaisseurs des parois des canaux de ces plaques creuses sont uniformes, même le long de ces crêtes. Ce qui empêche la formation de zones mécaniquement faibles dans les parois des plaques creuses et permet donc de les faire fonctionner à des pressions différentielles relativement élevées.
Grâce aux pincements allongés soudés aménagés dans les facettes des bossages, en réponse à une pression différentielle donnée, les contraintes de flexion engendrées dans les parois des plaques creuses de l'échangeur, sont notablement plus faibles (de l'ordre de 4 fois) qu'en l'absence de ces pincements. De la sorte, la flèche maximale de ces parties de facettes aura une valeur très inférieure (< 10%) à l'écart entre leurs parois. Dans ces conditions, avec de tels pincements soudés, tout échangeur thermique, incorporant des plaques creuses réalisées en un polymère à contrainte limite d'utilisation connue, pourra conserver son efficacité en présence d'une pression différentielle maximale autorisée environ quatre fois plus forte qu'en l'absence de ces pincements soudés.
Grâce aux petits reliefs externes allongés obliques, ajoutés aux centres des facettes des bossages alternatifs des plaques creuses, la valeur autorisée de la surpression interne de ces plaques est notablement augmentée. En effet, dans un échangeur thermique, les reliefs externes des facettes correspondantes de deux plaques creuses voisines, sont jointifs et forment des croisillons constituant des butées pour les parois de ces plaques. Ce qui empêche toute augmentation de l'écart initial entre plaques creuses, provoqué par une surpression interne, supérieure à celle normalement autorisée par les reliefs raidisseurs des parois et par les pincements soudés des facettes. De la sorte, cette surpression interne autorisée est pratiquement doublée. En outre, les turbulences du fluide qui circule entre les plaques creuses sont plus importantes du fait des obstacles déflecteurs, constitués par les deux reliefs externes jointifs formant des croisillons ; ce qui se traduit par un couplage thermique accru entre les deux fl u ides concernés et donc par une augmentation complémentaire de la conductance thermique de l'échangeur.
Les dimensions des parties centrales des plaques creuses en polymère à parois gaufrées varient beaucoup en fonction des applications envisagées : une épaisseur totale pouvant aller de 3 à 10 mm, des parois épaisses de 0,6 à 2 mm, une largeur et une longueur de 5 à environ 100 cm, voire plus si les machines d'extrusion-soufflage disponibles le permettent. En pratique, une telle plaque creuse peut comporter des canaux courts (< 10 cm), moyens ou longs (2 m) pour chacune de ses largeurs possibles : faible (< 10 cm), moyenne ou importante (1 m). La largeur de ces canaux à parois gaufrées sera d'environ 2,5 cm pour des plaques de petites surfaces et au plus d'environ 10 cm pour des plaques de grandes surfaces. Quant à l'épaisseur des parois en polymère des plaques creuses selon l'invention, elle est en pratique déterminée par leurs applications particulières (conductance thermique, pression différentielle et température) et par des raisons de tenue mécanique, de poids et de coût. Le nombre de canaux d'une plaque creuse à parois gaufrées peut aller de l'unité lorsqu'elle est étroite jusqu'à une douzaine voire plus lorsqu'elle est large.
Quant aux bossages, leur largeur est celle des canaux de la plaque creuse et leur hauteur, environ 15% de cette largeur. Et le nombre de pincements soudés à réaliser dans les facettes de ces bossages pourra égaler 2 pour les plus grandes (au plus 10 cm de large) et pour les plus petites (< 2 cm de large), il pourra être nul. Dans chaque cas particulier, une modélisation simple permet d'optimiser la combinaison, épaisseur des parois et nombre des pincements par facette, pour minimiser la flèche et les contraintes. Le calcul montre que un ou deux pincements soudés, aménagés dans ses facettes en trapèzes et en triangles, divise par dix la flèche maximale de ces facettes, qui résulterait de leur absence.
L'épaisseur interne à donner aux plaques creuses à parois gaufrées d'un échangeur thermique varie avec la nature du fluide circulant à l'intérieur, cette épaisseur interne étant notablement plus faible pour les liquides que pour les gaz. La plage de ces épaisseurs internes, ainsi que la plage des écarts entre les plaques creuses empilées d'un échangeur thermique, va généralement de 0,5 à 3 mm pour un liquide et de 2 à 12 mm pour un gaz. Grâce à l'ensemble de ces dispositions, en fonction de la température T du fluide chaud à traiter, les applications industrielles d'un échangeur thermique, selon l'invention, constitué par l'empilement de plaques creuses en polymère, à parois gaufrées, sont particulièrement étendues. Lorsque la température est relativement basse (T < 100°C), les domaines suivants sont concernés: chauffage des piscines, pompes à chaleur, condensation de vapeur d'eau, refroidissement de liquides divers, corrosifs ou non, refroidissement de moteurs thermiques et récupération de l'énergie de liquides ou de gaz chauds évacués. Lorsque la température est relativement haute (100 < T < 300°C), les échangeurs thermiques en polymère utilisés auront subi une réticulation préalable et les domaines seront alors : récupération de l'énergie des fumées et refroidissement des gaz d'échappement des moteurs Diesel (EGR). Pour certaines applications particulières, ces différents échangeurs thermiques pourront être assemblés en série et en parallèle pour former des ensembles ayant des conductances thermiques volumiques de plusieurs dizaines de kilowatts par degré et par m3.
Grâce à leurs parois relativement minces, les plaques creuses en polymère, selon l'invention, ont un poids réduit, ce qui minimise le coût des échangeurs thermiques qui les incorporent. De plus, malgré la conductivité thermique réduite des polymères, l'épaisseur réduite des parois de ces échangeurs de chaleur leur donne en fait une conductance thermique comparable à celle de l'eau, à conductivité également faible et à épaisseur beaucoup plus grande, qui circule à l'intérieur. En outre, comme les polymères sont indifférents à la plupart des fluides corrosifs, les échangeurs thermiques qui les utilisent sont autorisés d'usage dans des domaines jusqu'ici réservés aux échangeurs thermiques en titane ou en alliages spécifiques, relativement onéreux. Selon l 'invention , u n second type de plaques creuses d'échange thermique, fabriquées par extrusion-soufflage d'une paraison, en polymère ou en verre, entre les mâchoires d'un moule approprié, est caractérisé en ce que :
- les parois de la partie centrale de ces plaques creuses sont dépourvues de tout relief raidisseur;
- l'épaisseur et la largeur des parois des canaux sont coordonnées pour conférer à ces parois une rigidité adaptée à l'usage particulier de la plaque ;
- les têtes de raccordement sont des goulots, adaptés à être reliés de façon étanche à des conduits externes.
Selon l'invention, u n e telle plaque creuse extrudée-soufflée, en verre ou en polymère, est en outre caractérisée en ce que : - la face avant de la partie centrale de la plaque creuse est une surface lisse continue, plane ou cambrée ;
- les cloisons de séparation des canaux sont segmentées et soudées à la paroi de cette face avant par des pincements unilatéraux de la paraison ;
- les segments creux ainsi formés par ces cloisons, débouchent sur la face arrière de la partie centrale ;
- les ouvertures entre canaux, constituées entre deux segments de cloisons, sont disposées en quinconce, pour donner une certaine rigidité transversale à la plaque creuse.
Grâce à ces différentes dispositions, ces nouvelles plaques creuses d'échange thermique dotées de parois planes ou cambrées, à rigidités longitudinales et transversales satisfaisantes (creux en quinconce), sont susceptibles de convenir à de très nombreuses applications dans des domaines industriels très différents les uns des autres. Tout d'abord, on notera que ces plaques creuses extrudées-soufflées, à parois planes en polymère, sont immédiatement utilisables dès la sortie du moule. En fonction des puissances thermiques concernées (températures, pressions, débits du fluide), on choisira des valeurs appropriées pour les surfaces des plaques creuses ainsi que pour le nombre et les sections internes de leurs canaux. Et, les parois seront en un verre plus ou moins épais (1 à 3 mm) ou en un polymère plus ou moins mince (0,5 à 1 ,5 mm). Dans ces divers domaines, les sources chaudes concernées ne sont plus nécessairement des fluides mais également des surfaces de dissipation thermique ou des rayonnements, solaires ou infrarouges. Les plaques creuses en polymère, à parois planes, cambrées ou gaufrées, pourront être utilisées seules ou juxtaposées (et non plus empilées) pour constituer les capteurs thermiques de divers dispositifs usuels perfectionnés. Selon l'invention, un chauffe-eau solaire perfectionné est caractérisé en ce que son capteur thermique est une plaque creuse extrudée-soufflée, à parois planes, en polymère sombre, notamment noir
Grâce à ces dispositions nouvelles, un tel chauffe-eau solaire est particulièrement intéressant car on y a remplacé le capteur thermique noir, universellement utilisé jusqu'à présent (tuyaux métalliques et ailettes), par une plaque creuse mince (typiquement épaisse de 0,5 à 1 cm) à surface unitaire appropriée (typiquement 100 dm2), réalisée en polymère moins lourd, moins coûteux et tout aussi efficace, du fait des faibles épaisseurs des parois en polymère de la plaque creuse et de l'eau qui la traverse. En outre, grâce à la plaque en verre usuelle, utilisée pour protéger et isoler sa face avant, et à la plaque isolante solidaire de sa face arrière, un tel chauffe-eau possède une bonne efficacité et, par ailleurs, une grande facilité d'installation, due au poids total réduit de l'ensemble. Dans ce contexte, on remarquera deux situations voisines. Une plaque creuse extrudée-soufflée, à parois gaufrées en polymère noir, pourvue d'une paire de raccords, permet de réaliser un chauffe-eau équivalent au précédent. Un dispositif, semblable à ce chauffe-eau solaire à parois planes, comprenant une plaque creuse et le cas échéant des plaques pleines de protection, en verre approprié, peut convenir si l'on souhaite récupérer une partie de l'énergie thermique des rayonnements infrarouges à températures élevées, produits dans certaines industries traitant des solides en fusion.
Selon l'invention , un pan neau de montage et de refroidissement, pour module photovoltaïque, est caractérisé en ce que :
- ce panneau est une plaque creuse extrudée-soufflée, en verre ou en polymère, à face avant parfaitement plane ;
- cette plaque creuse est adaptée à recevoir un débit approprié soit d'air ambiant, circulant en circuit ouvert, soit d'eau à température proche de l'ambiante, circulant en circuit ouvert ou fermé.
On rappellera tout d'abord qu'un module photovoltaïque est une plaque en verre spécial résistant aux grêlons, dans laq uelle les fragiles cellules photovoltaïques sont incorporées. Jusqu'à présent, tout module photovoltaïque est collé sur une simple plaque de verre trempé d'épaisseur appropriée, afin de donner une bonne tenue mécanique au panneau photovoltaïque ainsi formé.
Grâce aux dispositions précédentes, avec le panneau photovoltaïque perfectionné ainsi réalisé, la puissance électrique, disponible par unité de surface, est notablement augmentée. En effet, on estime que la puissance électrique produite par une cellule photovoltaïque standard, qui est au mieux d'environ 18% de la puissance solaire captée, diminue d'environ 0,5 % par degré lorsque sa température s'élève au-dessus de 20°C. Avec un refroidissement usuel, par courant d'air circulant en convection naturelle, la température des cellules se stabilise à environ 60°C. Avec des panneaux photovoltaïques perfectionnés selon l'invention , en stabilisant la tem pératu re d es cel l u les à 25°C par exemple, l'augmentation de puissance électrique disponible est proche de 20%. Ce qui représente un retour sur investissement particulièrement intéressant. Les moyens associés à la plaque creuse, pour lui fournir de l'air à température ambiante, pourront être un simple ventilateur de puissance appropriée, installé en amont de l'un des goulots de raccordement. Pour fournir à cette plaque creuse de l'eau à température proche de l'ambiante, circulant en circuit fermé, un refroidisseur sera utilisé qui comportera avantageusement un échangeur thermique eau/air du type décrit plus haut : un empilement de plaques creuses extrudées-soufflées en polymère, à parois gaufrées. Selon l'invention, un panneau de montage et de refroidissement, notamment pour circuits électroniques, est caractérisé en ce que :
- ce panneau comporte une plaque creuse extrudée-soufflée en polymère, dotée d'une face avant parfaitement plane;
- cette plaque creuse est adaptée à recevoir un débit approprié soit d'air ambiant, circulant en circuit ouvert, soit d'eau à température proche de l'ambiante, circulant en circuit ouvert ou fermé.
Grâce à ces dispositions, un tel panneau est particulièrement efficace et peu onéreux, notamment pour le montage et le refroidissement des processeurs.
Les caractéristiques et avantages de l'invention ressortiront, d'une manière plus précise, des descriptions ci-après des deux formes de réalisation non limitative de l'invention, faites en référence aux dessins annexés dans lesquels :
- la figure 1 représente :
- en A, une vue de face d'une première plaque creuse à parois gaufrées, selon l'invention ;
- en B, une coupe longitudinale d'un alignement des bossages de cette première plaque creuse ;
- en C, une coupe transversale des parties centrales gaufrées de deux de ces premières plaques creuses juxtaposées ;
- en D, une vue de profil de cette première plaque creuse ;
- la figure 2 représente :
- en A, une vue de face d'un insert de tronçon de collecteur, à contour circulaire ;
- en B, une vue en coupe de cet insert ;
- en C, une vue de face de l'extrémité d'une plaque creuse comportant un tronçon de collecteur, à contour oblong ;
- la figure 3 représente la vue de face d'une seconde plaque creuse à parois gaufrées, selon l'invention ;
- la figure 4 représente une vue en perspective d'un échangeur thermique formé par l'assemblage de plaques creuses de la figure 1 ;
- la figure 5 représente la face arrière d'une plaque creuse à face plane selon l'invention;
- la figure 6 représente le profil d'une plaque creuse à face plane selon l'invention ;
- la figure 7 représente des portions de trois coupes transversales de cette plaque creuse. La figure 1A représente la vue de face d'une plaque creuse 12, à parois gaufrées réalisées en polymère extrudé-soufflé. La figure 1 B est la coupe de cette plaque selon une ligne BB. A titre d'exemple, la zone centrale de la plaque creuse 12 a une forme globalement rectangulaire et elle mesure 300 mm entre ses bords parallèles d'extrémités 14-16 et 200 mm entre ses bords latéraux 18-20, avec 360 mm entre les bords extrêmes de ses deux tronçons de collecteurs externes 22-24. La plaque creuse 12 comporte deux canaux 26-28 à parois gaufrées, formant deux alignements identiques contigus de bossages alternatifs, séparés par un pincement central rectiligne 30, large de 3 mm. Selon la vue de face A, la coupe B et la vue de profil D, chaque alignement de bossages comprend à la suite sept alternances, quatre en creux 321-4 et trois en bosses 325-7, les creux étant représentés en gris sur la vue de face A. L'épaisseur des parois gaufrées 13a-b de la plaque creuse 12 (coupe B) est de 1 mm et son épaisseur interne 13c est de 3 mm.
Selon la figure 1A, chaque creux et chaque bosse a la forme d'un toit à quatre pentes présentant quatre arêtes obliques 33, fortement inclinées, et quatre facettes comprenant (1 ) deux trapèzes latéraux symétriques 341-2 pour les creux et 36i-2 pour les bosses, tous avec une grande base de 40 mm, (2) entre les crêtes de deux bossages contigus, un losange de liaison formé par deux triangles isocèles aplatis coplanaires, respectivement référencés 38i-2 pour les creux et 40i-2 pour les bosses, tous avec un grand côté de 90 mm, (3) une crête longitudinale légèrement arasée 42, entre deux trapèzes symétriques, pour les creux et 44 pour les bosses, ces deux crêtes étant longues de 15 mm et hautes de 14 mm. Les bords latéraux 18-20 de la plaque creuse 12 sont séparés des grandes bases des trapèzes 34-36 par une bordure 19 à parois soudées, large de 5 mm, suivie par deux rampes de liaison 21 avec l'intérieur de la plaque. Les bords latéraux des coins, du quasi rectangle formé par la plaque 12, sont découpés pour constituer des crochets 23 permettant une suspension aisée de la plaque. Au niveau de ces quatre coins, chacune des rampes de liaison 21 contourne un relief externe souple 25 de l'une des parois de la plaque 12. Dans un échangeur thermique, l'écart entre deux sommets en regard de ces reliefs externes 25 est très légèrement supérieur au pas d'assemblage des plaques creuses, ce qui rend jointifs ces reliefs et améliore la tenue mécanique de l'échangeur..
Dans les trapèzes 34-36, sont pratiqués deux pincements soudés, l'un 46 pour les creux et l'autre 48 pour les bosses. Ces pincements 46-48, semblables au pincement central 30 (2 mm de large), relient presque les arêtes pentues 33 de ces trapèzes, sont parallèles à leurs bases et sont situés sensiblement au tiers de leur hauteur, à compter de leur grande base. Dans chacun des triangles isocèles aplatis 38-40 et dans les losanges plans de liaison, partagés entre un creux et une bosse, que ces triangles forment, sont pratiqués deux pincements soudés 50-52, parallèles et semblables aux précédents 46-48. Ces pincements 50-52 relient presque deux côtés de ces triangles et de ces losanges et ils sont disposés de manière à y aménager trois surfaces sensiblement égales. La vue selon la ligne de coupe transversale CC (figure 1A) de deux plaques creuses 12 122, juxtaposées dans un échangeur thermique, est représentée à la figure 1 C. Cette figure montre l'épaisseur interne 13c (2 mm) de ces plaques, l'épaisseur de leurs parois 13a- b (1 mm), les pincements soudés 48 réalisés dans les quatre trapèzes 36 de deux bosses, appartenant aux deux alignements 26-28, ainsi que l'écart 54, large de 6 mm, qui sépare ces deux plaques 121-2 juxtaposées.
Selon la figure 1A, chacun des tronçons 22-24 de collecteurs externes, de la plaque creuse 12, incorpore une paire d'inserts circulaires 58-60 qui, après avoir été soudés aux faces externes des parois de cette plaque, ont un diamètre interne final de 30 mm. Chaque paire d'inserts est divisée en deux parties semi circulaires, respectivement externe et interne à la plaque creuse 12. La partie interne comporte des conduits radiaux latéraux 62a-b et centraux 63a-b. Les conduits latéraux 62a-b débouchent en face et le long de pincements obliques 64a-b et 66a-b, aménagés soudés dans les deux zones de raccordement 68-70 de ces tronçons 22-24 et des extrémités en triangles isocèles 38 de la partie centrale gaufrée de la plaque creuse 12. Les conduits centraux 63a-b débouchent de part et d'autre du pincement central 30.
Selon la vue de profil de la figure 1 D, les creux 321-4 et les bosses 325-7 alternés d'une plaque 12 apparaissent de chaque côté de sa partie centrale rectiligne 56, laquelle comporte à ses deux extrémités les inserts 58-60 qui forment les tronçons individuels 22-24 des collecteurs externes de cette plaque. L'épaisseur de cette partie centrale 56 est de 4 mm et celle de ces tronçons de collecteurs 22-24, de 10 mm, cette dernière épaisseur étant le pas d'assemblage des plaques creuses 12, empilées dans un échangeur thermique. Par ailleurs, la vue de profil D montre que, de chaque tronçon de collecteur, formé par l'assemblage des inserts 58-60, ressort la bordure débordante 19 des parois de la plaque creuse 12, soudées entre ces inserts.
La figure 2 représente en A, un insert en anneau circulaire 58, en polymère, destiné à être assemblé par paire, pour constituer un tronçon individuel 22-24 de collecteur externe d'une plaque creuse 12. Avant la mise en place de ces deux paires d'inserts 58 dans les mâchoires du moule de fabrication de ces plaques creuses, leurs diamètres, externe et interne, sont de 56 et 32 mm. Chaque insert 58 comporte une ouverture centrale circulaire 72 et est divisé en deux parties semi-circulaires, 74 et 76, respectivement externe et interne à la plaquette creuse 12. La partie semi-circulaire interne 76 comporte deux paires de rainures radiales, latérales 78a-b et centrales 80a-b et trois cloisons de séparation 82, 84, 86 entre ces rainures, la cloison centrale 84 comportant un ergot 85 qui permet une mise en place parfaite de chaque insert 58 dans une mâchoire du moule de fabrication des plaques. En B, sur cette figure 2, est représentée une vue en coupe de l'insert 58, dans laquelle l'ouverture centrale 72 apparaît, de même que la rainure latérale 78b et la rainure centrale 80b. Sur la face externe de cet insert 58, apparaît un relief circulaire 88, destiné à être soudé à un relief circulaire identique du tronçon de collecteur de la plaque creuse contiguë.
Au cours de la fabrication d'une plaque creuse, les parois de la paraison, soumises à la pression interne de l'air soufflé, épousent les faces internes des mâchoires du moule, se soudent localement entre elles et aux inserts, aménagent le volume interne de la plaque et créent les pincements internes des facettes des bossages. Ces résultats sont obtenus par l'action des reliefs usinés sur les faces internes des mâchoires du moule.
Sur la figure 2C, est représentée (transparente), la vue de face de l'extrémité 61 d'une rela-tivement grande plaque creuse extrudée-soufflée, à six canaux larges de 10 cm. Cette extrémité 61 comprend un tronçon de collecteur oblong et une zone de raccordement 57. Deux inserts oblongs, aux parois soudées par la paraison, constituent ce tronçon, lequel possède une ouverture centrale oblongue 73, dotée d'un pourtour comprenant deux parties, l'une arrondie 75, externe à la plaque creuse, et l'autre 77, interne allongée, qui comporte douze conduits 791-12, de même section, régulièrement répartis et séparés les uns des autres par onze cloisons 83i-n . Onze pincements obliques soudés 81 i-n , sensiblement parallèles et équidistants, aménagés dans la zone de raccordement 57, font suite à ces onze cloisons 83-1-11 et relient le tronçon de collecteur 73-75-77 à la zone centrale de la plaque creuse. Les douze passages ainsi aménagés en amont de cette zone centrale, débouchent sur les six canaux occupant la zone centrale de cette plaque creuse.
Cette seconde forme de réalisation des tronçons de collecteurs des plaques creuses extrudées-soufflées, selon l'invention, convient aux plaques creuses comportant un nombre de canaux supérieur à deux. En outre, grâce au maître couple réduit du collecteur externe amont d'un échangeur thermique, réalisé par l'empilement soudé de tronçons à contour oblong, une répartition améliorée du débit du fluide externe est assurée dans les espaces séparant les plaques creuses.
La figu re 3 est la vue de face d'une plaque creuse 92 à parois gaufrées, selon l'invention, qui a les dimensions et toutes les caractéristiques fonctionnelles de la plaque creuse 12 de la figure 1. La partie centrale gaufrée de cette seconde plaque creuse 92 comporte deux canaux 94-96, formant deux alignements identiques contigus de bossages alternatifs, séparés par une cloison rectiligne étroite 98 (3 mm). Chaque bossage a la forme d'un toit à quatre pentes présentant quatre arêtes obliques, telle 99, fortement inclinées et quatre facettes constituées par (1 ) deux triangles isocèles aplatis latéraux, tels 100 pour les creux et 102 pour les reliefs, (2) deux trapèzes coplanaires 104-106, formant un hexagone de liaison, tel 105, entre les crêtes extrêmes de deux bossages alternés, (3) une crête transversale, telle 108, pour les bossages en creux et 1 10 pour les bossages en relief. Ces deux bossages ont même hauteur. Les creux de cette plaque 92 sont représentés en gris. Dans chacun des trapèzes 104-106 d'un hexagone de liaison, telsl 05 et 107, sont réalisés deux pincements soudés 1 14-1 16, qui pratiquement relient les crêtes des bossages, sont parallèles au sens d'écoulement du fluide et partagent ces hexagones en trois surfaces sensiblement égales. Dans chacun des triangles 100-102, est pratiqué un pincement soudé 1 18-120 y aménageant deux surfaces sensiblement égales.
Les fonctions de la plaque creuse 92 diffèrent de celles de la plaque creuse 12 de la figure 1 , par la présence, au centre des hexagones de liaison, tels 105 et 107, de reliefs externes allongés obliques, tels 1 15 et 1 17. Les hexagones de liaison 105-107 ont 10 cm de large et les pincements soudés 1 14-1 16, 4 cm d'écartement. Les reliefs externes 1 15 et 1 17 ont 10 mm de long, 5 mm de large, 2,6 mm de haut et des orientations de 30°, par rapport au sens de l'écoulement du fluide entre les plaques creuses gaufrées 92 d'un échangeur thermique. Leur écartement dans un tel échangeur est de 5 mm, soit légèrement moins que le double de la hauteur de ces reliefs externes. Les orientations des reliefs externes 1 15- 1 17, aménagés au centre des hexagones successifs 105-107 des bossages des parois des canaux des plaques creuses 92, sont inversées. Les orientations des reliefs externes des hexagones correspondants des deux parois de la plaque creuse 92 sont également inversés.
Grâce à ces dispositions, les reliefs externes à orientations inverses 1 15-1 17, appartenant à deux plaques creuses contiguës d'un échangeur thermique, sont retrouvent jointifs et ils forment alors un croisillon dont les branches sont à la fois des cales d'épaisseur entre les plaques creuses de cet échangeur thermique et des doubles déflecteurs d'écoulement de fluide. Ce qui augmente la surpression interne autorisée ainsi que les turbulences d'écoulement qui améliorent le couplage thermique entre les deux fluides traversant l'échangeur thermique. La présence de ces reliefs externes 1 15-1 17 à double fonction est particulièrement intéressante lorsque les plaques creuses 12, à trapèzes latéraux et losange de liaison selon la figure 1 , ou les plaques creuses 92, à triangles latéraux et hexagones de liaison selon la figure 3, ont de grandes dimensions, 100 x 200 cm par exemple. Une conductance thermique améliorée et une rigidité globale satisfaisante sont de la sorte assurées aux échangeurs thermiques de grande puissance, formés par l'empilement de grandes plaques creuses comportant de tels reliefs externes.
Selon la vue en perspective de la figure 4, un échangeur thermique 122, est constitué par l'empilement soudé des tronçons de collecteur 22-24 de dix neuf plaques creuses 12 (ou 92) en polymère. Les tronçons de la dernière plaque sont équipés de tubulures filetées 124. Chaque plaque 12 comporte deux alignements de bossages alternatifs, en toits à quatre pentes, constitués par des paires de trapèzes 36 et des paires de triangles isocèles coplanaires 38, formant des losanges de transition entre un creux et une bosse. Ces triangles et ces trapèzes présentent des pincements internes 48-50 augmentant leur raideur.
Cet échangeur 122 est un bloc compact en forme de parallélépipède de 12 dm3, ayant une conductance thermique entre de l'eau et de l'air d'environ 200 W /°C et de 400 W /°C entre de l'eau et de l'eau. Après réticulation du polymère utilisé, cet échangeur thermique peut traiter des fluides à températures élevées (150°C pour un polyéthylène PEHD et 400°C pour un polyamide) notablement plus grandes que la température de fusion avant réticulation. Plusieurs techniques sont disponibles pour effectuer cette réticulation , notamment un rayonnement ionisant. Grâce aux pincements parallèles 48-50 aménagés dans les facettes des bossages des plaquettes creuses, la pression différentielle autorisée pour l'échangeur thermique 122 ayant des parois de 1 mm d'épaisseur, est d'environ 4 bars, lorsque le polymère utilisé pour la paraison est chargé en fibres de verre ou de carbone. Mais ces valeurs maximales possibles de température et de pression différentielle ne peuvent être simultanées, les plages de ces deux valeurs étant nécessairement inversées. Un compromis s'imposera dans chaque cas particulier.
La figure 5 représente la vue de la face arrière d'une plaque creuse extrudée- soufflée 130, comprenant une partie centrale 132 dépourvue de tout relief raidisseur, deux zones de transition 1341-2 et deux goulots 136i-2, à section circulaire. La partie centrale plane et lisse 132 a 80 cm de long, 40 cm de large une épaisseur totale de 5 mm. Cette partie centrale 132 est occupée par seize canaux étroits 138i-i6, à parois épaisses de 1 mm. Ces seize canaux 138 ont 22 mm de large et 3 mm d'épaisseur interne. Ces canaux 138 sont séparés les uns des autres par quinze lignes 140i_i5 de doubles cloisons segmentées 142, résultant de pincements soudés de la paraison. Ces doubles cloisons 142 sont longues de 18 cm, larges et hautes de 3 mm, leur épaisseur individuelle et leur écartement étant de 1 mm. Les écarts entre deux segments d'une ligne de cloisons constituent des ouvertures 144 entre deux canaux voisins, tels 138 Ces ouvertures 144 sont disposées en quinconce et ont 6 cm de long.
Les zones de transition amont et aval 1341-2 relient les extrémités de la zone centrale 132 aux deux goulots de raccordement externe 136i-2. La zone 134i est occupée par quinze cloisons divergentes 146i_i5 qui bordent seize conduits de répartition uniforme du débit entrant et aboutissent aux quinze lignes 140i_i5 de segments de cloisons 142 séparant les seize canaux 138i-i6. La zone de transition aval 1342 est identique à la zone amont 134 et occupée par quinze cloisons convergentes 148i-i5. Selon la figure 6, la vue de profil d'une plaque creuse 130 montre une partie centrale 132 et deux goulots filetés 136i-2. La partie centrale 132 a 40 cm de large et 80 cm de long, une épaisseur de 5 mm, une paroi avant plane et lisse, de 1 mm. Les goulots 136i-2 ont 4 cm de diamètre et de haut et ils sont fixés perpendiculairement à la paroi arrière de la plaque.
Selon la figure 7, qui représente des portions agrandies de trois coupes transversales typiques A, B, C de la plaque creuse 1 30, cette plaque possède une face avant 150 parfaitement plane, et une face arrière 152 sur laquelle débouchent les segments creux externes 154, larges de 1 mm, des doubles cloisons segmentées internes 142. Selon cette figure 7, chaque segment 142 séparant deux canaux contigus résulte d'un pincement unilatéral de la paraison qui a formé deux cloisons internes 158i-2, épaisses de 1 mm , écartées de 1 mm et hautes de 3 mm. L'extrémité commune 160 de ces deux cloisons 158 est soudée à la paroi de la face avant 150 de la plaque creuse 130.
La figure 5 et les trois coupes A, B,C de la figure 7 montrent que la disposition en quinconce, adoptée pour les ouvertures 144, a pour premier résultat d'intercaler un bout de paroi de la face arrière 1 52 entre deux segments creux 1 54 appartenant à deux lignes voisines de cloisons segmentées 1421-15. Ce qui empêche les segments creux 154 de s'ouvrir et oblige la plaque creuse 130 à ne pouvoir prendre qu'une faible flèche transversale, au cours d'une manipulation. Le second résultat de cette disposition en quinconce est de constituer des suites continues (voir coupe B), de portions contiguës des segments décalés 142 des doubles cloisons 140. Ces suites continues évitent tout défaut de raideur longitudinale à la plaque creuse 130.
Dans un chauffe-eau solaire perfectionné, le capteur thermique sera une plaque creuse, selon l'invention, à parois planes ou gaufrées, en polymère noir. Pour le panneau de montage et de refroidissement sur lequel est collé un module photovoltaïque, on utilisera une plaque creuse selon l'invention à parois planes en polymère ou en verre, le cas échéant, trempé après moulage. Pour un panneau semblable, adapté à des circuits électroniques, une plaque creuse à parois planes en polymère sera utilisée. Dans ces deux cas, un refroidisseur sera constitué, qui comportera une plaquette creuse extrudée-soufflée, traversée par un courant d'air ambiant, circulant en circuit ouvert, ou par un courant d'eau à température proche de l'ambiante, opérant en circuit ouvert ou fermé .
L'invention n'est pas limitée aux exemples illustrés par les figures jointes. La première forme de réalisation de l'invention n'est limitée ni aux dimensions des plaques creuses à parois gaufrées 10 et 92 décrites aux figures 1 et 3 ni à l'échangeur thermique 122 de la figure 4 qui les incorpore. En effet, lorsque ces plaques creuses ont des dimensions notablement plus importantes que celles de ces deux plaques, décrites à titre d'exemples non limitatifs, le nombre de canaux augmente puisque leur largeur maximale est de l'ordre du décimètre, de même que le nombre de bossages dans chaque canal. Par ailleurs les dimensions de ces bossages peuvent être modifiées en fonction des pressions différentielles à supporter, et plus généralement du cahier des charges de l'échangeur à réaliser. En revanche, lorsque les dimensions des plaques sont notablement inférieures à celles des deux plaques 12-92 décrites, la hauteur de ces bossages diminue en conséquence. Et, lorsque les plaques creuses sont petites ou moyennes (typiquement < 20 dm2), l'épaisseur interne des plaques et/ou l'écart entre deux plaques contiguës sont faibles (typiquement < 2 mm), les écoulements de fluides sont laminaires et l'efficacité de l'échange thermique effectué est cependant grande. En revanche lorsque ces plaques sont grandes (typiquement > 50 dm2), ces épaisseurs et/ou ces écarts peuvent être importants (typiquement jusqu'à 2 cm pour les écarts). Dans ce cas, le nombre de Reynolds, qui découle de ces dimensions et des vitesses des fluides qui traversent l'échangeur, est tel que les écoulements sont turbulents.
Ce type de plaques creuses extrudées-soufflées à parois gaufrées concerne non seulement les plaques creuses en polymère décrites plus haut, mais également les plaques creuses en verre. Le domaine aujourd'hui inexploré de ces plaques creuses en verre à parois gaufrées n'entame en rien leur appartenance à la présente invention.
Pour ce qui concerne l'autre type de plaques creuses extrudées-soufflées, selon l'invention, celles dépourvues de tout relief raidisseur, on notera que les zones de transition 1341-2 peuvent avoir des variantes. En effet, ces zones peuvent être incorporées à la plaque creuse 130, sous forme de collecteurs internes, en forme de deux longs triangles rectangles symétriques inversés, dans lesquels débouchent les canaux d 'u ne plaq ue creuse parfaitement rectangulaire, comportant une partie centrale en forme de parallélogramme et des goulots disposés aux deux extrémités d'une diagonale de la plaque. Des cloisons semblables aux cloisons 146-148, destinées à uniformément répartir les débits entre les canaux, seront aménagées à l'intérieu r de ces col lecteurs internes. Une modélisation optimisera longueurs et emplacements des segments de ces cloisons. En fonction du nombre et de la largeur des canaux, les deux goulots pourront avoir une embase oblongue, semblable à celle de l'insert de la figure 2C, et une extrémité cylindrique filetée de diamètre réduit.
La plaque creuse extrudée-soufflée 130 à parois planes, décrite ci-dessus à titre d'exemple, peut avoir des dimensions différentes de celles qui ont été indiquées. En pratique, l'épaisseu r des parois des canaux 138i-16 d'une plaque creuse 130 sera typiquement comprise entre 0,5 et 1 ,5 mm pour une plaque en polymère et entre 1 et 3 mm pour une plaque en verre. Pour ce qui est de l'épaisseur interne typique de ces canaux, elle sera comprise entre 1 et 3 mm pour une plaque en polymère et entre 3 et 9 mm pour une plaque en verre. Dans les deux cas, la largeur typique de ces canaux sera comprise entre deux et cinq centimètres, la longueur typique des segments de cloisons 142 sera comprise entre un et deux décimètres et celle des ouvertures 144 entre deux canaux, quatre à cinq fois inférieure à la précédente. Pour ce qui est de la largeur et de la longueur d'une plaque creuse 130, elles pourront être augmentées en fonction des capacités des équipements d'extrusion-soufflage disponibles
Une plaque creuse extrudée-soufflée, à parois en polymère dépourvues de tout relief raidisseur, peut avoir une partie centrale à faces courbes, l'une interne et lisse, et l'autre, externe et comportant les creux des cloisons internes. Ces cloisons pourront ne pas être segmentées pour pouvoir apporter à cette plaque creuse courbe une certaine souplesse transversale lui permettant de parfaitement s'appliquer sur une surface courbe à refroidir. Une telle plaque creuse courbe pourra notamment constituer une coquille à parois creuses, adaptée à être rattachée à des coquilles identiques, pour former une enveloppe cylindrique à parois creuses. Cette enveloppe constituera le capteur thermique d'un refroidisseur à eau, entourant de près un corps cylindrique chaud, soumis à un plafond de température. Ce corps cylindrique pourra être un moteur électrique de quelques kW, devant fournir une puissance mécanique supérieure à celle permise par un refroidissement usuel par convection naturelle de l'air ambiant.

Claims

REVENDICATIONS
1 . Plaque creuse (12 ou 130), destinée à constituer un échangeur thermique élémentaire entre un fluide et une source chaude ; la plaque creuse ayant été obtenue par extrusion-soufflage d'une paraison vitreuse ou polymère et comportant :
- une partie centrale occupée par un canal unique ou par plusieurs canaux (141-6 ou 138i-i6) ; et
- sur des extrémités opposées de la partie centrale, des têtes (18i-2 ou 136i-2) de raccordement externe.
2. Plaque creuse d'échange thermique (12 ou 130), selon la revendication 1 , caractérisée en ce que les têtes de raccordement (18i-2 ou 136i-2) comportent des bouchons, lesquels peuvent être enlevés pour être remplacer par des moyens destinés à incorporer ou rattacher aux têtes de raccordement, des collecteurs associés à cette plaque (12 ou 130).
3. Plaque creuse d'échange thermique (12 ou 1 30), selon la revendication 1 ou 2, caractérisée en ce qu'elle comprend :
- dans la partie centrale, une pluralité de canaux (26-28 ou 94-96 ou 138i-i6) séparés par des cloisons (30 ou 98 ou 142), formées par des pincements soudés de la paraison ;
- des zones (16i-2 ou 1341-2) de transition entre les têtes de raccordement et la partie centrale, les zones de transition (16i-2 ou 61 ou 1341-2) comportant des cloisons (36i-5 ou 81 1_ 11 ou 146i-i5), formées par des pincements soudés de la paraison, adaptées à assurer à ce fluide des débits locaux sensiblement uniformes dans les canaux (14i-6 ou 1 38M6) de la partie centrale et à donner une rigidité appropriée aux parois de ces zones.
4. Plaque creuse d'échange thermique (12, 92 ou 130), selon l'une des revendication 1 à 3, caractérisée en ce qu'elle a été réalisée en un polymère chargé en fibres appropriées, notamment de verre ou de carbone.
5. Plaque creuse extrudée-soufflée (12, 92), selon l'une des revendications 1 à 4, caractérisée en ce que :
- les parois de la plaque comportent des reliefs raidisseurs donnant à ces parois un aspect gaufré ;
- chacune de ces parois gaufrées constitue un alignement de bossages alternatifs, dotés de facettes (34-38 ou 100-102-104-106) à fortes pentes et à contours comportant des arêtes orientées dans des directions obliques (33 ou 99) ou perpendiculaires (108) à cet alignement ;
- l'épaisseur et la largeur des parois de la plaque sont coordonnées pour conférer à ces parois une rigidité globale, adaptée à l'usage particulier de la plaque creuse.
6. Plaque creuse en polymère (12 ou 92), selon la revendication 5, caractérisée en ce que :
- les facettes des bossages alternatifs ont la forme de trapèzes (34-36 ou 104-106) et de triangles isocèles (38-40 ou 100-102), assemblés pour former des alignements de reliefs et de creux alternés, en forme de toits à quatre pentes, dotés d'arêtes légèrement arasées (42 ou 108) ;
- chacune de ces facettes comporte au moins un pincement allongé soudé (46-48 et 50-52 ou 1 14-1 16), disposé dans le sens d'écoulement des fluides, pour diviser les surfaces de ces facettes (34-36 et 38-40 ou 100-102 et 104-106) en au moins deux parties ainsi soumises à des contraintes de flexion réduites.
7. Plaque creuse en polymère (12 ou 92), selon l'une des revendications 1 à 6, caractérisée en ce que :
- les têtes de raccordement (18i-2) sont des tronçons (22-24 ou 59) de conduits, chacun constitué par une paire d'inserts en polymère (58-60 ou 59), soudés aux extrémités de la plaque creuse lors de son soufflage ;
- ces inserts sont dotés d'une ouverture centrale (72 ou 73), à pourtour circulaire ou oblong, doté d'un contour en relief et de plusieurs rainures (78a, b - 80a, b ou 79 -12) de même section, aménagées dans la partie (76 ou 77) de ce pourtour dirigée vers l'intérieur de la plaque creuse (12-92) ;
- ces deux paires d'inserts ont préalablement été portées à une température proche de leur température de fusion, avant d'être installées dans des logements pratiqués dans les deux mâchoires du moule ;
- des conduits internes (78a, b - 80a, b ou 79i-i2), résultant de la paraison soudée aux parois des rainures de chaque paire d'inserts, débouchent sur des passages entre les cloisons aménagées dans les zones de transition (68-70 ou 61 ), le cas échéant.
8. Plaque creuse extrudée-soufflée (130), selon l'une des revendications 1 à 4, caractérisée en ce que :
- les parois (1 50-152) de la partie centrale (1 32) de cette plaque creuse (1 30) sont dépourvues de tout relief raidisseur ; - l'épaisseur et la largeur des parois (150-152) de ces canaux (138) sont coordonnées pour conférer à ces parois une rigidité adaptée à l'usage particulier de la plaque;
- les têtes de raccordement (1361 -2) sont des goulots adaptés à être reliés d'une manière étanche à des conduits externes.
9. Plaque creuse d'échange thermique (130), selon la revendication 8, caractérisée en ce que :
- la face avant (150) de la partie centrale (132) de la plaque creuse est une surface lisse continue, plane ou cambrée ;
- les cloisons (142) séparant les canaux (138i-i6) sont segmentées et soudées à la paroi de cette face avant (150), par des pincements unilatéraux de la paraison ;
- les segments creux, formés par ces cloisons (142), débouchent sur la face arrière (152) de la partie centrale (132) ;
- les ouvertures (144) entre canaux (138i-i6), constituées entre deux segments de cloisons (142), sont disposées en quinconce, pour donner une certaine rigidité transversale à la plaque creuse (130).
10. Plaque creuse en polymère (12 ou 92), selon l'une des revendications 1 à 9, caractérisée en ce que :
- les deux parois de la plaque creuse ont des facettes (34-36-38-40 ou 100-102-104-106) comportant en leurs centres des reliefs externes allongés (1 15-1 17), de hauteur déterminée, ayant une longueur faible par rapport aux dimensions de ces facettes ; les reliefs externes (1 15-1 17) ayant des orientations obliques par rapport à l'alignement des bossages des parois et les reliefs des facettes d'une paroi ayant une orientation inverse de celle des reliefs des facettes correspondantes de l'autre paroi ;
- dans un échangeur thermique, formé par un empilement de telles plaques creuses, les reliefs externes en regard de deux plaques voisines sont adaptés à se retrouver jointifs, de façon à constituer, une cale d'écartement constant entre plaques et un double déflecteur d'écoulement de fluide, en forme de croisillon.
1 1 . Plaque creuse en polymère selon l'une des revendications 1 à 10, caractérisé en ce qu'elle a subi une réticulation, notamment par rayonnement ionisant.
12. Echangeur thermique (122) entre deux fluides, caractérisé en ce que :
- il est constitué par un empilement à pas constant de plusieurs plaques creuses en polymère (12) ou (92), selon l'une des revendications 2 à 1 1 ; - dans cet empilement de plaques creuses, des bouchons de moulage des tronçons (22-24 ou 59) de conduits ont été préalablement enlevés, sauf les bouchons externes de la première plaque ;
- les contours en relief, des bords (88) de ces tronçons de conduits empilés (22-24 ou 59), ont été successivement soudés les uns aux autres, pour constituer les deux collecteurs externes de cet échangeur thermique (122) ; deux raccords (124) étant soudés aux contours en relief des bords des tronçons de conduits de la dernière plaque de cet empilement ;
- il a subi éventuellement une réticulation, notamment par rayonnement ionisant.
13. Chauffe-eau solaire (1 60), caractérisé en ce qu'il comporte un capteur de rayonnement solaire constitué par une plaque creuse extrudée-soufflée, à parois gaufrées (12) ou à parois planes (130), en polymère sombre, notamment noir, selon l'une des revendications 1 à 1 1.
14. Panneau de montage et de refroidissement de module photovoltaïque, caractérisé en ce que :
- ce panneau est une plaque creuse extrudée-soufflée (130), à parois planes en verre ou en polymère, selon la revendication 9;
- cette plaque creuse (130) est adaptée à recevoir un débit approprié soit d'air ambiant, circulant en circuit ouvert, soit d'eau à température proche de l'ambiante, circulant en circuit ouvert ou fermé.
15. Pan neau de montage et de refroid issement pou r ci rcu its électron iq ues, caractérisé en ce que :
- ce panneau est une plaque creuse extrudée-soufflée (130), à parois planes en polymère, selon la revendication 9 ;
- cette plaque creuse (130) est adaptée à recevoir un débit approprié soit d'air ambiant, circulant en circuit ouvert, soit d'eau à température proche de l'ambiante, circulant en circuit ouvert ou fermé.
PCT/IB2011/052181 2010-05-18 2011-05-18 Plaques creuses d'echange thermique WO2011145065A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11724463A EP2572152A1 (fr) 2010-05-18 2011-05-18 Plaques creuses d'echange thermique

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR1002075 2010-05-18
FR1002075A FR2960288A1 (fr) 2010-05-18 2010-05-18 Echangeurs thermiques a plaquettes creuses en polymere.
FR1004470A FR2967488A1 (fr) 2010-11-17 2010-11-17 Plaque creuse d'echange thermique
FR1004470 2010-11-17

Publications (1)

Publication Number Publication Date
WO2011145065A1 true WO2011145065A1 (fr) 2011-11-24

Family

ID=44279695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2011/052181 WO2011145065A1 (fr) 2010-05-18 2011-05-18 Plaques creuses d'echange thermique

Country Status (2)

Country Link
EP (1) EP2572152A1 (fr)
WO (1) WO2011145065A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013150040A2 (fr) 2012-04-03 2013-10-10 Tmw Distillateurs d'eau a courants d'air sature procedes pour en maximiser les performances
GB2503494A (en) * 2012-06-29 2014-01-01 Bae Systems Plc Heat exchanger comprising a fibre reinforced polymer composite
EP4024701A4 (fr) * 2019-08-26 2023-10-04 Won Dae Ryu Collecteur thermique et son procédé de fabrication

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4066063A (en) * 1975-06-25 1978-01-03 Hoechst Aktiengesellschaft Device for the transmission of solar energy to a liquid medium
FR2566107A1 (fr) * 1984-06-15 1985-12-20 Rossignol Sa Panneau pour echangeur de chaleur, echangeur en resultant et applications, notamment aux pompes a chaleur
EP0464875A2 (fr) * 1987-11-17 1992-01-08 Ebara Shinwa Ltd. Echangeur de chaleur pour tour de réfrigération
US20060021745A1 (en) * 2004-07-28 2006-02-02 Karl Fritze Heat exchanger and fluid reservoir
FR2902183A1 (fr) * 2006-06-13 2007-12-14 Technologies De L Echange Ther Echangeurs thermiques a ailettes metalliques creuses
FR2918165A1 (fr) * 2007-06-29 2009-01-02 Dupraz En Soc Par Actions Simp Enchangeur atmospherique

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4066063A (en) * 1975-06-25 1978-01-03 Hoechst Aktiengesellschaft Device for the transmission of solar energy to a liquid medium
FR2566107A1 (fr) * 1984-06-15 1985-12-20 Rossignol Sa Panneau pour echangeur de chaleur, echangeur en resultant et applications, notamment aux pompes a chaleur
EP0464875A2 (fr) * 1987-11-17 1992-01-08 Ebara Shinwa Ltd. Echangeur de chaleur pour tour de réfrigération
US20060021745A1 (en) * 2004-07-28 2006-02-02 Karl Fritze Heat exchanger and fluid reservoir
FR2902183A1 (fr) * 2006-06-13 2007-12-14 Technologies De L Echange Ther Echangeurs thermiques a ailettes metalliques creuses
EP2032928A2 (fr) 2006-06-13 2009-03-11 Technologies De L'echange Thermique (tet) Echangeurs thermiques a plaquettes creuses
FR2918165A1 (fr) * 2007-06-29 2009-01-02 Dupraz En Soc Par Actions Simp Enchangeur atmospherique

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013150040A2 (fr) 2012-04-03 2013-10-10 Tmw Distillateurs d'eau a courants d'air sature procedes pour en maximiser les performances
JP2015516874A (ja) * 2012-04-03 2015-06-18 テエムドブルヴェTmw 飽和空気流を使用する水蒸留装置およびその性能を最大にする方法
GB2503494A (en) * 2012-06-29 2014-01-01 Bae Systems Plc Heat exchanger comprising a fibre reinforced polymer composite
EP4024701A4 (fr) * 2019-08-26 2023-10-04 Won Dae Ryu Collecteur thermique et son procédé de fabrication

Also Published As

Publication number Publication date
EP2572152A1 (fr) 2013-03-27

Similar Documents

Publication Publication Date Title
EP2577181B1 (fr) Module pour absorbeur thermique de recepteur solaire, absorbeur comportant au moins un tel module et recepteur comportant au moins un tel absorbeur
EP1395787B1 (fr) Ailette a persiennes pour echangeur de chaleur
EP0625688A1 (fr) Echangeur de chaleur à plaques
EP2572152A1 (fr) Plaques creuses d&#39;echange thermique
WO1995014893A1 (fr) Chaudiere electrique pour liquide caloporteur en circulation dans un circuit ouvert ou ferme
WO2018127639A1 (fr) Plaque pour échangeur de chaleur destiné à la régulation thermique d&#39;une unité de stockage d&#39;énergie électrique, échangeur et module de batterie associés
EP1426722B1 (fr) Plaque d&#39;un échangeur thermique et échangeur thermique à plaques
EP3295108A1 (fr) Echangeur thermique moule en deux parties et procede de fabrication d&#39;un tel echangeur
EP1579163B1 (fr) Echangeur thermique procedes et moyens de fabrication de cet echangeur
FR2838509A1 (fr) Echangeur de chaleur a plaques presentant des passages de fluide en saillie
FR3086048A1 (fr) Dispositif de regulation thermique, notamment de refroidissement
EP3234488B1 (fr) Plaque d&#39;echange thermique a microcanaux et echangeur thermique comportant au moins une telle plaque
FR2960288A1 (fr) Echangeurs thermiques a plaquettes creuses en polymere.
WO2010010241A1 (fr) D&#39;un element pour former une lentille; dispositif, element de ce dispositif et raccord pour la mise en oeuvre de ce procede
WO2014076405A2 (fr) Module de refroidissement de panneau thermique
FR2967488A1 (fr) Plaque creuse d&#39;echange thermique
EP3001133B1 (fr) Échangeur de chaleur pour véhicule automobile
EP3447432B1 (fr) Plaque d&#39;échange thermique à microcanaux comportant un élément d&#39;assemblage en bordure de plaque
CA2917539C (fr) Dispositif d&#39;echange thermique et procede de fabrication d&#39;un tel dispositif
FR3073612B1 (fr) Tube pour echangeur de chaleur avec dispositif de perturbation
WO2020069880A1 (fr) Plaque pour un échangeur de chaleur à plaques
FR2866699A1 (fr) Echangeur thermique a plaques nervurees soudees
FR2962597A1 (fr) Dispositif de generation de courant et/ou de tension a base de module thermoelectrique dispose dans un flux de fluide.
FR3095265A1 (fr) Dispositif de régulation thermique, notamment de refroidissement pour véhicule automobile
FR3062901A1 (fr) Tube d’echangeur thermique, echangeur thermique et procede d’assemblage du tube correspondants

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11724463

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011724463

Country of ref document: EP