WO2011143845A1 - 制热器具充液式温度控制装置的液体感温介质及温度控制装置 - Google Patents

制热器具充液式温度控制装置的液体感温介质及温度控制装置 Download PDF

Info

Publication number
WO2011143845A1
WO2011143845A1 PCT/CN2010/075755 CN2010075755W WO2011143845A1 WO 2011143845 A1 WO2011143845 A1 WO 2011143845A1 CN 2010075755 W CN2010075755 W CN 2010075755W WO 2011143845 A1 WO2011143845 A1 WO 2011143845A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
control device
temperature control
temperature sensing
filled
Prior art date
Application number
PCT/CN2010/075755
Other languages
English (en)
French (fr)
Inventor
王禅嵩
欧志文
Original Assignee
Wang Chansong
Au Albert
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wang Chansong, Au Albert filed Critical Wang Chansong
Priority to EP10851603.0A priority Critical patent/EP2573641B1/en
Priority to US13/698,701 priority patent/US20130105588A1/en
Priority to CA2802779A priority patent/CA2802779C/en
Publication of WO2011143845A1 publication Critical patent/WO2011143845A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/01Control of temperature without auxiliary power
    • G05D23/12Control of temperature without auxiliary power with sensing element responsive to pressure or volume changes in a confined fluid
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/02Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using evaporation or sublimation, e.g. by observing boiling
    • G01K11/04Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using evaporation or sublimation, e.g. by observing boiling from material contained in a hollow body having parts which are deformable or displaceable under the pressure developed by the vapour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K5/00Measuring temperature based on the expansion or contraction of a material
    • G01K5/02Measuring temperature based on the expansion or contraction of a material the material being a liquid
    • G01K5/04Details
    • G01K5/08Capillary tubes

Definitions

  • the invention relates to a liquid temperature sensing medium and a temperature control device thereof, in particular to a liquid temperature sensing medium for a liquid charging type temperature control device of a heating device and the device, and belongs to the technical field of temperature control device manufacturing. Background technique
  • the temperature control device of some household appliances requires a liquid-filled temperature control device in order to achieve the correlation between the temperature sensing component and the switching component at different distances.
  • the device includes a temperature sensing component, a power component, and a switching component.
  • a capillary tube is used as a temperature sensing member to communicate with the power component.
  • the capillary and the power component are filled with a liquid temperature sensing medium such as a fluorocarbon, a grease or the like, and the liquid phase gas or the oil liquid is thermally expanded and contracted by the fluorine gas.
  • the refrigerant When a low-temperature refrigerant such as Freon is used as the medium, the refrigerant is poured into a closed space of the temperature sensing and power components. Under a certain temperature and pressure, the refrigerant is in a liquid condensed state at the lowest temperature of the temperature control device. When the temperature rises, the refrigerant undergoes a phase change from liquid to gas, and the amount of vaporization increases, so that the volume of the refrigerant increases, thereby driving the power member to expand and drive the switching member to operate. Since the non-low temperature part of the appliance is already in a vaporized state, the temperature change does not significantly change the vaporization amount of the refrigerant.
  • a low-temperature refrigerant such as Freon
  • such a temperature control device must use the lowest temperature portion as the temperature control point. It is usually used in refrigeration appliances such as refrigerators, air conditioners, and chillers.
  • the temperature control device using the low-temperature refrigerant is used for temperature control of a heating device such as a heater, a convection heater, etc.
  • the capillary portion must also be installed and fixed near the air inlet of the heater, that is, the room temperature is sensed.
  • the switch body In the relatively low temperature zone, the switch body is mounted in a relatively high temperature zone above the heating element, and the operation of the temperature control device is controlled by the change of the temperature sensing room temperature in the low temperature zone.
  • the principle is to utilize the thermal expansion and contraction of the liquid, and the volume change of the liquid in the temperature sensing package with the temperature is transmitted to the power component through the capillary. Thereby, the on/off action of the switching means of the temperature control device is driven.
  • the liquid In order to achieve the desired temperature control sensitivity, the liquid must be made to have a sufficient volume change. Therefore, a larger volume of the temperature sensing package is required to infuse more temperature sensitive medium.
  • liquid temperature sensing media such as Freon are only suitable for applications in the lower temperature range, such as below 40 °C. When used as a temperature control device for heating appliances, it can only be used as temperature control for the lowest temperature zone. Not applicable when high temperature zone temperature control is required, especially when overheat protection control is required.
  • Freon media also has problems in the production and use of media leaking to pollute the environment. And oil When the class or the like is used as a temperature sensitive medium, there is a problem that the liquid temperature sensing member is bulky and the temperature sensing region is small.
  • the change of the state of the medium with temperature is a gradual process
  • the expansion of the power component of the temperature control device is also a gradual process
  • the power component generally adopts a peristaltic bellows or bellows structure.
  • the switch components generally use a fast-jumping energy storage reed, so that the switch contacts can act instantaneously.
  • the problem with this type of cooperation is that when the fast-jumping energy storage reed loses the fast-bounce effect due to elastic fatigue, the power component cannot effectively push the switch contacts to open and close, thereby causing the temperature control or temperature limit failure, affecting the use. Safety and equipment safety. Summary of the invention
  • the technical problem to be solved by the present invention is to provide a liquid temperature sensing medium for a liquid-filled temperature control device of a heating device and the device according to the deficiencies of the prior art, and a specific mixed solution is used as a liquid-filled temperature control device for sensing temperature.
  • the temperature sensing medium of the component solves the problem that the Freon refrigerant and the liquid medium are not suitable as the temperature control or overheat protection of the heating element in the high temperature zone by matching the bubble point temperature (phase transition temperature) of the specific mixed solution with the required operating temperature.
  • the problem of temperature sensitive media is to provide a liquid temperature sensing medium for a liquid-filled temperature control device of a heating device and the device according to the deficiencies of the prior art, and a specific mixed solution is used as a liquid-filled temperature control device for sensing temperature.
  • the cooperation of the power component and the switch component adopts a mode in which the snap-in diaphragm and the fast-jumping reed cooperate, and solves the electrical safety problem caused by the failure of the snap-off diaphragm or the quick-jump reed.
  • the invention provides a liquid temperature sensing medium for a liquid-filled temperature control device of a heating device, which is a mixture of three components of water, ethanol and ethylene glycol or two components thereof.
  • the volume ratio of the mixed solution is 0-20% of water, 0-10% of ethanol, 80-95% of ethylene glycol; or the volume ratio of the mixed solution is 10-30% of water, 65-85% of ethanol, and B
  • the diol is 2-8%.
  • the present invention also provides a liquid temperature sensing medium for a liquid-filled temperature control device for a heating device, which is a mixture of water, methanol, ethylene glycol or a mixture of two components.
  • the volume ratio of the mixed solution is 5 to 25% of water, 70 to 90% of methanol, and 2 to 8% of ethylene glycol.
  • the invention further provides a liquid-filled temperature control device for a heating appliance, comprising a temperature sensing component, a power component and a switch component, wherein the temperature sensing component is a capillary tube (3), and the capillary tube (3) is closed at the end. The other end is connected to the power member, and the liquid temperature sensing medium as described above is filled in the closed space composed of the capillary (3) and the power member cavity.
  • the invention solves the problem that the Freon refrigerant and the liquid medium are not suitable as the temperature sensing medium for temperature control or overheat protection of the high temperature zone of the heating appliance by the principle of gasification of the specific mixed solution at a certain temperature, and the power component and the switch component
  • the combination of the snap-on diaphragm and the fast-jumping reed solves the snap-on membrane Electrical safety issues caused by failure of sheets or snap-flip reeds.
  • FIG. 1 is a schematic view showing the overall structure of a liquid-filled temperature control device of the present invention
  • Figure 2 is a plan view of the liquid filled temperature control device of the present invention.
  • Figure 3 is a cross-sectional view of the state in which the vaporization expansion of Figure 2 is not in the A-A direction;
  • Figure 4 is a plan view of the base portion of Figure 3;
  • Figure 5 is a cross-sectional view showing the gasification expansion state of Figure 2 taken along the A-A direction. detailed description
  • the mixed solution used in the liquid-filled temperature control device of the present invention is mainly composed of components such as purified water, ethylene glycol, ethanol (or methanol).
  • the boiling point of water is 100 °C
  • the boiling point of ethylene glycol is 197.5 °C
  • the boiling point of ethanol is 78 °C
  • the boiling point of methanol is 64.5 °C.
  • the bubble point temperature (or phase transition temperature) of the mixed solution may change.
  • the bubble point temperature point and the temperature control point are adjusted by adjusting the mixing ratio. correspond.
  • the mixed solution is filled in the sealed space, and when the temperature sensed by the temperature sensing portion reaches the required temperature control point or the temperature limit point, the mixed solvent as the temperature sensing medium will be vaporized, thereby filling the mixed solution.
  • the spatial volume of the medium expands, causing the diaphragm of the power component that communicates with it to form a sealed space, and the diaphragm of the power component pushes the switch component to disconnect the pair of contacts of the switch component.
  • Ethyl alcohol, ethylene glycol and other ingredients also have anti-freezing effect.
  • the ratio of the temperature of the temperature control device to the temperature of the mixed solution may be a plurality of mixing modes. The following are several examples:
  • Example 1 When the temperature control point of the temperature control device needs to be 120-14 CTC, a mixed solution having a volume ratio of 0-20% ethanol 0-10% and ethylene glycol 80-95% is used as a temperature sensing component. Warm medium.
  • Example 2 When the temperature control point of the temperature control device needs to be 140 ° C, a mixed solution of ethanol 5% and ethylene glycol 95% is used as a temperature sensing medium for the temperature sensing member.
  • Example 3 When the temperature control point of the temperature control device needs to be 80-95 ° C, a mixed solution of 10-30% water, 65-85% ethanol, 2 ⁇ 8% ethanol is used as the temperature sensing component. medium.
  • Example 4 When the temperature control point of the temperature control device needs to be 82 ° C, a mixed solution of 18% water, 80% ethanol, and 2% ethylene glycol is used as a temperature sensing medium for the temperature sensing member.
  • Example 5 When the temperature control point of the temperature control device needs to be 65 ⁇ 85 °C, water is used 5 ⁇ 25%, methanol 75-90% ethylene glycol 2 ⁇ 5% solution as a temperature sensitive medium for temperature sensing components.
  • the temperature of the capillary is generally controlled according to the specification of the whole machine and the fixed position of the capillary in the whole machine. It is 80-150. C. If the operating temperature is 82 ° C, the temperature sensing medium of the liquid-filled temperature control device used may be the mixed solution of the above Example 4.
  • the composition of the above mixed solvent may have other ratios of various components.
  • methanol can be used instead of ethanol.
  • Fig. 1 is a schematic view showing the entire structure of a liquid filled temperature control device according to the present invention
  • Fig. 2 is a plan view showing a liquid filled temperature control device according to the present invention.
  • the temperature sensing component of the temperature control device is a capillary tube 3, which is connected to the cover 1 of the power component, and the cover 1 is placed on the base 4 of the switch component, and the periphery is riveted.
  • a first terminal ⁇ and a second terminal 8 are disposed at a lower portion of the susceptor 4.
  • the capillary 3 can be arranged according to the temperature sensing and temperature control zone arrangement of the supporting heating device, and the length is 0.5-2 m.
  • the outer diameter of the capillary 3 is generally 1.5-2.5 mm, and a metal capillary such as a copper tube or a stainless steel tube is used.
  • a metal capillary such as a copper tube or a stainless steel tube is used.
  • the capillary 3 is disposed between the heating element and the upper air outlet.
  • the temperature control temperature control point When the temperature rise of the heater along any part of the length of the capillary exceeds the limit, it will cause the gasification expansion of the temperature sensing solution, thereby triggering the action of the switching component of the temperature control device, achieving the purpose of temperature control (or the purpose of overheating protection of the heating device) ). Since the highest temperature is used as the temperature control temperature control point, it is suitable for the temperature limit and temperature control of the electric heating appliance, and the temperature control or overheat protection is applied to the entire area where the capillary is placed.
  • Figure 3 is a cross-sectional view taken along line A-A of Figure 2;
  • Figure 4 is a plan view of the base portion of Figure 3.
  • the middle portion of the cover 1 has a disk shape, and is welded to the periphery of the elastic diaphragm 2 to form a closed hollow disc-shaped housing.
  • the through hole provided at the top of the cover 1 communicates with the capillary 3, and the capillary 3 The other end is closed.
  • the mixed solution 14 is filled in an enclosed space composed of a disk-shaped casing and a capillary.
  • the elastic diaphragm 2 is a snap-on elastic diaphragm. When the temperature rises and does not reach the operating temperature, the shape is recessed upward into the cover 1 (as shown in FIG.
  • the cover 1 can be made of a stainless steel material having a thickness of 0.5 mm, and the elastic diaphragm 2 can be made of an elastic stainless steel material having a thickness of 0.12 mm.
  • the power component of the liquid-filled temperature control device is a snap-on diaphragm that can be used with a slow-moving switch reed.
  • the problem with this mating mode is that the snap-on diaphragm has poor manufacturing quality due to long-term repetitive motion.
  • the slow-moving reed cannot be pushed in time to disengage the electrical contact from the set safe position, sparking and arcing will occur between the contacts, and electromagnetic interference will be generated to the grid. Therefore, a fast-jumping energy storage reed structure is employed.
  • a jack guide 5 is disposed at the mouth of the base 4, and a jack 6 that can move up and down in the through hole is disposed in the through hole in the middle of the jack guide 5, and the jack 6
  • the upper end is opposed to the elastic diaphragm 2; the lower end of the plunger 6 abuts against the spring piece 9.
  • the base 4, the jack guide 5 and the jack 6 are made of insulating materials such as bakelite and plastic.
  • a first terminal 7 and a second terminal 8 are disposed at a lower portion of the base 4, and the upper portion of the first terminal 7 is formed into a U-shaped bracket, and one end of the spring piece 9 is fixed in a slot of the U-shaped bracket 7.1 of the first terminal 7, the spring
  • the middle tongue of the piece 9 is bent 9.1 in the other side of the U-shaped bracket 7.1 of the first terminal 7, forming a cantilever beam, and the movable contact 11 is disposed at the cantilever end thereof, and the movable contact 11 is disposed in the second
  • the fixed contacts 10 on the terminals are opposite.
  • the two terminals can be made of a copper material
  • the spring piece 9 can be made of a 0.15 mm thick beryllium copper material.
  • the electrical contact material is a copper matrix with a composite silver layer on the contact surface.
  • the middle tongue of the spring piece 9 is curved by the energy storage arc. When the body of the spring piece 9 is pressed by the ram 6 over the curved tongue and the U-shaped bracket groove of the terminal 7, the spring piece 9 will be at the tongue. The elastic force of the piece quickly passes over the midpoint, so it is called a quick-jump spring piece. The difference between it and the slow-moving reed is that the slow-moving reed is only a pre-deformed elastic piece, and there is no curved-shaped tongue. The pre-deformation provides the contact pressure of the contact, but only moves with the external force to push the top, and does not A sudden reverse action will occur.
  • the fast-moving spring piece is characterized by being able to drive the second electrical contact to open and close quickly, which can effectively reduce arc ablation and electromagnetic interference, and improve contact life.
  • the snap-on diaphragm becomes creepy or bouncing due to long-term repeated action internal stress loss or poor manufacturing quality, etc., the contact can be quickly disengaged by the momentary movement of the snap-flip spring piece. Safe location.
  • a contact gap adjusting screw 13 is disposed on the base 4 below the movable contact 11, and the distance between the movable contact 11 and the fixed contact 10 after the disconnection is adjusted by the screw, so that the distance reaches the safety of the electrical product. distance.
  • a fulcrum adjusting screw 12 is arranged on the bottom surface of the U-shaped bracket 7.1 of the terminal 7 near the fulcrum of the tongue.
  • the fulcrum position of the groove on the pushing bracket that is, the reed
  • the spring piece 9 is slightly moved up and down, so that the spring piece 9 is The action center formed by the fulcrum is below the contact gap, even if the reed is in the action critical position.
  • the contact is kept closed before the ejector 6 acts on the reed 9, and the reed is reversed during the concave and convex stroke of the elastic diaphragm 2 to realize the quick-jump spring 9 to quickly open and close a pair of electrical contacts Features.
  • Fig. 3 shows a state in which the temperature sensing medium in the closed space composed of the disk-shaped casing and the capillary is not vaporized and expanded.
  • the snap-on elastic diaphragm 2 is in a recessed state with respect to the cover, and is not in contact with the upper end of the jack 6
  • the fixed contact 10 and the movable contact 11 are in a contact state
  • the temperature control device is in an on state.
  • Fig. 5 shows the state in which the temperature-sensing medium in the closed space composed of the disk-shaped casing and the capillary tube is gasified and expanded.
  • the temperature of the heating device will decrease, and the mixed solution medium will return to the liquefied state, so the volume will decrease, and the elastic diaphragm 2 will automatically return to the concave state, then the ejector 6
  • the thrust applied to the spring piece 9 is released, the spring piece 9 rebounds rapidly under the action of the curved tongue, so that the two electrical contacts return to the contact state, and the heating body starts to be energized again.
  • the invention utilizes a mixed solution of a plurality of solvents and water, can adjust the composition of the solution according to the temperature of different temperature control points required, and has a wide application range, and the cooperation of the power component and the switch component used in the invention ensures the safety of the electrical appliance. .

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Thermally Actuated Switches (AREA)
  • Control Of Temperature (AREA)

Description

制热器具充液式温度控制装置的液体感温介质及温度控制装置
技术领域
本发明涉及一种液体感温介质及其温度控制装置, 特别是制热器具充液式温度控 制装置的液体感温介质及该装置, 属于温度控制装置制造技术领域。 背景技术
某些家用电器的温度控制装置, 为达到感温部件与开关部件在较远距离不同部位 的相互关联, 需要用到充液式温度控制装置。 该装置包括感温部件、 动力部件和开关 部件。 通常使用毛细管作为感温部件与动力部件相通相连, 在毛细管及动力部件内灌 注液体感温介质如氟立昂、 油脂类等介质, 通过氟立昂的液气相变或油类液体热胀冷 縮来推动温度控制装置的开关部件动作。
当用氟利昂等低温冷媒做介质时, 冷媒灌注在一个密闭的感温及动力部件的空间 内, 在一定的温度和压力下冷媒在温度控制装置的最低温部位处于液态凝聚态。 当温 度上升时, 冷媒发生由液态到气态的相变, 气化量增加, 使冷媒的体积增大, 从而推 动动力部件膨胀并驱动开关部件动作。 而该器具的非最低温部位由于已经处于气化状 态, 温度的变化不会明显改变冷媒的气化量, 因此, 这类温度控制装置必须以最低温 部位为控温点。 通常用在电冰箱、 空调、 冷水机等制冷器具上。 而当应用低温冷媒的 温度控制装置用在制热器具, 如: 暖风机、 对流式取暖器等做温度控制时, 也须将毛 细管部分安装固定在取暖器进气口附近, 也就是感应室温的相对低温区, 开关主体安 装在发热体上方的相对高温区, 通过低温区冷媒感应室温的变化来控制温度控制装置 的动作。
当用油类等其他液体作为制热器具温度控制装置的感温介质时, 其原理是利用液 体的热胀冷縮, 将感温包内液体随温度产生的体积变化通过毛细管传递到动力部件, 从而驱动温度控制装置开关部件的通断动作。 为达到所需的温度控制的灵敏性, 须使 液体产生足够的体积变化, 因此, 需要较大体积的感温包灌注较多的感温介质。
上述两类液体感温介质工作方式存在的问题是, 氟利昂等冷媒介质只适合于较低 温度范围内的应用, 如 40°C以下。 当作为制热器具的温度控制装置时, 只能作为对最 低温区的温度调节控制。 当需要对高温区温度控制, 特别是需要过热保护控制时, 则 不适用。 使用氟利昂介质, 还存在生产和使用环节介质泄露污染环境的问题。 而将油 类等作为感温介质时, 又存在液体感温部件体积大, 感温控制区域小的问题。
此外, 采用上述两种介质, 介质状态随温度的变化是个渐变的过程, 温度控制装 置的动力部件膨胀也是个渐变的过程, 因此动力部件一般采用蠕动式的膜盒或波纹管 结构。 而开关部件一般采用快跳式储能簧片, 以使开关触点可以瞬间动作。 这种配合 方式存在的问题是, 当快跳式储能簧片发生弹性疲劳失去快跳效果时, 则动力部件不 能有效推动开关触点的通断, 从而使控温或限温失败, 影响使用安全和设备安全。 发明内容
本发明所要解决的技术问题在于, 针对现有技术的不足提供一种制热器具充液式 温度控制装置的液体感温介质及该装置, 采用特定的混合溶液做充液式温度控制装置 感温部件的感温介质, 通过特定的混合溶液的泡点温度 (相变温度) 与需要的动作温 度相匹配的方式, 解决了氟利昂冷媒和液体介质不适于作为制热器具高温区温度控制 或过热保护的感温介质的问题。 进一步地, 动力部件和开关部件的配合采用突跳式膜 片与快跳式簧片配合的模式, 解决了突跳式膜片或快跳式簧片失效引发的电器安全问 题。
本发明所要解决的技术问题是通过如下技术方案实现的:
本发明提供一种制热器具充液式温度控制装置的液体感温介质, 为水、 乙醇、 乙 二醇三种成分或其中两种成分的混合溶液。 所述混合溶液的容积比例为水 0-20%、 乙 醇 0-10%、 乙二醇 80-95% ; 或者所述混合溶液的容积比例为水 10-30%、 乙醇 65-85%、 乙二醇 2-8%。
本发明还一种制热器具充液式温度控制装置的液体感温介质, 为水、 甲醇、 乙二 醇三种成分或其中两种成分的混合溶液。 所述混合溶液的容积比例为水 5~25%、 甲醇 70-90% 乙二醇 2~8%。
本发明再提供一种制热器具的充液式温度控制装置, 包括感温部件、 动力部件和 开关部件, 所述的感温部件为毛细管 (3 ), 所述毛细管 (3 ) —端封闭, 另一端与所述 的动力部件连接, 在所述毛细管(3 )和动力部件腔体组成的封闭空间内充入如上所述 的液体感温介质。
本发明通过特定的混合溶液在一定温度下发生气化的原理, 解决了氟利昂冷媒和 液体介质不适于作为制热器具高温区温度控制或过热保护的感温介质的问题, 并且动 力部件和开关部件的配合采用突跳式膜片与快跳式簧片配合的模式, 解决了突跳式膜 片或快跳式簧片失效引发的电器安全问题。
下面结合附图和具体实施例对本发明的技术方案进行详细地说明。 附图说明
图 1是本发明充液式温度控制装置的整体结构示意图;
图 2是本发明充液式温度控制装置的俯视图;
图 3是图 2沿 A-A方向的未发生气化膨胀状态剖视图;
图 4是图 3的基座部分的俯视图;
图 5是图 2沿 A-A方向的已发生气化膨胀状态剖视图。 具体实施方式
本发明在充液式温度控制装置中使用的混合溶液主要由纯净水、 乙二醇、 乙醇(或 甲醇) 等成分组成。 在一个大气压下水的沸点为 100 °C 、 乙二醇沸点为 197.5 °C、 乙 醇的沸点为 78 °C、 甲醇的沸点为 64.5 °C。 当以不同的比例将上述溶剂混合在一起时, 混合溶液的泡点温度 (或相变温度) 会有变化, 根据温度控制的需要, 通过调整混合 比例使其泡点温度点与控温点相对应。 在应用时, 将混合溶液充满在密封的空间内, 感温部分感应的温度达到需要的控温点或限温点时, 作为感温介质的混合溶剂将会发 生气化, 从而使充满混合溶液介质的空间体积膨胀, 使与其相通成一个密封空间的动 力部件的膜片动作, 动力部件的膜片再推动开关部件使开关部件的一对触点断开。 乙 醇、 乙二醇等成分还有防冰冻作用。 温度控制装置的控温点温度所需混合溶液的比例 可为多种混合方式, 以下是几种实施例:
实施例 1 : 当温度控制装置的控温点需要为 120-14CTC时, 采用容积比例为水 0-20% 乙醇 0-10%、 乙二醇 80-95%的混合溶液作为感温部件的感温介质。
实施例 2: 当温度控制装置的控温点需要为 140°C时, 采用乙醇 5%、 乙二醇 95% 的混合溶液作为感温部件的感温介质。
实施例 3 : 当温度控制装置的控温点需要为 80-95 °C时, 采用水 10~30%、 乙醇 65-85% 乙二醇 2~8%的混合溶液作为感温部件的感温介质。
实施例 4: 当温度控制装置的控温点需要为 82°C时, 采用水 18%、 乙醇 80%、 乙 二醇 2%的混合溶液作为感温部件的感温介质。
实施例 5 : 当温度控制装置的控温点需要为 65~85 °C时, 采用水 5~25%、 甲醇 75-90% 乙二醇 2~5%的溶液作为感温部件的感温介质。
温控器在应用在对流式取暖器上时, 为使出风口处网罩的温度不至造成对人的烫 伤,根据整机规格和毛细管在整机内的固定位置,毛细管的感应控制温度一般为 80-150 。C。 如采用动作温度为 82°C, 所用充液式温度控制装置的感温介质可采用上述实施例 4的混合溶液。
根据不同控温点温度的需要, 上述混合溶剂的组成还可有其他多种成分比例。 特 别是, 由于乙醇和甲醇的沸点温度比较接近, 很多情况下可以用甲醇代替乙醇。
图 1是本发明充液式温度控制装置的整体结构示意图, 图 2是本发明充液式温度 控制装置的俯视图。 由图 1、 图 2可见, 温度控制装置的感温部件为毛细管 3, 该毛细 管 3与动力部件的封盖 1连接, 封盖 1盖在开关部件的基座 4上, 且周边铆紧, 在基 座 4下部设置第一端子 Ί和第二端子 8。
毛细管 3可以根据配套制热器具感温和控温区布置需要, 长度为 0.5-2米, 毛细管 3的外径一般为 1.5-2.5mm, 采用铜管、 不锈钢管等金属毛细管。 例如: 一种长条形的 对流式电热取暖器, 长度在 1米以上, 其底面是空气进口, 上面是热风出口。 为防止 整个或其中任何一段出风口的被覆盖或电压异常而引起的温度过热, 将所述的毛细管 3 沿发热体与上面的出风口之间布置。 当取暖器沿毛细管长度上的任何部位感温超限 时, 都会引起其中感温溶液的气化膨胀, 从而引发温度控制装置开关部件的动作, 实 现温度控制的目的(或制热器具过热保护的目的)。 由于以最高温部位作为温度控制的 感温点, 因此很适用于电热器具的限温、 控温, 还对毛细管所置的整个区域都得到温 度控制或过热保护。
图 3是图 2沿 A-A面的剖视图。 图 4是图 3的基座部分的俯视图。 如图 3所示, 封盖 1的中部呈圆盘状, 和弹性膜片 2的周边焊接成一封闭的中空盘形壳体, 在封盖 1 的顶部设置的通孔与毛细管 3连通, 毛细管 3的另一端封闭。 在盘形壳体与毛细管 组成的封闭空间内充满混合溶液 14。 弹性膜片 2为突跳式弹性膜片, 在温度上升没有 达到动作温度时其形状向上凹入封盖 1 (如图 3所示), 在达到动作温度, 混合溶液有 气化发生, 受到气化膨胀后瞬间相对封盖 1 凸起, 在温度降低气化消除后又瞬间回复 为凹入状态。封盖 1可采用 0.5mm厚度的不锈钢材料制作,弹性膜片 2可采用 0.12mm 厚度的弹性不锈钢材料制作。
充液的温度控制装置的动力部件为突跳式膜片, 可以配合慢动式开关簧片, 但这 种配合模式存在的问题是, 当突跳式膜片由于长期反复动作或制造质量不佳等原因而 疲劳或失效时, 则不能及时推动慢动式簧片使电触点脱离接触至设定的安全位置, 则 触点之间会发生打火、 电弧, 还会对电网产生电磁干扰。 因此, 采用快跳式的储能簧 片结构。
如图 4结合图 3所示, 在基座 4口部设置顶杆导盘 5, 在顶杆导盘 5中部的通孔内 设置可在通孔内上下自由移动的顶杆 6, 顶杆 6的上端头与弹性膜片 2相对; 顶杆 6 的下端头抵在所述弹簧片 9上。 基座 4、 顶杆导盘 5和顶杆 6采用如电木、 塑料等绝 缘材料制作。
在基座 4下部设有第一端子 7和第二端子 8, 第一端子 7上部成 U形支架, 弹簧 片 9的一端固定在第一端子 7的 U形支架 7.1的一边卡槽内, 弹簧片 9的中间舌片弯 曲 9.1顶在第一端子 7的 U形支架 7.1的另一边卡槽内, 形成悬臂梁形式, 在其悬臂 端设置动触头 11, 动触头 11与设置在第二端子上的定触头 10相对。 两端子可采用铜 质材料制作, 弹簧片 9可采用 0.15mm厚的铍铜材料制作。 电触头材料为铜质基体, 接触面复合银层。 弹簧片 9的中间舌片采用储能的弧形弯曲, 当弹簧片 9的片身被顶 杆 6压下越过弧形舌片与端子 7的 U形支架槽支点时, 弹簧片 9会在舌片的弹力作用 下快速越过中点, 因此, 称为快跳式弹簧片。 其与慢动式簧片的区别就在于慢动式簧 片只是有预变形的弹片, 而没有弧形舌片, 预变形提供触点的接触压力, 只是随外力 推顶而移动, 自身不会发生突然反转的动作。 快跳式弹簧片的特点是可以带动第二电 触点快速通断, 可以有效地减少电弧烧蚀和电磁干扰等问题, 提高触点寿命。 在当突 跳式膜片由于长期反复动作内应力消失或制造质量不佳等原因变成蠕动或跳动不到位 时, 也能靠快跳式弹簧片瞬动的特点, 使触点迅速脱离接触至安全位置。
在动触头 11的下方的基座 4上设置触点间隙调节螺钉 13,通过该螺钉来调节动触 头 11与定触头 10在断开后的间隔距离, 使该距离达到电器产品的安全距离。
在端子 7的 U形支架 7.1靠近舌片支点的底面设置支点调节螺钉 12, 通过调节该 螺钉, 顶推支架上的凹槽即簧片的支点位置作微量的上下移动, 以使弹簧片 9在与支 点构成的动作中心处于触点间隙下方, 即使簧片处于动作临界位置。 在顶杆 6没有作 用到簧片 9前保持触点接通, 且在弹性膜片 2凹凸行程内使簧片反转, 以实现快跳式 弹簧片 9使一对电触点迅速的通断功能。
本发明充液式温度控制装置的工作过程简述如下:
图 3 所示的是盘形壳体与毛细管组成的封闭空间内的感温介质未发生气化膨胀时 的状态。 此时突跳式弹性膜片 2为相对封盖凹进状态, 与顶杆 6的上端头之间处于未 接触状态, 定触头 10与动触头 11处于接触状态, 温度控制装置处于导通状态。
图 5 所示的是盘形壳体与毛细管组成的封闭空间内的感温介质发生气化膨胀时的 状态。 当盘形壳体与毛细管组成的封闭空间内的部分感温介质在达到设定温度下发生 气化膨胀时, 突跳式弹性膜片 2会瞬间由凹进状态变为凸出状态并推动顶杆 6向下移 动, 顶杆 6的下移顶推弹簧片 9下移, 由于采用了突跳式弹簧片, 当弹簧片 9片身下 移越过弧形舌片的支点时, 会在弧形舌片的弹力作用下瞬间反转, 使定触头 10与动触 头 11快速脱离接触状态, 则温度控制装置处于断路状态。
随着配套的电加热器的断电, 制热器的温度会下降, 混合溶液介质的又会回归液 化态, 因而体积减小, 弹性膜片 2会自动回复到凹入状态, 则顶杆 6施加到弹簧片 9 的推力解除, 弹簧片 9在弧形舌片的带动下会迅速回弹, 使两个电触点回到接触状态, 则加热体又开始通电加热。
本发明利用多种溶剂和水的混合溶液, 可随所需不同的温控点的温度调整溶液组 分, 适用范围广, 且本发明采用的动力部件和开关部件的配合使电器安全问题得到保 障。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案而非限制。 尽管参照 上述实施例对本发明进行了详细说明, 本领域的普通技术人员应当理解, 依然可以对 本发明的技术方案进行修改和等同替换, 而不脱离本技术方案的精神和范围, 其均应 涵盖在本发明的权利要求范围当中。

Claims

权利要求书
1、 一种制热器具充液式温度控制装置的液体感温介质, 其特征在于, 所述的液体 感温介质为水、 乙醇、 乙二醇三种成分或其中两种成分的混合溶液。
2、 根据权利要求 1所述的制热器具充液式温度控制装置的液体感温介质, 其特征 在于, 所述混合溶液的容积比例为水 0-20%、 乙醇 0-10%、 乙二醇 80-95%。
3、 根据权利要求 2所述的制热器具充液式温度控制装置的液体感温介质, 其特征 在于, 所述混合溶液的容积比例为乙醇 5%、 乙二醇 95%。
4、 根据权利要求 1所述的制热器具充液式温度控制装置的液体感温介质, 其特征 在于, 所述混合溶液的容积比例为水 10-30%、 乙醇 65-85%、 乙二醇 2-8%。
5、 根据权利要求 4所述的制热器具充液式温度控制装置的液体感温介质, 其特征 在于, 所述混合溶液的容积比例为水 18%、 乙醇 80%、 乙二醇 2%。
6、 一种制热器具充液式温度控制装置的液体感温介质, 其特征在于, 所述的液体 感温介质为水、 甲醇、 乙二醇三种成分或其中两种成分的混合溶液。
7、 根据权利要求 6所述的制热器具充液式温度控制装置的液体感温介质, 其特征 在于, 所述混合溶液的容积比例为水 5~25%、 甲醇 70~90%、 乙二醇 2~8%。
8、 一种制热器具的充液式温度控制装置, 包括感温部件、 动力部件和开关部件, 所述的感温部件为毛细管 (3 ), 所述毛细管 (3 ) —端封闭, 另一端与所述的动力部件 连接, 其特征在于, 在所述毛细管 (3 )和动力部件腔体组成的封闭空间内充入如权利 要求 1-7任一项所述的液体感温介质。
9、 根据权利要求 8所述的制热器具的充液式温度控制装置, 其特征在于, 所述的 动力部件为由封盖 (1 ) 和弹性膜片 (2 ) 围成的盘形壳体, 所述封盖 (1 ) 顶部与所述 毛细管 (3 ) 连通, 所述的毛细管 (3 ) 为金属管, 其外径为 1.5-2.5mm, 所述的盘形 壳体与毛细管 (3) 的内部构成所述的封闭空间; 所述的弹性膜片 (2) 为突跳式弹性 膜片, 其自由状态形状为凹弧面, 在表面受到气化膨胀压力后突变为凸弧面。
10、 根据权利要求 8或 9任一项所述的制热器具的充液式温度控制装置, 其特征 在于, 所述的开关部件包括基座 (4), 在基座 (4) 上部设置顶杆导盘 (5), 在顶杆导 盘 (5) 中部的通孔内设置可在通孔内上下自由移动的顶杆(6), 所述动力部件的弹性 膜片 (2) 设置在顶杆导盘 (5) 的上端并与顶杆 (6) 的上端头相对; 所述的开关部件 还包括弹簧片 (9)、 电触头、 接线端子, 所述接线端子设置在基座 (4) 上, 所述弹簧 片 (9) 的一端固定在第一端子 (7) 的支架 (7.1) 上, 所述弹簧片 (9) 的另一端为 悬臂端, 在悬臂端的端头设置第一电触头(10), 所述的第一电触头与设置在第二端子 (8) 上的第二电触头 (11) 相对; 所述顶杆 (6) 的下端头抵在所述弹簧片 (9) 上。
11、 根据权利要求 10所述的制热器具的充液式温度控制装置, 其特征在于, 在所 述的弹簧片 (9) 的悬臂端设置一弧形舌片 (9.1), 所述弧形舌片一端与所述悬臂端的 端头连接, 另一端抵在所述第一端子的支架 (7.1) 的凹槽内。
12、 根据权利要求 11所述的制热器具的充液式温度控制装置, 其特征在于, 在所 述第一端子的支架 (7.1) 的底面设置支架调节螺丝 (12)。
PCT/CN2010/075755 2010-05-19 2010-08-06 制热器具充液式温度控制装置的液体感温介质及温度控制装置 WO2011143845A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10851603.0A EP2573641B1 (en) 2010-05-19 2010-08-06 Temperature sensing liquid medium of liquid-filled temperature control device of heat producing apparatus and temperature control device
US13/698,701 US20130105588A1 (en) 2010-05-19 2010-08-06 Temperature sensing liquid medium of liquid-filled temperature control device of heat producing apparatus and temperature control device
CA2802779A CA2802779C (en) 2010-05-19 2010-08-06 Liquid-filled temperature control device of heat producing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010179327.1 2010-05-19
CN2010101793271A CN101818049B (zh) 2010-05-19 2010-05-19 制热器具的充液式温度控制装置

Publications (1)

Publication Number Publication Date
WO2011143845A1 true WO2011143845A1 (zh) 2011-11-24

Family

ID=42653329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/075755 WO2011143845A1 (zh) 2010-05-19 2010-08-06 制热器具充液式温度控制装置的液体感温介质及温度控制装置

Country Status (5)

Country Link
US (1) US20130105588A1 (zh)
EP (1) EP2573641B1 (zh)
CN (1) CN101818049B (zh)
CA (1) CA2802779C (zh)
WO (1) WO2011143845A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110273747A (zh) * 2019-06-21 2019-09-24 三一重机有限公司 具有温度预警功能的箱盖及液体盛装容器

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102109062B (zh) * 2011-01-21 2012-08-08 邓永林 热力膨胀阀的膜盒感温系统
AU2013234664B2 (en) * 2012-03-19 2017-01-19 Ventana Medical Systems, Inc. Gram staining method with improved decolorization of the crystal violet-iodine complex from Gram negative bacteria
CN104729229B (zh) * 2015-03-20 2017-03-15 苏州市泰美达电器有限公司 扩散吸收式制冷系统用安全防护装置
CN109386371B (zh) * 2017-08-02 2024-05-10 成都凯天电子股份有限公司 控制引气控温系统活门开度的温度传感器
CN113066692B (zh) * 2020-01-02 2022-10-28 中国科学院理化技术研究所 温控开关及其制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3163045A (en) * 1962-11-23 1964-12-29 Wilcolator Co Thermally responsive power means
EP0350084A2 (en) * 1988-07-04 1990-01-10 Bernard Jan Hallers Thermostatic valve for heating and other apparatuses
CN2114084U (zh) * 1991-12-05 1992-08-26 刘远贺 自由浮球式疏水阀
WO2002095343A1 (en) * 2001-05-22 2002-11-28 Leonard Reiffel Vapor pressure driven thermometer
CN200982892Y (zh) * 2006-12-11 2007-11-28 罗立鹤 水温计
CN101137279A (zh) * 2007-10-17 2008-03-05 福州高意通讯有限公司 一种温控结构

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3283099A (en) * 1965-01-15 1966-11-01 Ranco Inc Heat responsive snap acting switch
US4454983A (en) * 1982-02-04 1984-06-19 Tarvis Jr Robert J Temperature controlled valve
US4540860A (en) * 1982-10-05 1985-09-10 Kabushiki Kaisha Saginomiya Seisakusho Pressure responsive switch
CN87212591U (zh) * 1987-12-16 1988-09-07 上海远东仪表厂 温度控制指示装置
CN2210374Y (zh) * 1994-01-27 1995-10-18 山东工业大学 非相变液体膨胀式温度调节器
CN1227322C (zh) * 2002-08-13 2005-11-16 白松泉 工业用传热介质
CN1202198C (zh) * 2003-04-23 2005-05-18 南京赛格净化设备有限公司 蓄能式冷干机蓄能液
CN1948422A (zh) * 2005-10-10 2007-04-18 王振辰 储热介质
CN201107675Y (zh) * 2007-10-23 2008-08-27 梁伟东 气体膨胀式温度控制器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3163045A (en) * 1962-11-23 1964-12-29 Wilcolator Co Thermally responsive power means
EP0350084A2 (en) * 1988-07-04 1990-01-10 Bernard Jan Hallers Thermostatic valve for heating and other apparatuses
CN2114084U (zh) * 1991-12-05 1992-08-26 刘远贺 自由浮球式疏水阀
WO2002095343A1 (en) * 2001-05-22 2002-11-28 Leonard Reiffel Vapor pressure driven thermometer
CN200982892Y (zh) * 2006-12-11 2007-11-28 罗立鹤 水温计
CN101137279A (zh) * 2007-10-17 2008-03-05 福州高意通讯有限公司 一种温控结构

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110273747A (zh) * 2019-06-21 2019-09-24 三一重机有限公司 具有温度预警功能的箱盖及液体盛装容器
CN110273747B (zh) * 2019-06-21 2024-05-03 三一重机有限公司 具有温度预警功能的箱盖及液体盛装容器

Also Published As

Publication number Publication date
EP2573641A4 (en) 2017-05-03
EP2573641B1 (en) 2019-01-16
US20130105588A1 (en) 2013-05-02
CN101818049A (zh) 2010-09-01
CN101818049B (zh) 2013-03-13
CA2802779A1 (en) 2011-11-24
EP2573641A1 (en) 2013-03-27
CA2802779C (en) 2016-01-12

Similar Documents

Publication Publication Date Title
WO2011143845A1 (zh) 制热器具充液式温度控制装置的液体感温介质及温度控制装置
CN103002722A (zh) 一种功率设备的热控制装置
CN109044081B (zh) 加热容器及电饭煲
CN103063081B (zh) 一种形状记忆合金驱动的热开关
CN104165385A (zh) 一种燃气灶具超温自动熄火保护方法及其装置
CN209638519U (zh) 一种电热式执行元件
KR100673091B1 (ko) 온도제어 스위치
CN111854213A (zh) 一种气隙式热开关
CN205211660U (zh) 液胀式大电流温控器
CN2060943U (zh) 电开水器形状记忆合金控温开关
CN202003908U (zh) 可复位温控器
CN209399834U (zh) 一种热开关
US2840669A (en) Control device
US2635157A (en) Thermostatic control switch
CN112490075A (zh) 一种可调液胀式温控器
CN109520366B (zh) 一种热开关
CN203067909U (zh) 一种形状记忆合金驱动的热开关
CN208706539U (zh) 一种双极大电流手动复位温控器
CN109520368B (zh) 一种热开关
CN102543575B (zh) 二速温控电源开关
CN111552327A (zh) 基于相变材料及金属微膨胀的航天器用双驱空间热开关
CN219658612U (zh) 一种低温幅液胀式温控器
CN217562473U (zh) 一种新款结构液胀温控器
US3096420A (en) Oven thermostat
CN205140865U (zh) 液胀式温控器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10851603

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2802779

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2010851603

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13698701

Country of ref document: US