WO2011144473A1 - Procédé de fabrication d'un câble métallique multicouches gommé in situ par un élastomère thermoplastique insaturé - Google Patents

Procédé de fabrication d'un câble métallique multicouches gommé in situ par un élastomère thermoplastique insaturé Download PDF

Info

Publication number
WO2011144473A1
WO2011144473A1 PCT/EP2011/057349 EP2011057349W WO2011144473A1 WO 2011144473 A1 WO2011144473 A1 WO 2011144473A1 EP 2011057349 W EP2011057349 W EP 2011057349W WO 2011144473 A1 WO2011144473 A1 WO 2011144473A1
Authority
WO
WIPO (PCT)
Prior art keywords
cable
layer
rubber
styrene
son
Prior art date
Application number
PCT/EP2011/057349
Other languages
English (en)
Inventor
Emmanuel Custodero
Sébastien RIGO
Jérémy TOUSSAIN
Original Assignee
Societe De Technologie Michelin
Michelin Recherche Et Technique S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe De Technologie Michelin, Michelin Recherche Et Technique S.A. filed Critical Societe De Technologie Michelin
Priority to US13/699,300 priority Critical patent/US9150984B2/en
Priority to JP2013510560A priority patent/JP5942987B2/ja
Priority to CN201180024664.6A priority patent/CN102906330B/zh
Priority to EP11717669.3A priority patent/EP2572033B1/fr
Publication of WO2011144473A1 publication Critical patent/WO2011144473A1/fr

Links

Classifications

    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0606Reinforcing cords for rubber or plastic articles
    • D07B1/062Reinforcing cords for rubber or plastic articles the reinforcing cords being characterised by the strand configuration
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0606Reinforcing cords for rubber or plastic articles
    • D07B1/062Reinforcing cords for rubber or plastic articles the reinforcing cords being characterised by the strand configuration
    • D07B1/0633Reinforcing cords for rubber or plastic articles the reinforcing cords being characterised by the strand configuration having a multiple-layer configuration
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B7/00Details of, or auxiliary devices incorporated in, rope- or cable-making machines; Auxiliary apparatus associated with such machines
    • D07B7/02Machine details; Auxiliary devices
    • D07B7/14Machine details; Auxiliary devices for coating or wrapping ropes, cables, or component strands thereof
    • D07B7/145Coating or filling-up interstices
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0606Reinforcing cords for rubber or plastic articles
    • D07B1/0646Reinforcing cords for rubber or plastic articles comprising longitudinally preformed wires
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0606Reinforcing cords for rubber or plastic articles
    • D07B1/0646Reinforcing cords for rubber or plastic articles comprising longitudinally preformed wires
    • D07B1/0653Reinforcing cords for rubber or plastic articles comprising longitudinally preformed wires in the core
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2024Strands twisted
    • D07B2201/2027Compact winding
    • D07B2201/2028Compact winding having the same lay direction and lay pitch
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2046Strands comprising fillers
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2047Cores
    • D07B2201/2048Cores characterised by their cross-sectional shape
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2047Cores
    • D07B2201/2052Cores characterised by their structure
    • D07B2201/2059Cores characterised by their structure comprising wires
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2047Cores
    • D07B2201/2052Cores characterised by their structure
    • D07B2201/2059Cores characterised by their structure comprising wires
    • D07B2201/2062Cores characterised by their structure comprising wires comprising fillers
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2075Fillers
    • D07B2201/2082Fillers characterised by the materials used
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/20Organic high polymers
    • D07B2205/2003Thermoplastics
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/20Organic high polymers
    • D07B2205/2075Rubbers, i.e. elastomers
    • D07B2205/2082Rubbers, i.e. elastomers being of synthetic nature, e.g. chloroprene
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2207/00Rope or cable making machines
    • D07B2207/20Type of machine
    • D07B2207/204Double twist winding
    • D07B2207/205Double twist winding comprising flyer
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2207/00Rope or cable making machines
    • D07B2207/40Machine components
    • D07B2207/4072Means for mechanically reducing serpentining or mechanically killing of rope
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2501/00Application field
    • D07B2501/20Application field related to ropes or cables
    • D07B2501/2046Tire cords
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B5/00Making ropes or cables from special materials or of particular form
    • D07B5/12Making ropes or cables from special materials or of particular form of low twist or low tension by processes comprising setting or straightening treatments

Definitions

  • the present invention relates to processes and devices for manufacturing multilayer metal cables with several layers of concentric wires, which can be used in particular for reinforcing rubber articles, in particular tires.
  • a radial tire comprises in known manner a tread, two inextensible beads, two flanks connecting the beads to the tread and a belt circumferentially disposed between the carcass reinforcement and the tread.
  • This carcass reinforcement is constituted in known manner by at least one ply (or “layer”) of rubber reinforced by reinforcement elements (“reinforcements”) such as cords or monofilaments, generally of the metal type in the case of pneumatic tires for industrial vehicles carrying heavy loads.
  • reinforcement elements such as cords or monofilaments
  • the most used three-layer cables are essentially M + N + P construction cables, formed of a central layer of M wire (s), M varying from 1 to 4, surrounded by a intermediate layer of N son, N typically ranging from 5 to 15, itself surrounded by an outer layer of P son, P typically ranging from 10 to 22, the assembly may be optionally shrunk by an outer hoop wire wound in helix around the outer layer.
  • these layered cables are subjected to considerable stresses during the rolling of the tires, in particular to repeated flexures or variations of curvature inducing at the level of the strands of friction, in particular as a result of the contacts between adjacent layers, and therefore of wear, as well as fatigue; they must therefore have a high resistance to phenomena known as "fatigue-fretting". It is particularly important that they are impregnated as much as possible by the rubber, that this material penetrates the best in all spaces between the son constituting the cables.
  • one of the essential characteristics is that a sheath consisting a diene rubber composition covers at least the intermediate layer consisting of M son, the core (or unit wire) of the cable may itself be covered or not rubber. Thanks to this specific architecture and at least partial filling by the rubber of the capillaries or interstices which results from it, not only an excellent penetrability by the rubber is obtained, limiting the problems of corrosion, but also the endurance properties in fatigue-fretting are significantly improved over the cables of the prior art. The longevity of the tires and that of their carcass reinforcement are thus very significantly improved.
  • these three-layer cables are obtained in several steps which have the disadvantage of being discontinuous, firstly by producing an intermediate cable 1 + N (in particular 1 + 6), then by sheathing via an extrusion head of this intermediate cable or core strand, finally by a final operation of wiring the P remaining son around the core strand and sheathed, for forming the outer layer.
  • an intermediate cable 1 + N in particular 1 + 6
  • sheathing via an extrusion head of this intermediate cable or core strand
  • a final operation of wiring the P remaining son around the core strand and sheathed for forming the outer layer.
  • the invention relates to a method of manufacturing a multilayer metal cable, with several concentric layers of wires, comprising one or more inner layer (s) and an outer layer, of the "gummed in situ" type. that is, gummed from within, during its manufacture itself, by rubber or a rubber composition, said method comprising at least the following steps: at least one step of sheathing at least one inner layer by said rubber or said rubber composition, passing through at least one extrusion head;
  • This method of the invention makes it possible to manufacture, in line and continuously, a multi-layer multilayer cable which, in comparison with the in-situ gummed-up multi-layer cables of the prior art, has the notable advantage that the rubber used as a filling compound is an elastomer of the thermoplastic and not diene type, by definition thermofusible and therefore easier to implement, the quantity of which can be easily controlled; it is thus possible, by adjusting the operating temperature of the thermoplastic elastomer, to evenly distribute the latter within each of the interstices of the cable, giving the latter optimal impermeability along its longitudinal axis.
  • thermoplastic elastomer above does not pose a problem of parasitic tights in case of a slight overflow outside the cable after manufacture.
  • unsaturated and therefore (co) vulcanizable nature of this unsaturated thermoplastic elastomer offers the cable excellent compatibility with matrices of unsaturated diene rubbers such as natural rubber, usually used as calendering gum in metal fabrics for reinforcing tires. .
  • FIG. 1 An example of an in-situ twisting and scrubbing device that can be used for the manufacture of a three-layer cable according to a method according to the invention (FIG.
  • an example of a construction cable 1 + 6 + 12 compact type, gummed in situ may be manufactured by the method of the invention ( Figure 2); in cross-section, a conventional 1 + 6 + 12 construction cable, also of the compact type, not gummed in situ (Fig. 3).
  • any range of values designated by the expression "between a and b" represents the range of values from more than a to less than b (i.e. terminals a and b excluded) while any range of values designated by the term “from a to b” means the range from a to b (i.e., including the strict limits a and b).
  • the method of the invention is therefore intended for the manufacture of a multilayer metal cable, with several concentric layers of wires, comprising one or more inner layer (s) and an outer layer, of the "gummed in situ" type.
  • said method comprising at least the following steps: at least one step of sheathing at least one inner layer by said rubber or said rubber composition, by passing through at least one extrusion head;
  • the method of the invention comprises a prior step of assembly (regardless of the direction S, or Z) of son of said at least one inner layer (s).
  • the so-called filling gum is thus introduced in situ in the cable during manufacture, by sheathing at least one inner layer, for example either of the innermost layer or core of the cable, either another inner layer or even each inner layer when the cable comprises at least two distinct inner layers, said cladding in itself being operated in a known manner for example by passing through at least one (that is to say one or more) extrusion head (s) delivering the filling rubber in the molten state.
  • each assembly step son of the outer layer on the one hand, each layer internal containing more than one wire on the other hand, is made by twisting.
  • the wires of the outer layer are wound in propeller at the same pitch and in the same direction of twist as the son of each inner layer containing more than one wire, to obtain a compact cable.
  • the head or each extrusion head is brought to a suitable temperature, easily adjustable according to the specific nature of the TPE elastomer used and its thermal properties.
  • the extrusion temperature of the unsaturated TPE elastomer is between 100 ° C and 250 ° C, more preferably between 150 ° C and 200 ° C.
  • the extrusion head defines a cladding zone having for example the shape of a cylinder of revolution whose diameter is preferably between 0.15 mm and 1.2 mm, more preferably between 0.20 and 1, 0 mm, and whose length is preferably between 1 and 10 mm.
  • the amount of filling gum delivered by the extrusion head is adjusted to a preferred range of 5 to 40 mg per gram of final cable (i.e., finished in manufacture, gummed in situ). Below the indicated minimum, it is more difficult to guarantee that the filling compound is present, at least in part, in each of the interstices or capillaries of the cable, while beyond the maximum indicated, one is exposed to a risk of overflowing of the filling rubber at the periphery of the cable. For all these reasons, it is preferred that the level of gum filling is between 5 and 35 mg, especially between 5 and 30 mg, more particularly in a range of 10 to 25 mg per gram of cable.
  • the unsaturated thermoplastic elastomer in the molten state thus covers the inner layer (s) through the cladding head, at a running speed typically of a few meters to a few tens of m / min, for an extrusion pump flow rate typically from several cm 3 / min to several tens of cm 3 / min.
  • the son or the inner layer (s) (s), as applicable, are advantageously preheated before passing through the extrusion head, for example by passing through an HF generator or through a heating tunnel.
  • the multilayer cable according to the invention is a two-layer cable, and therefore comprises a single inner layer
  • the cladding is of course made on the core alone.
  • the core once sheathed is covered with a minimum thickness of unsaturated TPE elastomer which is preferably greater than 5 ⁇ , typically between 5 and 30 ⁇ .
  • the sheathing is performed either on the core alone, or on another inner layer or even on each inner layer.
  • the core once sheathed is covered preferably with a minimum thickness of unsaturated TPE elastomer which is greater than 20 ⁇ , typically between 20 and 100 ⁇ , in sufficient quantity to be able to subsequently coat the wires of the other or even the other inner layer (s) once this (these) last (s) put in place.
  • the outermost inner layer that is to say adjacent to the outer layer, is covered with a minimum thickness of elastomer Unsaturated TPE which is preferably greater than 5 ⁇ , typically between 5 and 30 ⁇ .
  • the son of the outer layer are wired or twisted together (S or Z direction) around the inner layer adjacent thereto for forming the multilayer cable and gummed from the inside.
  • the son of the outer layer come to rest on the filling rubber in the molten state, to become embedded in the latter.
  • the filling rubber moving under the pressure exerted by these external son, then has a natural tendency to penetrate into each of the interstices or cavities left empty by the son between the outer layer and the inner layer which is adjacent thereto.
  • all the steps of the method of the invention are operated online and continuously, regardless of the type of cable manufactured (compact cable as cable with cylindrical layers), all this at high speed.
  • the above method can be implemented at a speed (running speed of the cable on the production line) greater than 50 m / min, preferably greater than 70 m / min, especially greater than 100 m / min.
  • the cable according to the invention in a discontinuous manner, for example, in the case of a preferred 3-layer cable, by prior sheathing of the core strand (C1 + C2), solidification of the filling rubber, then winding and storage of the latter before the final assembly operation of the third and last layer (C3); the solidification of the elastomeric sheath is easy, it can be conducted by any suitable cooling means, for example by cooling in air or water, followed in the latter case by a drying operation.
  • twist means, in a known manner, the cancellation of the residual torsional torques (or of the elastic recoil of detorsion) acting on the cable.
  • Torsion balancing tools are well known to those skilled in the art of twisting; they may consist for example of trainers and / or twisters and / or twister-trainers consisting of either pulleys for twisters, or small diameter rollers for trainers, pulleys and / or rollers through which the cable runs.
  • the thickness of filling rubber between two adjacent wires of the cable, whatever they are, varies from 1 to 10 ⁇ .
  • This cable can be wound on a receiving reel, for storage, before being processed for example through a calendering plant, for preparing a metal-diene rubber composite fabric that can be used, for example, as a carcass reinforcement, or else crown reinforcement of a tire.
  • the multilayer metal cable obtained according to the process of the invention can be described as gummed cable in situ, that is to say that it is gummed from the inside, during its manufacture itself, by rubber or a composition of rubber called gum filling.
  • This specific rubber is an unsaturated thermoplastic elastomer, used alone or with any additives (that is to say in this case in the form of an unsaturated thermoplastic elastomer composition) to form the filling rubber.
  • thermoplastic elastomers are thermoplastic elastomers in the form of block copolymers based on thermoplastic blocks.
  • thermoplastic polymers and elastomers consist in known manner of rigid thermoplastic blocks, in particular polystyrene linked by flexible elastomer blocks, for example polybutadiene or polyisoprene for unsaturated TPE or poly (ethylene / butylene) for saturated TPEs.
  • the above TPE block copolymers are generally characterized by the presence of two glass transition peaks, the first peak (lowest temperature, generally negative) being relative to the elastomer sequence of the TPE copolymer, the second peak (highest temperature, positive, typically greater than 80 ° C for preferred elastomers TPS type) being relative to the thermoplastic part (eg styrene blocks) of the TPE copolymer.
  • These TPE elastomers are often triblock elastomers with two rigid segments connected by a flexible segment. The rigid and flexible segments can be arranged linearly, star or connected.
  • TPE elastomers may also be diblock elastomers with a single rigid segment connected to a flexible segment.
  • each of these segments or blocks contains at least more than 5, usually more than 10 base units (e.g., styrene units and isoprene units for a styrene / isoprene / styrene block copolymer).
  • an essential characteristic of the TPE elastomer used in the process of the invention is that it is unsaturated.
  • unsaturated TPE elastomer is meant by definition and well known a TPE elastomer which is provided with ethylenic unsaturations, that is to say which has carbon-carbon double bonds (conjugated or not); reciprocally, a saturated TPE elastomer is of course a TPE elastomer which is free of such double bonds.
  • the unsaturated nature of the unsaturated TPE elastomer causes the latter to be (co) crosslinkable, (co) vulcanizable with sulfur, which makes it advantageously compatible with matrices of unsaturated diene rubbers, such as those based on natural rubber, used usually as a calendering rubber in metal fabrics for reinforcing tires.
  • any overflow of the filling rubber outside the cable, during the manufacture of the latter will not be detrimental to its subsequent adhesion to the calendering gum of said metal fabric, this defect being indeed susceptible of be corrected during the final firing of the tire by the possible co-crosslinking between the unsaturated TPE elastomer and the diene elastomer of the calendering gum.
  • the unsaturated TPE elastomer is a styrenic thermoplastic elastomer (abbreviated as "TPS"), that is to say comprising, as thermoplastic blocks, styrene blocks (polystyrene). More preferably, the unsaturated TPS elastomer is a copolymer comprising polystyrene blocks (that is to say formed from polymerized styrene monomer) and polydiene blocks (that is to say formed from polymerized diene monomer), preferably from the latter polyisoprene blocks and / or polybutadiene blocks.
  • TPS styrenic thermoplastic elastomer
  • polydiene blocks in particular polyisoprene blocks and polybutadiene blocks
  • blocks of random diene copolymer in particular of isoprene or butadiene, for example blocks of styrene / isoprene random copolymer (SI) or styrene-butadiene (SB), these polydiene blocks being particularly associated with polystyrene thermoplastic blocks to form unsaturated TPS elastomers which have been previously described.
  • SI styrene / isoprene random copolymer
  • SB styrene-butadiene
  • styrene monomer any styrene-based monomer, unsubstituted as substituted; among the substituted styrenes may be mentioned, for example, methylstyrenes (for example ⁇ -methylstyrene, m-methylstyrene or p-methylstyrene, alpha-methylstyrene, alpha-2-dimethylstyrene, alpha-4-dimethylstyrene or diphenylethylene), para-tert-butylstyrene, chlorostyrenes (for example o-chlorostyrene, m-chlorostyrene, p-chlorostyrene, 2,4-dichlorostyrene, 2,6-dichlorostyrene or 2,4-dichlorostyrene).
  • methylstyrenes for example ⁇ -methylstyrene, m-methylstyrene or p-methylstyrene
  • bromostyrenes e.g., o-bromostyrene, m-bromostyrene, p-bromostyrene, 2,4-dibromostyrene, 2,6-dibromostyrene or 2,4,6-tribromostyrene
  • fluorostyrenes for example, o-fluorostyrene, m-fluorostyrene, p-fluorostyrene, 2,4-difluorostyrene, 2,6-difluorostyrene or 2,4,6-trifluorostyrene
  • hydroxy-styrene and mixtures of such monomers.
  • iene monomer should be understood to mean any monomer bearing two carbon-carbon double bonds, conjugated or otherwise, in particular any conjugated diene monomer having from 4 to 12 carbon atoms chosen in particular from the group constituted by isoprene, butadiene, 1-methylbutadiene, 2-methylbutadiene, 2,3-dimethyl-1,3-butadiene, 2,4-dimethyl-1,3-butadiene, 1,3-pentadiene, 2-methyl-1,3 -pentadiene, 3-methyl-1,3-pentadiene, 4-methyl-1,3-pentadiene, 2,3-dimethyl-1,3-pentadiene, 2,5-dimethyl-1,3-pentadiene , 1,3-hexadiene, 2-methyl-1,3-hexadiene, 3-methyl-1,3-hexadiene, 4-methyl-1,3-hexadiene, 5-methyl-1,3-hexadiene, hexadiene,
  • Such an unsaturated TPS elastomer is chosen in particular from the group consisting of styrene / butadiene (SB), styrene / isoprene (SI), styrene / butadiene / butylene (SBB), styrene / butadiene / isoprene (SBI), styrene block copolymers.
  • SB styrene / butadiene
  • SI styrene / isoprene
  • SI styrene / butadiene / butylene
  • SBI styrene / butadiene / isoprene
  • SBS butadiene / styrene
  • SBBS styrene / butadiene / butylene / styrene
  • SIS styrene / isoprene / styrene
  • SI styrene / butadiene / isoprene / styrene
  • this unsaturated TPS elastomer is a copolymer comprising at least three blocks, this copolymer being more particularly chosen from the group consisting of styrene / butadiene / styrene (SBS), styrene / butadiene / butylene / styrene block copolymers (SBBS) styrene / isoprene / styrene (SIS), styrene / butadiene / isoprene / styrene (SBIS) and mixtures of these copolymers.
  • SBS styrene / butadiene / styrene
  • SBBS styrene / butadiene / butylene / styrene block copolymers
  • SIS isoprene / styrene
  • SBS styrene / but
  • the level of styrene in the unsaturated TPS elastomer above is between 5 and 50%. Below 5%, the thermoplastic character of the TPS elastomer may be insufficient while beyond 50% there is a risk on the one hand excessive stiffening of the latter and on the other hand a decrease in its ability to (co) crosslinking.
  • the number-average molecular weight (denoted Mn) of the TPE elastomer is preferably between 5,000 and 500,000 g / mol, more preferably between
  • the number average molecular weight (Mn) of the TPS elastomers is determined in known manner by size exclusion chromatography (SEC). The sample is first solubilized in tetrahydrofuran at a concentration of about 1 g / l; then the solution is filtered on 0.45 ⁇ porosity filter before injection. The equipment used is a chromatographic chain "WATERS alliance".
  • the elution solvent is tetrahydrofuran, the flow rate 0.7 ml / min, the system temperature 35 ° C and the analysis time 90 min.
  • a set of four WATERS columns in series, of trade names "STYRAGEL” ("HMW7", “HMW6E” and two “HT6E") is used.
  • the injected volume of the solution of the polymer sample is 100 ⁇ .
  • the detector is a differential refractometer "WATERS 2410" and its associated software for the exploitation of chromatographic data is the "WATERS MILLENIUM" system.
  • the calculated average molar masses relate to a calibration curve made with polystyrene standards.
  • the Tg of the unsaturated TPE elastomer (in particular TPS) (as a reminder, first Tg relative to the elastomer block) is less than 0 ° C., more particularly less than - 15 ° C., this quantity being measured in a known manner by DSC (Differential Scanning Calorimetry), for example according to the ASTM D3418-82 standard.
  • the Shore A hardness (measured according to ASTM D2240-86) of the unsaturated TPE elastomer (in particular TPS) is between 10 and 100, more particularly included in a range of 20 to 90.
  • Unsaturated TPS elastomers such as, for example, SB, SI, SBS, SIS, SBBS or SBIS are well known and commercially available, for example from Kraton under the name "Kraton D” (eg, products D1161, DU 18, DU 16, D1163), from Dynasol under the name "Calprene” (eg, products C405, C411, C412), from Polimeri Europa under the name "Europrene” (eg, product SOLT166), from the company BASF under the name "Styroflex” (eg, product 2G66), or from Asahi under the name "Tuftec” (eg, product PI 500).
  • Kraton D eg, products D1161, DU 18, DU 16, D1163
  • Dynasol eg, products C405, C411, C412
  • Polimeri Europa eg, product SOLT166
  • Styroflex eg, product 2G66
  • Tiftec eg, product
  • the unsaturated thermoplastic elastomer previously described is sufficient on its own for the filling rubber to fully fulfill its function of closing the capillaries or interstices of the cable according to the invention.
  • various other additives may be added, typically in small amounts (preferably at weight ratios of less than 20 parts, more preferably less than 10 parts per 100 parts of unsaturated thermoplastic elastomer), for example plasticizers, reinforcing fillers such as carbon black or silica, non-reinforcing or inert fillers, lamellar fillers, protective agents such as antioxidants or anti-ozonants, various other stabilizers, coloring agents intended for example to color the gum filling.
  • the filling rubber could also comprise, in a minority weight fraction relative to the unsaturated thermoplastic elastomer fraction, polymers or elastomers other than unsaturated thermoplastic elastomers.
  • each interstice or capillary of the cable comprises at least one rubber stopper which obstructs this capillary or interstice in such a way that, at air permeability test according to paragraph 1-2, this cable has an average air flow rate of less than 2 cm 3 / min, more preferably less than 0.2 cm 3 / min or at most equal to 0.2 cm 3 / min.
  • the rate of filling rubber in the cable is between 5 and 40 mg of gum per g of cable.
  • the level of gum filling is between 5 and 35 mg, especially between 5 and 30 mg, more particularly in a range of 10 to 25 mg per g of cable.
  • wire rope By wire rope, is meant by definition in the present application a cable formed of son constituted mainly (that is to say for more than 50% in number of these son) or integrally (for 100% son) a metallic material.
  • the core wire or wires (C1), the wires of the second layer (C2) and the wires of the third layer (C3) are preferably made of steel, more preferably carbon steel. But it is of course possible to use other steels, for example a stainless steel, or other alloys.
  • carbon steel When a carbon steel is used, its carbon content (% by weight of steel) is preferably between 0.2% and 1.2%, especially between 0.5% and 1.1%; these levels represent a good compromise between the mechanical properties required for the tire and the feasibility of the wires. It should be noted that a carbon content of between 0.5% and 0.6% makes such steels ultimately less expensive because easier to draw.
  • Another advantageous embodiment of the invention may also consist, depending on the applications concerned, of using steels with a low carbon content, for example between 0.2% and 0.5%, especially because of lower cost and easier wire drawing.
  • the metal or steel used may itself be coated with a metal layer improving, for example, the properties of implementation of the wire rope and / or its constituent elements, or the properties of use of the cable and / or the tire themselves, such as adhesion properties, corrosion resistance or resistance to aging.
  • the steel used is covered with a layer of brass (Zn-Cu alloy) or zinc; it is recalled that during the wire manufacturing process, the coating of brass or zinc facilitates the drawing of the wire, as well as the bonding of the wire with the rubber.
  • the son could be covered with a thin metal layer other than brass or zinc, for example having the function of improving the resistance to corrosion of these son and / or their adhesion to rubber, for example a thin layer of Co, Ni, Al, an alloy of two or more compounds Cu, Zn, Al, Ni, Co, Sn.
  • a thin metal layer other than brass or zinc for example having the function of improving the resistance to corrosion of these son and / or their adhesion to rubber, for example a thin layer of Co, Ni, Al, an alloy of two or more compounds Cu, Zn, Al, Ni, Co, Sn.
  • the cables obtained according to the process of the invention are preferably carbon steel and have a tensile strength (Rm) preferably greater than 2500 MPa, more preferably greater than 3000 MPa.
  • Rm tensile strength
  • ⁇ t total elongation at break of the cable, the sum of its structural, elastic and plastic elongations, is preferably greater than 2.0%, more preferably at least 2.5%.
  • the method of the invention then comprises at least the following steps:
  • a rubber (or rubber composition) specific called “filling rubber”
  • the innermost layer or central layer (Cl) is also called the core ("core") of the cable, while the first (C1 and second (C2) layers once assembled (C1 + C2) constitute what the it is customary to call the core strand of the cable
  • the diameter d c of the core (Cl) then represents the diameter of the cylinder of imaginary revolution (or size diameter ) which surrounds the M central wires of diameter di.
  • the cladding is formed on the core (Cl) alone, that is to say upstream of the assembly point of the N wires of the second layer (C2) around the core.
  • the N son of the second layer (C2) are wired or twisted together (direction S or Z) around the core (C1) for formation of the core strand (C1 + C2), in a manner known per se; the son are delivered by supply means such as coils, a distribution grid, coupled or not to a connecting grain, intended to converge around the core N son in a common point of torsion (or point d 'assembly).
  • the cladding is formed on the core strand (C1 + C2) itself, that is to say downstream ( and no longer upstream) of the assembly point of the N wires of the second layer (C2) around the core.
  • the final assembly is carried out, by wiring or twisting (direction S or Z), of the P wires of the third layer or outer layer (C3) around the core strand (M + N or C1 + C2).
  • the filling compound can be delivered at a single, fixed point and small footprint, by means of a single extrusion head; however, in situ scrubbing could also be carried out in two successive cladding operations, a first sheathing operation on the core (thus upstream of the assembly point) and a second cladding operation on the core strand (thus in downstream of the assembly point).
  • the core or central layer (C1) of diameter d c is constituted by 1 to 4 wires of diameter di (that is to say that M is included in a range 1 to 4), N is within a range of 5 to 15, and P is within a range of 10 to 22. Even more preferably, M is equal to 1, N is in a range from 5 to 7, and P is in a range from 10 to 14.
  • the diameter di of the core wire is then preferably in a range of 0.08 to 0.40 mm.
  • the following characteristics are verified (di, d 2 , d 3 , p 2 and p 3 being expressed in mm):
  • the core (Cl) of the cable is preferably made of a single single wire or at most 2 or 3 son, the latter may for example be parallel or twisted together. However, more preferably, the core (Cl) of the cable consists of a single wire, N is in a range of 5 to 7, and P is in a range of 10 to 14. It is recalled here that in a known manner the pitch "p" represents the length, measured parallel to the axis of the cable, at the end of which a wire having this pitch performs a complete revolution about said axis of the cable.
  • the diameters of the son of the layers C1, C2 and C3, these son have a diameter identical or not from one layer to another, check the following relations (di, d 2 , d 3 being expressed in mm):
  • N 5: 0.6 ⁇ (dd 2 ) ⁇ 0.9;
  • the diameter d 2 is within a range of 0.08 to 0.35 mm and the twisting pitch p 2 is within a range of 5 to 30 mm.
  • the diameter d 3 is within a range of 0.08 to 0.35 mm and the twisting pitch p 3 is greater than or equal to p 2 .
  • the p 2 and p 3 are equal.
  • the compactness is very high, such that the cross section of these cables has a contour that is polygonal and non-cylindrical, as illustrated by way of example in FIG. 2 (compact cable 1 + 6 +12 according to the invention) or in FIG. 3 (compact cable 1 + 6 + 12 control, that is to say, not gummed in situ).
  • the M son are preferably assembled, in particular twisted, in a pitch pi which is more preferably in a range of 3 to 30 mm, in particular in a range of 3 to 20 mm.
  • the third or outer layer C3 has the preferential characteristic of being a saturated layer, that is to say that, by definition, there is not enough room in this layer to add at least one (P max + l) th wire diameter d 3 , P max representing the maximum number of windable son in a layer around the second layer C2.
  • This construction has the notable advantage of further limiting the risk of gum overflow at its periphery and to offer, for a given diameter of the cable, a higher resistance.
  • the number P of wires can vary to a very large extent according to the particular embodiment of the invention, it being understood that the maximum number of wires P will be increased if their diameter d 3 is reduced compared to the diameter d 2 of the wires. of the second layer, in order to preferentially keep the outer layer in a saturated state.
  • the first layer (C1) comprises a single wire (M equal to 1)
  • the second layer (C2) has 6 wires (N equal to 6)
  • the third layer (C3) comprises 11 or 12 wires (P equal to 11 or 12); in other words, the cable according to the invention has the preferred constructions 1 + 6 + 11 or 1 + 6 + 12.
  • the cable prepared according to the invention can be of two types, namely of the type with compact layers or of the type with cylindrical layers.
  • the son of the outer layer are helically wound in the same direction of torsion, that is to say either in the S direction ("S / S” disposition), or in the Z direction ("Z” disposition).
  • Z " that the son of the inner layer (s) (s) containing more than one wire, for obtaining a compact cable.
  • Coiling in the same direction of these layers advantageously allows to minimize the friction between these two layers and therefore the wear of the son that constitute them. More preferably, all these layers are wound in the same direction of twist and at the same pitch of the helix to obtain a cable of the compact type as represented for example in FIG.
  • the method of the invention makes it possible to manufacture cables which can be, according to a particularly preferred embodiment, without or almost no filling rubber at their periphery; by such an expression, it is meant that no particle of filling compound is visible, with the naked eye, at the periphery of the cable, that is to say that the person skilled in the art does not make any difference at the end of the manufacturing process, with the naked eye and at a distance of three meters or more, between a cable reel prepared according to the invention and a conventional cable reel not gummed in situ.
  • the method of the invention is of course applicable to the manufacture of compact type cables (for recall and by definition, those whose layers are wound at the same pitch and in the same direction) as in the manufacture of cables type to cylindrical layers (for recall and by definition, those whose layers are wound either in different steps (regardless of their torsion directions, identical or not), or in opposite directions (whatever their steps, identical or different) ).
  • An assembly and scrubbing device that can be used for carrying out the method of the invention previously described and applied by way of example to the manufacture of a 3-layer cable, is a device comprising from upstream to downstream, according to the direction of advancement of a cable being formed: feed means on the one hand of the wire or the M son of the first layer or core (Cl), on the other hand N son of the second layer (C2);
  • first means for assembling the N wires for placing the second layer (C2) around the first layer (C1), at a point called “assembly point", for forming an intermediate cable called “strand soul "of construction M + N;
  • extrusion means delivering the thermoplastic elastomer in the molten state, disposed respectively upstream and / or downstream of the first assembly means, for cladding the core and / or the core strand M + N.
  • the above device also comprises means for assembling the M son of the central layer (Cl), arranged between the feed means of these M son and the assembly means N son of the second layer (C2).
  • the extrusion means are therefore arranged both upstream and downstream of the first assembly means.
  • supply means (110) deliver, around a single core wire (Cl), N son (11) through a grid (12) distribution (axisymmetric splitter), coupled or not to a connecting grain (13), gate beyond which converge the N (for example six) wires of the second layer at an assembly point (14), for formation of the core strand (C1 + C2 ) of construction 1 + N (eg 1 + 6).
  • the core strand (C1 + C2) passes through a cladding zone consisting for example of a single extrusion head (15) constituted for example by a twin-screw extruder (fed by a hopper containing the TPE elastomer in the form of granules) feeding a calibration die via a pump.
  • the distance between the point of convergence (14) and the sheathing point (15) is for example between 50 cm and 1 m.
  • Around the core strand thus gummed (16) and progressing in the direction of the arrow, are then assembled by twisting the P son (17) of the outer layer (C3), for example twelve in number, delivered by means power supply (170).
  • the final cable (C1 + C2 + C3) thus formed is finally collected on the rotary reception (19), after passing through the torsion balancing means (18) consisting for example of a trainer and / or a twister-trainer.
  • FIG. 2 schematizes, in section perpendicular to the axis of the cable (assumed to be rectilinear and at rest), an example of a preferential cable 1 + 6 + 12 gummed in situ, obtainable by means of the conforming method. to the invention previously described.
  • This type of construction has the consequence that the wires (21, 22) of these second and third layers (C2, C3) form around the core (20) or first layer (C1) two substantially concentric layers which each have a contour (E ) (shown in dashed lines) which is substantially polygonal (more precisely hexagonal) and non-cylindrical as in the case of cables with so-called cylindrical layers.
  • This cable C1 can be described as cable gummed in situ: each of the capillaries or interstices (voids in the absence of filling rubber) formed by the adjacent son, taken three by three, of its three layers C1, C2 and C3, is filled, at least in part (continuously or not along the axis of the cable), by the filling rubber such that for any cable length of 2 cm, each capillary comprises at least one rubber stopper.
  • the filling rubber (23) fills each capillary (24) (symbolized by a triangle) formed by the adjacent wires (taken three to three) of the various layers (C1, C2, C3) of the cable, discarding them very slightly.
  • these capillaries or interstices are naturally formed either by the core wire (20) and the wires (21) of the second layer (C2) which surrounds it, either by two wires (21) of the second layer (C2) and a wire (23) of the third layer (C3) which is immediately adjacent to them, or by each wire (21). the second layer (C2) and the two wires (22) of the third layer (C3) immediately adjacent thereto; a total of 24 capillaries or interstices (24) are thus present in this cable 1 + 6 + 12.
  • the filling rubber extends in a continuous manner around the second layer (C2) which it covers.
  • the cable M + N + P can be described as airtight: the air permeability test described in paragraph II-lB which follows, is characterized by an average air flow which is preferably less than 2 cm 3 / min, more preferably less than or equal to 0.2 cm 3 / min.
  • Figure 3 recalls the section of a cable 1 + 6 + 12 (noted C-2) conventional (ie, not gummed in situ), also of the compact type.
  • the modulus measurements are carried out in tension, unless otherwise indicated according to the ASTM D 412 standard of 1998 (test piece “C”): one measures in second elongation (that is to say after a cycle of accommodation) the secant modulus "true” (that is to say, brought back to the real section of the specimen) at 10% elongation, denoted E10 and expressed in MPa (normal conditions of temperature and hygrometry according to ASTM D 1349 of 1999).
  • Air permeability test This test makes it possible to determine the longitudinal air permeability of the cables tested, by measuring the volume of air passing through a specimen under constant pressure for a given time.
  • the principle of such a test is to demonstrate the effectiveness of the treatment of a cable to make it impermeable to air; it has been described for example in ASTM D2692-98.
  • the test is here performed either on cables extracted from tires or rubber sheets that they reinforce, so already coated from the outside by the rubber in the fired state, or on raw cables manufacturing.
  • the raw cables In the second case, the raw cables must be previously embedded, coated from the outside by a so-called coating gum.
  • a series of 10 cables arranged in parallel is placed between two skims (two rectangles of 80 ⁇ 200 mm) of a diene rubber composition in the raw state, each skim having a 3.5 mm thick; the whole is then locked in a mold, each of the cables being kept under a sufficient tension (for example 2 daN) to ensure its straightness during the establishment in the mold, using clamping modules; then the vulcanization (baking) is carried out for 40 min at a temperature of 140 ° C and a pressure of 15 bar (rectangular piston 80 x 200 mm). After which, the assembly is demolded and cut 10 pieces of cables thus coated, in the form of parallelepipeds of dimensions 7x7x20 mm, for characterization.
  • the test is carried out on 2 cm of cable length, thus coated by its surrounding rubber composition (or coating gum) in the fired state, as follows: air is sent to the cable inlet at a pressure of 1 bar, and the volume of air at the outlet is measured using a flow meter (calibrated for example from 0 to 500 cm 3 / min). During the measurement, the cable sample is locked in a compressed seal (eg a dense foam or rubber seal) in such a way that only the amount of air passing through the cable from one end to the other, along its longitudinal axis, is taken into account by the measure; a leakproofness test of the seal is made using a solid rubber specimen, ie without cable.
  • a compressed seal eg a dense foam or rubber seal
  • the measured flow rate is lower as long as the longitudinal imperviousness of the cable is high.
  • measured values equal to or less than 0.2 cm 3 / min are considered to be zero; they correspond to a cable that can be described as airtight along its axis (ie, in its longitudinal direction). II-IC. Filling rate
  • the amount of filling compound is measured by difference between the weight of the initial cable (thus erased in situ) and the weight of the cable (and therefore that of its threads) whose filling compound has been eliminated by a treatment in a solvent of appropriate extraction.
  • the procedure is as follows. A sample of cable of a given length (for example one meter), coiled on itself to reduce its bulk, is placed in a sealed bottle containing one liter of toluene. Then the flask is stirred (125 rounds per minute) for 24 hours at room temperature (20 ° C.), using a "Ping-Pong 400" agitator from the company. Fischer Scientific); after removal of the solvent, the operation is repeated once. The thus treated cable is recovered and the residual solvent evaporated under vacuum for 1 hour at 60 ° C. Then the cable thus freed of its filling rubber is weighed. From the calculation, the filling rate in the cable, expressed in mg (milligram) of filling rubber per g (gram) of initial cable, is calculated and averaged over 10 measurements (i.e. total cable meters).
  • 1 + 6 + 12 layered wires made of brass-coated carbon steel thin wires are manufactured.
  • the carbon steel wires are prepared in a known manner, for example starting from machine wires (diameter 5 to 6 mm) which are first cold-rolled, by rolling and / or drawing, to a neighboring intermediate diameter. of 1 mm.
  • the steel used is a known carbon steel (USA AISI 1069 standard) with a carbon content of 0.70%.
  • the intermediate diameter son undergo a degreasing treatment and / or pickling, before further processing.
  • the rate of filling rubber measured according to the method indicated previously in paragraph 1-3, is equal to about 18 mg per g of cable.
  • This filling rubber is present in each of the 24 capillaries or interstices formed by the various son taken three to three, that is to say that it fills all or at least partly each of these capillaries in such a way that there is at least, on any length of cable of length equal to 2 cm, a rubber stopper in each capillary or interstice.
  • a rubber stopper in each capillary or interstice.
  • control gummed in situ cables of the same construction as the previous C-1 cables, but gummed in situ by a conventional diene rubber composition (based on natural rubber), were prepared according to the method described in FIG. the above-mentioned application WO 2005/071557, in several discontinuous steps, by cladding via an extrusion head of the intermediate core strand 1 + 6, then in a second step by wiring the remaining 12 wires around the core thus sheathed, for formation of the outer layer.
  • These control cables were then subjected to the air permeability test of section 1-2.
  • the cables prepared according to the process according to the invention thus have an optimal penetration rate by the unsaturated thermoplastic elastomer, with a controlled amount of filling compound, which guarantees the presence of internal partitions (continuous or discontinuous in the case of the invention).
  • thermoplastic elastomer used does not pose a problem of parasitic stickiness in the event of a slight overflow outside the cable after its manufacture due to its unsaturated nature and therefore (co) vulcanizable with an unsaturated diene rubber matrix such as natural rubber.
  • the core (Cl) of the cables could consist of a non-circular section wire, for example plastically deformed, in particular a wire of substantially oval or polygonal section, for example triangular, square or rectangular; the core could also consist of a preformed wire, of circular section or not, for example a corrugated wire, twisted, twisted helical or zig-zag.
  • the diameter d c of the core (Cl) represents the diameter of the cylinder of imaginary revolution which surrounds the central wire (cladding diameter), and no longer the diameter (or any other size). transversal, if its section is not circular) of the central wire itself.
  • the central wire is less stressed during the manufacture of the cable than the other son, given its position in the cable, it is not necessary for this wire to use for example steel compositions offering high torsional ductility; advantageously any type of steel may be used, for example a stainless steel.
  • a (at least one) linear yarn of one of the other two layers (C2 and / or C3) could also be replaced by a preformed or deformed yarn, or more generally by a yarn of section different from that of the other yarns of diameter d 2 and / or d 3 , so as for example to further improve the penetrability of the cable by rubber or any other material, the clutter diameter of this replacement wire may be less than, equal to or greater than the diameter (d 2 and / or d 3 ) of the other constituent son of the layer (C2 and / or C3) concerned.
  • a portion of the son constituting the cable could be replaced by son other than son steel, metal or not, including son of mineral or organic material with high mechanical strength, by example of mono-filaments organic polymers liquid crystal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Ropes Or Cables (AREA)

Abstract

Procédé de fabrication d'un câble métallique multicouches, à plusieurs couches concentriques de fils, comportant une ou plusieurs couche(s) interne(s) et une couche externe, du type « gommé in situ » c'est-à-dire gommé de l'intérieur, pendant sa fabrication même, par du caoutchouc ou une composition de caoutchouc, ledit procédé comportant au moins les étapes suivantes : - au moins une étape de gainage d'au moins une couche interne par ledit caoutchouc ou ladite composition de caoutchouc, par passage à travers au moins une tête d'extrusion; - une étape d'assemblage des fils de la couche externe autour de la couche interne qui lui est adjacente, pour formation du câble multicouches ainsi gommé de l'intérieur, et étant caractérisé en ce que ledit caoutchouc est un élastomère thermoplastique insaturé extrudé à l'état fondu, préférentiellement un élastomère thermoplastique du type styrénique (TPS) tel que par exemple un copolymère à blocs SBS, SBBS, SIS ou SBIS.

Description

PROCÉDÉ DE FABRICATION D'UN CÂBLE MÉTALLIQUE MULTICOUCHES GOMMÉ IN SITU PAR UN ÉLASTOMÈRE THERMOPLASTIQUE INSATURÉ
La présente invention est relative aux procédés et dispositifs de fabrication de câbles métalliques multicouches à plusieurs couches de fils concentriques, utilisables notamment pour le renforcement d'articles en caoutchouc, en particulier de pneumatiques.
Elle est plus particulièrement relative aux procédés et dispositifs de fabrication de câbles métalliques du type « gommés in situ », c'est-à-dire gommés de l'intérieur, pendant leur fabrication même, par du caoutchouc ou une composition de caoutchouc, en vue d'améliorer leur résistance à la corrosion et par voie de conséquence leur endurance notamment dans les armatures de carcasses des pneumatiques pour véhicules industriels.
Un pneumatique radial comporte de manière connue une bande de roulement, deux bourrelets inextensibles, deux flancs reliant les bourrelets à la bande de roulement et une ceinture disposée circonférentiellement entre l'armature de carcasse et la bande de roulement. Cette armature de carcasse est constituée de manière connue d'au moins une nappe (ou "couche") de caoutchouc renforcée par des éléments de renforcement ("renforts") tels que des câblés ou des monofilaments, généralement du type métalliques dans le cas de pneumatiques pour véhicules industriels porteurs de lourdes charges. Pour le renforcement des armatures de carcasse ci-dessus, on utilise généralement des câbles d'acier ("steel cords") dits "à couches" ("layered cords") constitués d'une couche centrale et d'une ou plusieurs couches de fils concentriques disposées autour de cette couche centrale. A titre d'exemple, les câbles à trois couches les plus utilisés sont essentiellement des câbles de construction M+N+P, formés d'une couche centrale de M fil(s), M variant de 1 à 4, entourée d'une couche intermédiaire de N fils, N variant typiquement de 5 à 15, elle-même entourée d'une couche externe de P fils, P variant typiquement de 10 à 22, l'ensemble pouvant être éventuellement fretté par un fil de frette externe enroulé en hélice autour de la couche externe. De manière bien connue, ces câbles à couches sont soumis à des contraintes importantes lors du roulage des pneumatiques, notamment à des flexions ou variations de courbure répétées induisant au niveau des fils des frottements, notamment par suite des contacts entre couches adjacentes, et donc de l'usure, ainsi que de la fatigue ; ils doivent donc présenter une haute résistance aux phénomènes dits de "fatigue-fretting". Il est particulièrement important en outre qu'ils soient imprégnés autant que possible par le caoutchouc, que cette matière pénètre au mieux dans tous les espaces situés entre les fils constituant les câbles. En effet, si cette pénétration est insuffisante, il se forme alors des canaux ou capillaires vides, le long et à l'intérieur des câbles, et les agents corrosifs tels que l'eau ou même l'oxygène de l'air, susceptibles de pénétrer dans les pneumatiques par exemple à la suite de coupures de leur bande de roulement, cheminent le long de ces canaux vides jusque dans la carcasse du pneumatique. La présence de cette humidité joue un rôle important en provoquant de la corrosion et en accélérant les processus de dégradation ci-dessus (phénomènes dits de "fatigue-corrosion"), par rapport à une utilisation en atmosphère sèche.
Tous ces phénomènes de fatigue que l'on regroupe généralement sous le terme générique de "fatigue-fretting-corrosion" sont à l'origine d'une dégénérescence progressive des propriétés mécaniques des câbles et peuvent affecter, pour les conditions de roulage les plus sévères, la durée de vie de ces derniers.
Pour pallier les inconvénients ci-dessus, la demande WO 2005/071157 a proposé des câbles à trois couches de construction 1+N+P, en particulier de construction 1+6+12, dont une des caractéristiques essentielles est qu'une gaine constituée d'une composition de caoutchouc diénique recouvre au moins la couche intermédiaire constituée des M fils, le noyau (ou fil unitaire) du câble pouvant être lui-même recouvert ou non de caoutchouc. Grâce à cette architecture spécifique et le remplissage au moins partiel par le caoutchouc des capillaires ou interstices qui en découle, non seulement une excellente pénétrabilité par le caoutchouc est obtenue, limitant les problèmes de corrosion, mais encore les propriétés d'endurance en fatigue- fretting sont notablement améliorées par rapport aux câbles de l'art antérieur. La longévité des pneumatiques et celle de leurs armatures de carcasse sont ainsi très sensiblement améliorées.
Toutefois, les procédés décrits pour la fabrication de ces câbles, ainsi que les câbles qui en sont issus, ne sont pas dépourvus d'inconvénients.
Tout d'abord, ces câbles à trois couches sont obtenus en plusieurs étapes qui présentent l'inconvénient d'être discontinues, d'abord par réalisation d'un câble intermédiaire 1+N (en particulier 1+6), puis par gainage via une tête d'extrusion de ce câble intermédiaire ou toron d'âme, enfin par une opération finale de câblage des P fils restants autour du toron d'âme ainsi gainée, pour formation de la couche externe. Pour éviter le problème de "collant à cru" ou collant parasite inhérent à la gaine de caoutchouc diénique à l'état cru, avant câblage de la couche externe autour du toron d'âme, doit être utilisé en outre un film intercalaire en matière plastique lors des opérations intermédiaires de bobinage et débobinage. Toutes ces manipulations successives sont pénalisantes du point de vue industriel et antinomiques de la recherche de cadences de fabrication élevées. D'autre part, si l'on veut pouvoir garantir un taux de pénétration élevé par le caoutchouc à l'intérieur du câble pour l'obtention d'une perméabilité à l'air du câble, selon son axe, qui soit aussi faible que possible, il s'est avéré nécessaire selon ces procédés de l'art antérieur, d'utiliser des quantités relativement importantes de caoutchouc lors du gainage. De telles quantités conduisent à un débordement parasite, plus ou moins prononcé, du caoutchouc cru à la périphérie du câble terminé de fabrication.
Or, comme cela a déjà été évoqué ci-dessus, en raison du fort pouvoir collant que possèdent les caoutchoucs diéniques à l'état cru, un tel débordement parasite génère à son tour des inconvénients notables lors de la manipulation ultérieure du câble, en particulier lors des opérations de calandrage qui vont suivre pour l'incorporation du câble à une bande de caoutchouc diénique elle-même à l'état cru, avant les opérations ultimes de fabrication du bandage pneumatique et de cuisson finale.
Tous les inconvénients exposés ci-dessus ralentissent bien entendu les cadences industrielles et pénalisent le coût final des câbles et des pneumatiques qu'ils renforcent.
Poursuivant leurs recherches, les Demanderesses ont découvert un procédé de fabrication amélioré, utilisant un caoutchouc spécifique, qui permet de pallier les inconvénients précités.
En conséquence, l'invention concerne un procédé de fabrication d'un câble métallique multicouches, à plusieurs couches concentriques de fils, comportant une ou plusieurs couche(s) interne(s) et une couche externe, du type « gommé in situ » c'est-à-dire gommé de l'intérieur, pendant sa fabrication même, par du caoutchouc ou une composition de caoutchouc, ledit procédé comportant au moins les étapes suivantes : au moins une étape de gainage d'au moins une couche interne par ledit caoutchouc ou ladite composition de caoutchouc, par passage à travers au moins une tête d'extrusion ;
- une étape d'assemblage des fils de la couche externe autour de la couche interne qui lui est adjacente, pour formation du câble multicouches ainsi gommé de l'intérieur, et étant caractérisé en ce que ledit caoutchouc est un élastomère thermoplastique insaturé extrudé à l'état fondu.
Ce procédé de l'invention permet de fabriquer, en ligne et en continu, un câble multicouches à plusieurs couches concentriques qui, comparé aux câbles multicouches gommés in situ de l'art antérieur, a pour avantage notable que le caoutchouc utilisé comme gomme de remplissage est un élastomère du type thermoplastique et non plus diénique, par définition thermofusible et donc plus facile de mise en œuvre, dont la quantité peut être aisément contrôlée ; il est ainsi possible, en jouant sur la température de mise en œuvre de l'élastomère thermoplastique, de répartir uniformément ce dernier à l'intérieur de chacun des interstices du câble, conférant à ce dernier une imperméabilité optimale selon son axe longitudinal.
En outre, l'élastomère thermoplastique ci-dessus ne pose pas de problème de collant parasite en cas d'un léger débordement à l'extérieur du câble après sa fabrication. Enfin, le caractère insaturé et donc (co)vulcanisable de cet élastomère thermoplastique insaturé offre au câble une excellente compatibilité avec les matrices de caoutchoucs diéniques insaturés tels que du caoutchouc naturel, utilisées habituellement comme gomme de calandrage dans les tissus métalliques destinés au renforcement des pneumatiques.
L'invention ainsi que ses avantages seront aisément compris à la lumière de la description et des exemples de réalisation qui suivent, ainsi que des figures 1 à 3 relatives à ces exemples qui schématisent, respectivement :
- un exemple de dispositif de retordage et gommage in situ utilisable pour la fabrication d'un câble à trois couches selon un procédé conforme à l'invention (Fig. 1) ;
en coupe transversale, un exemple de câble de construction 1+6+12 du type compact, , gommé in situ, susceptible d'être fabriqué par le procédé de l'invention (Fig. 2) ; en coupe transversale, un câble de construction 1+6+12 conventionnel, également du type compact, non gommé in situ (Fig. 3).
I. DESCRIPTION DETAILLEE DE L'INVENTION
Dans la présente description, sauf indication expresse différente, tous les pourcentages (%) indiqués sont des % massiques. D'autre part, tout intervalle de valeurs désigné par l'expression "entre a et b" représente le domaine de valeurs allant de plus de a à moins de b (c'est-à-dire bornes a et b exclues) tandis que tout intervalle de valeurs désigné par l'expression "de a à b" signifie le domaine de valeurs allant de a jusqu'à b (c'est-à-dire incluant les bornes strictes a et b). Le procédé de l'invention est donc destiné à la fabrication d'un câble métallique multicouches, à plusieurs couches concentriques de fils, comportant une ou plusieurs couche(s) interne(s) et une couche externe, du type « gommé in situ » c'est-à-dire gommé de l'intérieur, pendant sa fabrication même, par du caoutchouc ou une composition de caoutchouc (dite « gomme de remplissage »), ledit procédé comportant au moins les étapes suivantes : au moins une étape de gainage d'au moins une couche interne par ledit caoutchouc ou ladite composition de caoutchouc, par passage à travers au moins une tête d'extrusion ;
- une étape d'assemblage des fils de la couche externe autour de la couche interne qui lui est adjacente, pour formation du câble multicouches ainsi gommé de l'intérieur, et étant caractérisé en ce que ledit caoutchouc est un élastomère thermoplastique insaturé extrudé à l'état fondu.
Lorsque la ou les couche(s) interne(s) comporte(nt) plusieurs fils, il faut bien entendu comprendre que le procédé de l'invention comporte une étape préalable d'assemblage (quelle que soit la direction S, ou Z) des fils de ladite ou desdites couche(s) interne(s). Dans le procédé de l'invention, la gomme dite de remplissage est donc introduite in situ dans le câble en cours de fabrication, par gainage d'au moins une couche interne, par exemple soit de la couche la plus interne ou noyau du câble, soit d'une autre couche interne voire de chaque couche interne lorsque le câble comporte au moins deux couches internes distinctes, ledit gainage en soi étant opéré de manière connue par exemple par passage à travers au moins une (c'est-à-dire une ou plusieurs) tête(s) d'extrusion délivrant la gomme de remplissage à l'état fondu.
On rappellera ici qu'il existe deux techniques possibles d'assemblage de fils métalliques : - soit par câblage : dans un tel cas, les fils ne subissent pas de torsion autour de leur propre axe, en raison d'une rotation synchrone avant et après le point d'assemblage ; soit par retordage : dans un tel cas, les fils subissent à la fois une torsion collective et une torsion individuelle autour de leur propre axe, ce qui génère un couple de détorsion sur chacun des fils et sur le câble lui-même.
Les deux techniques ci-dessus sont applicables, bien que l'on utilise préférentiellement une étape de retordage pour chacune des étapes d'assemblage ci-dessus.
Selon un autre mode de réalisation préférentiel, lorsqu'au moins une (c'est-à-dire une ou plusieurs) couche interne comporte plusieurs fils, chaque étape d'assemblage des fils de la couche externe d'une part, de chaque couche interne contenant plus d'un fil d'autre part, est réalisée par retordage.
Selon un autre mode de réalisation préférentiel, lorsqu'au moins une (c'est-à-dire une ou plusieurs) couche interne contient plus d'un fil, les fils de la couche externe sont enroulés en hélice au même pas et dans le même sens de torsion que les fils de chaque couche interne contenant plus d'un fil, pour l'obtention d'un câble compact.
La tête ou chaque tête d'extrusion est portée à une température appropriée, ajustable aisément en fonction de la nature spécifique de l'élastomère TPE utilisé et de ses propriétés thermiques. De préférence, la température d'extrusion de l'élastomère TPE insaturé est comprise entre 100°C et 250°C, plus préférentiellement entre 150°C et 200°C. Typiquement, la tête d'extrusion définit une zone de gainage ayant par exemple la forme d'un cylindre de révolution dont le diamètre est compris de préférence entre 0,15 mm et 1,2 mm, plus préférentiellement entre 0,20 et 1,0 mm, et dont la longueur est de préférence comprise entre 1 et 10 mm.
La quantité de gomme de remplissage délivrée par la tête d'extrusion est ajustée dans un domaine préférentiel compris entre 5 et 40 mg par gramme de câble final (i.e., terminé de fabrication, gommé in situ). En dessous du minimum indiqué, il est plus difficile de garantir que la gomme de remplissage soit bien présente, au moins en partie, dans chacun des interstices ou capillaires du câble, tandis qu'au-delà du maximum indiqué, on s'expose à un risque de débordement excessif de la gomme de remplissage à la périphérie du câble. Pour toutes ces raisons, on préfère que le taux de gomme de remplissage soit compris entre 5 et 35 mg, notamment entre 5 et 30 mg, plus particulièrement dans un domaine de 10 à 25 mg par gramme de câble.
L'élastomère thermoplastique insaturé à l'état fondu recouvre ainsi la ou les couche(s) interne(s) par le biais de la tête de gainage, à une vitesse de défilement typiquement de quelques mètres à quelques dizaines de m/min, pour un débit de pompe d'extrusion typiquement de plusieurs cm3/min à plusieurs dizaines de cm3/min. Les fils de la ou des couche(s) interne(s), selon le cas applicable, sont avantageusement préchauffés avant passage dans la tête d'extrusion, par exemple par passage à travers un générateur HF ou à travers un tunnel chauffant.
Lorsque le câble multicouches selon l'invention est un câble à deux couches, et comporte donc une seule couche interne, le gainage est réalisé bien entendu sur le noyau seul. Dans un tel cas, le noyau une fois gainé est recouvert d'une épaisseur minimale d'élastomère TPE insaturé qui est de préférence supérieure à 5 μιη, typiquement comprise entre 5 et 30 μιη.
Lorsque le câble comporte plusieurs (au moins deux ) couches internes, le gainage est réalisé soit sur le noyau seul, soit sur une autre couche interne voire même sur chaque couche interne. Dans le cas d'un gainage du noyau seul, le noyau une fois gainé est recouvert préférentiellement d'une épaisseur minimale d'élastomère TPE insaturé qui est supérieure à 20 μιη, typiquement comprise entre 20 et 100 μιη, en quantité suffisante pour pouvoir enrober ultérieurement les fils de l'autre voire des autres couche(s) interne(s) une fois cette(ces) dernière(s) mises en place. Dans le cas d'un gainage d'une autre couche interne voire de chaque couche interne, alors la couche interne la plus externe, c'est-à-dire adjacente à la couche externe, est recouverte d'une épaisseur minimale d'élastomère TPE insaturé qui est de préférence supérieure à 5 μιη, typiquement comprise entre 5 et 30 μιη.
Puis les fils de la couche externe sont câblés ou retordus ensemble (direction S ou Z) autour de la couche interne qui leur est adjacente pour formation du câble multicouches ainsi gommé de l'intérieur. Au cours de cet assemblage final, les fils de la couche externe viennent s'appuyer sur la gomme de remplissage à l'état fondu, s'incruster dans cette dernière. La gomme de remplissage, en se déplaçant sous la pression exercée par ces fils externes, a alors naturellement tendance à pénétrer dans chacun des interstices ou cavités laissés vides par les fils entre la couche externe et le couche interne qui lui est adjacente. Préférentiellement, toutes les étapes du procédé de l'invention sont opérées en ligne et en continu, quel que soit le type de câble fabriqué (câble compact comme câble à couches cylindriques), tout ceci à haute vitesse. Le procédé ci-dessus peut être mis en œuvre à une vitesse (vitesse de défilement du câble sur la ligne de fabrication) supérieure à 50 m/min, préférentiellement supérieure à 70 m/min, notamment supérieure à 100 m/min.
Mais il est bien entendu également possible de fabriquer le câble selon l'invention en discontinu, par exemple, dans le cas d'un câble préférentiel à 3 couches, par gainage préalable du toron d'âme (C1+C2), solidification de la gomme de remplissage, puis bobinage et stockage de ce dernier avant l'opération finale d'assemblage de la troisième et dernière couche (C3) ; la solidification de la gaine élastomère est aisée, elle peut être conduite par tout moyen de refroidissement approprié, par exemple par un refroidissement à l'air ou à l'eau, suivi dans ce dernier cas d'une opération de séchage.
A ce stade, la fabrication du câble selon l'invention est terminée. Toutefois, lorsque, conformément à un mode de réalisation préférentiel de l'invention, les différentes couches du câble sont assemblées par retordage, on préfère alors ajouter une étape d'équilibrage de torsion pour obtention d'un câble dit équilibré (ou stabilisé) en torsion ; par "équilibrage de torsion", on entend ici de manière connue l'annulation des couples de torsion résiduels (ou du retour élastique de détorsion) s'exerçant sur le câble. Les outils d'équilibrage de la torsion sont bien connus de l'homme du métier du retordage ; ils peuvent consister par exemple en des dresseurs et/ou des retordeurs et/ou des retordeurs-dresseurs constitués soit de poulies pour les retordeurs, soit de galets de petit diamètre pour les dresseurs, poulies et/ou galets à travers lesquels circule le câble. Préférentiellement, dans ce câble terminé, l'épaisseur de gomme de remplissage entre deux fils adjacents du câble, quels qu'ils soient, varie de 1 à 10 μιη. Ce câble peut être enroulé sur une bobine de réception, pour stockage, avant d'être traité par exemple à travers une installation de calandrage, pour préparation d'un tissu composite métal-caoutchouc diénique utilisable par exemple comme armature de carcasse, ou encore comme armature de sommet d'un pneumatique.
Le câble métallique multicouches obtenu selon le procédé de l'invention peut être qualifié de câble gommé in situ, c'est-à-dire qu'il est gommé de l'intérieur, pendant sa fabrication même, par du caoutchouc ou une composition de caoutchouc dénommé(e) gomme de remplissage.
En d'autres termes, à l'état brut de fabrication, ses "capillaires" ou "interstices" (les deux termes, interchangeables, désignant les espaces vides , libres, formés par des fils adjacents, en l'absence de gomme de remplissage), pour une partie ou préférentiellement la totalité d'entre eux, comportent déjà un caoutchouc spécifique à titre de gomme de remplissage qui remplit au moins en partie lesdits interstices, de manière continue ou non selon l'axe du câble. Par câble à l'état brut de fabrication, on entend bien entendu un câble qui n'a pas encore été mis au contact d'une matrice de caoutchouc diénique (e.g. caoutchouc naturel) d'un produit semi- fini ou d'un article fini en caoutchouc tel qu'un pneumatique, que ledit câble serait destiné à renforcer ultérieurement.
Ce caoutchouc spécifique est un élastomère thermoplastique insaturé, utilisé seul ou avec d'éventuels additifs (c'est-à-dire dans ce cas sous forme d'une composition d'élastomère thermoplastique insaturé) pour constituer la gomme de remplissage.
On rappellera tout d'abord ici que les élastomères thermoplastiques (en abrégé "TPE") sont des élastomères thermoplastiques se présentant sous la forme de copolymères blocs à base de blocs thermoplastiques. De structure intermédiaire entre polymères thermoplastiques et élastomères, ils sont constitués de manière connue de séquences rigides thermoplastiques, notamment polystyrène reliées par des séquences souples élastomère, par exemple polybutadiène ou polyisoprène pour des TPE insaturés ou poly(éthylène/butylène) pour des TPE saturés.
C'est la raison pour laquelle, de manière connue, les copolymères blocs TPE ci-dessus se caractérisent généralement par la présence de deux pics de transition vitreuse, le premier pic (température la plus basse, généralement négative) étant relatif à la séquence élastomère du copolymère TPE, le second pic (température la plus haute, positive, typiquement supérieure à 80°C pour des élastomères préférentiels du type TPS) étant relatif à la partie thermoplastique (par exemple blocs styrène) du copolymère TPE. Ces élastomères TPE sont souvent des élastomères triblocs avec deux segments rigides reliés par un segment souple. Les segments rigides et souples peuvent être disposés linéairement, en étoile ou branchés. Ces élastomères TPE peuvent être aussi des élastomères diblocs avec un seul segment rigide relié à un segment souple. Typiquement, chacun de ces segments ou blocs contient au minimum plus de 5, généralement plus de 10 unités de base (par exemple unités styrène et unités isoprène pour un copolymère blocs styrène/ isoprène/ styrène).
Ceci étant rappelé, une caractéristique essentielle de l'élastomère TPE utilisé dans le procédé de l'invention est qu'il est insaturé. Par élastomère TPE insaturé, on entend par définition et de manière bien connue un élastomère TPE qui est pourvu d'insaturations éthyléniques, c'est- à-dire qui comporte des doubles liaisons carbone-carbone (conjuguées ou non) ; réciproquement, un élastomère TPE dit saturé est bien entendu un élastomère TPE qui est dépourvu de telles doubles liaisons. Le caractère insaturé de l'élastomère TPE insaturé fait que ce dernier est (co)réticulable, (co)vulcanisable au soufre, ce qui le rend avantageusement compatible avec les matrices de caoutchoucs diéniques insaturés, telles que celles à base de caoutchouc naturel, utilisées habituellement comme gomme de calandrage dans les tissus métalliques destinés au renforcement des pneumatiques. Ainsi, un éventuel débordement de la gomme de remplissage à l'extérieur du câble, lors de la fabrication de ce dernier, ne sera pas préjudiciable à son adhésion ultérieure à la gomme de calandrage dudit tissu métallique, ce défaut étant en effet susceptible d'être corrigé lors de la cuisson finale du pneumatique par la co-réticulation possible entre l'élastomère TPE insaturé et l'élastomère diénique de la gomme de calandrage.
De préférence, l'élastomère TPE insaturé est un élastomère thermoplastique styrénique (en abrégé "TPS") c'est-à-dire comportant, à titre de blocs thermoplastiques, des blocs styrène (polystyrène). Plus préférentiellement, l'élastomère TPS insaturé est un copolymère comportant des blocs polystyrène (c'est-à-dire formés de monomère styrénique polymérisé) et des blocs polydiène (c'est-à-dire formés de monomère diénique polymérisé), préférentiellement parmi ces derniers des blocs polyisoprène et/ou des blocs polybutadiène. Par blocs polydiène, notamment polyisoprène et blocs polybutadiène, on entend également par extension, dans la présente demande, des blocs de copolymère diène statistique, notamment d'isoprène ou de butadiène comme par exemple des blocs de copolymère statistique styrène/ isoprène (SI) ou styrène-butadiène (SB), ces blocs polydiène étant particulièrement associés à des blocs thermoplastiques polystyrène pour constituer les élastomères TPS insaturés qui ont été décrits précédemment. Par monomère styrénique doit être entendu tout monomère à base de styrène, non substitué comme substitué ; parmi les styrènes substitués peuvent être cités par exemple les méthylstyrènes (par exemple Γο-méthylstyrène, le m-méthylstyrène ou le p-méthylstyrène, l'alpha-méthylstyrène, l'alpha-2-diméthylstyrène, l'alpha-4-diméthylstyrène ou le diphényléthylène), le para-tertio-butylstyrène, les chlorostyrènes (par exemple l'o- chlorostyrène, le m-chlorostyrène, le p-chlorostyrène, le 2,4-dichlorostyrène, le 2,6- dichlorostyrène ou le 2,4,6-trichlorostyrène), les bromostyrènes (par exemple l'o- bromostyrène, le m-bromostyrène, le p-bromostyrène, le 2,4-dibromostyrène, le 2,6- dibromostyrène ou les 2,4,6-tribromostyrène), les fluorostyrènes (par exemple l'o- fluorostyrène, le m-fluorostyrène, le p-fluorostyrène, le 2,4-difluorostyrène, le 2,6- difluoro styrène ou les 2,4,6-trifluorostyrène), le para-hydroxy-styrène, et les mélanges de tels monomères. Par monomère diénique doit être entendu tout monomère porteur de deux doubles liaisons carbone-carbone, conjuguées ou non, en particulier tout monomère diène conjugué ayant de 4 à 12 atomes de carbone choisi notamment dans le groupe constitué par l'isoprène, le butadiène, le 1-méthylbutadiène, le 2- méthylbutadiène, le 2,3-diméthyl-l,3-butadiène, le 2,4- diméthyl-l,3-butadiène, le 1,3-pentadiène, le 2-méthyl-l,3-pentadiène, le 3-méthyl-l,3- pentadiène, le 4-méthyl- 1,3-pentadiène, le 2, 3-diméthyl- 1,3-pentadiène, le 2,5-diméthyl- 1,3- pentadiène, le 1,3-hexadiène, le 2-méthyl-l,3-hexadiène, le 3-méthyl-l,3-hexadiène, le 4- méthyl-l,3-hexadiène, le 5-méthyl- 1,3-hexadiène, le 2,5-diméthyl- 1,3-hexadiène, le 2- néopentylbutadiène, le 1,3-cyclopentadiène, le 1,3-cyclohexadiène, l-vinyl-1,3- cyclohexadiène, et les mélanges de tels monomères.
Un tel élastomère TPS insaturé est choisi en particulier dans le groupe constitué par les copolymères blocs styrène/ butadiène (SB), styrène/ isoprène (SI), styrène/ butadiène/ butylène (SBB), styrène/ butadiène/ isoprène (SBI), styrène/ butadiène/ styrène (SBS), styrène/ butadiène/ butylène/ styrène (SBBS), styrène/ isoprène/ styrène (SIS), styrène/ butadiène/ isoprène/ styrène (SBIS) et les mélanges de ces copolymères.
Plus préférentiellement encore, cet élastomère TPS insaturé est un copolymère comportant au moins trois blocs, ce copolymère étant plus particulièrement choisi dans le groupe constitué par les copolymères blocs styrène/ butadiène/ styrène (SBS), styrène/ butadiène/ butylène/ styrène (SBBS), styrène/ isoprène/ styrène (SIS), styrène/ butadiène/ isoprène/ styrène (SBIS) et les mélanges de ces copolymères.
Selon un mode de réalisation particulier et préférentiel de l'invention, le taux de styrène, dans l'élastomère TPS insaturé ci-dessus est compris entre 5 et 50%. En dessous de 5%, le caractère thermoplastique de l'élastomère TPS risque d'être insuffisant tandis qu'au-delà de 50% il existe un risque d'une part de rigidification excessive de ce dernier et d'autre part d'une diminution de son aptitude à la (co)réticulation.
Selon un autre mode de réalisation particulier et préférentiel de l'invention, la masse moléculaire moyenne en nombre (notée Mn) de l'élastomère TPE (notamment TPS) est préférentiellement comprise entre 5 000 et 500 000 g/mol, plus préférentiellement comprise entre 7 000 et 450 000. La masse moléculaire moyenne en nombre (Mn) des élastomères TPS est déterminée de manière connue, par chromatographie d'exclusion stérique (SEC). L'échantillon est préalablement solubilisé dans du tétrahydrofuranne à une concentration d'environ 1 g/1 ; puis la solution est filtrée sur filtre de porosité 0,45 μιη avant injection. L'appareillage utilisé est une chaîne chromatographique "WATERS alliance". Le solvant d'élution est le tétrahydrofuranne, le débit de 0,7 ml/min, la température du système de 35°C et la durée d'analyse de 90 min. On utilise un jeu de quatre colonnes WATERS en série, de dénominations commerciales "STYRAGEL" ("HMW7", "HMW6E" et deux "HT6E"). Le volume injecté de la solution de l'échantillon de polymère est de 100 μΐ. Le détecteur est un réfractomètre différentiel "WATERS 2410" et son logiciel associé d'exploitation des données chromatographiques est le système "WATERS MILLENIUM". Les masses molaires moyennes calculées sont relatives à une courbe d'étalonnage réalisée avec des étalons de polystyrène.
Selon un autre mode de réalisation particulier et préférentiel de l'invention, la Tg de l'élastomère TPE (notamment TPS) insaturé (pour rappel, première Tg relative à la séquence élastomère) est inférieure à 0°C, plus particulièrement inférieure à -15°C, cette grandeur étant mesurée de manière connue par DSC {Differential Scanning Calorimetry), par exemple selon la norme ASTM D3418-82.
Selon un autre mode de réalisation particulier et préférentiel de l'invention, la dureté Shore A (mesurée selon ASTM D2240-86) de l'élastomère TPE (notamment TPS) insaturé est comprise entre 10 et 100, plus particulièrement comprise dans un domaine de 20 à 90.
Des élastomères TPS insaturés tels que par exemple SB, SI, SBS, SIS, SBBS ou SBIS sont bien connus et disponibles commercialement, par exemple auprès de la société Kraton sous la dénomination "Kraton D" (e.g., produits D1161, DU 18, DU 16, D1163), auprès de la société Dynasol sous la dénomination "Calprene" (e.g., produits C405, C411, C412), auprès de la société Polimeri Europa sous la dénomination "Europrene" (e.g., produit SOLT166), auprès de la société BASF sous dénomination "Styroflex" (e.g., produit 2G66), ou encore auprès de la société Asahi sous la dénomination "Tuftec" (e.g., produit PI 500).
L'élastomère thermoplastique insaturé précédemment décrit est suffisant à lui seul pour que la gomme de remplissage remplisse totalement sa fonction d'obturation des capillaires ou interstices du câble selon l'invention. Toutefois, divers autres additifs peuvent être ajoutés, typiquement en faible quantité (préférentiellement à des taux pondéraux inférieurs à 20 parties, plus préférentiellement inférieurs à 10 parties pour 100 parties d'élastomère thermoplastique insaturé), comme par exemple des plastifiants, des charges renforçantes tels que du noir de carbone ou de la silice, des charges non renforçantes ou inertes, des charges lamellaires, des agents de protection tels que des anti-oxydants ou anti-ozonants, divers autres stabilisants, des agents colorants destinés par exemple à colorer la gomme de remplissage. La gomme de remplissage pourrait aussi comporter, selon une fraction pondérale minoritaire par rapport à la fraction d'élastomère thermoplastique insaturé, des polymères ou élastomères autres que des élastomères thermoplastiques insaturés.
Selon un autre mode de réalisation particulièrement préférentiel de l'invention, sur toute portion de câble de longueur égale à 2 cm, chaque interstice ou capillaire du câble comporte au moins un bouchon de gomme qui obstrue ce capillaire ou interstice de telle manière que, au test de perméabilité à l'air selon le paragraphe 1-2, ce câble présente un débit d'air moyen inférieur à 2 cm3/min, plus préférentiellement inférieur à 0,2 cm3/min ou au plus égal à 0,2 cm3/min.
Selon un autre mode de réalisation particulièrement préférentiel, le taux de gomme de remplissage dans le câble est compris entre 5 et 40 mg de gomme par g de câble. En dessous du minimum indiqué, il est plus difficile de garantir que la gomme de remplissage soit bien présente, au moins en partie, dans chacun des interstices ou capillaires du câble, tandis qu'au- delà du maximum indiqué, on s'expose à un risque de débordement de la gomme de remplissage à la périphérie du câble. Pour toutes ces raisons, on préfère que le taux de gomme de remplissage soit compris entre 5 et 35 mg, notamment entre 5 et 30 mg, plus particulièrement compris dans un domaine de 10 à 25 mg par g de câble.
Par câble métallique, on entend par définition dans la présente demande un câble formé de fils constitués majoritairement (c'est-à-dire pour plus de 50% en nombre de ces fils) ou intégralement (pour 100% des fils) d'un matériau métallique.
Indépendamment les uns des autres et d'une couche à l'autre, le ou les fils du noyau (Cl), les fils de la deuxième couche (C2) et les fils de la troisième couche (C3) sont de préférence en acier, plus préférentiellement en acier au carbone. Mais il est bien entendu possible d'utiliser d'autres aciers, par exemple un acier inoxydable, ou d'autres alliages.
Lorsqu'un acier au carbone est utilisé, sa teneur en carbone (% en poids d'acier) est de préférence comprise entre 0,2% et 1,2%, notamment entre 0,5% et 1,1% ; ces teneurs représentent un bon compromis entre les propriétés mécaniques requises pour le pneumatique et la faisabilité des fils. Il est à noter qu'une teneur en carbone comprise entre 0,5% et 0,6% rend de tels aciers finalement moins coûteux car plus faciles à tréfiler. Un autre mode avantageux de réalisation de l'invention peut consister aussi, selon les applications visées, à utiliser des aciers à faible teneur en carbone, comprise par exemple entre 0,2% et 0,5%>, en raison notamment d'un coût plus bas et d'une plus grande facilité de tréfilage.
Le métal ou l'acier utilisé, qu'il s'agisse en particulier d'un acier au carbone ou d'un acier inoxydable, peut être lui-même revêtu d'une couche métallique améliorant par exemple les propriétés de mise en œuvre du câble métallique et/ou de ses éléments constitutifs, ou les propriétés d'usage du câble et/ou du pneumatique eux-mêmes, telles que les propriétés d'adhésion, de résistance à la corrosion ou encore de résistance au vieillissement. Selon un mode de réalisation préférentiel, l'acier utilisé est recouvert d'une couche de laiton (alliage Zn-Cu) ou de zinc ; on rappelle que lors du procédé de fabrication des fils, le revêtement de laiton ou de zinc facilite le tréfilage du fil, ainsi que le collage du fil avec le caoutchouc. Mais les fils pourraient être recouverts d'une fine couche métallique autre que du laiton ou du zinc, ayant par exemple pour fonction d'améliorer la résistance à la corrosion de ces fils et/ou leur adhésion au caoutchouc, par exemple une fine couche de Co, Ni, Al, d'un alliage de deux ou plus des composés Cu, Zn, Al, Ni, Co, Sn.
Les câbles obtenus selon le procédé de l'invention sont préférentiellement en acier au carbone et possèdent une résistance en traction (Rm) de préférence supérieure à 2500 MPa, plus préférentiellement supérieure à 3000 MPa. L'allongement total à la rupture (At) du câble, somme de ses allongements structural, élastique et plastique, est de préférence supérieur à 2,0%), plus préférentiellement au moins égal à 2,5%>.
A titre d'exemple, pour illustrer plus en détail la mise en œuvre de l'invention dans le cas d'un câble préférentiel à trois couches (Cl, C2, C3) de construction M+N+P, comportant une première couche ou noyau (Cl) de diamètre dc constitué de M fil(s) de diamètre di, noyau autour duquel sont entourés ensemble en hélice selon un pas p2, en une deuxième couche (C2), N fils de diamètre d2, deuxième couche autour de laquelle sont entourés ensemble en hélice selon un pas p3, en une troisième couche (C3), P fils de diamètre d3, le procédé de l'invention comporte alors au moins les étapes suivantes :
- tout d'abord, une étape d'assemblage des N fils de la deuxième couche (C2) autour du noyau (Cl), pour formation en un point, dit « point d'assemblage » d'un câble intermédiaire dit « toron d'âme » de construction M+N (ou C1+C2) ;
- respectivement en amont et/ou en aval dudit point d'assemblage, une étape de gainage du noyau et/ou du toron d'âme par un caoutchouc (ou composition de caoutchouc) spécifique (dénommé « gomme de remplissage ») qui est extrudé à l'état fondu par passage à travers une ou plusieurs tête(s) d'extrusion ; - puis une étape d'assemblage des P fils de la troisième couche (C3) autour du toron d'âme (M+N) pour formation du câble de construction M+N+P ainsi gommé de l'intérieur.
La couche la plus interne ou couche centrale (Cl) est aussi appelée le noyau ("core") du câble, alors que la première (Cl et la deuxième (C2) couches une fois assemblées (C1+C2) constituent ce que l'on a coutume d'appeler le toron d'âme du câble. Lorsque le noyau (Cl) est constitué de plusieurs fils, le diamètre dc du noyau (Cl) représente alors le diamètre du cylindre de révolution imaginaire (ou diamètre d'encombrement) qui entoure les M fils centraux de diamètre di .
Dans ce cas préférentiel d'un câble à 3 couches, selon un premier mode de réalisation possible, le gainage est réalisé sur le noyau (Cl) seul, c'est-à-dire en amont du point d'assemblage des N fils de la deuxième couche (C2) autour du noyau. Puis les N fils de la deuxième couche (C2) sont câblés ou retordus ensemble (direction S ou Z) autour du noyau (Cl) pour formation du toron d'âme (C1+C2), de manière connue en soi ; les fils sont délivrés par des moyens d'alimentation tels que des bobines, une grille de répartition, couplée ou non à un grain d'assemblage, destinés à faire converger autour du noyau les N fils en un point de torsion commun (ou point d'assemblage).
Selon un autre mode de réalisation possible, toujours dans ce cas préférentiel d'un câble à 3 couches, le gainage est réalisé sur le toron d'âme (C1+C2) lui-même, c'est-à-dire en aval (et non plus en amont) du point d'assemblage des N fils de la deuxième couche (C2) autour du noyau.
Puis, au cours d'une nouvelle étape, toujours dans ce cas préférentiel d'un câble à 3 couches, on procède à l'assemblage final, par câblage ou retordage (direction S ou Z), des P fils de la troisième couche ou couche externe (C3) autour du toron d'âme (M+N ou C1+C2).
Ainsi, dans les deux cas préférentiels ci-dessus de gommage in situ d'un câble à 3 couches (gainage soit du noyau, soit du toron d'âme), la gomme de remplissage peut être délivrée en un point fixe, unique et de faible encombrement, au moyen d'une tête d'extrusion unique ; toutefois, le gommage in situ pourrait être réalisé également en deux opérations successives de gainage, une première opération de gainage sur le noyau (donc en amont du point d'assemblage) et une seconde opération de gainage sur le toron d'âme (donc en aval du point d'assemblage).
Selon un autre mode de réalisation préférentiel, le noyau ou couche centrale (Cl) de diamètre dc est constitué de 1 à 4 fils de diamètre di (c'est-à-dire que M est compris dans un domaine 1 à 4), N est compris dans un domaine de 5 à 15, et P est compris dans un domaine de 10 à 22. Plus préférentiellement encore, M est égal à 1, N est compris dans un domaine de 5 à 7, et P est compris dans un domaine de 10 à 14.
Lorsque le noyau (Cl) est constitué d'un seul fil (M égal à 1), le diamètre di du fil noyau est alors préférentiellement compris dans un domaine de 0,08 à 0,40 mm.
Selon un autre mode de réalisation préférentiel, les caractéristiques suivantes sont vérifiées (di, d2, d3, p2 et p3 étant exprimés en mm) :
Figure imgf000017_0001
- 0,08 < d2 < 0,35 ;
- 0,08 < d3 < 0,35 ;
- 5 π (di + d2) < p2 < p3 < 10 π (ά! + 2ά2 + ά3) . Le noyau (Cl) du câble est préférentiellement constitué d'un seul fil unitaire ou au plus de 2 ou 3 fils, ces derniers pouvant être par exemple parallèles ou bien retordus ensemble. Toutefois, plus préférentiellement, le noyau (Cl) du câble est constitué d'un seul fil, N est compris dans un domaine de 5 à 7, et P est compris dans un domaine de 10 à 14. On rappelle ici que de manière connue le pas « p » représente la longueur, mesurée parallèlement à l'axe du câble, au bout de laquelle un fil ayant ce pas effectue un tour complet autour dudit axe du câble.
Pour un compromis optimisé entre résistance, faisabilité, rigidité et endurance en flexion du câble, on préfère que les diamètres des fils des couches Cl, C2 et C3, que ces fils aient un diamètre identique ou non d'une couche à l'autre, vérifient les relations suivantes (di, d2, d3 étant exprimés en mm):
Figure imgf000017_0002
- 0,10 < d2 < 0,30 ;
- 0,10 < d3 < 0,30 .
Plus préférentiellement encore, les relations suivantes sont vérifiées :
Figure imgf000017_0003
- 0,10 < d2 < 0,25 ;
- 0,10 < d3 < 0,25 .
Selon un autre mode de réalisation particulier, les caractéristiques suivantes sont vérifiées - pour N = 5 : 0,6 < (d d2) < 0,9 ;
- pour N = 6 : 0,9 < (di / d2) < 1,3 ;
- pour N = 7 : 1,3 < (di / d2) < 1,6. Les fils des couches C2 et C3 peuvent avoir un diamètre identique ou différent d'une couche à l'autre ; on utilise de préférence des fils de même diamètre d'une couche à l'autre (soit d2 = d3), ce qui simplifie notamment la fabrication et réduit le coût des câbles.
De préférence, on a la relation suivante qui est vérifiée:
5 π (di + d2) < p2 < p3 < 5 π (di + 2d2 + d3).
Les pas p2 et p3 sont choisis plus préférentiellement dans un domaine de 5 à 30 mm, plus préférentiellement encore dans un domaine de 5 à 20 mm, en particulier lorsque d2 = d3.
Selon un autre mode de réalisation préférentiel, le diamètre d2 est compris dans un domaine de 0,08 à 0,35 mm et le pas de retordage p2 est compris dans un domaine de 5 à 30 mm.
Selon un autre mode de réalisation préférentiel, le diamètre d3 est compris dans un domaine de 0,08 à 0,35 mm et le pas de retordage p3 est supérieur à ou égal à p2.
Selon un autre mode de réalisation préférentiel, les p2 et p3 sont égaux. C'est notamment le cas pour des câbles à couches du type compacts tels que schématisés par exemple à la figure 2, dans lesquels les deux couches C2 et C3 ont pour autre caractéristique d'être enroulées dans le même sens de torsion (S/S ou Z/Z). Dans de tels câbles à couches dits compacts, la compacité est très élevée, telle que la section transversale de ces câbles a un contour qui est polygonal et non cylindrique, comme illustré à titre d'exemple à la figure 2 (câble compact 1+6+12 selon l'invention) ou à la figure 3 (câble compact 1+6+12 témoin, c'est-à-dire non gommé in situ).
Lorsque le noyau (Cl) est constitué de plus d'un fil (M différent de 1), les M fils sont de préférence assemblés, notamment retordus, selon un pas pi qui est plus préférentiellement compris dans un domaine de 3 à 30 mm, en particulier dans un domaine de 3 à 20 mm. La troisième couche ou couche externe C3 a pour caractéristique préférentielle d'être une couche saturée, c'est-à-dire que, par définition, il n'existe pas suffisamment de place dans cette couche pour y ajouter au moins un (Pmax+l)ème fil de diamètre d3, Pmax représentant le nombre maximal de fils enroulables en une couche autour de la deuxième couche C2. Cette construction a pour avantage notable de limiter encore le risque de débordement de gomme de remplissage à sa périphérie et d'offrir, pour un diamètre donné du câble, une résistance plus élevée.
Ainsi, le nombre P de fils peut varier dans une très large mesure selon le mode de réalisation particulier de l'invention, étant entendu que le nombre maximal de fils P sera augmenté si leur diamètre d3 est réduit comparativement au diamètre d2 des fils de la deuxième couche, afin de conserver préférentiellement la couche externe dans un état saturé.
Selon un mode de réalisation particulièrement préférentiel, la première couche (Cl) comporte un seul fil (M égal à 1), la deuxième couche (C2) comporte 6 fils (N égal à 6) et la troisième couche (C3) comporte 11 ou 12 fils (P égal à 11 ou 12) ; en d'autres termes, le câble selon l'invention a pour constructions préférentielles 1+6+11 ou 1+6+12. Parmi ces câbles sont en particulier préférés ceux constitués de fils ayant sensiblement le même diamètre de la deuxième couche (C2) à la troisième couche (C3) (soit d2 = d3).
Le câble préparé selon l'invention, comme tous les câbles à couches, peut être de deux types, à savoir du type à couches compactes ou du type à couches cylindriques.
Préférentiellement, les fils de la couche externe sont enroulés en hélice dans le même sens de torsion, c'est-à-dire soit dans la direction S (disposition "S/S"), soit dans la direction Z (disposition "Z/Z"), que les fils de la ou des couche(s) interne(s) contenant plus d'un fil, pour l'obtention d'un câble compact. L'enroulement dans le même sens de ces couches permet avantageusement de minimiser les frottements entre ces deux couches et donc l'usure des fils qui les constituent. Plus préférentiellement, toutes ces couches sont enroulées dans le même sens de torsion et au même pas d'hélice pour l'obtention d'un câble du type compact tel que représenté par exemple à la figure 2.
Le procédé de l'invention rend possible la fabrication de câbles qui peuvent être, selon un mode de réalisation particulièrement préférentiel, dépourvus ou quasiment dépourvus de gomme de remplissage à leur périphérie ; par une telle expression, on entend qu'aucune particule de gomme de remplissage n'est visible, à l'œil nu, à la périphérie du câble, c'est-à- dire que l'homme du métier ne fait pas de différence en sortie de fabrication, à l'œil nu et à une distance de trois mètres ou plus, entre une bobine de câble préparé selon l'invention et une bobine de câble conventionnel non gommé in situ.
Toutefois, comme indiqué précédemment, un éventuel débordement de la gomme de remplissage à la périphérie du câble ne sera pas préjudiciable à son adhésion ultérieure à une gomme de calandrage de tissu métallique, grâce au caractère co-réticulable de l'élastomère thermoplastique insaturé et de l'élastomère diénique de ladite gomme de calandrage. Le procédé de l'invention s'applique bien entendu à la fabrication de câbles du type compacts (pour rappel et par définition, ceux dont les couches sont enroulées au même pas et dans le même sens) comme à la fabrication de câbles du type à couches cylindriques (pour rappel et par définition, ceux dont les couches sont enroulées soit à des pas différents (quels que soient leurs sens de torsion, identiques ou pas), soit dans des sens opposés (quels que soient leurs pas, identiques ou différents)).
Un dispositif d'assemblage et gommage utilisable pour la mise en œuvre du procédé de l'invention précédemment décrit et appliqué à titre d'exemple à la fabrication d'un câble à 3 couches, est un dispositif comportant d'amont en aval, selon la direction d'avancement d'un câble en cours de formation : des moyens d'alimentation d'une part du fil ou des M fils de la première couche ou noyau (Cl), d'autre part des N fils de la deuxième couche (C2) ;
des premiers moyens d'assemblage des N fils pour mise en place de la deuxième couche (C2) autour de la première couche (Cl), en un point dit « point d'assemblage », pour formation d'un câble intermédiaire dit « toron d'âme » de construction M+N ;
des seconds moyens d'assemblage des P fils autour du toron d'âme ainsi gainé, pour mise en place de la troisième couche (C3) ;
des moyens d'extrusion délivrant l'élastomère thermoplastique à l'état fondu, disposés respectivement en amont et/ou en aval des premiers moyens d'assemblage, pour gainage du noyau et/ou du toron d'âme M+N.
Bien entendu, lorsque M est supérieur à 1, le dispositif ci-dessus comporte également des moyens d'assemblage des M fils de la couche centrale (Cl), disposés entre les moyens d'alimentation de ces M fils et les moyens d'assemblage des N fils de la deuxième couche (C2). Dans le cas d'un double gainage (noyau et âme), les moyens d'extrusion sont donc disposés à la fois en amont et en aval des premiers moyens d'assemblage.
On voit sur la figure 1 annexée un exemple de dispositif (10) d'assemblage par retordage, du type à alimentation fixe et à réception tournante, utilisable pour la fabrication d'un câble du type compact (p2 = p3 et même sens de torsion des couches C2 et C3). Dans ce dispositif (10), des moyens d'alimentation (110) délivrent, autour d'un fil noyau unique (Cl), N fils (11) à travers une grille (12) de répartition (répartiteur axisymétrique), couplée ou non à un grain d'assemblage (13), grille au-delà de laquelle convergent les N (par exemple six) fils de la deuxième couche en un point d'assemblage (14), pour formation du toron d'âme (C1+C2) de construction 1+N (par exemple 1+6). Le toron d'âme (C1+C2), une fois formé, traverse ensuite une zone de gainage consistant par exemple en une tête d'extrusion unique (15) constituée par exemple par une extrudeuse bi-vis (alimentée par une trémie contenant l'élastomère TPE sous forme de granules) alimentant une filière de calibrage par l'intermédiaire d'une pompe. La distance entre le point de convergence (14) et le point de gainage (15) est par exemple comprise entre 50 cm et 1 m. Autour du toron d'âme ainsi gommé (16) et progressant dans le sens de la flèche, sont ensuite assemblés par retordage les P fils (17) de la couche externe (C3), par exemple au nombre de douze, délivrés par des moyens d'alimentation (170). Le câble final (C1+C2+C3) ainsi formé est finalement collecté sur la réception tournante (19), après traversée des moyens d'équilibrage de torsion (18) consistant par exemple en un dresseur et/ou un retordeur-dresseur.
On rappelle ici que, de manière bien connue de l'homme du métier, pour la fabrication d'un câble du type à couches cylindriques (pas p2 et p3 différents et/ou sens de torsion différents des couches C2 et C3), on utilise un dispositif comportant deux organes (alimentation ou réception) tournants, et non un seul comme décrit ci-dessus (Fig. 3) à titre d'exemple.
La figure 2 schématise, en coupe perpendiculaire à l'axe du câble (supposé rectiligne et au repos), un exemple d'un câble préférentiel 1+6+12 gommé in situ, susceptible d'être obtenu à l'aide du procédé conforme à l'invention précédemment décrit.
Ce câble (noté C-l) est du type compact, c'est-à-dire que ses deuxième et troisième couches (respectivement C2 et C3) sont enroulées dans le même sens (S/S ou Z/Z selon une nomenclature reconnue) et de plus au même pas (p2 = P3). Ce type de construction a pour conséquence que les fils (21, 22) de ces deuxième et troisième couches (C2, C3) forment autour du noyau (20) ou première couche (Cl) deux couches sensiblement concentriques qui ont chacune un contour (E) (représenté en pointillés) qui est sensiblement polygonal (plus précisément hexagonal) et non cylindrique comme dans le cas de câbles à couches dits cylindriques. Ce câble C-l peut être qualifié de câble gommé in situ : chacun des capillaires ou interstices (espaces vides en l'absence de gomme de remplissage) formés par les fils adjacents, pris trois par trois, de ses trois couches Cl, C2 et C3, est rempli, au moins en partie (de manière continue ou non selon l'axe du câble), par la gomme de remplissage de telle manière que pour toute longueur de câble de 2 cm, chaque capillaire comporte au moins un bouchon de gomme.
Plus précisément, la gomme de remplissage (23) remplit chaque capillaire (24) (symbolisé par un triangle) formé par les fils adjacents (pris trois à trois) des différentes couches (Cl, C2, C3) du câble, en écartant ces derniers très légèrement. On voit que ces capillaires ou interstices sont naturellement formés soit par le fil noyau (20) et les fils (21) de la deuxième couche (C2) qui l'entourent, soit par deux fils (21) de la deuxième couche (C2) et un fil (23) de la troisième couche (C3) qui leur est immédiatement adjacent, soit encore par chaque fil (21) de la deuxième couche (C2) et les deux fils (22) de la troisième couche (C3) qui lui sont immédiatement adjacents ; au total, 24 capillaires ou interstices (24) sont ainsi présents dans ce câble 1+6+12.
Selon un mode de réalisation préférentiel, dans ce câble M+N+P, la gomme de remplissage s'étend d'une manière continue autour de la deuxième couche (C2) qu'elle recouvre. Ainsi préparé, le câble M+N+P peut être qualifié d'étanche à l'air : au test de perméabilité à l'air décrit au paragraphe II-l-B qui suit, il se caractérise par un débit d'air moyen qui est préférentiellement inférieur à 2 cm3/min, plus préférentiellement inférieur ou au plus égal à 0,2 cm3/min. Pour comparaison, la figure 3 rappelle la coupe d'un câble 1+6+12 (noté C-2) conventionnel (i.e., non gommé in situ), également du type compact. L'absence de gomme de remplissage fait que pratiquement tous les fils (30, 31, 32) sont au contact l'un de l'autre, ce qui conduit à une structure particulièrement compacte, par ailleurs très difficilement pénétrable (pour ne pas dire impénétrable) de l'extérieur par du caoutchouc. La caractéristique de ce type de câble est que les différents fils forment trois à trois des canaux ou capillaires (34) qui pour un nombre important d'entre eux restent fermés et vides et donc propices, par effet "de mèche", à la propagation de milieux corrosifs tels que l'eau.
II. EXEMPLES DE REALISATION DE L'INVENTION
Les essais qui suivent démontrent la capacité de l'invention à produire des câbles multicouches qui, comparés aux câbles multicouches gommés in situ de l'art antérieur avec un caoutchouc diénique conventionnel (non thermofusible), ont l'avantage notable de comporter une quantité réduite et contrôlée de gomme de remplissage, ce qui leur garantit une meilleure compacité, cette gomme étant en outre préférentiellement répartie uniformément à l'intérieur du câble, en particulier à l'intérieur de chacun de ses capillaires, leur conférant ainsi une imperméabilité longitudinale optimale ; en outre, cette gomme de remplissage a comme avantage essentiel d'être dépourvue de collant parasite à l'état cru (i.e., non réticulé).
II- 1. Mesures et tests utilisés
II- 1 -A. Mesures dynamométriques Pour ce qui concerne les fils et câbles métalliques, les mesures de force à la rupture notée Fm (charge maximale en N), de résistance à la rupture notée Rm (en MPa) et d'allongement à la rupture noté At (allongement total en %) sont effectuées en traction selon la norme ISO 6892 de 1984.
Concernant les compositions de caoutchouc diénique, les mesures de module sont effectuées en traction, sauf indication différente selon la norme ASTM D 412 de 1998 (éprouvette "C") : on mesure en seconde élongation (c'est-à-dire après un cycle d'accommodation) le module sécant "vrai" (c'est-à-dire ramené à la section réelle de l'éprouvette) à 10% d'allongement, noté E10 et exprimé en MPa (conditions normales de température et d'hygrométrie selon la norme ASTM D 1349 de 1999).
II-l-B. Test de perméabilité à l'air Ce test permet de déterminer la perméabilité longitudinale à l'air des câbles testés, par mesure du volume d'air traversant une éprouvette sous pression constante pendant un temps donné. Le principe d'un tel test, bien connu de l'homme du métier, est de démontrer l'efficacité du traitement d'un câble pour le rendre imperméable à l'air ; il a été décrit par exemple dans la norme ASTM D2692-98.
Le test est ici réalisé soit sur des câbles extraits des pneumatiques ou des nappes de caoutchouc qu'ils renforcent, donc déjà enrobés de l'extérieur par du caoutchouc à l'état cuit, soit sur des câbles bruts de fabrication. Dans le second cas, les câbles bruts doivent être préalablement noyés, enrobés de l'extérieur par une gomme dite d'enrobage. Pour cela, une série de 10 câbles disposés parallèlement (distance inter-câble : 20 mm) est placée entre deux skims (deux rectangles de 80 x 200 mm) d'une composition de caoutchouc diénique à l'état cru, chaque skim ayant une épaisseur de 3,5 mm ; le tout est alors bloqué dans un moule, chacun des câbles étant maintenu sous une tension suffisante (par exemple 2 daN) pour garantir sa rectitude lors de la mise en place dans le moule, à l'aide de modules de serrage ; puis on procède à la vulcanisation (cuisson) pendant 40 min à une température de 140°C et sous une pression de 15 bar (piston rectangulaire de 80 x 200 mm). Après quoi, on démoule l'ensemble et on découpe 10 éprouvettes de câbles ainsi enrobés, sous forme de parallélépipèdes de dimensions 7x7x20 mm, pour caractérisation.
On utilise comme gomme d'enrobage une composition de caoutchouc conventionnelle pour pneumatique, à base de caoutchouc naturel (peptisé) et de noir de carbone N330 (65 pce), comportant en outre les additifs usuels suivants: soufre (7 pce), accélérateur sulfénamide (1 pce), ZnO (8 pce), acide stéarique (0,7 pce), antioxydant (1,5 pce), naphténate de cobalt (1,5 pce) ; le module E 10 de la gomme d'enrobage est de 10 MPa environ.
Le test est réalisé sur 2 cm de longueur de câble, enrobé donc par sa composition de caoutchouc (ou gomme d'enrobage) environnante à l'état cuit, de la manière suivante : on envoie de l'air à l'entrée du câble, sous une pression de 1 bar, et on mesure le volume d'air à la sortie, à l'aide d'un débitmètre (calibré par exemple de 0 à 500 cm3/min). Pendant la mesure, l'échantillon de câble est bloqué dans un joint étanche comprimé (par exemple un joint en mousse dense ou en caoutchouc) de telle manière que seule la quantité d'air traversant le câble d'une extrémité à l'autre, selon son axe longitudinal, est prise en compte par la mesure ; un contrôle d'étanchéité préalable du joint étanche est fait à l'aide d'une éprouvette de caoutchouc pleine, i.e., sans câble.
Le débit mesuré est d'autant plus faible que l'imperméabilité longitudinale du câble est élevée. La mesure étant faite avec une précision de ± 0,2 cm3/min, les valeurs mesurées égales ou inférieures à 0,2 cm3/min sont considérées comme nulles ; elles correspondent à un câble qui peut être qualifié d'étanche à l'air selon son axe (i.e., selon sa direction longitudinale). II-l-C. Taux de gomme de remplissage
La quantité de gomme de remplissage est mesurée par différence entre le poids du câble initial (donc gommé in situ) et le poids du câble (donc celui de ses fils) dont la gomme de remplissage a été éliminée par un traitement dans un solvant d'extraction approprié.
On procède par exemple comme suit. Un échantillon de câble de longueur donnée (par exemple un mètre), bobiné sur lui-même pour réduire son encombrement, est placé dans un flacon étanche contenant un litre de toluène. Puis le flacon est agité (125 aller-retour par min) pendant 24 heures à température ambiante (20°C), à l'aide d'un agitateur "va-et-vient" ("Ping- Pong 400" de la société Fischer Scientific) ; après élimination du solvant, l'opération est répétée une fois. Le câble ainsi traité est récupéré et le solvant résiduel évaporé sous vide pendant 1 heure à 60°C. Puis le câble ainsi débarrassé de sa gomme de remplissage est pesé. On en déduit par le calcul le taux de gomme de remplissage dans le câble, exprimé en mg (milligramme) de gomme de remplissage par g (gramme) de câble initial, et moyenné sur 10 mesures (c'est-à-dire sur 10 mètres de câble au total).
II-2. Fabrication des câbles et tests
On fabrique dans les essais qui suivent des câbles à couches de constructions 1+6+12 constitués de fils fins en acier au carbone revêtus de laiton. Les fils en acier au carbone sont préparés de manière connue, en partant par exemple de fils machine (diamètre 5 à 6 mm) que l'on écrouit tout d'abord, par laminage et/ou tréfilage, jusqu'à un diamètre intermédiaire voisin de 1 mm. L'acier utilisé est un acier au carbone connu (norme USA AISI 1069) dont la teneur en carbone est de 0,70%. Les fils de diamètre intermédiaire subissent un traitement de dégraissage et/ou décapage, avant leur transformation ultérieure. Après dépôt d'un revêtement de laiton sur ces fils intermédiaires, on effectue sur chaque fil un écrouissage dit "final" (i.e., après le dernier traitement thermique de patentage), par tréfilage à froid en milieu humide avec un lubrifiant de tréfilage qui se présente par exemple sous forme d'une émulsion ou d'une dispersion aqueuse. Le revêtement de laiton qui entoure les fils a une épaisseur très faible, nettement inférieure au micromètre, par exemple de l'ordre de 0,15 à 0,30 μιη, ce qui est négligeable par rapport au diamètre des fils en acier. Les fils en acier ainsi tréfilés ont le diamètre et les propriétés mécaniques suivantes :
Tableau 1
Figure imgf000025_0001
Ces fils sont ensuite assemblés sous forme de câbles à couches 1+6+12 dont la construction est conforme à la représentation de la figure 1 et dont les propriétés mécaniques sont données dans le tableau 2.
Tableau 2
Figure imgf000025_0002
Les câbles selon l'invention 1+6+12 (C-l), tels que schématisés à la Fig. 1, sont donc formés de 19 fils au total, un fil noyau de diamètre 0,20 mm et 18 fils autour, tous de diamètre 0,18 mm, qui ont été enroulés en deux couches concentriques au même pas (p2 = P3 = 10,0 mm) et dans la même direction de torsion (S/S) pour l'obtention d'un câble du type compact. Le taux de gomme de remplissage, mesuré selon la méthode indiquée précédemment au paragraphe 1-3, est égal à environ 18 mg par g de câble. Cette gomme de remplissage est présente dans chacun des 24 capillaires ou interstices formés par les différents fils pris trois à trois, c'est-à-dire qu'elle remplit en totalité ou au moins en partie chacun de ces capillaires de telle manière qu'il existe au moins, sur toute longueur de câble de longueur égale à 2 cm, un bouchon de gomme dans chaque capillaire ou interstice. Pour la fabrication de ces câbles, on a utilisé un dispositif tel que décrit précédemment et schématisé à la figure 1 , en gainant le toron d'âme (1+6) puis en assemblant par retordage la couche externe des 12 fils sur le toron d'âme gainé. Le toron d'âme a été ainsi recouvert d'une couche d'élastomère TPS d'environ 15 μιη. La gomme de remplissage était constituée d'un élastomère TPS insaturé qui a été extrudé à une température de 180°C environ, au moyen d'une extrudeuse bi-vis (longueur 960 mm, L/D = 40) alimentant une filière de calibrage de diamètre 0,570 mm par l'intermédiaire d'une pompe ; le toron d'âme (1+6) se déplaçait pendant son gainage perpendiculairement à la direction d'extrusion et de façon rectiligne.
Trois élastomères TPS insaturés (produits commerciaux) ont été testés lors de ces essais : un copolymère blocs SBS (blocs styrène-butadiène- styrène), un copolymère blocs SIS (blocs styrène-isoprène-styrène) et un copolymère blocs S(SB)S (blocs styrène-butadiène-styrène dont le bloc polydiène central (noté SB) était un copolymère diène statistique styrène- butadiène), de dureté Shore A respectivement égale à environ 70, 25 et 90.
Puis les câbles C-1 ainsi fabriqués ont été soumis au test de perméabilité à l'air décrit au paragraphe II- 1 , en mesurant le volume d'air (en cm3) traversant les câbles en 1 minute (moyenne de 10 mesures pour chaque câble testé).
Pour chaque câble C-1 testé et pour 100% des mesures (soit dix éprouvettes sur dix), quel que soit l'élastomère TPS insaturé testé, on a mesuré un débit nul ou inférieur à 0,2 cm3/min ; en d'autres termes, les câbles préparés selon le procédé de l'invention peuvent être qualifiés d'étanches à l'air selon leur axe longitudinal.
D'autre part, des câbles gommés in situ témoins, de même construction que les câbles C-1 précédents, mais gommés in situ par une composition de caoutchouc diénique conventionnelle (à base de caoutchouc naturel), ont été préparés conformément au procédé décrit dans la demande WO 2005/071557 précitée, en plusieurs étapes discontinues, par gainage via une tête d'extrusion du toron d'âme intermédiaire 1+6, puis dans un deuxième temps par câblage des 12 fils restants autour de l'âme ainsi gainée, pour formation de la couche externe. Ces câbles témoins ont été ensuite soumis au test de perméabilité à l'air du paragraphe 1-2. On a constaté tout d'abord qu'aucun de ces câbles témoins ne présentait 100% des mesures (soit dix éprouvettes sur dix) avec un débit nul ou inférieur à 0,2 cm3/min, en d'autres termes qu'aucun de ces câbles témoins ne pouvait être qualifié d'étanche (totalement étanche) à l'air selon son axe. On a observé d'autre part que, parmi ces câbles témoins, ceux présentant les meilleurs résultats d'imperméabilité (soit un débit moyen d'environ 2 cm3/min), présentaient tous une quantité relativement importante de gomme de remplissage (caoutchouc diénique) parasite débordant à leur périphérie, les rendant inaptes à une opération de calandrage satisfaisante en conditions industrielles, en raison du problème de collant à cru évoqué en introduction du présent mémoire. En conclusion, les câbles préparés selon le procédé conforme à l'invention présentent donc un taux de pénétration optimal par l'élastomère thermoplastique insaturé, avec une quantité de gomme de remplissage maîtrisée, qui garantit la présence de cloisons internes (continues ou discontinues dans l'axe du câble) ou bouchons de gomme dans les capillaires ou interstices en un nombre suffisant ; ainsi, le câble devient étanche à la propagation, le long du câble, de tout fluide corrosif tel que l'eau ou l'oxygène de l'air, supprimant ainsi l'effet de mèche décrit en introduction du présent mémoire. En outre, l'élastomère thermoplastique utilisé ne pose pas de problème de collant parasite en cas d'un léger débordement à l'extérieur du câble après sa fabrication grâce à son caractère insaturé et donc (co)vulcanisable avec une matrice de caoutchouc diénique insaturé tel que du caoutchouc naturel.
Bien entendu, l'invention n'est pas limitée aux exemples de réalisation précédemment décrits.
C'est ainsi par exemple que le noyau (Cl) des câbles pourrait être constituée d'un fil à section non circulaire, par exemple déformé plastiquement, notamment un fil de section sensiblement ovale ou polygonale, par exemple triangulaire, carrée ou encore rectangulaire ; le noyau pourrait aussi être constitué d'un fil préformé, de section circulaire ou non, par exemple un fil ondulé, vrillé, tordu en forme d'hélice ou en zig-zag. Dans de tels cas, il faut bien sûr comprendre que le diamètre dc du noyau (Cl) représente le diamètre du cylindre de révolution imaginaire qui entoure le fil central (diamètre d'encombrement), et non plus le diamètre (ou toute autre taille transversale, si sa section n'est pas circulaire) du fil central lui- même.
Pour des raisons de faisabilité industrielle, de coût et de performance globale, on préfère toutefois mettre en œuvre l'invention avec un seul fil central (couche Cl) linéaire conventionnel, de section circulaire.
D'autre part, le fil central étant moins sollicité lors de la fabrication du câble que les autres fils, compte tenu de sa position dans le câble, il n'est pas nécessaire pour ce fil d'employer par exemple des compositions d'acier offrant une ductilité en torsion élevée ; on pourra avantageusement utiliser tout type d'acier, par exemple un acier inoxydable.
En outre, un (au moins un) fil linéaire d'une des deux autres couches (C2 et/ou C3) pourrait lui aussi être remplacé par un fil préformé ou déformé, ou plus généralement par un fil de section différente de celle des autres fils de diamètre d2 et/ou d3, de manière par exemple à améliorer encore la pénétrabilité du câble par le caoutchouc ou toute autre matière, le diamètre d'encombrement de ce fil de remplacement pouvant être inférieur, égal ou supérieur au diamètre (d2 et/ou d3) des autres fils constitutifs de la couche (C2 et/ou C3) concernée.
Sans que l'esprit de l'invention soit modifié, une partie des fils constituant le câble pourrait être remplacé par des fils autres que des fils en acier, métalliques ou non, notamment des fils en matière minérale ou organique à haute résistance mécanique, par exemple des mono filaments en polymères organiques cristaux liquides.

Claims

REVENDICATIONS
Procédé de fabrication d'un câble métallique multicouches, à plusieurs couches concentriques de fils, comportant une ou plusieurs couche(s) interne(s) et une couche externe, du type « gommé in situ » c'est-à-dire gommé de l'intérieur, pendant sa fabrication même, par du caoutchouc ou une composition de caoutchouc, ledit procédé comportant au moins les étapes suivantes : au moins une étape de gainage d'au moins une couche interne par ledit caoutchouc ou ladite composition de caoutchouc, par passage à travers au moins une tête d'extrusion ;
- une étape d'assemblage des fils de la couche externe autour de la couche interne qui lui est adjacente, pour formation du câble multicouches ainsi gommé de l'intérieur, caractérisé en ce que ledit caoutchouc est un élastomère thermoplastique insaturé extrudé à l'état fondu.
Procédé selon la revendication 1, dans lequel l'élastomère thermoplastique insaturé est un élastomère thermoplastique styrénique ("TPS").
Procédé selon la revendication 2, dans lequel l'élastomère TPS insaturé comporte des blocs polystyrène et des blocs polydiène.
Procédé selon la revendication 3, dans lequel les blocs polydiène sont choisis dans le groupe constitué par les blocs polyisoprène, les blocs polybutadiène et les mélanges de tels blocs.
Procédé selon la revendication 4, dans lequel l'élastomère TPS est un copolymère choisi dans le groupe constitué par les copolymères blocs styrène/ butadiène/ styrène (SBS), styrène/ butadiène/ butylène/ styrène (SBBS), styrène/ isoprène/ styrène (SIS), styrène/ butadiène/ isoprène/ styrène (SBIS) et les mélanges de ces copolymères.
Procédé selon l'une quelconque des revendications 1 à 5, dans lequel la quantité d'élastomère TPS délivrée lors du gainage est comprise entre 5 et 40 mg par gramme de câble final.
Procédé selon l'une quelconque des revendications 1 à 6, dans lequel la température d'extrusion de l'élastomère thermoplastique est comprise entre 100°C et 250°C. 8. Procédé selon l'une quelconque des revendications 1 à 7, dans lequel le câble comporte une seule couche interne.
9. Procédé selon la revendication 8, dans lequel le noyau, après gainage, est recouvert d'une épaisseur minimale d'élastomère thermoplastique insaturé qui est supérieure à 5 μιη.
10. Procédé selon l'une quelconque des revendications 1 à 7, dans lequel le câble comporte plusieurs couches internes.
11. Procédé selon la revendication 10, dans lequel le gainage est réalisé sur la couche la plus interne ou noyau du câble.
12. Procédé selon la revendication 11, dans lequel le noyau, après gainage, est recouvert d'une épaisseur minimale d'élastomère thermoplastique insaturé qui est supérieure à
20 μιη.
13. Procédé selon la revendication 10, dans lequel le gainage est réalisé sur chaque couche interne du câble.
14. Procédé selon la revendication 13, dans lequel la couche interne adjacente à la couche externe du câble, après gainage, est recouverte d'une épaisseur minimale d'élastomère thermoplastique insaturé qui est supérieure à 5 μιη. 15. Procédé selon l'une quelconque des revendications 1 à 14, dans lequel au moins une couche interne contient plus d'un fil et dans lequel les fils de la couche externe sont enroulés en hélice au même pas et dans le même sens de torsion que les fils de chaque couche interne contenant plus d'un fil. 16. Procédé selon l'une quelconque des revendications 1 à 15, dans lequel la couche externe est une couche saturée.
17. Procédé selon l'une quelconque des revendications 1 à 16, dans lequel chaque étape d'assemblage des fils de la couche externe d'une part, de chaque couche interne contenant plus d'un fil d'autre part, est réalisée par retordage.
18. Procédé selon l'une quelconque des revendications 1 à 17, dans lequel l'étape d'assemblage par retordage des fils de la couche externe est suivie d'une étape finale d'équilibrage des torsions par passage à travers des moyens d'équilibrage de torsion.
PCT/EP2011/057349 2010-05-20 2011-05-06 Procédé de fabrication d'un câble métallique multicouches gommé in situ par un élastomère thermoplastique insaturé WO2011144473A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/699,300 US9150984B2 (en) 2010-05-20 2011-05-06 Method for the production of a multi-layer metal cord that is rubberized in situ using an unsaturated thermoplastic elastomer
JP2013510560A JP5942987B2 (ja) 2010-05-20 2011-05-06 不飽和熱可塑性エラストマーを使用して現場ゴム引きしている多層金属コードの製造方法
CN201180024664.6A CN102906330B (zh) 2010-05-20 2011-05-06 制备使用不饱和热塑性弹性体原位橡胶处理的多层金属帘线的方法
EP11717669.3A EP2572033B1 (fr) 2010-05-20 2011-05-06 Procede de fabrication d'un cable metallique multicouches gomme in situ par un elastomère thermoplastique insature

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1053904A FR2962456B1 (fr) 2010-05-20 2010-05-20 Procede de fabrication d'un cable metallique multicouches gomme in situ par un elastomere thermoplastique insature
FR1053904 2010-05-20

Publications (1)

Publication Number Publication Date
WO2011144473A1 true WO2011144473A1 (fr) 2011-11-24

Family

ID=43127051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/057349 WO2011144473A1 (fr) 2010-05-20 2011-05-06 Procédé de fabrication d'un câble métallique multicouches gommé in situ par un élastomère thermoplastique insaturé

Country Status (6)

Country Link
US (1) US9150984B2 (fr)
EP (1) EP2572033B1 (fr)
JP (1) JP5942987B2 (fr)
CN (1) CN102906330B (fr)
FR (1) FR2962456B1 (fr)
WO (1) WO2011144473A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2982885A1 (fr) * 2011-11-23 2013-05-24 Michelin Soc Tech Procede de fabrication d'un cable metallique a deux couches gomme in situ par un elastomere thermoplastique insature
US9617662B2 (en) 2011-11-23 2017-04-11 Compagnie Generale Des Etablissements Michelin Two-layered metal cord rubberized in situ by an unsaturated thermoplastic elastomer

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6063768B2 (ja) * 2013-02-21 2017-01-18 住友ゴム工業株式会社 スチールコード及びそれを用いた弾性クローラ
FR3022265B1 (fr) * 2014-06-12 2017-12-08 Michelin & Cie Produit semi-fini comprenant un cable gomme in situ noye dans une composition de caoutchouc de calandrage
FR3022263B1 (fr) * 2014-06-12 2017-10-27 Michelin & Cie Cable gomme in situ comprenant une composition de gommage comprenant un inhibiteur de corrosion
DE102014211929A1 (de) * 2014-06-23 2016-01-07 ContiTech Transportsysteme GmbH Verfahren zur Herstellung eines Zugträgers in Seilkonstruktion, insbesondere für Fördergurte
JP5811240B1 (ja) * 2014-06-30 2015-11-11 横浜ゴム株式会社 スチールコードおよびコンベヤベルト
WO2019129452A1 (fr) * 2017-12-25 2019-07-04 Nv Bekaert Sa Câblé métallique
FR3099190A1 (fr) * 2019-07-25 2021-01-29 Compagnie Generale Des Etablissements Michelin Procédé de fabrication d’au moins trois assemblages
US11840656B2 (en) 2021-11-05 2023-12-12 Industrial Technology Research Institute Halogen free flame-retardant materials and method for manufacturing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000023505A1 (fr) * 1998-10-15 2000-04-27 N.V.Bekaert S.A. Element metallique de renfort et procedes d'enrobage associes
EP1186699A2 (fr) * 2000-09-11 2002-03-13 The Yokohama Rubber Co., Ltd. Câble d'acier pour pneumatique et pneumatique radial
JP2002088668A (ja) * 2000-09-11 2002-03-27 Yokohama Rubber Co Ltd:The タイヤ用スチールコード及びラジアルタイヤ
US6579940B1 (en) * 1999-10-28 2003-06-17 Edwards Lifesciences Corporation Thermoplastic elastomeric material as a replacement for natural rubber latex
WO2005071157A1 (fr) 2003-12-24 2005-08-04 Societe De Technologie Michelin Cable metallique a trois couches pour armature de carcasse de pneumatique
WO2005071557A2 (fr) 2004-01-22 2005-08-04 Qualcomm Incorporated Structure de bus bi-canal a adresses multiples
WO2010105975A1 (fr) * 2009-03-20 2010-09-23 Societe De Technologie Michelin Renfort composite auto-adherent

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4487010A (en) * 1983-02-18 1984-12-11 Amsted Industries Incorporated Multi-layer, parallel lay, coreless wire rope
US4470249A (en) * 1983-02-18 1984-09-11 Amsted Industries Incorporated Multi-layer, contrahelically stranded wire rope
CA1208863A (fr) * 1984-04-24 1986-08-05 Wire Rope Industries Ltd. - Industries De Cables D'acier Ltee D'acier Ltee Cable en metal a garnissage plastique
US4606183A (en) * 1984-11-20 1986-08-19 Amsted Industries Incorporated Lubricated and thermoplastic impregnated wire rope
JP4423772B2 (ja) * 2000-09-11 2010-03-03 横浜ゴム株式会社 タイヤ用スチールコード及びラジアルタイヤ
FR2833277A1 (fr) * 2001-12-07 2003-06-13 Michelin Soc Tech Cable metallique utilisable pour renforcer une armature de carcasse d'un pneumatique et un tel pneumatique
JP3786645B2 (ja) * 2003-01-08 2006-06-14 住友電工スチールワイヤー株式会社 被覆pc鋼撚り線
JP4793088B2 (ja) * 2006-05-15 2011-10-12 横浜ゴム株式会社 ゴム補強用スチールコード及びそれを用いた空気入りラジアルタイヤの製造方法
FR2916679B1 (fr) * 2007-05-29 2009-08-21 Michelin Soc Tech Objet pneumatique pourvu d'une couche etanche aux gaz a base d'un elastomere thermoplastique
FR2925922B1 (fr) * 2007-12-28 2009-12-18 Soc Tech Michelin Cable a couches pour ceinture de pneumatique
FR2925923B1 (fr) * 2007-12-28 2009-12-18 Michelin Soc Tech Procede et dispositif de fabrication d'un cable a deux couches du type gomme in situ
FR2932712B1 (fr) * 2008-06-24 2010-08-20 Michelin Soc Tech Stratifie etanche a l'air et anticrevaison pour objet pneumatique.
FR2934614B1 (fr) * 2008-08-01 2010-09-10 Michelin Soc Tech Cable a couches gomme in situ pour armature carcasse de pneumatique.
FR2938557B1 (fr) * 2008-11-17 2011-02-18 Michelin Soc Tech Cable a trois couches, gomme in situ, pour armature de carcasse de pneumatique
FR2938558B1 (fr) * 2008-11-17 2010-12-31 Michelin Soc Tech Procede et dispositif de fabrication d'un cable a trois couches du type gomme in situ.
FR2943690B1 (fr) * 2009-03-31 2011-08-19 Michelin Soc Tech Procede et dispositif de fabrication d'un cable a trois couches du type gomme un situ
FR2943691B1 (fr) * 2009-03-31 2011-08-19 Michelin Soc Tech Procede et dispositif de fabrication d'un cable a trois couches du type gomme in situ
FR2946366B1 (fr) * 2009-06-03 2011-12-02 Michelin Soc Tech Cable a trois couches,gomme in situ,pour armature carcasse de pneumatique.
FR2947576B1 (fr) * 2009-07-03 2011-08-19 Michelin Soc Tech Cable metallique a trois couches gomme in situ de construction 2+m+n
FR2947577B1 (fr) * 2009-07-03 2013-02-22 Michelin Soc Tech Cable metallique a trois couches gomme in situ de construction 3+m+n
FR2947575B1 (fr) * 2009-07-03 2011-08-19 Michelin Soc Tech Cable multitorons dont les torons elementaires sont des cables a deux couches gommes in situ.
FR2947574B1 (fr) * 2009-07-03 2012-11-09 Michelin Soc Tech Cable multitorons dont les torons elementaires sont des cables a deux couches gommes in situ.
FR2962455B1 (fr) * 2010-05-20 2012-09-21 Soc Tech Michelin Cable metallique multicouches gomme in situ par un elastomere thermoplastique insature
FR2962453B1 (fr) * 2010-05-20 2012-09-21 Michelin Soc Tech Cable metallique a trois couches, gomme in situ par un elastomere thermoplastique insature

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000023505A1 (fr) * 1998-10-15 2000-04-27 N.V.Bekaert S.A. Element metallique de renfort et procedes d'enrobage associes
US6579940B1 (en) * 1999-10-28 2003-06-17 Edwards Lifesciences Corporation Thermoplastic elastomeric material as a replacement for natural rubber latex
EP1186699A2 (fr) * 2000-09-11 2002-03-13 The Yokohama Rubber Co., Ltd. Câble d'acier pour pneumatique et pneumatique radial
JP2002088668A (ja) * 2000-09-11 2002-03-27 Yokohama Rubber Co Ltd:The タイヤ用スチールコード及びラジアルタイヤ
WO2005071157A1 (fr) 2003-12-24 2005-08-04 Societe De Technologie Michelin Cable metallique a trois couches pour armature de carcasse de pneumatique
WO2005071557A2 (fr) 2004-01-22 2005-08-04 Qualcomm Incorporated Structure de bus bi-canal a adresses multiples
WO2010105975A1 (fr) * 2009-03-20 2010-09-23 Societe De Technologie Michelin Renfort composite auto-adherent

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2982885A1 (fr) * 2011-11-23 2013-05-24 Michelin Soc Tech Procede de fabrication d'un cable metallique a deux couches gomme in situ par un elastomere thermoplastique insature
WO2013075985A1 (fr) * 2011-11-23 2013-05-30 Compagnie Generale Des Etablissements Michelin Procédé de fabrication d'un câble métallique à deux couches gommé in situ par un élastomère thermoplastique insaturé
US9617661B2 (en) 2011-11-23 2017-04-11 Compagnie Generale Des Etablissements Michelin Method of manufacturing a two-layer metal cord rubberized in situ using an unsaturated thermoplastic elastomer
US9617662B2 (en) 2011-11-23 2017-04-11 Compagnie Generale Des Etablissements Michelin Two-layered metal cord rubberized in situ by an unsaturated thermoplastic elastomer

Also Published As

Publication number Publication date
CN102906330B (zh) 2015-02-04
US9150984B2 (en) 2015-10-06
EP2572033B1 (fr) 2015-01-28
FR2962456B1 (fr) 2012-09-21
US20130227924A1 (en) 2013-09-05
JP2013530319A (ja) 2013-07-25
EP2572033A1 (fr) 2013-03-27
FR2962456A1 (fr) 2012-01-13
JP5942987B2 (ja) 2016-06-29
CN102906330A (zh) 2013-01-30

Similar Documents

Publication Publication Date Title
EP2572032B1 (fr) Cable metallique multicouches gomme in situ par un elastomere thermoplastique insature
EP2572031B1 (fr) Cable metallique a trois couches, gomme in situ par un elastomere thermoplastique insature
EP2572033B1 (fr) Procede de fabrication d&#39;un cable metallique multicouches gomme in situ par un elastomère thermoplastique insature
EP2783037A1 (fr) Procédé de fabrication d&#39;un câble métallique à deux couches gommé in situ par un élastomère thermoplastique insaturé
WO2013075984A1 (fr) Câble métallique à deux couches, gommé in situ par un élastomère thermoplastique insaturé.
EP2366046B1 (fr) Cable a trois couches, gomme in situ, pour armature de carcasse de pneumatique
EP2366048B1 (fr) Procede et dispositif de fabrication d&#39;un cable a trois couches du type gomme in situ
EP2438233A1 (fr) Câble à trois couches, gommé in situ, pour armature carcasse de pneumatique
EP2449169A2 (fr) Cable metallique a trois couches gomme in situ de construction 3+m+n
EP2449168A2 (fr) Cable metallique a trois couches gomme in situ de construction 2+m+n
EP2572029B1 (fr) Procédé de fabrication d&#39;un câble métallique à trois couches du type gommé in situ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180024664.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11717669

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011717669

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013510560

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13699300

Country of ref document: US