WO2011144079A2 - 一种分发树生成方法、装置及路由网桥 - Google Patents

一种分发树生成方法、装置及路由网桥 Download PDF

Info

Publication number
WO2011144079A2
WO2011144079A2 PCT/CN2011/074649 CN2011074649W WO2011144079A2 WO 2011144079 A2 WO2011144079 A2 WO 2011144079A2 CN 2011074649 W CN2011074649 W CN 2011074649W WO 2011144079 A2 WO2011144079 A2 WO 2011144079A2
Authority
WO
WIPO (PCT)
Prior art keywords
distribution tree
root node
distribution
network
rbridge
Prior art date
Application number
PCT/CN2011/074649
Other languages
English (en)
French (fr)
Other versions
WO2011144079A3 (zh
Inventor
张民贵
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2011/074649 priority Critical patent/WO2011144079A2/zh
Priority to CN201180000752.2A priority patent/CN102959909B/zh
Publication of WO2011144079A2 publication Critical patent/WO2011144079A2/zh
Publication of WO2011144079A3 publication Critical patent/WO2011144079A3/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/48Routing tree calculation
    • H04L45/484Routing tree calculation using multiple routing trees

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a distribution tree generation method, apparatus, and routing bridge. Background technique
  • TRILL Transparent Interconnection of Lots of Links
  • Internet Layer 2 such as Ethernet
  • the TRILL protocol introduces Layer 3 IS-IS routes on the Layer 2 to replace the past STP (Spanning)
  • the TRILL protocol encapsulates the hop count field in the packet to solve the temporary routing loop problem.
  • the RBridge (Routing Bridge) does not use the spanning tree algorithm to calculate the distribution tree. Instead, the distribution tree is calculated based on the link state information. Similar to the route calculation under the ISIS (Intermediate System to Intermediate System Routing Protocol), RBridge stores the topology information of the entire network, so that the shortest path between any two points in the network can be calculated. .
  • the calculation process of the distribution tree is like this: Select an RBridge as the root of the tree in the TRILL network. After the root is specified, each RBridge in the network calculates the shortest path from the root to the other RBridge according to the shortest path first method. All these shortest paths are combined to form a distribution tree.
  • TRILL does not give a choice strategy for the root of the tree at design time, which means that the root of the tree is arbitrarily specified.
  • the figure will be Each RBridge is abbreviated as RB. If RB2 is specified as the distribution tree root of the entire network, the established distribution tree is shown in the interval line of FIG.
  • the present invention provides a method, an apparatus, and a routing bridge for generating a distribution tree.
  • One aspect of the invention is as follows.
  • a distribution tree generation method includes:
  • the entire network forwarding cost of each candidate distribution tree with the routing bridge RBridge in the TRILL network as the root node is respectively obtained;
  • the root node is the first target root node, and the preset condition includes: at least: the entire network forwarding cost of the distribution tree is minimum;
  • Another aspect of the invention is as follows.
  • a distribution tree generating apparatus includes:
  • a first forwarding cost obtaining unit configured to obtain, according to communication requirements between routing bridges RBridge in the TRILL network of the multilink transparent interconnection protocol, respectively, each candidate distribution with the routing bridge RBridge in the TRILL network as a root node The entire network forwarding cost of the tree;
  • a first target root node determining unit configured to determine, according to the entire network forwarding cost of each of the candidate distribution trees, a root node of the candidate distribution tree that meets the preset condition as a first target root node, where the preset condition includes at least :
  • the distribution of the entire network of the distribution tree is the least expensive;
  • a first distribution tree establishing unit configured to establish a first distribution tree with the first target root node as a root node.
  • a routing bridge RBridge comprising: a distribution tree generating device as described above.
  • the method for generating a distribution tree disclosed in the embodiment of the present invention determines that the root node of the candidate distribution tree that meets the preset condition is the first one by obtaining the whole network forwarding cost of each candidate distribution tree in advance.
  • the target root node establishes a distribution tree according to the first target root node to meet the requirements of the TRILL network with the smallest overall multicast delay and the optimal forwarding scheme.
  • FIG. 1 is a schematic structural diagram of a distribution tree established by using the prior art
  • FIG. 2 is a flowchart of a method for generating a distribution tree according to an embodiment of the present invention
  • FIG. 3 is a flowchart of determining a target root node according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of acquiring a traffic matrix according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a network topology according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of establishing a subsequent distribution tree according to an embodiment of the present invention.
  • Figure ⁇ is a schematic structural diagram of a distribution tree disclosed in an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of another distribution tree according to an embodiment of the present disclosure.
  • FIG. 9 is a flowchart of a method for forwarding a multicast packet according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a distribution tree generating apparatus according to an embodiment of the present invention
  • FIG. 11 is a schematic structural diagram of another distribution tree generating apparatus according to an embodiment of the present invention
  • Schematic diagram of the structure of the tree generating device Schematic diagram of the structure of the tree generating device. detailed description
  • Step S21 Obtaining each RBridge in the TRILL network as a root node according to communication requirements between RBridges in the TRILL network The entire network forwarding cost of the candidate distribution tree.
  • Multiple distribution trees can be computed in a TRILL network, and the roots of each distribution tree can be specified by the RBridge, management device, or central control unit with the highest priority in the network.
  • the forwarding cost of the entire network is infinite.
  • the source RBridge of the multicast packet is distributed.
  • the multicast message will be forwarded according to the distribution tree, so that the forwarding cost will be determined by the distribution tree.
  • the root node of the distribution tree is the first target root node, and the preset conditions include at least: the distribution network of the distribution tree has the lowest cost;
  • the root node of the candidate distribution tree that meets the preset condition is determined as the first target root node, and the manner of arbitrarily designating the root node in the prior art is avoided.
  • Pre-set conditions can include other conditions in addition to the minimum network-wide forwarding cost of the distribution tree.
  • FIG. 3 the specific process of this step is shown in FIG. 3, including:
  • Step S221 Determine an RBridge corresponding to the candidate distribution tree with the lowest network forwarding cost as the candidate root node;
  • Step S222 determining whether the candidate root node is unique, if yes, proceeding to step S223, and if not, executing step S224;
  • Step S224 Determine that the candidate root node with the smallest system number is the first target root node.
  • the corresponding root node When there is only one candidate distribution tree with the lowest cost of the entire network, the corresponding root node has only one. In this case, the minimum forwarding cost of the entire network can be used as a preset condition to determine the corresponding distribution tree.
  • the root node is the first target root node. However, when the number of the candidate distribution trees with the lowest cost of the entire network forwarding is multiple, further determination is needed. As shown above, the candidate root node with the smallest system number is determined as the first target root node, or the forwarding path is determined.
  • the root node corresponding to the shortest distribution tree is the first target root node, and the specific determination basis can be set according to actual conditions. Step S23: Establish a distribution tree corresponding to the first target root node.
  • the first distribution tree After determining the first target root node, the first distribution tree is established.
  • the root of the candidate distribution tree with the lowest forwarding cost is determined as the first target root node, and the root node is established according to the first target root node by obtaining the multicast packet forwarding cost of the network in advance.
  • the first distribution tree is used to meet the requirements of the TRILL network with the lowest overall multicast delay and the optimal forwarding scheme.
  • the steps S21-S23 are performed by one RBridge in the TRILL network, or the steps S21-S23 are respectively performed by each RBridge in the TRILL network.
  • the communication requirements between each pair of nodes can be obtained according to the existing measurement tools (such as Cisco's Netflow), and the fan-out bandwidth of the source RBridge, the fan-in bandwidth of the destination RBridge, and the scaling factor.
  • the communication requirements between the source RBridge and the destination RBridge in the TRILL network are obtained.
  • the traffic matrix of the network can be determined according to the communication requirements.
  • the communication requirements between nodes in the TRILL network may also be obtained according to the steps in FIG. 4, including:
  • Step S41 Obtain communication requirements between the source RBridge and the destination RBridge in the TRILL network according to the fanout bandwidth of the source RBridge, the fan-in bandwidth of the destination RBridge, and the scaling factor.
  • the present invention uses the Gravity model commonly used in the industry to obtain a network traffic matrix.
  • the Gravity model estimates the communication requirements between the two nodes by the fan-in/fan-out bandwidth of the two nodes.
  • the traffic flow between the source and destination is proportional to the product of the fan-out bandwidth of the source and the fan-in bandwidth of the destination.
  • the present invention provides a calculation formula for the communication requirements between the source and the destination:
  • the traffic matrix avoids the need to measure the communication between nodes and nodes, and does not need to periodically count and store the traffic between nodes and nodes, thereby avoiding computational and storage overhead for the nodes, thereby reducing the deployment. Difficulty.
  • the step S41 is performed by one RBridge in the TRILL network, or the step S41 is performed by each RBridge in the TRILL network.
  • the RBridge performing the step S41 is the same as the RBridge performing the steps S21-S23.
  • Step S61 Determine the entire network of multiple distribution tree groups in the TRILL network according to the communication requirements between the nodes in the TRILL network. a forwarding cost, where each of the plurality of distribution tree groups includes the first distribution tree and at least one candidate distribution tree, and each distribution tree in the same distribution tree group is different from each other;
  • the first distribution tree and the candidate distribution tree are respectively configured into a plurality of distribution tree groups, and the distribution trees in the distribution tree group are different from each other.
  • the topology structure shown in FIG. 5 is taken as an example, and the first distribution tree is set as an example.
  • the candidate distribution tree includes a distribution tree with RB1, RB2, RB3, RB4, RB5, and RB6 as the root node, and then the first distribution tree and the distribution tree with RB2 as the root node.
  • the first distribution tree group, the first distribution tree and the distribution tree with the RB3 as the root node form a second distribution tree group, and so on, to establish other distribution tree groups.
  • each distribution tree in the same distribution tree group is different from each other, that is, each distribution tree group includes a first distribution tree, and a candidate distribution tree other than the distribution tree in which RB1 is the root node, it needs to be established at this time.
  • Step S62 determining that the root node of the candidate distribution tree in the distribution tree group with the lowest network forwarding cost is the second target root node;
  • Step S63 Establish a second distribution tree with the second target root node as a root node.
  • each time one is selected the current network forwarding generation is performed.
  • RB1 advertises the roots of the five trees that need to be established to the entire network.
  • each RBridge has already notified the number of distribution trees that it can support to other RBridges in the whole network.
  • the number of distribution trees that the entire network can support will be determined by the minimum values min ⁇ s, k ⁇ of s and k.
  • each RBridge After receiving the announcement of RB1, each RBridge only calculates the min ⁇ s, k ⁇ tree.
  • the order of calculation is usually the order in which these tree roots are advertised.
  • the steps S61-S62 are performed by one RBridge in the TRILL network, or the steps S61-S62 are respectively performed by each RBridge in the TRILL network.
  • the RBridge performing the steps S61-S62 is the same as the RBridge performing the steps S21-S23.
  • the second target root node can also be determined by the process shown in FIG. 3, and the method shown in FIG. 4 can be used to obtain the communication requirements between the nodes.
  • the present invention describes the above method in detail through a specific embodiment: It is assumed that the traffic matrix corresponding to the network topology shown in FIG. 5 is as shown in Table 2.
  • the forwarding cost of the entire network corresponding to all the candidate distribution trees in the network can be determined. It is assumed that the distribution cost of the distribution tree with RB3 as the root node is the smallest. Then, RB3 is selected as the root node to establish the first distribution tree, so that the forwarding cost of the whole network is the smallest, that is, the forwarding cost of the network decreases the fastest. .
  • the distribution tree After the first distribution tree is established, you can select the next target root node according to the above idea, and then establish the next distribution tree.
  • FIG. 7 it is assumed that a first distribution tree has been established in the network at this time, and the distribution tree has RB3 as a root node.
  • the second distribution tree needs to be established for the network.
  • RB3 includes five distribution trees with RB1, RB2, RB4, RB5, and RB6 as the root nodes.
  • the tree is combined with the above five distribution trees to obtain a five-component tree group.
  • the first distribution tree and the distribution tree with the RB1 as the root node form a first distribution tree group, and the first distribution tree and RB2 are the root nodes.
  • the distribution tree constitutes a second distribution tree group, and the first distribution tree and the distribution tree with the RB4 as the root node form a third distribution tree group, and so on, other distribution tree groups are established, and then Calculate the network-wide forwarding cost for each distribution tree group.
  • the network-wide forwarding cost of each distribution tree group is determined, and the network-wide forwarding cost of the third distribution tree group is found to be the smallest. Therefore, RB4 is determined as the second target root node, and the second target root node is taken as the root node, and the second distribution tree is established.
  • a schematic diagram of the two distribution trees established at this time is shown in FIG.
  • the dotted line indicates the first distribution tree, and the dotted line indicates the second distribution tree.
  • VLAN Virtual Local Area Network
  • the method is distributed according to the method shown in FIG.
  • the process of selecting trees specifically includes:
  • Step S91 Search for a plurality of established distribution trees in which the source RBridge of the multicast packet is distributed.
  • Step S92 Obtain a forwarding rate of the plurality of established distribution trees for the multicast packet to be forwarded.
  • Step S93 determining that the distribution tree with the lowest forwarding cost is the target distribution tree
  • Step S94 The source RBridge forwards the multicast using the target distribution tree.
  • RB3 is the root
  • the forwarding cost is 4
  • RB4 is the root
  • the forwarding cost is 2
  • the distribution tree with the lowest forwarding cost is defined as RB4.
  • RB2 uses the distribution tree rooted at RB4 to forward multicast packets.
  • the steps S91-S93 are performed by one RBridge in the TRILL network, or the steps S91-S93 are respectively performed by each RBridge in the TRILL network.
  • the RBridge performing the steps S91-S93 is the same as the RBridge performing the steps S21-S23.
  • the present invention also discloses a distribution tree generating apparatus, which has a structure as shown in FIG. 10, and includes: a first forwarding cost obtaining unit 101, a first target root node determining unit 102, and a first distribution tree establishing unit 103, among them:
  • the first forwarding cost obtaining unit 101 is configured to obtain a network-wide forwarding cost of each candidate distribution tree that is a root node of each routing bridge RBridge in the TRILL network according to the communication requirement between the RBridges in the TRILL network; the first target root
  • the node determining unit 102 is configured to: according to each of the to-be-selected distribution points, the preset condition at least includes: the network-wide forwarding cost of the distribution tree is the smallest; the first distribution tree establishing unit 103 is configured to establish the first node with the first target root node as a root node. Distribution tree.
  • the distribution tree generating apparatus further includes: a second forwarding cost obtaining unit 104, configured to respectively determine multiple distribution trees in the TRILL network according to communication requirements between nodes in the TRILL network. a network-wide forwarding cost of the group, where each of the plurality of distribution tree groups includes a first distribution tree and at least one candidate distribution tree, and each distribution tree in the same distribution tree group does not match each other
  • the second target root node determining unit 105 is configured to determine that the root node of the candidate distribution tree in the distribution tree group with the lowest network forwarding cost is the second target root node; the second distribution tree establishing unit 106 is configured to establish The second distribution tree with the second target root node as the root node.
  • the first target root node determining unit 102 includes:
  • An alternate root node first determining subunit, configured to determine a distribution tree corresponding to the lowest network forwarding cost
  • RBridge is the alternate root node
  • the second root determining unit of the candidate root node is configured to determine whether the candidate root node is unique, and if not, determining that the candidate root node with the smallest system number is the target root node, and if yes, determining that the candidate root node is the target root node .
  • the device further includes:
  • the searching unit 107 is configured to search for multiple established distribution trees in which the source RBridge of the distributed multicast message is located;
  • the third forwarding cost obtaining unit 108 is configured to obtain, respectively, a forwarding cost of the plurality of established distribution trees for the multicast packet to be forwarded;
  • the distribution tree determining unit 109 is configured to determine that the distribution tree with the lowest forwarding cost is the target distribution tree, and the forwarding unit 1010 is configured to use the target distribution tree to forward the multicast packet by the source RBridge.
  • the working process between the units in the distribution tree generating apparatus disclosed in the embodiment of the present invention is as follows:
  • the first forwarding cost obtaining unit obtains the TRILL network according to the communication requirements between the RBridges in the TRILL network.
  • Each RBridge is a network-wide forwarding cost of each candidate distribution tree of the root node;
  • the first target root node determining unit according to each of the candidate distribution tree preset conditions at least includes: the distribution network has the lowest network-wide forwarding cost; Establish and first The distribution tree corresponding to the root node.
  • the second forwarding cost obtaining unit determines the network-wide forwarding cost of the multiple distribution tree groups in the TRILL network according to the communication requirements of the nodes in the TRILL network, where multiple distribution tree groups are included.
  • Each distribution tree group includes the first distribution tree and at least one candidate distribution tree, and each distribution tree in the same distribution tree group is different from each other;
  • the second target root node determining unit determines a distribution tree with the lowest network forwarding cost minimum
  • the root node of the candidate distribution tree in the group is the second target root node;
  • the second distribution tree establishing unit establishes a second distribution tree with the second target root node as the root node.
  • the searching unit searches for multiple established distribution trees in which the source RBridge of the distributed multicast message is located; Obtaining a forwarding cost of the plurality of established distribution trees for the multicast packets to be forwarded respectively; the distribution tree determining unit determines that the distribution tree with the lowest forwarding cost is the target distribution tree; and the source RBridge forwards the multicast report by using the target distribution tree by using the forwarding unit Text.
  • the present invention also discloses an RBridge, including: the distribution tree generating apparatus disclosed in the above embodiment.
  • the RBridge disclosed in this embodiment uses the distribution tree generating apparatus to establish a distribution tree, so that the tree root of the candidate distribution tree with the lowest forwarding cost is determined as the target root node by using the multicast packet forwarding cost of the network in advance, and according to the target root node. Establish a distribution tree to meet the requirements of the TRILL network with the lowest overall multicast delay and the optimal forwarding scheme.
  • the various embodiments in the specification are described in a progressive manner, and each embodiment focuses on differences from other embodiments, and the same similar parts between the various embodiments may be referred to each other.
  • the description is relatively simple, and the relevant parts can be referred to the description of the method part.
  • RAM random access memory
  • ROM read-only memory
  • EEPROM electrically programmable ROM
  • EEPROM electrically erasable programmable ROM
  • registers hard disk, removable disk, CD-ROM, or technical field Any other form of storage medium known.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Description

一种分发树生成方法、 装置及路由网桥 技术领域
本发明涉及通信技术领域, 尤其涉及一种分发树生成方法、装置及路由网 桥。 背景技术
TRILL ( Transparent Interconnection of Lots of Links , 多链路透明互联协 议)是 IETF正在标准化的互联网二层(如以太网 ) 多路由解决方案。
TRILL协议在二层引入三层的 IS-IS路由来取代过去的 STP ( Spanning
Tree Protocol, 生成树协议) , 从而可以按照最短路径进行数据转发, 并且使 得多路径路由成为可能, 使得带宽的利用更加充分。 TRILL协议在数据包中封 装了 hop count (跳数)字段, 用于解决临时的路由环路问题。
在 TRILL网络中, RBridge ( Routing Bridge, 路由网桥) 不使用生成树算 法来计算分发树, 取而代之的是基于链路状态信息来计算分发树。 和 ISIS ( Intermediate System To Intermediate System Routing Protocol, 中间系统到中 间系统的路由选择协议)下的路由计算类似, RBridge存储了全网的拓朴信息, 从而可以计算网络中任意两点之间的最短路径。 分发树的计算过程是这样的: 在 TRILL网络中选择某个 RBridge作为树根。树根指定后,网络中的各个 RBridge 按照最短路径优先方法计算从树根到其他各个 RBridge的最短路径, 所有这些 最短路径组合在一起就构成了分发树。 TRILL在设计时并没有给出树根的选择 策略, 也就是说这个树根是随意指定的。 如图 1所示, 为了描述方便, 将图中 各个 RBridge简写为 RB, 如果指定 RB2为整个网络的分发树根, 那么所建立的 分发树如图 1间隔线所示。
发明人发现, 利用现有的 TRILL下的分发树计算方法生成的分发树中, 由于釆用随意指定树根的方式,使得依据随意指定的树根建立的分发树, 无法 满足 TRILL网络总体组播时延开销最小, 转发方案最优的要求。 发明内容
有鉴于此, 本发明提供一种分发树的生成方法、 装置及路由网桥。
本发明的一个方面如下。
一种分发树生成方法, 包括:
依据多链路透明互联协议 TRILL网络中的路由网桥 RBridge间的通信需 求, 分别获得以所述 TRILL网络中各个路由网桥 RBridge为根节点的各个待 选分发树的全网转发代价; 树的根节点为第一目标根节点, 所述预设条件至少包括: 分发树的全网转发代 价最小;
建立以所述第一目标根节点为根节点的第一分发树。
本发明的另一个方面如下。
一种分发树生成装置, 包括:
第一转发代价获取单元, 用于依据多链路透明互联协议 TRILL网络中的 路由网桥 RBridge间的通信需求, 分别获得以所述 TRILL网络中各个路由网 桥 RBridge为根节点的各个待选分发树的全网转发代价; 第一目标根节点确定单元,用于依据所述各个待选分发树的全网转发代价 确定符合预设条件的待选分发树的根节点为第一目标根节点,所述预设条件至 少包括: 分发树的全网转发代价最小;
第一分发树建立单元,用于建立以所述第一目标根节点为根节点的第一分 发树。
一种路由网桥 RBridge, 包括: 如上所述的分发树生成装置。
从上述的技术方案可以看出, 本发明实施例公开的分发树生成方法,通过 预先获得各个待选分发树的全网转发代价,确定符合预设条件的待选分发树的 根节点为第一目标根节点, 并依据第一目标根节点建立起分发树, 以满足 TRILL网络总体组播时延开销最小, 转发方案最优的要求。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付 出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为釆用现有技术建立的分发树的结构示意图;
图 2为本发明实施例公开的一种分发树生成方法的流程图;
图 3为本发明实施例公开的确定目标根节点的流程图;
图 4为本发明实施例公开的获取流量矩阵的流程图;
图 5为本发明实施例公开的网络拓朴结构示意图;
图 6为本发明实施例公开的建立后续的分发树的流程图; 图 Ί为本发明实施例公开的分发树的结构示意图;
图 8为本发明实施例公开的又一分发树的结构示意图;
图 9为本发明实施例公开的组播报文转发方法的流程图;
图 10为本发明实施例公开的一种分发树生成装置的结构示意图; 图 11为本发明实施例公开的又一分发树生成装置的结构示意图; 图 12为本发明实施例公开的又一分发树生成装置的结构示意图。 具体实施方式
下面将结合本发明实施例中的附图 ,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明中的实施例, 本领域普通技术人员在没有做出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。 本发明实施例公开的一种分发树的生成方法的流程如图 2所示, 包括: 步骤 S21、依据 TRILL网络中的 RBridge间的通信需求,分别获得以 TRILL 网络中各个 RBridge为根节点的各个待选分发树的全网转发代价。
在 TRILL 网络中可以计算多棵分发树, 而各棵分发树的根可由网络中具 有最大优先级的 RBridge、 管理设备或中央控制单元来指定。在为 TRILL网络 计算第一棵分发树前, 整个网络的转发代价为无穷大, 当为网络计算出第一棵 分发树后且只存在一棵可用的分发树时,分发组播报文的源 RBridge将按照该 分发树转发其组播报文, 从而转发代价将由该分发树决定。 在选择分发树前, 确定以网络中每一个 RBridge作为根节点的待选分发树的全网转发代价。需要 特别说明的是,在确定所述每一个 RBridge作为根节点的待选分发树的转发代 价时, 只需要计算各个待选分发树的转发代价, 并不需要在转发表中配置分发 树, 即不需要实际建立分发树。 分发树的根节点为第一目标根节点,预设条件至少包括: 分发树的全网转发代 价最小;
本步骤中, 将符合预设条件的待选分发树的根节点确定为第一目标根节 点, 避免釆用现有技术中, 任意指定根节点的方式。 预设条件除包含分发树的 全网转发代价最小外, 还可以包括其他条件。
进一步的, 本步骤具体流程如图 3所示, 包括:
步骤 S221、 确定全网转发代价最小的待选分发树对应的 RBridge为备选 根节点;
步骤 S222、 判断备选根节点是否唯一, 若是, 则执行步骤 S223 , 若否, 则执行步骤 S224;
步骤 S223、 确定备选根节点为第一目标根节点;
步骤 S224、 确定系统编号最小的备选根节点为第一目标根节点。
当全网转发代价最小的待选分发树只有一棵时,那么其对应的根节点只有 一个, 则此时, 可以只利用全网转发代价最小作为预设条件, 确定与该待选分 发树对应的根节点为第一目标根节点。但是, 当全网转发代价最小的待选分发 树为多棵时, 需要进行进一步的确定, 如上述所示, 确定系统编号最小的备选 根节点为第一目标根节点, 或者,确定转发路径最短的分发树对应的根节点为 第一目标根节点, 具体的确定依据可根据实际情况进行设定。 步骤 S23、 建立与第一目标根节点对应的分发树。
确定第一目标根节点后, 建立第一分发树。
本实施例公开的分发树生成方法中,通过预先获得网络的组播报文转发代 价,确定转发代价最小的待选分发树的树根为第一目标根节点, 并依据第一目 标根节点建立起第一分发树, 以满足 TRILL网络总体组播时延开销最小, 转 发方案最优的要求。
可选地, 所述步骤 S21-S23由 TRILL网络中的一个 RBridge执行, 或者, 由 TRILL网络中每个 RBridge均分别执行所述步骤 S21-S23。
上述方案中, 可以按照现有的使用测量工具(如思科的 Netflow ) 的方式 来获取每对节点之间的通信需求, 也可以根据源 RBridge 的扇出带宽、 目的 RBridge的扇入带宽以及比例因子获得 TRILL网络中所述源 RBridge和目的 RBridge之间的通信需求。 之后, 就可以根据通信需求确定网络的流量矩阵。
可选地, 当网络中没有部署类似的流量釆集协议时, 也可以按照如图 4 中步骤, 获取 TRILL网络中的节点间的通信需求包括:
步骤 S41、根据源 RBridge的扇出带宽、 目的 RBridge的扇入带宽以及比例因 子获得 TRILL网络中源 RBridge和目的 RBridge之间的通信需求。 本发明釆用业 界常用的引力(Gravity )模型来获取网络流量矩阵。 Gravity模型通过两个节点 的扇入扇出 (fan-in/fan-out ) 带宽来估计所述两个节点之间的通信需求。 源与 目的之间的通信流量与源的扇出带宽和目的地的扇入带宽之积成正比。 可选 地, 本发明给出源与目的地之间的通信需求的一个计算公式:
比例因子 X 源的扇出带宽 X 目的地的扇入带宽 (式 -1 ) 例如, 如图 5所示的网络拓朴结构, 为了描述方便, 将图中各个 RBridge 简写为 RB。假设每条链路的带宽均为 lOGbps, (式 -1 )中的比例因子为 0.001。 如图 5所示, RB1有 2条链路, RB5有 4条链路, 因此可以确定 RB1的扇出 带宽为 10Gbpsx2=20Gbps, RB5的扇入带宽为 10Gbpsx4=40Gbps。 因此, RB1 至 RB5的通信需求为 0.001 20 40 = 0.8Gbps。 依照该方法, 便可以得出任 意两个 RB之间的通信需求, 相应地, 可以获得网络的流量矩阵如表 1所示。
表 1利用 Gravity模型计算的流量矩阵
Figure imgf000009_0001
利用上述方法获得流量矩阵, 避免了为了测量节点与节点之间的通信需 求, 不需要定期统计并存储节点与节点之间的通信量,避免给节点带来计算和 存储开销, 从而降低了部署的难度。
可选地, 所述步骤 S41由 TRILL网络中的一个 RBridge执行, 或者, 由 TRILL网络中每个 RBridge均分别执行所述步骤 S41。 优选地, 执行所述步骤 S41的 RBridge与执行所述步骤 S21-S23的 RBridge相同。
本发明实施例公开的又一分发树生成方法,当需要在网络内建立多棵分发 树时, 按照图 1所示流程建立出第一棵分发树后, 可以按照下述方法, 依次建 立后续的分发树, 直到满足预设值, 具体流程如图 6所示, 包括: 步骤 S61、 依据 TRILL网络中的节点间的通信需求, 分别确定 TRILL网 络中的多个分发树组的全网转发代价, 其中, 多个分发树组中的每个分发树组 包括所述第一分发树和至少一个待选分发树,同一分发树组中的各个分发树互 不相同;
本实施例中将第一分发树和待选分发树分别组成多个分发树组,该分发树 组中的分发树互不相同, 以图 5所示拓朴结构为例, 设第一分发树为以 RB1 建立的分发树, 则待选分发树包括分别以 RB1、 RB2、 RB3、 RB4 、 RB5、 RB6 为根节点的分发树, 然后将第一分发树与以 RB2为根节点的分发树组成第一 分发树组, 将第一分发树与以 RB3为根节点的分发树组成第二分发树组, 依 次类推建立其他分发树组。 由于同一分发树组中的各个分发树互不相同, 即每 个分发树组中包括第一分发树, 和一个除 RB1 为根节点的分发树之外的待选 分发树, 因此此时需要建立五个分发树组。
步骤 S62、确定全网转发代价最小的分发树组中的待选分发树的根节点为 第二目标根节点;
分别获取上述五个分发树组的全网转发代价。 需要特别说明的是, 此时只 需要计算各个分发树组的转发代价,并不需要在转发表中配置分发树组内的分 发树,即不需要实际建立分发树。假设其中以 RB1为根节点的分发树与以 RB3 为根节点的分发树组成第二分发树组的全网转发代价最小, 则确定 RB3为第 二目标根节点。
步骤 S63、 建立以第二目标根节点为根节点的第二分发树。
按照上述步骤, 假设预设值为 5 , 则每次都挑选一棵使得当前全网转发代 价最小的分发树, 直到挑选出 5棵。 根据 TRILL协议, RB1将需要建立的 5 棵树的树根通告到全网, 在分发树计算前, 每个 RBridge已经将自己能够支持 的分发树的数量通告到全网其它的 RBridge。 假设 k表示全网中支持分发树最 少的 RBridge所支持的分发树的数目, s为需要建立的分发树的数目。 这样, 全网能够支持的分发树的数量将由 s和 k的最小值 min{s, k}来确定。 在收到 RB1的通告后, 每个 RBridge只计算 min{s, k}棵树。 按照 TRILL协议, 计算 的顺序通常即是这些树根被通告的顺序。
可选地, 所述步骤 S61-S62由 TRILL网络中的一个 RBridge执行, 或者, 由 TRILL网络中每个 RBridge均分别执行所述步骤 S61-S62。优选地, 执行所 述步骤 S61-S62的 RBridge与执行所述步骤 S21-S23的 RBridge相同。 本实施例中, 同样可以釆用如图 3所示流程确定第二目标根节点, 以及如 图 4所示的方法, 获得节点间的通信需求。
下面, 本发明通过一个具体的实施例对上述方法进行详细的描述: 假设图 5所示网络拓朴结构所对应的流量矩阵如表 2所示。
表 2 流量矩阵
RB1 RB2 RB3 RB4 RB5 RB6
RB1 0 0 0 0 0 0
RB2 0 0 0 0 0 0
RB3 0 1 0 0 1 0
RB4 0 1 0 0 1 0 RB5 0 0 0 0 0 0
RB6 0 0 0 0 0 0 由表 2可以看出, RB3与 RB2、RB3与 RB5的距离都为 1 ,而 RB4与 RB2、 RB4与 RB5的距离都为 2。 当以 RB3为根节点建立分发树时, 其对应的分发 树的结构如图 7中点划线所示, 需要指出的是, 此时并未真正建立如图中所示 的分发树, 此时整个网络的转发代价由无穷大下降为 ( 1x1 + 1x1 ) + ( 2x 1 + 2x1 ) = 6, 其中, 乘积的第一项表示时延, 第二项表示通信需求。 通过类 似的方法, 可以确定当以 RB1 为根节点建立分发树时, 其对应的分发树的结 构如图 7中实线所示, 此时也并未真正建立如图中所示的分发树, 此时整个网 络的转发代价的数值为 8。 通过上述方法可以确定网络中全部待选的分发树对 应的整个网络的转发代价。 现假设以 RB3为根节点的分发树对应的转发代价 最小, 则选择 RB3为根节点建立第一棵分发树, 从而使得全网的转发代价最 小, 即网络的转发代价下降速度最快。。
在建立了第一棵分发树后, 可以按照上述思想来选择下一目标根节点, 然 后建立下一棵分发树。 以图 7为例, 假设此时网络中已经建立了第一分发树, 该分发树以 RB3为根节点。 需要为网络建立第 2棵分发树, 此时除 RB3为根 节点的第一分发树外, 还包括分别以 RB1、 RB2、 RB4 、 RB5、 RB6 为根节 点的五棵分发树,将第一分发树分别和上述五棵分发树进行组合,得到五组分 发树组, 将第一分发树与以 RB1 为根节点的分发树组成第一分发树组, 将第 一分发树与以 RB2为根节点的分发树组成第二分发树组, 将第一分发树与以 RB4为根节点的分发树组成第三分发树组,依次类推建立其他分发树组,然后 计算每一分发树组的全网转发代价。 其中, 第一分发树与 RB4为根节点的分 发树组成的第三分发树组的全网转发代价为( 1 x 1 + 1 x 1 ) + ( 1 x 1 + 1 x 1 ) = 4, 其中乘积的第一项表示时延, 第二项表示流量发送速率, 转发代价由 6下 降为 4。 分别确定各个分发树组的全网转发代价, 发现第三分发树组的全网转 发代价最小。 因此, 将 RB4确定为第二目标根节点, 以该第二目标根节点为 根节点, 建立第二分发树。 此时建立的两棵分发树的示意图如图 8所示。 其中 点划线表示第一分发树, 虚线表示第二分发树。 网络结构中, 例如 VLAN ( Virtual Local Area Network , 虚拟局域网)。
可选地, 当建立出多棵分发树后, 利用分发树进行组播报文分发时, 为了 使得各个节点之间传递数据报文代价最小,按照如图 9所示方法, 本实施例进 行分发树的选择的过程具体包括:
步骤 S91、 查找分发组播报文的源 RBridge所在的多个已建立的分发树; 步骤 S92、分别获取多个已建立的分发树针对待转发的组播报文的转发代 价;
步骤 S93、 确定转发代价最小的分发树为目标分发树;
步骤 S94、 源 RBridge利用目标分发树转发组播 ·艮文。
上述步骤的具体实现方式为: 假设已经按照图 8所示建立分发树, 其中点 划线表示以 RB3为根建立的分发树,虚线表示以 RB4为根节点建立的分发树。 网络内的 RB2向组播成员 RB1、 RB4分别发送速率为 lGbps的组播才艮文。 这 个时候, 查找分发组播 4艮文的源 RBridge所对应的分发树, 找到 RB2对应的 分发树为图中所示两棵分发树, 分别以 RB3、 RB4为根节点。 RB2与根 RB3、 RB4的距离相等,如果按照"根就近"的原则可以选择两者中的任意一棵作为一 个 VLAN的分发树。 但是, 通过计算两棵分发树转发组播报文的转发代价, 以 RB3为根, 转发代价为 4, 以 RB4为根, 转发代价为 2, 确定转发代价最 小的以 RB4为根的分发树作为目标分发树, RB2利用以 RB4为根的分发树转 发组播报文。
可选地, 所述步骤 S91-S93由 TRILL网络中的一个 RBridge执行, 或者, 由 TRILL网络中每个 RBridge均分别执行所述步骤 S91-S93。优选地, 执行所 述步骤 S91-S93的 RBridge与执行所述步骤 S21-S23的 RBridge相同。 进一步的, 本发明同时公开了一种分发树生成装置, 其结构如图 10所示, 包括: 第一转发代价获取单元 101、 第一目标根节点确定单元 102和第一分发 树建立单元 103 , 其中:
第一转发代价获取单元 101用于依据 TRILL网络中的 RBridge间的通信 需求, 分别获得以 TRILL网络中各个路由网桥 RBridge为根节点的各个待选 分发树的全网转发代价;第一目标根节点确定单元 102用于依据各个待选分发 点, 预设条件至少包括: 分发树的全网转发代价最小; 第一分发树建立单元 103用于建立以第一目标根节点为根节点的第一分发树。
可选地, 如图 11所示, 所述分发树生成装置还包括: 第二转发代价获取 单元 104 , 用于依据 TRILL网络中的节点间的通信需求 , 分别确定 TRILL网 络中的多个分发树组的全网转发代价, 其中, 多个分发树组中的每个分发树组 包括第一分发树和至少一个待选分发树 ,同一分发树组中的各个分发树互不相 同; 第二目标根节点确定单元 105, 用于确定全网转发代价最小的分发树组中 的待选分发树的根节点为第二目标根节点; 第二分发树建立单元 106, 用于建 立以第二目标根节点为根节点的第二分发树。
可选地, 第一目标根节点确定单元 102包括:
备选根节点第一确定子单元,用于确定全网转发代价最小的分发树对应的
RBridge为备选根节点;
备选根节点第二确定子单元, 用于判断备选根节点是否唯一, 若否, 则确 定系统编号最小的备选根节点为目标根节点, 若是, 则确定备选根节点为目标 根节点。
可选地, 如图 12所示, 该装置还包括:
查找单元 107, 用于查找分发组播 4艮文的源 RBridge所在的多个已建立的 分发树;
第三转发代价获取单元 108, 用于分别获取多个已建立的分发树针对待转 发的组播报文的转发代价;
分发树确定单元 109, 用于确定转发代价最小的分发树为目标分发树; 转发单元 1010, 用于源 RBridge利用目标分发树转发组播报文。
本发明实施例公开的分发树生成装置中各个单元间的工作过程如下: 当建立第一棵分发树时, 第一转发代价获取单元依据 TRILL 网络中的 RBridge间的通信需求,分别获得以 TRILL网络中各个 RBridge为根节点的各 个待选分发树的全网转发代价;第一目标根节点确定单元依据各个待选分发树 预设条件至少包括: 分发树的全网转发代价最小; 第一建立单元建立与第一目 标根节点对应的分发树。 当需要继续建立分发树时, 第二转发代价获取单元依 据 TRILL网络中的节点间的通信需求, 分别确定 TRILL网络中的多个分发树 组的全网转发代价, 其中, 多个分发树组中的每个分发树组包括所述第一分发 树和至少一个待选分发树, 同一分发树组中的各个分发树互不相同; 第二目标 根节点确定单元确定全网转发代价最小的分发树组中的待选分发树的根节点 为第二目标根节点;第二分发树建立单元建立以第二目标根节点为根节点的第 二分发树。此外, 当需要从建立的多棵分发树中选择分发树进行组播报文分发 时, 查找单元查找分发组播报文的源 RBridge所在的多个已建立的分发树; 第 三转发代价获取单元分别获取多个已建立的分发树针对待转发的组播报文的 转发代价; 分发树确定单元确定转发代价最小的分发树为目标分发树; 源 RBridge通过转发单元利用目标分发树转发组播报文。 本发明同时公开了一种 RBridge, 包括: 上述实施例中公开的分发树生成 装置。 本实施例公开的 RBridge利用分发树生成装置建立分发树, 使得通过预 先获得网络的组播报文转发代价,确定转发代价最小的待选分发树的树根为目 标根节点, 并依据目标根节点建立分发树, 以满足 TRILL网络总体组播时延 开销最小, 转发方案最优的要求。 本说明书中各个实施例釆用递进的方式描述,每个实施例重点说明的都是 与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于 实施例公开的装置而言, 由于其与实施例公开的方法相对应, 所以描述的比较 简单, 相关之处参见方法部分说明即可。 专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例 的单元及算法步骤, 能够以电子硬件、 计算机软件或者二者的结合来实现, 为 了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描 述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于 技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来 使用不同方法来实现所描述的功能, 但是这种实现不应认为超出本发明的范 围。
结合本文中所公开的实施例描述的方法或算法的步骤可以直接用硬件、处 理器执行的软件模块, 或者二者的结合来实施。软件模块可以置于随机存储器 ( RAM ),内存、只读存储器( ROM ),电可编程 ROM、电可擦除可编程 ROM, 寄存器、 硬盘、 可移动磁盘、 CD-ROM, 或技术领域内所公知的任意其它形式 的存储介质中。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本 发明。 对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见 的, 本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在 其它实施例中实现。 因此, 本发明将不会被限制于本文所示的这些实施例, 而 是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims

权 利 要 求
1、 一种分发树生成方法, 其特征在于, 包括:
依据多链路透明互联协议 TRILL网络中的路由网桥 RBridge间的通信需 求, 分别获得以所述 TRILL网络中各个路由网桥 RBridge为根节点的各个待
Figure imgf000018_0001
树的根节点为第一目标根节点, 所述预设条件至少包括: 分发树的全网转发代 价最小;
建立以所述第一目标根节点为根节点的第一分发树。
2、 根据权利要求 1所述的方法, 其特征在于, 还包括:
依据 TRILL网络中的节点间的通信需求, 分别确定所述 TRILL网络中的 多个分发树组的全网转发代价, 其中, 所述多个分发树组中的每个分发树组包 括所述第一分发树和至少一个所述待选分发树,同一分发树组中的各个分发树 互不相同;
确定全网转发代价最小的分发树组中的待选分发树的根节点为第二目标 根节点;
建立以所述第二目标根节点为根节点的第二分发树。
3、 根据权利要求 2所述的方法, 其特征在于, 还包括:
查找分发组播报文的源 RBridge所在的多个已建立的分发树;
分别获取所述多个已建立的分发树针对待转发的组播报文的转发代价; 确定转发代价最小的分发树为目标分发树;
所述源 RBridge利用所述目标分发树转发所述组播 ·艮文。
4、根据权利要求 1至 3任一项所述的方法,其特征在于,获取所述 TRILL 网络中的节点间的通信需求的方法包括:
根据源 RBridge的扇出带宽、 目的 RBridge的扇入带宽以及比例因子获得 TRILL网络中所述源 RBridge和目的 RBridge之间的通信需求。
5、 根据权利要求 4 所述的方法, 其特征在于, 所述通信需求为所述源
RBridge的扇出带宽、 所述目的 RBridge的扇入带宽和所述比例因子的乘积。
6、 根据权利要求 1至 5任一项所述的方法, 其特征在于, 所述通信需求 表示为流量矩阵。
7、 一种分发树生成装置, 其特征在于, 包括:
第一转发代价获取单元, 用于依据多链路透明互联协议 TRILL网络中的 路由网桥 RBridge间的通信需求, 分别获得以所述 TRILL网络中各个路由网 桥 RBridge为根节点的各个待选分发树的全网转发代价;
第一目标根节点确定单元,用于依据所述各个待选分发树的全网转发代价 确定符合预设条件的待选分发树的根节点为第一目标根节点,所述预设条件至 少包括: 分发树的全网转发代价最小;
第一分发树建立单元,用于建立以所述第一目标根节点为根节点的第一分 发树。
8、 根据权利要求 7所述的装置, 其特征在于, 还包括:
第二转发代价获取单元, 用于依据 TRILL 网络中的节点间的通信需求, 分别确定所述 TRILL网络中的多个分发树组的全网转发代价, 其中, 所述多 个分发树组中的每个分发树组包括所述第一分发树和至少一个所述待选分发 树, 同一分发树组中的各个分发树互不相同; 第二目标根节点确定单元,用于确定全网转发代价最小的分发树组中的待 选分发树的根节点为第二目标根节点;
第二分发树建立单元,用于建立以所述第二目标根节点为根节点的第二分 发树。
9、 根据权利要求 8所述的装置, 其特征在于, 还包括:
查找单元,用于查找分发组播报文的源 RBridge所在的多个已建立的分发 树;
第三转发代价获取单元,用于分别获取所述多个已建立的分发树针对待转 发的组播报文的转发代价;
分发树确定单元, 用于确定转发代价最小的分发树为目标分发树; 转发单元, 用于所述源 RBridge利用所述目标分发树转发所述组播 ·艮文。
10、 一种路由网桥 RBridge, 其特征在于, 包括: 如权利要求 7-9中任意 一项所述的分发树生成装置。
PCT/CN2011/074649 2011-05-25 2011-05-25 一种分发树生成方法、装置及路由网桥 WO2011144079A2 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2011/074649 WO2011144079A2 (zh) 2011-05-25 2011-05-25 一种分发树生成方法、装置及路由网桥
CN201180000752.2A CN102959909B (zh) 2011-05-25 2011-05-25 一种分发树生成方法、装置及路由网桥

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/074649 WO2011144079A2 (zh) 2011-05-25 2011-05-25 一种分发树生成方法、装置及路由网桥

Publications (2)

Publication Number Publication Date
WO2011144079A2 true WO2011144079A2 (zh) 2011-11-24
WO2011144079A3 WO2011144079A3 (zh) 2012-04-26

Family

ID=44992109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/074649 WO2011144079A2 (zh) 2011-05-25 2011-05-25 一种分发树生成方法、装置及路由网桥

Country Status (2)

Country Link
CN (1) CN102959909B (zh)
WO (1) WO2011144079A2 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103209132A (zh) * 2012-01-16 2013-07-17 华为技术有限公司 在透明多链路互联(trill)网络中实现组播的方法、装置及系统
CN104052671A (zh) * 2013-03-13 2014-09-17 杭州华三通信技术有限公司 Trill网络中的组播转发表项的处理方法及路由桥
CN104639344A (zh) * 2015-02-10 2015-05-20 杭州华三通信技术有限公司 一种用户组播报文发送方法和装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104243321A (zh) * 2014-09-05 2014-12-24 杭州华三通信技术有限公司 一种分发树树根的选取方法和路由桥设备
CN114531623B (zh) * 2020-10-31 2023-04-28 华为技术有限公司 一种信息传输方法、装置及网络节点

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1440164A (zh) * 2003-03-21 2003-09-03 清华大学 基于线性能量函数的服务质量路由预计算算法
US7450527B2 (en) * 2004-11-23 2008-11-11 Nortel Networks Limited Method and apparatus for implementing multiple portals into an Rbridge network
CN101494583A (zh) * 2008-01-24 2009-07-29 华为技术有限公司 路径桥接方法、网桥设备和桥接网络
CN101572674A (zh) * 2009-06-12 2009-11-04 杭州华三通信技术有限公司 一种路由计算方法及装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8203970B2 (en) * 2006-10-16 2012-06-19 Hewlett-Packard Development Company, L.P. Method and apparatus for selecting spanning tree root
US20090257365A1 (en) * 2008-04-11 2009-10-15 Tae In Hwang Method of distributing files over network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1440164A (zh) * 2003-03-21 2003-09-03 清华大学 基于线性能量函数的服务质量路由预计算算法
US7450527B2 (en) * 2004-11-23 2008-11-11 Nortel Networks Limited Method and apparatus for implementing multiple portals into an Rbridge network
CN101494583A (zh) * 2008-01-24 2009-07-29 华为技术有限公司 路径桥接方法、网桥设备和桥接网络
CN101572674A (zh) * 2009-06-12 2009-11-04 杭州华三通信技术有限公司 一种路由计算方法及装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103209132A (zh) * 2012-01-16 2013-07-17 华为技术有限公司 在透明多链路互联(trill)网络中实现组播的方法、装置及系统
WO2013107245A1 (zh) * 2012-01-16 2013-07-25 华为技术有限公司 在透明多链路互联(trill)网络中实现组播的方法、装置及系统
CN104052671A (zh) * 2013-03-13 2014-09-17 杭州华三通信技术有限公司 Trill网络中的组播转发表项的处理方法及路由桥
WO2014139350A1 (en) * 2013-03-13 2014-09-18 Hangzhou H3C Technologies Co., Ltd. Multicast forwarding entry computing
CN104052671B (zh) * 2013-03-13 2018-01-12 新华三技术有限公司 Trill网络中的组播转发表项的处理方法及路由桥
CN104639344A (zh) * 2015-02-10 2015-05-20 杭州华三通信技术有限公司 一种用户组播报文发送方法和装置
CN104639344B (zh) * 2015-02-10 2017-12-15 新华三技术有限公司 一种用户组播报文发送方法和装置

Also Published As

Publication number Publication date
CN102959909A (zh) 2013-03-06
CN102959909B (zh) 2015-06-03
WO2011144079A3 (zh) 2012-04-26

Similar Documents

Publication Publication Date Title
EP2327023B1 (en) Differentiated services for unicast multicast frames in layer 2 topologies
JP6510115B2 (ja) 負荷分散を実現するための方法、装置、およびネットワークシステム
CN104335537B (zh) 用于层2多播多路径传送的系统和方法
US8885643B2 (en) Method for multicast flow routing selection
JP6490082B2 (ja) 経路制御方法、デバイス、およびシステム
EP2911348A1 (en) Control device discovery in networks having separate control and forwarding devices
JP6589060B2 (ja) ソフトウェア定義ネットワークのエントリ生成およびパケット転送
WO2013159451A1 (zh) 跨域端到端路由的获取方法及装置、子路由计算实体
WO2008025299A1 (fr) Procédé de calcul de chemin de racine dans une passerelle de chemin le plus court
CN107294852B (zh) 一种使用拓扑分散短路径集的网络路由方法
JP2009538027A5 (zh)
JP2010536285A (ja) 経路選択方法及びネットワークシステム、経路計算要素
WO2011144079A2 (zh) 一种分发树生成方法、装置及路由网桥
RU2015101690A (ru) Адаптивная оптимизация размера mtu с использованием igp
WO2015117412A1 (zh) 基于isis的洪泛方法及装置
WO2018090852A1 (zh) 链路状态数据包的传输方法及路由节点
JP2003209568A (ja) ノードおよびパケット通信網およびパケット通信方法およびプログラムおよび記録媒体
WO2016078347A1 (zh) 一种trill网络分发树选择方法和trill网络节点
TW200527862A (en) Network topology generation method and node
CN103004149B (zh) 用于在网络中确定等值路径的方法、网络装置和系统
TWI487330B (zh) 網路系統及路由方法
JP6286506B2 (ja) Sdn共有ツリーマルチキャストストリーミングメカニズム及び方法
TW201244417A (en) Network device and power saving method thereof in local area network
CN101562577A (zh) 路由器、路由下一跳信息的离线计算方法及装置
Zhang et al. Research of multi-next Hop Routing algorithm

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180000752.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11782996

Country of ref document: EP

Kind code of ref document: A2