WO2011142314A1 - Photoelectric conversion element - Google Patents

Photoelectric conversion element Download PDF

Info

Publication number
WO2011142314A1
WO2011142314A1 PCT/JP2011/060650 JP2011060650W WO2011142314A1 WO 2011142314 A1 WO2011142314 A1 WO 2011142314A1 JP 2011060650 W JP2011060650 W JP 2011060650W WO 2011142314 A1 WO2011142314 A1 WO 2011142314A1
Authority
WO
WIPO (PCT)
Prior art keywords
electron
compound
photoelectric conversion
conversion element
active layer
Prior art date
Application number
PCT/JP2011/060650
Other languages
French (fr)
Japanese (ja)
Inventor
邦仁 三宅
明子 岸田
伊藤 紳三郎
英生 大北
宏明 辨天
Original Assignee
住友化学株式会社
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社, 国立大学法人京都大学 filed Critical 住友化学株式会社
Publication of WO2011142314A1 publication Critical patent/WO2011142314A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/115Polyfluorene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • H10K85/215Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a photoelectric conversion element used for a photoelectric device such as a solar cell or an optical sensor.
  • the photoelectric conversion element is an element including a pair of electrodes including an anode and a cathode, and an organic active layer provided between the pair of electrodes.
  • one of the electrodes is made of a transparent or translucent material, and light is incident on the organic active layer from the transparent or translucent electrode side.
  • Charges (holes and electrons) are generated in the organic active layer by the energy (h ⁇ ) of light incident on the organic active layer, and the generated holes are directed to the anode and the electrons are directed to the cathode.
  • current (I) is supplied to the external circuit.
  • the organic active layer is composed of an electron-accepting compound (n-type semiconductor) and an electron-donating compound (p-type semiconductor).
  • An organic active layer in which an electron-accepting compound (n-type semiconductor) and an electron-donating compound (p-type semiconductor) are mixed and used is called a bulk hetero-type organic active layer.
  • the electron-accepting compound and the electron-donating compound constitute a phase of a fine and complex shape that continues from one electrode side to the other electrode side, and It forms a complex interface while separating.
  • An organic material used for the organic active layer of the photoelectric conversion element is an organic compound that absorbs light based on a ⁇ - ⁇ * transition.
  • a photoelectric conversion element including an organic active layer manufactured by applying a solution using an electron donating compound, an electron accepting compound, xylene and the like as a solvent on a substrate has been proposed (see Non-Patent Document 1).
  • the present invention provides the following [1] to [9].
  • the organic active layer includes an electron-donating compound and an electron-accepting compound.
  • the bond length between the electron-donating compound and the electron-accepting compound is about 1 ⁇ m 2 per area of the organic active layer image.
  • the photoelectric conversion element which is 100 micrometers or more.
  • At least one compound with the accepting compound is a polymer compound containing a repeating unit represented by the formula (I), and is represented by the formula (I) among all repeating units contained in the polymer compound.
  • a method for producing a photoelectric conversion element which is a polymer compound having the largest repeating unit ratio.
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 each independently represents a hydrogen atom or a substituent.
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 may be linked to each other to form a cyclic structure
  • X 1 , X 2 and X 3 are each independently a sulfur atom, an oxygen atom, a selenium atom, —N ( R 7 ) — or —C (R 8 ) ⁇ C (R 9 ) — R 7, R 8 and R 9 each independently represents a hydrogen atom or a substituent
  • n and m each independently Represents an integer of 0 to 5.
  • a photoelectric conversion element obtainable by the production method according to [6].
  • a solar cell module including the photoelectric conversion element according to any one of [1] to [4] and [7].
  • An image sensor including the photoelectric conversion element according to any one of [1] to [4] and [7].
  • the photoelectric conversion element of the present invention has an anode, a cathode, and an organic active layer provided between the anode and the cathode, and has an electron donating compound and an electron accepting compound in the organic active layer,
  • the bond length between the electron-donating compound and the electron-accepting compound is It is 100 ⁇ m or more per 1 ⁇ m 2 area.
  • the photoelectric conversion element Concerning the photoelectric conversion element according to the present invention, the anode, the organic active layer, the electron donating compound and the electron accepting compound constituting the organic active layer, the cathode, and other components formed as necessary, This will be explained in detail.
  • a pair of electrodes As a basic form of the photoelectric conversion element of the present invention, a pair of electrodes, at least one of which is transparent or translucent, an electron donating compound (p-type organic semiconductor) and an electron-accepting compound (n-type organic semiconductor, etc.) And a bulk hetero-type organic active layer formed from an organic composition.
  • the photoelectric conversion element of the present invention is usually formed on a substrate.
  • the substrate may be any substrate that does not chemically change when the electrodes are formed and the organic layer is formed.
  • Examples of the material for the substrate include glass, plastic, polymer film, and silicon.
  • the opposite electrode that is, the electrode far from the substrate
  • the transparent or translucent electrode material examples include a conductive metal oxide film, a translucent metal thin film, and the like. Specifically, it is formed using indium oxide, zinc oxide, tin oxide, and conductive materials such as indium tin oxide (ITO), indium zinc oxide (IZO), and NESA that are composites thereof. And metal thin films formed using gold, platinum, silver, copper, etc., and films formed using ITO, IZO, tin oxide are preferred. Examples of the electrode forming method include a vacuum deposition method, a sputtering method, an ion plating method, and a plating method. Moreover, you may use organic transparent conductive films, such as polyaniline and its derivative (s), polythiophene, and its derivative (s) as an electrode material.
  • the transparent or translucent electrode may be an anode or a cathode.
  • the other electrode may not be transparent, and as the electrode material of the electrode, a metal, a conductive polymer, or the like can be used.
  • the electrode material include metals such as lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, ytterbium, and the like.
  • one or more alloys selected from the group consisting of gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten, and tin.
  • Examples include alloys with metals, graphite, graphite intercalation compounds, polyaniline and derivatives thereof, and polythiophene and derivatives thereof.
  • Examples of the alloy include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, and calcium-aluminum alloy.
  • an additional intermediate layer (such as a charge transport layer) other than the organic active layer may be provided.
  • the material used for the intermediate layer include alkali metal or alkaline earth metal halides or oxides such as lithium fluoride, and specifically lithium fluoride.
  • fine particles of inorganic semiconductor such as titanium oxide, a mixture of PEDOT (poly (3,4-ethylenedioxythiophene)) and PSS (poly (4-styrenesulfonate)) (PEDOT: PSS) or the like may be used.
  • Organic active layer contained in the photoelectric conversion element of the present invention contains an electron donating compound and an electron accepting compound. Note that the electron-donating compound and the electron-accepting compound are relatively determined from the HOMO or LUMO energy level of the compound.
  • At least one of the electron donating compound and the electron accepting compound is preferably a polymer compound, and both the electron donating compound and the electron accepting compound are more preferably polymer compounds.
  • the electron-donating compound is not limited as long as it has absorption in the solar radiation wavelength region.
  • the electron donating compound is preferably a polymer compound having an energy level of the highest occupied molecular orbital of ⁇ 4.7 eV or lower and an energy level of the lowest unoccupied molecular orbital of ⁇ 4.0 eV or higher.
  • the electron donating compound may be a low molecular compound or a high molecular compound.
  • a polymer compound is preferable.
  • Examples of the electron donating compound include pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenyldiamine derivatives, oligothiophene and derivatives thereof, polyvinylcarbazole and derivatives thereof, polysilane and derivatives thereof, and aromatic amines in side chains or main chains. And polysiloxane derivatives, polyaniline and derivatives thereof, polythiophene and derivatives thereof, polypyrrole and derivatives thereof, polyphenylene vinylene and derivatives thereof, polythienylene vinylene and derivatives thereof, among which polymer compounds are preferred.
  • Examples of the polymer compound which is a p-type semiconductor include polythiophene and derivatives thereof, a structure including dimers to pentamers in which thiophenes are bonded to each other, or a structure including dimers to pentamers in which thiophene derivatives are bonded to each other.
  • the polymer compound is preferably polythiophene and derivatives thereof.
  • the polythiophene derivative is a polymer compound having a thiophenediyl group having a substituent.
  • Polythiophene and its derivatives are preferably homopolymers.
  • a homopolymer is a polymer formed by bonding only a plurality of groups selected from the group consisting of a thiophenediyl group and a substituted thiophenediyl group.
  • the thiophene diyl group is preferably a thiophene-2,5-diyl group, and the thiophene diyl group having a substituent is preferably an alkylthiophene-2, 5-diyl group.
  • homopolymer polythiophene and derivatives thereof include poly (3-hexylthiophene-2,5-diyl) (P3HT), poly (3-octylthiophene-2,5-diyl), poly (3-dodecyl) Thiophene-2,5-diyl) and poly (3-octadecylthiophene-2,5-diyl).
  • P3HT poly (3-hexylthiophene-2,5-diyl)
  • poly3HT poly (3-octylthiophene-2,5-diyl)
  • poly (3-dodecyl) Thiophene-2,5-diyl) and poly (3-octadecylthiophene-2,5-diyl
  • polythiophenes and derivatives thereof which are homopolymers polythiophene homopolymers comprising thiophene diyl groups substituted with alkyl groups having 6
  • Examples of the polymer compound that is an electron donating compound include polymer compound A represented by the following structural formula (4).
  • Electrode-accepting compound As the electron-accepting compound, a polymer compound having an energy level of the highest occupied molecular orbital of ⁇ 5.0 eV or lower and an energy level of the lowest unoccupied molecular orbital of ⁇ 4.3 eV or higher is preferable.
  • Examples of the electron-accepting compound include oxadiazole derivatives, anthraquinodimethane and its derivatives, benzoquinone and its derivatives, naphthoquinone and its derivatives, anthraquinone and its derivatives, tetracyanoanthraquinodimethane and its derivatives, fluorenone derivatives, diphenyldicyanoethylene and derivatives thereof, diphenoquinone derivatives, metal complexes of 8-hydroxyquinoline and its derivatives, polyquinoline and its derivatives, polyquinoxaline and its derivatives, polyfluorene and its derivatives, fullerene and derivatives thereof such as C 60 fullerene, bathocuproine etc.
  • Phenanthrene derivatives metal oxides such as titanium oxide, and carbon nanotubes.
  • the electron accepting compound is preferably a compound containing a benzothiadiazole structure, a polymer compound containing a benzothiadiazole structure in a repeating unit, a compound containing a quinoxaline structure, a polymer compound containing a quinoxaline structure in a repeating unit, titanium oxide, carbon Nanotubes, fullerenes, fullerene derivatives, more preferably fullerenes, fullerene derivatives, compounds containing a benzothiadiazole structure, polymer compounds containing a benzothiadiazole structure in a repeating unit, compounds containing a quinoxaline structure, and a quinoxaline structure in a repeating unit More preferably, it is a compound containing a benzothiadiazole structure, a polymer compound containing a benzothiadiazole structure in a repeating unit, a compound containing a quinoxaline structure
  • Examples of the polymer compound containing a benzothiadiazole structure in the repeating unit include a polymer compound represented by the following structural formula (4).
  • fullerene, C 60 fullerene, C 70 fullerene, C 76 fullerene, C 78 fullerene include C 84 fullerene.
  • fullerene derivatives include C 60 fullerene derivatives, C 70 fullerene derivatives, C 76 fullerene derivatives, C 78 fullerene derivatives, and C 84 fullerene derivatives.
  • C 60 fullerene derivative examples include the following.
  • C70 fullerene derivatives include the following.
  • fullerene derivatives include [6,6] phenyl-C 61 butyric acid methyl ester (C 60 PCBM, [6,6] -Phenyl C 61 butyric acid methyl ester), and [6,6] phenyl-C 71.
  • Butyric acid methyl ester (C 70 PCBM, [6,6] -Phenyl C 71 butyric acid methyl ester), [6,6] Phenyl-C 85 butyric acid methyl ester (C 84 PCBM, [6,6] -Phenyl C 85 butyric acid methyl ester), [6,6] thienyl -C 61 butyric acid methyl ester ([6,6] -Thienyl C 61 butyric acid methyl ester) and the like.
  • the ratio of the electron accepting compound to the electron donating compound is preferably 10 parts by weight to 1000 parts by weight with respect to 100 parts by weight of the electron donating compound, and 20 parts by weight to 500 parts by weight. It is more preferable that
  • the thickness of the organic active layer is usually preferably 1 nm to 100 ⁇ m, more preferably 2 nm to 1000 nm, still more preferably 5 nm to 500 nm, and particularly preferably 20 nm to 200 nm.
  • the photoelectric conversion device of the present invention is a polymer compound in which at least one of an electron donating compound and an electron accepting compound includes a repeating unit represented by the following formula (I), Among all the repeating units contained, a polymer compound having the largest ratio of repeating units represented by the following formula (I) is preferable.
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 each independently represent a hydrogen atom or a substituent.
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 may be connected to each other to form a cyclic structure.
  • X 1 , X 2 and X 3 each independently represents a sulfur atom, an oxygen atom, a selenium atom, —N (R 7 ) — or —C (R 8 ) ⁇ C (R 9 ) —.
  • R 7, R 8 and R 9 each independently represents a hydrogen atom or a substituent.
  • n and m each independently represents an integer of 0 to 5. When there are a plurality of R 1 , R 2 , R 5 , R 6 , X 1 , and X 3 , they may be the same or different.
  • n and m each independently represents an integer of 0 to 5. n and m are preferably an integer of 1 to 3, and more preferably 1.
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 each independently represent a hydrogen atom or a substituent. When R 1 to R 6 are substituents, groups having 1 to 30 carbon atoms are preferred.
  • substituents examples include an alkyl group having 1 to 30 carbon atoms such as a methyl group, an ethyl group, a butyl group, a hexyl group, an octyl group, and a dodecyl group, a methoxy group, an ethoxy group, a butoxy group, a hexyloxy group, and an octyloxy group.
  • an alkoxy group having 1 to 30 carbon atoms such as dodecyloxy group
  • an aryl group having 1 to 30 carbon atoms such as phenyl group and naphthyl group.
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 may be connected to each other to form a cyclic structure.
  • Specific examples of the cyclic structure formed by connecting R 1 and R 2 and the cyclic structure formed by connecting R 5 and R 6 include the following cyclic structures.
  • cyclic structure formed by connecting R 3 and R 4 include the following cyclic structures.
  • R 12 and R 13 each independently represent a hydrogen atom or a substituent.
  • Examples of the substituent represented by R 12 and R 13 include the same groups as the substituents represented by R 1 to R 6 described above.
  • R 1 to R 6 are preferably a hydrogen atom or an alkyl group, and more preferably a hydrogen atom.
  • X 1 , X 2 and X 3 each independently represents a sulfur atom, an oxygen atom, a selenium atom, —N (R 7 ) — or —C (R 8 ) ⁇ C (R 9 ) —.
  • R 7, R 8 and R 9 each independently represents a hydrogen atom or a substituent.
  • substituents examples include alkyl groups having 1 to 30 carbon atoms such as methyl, ethyl, butyl, hexyl, octyl and dodecyl groups; Examples thereof include aryl groups having 1 to 30 carbon atoms such as a phenyl group and a naphthyl group.
  • X 1 , X 2 and X 3 are preferably sulfur atoms.
  • the repeating unit represented by the formula (I) is preferably a repeating unit represented by the following formula (I-1).
  • the polymer compound used in the present invention is a polymer compound containing a repeating unit represented by the formula (I), and among all the repeating units contained in the polymer compound, the compound represented by the formula (I) The content (number of moles) of the repeating unit represented is the largest.
  • the repeating unit represented by the formula (I) exceeds 50% with respect to the total of all repeating units in the polymer compound.
  • the repeating unit represented by the formula (I) is 52% or more based on the total of all repeating units in the polymer compound. More preferably, the repeating unit represented by the formula (I) is 55% or more with respect to the total of all repeating units in the polymer compound. Moreover, it is preferable that the repeating unit represented by a formula (I) is less than 100% with respect to the sum total of all the repeating units in a high molecular compound. More preferably, the repeating unit represented by the formula (I) is preferably 98% or less with respect to the total of all repeating units in the polymer compound. More preferably, the repeating unit represented by the formula (I) is 70% or less with respect to the total of all repeating units in the polymer compound.
  • the polymer compound used in the present invention preferably contains a repeating unit other than the repeating unit represented by the formula (I).
  • the polymer compound may further contain a repeating unit represented by the following formula (II).
  • ring A and ring B each independently represent an aromatic ring.
  • R 10 and R 11 each independently represents a hydrogen atom or a substituent.
  • R 10 and R 11 may be linked to form a cyclic structure.
  • R 10 and R 11 are substituents
  • substituents include methyl, ethyl, butyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, Alkyl groups having 1 to 30 carbon atoms such as tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, eicosyl group and the like, and aryl groups having 1 to 30 carbon atoms such as phenyl group and naphthyl group Etc.
  • R 10 and R 11 are preferably hydrocarbon groups such as alkyl groups and aryl groups, and more preferably alkyl groups. Moreover, when R ⁇ 10 >, R ⁇ 11 > is a substituent, it is preferable that a carbon atom number is 12 or more.
  • ring A and ring B examples include aromatic carbocycles such as benzene ring and naphthalene ring, and aromatic heterocycles such as thiophene.
  • Ring A and ring B are preferably 5- to 10-membered rings, and more preferably benzene rings or naphthalene rings.
  • the repeating unit represented by the formula (II) is preferably a repeating unit represented by the following formula (II-1).
  • R 10 and R 11 represent the same meaning as described above.
  • the polymer compound used in the present invention contains a repeating unit represented by the formula (II) in addition to the repeating unit represented by the formula (I), the compound of the formula (II) It is preferable that the ratio of the repeating unit represented by the formula (I) is next to the ratio of the repeating unit represented by the formula (I). The case where the repeating unit of the polymer compound is only the repeating unit represented by the formula (I) and the repeating unit represented by the formula (II) is more preferable.
  • the method for producing the polymer compound used in the present invention is not particularly limited. Since the synthesis of the polymer compound is easy, a method using a Suzuki coupling reaction is preferable. Moreover, the manufacturing method of the high molecular compound used for this invention can be implemented with reference to international publication 2010/016613.
  • the organic active layer may contain other components as necessary.
  • Other components include, for example, ultraviolet absorbers, antioxidants, sensitizers for sensitizing the function of generating charges by absorbed light, light stabilizers for increasing stability from ultraviolet rays, etc. Is mentioned.
  • Components other than the electron-donating compound and the electron-accepting compound constituting the organic active layer are 5 parts by weight or less, particularly 0.01 parts by weight with respect to 100 parts by weight of the total amount of the electron-donating compound and the electron-accepting compound. It is effective to add in a proportion of 3 parts by weight.
  • the organic active layer may contain a polymer compound other than the electron donating compound and the electron accepting compound as a polymer binder in order to improve mechanical properties.
  • the polymer binder those that do not inhibit the electron transport property or hole transport property are preferable, and those that do not strongly absorb visible light are preferably used.
  • Polymer binders include poly (N-vinylcarbazole), polyaniline and derivatives thereof, polythiophene and derivatives thereof, poly (p-phenylene vinylene) and derivatives thereof, poly (2,5-thienylene vinylene) and derivatives thereof, poly Examples include carbonate, polyacrylate, polymethyl acrylate, polymethyl methacrylate, polystyrene, polyvinyl chloride, and polysiloxane.
  • the organic active layer of the photoelectric conversion element of the present invention is an image of the organic active layer observed with a transmission electron microscope, and the image of the organic active layer in which light and dark are binarized. Is 100 ⁇ m or more per 1 ⁇ m 2 of the image area of the organic active layer.
  • Examples of the method for measuring the junction length between the electron donating compound and the electron accepting compound include a method of observing the active layer using a transmission electron microscope (TEM) and obtaining the length.
  • the electron-donating compound and the electron-accepting compound can be separated and observed from an image characteristic of the element contained in the electron-donating compound and the electron-accepting compound.
  • An image characteristic of the element includes an element mapping image by an energy filter TEM, an energy loss image using an energy value giving the same contrast as the element mapping image, and an energy dispersive X-ray analysis (STEM) using a scanning transmission electron microscope. Element mapping image by -EDX).
  • the bonding length between the electron donating compound and the electron accepting compound is preferably 100 ⁇ m or more and 300 ⁇ m or less, more preferably 115 ⁇ m or more and 250 ⁇ m or less, per 1 ⁇ m 2 of the image area of the organic active layer.
  • the phase separation structure of the electron donating compound material and the electron accepting compound material in the organic active layer is appropriately controlled, so that photocharge separation and charge transport are efficiently generated. And exhibit high photoelectric conversion efficiency.
  • Another aspect of the photoelectric conversion device of the present invention includes an anode, a cathode, and an organic active layer provided between the anode and the cathode, and an electron donating compound and an electron accepting property in the organic active layer.
  • examples of the method for binarizing the brightness of the organic active layer include the following methods.
  • An image showing phase separation between the electron-donating compound material and the electron-accepting compound material in the layer is obtained as a mapping image of sulfur atoms by a three-window method of electron energy loss spectroscopy (TEM-EELS) using a transmission electron microscope. .
  • TEM-EELS electron energy loss spectroscopy
  • the standard deviation calculated from the area fraction of the black part is preferably 0.03 to 0.09, and more preferably 0.04 to 0.08.
  • the phase separation structure of the electron donating compound material and the electron accepting compound material in the organic active layer is appropriately controlled, so that photocharge separation and charge transport are efficiently generated. And exhibit high photoelectric conversion efficiency.
  • the material of the electrode included in the photoelectric conversion element of this embodiment, the electron donating compound, the electron accepting compound, and the other constituent material formed as necessary include the material of the electrode included in the photoelectric conversion element of the above embodiment. , Electron-donating compound, electron-accepting compound, and the same materials as those of other components formed as necessary.
  • at least one of the electron donating compound and the electron accepting compound is a polymer compound containing a repeating unit represented by the formula (I), and the polymer compound Among all the repeating units contained therein, a polymer compound having the largest ratio of repeating units represented by formula (I) is preferable.
  • Another aspect of the photoelectric conversion device of the present invention includes an anode, a cathode, and an organic active layer provided between the anode and the cathode, and an electron donating compound and an electron accepting property in the organic active layer. And a lifetime of an excited state of at least one of an electron donating compound in the organic active layer and an electron accepting compound in the organic active layer is 1 ns or less.
  • the excited state means an excited singlet or an excited triplet generated as a result of absorbing light
  • the excited state lifetime is the number of excited states or the concentration of the first excited state generated.
  • the lifetime of the excited singlet or triplet of the compound is evaluated from the time when the initial absorption intensity of the excited state decreases to 1 / e by pump probe transient absorption spectroscopy using a femtosecond laser as the excitation light source. be able to.
  • E means the base of natural logarithm. A method for measuring transient absorption will be described using an organic thin film solar cell as an example.
  • a bulk hetero type organic active layer composed of an electron donating compound and an electron accepting compound is formed on a glass substrate by the same operation as in the production of the organic thin film solar cell.
  • A0 log (Ip / I0), where Ip is the intensity of the probe light incident on the active layer, and I0 is the intensity of the probe light transmitted through the active layer.
  • the absorbance of the active layer measured after the active layer is photoexcited with pump light and the time t has elapsed is defined as A (t).
  • ⁇ A absorption intensity of a chemical species newly generated (increased) or extinguished (decreased) in the active layer by photoexcitation
  • ⁇ A log (Ip / I)
  • log (Ip / I0) log (I0 / I).
  • ⁇ A absorption intensity at the wavelength of the probe light used.
  • an absorption spectrum of a chemical species newly generated (increased) or extinguished (decreased) in the active layer can be obtained at a certain delay time t as compared to before photoexcitation.
  • a time resolution of 100 fs can be achieved by using pulsed light with a femtosecond laser as a light source for both the probe light and the pump light.
  • the lifetime of the excited state is preferably 1 ns or less, more preferably 100 ps or less, and even more preferably 10 ps or less.
  • the charge separation efficiency is high in the organic active layer.
  • the photoelectric conversion efficiency of the photoelectric conversion element is increased.
  • the material of the electrode included in the photoelectric conversion element of this embodiment, the electron donating compound, the electron accepting compound, and the other constituent material formed as necessary include the material of the electrode included in the photoelectric conversion element of the above embodiment. , Electron-donating compound, electron-accepting compound, and the same materials as those of other components formed as necessary.
  • at least one of the electron-donating compound and the electron-accepting compound is a polymer compound containing a repeating unit represented by the formula (I), and is included in the polymer compound Among all the repeating units, a polymer compound having the largest ratio of the repeating units represented by the formula (I) is preferable.
  • Another aspect of the photoelectric conversion device of the present invention includes an anode, a cathode, and an organic active layer provided between the anode and the cathode, and an electron-donating compound and an electron-accepting compound are included in the organic active layer. And a fluorescence quenching rate of at least one of the electron donating compound in the organic active layer and the electron accepting compound in the organic active layer is 60% or more.
  • a method for measuring the fluorescence quenching rate will be described by taking an organic thin-film solar cell having a bulk hetero type organic active layer composed of an electron donating compound and an electron accepting compound as an example.
  • a bulk hetero-type organic active layer is formed on the glass substrate by the same operation as the production of the organic thin film solar cell.
  • a spectrofluorometer at least one of the electron-donating compound and the electron-accepting compound forming this active layer is photoexcited, and the observed fluorescence intensity from the electron-donating compound or the electron-accepting compound is ⁇ 1
  • the absorbance of the electron donating compound or electron accepting compound at this photoexcitation wavelength is A1.
  • the fluorescence intensity from the compound or electron accepting compound is ⁇ 2, and the absorbance of the electron donating compound or electron accepting compound at the photoexcitation wavelength is A2.
  • the fluorescence quenching rate ( ⁇ q) of the active layer of the photoelectric conversion element of the present invention is preferably 60% or more, and more preferably 70% or more. Since ⁇ q is 60% or more, the charge separation efficiency is high in the organic active layer, and the photoelectric conversion efficiency of the photoelectric conversion element is high.
  • the material of the electrode included in the photoelectric conversion element of this embodiment, the electron donating compound, the electron accepting compound, and the other constituent material formed as necessary include the material of the electrode included in the photoelectric conversion element of the above embodiment. , Electron-donating compound, electron-accepting compound, and the same materials as those of other components formed as necessary.
  • at least one of the electron donating compound and the electron accepting compound is a polymer compound containing a repeating unit represented by the formula (I), It is preferable that the polymer compound has the largest ratio of the repeating units represented by the formula (I) among all the repeating units contained in.
  • the organic active layer of the photoelectric conversion element of the present invention is a bulk hetero type, and is formed by coating using a solution containing the electron donating compound, the electron accepting compound, and other components blended as necessary. It can be formed by forming a film.
  • the solution can be applied on the anode or cathode to form an organic active layer.
  • another electrode can be formed on an organic active layer, and a photoelectric conversion element can be manufactured.
  • the solvent used for the coating film formation using a solution is a solvent having a boiling point of 100 ° C. or lower capable of dissolving the electron donating compound and the electron accepting compound used in the present invention. Moreover, as a solvent, you may mix a some solvent, The boiling point of at least 1 type of solvent is 100 degrees C or less. Examples of the solvent having a boiling point of 100 ° C.
  • the photoelectric conversion element or less used for controlling the junction length between the electron donating compound and the electron accepting compound to increase the photoelectric conversion efficiency of the photoelectric conversion element include carbon tetrachloride, chloroform, Examples thereof include halogenated saturated hydrocarbon solvents such as dichloromethane, dichloroethane, dichloropropane and chlorobutane, and ether solvents such as tetrahydrofuran and tetrahydropyran.
  • the organic material constituting the organic active layer can be usually dissolved in a solvent in an amount of 0.1% by weight or more. A more preferred solvent is chloroform.
  • spin coating method for film formation, spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, spray coating method, screen printing method, gravure printing method, Application methods such as flexographic printing method, offset printing method, ink jet printing method, dispenser printing method, nozzle coating method, capillary coating method can be used, spin coating method, flexographic printing method, gravure printing method, ink jet printing method, dispenser A printing method is preferred.
  • a preferred embodiment of the method for producing a photoelectric conversion element is a step of producing an organic active layer by applying a solution containing an electron donating compound, an electron accepting compound, and a solvent having a boiling point of 100 ° C. or less on an anode or a cathode.
  • the electron-donating compound and the electron-accepting compound is a polymer compound containing a repeating unit represented by the formula (I), and is contained in all repeating units contained in the polymer compound.
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 each independently represent a hydrogen atom or a substituent.
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 may be connected to each other to form a cyclic structure.
  • X 1 , X 2 and X 3 each independently represents a sulfur atom, an oxygen atom, a selenium atom, —N (R 7 ) — or —C (R 8 ) ⁇ C (R 9 ) —.
  • R 7, R 8 and R 9 each independently represents a hydrogen atom or a substituent.
  • n and m each independently represents an integer of 0 to 5.
  • R 1 , R 2 , R 5 , R 6 , X 1 , and X 3 may be the same or different.
  • a solution containing a polymer compound containing a repeating unit represented by the formula (I) and a solvent having a boiling point of 100 ° C. or less to form an organic active layer by a coating electron microscope.
  • the bonding length between the electron donating compound and the electron accepting compound is expressed as follows per 1 ⁇ m 2 of the area of the organic active layer image. It can be set to 100 ⁇ m or more, and further can be set to 100 ⁇ m or more and 300 ⁇ m or less.
  • a transmission electron is formed by coating and forming an organic active layer using a solution containing a polymer compound containing a repeating unit represented by formula (I) and a solvent having a boiling point of 100 ° C. or less. It is an image of an organic active layer in the range of 900 nm ⁇ 900 nm observed with a microscope, and the image obtained by binarizing the brightness and forming the white portion and the black portion is divided into nine sections having an equal area, The standard deviation calculated from the area fraction of the black portion of the compartment can be 0.09 or less, and can be 0.03 or more and 0.09 or less.
  • the photoelectric conversion element of the present invention can be operated as an organic thin film solar cell by generating a photovoltaic force between the electrodes by irradiating light such as sunlight from a transparent or translucent electrode. It can also be used as an organic thin film solar cell module by integrating a plurality of organic thin film solar cells.
  • a photocurrent flows and it can be operated as an organic photosensor. It can also be used as an organic image sensor by integrating a plurality of organic photosensors.
  • the organic thin film solar cell can basically have the same module structure as a conventional solar cell module.
  • a solar cell module generally has a structure in which cells are formed on a support substrate made of metal, ceramic, etc., which is covered with a filling resin, protective glass, etc., and light is incident from the opposite side of the support substrate. Further, a transparent material such as tempered glass can be used for the support substrate, and a cell can be formed thereon so that light can enter from the transparent support substrate side.
  • a module structure called a super straight type, a substrate type, and a potting type, a substrate integrated module structure used in an amorphous silicon solar cell, and the like are known. Even in an organic thin-film solar cell to which the organic photoelectric conversion element of the present invention is applied, these module structures can be appropriately selected depending on the purpose of use, the place of use and the environment.
  • a typical super straight type or substrate type module cells are arranged at regular intervals between support substrates that are transparent on one or both sides and subjected to antireflection treatment, and adjacent cells are connected by metal leads or flexible wiring. It is connected, and the collector electrode is arrange
  • plastic materials such as ethylene vinyl acetate (EVA) may be used between the substrate and the cell in the form of a film or a filling resin depending on the purpose in order to protect the cell and improve the current collection efficiency.
  • EVA ethylene vinyl acetate
  • the surface protection layer is made of a transparent plastic film, or the protective function is achieved by curing the filling resin It is possible to eliminate the supporting substrate on one side.
  • the periphery of the support substrate is fixed in a sandwich shape with a metal frame in order to ensure internal sealing and module rigidity, and the support substrate and the frame are hermetically sealed with a sealing material.
  • a flexible material is used for the cell itself, the support substrate, the filling material, and the sealing material, a solar cell can be formed on the curved surface.
  • a solar cell using a flexible support such as a polymer film
  • cells are sequentially formed while feeding out a roll-shaped support, cut to a desired size, and then the periphery is sealed with a flexible and moisture-proof material.
  • the battery body can be produced.
  • it can also have a module structure called “SCAF” described in Solar Energy Materials and Solar Cells, 48, p383-391.
  • SCAF solar Energy Materials and Solar Cells, 48, p383-391.
  • a solar cell using a flexible support can be used by being bonded and fixed to a curved glass or the like.
  • a reaction vessel was charged with 0.945 g (1.60 mmol) of monomer (1), 0.918 g of monomer (2) (2.00 mmol) and 25 mg of tetrakis (triphenylphosphine) palladium (0), and the reaction was performed.
  • the inside of the container was sufficiently replaced with argon gas.
  • 50 g of toluene deaerated previously by bubbling with argon gas was added.
  • the resulting solution was stirred at 100 ° C. for about 10 minutes.
  • the reaction solution was cooled at room temperature (25 ° C.), and then the obtained reaction solution was allowed to stand and a separated toluene layer was recovered.
  • the obtained toluene layer was poured into methanol and re-precipitated, and the generated precipitate was collected.
  • This precipitate was dried under reduced pressure and then dissolved in chloroform.
  • the obtained chloroform solution was filtered to remove insoluble matters, and then passed through an alumina column for purification.
  • the obtained chloroform solution was concentrated under reduced pressure, poured into methanol, re-precipitated, and the generated precipitate was collected. This precipitate was washed with methanol and then dried under reduced pressure to obtain 0.93 g of a polymer.
  • polymer compound A this polymer is referred to as polymer compound A.
  • the polymer compound A had a polystyrene equivalent weight average molecular weight of 2.0 ⁇ 10 4 and a polystyrene equivalent number average molecular weight of 4.7 ⁇ 10 3 .
  • the ratio of the repeating unit represented by the formula (2 ′) calculated from the charging ratio among all the repeating units of the polymer compound A was 55.6%.
  • Example 1 (Production and evaluation of organic thin-film solar cells) A glass substrate on which an ITO film having a thickness of 300 nm was formed by vacuum evaporation was subjected to ultrasonic cleaning in this order for 15 minutes in toluene, acetone, and ethanol, respectively, followed by surface treatment by ozone UV treatment.
  • a chloroform solution containing a polymer compound A which is an electron-accepting compound and poly (3-hexylthiophene-2,5-diyl) (P3HT) (Resiregular, manufactured by Aldrich Co.) which is an electron-donating compound (high The weight ratio of molecular compound A / P3HT 1/1, and the total concentration of polymer compound A and P3HT was 1% by weight) was applied onto this PEDOT: PSS film by spin coating to produce an organic active layer. The thickness of the organic active layer was about 70 nm.
  • the organic thin film solar cell was heated at 140 ° C. for 10 minutes in the glove box.
  • the shape of the obtained organic thin film solar cell was a circle having a radius of 1.5 mm.
  • the obtained organic thin-film solar cell is irradiated with a constant light using a solar simulator (manufactured by Eagle Engineering, 500 W xenon light source device LHX-500E3: AM1.5G filter, irradiance 100 mW / cm 2 ), The voltage was measured to determine photoelectric conversion efficiency, short circuit current density, open circuit voltage, and fill factor. Jsc (short circuit current density) is 3.94 mA / cm 2 , Voc (open circuit voltage) is 1.19 V, ff (fill factor) is 0.42, and photoelectric conversion efficiency ( ⁇ ) is 1. 95%.
  • the energy level of HOMO was measured with a photoelectron spectrometer AC-2 (manufactured by Riken Keiki Co., Ltd.).
  • the LUMO energy level was calculated from the end of the absorption wavelength ( ⁇ th (nm)) using the following equation.
  • (LUMO energy level) (HOMO energy level) + 1240 / ⁇ th
  • the HOMO energy level of the polymer compound A was ⁇ 5.5 eV, and the LUMO energy level was ⁇ 3.6 eV.
  • the energy level of HOMO of P3HT was -4.9 eV, and the energy level of LUMO was -3.0 eV.
  • a histogram of the mapping image of the obtained sulfur atom is calculated, and the phase containing the polymer compound having a high sulfur atom (S) composition is white with the peak top of the obtained histogram as a threshold, and the polymer compound having a low S composition
  • Binarization was performed by setting the phase containing the black as black.
  • the binarized image obtained as described above was divided into nine sections having an equal area, and the area fraction of the black portion of each section was determined.
  • the above image analysis was performed using image analysis software image-J.
  • the average value and standard deviation of the area fractions of the nine black sections obtained were calculated. As a result, the average value of the area fraction of the black portion was 0.454, and the standard deviation of the area fraction of the black portion was 0.074.
  • Comparative Example 1 (Production and evaluation of organic thin-film solar cells) An organic thin film solar cell was prepared and evaluated in the same manner as in Example 1 except that chlorobenzene was used instead of chloroform. As a result, Jsc was 0.91 mA / cm 2 , Voc was 1.06 V, ff was 0.48, and the photoelectric conversion efficiency ( ⁇ ) was 0.46%. Under this condition, the fluorescence quenching rate ( ⁇ q) of the polymer compound A was estimated. As a result, ⁇ q was 50%. Moreover, the average value of the area fraction of the black part observed by TEM was 0.581, and the standard deviation of the area fraction of the black part was 0.171.
  • Comparative Example 2 (Production and evaluation of organic thin-film solar cells) An organic thin film solar cell was prepared and evaluated in the same manner as in Example 1 except that o-dichlorobenzene was used instead of chloroform. As a result, Jsc was 0.84 mA / cm 2 , Voc was 0.80 V, ff was 0.36, and the photoelectric conversion efficiency ( ⁇ ) was 0.24%. Moreover, the average value of the area fraction of the black part observed by TEM was 0.535, and the standard deviation of the area fraction of the black part was 0.221.
  • Comparative Example 3 (Production and evaluation of organic thin-film solar cells) An organic thin film solar cell was prepared and evaluated in the same manner as in Example 1 except that xylene was used instead of chloroform. Consequently, Jsc is 1.37mA / cm 2, Voc is 0.91 V, ff is 0.54, the photoelectric conversion efficiency (eta) was 0.67%. Moreover, the average value of the area fraction of the black part observed by TEM was 0.476, and the standard deviation of the area fraction of the black part was 0.099.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)

Abstract

Disclosed is a photoelectric conversion element of which the photoelectric conversion efficiency is high. The photoelectric conversion element: has a cathode, an anode, and an organic active layer provided between said anode and said cathode; has an electron donor compound and an electron acceptor compound in the organic active layer; and in an image that is of the organic active layer observed with a transmission electron microscope and that binarizes the light and dark, has a join length between the electron donor compound and the electron acceptor compound of at least 100 µm per 1 µm2 of the image of the organic active layer.

Description

光電変換素子Photoelectric conversion element
 本発明は、太陽電池、光センサーなどの光電デバイスに用いられる光電変換素子に関する。 The present invention relates to a photoelectric conversion element used for a photoelectric device such as a solar cell or an optical sensor.
 光電変換素子は、陽極及び陰極からなる一対の電極と、該一対の電極間に設けられる有機活性層とを備える素子である。光電変換素子では、いずれかの電極を透明又は半透明の材料により構成し、透明又は半透明とした電極側から有機活性層に光を入射させる。有機活性層に入射した光のエネルギー(hν)によって、有機活性層において電荷(正孔及び電子)が生成し、生成した正孔は陽極に向かい、電子は陰極に向かう。電極に外部回路を接続することにより、外部回路に電流(I)が供給される。 The photoelectric conversion element is an element including a pair of electrodes including an anode and a cathode, and an organic active layer provided between the pair of electrodes. In the photoelectric conversion element, one of the electrodes is made of a transparent or translucent material, and light is incident on the organic active layer from the transparent or translucent electrode side. Charges (holes and electrons) are generated in the organic active layer by the energy (hν) of light incident on the organic active layer, and the generated holes are directed to the anode and the electrons are directed to the cathode. By connecting an external circuit to the electrode, current (I) is supplied to the external circuit.
 上記有機活性層は、電子受容性化合物(n型半導体)と電子供与性化合物(p型半導体)とから構成されている。電子受容性化合物(n型半導体)と電子供与性化合物(p型半導体)とが混合されて用いられている有機活性層は、バルクへテロ型有機活性層と呼称される。 The organic active layer is composed of an electron-accepting compound (n-type semiconductor) and an electron-donating compound (p-type semiconductor). An organic active layer in which an electron-accepting compound (n-type semiconductor) and an electron-donating compound (p-type semiconductor) are mixed and used is called a bulk hetero-type organic active layer.
 バルクへテロ型有機活性層において、電子受容性化合物と電子供与性化合物とは、一方の電極側から他方の電極側に亘って連続した微細かつ複雑な形状の相を構成しており、相互に分離しつつ複雑な界面を構成している。 In the bulk hetero organic active layer, the electron-accepting compound and the electron-donating compound constitute a phase of a fine and complex shape that continues from one electrode side to the other electrode side, and It forms a complex interface while separating.
 光電変換素子の有機活性層に用いる有機材料は、π-π遷移に基づいて光吸収する有機化合物である。例えば、電子供与性化合物と電子受容性化合物とキシレン等を溶媒として用いた溶液を基板上に塗布して製造した有機活性層を含む光電変換素子が提案されている(非特許文献1参照)。 An organic material used for the organic active layer of the photoelectric conversion element is an organic compound that absorbs light based on a π-π * transition. For example, a photoelectric conversion element including an organic active layer manufactured by applying a solution using an electron donating compound, an electron accepting compound, xylene and the like as a solvent on a substrate has been proposed (see Non-Patent Document 1).
 即ち、本発明は、下記[1]~[9]を提供する。
[1] 陽極と、陰極と、陽極と陰極との間に設けられる有機活性層とを有し、有機活性層中に電子供与性化合物と電子受容性化合物とを有し、透過型電子顕微鏡で観察した有機活性層の画像であって明暗を2値化した有機活性層の画像において、電子供与性化合物と電子受容性化合物との接合長さが、有機活性層の画像の面積1μmあたり、100μm以上である、光電変換素子。
[2] 陽極と、陰極と、陽極と陰極との間に設けられる有機活性層とを有し、有機活性層中に電子供与性化合物と電子受容性化合物とを有し、透過型電子顕微鏡で観察した有機活性層の900nm×900nmの範囲の画像であって、明暗を2値化して白色部と黒色部とを形成した画像を均等な面積となる9個の区画に分割し、各区画の黒色部の面積分率から算出した標準偏差が、0.09以下である、光電変換素子。
[3] 陽極と、陰極と、陽極と陰極との間に設けられる有機活性層とを有し、有機活性層中に電子供与性化合物と電子受容性化合物とを有し、有機活性層中の電子供与性化合物と有機活性層中の電子受容性化合物との少なくとも一方の励起状態の寿命が、1ns以下である、光電変換素子。
[4] 陽極と、陰極と、陽極と陰極との間に設けられる有機活性層とを有し、有機活性層中に電子供与性化合物と電子受容性化合物とを有し、有機活性層中の電子供与性化合物と有機活性層中の電子受容性化合物との少なくとも一方の蛍光消光率が、60%以上である、光電変換素子。
[5] 陽極又は陰極上に、電子供与性化合物と電子受容性化合物と沸点が100℃以下の溶媒とを含む溶液を塗布して有機活性層を製造する工程を含む、[1]~[4]のいずれか1つに記載の光電変換素子の製造方法。
[6] 陽極又は陰極上に、電子供与性化合物と電子受容性化合物と沸点が100℃以下の溶媒とを含む溶液を塗布して有機活性層を製造する工程を含み、電子供与性化合物と電子受容性化合物との少なくとも一方の化合物が、式(I)で表される繰り返し単位を含む高分子化合物であって、高分子化合物中に含まれる全繰り返し単位中、式(I)で表される繰り返し単位の比率が最も大きい高分子化合物である、光電変換素子の製造方法。
Figure JPOXMLDOC01-appb-C000006
(式(I)中、R1、R2、R3、R4、R5及びR6は、それぞれ独立に、水素原子又は置換基を表す。また、R1、R2、R3、R4、R5、R6は、それぞれ互いに連結して環状構造を形成していてもよい。X1、X2及びX3は、それぞれ独立に、硫黄原子、酸素原子、セレン原子、-N(R7)-又は-C(R8)=C(R9)-を表す。R7、8及びR9は、それぞれ独立に、水素原子又は置換基を表す。n及びmは、それぞれ独立に、0~5の整数を表す。R1、R2、R5、R6、X1、X3が複数個ある場合、それらは同一であっても相異なっていてもよい。)

[7] [6]に記載の製造方法により得ることができる、光電変換素子。
[8] [1]~[4]、[7]のいずれか1つに記載の光電変換素子を含む、太陽電池モジュール。
[9] [1]~[4]、[7]のいずれか1つに記載の光電変換素子を含む、イメージセンサー。
That is, the present invention provides the following [1] to [9].
[1] An anode, a cathode, and an organic active layer provided between the anode and the cathode. The organic active layer includes an electron-donating compound and an electron-accepting compound. In the image of the organic active layer observed and the image of the organic active layer binarized, the bond length between the electron-donating compound and the electron-accepting compound is about 1 μm 2 per area of the organic active layer image. The photoelectric conversion element which is 100 micrometers or more.
[2] having an anode, a cathode, and an organic active layer provided between the anode and the cathode, having an electron donating compound and an electron accepting compound in the organic active layer, and using a transmission electron microscope The image of the observed organic active layer in the range of 900 nm × 900 nm, in which the image obtained by binarizing the brightness and forming the white portion and the black portion is divided into nine sections having an equal area. The photoelectric conversion element whose standard deviation computed from the area fraction of the black part is 0.09 or less.
[3] having an anode, a cathode, and an organic active layer provided between the anode and the cathode, having an electron donating compound and an electron accepting compound in the organic active layer, The photoelectric conversion element whose lifetime of the excited state of at least one of an electron-donating compound and the electron-accepting compound in an organic active layer is 1 ns or less.
[4] An anode, a cathode, an organic active layer provided between the anode and the cathode, an electron-donating compound and an electron-accepting compound in the organic active layer, A photoelectric conversion element wherein the fluorescence quenching rate of at least one of the electron donating compound and the electron accepting compound in the organic active layer is 60% or more.
[5] [1] to [4] including a step of producing an organic active layer by applying a solution containing an electron donating compound, an electron accepting compound, and a solvent having a boiling point of 100 ° C. or less on the anode or the cathode. ] The manufacturing method of the photoelectric conversion element as described in any one of.
[6] A step of producing an organic active layer by applying a solution containing an electron-donating compound, an electron-accepting compound, and a solvent having a boiling point of 100 ° C. or less on the anode or the cathode, and comprising an electron-donating compound and an electron At least one compound with the accepting compound is a polymer compound containing a repeating unit represented by the formula (I), and is represented by the formula (I) among all repeating units contained in the polymer compound. A method for producing a photoelectric conversion element, which is a polymer compound having the largest repeating unit ratio.
Figure JPOXMLDOC01-appb-C000006
(In the formula (I), R 1 , R 2 , R 3 , R 4 , R 5 and R 6 each independently represents a hydrogen atom or a substituent. Also, R 1 , R 2 , R 3 , R 4 , R 5 and R 6 may be linked to each other to form a cyclic structure, and X 1 , X 2 and X 3 are each independently a sulfur atom, an oxygen atom, a selenium atom, —N ( R 7 ) — or —C (R 8 ) ═C (R 9 ) — R 7, R 8 and R 9 each independently represents a hydrogen atom or a substituent, n and m each independently Represents an integer of 0 to 5. When there are a plurality of R 1 , R 2 , R 5 , R 6 , X 1 and X 3 , they may be the same or different.

[7] A photoelectric conversion element obtainable by the production method according to [6].
[8] A solar cell module including the photoelectric conversion element according to any one of [1] to [4] and [7].
[9] An image sensor including the photoelectric conversion element according to any one of [1] to [4] and [7].
 本発明の光電変換素子は、陽極と、陰極と、陽極と陰極との間に設けられる有機活性層とを有し、有機活性層中に電子供与性化合物と電子受容性化合物とを有し、透過型電子顕微鏡で観察した有機活性層の画像であって明暗を2値化した有機活性層の画像において、電子供与性化合物と電子受容性化合物との接合長さが、有機活性層の画像の面積1μmあたり、100μm以上である。 The photoelectric conversion element of the present invention has an anode, a cathode, and an organic active layer provided between the anode and the cathode, and has an electron donating compound and an electron accepting compound in the organic active layer, In the image of the organic active layer observed with a transmission electron microscope and the image of the organic active layer binarized in brightness, the bond length between the electron-donating compound and the electron-accepting compound is It is 100 μm or more per 1 μm 2 area.
 本発明に係る光電変換素子を構成する、陽極、有機活性層、有機活性層を構成する電子供与性化合物及び電子受容性化合物、陰極、及び必要に応じて形成される他の構成要素について、以下に詳しく説明する。 Concerning the photoelectric conversion element according to the present invention, the anode, the organic active layer, the electron donating compound and the electron accepting compound constituting the organic active layer, the cathode, and other components formed as necessary, This will be explained in detail.
(光電変換素子の基本的形態)
 本発明の光電変換素子の基本的形態としては、少なくとも一方が透明又は半透明である一対の電極と、電子供与性化合物(p型の有機半導体)と電子受容性化合物(n型の有機半導体など)との有機組成物から形成されるバルクへテロ型の有機活性層を有する。
(Basic form of photoelectric conversion element)
As a basic form of the photoelectric conversion element of the present invention, a pair of electrodes, at least one of which is transparent or translucent, an electron donating compound (p-type organic semiconductor) and an electron-accepting compound (n-type organic semiconductor, etc.) And a bulk hetero-type organic active layer formed from an organic composition.
(光電変換素子の基本動作)
 透明又は半透明の電極から入射した光エネルギーが電子受容性化合物及び/又は電子供与性化合物で吸収され、電子と正孔とがクーロン結合してなる励起子を生成する。生成した励起子が移動して、電子受容性化合物と電子供与性化合物とが隣接しているヘテロ接合界面に達すると、界面でのそれぞれの最高占有分子軌道(HOMO)エネルギー及び最低空分子軌道(LUMO)エネルギーの違いにより電子と正孔とが分離し、独立に動くことができる電荷(電子及び正孔)が発生する。
 発生したそれぞれの電荷は、それぞれ電極へ移動することにより外部へ電気エネルギー(電流)として取り出すことができる。
 本発明の光電変換素子では、光電荷分離と電荷輸送を効率的に生じさせる有機活性層を有するため光電変換効率が高くなる。
(Basic operation of photoelectric conversion element)
Light energy incident from a transparent or translucent electrode is absorbed by the electron-accepting compound and / or electron-donating compound, and excitons formed by Coulomb bonds between electrons and holes are generated. When the generated excitons move and reach the heterojunction interface where the electron-accepting compound and the electron-donating compound are adjacent to each other, the respective highest occupied molecular orbital (HOMO) energy and the lowest unoccupied molecular orbital ( LUMO) Due to the difference in energy, electrons and holes are separated, and charges (electrons and holes) that can move independently are generated.
Each generated electric charge can be taken out as electric energy (current) to the outside by moving to the electrode.
Since the photoelectric conversion element of the present invention has an organic active layer that efficiently generates photocharge separation and charge transport, the photoelectric conversion efficiency is increased.
(基板)
 本発明の光電変換素子は、通常、基板上に形成される。この基板は、電極を形成し、有機物の層を形成する際に化学的に変化しないものであればよい。基板の材料としては、例えば、ガラス、プラスチック、高分子フィルム、シリコン等が挙げられる。不透明な基板の場合には、反対の電極(即ち、基板から遠い方の電極)が透明又は半透明であることが好ましい。
(substrate)
The photoelectric conversion element of the present invention is usually formed on a substrate. The substrate may be any substrate that does not chemically change when the electrodes are formed and the organic layer is formed. Examples of the material for the substrate include glass, plastic, polymer film, and silicon. In the case of an opaque substrate, the opposite electrode (that is, the electrode far from the substrate) is preferably transparent or translucent.
(電極)
 透明又は半透明の電極材料の例としては、導電性の金属酸化物膜、半透明の金属薄膜等が挙げられる。具体的には、酸化インジウム、酸化亜鉛、酸化スズ、及びそれらの複合体であるインジウム・スズ・オキサイド(ITO)、インジウム・亜鉛・オキサイド(IZO)、NESA等の導電性材料を用いて形成された膜、金、白金、銀、銅等を用いて形成された金属薄膜が挙げられ、ITO、IZO、酸化スズを用いて形成された膜が好ましい。電極の形成方法の例としては、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法等が挙げられる。また、電極材料として、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体等の有機の透明導電膜を用いてもよい。透明又は半透明の電極は、陽極であっても陰極であってもよい。
(electrode)
Examples of the transparent or translucent electrode material include a conductive metal oxide film, a translucent metal thin film, and the like. Specifically, it is formed using indium oxide, zinc oxide, tin oxide, and conductive materials such as indium tin oxide (ITO), indium zinc oxide (IZO), and NESA that are composites thereof. And metal thin films formed using gold, platinum, silver, copper, etc., and films formed using ITO, IZO, tin oxide are preferred. Examples of the electrode forming method include a vacuum deposition method, a sputtering method, an ion plating method, and a plating method. Moreover, you may use organic transparent conductive films, such as polyaniline and its derivative (s), polythiophene, and its derivative (s) as an electrode material. The transparent or translucent electrode may be an anode or a cathode.
 他方の電極は透明でなくてもよく、電極の電極材料としては、金属、導電性高分子等を用いることができる。電極材料の具体例としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウム等の金属、及びそれらのうち2つ以上の合金、又は、1種以上の前記金属と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン及び錫からなる群から選ばれる1種以上の金属との合金、グラファイト、グラファイト層間化合物、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体が挙げられる。合金としては、マグネシウム-銀合金、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、インジウム-銀合金、リチウム-アルミニウム合金、リチウム-マグネシウム合金、リチウム-インジウム合金、カルシウム-アルミニウム合金等が挙げられる。 The other electrode may not be transparent, and as the electrode material of the electrode, a metal, a conductive polymer, or the like can be used. Specific examples of the electrode material include metals such as lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, ytterbium, and the like. And one or more alloys selected from the group consisting of gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten, and tin. Examples include alloys with metals, graphite, graphite intercalation compounds, polyaniline and derivatives thereof, and polythiophene and derivatives thereof. Examples of the alloy include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, and calcium-aluminum alloy.
(バッファー層)
 光電変換効率を向上させるために、有機活性層以外の付加的な中間層(電荷輸送層など)を設けてもよい。中間層に用いられる材料の例としては、フッ化リチウム等のアルカリ金属又はアルカリ土類金属のハロゲン化物又は酸化物等が挙げられ、具体的にはフッ化リチウムが挙げられる。
 また、中間層に用いられる材料として、酸化チタン等の無機半導体の微粒子、PEDOT(ポリ(3,4-エチレンジオキシチオフェン))とPSS(ポリ(4-スチレンスルホネート))との混合物(PEDOT:PSS)などを用いてもよい。
(Buffer layer)
In order to improve the photoelectric conversion efficiency, an additional intermediate layer (such as a charge transport layer) other than the organic active layer may be provided. Examples of the material used for the intermediate layer include alkali metal or alkaline earth metal halides or oxides such as lithium fluoride, and specifically lithium fluoride.
Further, as a material used for the intermediate layer, fine particles of inorganic semiconductor such as titanium oxide, a mixture of PEDOT (poly (3,4-ethylenedioxythiophene)) and PSS (poly (4-styrenesulfonate)) (PEDOT: PSS) or the like may be used.
(有機活性層)
 本発明の光電変換素子に含まれる有機活性層は、電子供与性化合物と電子受容性化合物とを含む。
 なお、電子供与性化合物、電子受容性化合物は、化合物のHOMOまたはLUMOのエネルギー準位から相対的に決定される。
(Organic active layer)
The organic active layer contained in the photoelectric conversion element of the present invention contains an electron donating compound and an electron accepting compound.
Note that the electron-donating compound and the electron-accepting compound are relatively determined from the HOMO or LUMO energy level of the compound.
 電子供与性化合物と電子受容性化合物との少なくとも一方が、高分子化合物であることが好ましく、電子供与性化合物と電子受容性化合物とがともに高分子化合物であることがより好ましい。 At least one of the electron donating compound and the electron accepting compound is preferably a polymer compound, and both the electron donating compound and the electron accepting compound are more preferably polymer compounds.
(電子供与性化合物)
 電子供与性化合物としては、太陽光の放射波長の領域に吸収を持っておれば、制限はない。電子供与性化合物としては、最高占有分子軌道のエネルギー準位が-4.7eV以下であり、かつ、その最低空分子軌道のエネルギー準位が-4.0eV以上である高分子化合物が好ましい。電子供与性化合物は、低分子化合物でも高分子化合物でもよい。電子供与性化合物としては、高分子化合物が好ましい。電子供与性化合物としては、例えば、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、オリゴチオフェン及びその誘導体、ポリビニルカルバゾール及びその誘導体、ポリシラン及びその誘導体、側鎖又は主鎖に芳香族アミンを有するポリシロキサン誘導体、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体、ポリフェニレンビニレン及びその誘導体、ポリチエニレンビニレン及びその誘導体が挙げられ、中でも、高分子化合物が好ましい。
 p型半導体である高分子化合物としては、ポリチオフェン及びその誘導体、チオフェン同士が結合した2量体~5量体を含む構造又はチオフェンの誘導体同士が結合した2量体~5量体を含む構造を有する高分子化合物が好ましく、ポリチオフェン及びその誘導体がより好ましい。ここで、ポリチオフェン誘導体とは、置換基を有するチオフェンジイル基を有する高分子化合物である。
 ポリチオフェン及びその誘導体としては、ホモポリマーであることが好ましい。ホモポリマーとは、チオフェンジイル基及び置換基を有するチオフェンジイル基からなる群から選ばれる基のみが複数個結合してなるポリマーである。チオフェンジイル基としては、チオフェン-2,5-ジイル基が好ましく、置換基を有するチオフェンジイル基としては、アルキルチオフェン-2、5-ジイル基が好ましい。ホモポリマーであるポリチオフェン及びその誘導体の具体例としては、ポリ(3-ヘキシルチオフェン-2,5-ジイル)(P3HT)、ポリ(3-オクチルチオフェン-2,5-ジイル)、ポリ(3-ドデシルチオフェン-2,5-ジイル)、ポリ(3-オクタデシルチオフェン-2,5-ジイル)が挙げられる。ホモポリマーであるポリチオフェン及びその誘導体の中では、炭素原子数が6~30のアルキル基で置換されたチオフェンジイル基からなるポリチオフェンホモポリマーが好ましい。
(Electron donating compound)
The electron-donating compound is not limited as long as it has absorption in the solar radiation wavelength region. The electron donating compound is preferably a polymer compound having an energy level of the highest occupied molecular orbital of −4.7 eV or lower and an energy level of the lowest unoccupied molecular orbital of −4.0 eV or higher. The electron donating compound may be a low molecular compound or a high molecular compound. As the electron donating compound, a polymer compound is preferable. Examples of the electron donating compound include pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenyldiamine derivatives, oligothiophene and derivatives thereof, polyvinylcarbazole and derivatives thereof, polysilane and derivatives thereof, and aromatic amines in side chains or main chains. And polysiloxane derivatives, polyaniline and derivatives thereof, polythiophene and derivatives thereof, polypyrrole and derivatives thereof, polyphenylene vinylene and derivatives thereof, polythienylene vinylene and derivatives thereof, among which polymer compounds are preferred.
Examples of the polymer compound which is a p-type semiconductor include polythiophene and derivatives thereof, a structure including dimers to pentamers in which thiophenes are bonded to each other, or a structure including dimers to pentamers in which thiophene derivatives are bonded to each other. The polymer compound is preferably polythiophene and derivatives thereof. Here, the polythiophene derivative is a polymer compound having a thiophenediyl group having a substituent.
Polythiophene and its derivatives are preferably homopolymers. A homopolymer is a polymer formed by bonding only a plurality of groups selected from the group consisting of a thiophenediyl group and a substituted thiophenediyl group. The thiophene diyl group is preferably a thiophene-2,5-diyl group, and the thiophene diyl group having a substituent is preferably an alkylthiophene-2, 5-diyl group. Specific examples of the homopolymer polythiophene and derivatives thereof include poly (3-hexylthiophene-2,5-diyl) (P3HT), poly (3-octylthiophene-2,5-diyl), poly (3-dodecyl) Thiophene-2,5-diyl) and poly (3-octadecylthiophene-2,5-diyl). Among the polythiophenes and derivatives thereof which are homopolymers, polythiophene homopolymers comprising thiophene diyl groups substituted with alkyl groups having 6 to 30 carbon atoms are preferred.
 電子供与性化合物である高分子化合物の例としては、下記構造式(4)で示される高分子化合物Aが挙げられる。 Examples of the polymer compound that is an electron donating compound include polymer compound A represented by the following structural formula (4).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 (電子受容性化合物)
 電子受容性化合物としては、その最高占有分子軌道のエネルギー準位が-5.0eV以下であり、かつ、その最低空分子軌道のエネルギー準位が-4.3eV以上である高分子化合物が好ましい。
 電子受容性化合物としては、例えば、オキサジアゾール誘導体、アントラキノジメタン及びその誘導体、ベンゾキノン及びその誘導体、ナフトキノン及びその誘導体、アントラキノン及びその誘導体、テトラシアノアントラキノジメタン及びその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン及びその誘導体、ジフェノキノン誘導体、8-ヒドロキシキノリン及びその誘導体の金属錯体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、ポリフルオレン及びその誘導体、C60フラーレン等のフラーレン及びその誘導体、バソクプロイン等のフェナントレン誘導体、酸化チタンなどの金属酸化物、カーボンナノチューブが挙げられる。電子受容性化合物としては、好ましくは、ベンゾチアジアゾール構造を含む化合物、繰り返し単位にベンゾチアジアゾール構造を含む高分子化合物、キノキサリン構造を含む化合物、繰り返し単位にキノキサリン構造を含む高分子化合物、酸化チタン、カーボンナノチューブ、フラーレン、フラーレン誘導体であり、より好ましくは、フラーレン、フラーレン誘導体、ベンゾチアジアゾール構造を含む化合物、繰り返し単位にベンゾチアジアゾール構造を含む高分子化合物、キノキサリン構造を含む化合物、繰り返し単位にキノキサリン構造を含む高分子化合物であり、さらに好ましくは、ベンゾチアジアゾール構造を含む化合物、繰り返し単位にベンゾチアジアゾール構造を含む高分子化合物、キノキサリン構造を含む化合物、繰り返し単位にキノキサリン構造を含む高分子化合物であり、特に好ましくは、繰り返し単位にベンゾチアジアゾール構造を含む高分子化合物、繰り返し単位にキノキサリン構造を含む高分子化合物である。
 電子受容性化合物としては、共役系高分子化合物であることが好ましい。
(Electron-accepting compound)
As the electron-accepting compound, a polymer compound having an energy level of the highest occupied molecular orbital of −5.0 eV or lower and an energy level of the lowest unoccupied molecular orbital of −4.3 eV or higher is preferable.
Examples of the electron-accepting compound include oxadiazole derivatives, anthraquinodimethane and its derivatives, benzoquinone and its derivatives, naphthoquinone and its derivatives, anthraquinone and its derivatives, tetracyanoanthraquinodimethane and its derivatives, fluorenone derivatives, diphenyldicyanoethylene and derivatives thereof, diphenoquinone derivatives, metal complexes of 8-hydroxyquinoline and its derivatives, polyquinoline and its derivatives, polyquinoxaline and its derivatives, polyfluorene and its derivatives, fullerene and derivatives thereof such as C 60 fullerene, bathocuproine etc. Phenanthrene derivatives, metal oxides such as titanium oxide, and carbon nanotubes. The electron accepting compound is preferably a compound containing a benzothiadiazole structure, a polymer compound containing a benzothiadiazole structure in a repeating unit, a compound containing a quinoxaline structure, a polymer compound containing a quinoxaline structure in a repeating unit, titanium oxide, carbon Nanotubes, fullerenes, fullerene derivatives, more preferably fullerenes, fullerene derivatives, compounds containing a benzothiadiazole structure, polymer compounds containing a benzothiadiazole structure in a repeating unit, compounds containing a quinoxaline structure, and a quinoxaline structure in a repeating unit More preferably, it is a compound containing a benzothiadiazole structure, a polymer compound containing a benzothiadiazole structure in a repeating unit, a compound containing a quinoxaline structure, a repeating unit To a polymer compound containing a quinoxaline structure, particularly preferably a polymer compound containing a benzothiadiazole structure in the repeating unit, a polymer compound containing a quinoxaline structure repeating units.
The electron accepting compound is preferably a conjugated polymer compound.
 繰り返し単位にベンゾチアジアゾール構造を含む高分子化合物の例としては、下記構造式(4)で表される高分子化合物が挙げられる。 Examples of the polymer compound containing a benzothiadiazole structure in the repeating unit include a polymer compound represented by the following structural formula (4).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 フラーレンの例としては、C60フラーレン、C70フラーレン、C76フラーレン、C78フラーレン、C84フラーレンが挙げられる。
 フラーレン誘導体としては、C60フラーレンの誘導体、C70フラーレンの誘導体、C76フラーレンの誘導体、C78フラーレンの誘導体、C84フラーレンの誘導体が挙げられる。
Examples of fullerene, C 60 fullerene, C 70 fullerene, C 76 fullerene, C 78 fullerene include C 84 fullerene.
Examples of fullerene derivatives include C 60 fullerene derivatives, C 70 fullerene derivatives, C 76 fullerene derivatives, C 78 fullerene derivatives, and C 84 fullerene derivatives.
 C60フラーレンの誘導体の具体例としては、以下のようなものが挙げられる。 Specific examples of the C 60 fullerene derivative include the following.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 C70フラーレンの誘導体の具体例としては、以下のようなものが挙げられる。 Specific examples of C70 fullerene derivatives include the following.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 また、フラーレン誘導体の例としては、[6,6]フェニル-C61酪酸メチルエステル(C60PCBM、[6,6]-Phenyl C61 butyric acid methyl ester)、[6,6]フェニル-C71酪酸メチルエステル(C70PCBM、[6,6]-Phenyl C71 butyric acid methyl ester)、[6,6]フェニル-C85酪酸メチルエステル(C84PCBM、[6,6]-Phenyl C85 butyric acid methyl ester)、[6,6]チエニル-C61酪酸メチルエステル([6,6]-Thienyl C61 butyric acid methyl ester)が挙げられる。 Examples of fullerene derivatives include [6,6] phenyl-C 61 butyric acid methyl ester (C 60 PCBM, [6,6] -Phenyl C 61 butyric acid methyl ester), and [6,6] phenyl-C 71. Butyric acid methyl ester (C 70 PCBM, [6,6] -Phenyl C 71 butyric acid methyl ester), [6,6] Phenyl-C 85 butyric acid methyl ester (C 84 PCBM, [6,6] -Phenyl C 85 butyric acid methyl ester), [6,6] thienyl -C 61 butyric acid methyl ester ([6,6] -Thienyl C 61 butyric acid methyl ester) and the like.
 有機活性層において、電子供与性化合物に対する電子受容性化合物の使用割合は、電子供与性化合物100重量部に対して、10重量部~1000重量部であることが好ましく、20重量部~500重量部であることがより好ましい。 In the organic active layer, the ratio of the electron accepting compound to the electron donating compound is preferably 10 parts by weight to 1000 parts by weight with respect to 100 parts by weight of the electron donating compound, and 20 parts by weight to 500 parts by weight. It is more preferable that
 有機活性層の厚さは、通常、1nm~100μmが好ましく、より好ましくは2nm~1000nmであり、さらに好ましくは5nm~500nmであり、特に好ましくは20nm~200nmである。 The thickness of the organic active layer is usually preferably 1 nm to 100 μm, more preferably 2 nm to 1000 nm, still more preferably 5 nm to 500 nm, and particularly preferably 20 nm to 200 nm.
 本発明の光電変換素子は、電子供与性化合物と電子受容性化合物との少なくとも一方の化合物が、下記式(I)で表される繰り返し単位を含む高分子化合物であって、高分子化合物中に含まれる全繰り返し単位中、下記式(I)で表される繰り返し単位の比率が最も大きい高分子化合物であることが好ましい。 The photoelectric conversion device of the present invention is a polymer compound in which at least one of an electron donating compound and an electron accepting compound includes a repeating unit represented by the following formula (I), Among all the repeating units contained, a polymer compound having the largest ratio of repeating units represented by the following formula (I) is preferable.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 式(I)中、R1、R2、R3、R4、R5及びR6は、それぞれ独立に、水素原子又は置換基を表す。また、R1、R2、R3、R4、R5、R6は、それぞれ互いに連結して環状構造を形成していてもよい。X1、X2及びX3は、それぞれ独立に、硫黄原子、酸素原子、セレン原子、-N(R7)-又は-C(R8)=C(R9)-を表す。R7、8及びR9は、それぞれ独立に、水素原子又は置換基を表す。n及びmは、それぞれ独立に、0~5の整数を表す。R1、R2、R5、R6、X1、X3が複数個ある場合、それらは同一であっても相異なっていてもよい。 In formula (I), R 1 , R 2 , R 3 , R 4 , R 5 and R 6 each independently represent a hydrogen atom or a substituent. R 1 , R 2 , R 3 , R 4 , R 5 and R 6 may be connected to each other to form a cyclic structure. X 1 , X 2 and X 3 each independently represents a sulfur atom, an oxygen atom, a selenium atom, —N (R 7 ) — or —C (R 8 ) ═C (R 9 ) —. R 7, R 8 and R 9 each independently represents a hydrogen atom or a substituent. n and m each independently represents an integer of 0 to 5. When there are a plurality of R 1 , R 2 , R 5 , R 6 , X 1 , and X 3 , they may be the same or different.
 式(I)中、n及びmは、それぞれ独立に、0~5の整数を表す。n及びmは、1~3の整数が好ましく、1であることがさらに好ましい。
 R1、R2、R3、R4、R5及びR6は、それぞれ独立に、水素原子又は置換基を表す。R1~R6が置換基である場合、炭素原子数が1~30の基が好ましい。置換基としては、メチル基、エチル基、ブチル基、ヘキシル基、オクチル基、ドデシル基などの炭素原子数が1~30のアルキル基、メトキシ基、エトキシ基、ブトキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基などの炭素原子数が1~30のアルコキシ基、フェニル基、ナフチル基などの炭素原子数が1~30のアリール基等が挙げられる。
 また、R1、R2、R3、R4、R5、R6は、それぞれ互いに連結して環状構造を形成していてもよい。R1とR2とが連結して形成された環状構造、R5とR6とが連結して形成された環状構造の具体例としては、以下の環状構造が挙げられる。
In formula (I), n and m each independently represents an integer of 0 to 5. n and m are preferably an integer of 1 to 3, and more preferably 1.
R 1 , R 2 , R 3 , R 4 , R 5 and R 6 each independently represent a hydrogen atom or a substituent. When R 1 to R 6 are substituents, groups having 1 to 30 carbon atoms are preferred. Examples of the substituent include an alkyl group having 1 to 30 carbon atoms such as a methyl group, an ethyl group, a butyl group, a hexyl group, an octyl group, and a dodecyl group, a methoxy group, an ethoxy group, a butoxy group, a hexyloxy group, and an octyloxy group. Group, an alkoxy group having 1 to 30 carbon atoms such as dodecyloxy group, and an aryl group having 1 to 30 carbon atoms such as phenyl group and naphthyl group.
R 1 , R 2 , R 3 , R 4 , R 5 and R 6 may be connected to each other to form a cyclic structure. Specific examples of the cyclic structure formed by connecting R 1 and R 2 and the cyclic structure formed by connecting R 5 and R 6 include the following cyclic structures.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 R3とR4とが連結して形成された環状構造の具体例としては、以下の環状構造が挙げられる。 Specific examples of the cyclic structure formed by connecting R 3 and R 4 include the following cyclic structures.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 式中、R12及びR13は、それぞれ独立に、水素原子又は置換基を表す。 In the formula, R 12 and R 13 each independently represent a hydrogen atom or a substituent.
 R12、R13で表される置換基としては、前述のR1~R6で表される置換基と同様の基が挙げられる。 Examples of the substituent represented by R 12 and R 13 include the same groups as the substituents represented by R 1 to R 6 described above.
 R1~R6は、好ましくは、水素原子又はアルキル基であり、より好ましくは、水素原子である。 R 1 to R 6 are preferably a hydrogen atom or an alkyl group, and more preferably a hydrogen atom.
 X1、X2及びX3は、それぞれ独立に、硫黄原子、酸素原子、セレン原子、-N(R7)-又は-C(R8)=C(R9)-を表す。R7、8及びR9は、それぞれ独立に、水素原子又は置換基を表す。R7、8、R9が置換基である場合、置換基としては、メチル基、エチル基、ブチル基、ヘキシル基、オクチル基、ドデシル基などの炭素原子数が1~30のアルキル基、フェニル基、ナフチル基などの炭素原子数が1~30のアリール基等が挙げられる。
 X1、X2、X3は、好ましくは硫黄原子である。
X 1 , X 2 and X 3 each independently represents a sulfur atom, an oxygen atom, a selenium atom, —N (R 7 ) — or —C (R 8 ) ═C (R 9 ) —. R 7, R 8 and R 9 each independently represents a hydrogen atom or a substituent. When R 7, R 8 and R 9 are substituents, examples of the substituent include alkyl groups having 1 to 30 carbon atoms such as methyl, ethyl, butyl, hexyl, octyl and dodecyl groups; Examples thereof include aryl groups having 1 to 30 carbon atoms such as a phenyl group and a naphthyl group.
X 1 , X 2 and X 3 are preferably sulfur atoms.
 式(I)で表される繰り返し単位としては、下記式(I-1)で表される繰り返し単位が好ましい。 The repeating unit represented by the formula (I) is preferably a repeating unit represented by the following formula (I-1).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 本発明に用いられる高分子化合物は、式(I)で表される繰り返し単位を含む高分子化合物であって、該高分子化合物中が含有する全ての繰り返し単位の中で、式(I)で表される繰り返し単位の含有量(モル数)が最も大きい。
 本発明に用いられる高分子化合物は、式(I)で表される繰り返し単位が、高分子化合物中の全繰り返し単位の合計に対して、50%を超えることが好ましい。式(I)で表される繰り返し単位が、高分子化合物中の全繰り返し単位の合計に対して、50%を超える高分子化合物を光電変換素子に用いることで、50%を超えていない高分子化合物を用いた光電変換素子よりも光電変換効率が高くなる。より好ましくは、式(I)で表される繰り返し単位が、高分子化合物中の全繰り返し単位の合計に対して、52%以上である。更に好ましくは、式(I)で表される繰り返し単位が、高分子化合物中の全繰り返し単位の合計に対して、55%以上である。
 また、式(I)で表される繰り返し単位が、高分子化合物中の全繰り返し単位の合計に対して、100%未満であることが好ましい。より好ましくは、式(I)で表される繰り返し単位が、高分子化合物中の全繰り返し単位の合計に対して、98%以下であることが好ましい。更に好ましくは、式(I)で表される繰り返し単位が、高分子化合物中の全繰り返し単位の合計に対して、70%以下であることが好ましい。本発明に用いられる高分子化合物は式(I)で表される繰り返し単位以外の他の繰り返し単位を含むことが好ましい。
The polymer compound used in the present invention is a polymer compound containing a repeating unit represented by the formula (I), and among all the repeating units contained in the polymer compound, the compound represented by the formula (I) The content (number of moles) of the repeating unit represented is the largest.
In the polymer compound used in the present invention, it is preferable that the repeating unit represented by the formula (I) exceeds 50% with respect to the total of all repeating units in the polymer compound. A polymer in which the repeating unit represented by the formula (I) does not exceed 50% by using a polymer compound that exceeds 50% in the photoelectric conversion element with respect to the total of all the repeating units in the polymer compound. Photoelectric conversion efficiency is higher than that of a photoelectric conversion element using a compound. More preferably, the repeating unit represented by the formula (I) is 52% or more based on the total of all repeating units in the polymer compound. More preferably, the repeating unit represented by the formula (I) is 55% or more with respect to the total of all repeating units in the polymer compound.
Moreover, it is preferable that the repeating unit represented by a formula (I) is less than 100% with respect to the sum total of all the repeating units in a high molecular compound. More preferably, the repeating unit represented by the formula (I) is preferably 98% or less with respect to the total of all repeating units in the polymer compound. More preferably, the repeating unit represented by the formula (I) is 70% or less with respect to the total of all repeating units in the polymer compound. The polymer compound used in the present invention preferably contains a repeating unit other than the repeating unit represented by the formula (I).
 高分子化合物は、さらに、下記式(II)で表される繰り返し単位を含んでいてもよい。 The polymer compound may further contain a repeating unit represented by the following formula (II).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 式(II)中、環A及び環Bは、それぞれ独立に、芳香族環を表す。R10及びR11は、それぞれ独立に、水素原子又は置換基を表す。また、R10、R11は、連結して環状構造を形成していてもよい。 In formula (II), ring A and ring B each independently represent an aromatic ring. R 10 and R 11 each independently represents a hydrogen atom or a substituent. R 10 and R 11 may be linked to form a cyclic structure.
 R10、R11が置換基である場合、置換基としては、メチル基、エチル基、ブチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、エイコシル基などの炭素原子数が1~30のアルキル基、フェニル基、ナフチル基などの炭素原子数が1~30のアリール基等が挙げられる。R10、R11は、アルキル基、アリール基等の炭化水素基であることが好ましく、アルキル基であることがさらに好ましい。また、R10、R11が置換基である場合、炭素原子数が12以上であることが好ましい。 When R 10 and R 11 are substituents, examples of the substituent include methyl, ethyl, butyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, Alkyl groups having 1 to 30 carbon atoms such as tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, eicosyl group and the like, and aryl groups having 1 to 30 carbon atoms such as phenyl group and naphthyl group Etc. R 10 and R 11 are preferably hydrocarbon groups such as alkyl groups and aryl groups, and more preferably alkyl groups. Moreover, when R < 10 >, R < 11 > is a substituent, it is preferable that a carbon atom number is 12 or more.
 環A、環Bとしては、ベンゼン環、ナフタレン環などの芳香族炭素環、チオフェンなどの芳香族複素環等が挙げられる。環A、環Bは、5員環~10員環であることが好ましく、ベンゼン環又はナフタレン環であることがより好ましい。 Examples of ring A and ring B include aromatic carbocycles such as benzene ring and naphthalene ring, and aromatic heterocycles such as thiophene. Ring A and ring B are preferably 5- to 10-membered rings, and more preferably benzene rings or naphthalene rings.
 式(II)で表される繰り返し単位としては、下記式(II-1)で表される繰り返し単位が好ましい。 The repeating unit represented by the formula (II) is preferably a repeating unit represented by the following formula (II-1).
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 式(II-1)中、R10及びR11は、前述と同じ意味を表す。 In formula (II-1), R 10 and R 11 represent the same meaning as described above.
 本発明に用いる高分子化合物が式(I)で示される繰り返し単位に加えて、式(II)で表される繰り返し単位を含む場合、高分子化合物中に含まれる全繰り返し単位中、式(II)で表される繰り返し単位の比率が、式(I)で表される繰り返し単位の比率に次いで大きいことが好ましい。高分子化合物が有する繰り返し単位が、式(I)で表される繰り返し単位及び式(II)で表される繰り返し単位のみである場合がさらに好ましい。 When the polymer compound used in the present invention contains a repeating unit represented by the formula (II) in addition to the repeating unit represented by the formula (I), the compound of the formula (II) It is preferable that the ratio of the repeating unit represented by the formula (I) is next to the ratio of the repeating unit represented by the formula (I). The case where the repeating unit of the polymer compound is only the repeating unit represented by the formula (I) and the repeating unit represented by the formula (II) is more preferable.
 本発明に用いられる高分子化合物の製造方法としては、特に制限されるものではない。高分子化合物の合成が容易であるため、Suzukiカップリング反応を用いる方法が好ましい。また、本発明に用いられる高分子化合物の製造方法は、国際公開第2010/016613号を参照して実施することができる。 The method for producing the polymer compound used in the present invention is not particularly limited. Since the synthesis of the polymer compound is easy, a method using a Suzuki coupling reaction is preferable. Moreover, the manufacturing method of the high molecular compound used for this invention can be implemented with reference to international publication 2010/016613.
 (その他の成分)
 有機活性層には、種々の機能を発現させるために、必要に応じて他の成分を含有させてもよい。他の成分としては、例えば、紫外線吸収剤、酸化防止剤、吸収した光により電荷を発生させる機能を増感するためのため増感剤、紫外線からの安定性を増すための光安定剤、等が挙げられる。
(Other ingredients)
In order to express various functions, the organic active layer may contain other components as necessary. Other components include, for example, ultraviolet absorbers, antioxidants, sensitizers for sensitizing the function of generating charges by absorbed light, light stabilizers for increasing stability from ultraviolet rays, etc. Is mentioned.
 有機活性層を構成する電子供与性化合物及び電子受容性化合物以外の成分は、電子供与性化合物及び電子受容性化合物の合計量100重量部に対し、5重量部以下、特に、0.01重量部~3重量部の割合で配合するのが効果的である。
 また、有機活性層は、機械的特性を高めるため、電子供与性化合物及び電子受容性化合物以外の高分子化合物を高分子バインダーとして含んでいてもよい。高分子バインダーとしては、電子輸送性又は正孔輸送性を阻害しないものが好ましく、また可視光に対する吸収が強くないものが好ましく用いられる。高分子バインダーとしては、ポリ(N-ビニルカルバゾール)、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリ(p-フェニレンビニレン)及びその誘導体、ポリ(2,5-チエニレンビニレン)及びその誘導体、ポリカーポネート、ポリアクリレート、ポリメチルアクリレート、ポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニル、ポリシロキサン等が挙げられる。
Components other than the electron-donating compound and the electron-accepting compound constituting the organic active layer are 5 parts by weight or less, particularly 0.01 parts by weight with respect to 100 parts by weight of the total amount of the electron-donating compound and the electron-accepting compound. It is effective to add in a proportion of 3 parts by weight.
Further, the organic active layer may contain a polymer compound other than the electron donating compound and the electron accepting compound as a polymer binder in order to improve mechanical properties. As the polymer binder, those that do not inhibit the electron transport property or hole transport property are preferable, and those that do not strongly absorb visible light are preferably used. Polymer binders include poly (N-vinylcarbazole), polyaniline and derivatives thereof, polythiophene and derivatives thereof, poly (p-phenylene vinylene) and derivatives thereof, poly (2,5-thienylene vinylene) and derivatives thereof, poly Examples include carbonate, polyacrylate, polymethyl acrylate, polymethyl methacrylate, polystyrene, polyvinyl chloride, and polysiloxane.
 本発明の光電変換素子が有する有機活性層は、透過型電子顕微鏡で観察した有機活性層の画像であって明暗を2値化した有機活性層の画像において、電子供与性化合物と電子受容性化合物との接合長さが、有機活性層の画像の面積1μmあたり、100μm以上である。 The organic active layer of the photoelectric conversion element of the present invention is an image of the organic active layer observed with a transmission electron microscope, and the image of the organic active layer in which light and dark are binarized. Is 100 μm or more per 1 μm 2 of the image area of the organic active layer.
 電子供与性化合物と電子受容性化合物との接合長さの測定方法としては、透過型電子顕微鏡(TEM)を用いて活性層を観察し、長さを求める方法が挙げられる。電子供与性化合物、電子受容性化合物が含有する元素に特徴的な像により、電子供与性化合物と電子受容性化合物とを分離して観察することができる。元素に特徴的な像としては、エネルギーフィルターTEMによる元素マッピング像、元素マッピング像と同じコントラストを与えるエネルギー値を用いたエネルギーロス像、走査透過型電子顕微鏡を用いたエネルギー分散型X線分析(STEM-EDX)による元素マッピング像などが挙げられる。電子供与性化合物相と電子受容性化合物相とを比較して、明るい相を白に、暗い相を黒にする像の2値化処理を行うことで、電子供与性化合物と電子受容性化合物との接合長さを算出することができる。 Examples of the method for measuring the junction length between the electron donating compound and the electron accepting compound include a method of observing the active layer using a transmission electron microscope (TEM) and obtaining the length. The electron-donating compound and the electron-accepting compound can be separated and observed from an image characteristic of the element contained in the electron-donating compound and the electron-accepting compound. An image characteristic of the element includes an element mapping image by an energy filter TEM, an energy loss image using an energy value giving the same contrast as the element mapping image, and an energy dispersive X-ray analysis (STEM) using a scanning transmission electron microscope. Element mapping image by -EDX). By comparing the electron-donating compound phase with the electron-accepting compound phase, and performing binarization processing of the image in which the bright phase is white and the dark phase is black, the electron-donating compound and the electron-accepting compound are The joining length of can be calculated.
 電子供与性化合物と電子受容性化合物との接合長さは、好ましくは、有機活性層の画像の面積1μmあたり100μm以上300μm以下であり、より好ましくは、115μm以上250μm以下である。 The bonding length between the electron donating compound and the electron accepting compound is preferably 100 μm or more and 300 μm or less, more preferably 115 μm or more and 250 μm or less, per 1 μm 2 of the image area of the organic active layer.
 本発明の光電変換素子は、有機活性層中の電子供与性化合物材料と電子受容性化合物材料との相分離構造が適切に制御されるため、光電荷分離と電荷輸送とを効率的に生じさせることができ、高い光電変換効率を示す。 In the photoelectric conversion element of the present invention, the phase separation structure of the electron donating compound material and the electron accepting compound material in the organic active layer is appropriately controlled, so that photocharge separation and charge transport are efficiently generated. And exhibit high photoelectric conversion efficiency.
 本発明の光電変換素子の他の態様は、陽極と、陰極と、該陽極と該陰極との間に設けられる有機活性層とを有し、有機活性層中に電子供与性化合物と電子受容性化合物とを有し、顕微鏡で観察した有機活性層の900nm×900nmの範囲の画像であって、明暗を2値化して白色部と黒色部を形成した画像を均等な面積となる9個の区画に分割し、各区画の黒色部の面積分率から算出した標準偏差が、0.09以下である光電変換素子である。 Another aspect of the photoelectric conversion device of the present invention includes an anode, a cathode, and an organic active layer provided between the anode and the cathode, and an electron donating compound and an electron accepting property in the organic active layer. 9 sections of an image of an organic active layer having a compound and having an area of 900 nm × 900 nm, in which white and black portions are formed by binarizing light and dark, and having an equal area It is a photoelectric conversion element whose standard deviation calculated from the area fraction of the black part of each section is 0.09 or less.
 電子供与性化合物材料と電子受容性化合物材料とのうちの少なくとも一方の化合物が硫黄原子を含む場合、有機活性層の明暗を2値化する方法としては、以下の方法が挙げられる。該層中の電子供与性化合物材料と電子受容性化合物材料との相分離を示す画像を、透過電子顕微鏡による電子エネルギー損失分光法(TEM-EELS)の3ウィンドウ法による硫黄原子のマッピング像として得る。そして、得られた硫黄原子のマッピング像のヒストグラムを算出し、得られたヒストグラムのピークトップを閾値として、硫黄原子(S)組成の高い化合物を含む相を白に、S組成の低い高分子化合物を含む相を黒として2値化を行う。 When at least one of the electron-donating compound material and the electron-accepting compound material contains a sulfur atom, examples of the method for binarizing the brightness of the organic active layer include the following methods. An image showing phase separation between the electron-donating compound material and the electron-accepting compound material in the layer is obtained as a mapping image of sulfur atoms by a three-window method of electron energy loss spectroscopy (TEM-EELS) using a transmission electron microscope. . Then, a histogram of the mapping image of the obtained sulfur atom is calculated, and the phase containing the compound having a high sulfur atom (S) composition is white with the peak top of the obtained histogram as a threshold, and the polymer compound having a low S composition Binarization is performed by setting the phase including the black as black.
 得られた有機活性層の900nm×900nmの範囲の画像であって、明暗を2値化した白色部と黒色部を形成した画像を均等な面積となる9個の区画に分割し、各区画の黒色部の面積分率から算出した標準偏差は、0.03~0.09であることが好ましく、0.04~0.08であることがさらに好ましい。 The image of the obtained organic active layer in a range of 900 nm × 900 nm, in which the white portion and the black portion, in which the brightness is binarized, is divided into nine sections having an equal area. The standard deviation calculated from the area fraction of the black part is preferably 0.03 to 0.09, and more preferably 0.04 to 0.08.
 本発明の光電変換素子は、有機活性層中の電子供与性化合物材料と電子受容性化合物材料との相分離構造が適切に制御されるため、光電荷分離と電荷輸送とを効率的に生じさせることができ、高い光電変換効率を示す。 In the photoelectric conversion element of the present invention, the phase separation structure of the electron donating compound material and the electron accepting compound material in the organic active layer is appropriately controlled, so that photocharge separation and charge transport are efficiently generated. And exhibit high photoelectric conversion efficiency.
 本態様の光電変換素子が有する電極の材料、電子供与性化合物、電子受容性化合物、必要に応じて形成される他の構成要素の材料としては、前述の態様の光電変換素子が有する電極の材料、電子供与性化合物、電子受容性化合物、必要に応じて形成される他の構成要素の材料と同じである。
 本態様の光電変換素子において、電子供与性化合物と電子受容性化合物とのうちの少なくとも一方の化合物が、式(I)で表される繰り返し単位を含む高分子化合物であって、該高分子化合物中に含まれる全繰り返し単位中、式(I)で表される繰り返し単位の比率が最も大きい高分子化合物であることが好ましい。
The material of the electrode included in the photoelectric conversion element of this embodiment, the electron donating compound, the electron accepting compound, and the other constituent material formed as necessary include the material of the electrode included in the photoelectric conversion element of the above embodiment. , Electron-donating compound, electron-accepting compound, and the same materials as those of other components formed as necessary.
In the photoelectric conversion device of this embodiment, at least one of the electron donating compound and the electron accepting compound is a polymer compound containing a repeating unit represented by the formula (I), and the polymer compound Among all the repeating units contained therein, a polymer compound having the largest ratio of repeating units represented by formula (I) is preferable.
 本発明の光電変換素子の他の態様は、陽極と、陰極と、該陽極と該陰極との間に設けられる有機活性層とを有し、有機活性層中に電子供与性化合物と電子受容性化合物とを有し、有機活性層中の電子供与性化合物と有機活性層中の電子受容性化合物とのうちの少なくとも一方の励起状態の寿命が、1ns以下である光電変換素子である。 Another aspect of the photoelectric conversion device of the present invention includes an anode, a cathode, and an organic active layer provided between the anode and the cathode, and an electron donating compound and an electron accepting property in the organic active layer. And a lifetime of an excited state of at least one of an electron donating compound in the organic active layer and an electron accepting compound in the organic active layer is 1 ns or less.
 ここで、励起状態とは、光を吸収した結果として生ずる励起一重項または、励起三重項等を意味し、励起状態の寿命とは、励起状態の数または濃度が、生成した励起状態の最初の数または濃度の1/eに減少するまでの時間を意味する。
 ここで、化合物の励起一重項または励起三重項の寿命はフェムト秒レーザーを励起光源として用いたポンププローブ過渡吸収分光法により、励起状態の最初の吸収強度が1/eに減少する時間から評価することができる。また、eとは自然対数の底を意味する。
 有機薄膜太陽電池を例に、過渡吸収の測定方法を説明する。有機薄膜太陽電池の作製と同様な操作でガラス基板上に電子供与性化合物と電子受容性化合物とからなるバルクヘテロ型有機活性層を形成する。ここで、光励起していないときに測定される活性層の吸光度をA0とする。A0は活性層に入射するプローブ光の強度をIpとし、このうち、活性層を透過するプローブ光の強度をI0とすると、A0=log(Ip/I0)で定義される。また、活性層をポンプ光により光励起し、時間tだけ経過した後に測定される活性層の吸光度をA(t)とする。A(t)はポンプ光による光励起後、時間tだけ経過した後に活性層に入射したプローブ光のうち、この活性層を透過するプローブ光の強度をIとすると、A(t)=log(Ip/I)で定義される。ここで、光励起により活性層内で新たに生成(増加)または消滅(減少)した化学種の吸収強度(ΔA)はΔA=A(t)-A0で定義される。すなわち、ΔA=log(Ip/I)-log(Ip/I0)=log(I0/I)で定義される。ここで、異なる遅延時間tにおけるΔAの値を測定することで、使用したプローブ光の波長における吸収強度の時間変化を評価することができる。さらに、使用するプローブ光の波長を変化させることで、ある遅延時間tにおいて、光励起前と比べ、活性層内で新たに生成(増加)または消滅(減少)した化学種の吸収スペクトルが得られる。さらに、プローブ光、ポンプ光ともにフェムト秒レーザーを光源とするパルス光を用いることにより、100fsの時間分解能を達成できる。
Here, the excited state means an excited singlet or an excited triplet generated as a result of absorbing light, and the excited state lifetime is the number of excited states or the concentration of the first excited state generated. Mean time to decrease to 1 / e of number or concentration.
Here, the lifetime of the excited singlet or triplet of the compound is evaluated from the time when the initial absorption intensity of the excited state decreases to 1 / e by pump probe transient absorption spectroscopy using a femtosecond laser as the excitation light source. be able to. E means the base of natural logarithm.
A method for measuring transient absorption will be described using an organic thin film solar cell as an example. A bulk hetero type organic active layer composed of an electron donating compound and an electron accepting compound is formed on a glass substrate by the same operation as in the production of the organic thin film solar cell. Here, the absorbance of the active layer measured when not photoexcited is A0. A0 is defined as A0 = log (Ip / I0), where Ip is the intensity of the probe light incident on the active layer, and I0 is the intensity of the probe light transmitted through the active layer. Further, the absorbance of the active layer measured after the active layer is photoexcited with pump light and the time t has elapsed is defined as A (t). A (t) is A (t) = log (Ip, where I is the intensity of the probe light that has passed through the active layer out of the probe light that has entered the active layer after time t has elapsed after photoexcitation with pump light. / I). Here, the absorption intensity (ΔA) of a chemical species newly generated (increased) or extinguished (decreased) in the active layer by photoexcitation is defined as ΔA = A (t) −A0. That is, it is defined by ΔA = log (Ip / I) −log (Ip / I0) = log (I0 / I). Here, by measuring the value of ΔA at different delay times t, it is possible to evaluate the temporal change in absorption intensity at the wavelength of the probe light used. Furthermore, by changing the wavelength of the probe light to be used, an absorption spectrum of a chemical species newly generated (increased) or extinguished (decreased) in the active layer can be obtained at a certain delay time t as compared to before photoexcitation. Furthermore, a time resolution of 100 fs can be achieved by using pulsed light with a femtosecond laser as a light source for both the probe light and the pump light.
 励起状態の寿命は、1ns以下であることが好ましく、100ps以下であることがより好ましく、10ps以下であることが更に好ましい。 The lifetime of the excited state is preferably 1 ns or less, more preferably 100 ps or less, and even more preferably 10 ps or less.
 有機活性層中の電子供与性化合物と有機活性層中の電子受容性化合物とのうちの少なくとも一方の励起状態の寿命が、1ns以下であることにより、有機活性層中において、電荷分離効率が高く、光電変換素子の光電変換効率が高くなる。 Since the lifetime of the excited state of at least one of the electron donating compound in the organic active layer and the electron accepting compound in the organic active layer is 1 ns or less, the charge separation efficiency is high in the organic active layer. The photoelectric conversion efficiency of the photoelectric conversion element is increased.
 本態様の光電変換素子が有する電極の材料、電子供与性化合物、電子受容性化合物、必要に応じて形成される他の構成要素の材料としては、前述の態様の光電変換素子が有する電極の材料、電子供与性化合物、電子受容性化合物、必要に応じて形成される他の構成要素の材料と同じである。
 本態様の光電変換素子において、電子供与性化合物と電子受容性化合物の少なくとも一方の化合物が、式(I)で表される繰り返し単位を含む高分子化合物であって、高分子化合物中に含まれる全繰り返し単位中、式(I)で表される繰り返し単位の比率が最も大きい高分子化合物であることが好ましい。
The material of the electrode included in the photoelectric conversion element of this embodiment, the electron donating compound, the electron accepting compound, and the other constituent material formed as necessary include the material of the electrode included in the photoelectric conversion element of the above embodiment. , Electron-donating compound, electron-accepting compound, and the same materials as those of other components formed as necessary.
In the photoelectric conversion element of this embodiment, at least one of the electron-donating compound and the electron-accepting compound is a polymer compound containing a repeating unit represented by the formula (I), and is included in the polymer compound Among all the repeating units, a polymer compound having the largest ratio of the repeating units represented by the formula (I) is preferable.
 本発明の光電変換素子の他の態様は、陽極と、陰極と、陽極と陰極との間に設けられる有機活性層とを有し、有機活性層中に電子供与性化合物と電子受容性化合物とを有し、有機活性層中の電子供与性化合物と有機活性層中の電子受容性化合物とのうちの少なくとも一方の蛍光消光率が、60%以上である光電変換素子である。 Another aspect of the photoelectric conversion device of the present invention includes an anode, a cathode, and an organic active layer provided between the anode and the cathode, and an electron-donating compound and an electron-accepting compound are included in the organic active layer. And a fluorescence quenching rate of at least one of the electron donating compound in the organic active layer and the electron accepting compound in the organic active layer is 60% or more.
 電子供与性化合物と電子受容性化合物とからなるバルクヘテロ型有機活性層を有する有機薄膜太陽電池を例に、蛍光消光率の測定方法を説明する。有機薄膜太陽電池の作製と同様な操作でガラス基板上にバルクヘテロ型有機活性層を形成する。分光蛍光光度計を用いて、この活性層をなす電子供与性化合物と電子受容性化合物とのうちの少なくとも一方を光励起し、観測される電子供与性化合物または電子受容性化合物からの蛍光強度をΦ1とする。また、この光励起波長における電子供与性化合物または電子受容性化合物の吸光度をA1とする。同様な操作でガラス基板上に電子供与性化合物または電子受容性化合物のみからなる活性層を形成し、活性層が異なる以外はバルクヘテロ型有機活性層の場合と同じ条件で光励起したときの電子供与性化合物または電子受容性化合物からの蛍光強度をΦ2、その光励起波長における電子供与性化合物または電子受容性化合物の吸光度をA2とする。ここで、バルクヘテロ型有機活性層中における電子供与性化合物または電子受容性化合物の蛍光消光率(Φq)は、Φq=(1-Φ1/(1-10-A1)/Φ2/(1-10-A2))×100で定義される。
 本発明の光電変換素子の活性層の蛍光消光率(Φq)は、60%以上であることが好ましく、70%以上であることが更に好ましい。Φqが60%以上であることから、有機活性層中において、電荷分離効率が高く、光電変換素子の光電変換効率が高くなる。
A method for measuring the fluorescence quenching rate will be described by taking an organic thin-film solar cell having a bulk hetero type organic active layer composed of an electron donating compound and an electron accepting compound as an example. A bulk hetero-type organic active layer is formed on the glass substrate by the same operation as the production of the organic thin film solar cell. Using a spectrofluorometer, at least one of the electron-donating compound and the electron-accepting compound forming this active layer is photoexcited, and the observed fluorescence intensity from the electron-donating compound or the electron-accepting compound is Φ1 And The absorbance of the electron donating compound or electron accepting compound at this photoexcitation wavelength is A1. An electron-donating property when an active layer consisting only of an electron-donating compound or an electron-accepting compound is formed on a glass substrate by the same operation and photoexcitation is performed under the same conditions as in the case of a bulk hetero-type organic active layer except that the active layer is different. The fluorescence intensity from the compound or electron accepting compound is Φ2, and the absorbance of the electron donating compound or electron accepting compound at the photoexcitation wavelength is A2. Here, the fluorescence quenching rate of the electron-donating compound or electron-accepting compound in the bulk-type organic active layer (.PHI.q) is, Φq = (1-Φ1 / (1-10 -A1) / Φ2 / (1-10 - A2 )) x 100.
The fluorescence quenching rate (Φq) of the active layer of the photoelectric conversion element of the present invention is preferably 60% or more, and more preferably 70% or more. Since Φq is 60% or more, the charge separation efficiency is high in the organic active layer, and the photoelectric conversion efficiency of the photoelectric conversion element is high.
 本態様の光電変換素子が有する電極の材料、電子供与性化合物、電子受容性化合物、必要に応じて形成される他の構成要素の材料としては、前述の態様の光電変換素子が有する電極の材料、電子供与性化合物、電子受容性化合物、必要に応じて形成される他の構成要素の材料と同じである。
 本態様の光電変換素子において、電子供与性化合物と電子受容性化合物とのうちの少なくとも一方の化合物が、式(I)で表される繰り返し単位を含む高分子化合物であって、高分子化合物中に含まれる全繰り返し単位中、式(I)で表される繰り返し単位の比率が最も大きい高分子化合物であることが好ましい。
The material of the electrode included in the photoelectric conversion element of this embodiment, the electron donating compound, the electron accepting compound, and the other constituent material formed as necessary include the material of the electrode included in the photoelectric conversion element of the above embodiment. , Electron-donating compound, electron-accepting compound, and the same materials as those of other components formed as necessary.
In the photoelectric conversion device of this embodiment, at least one of the electron donating compound and the electron accepting compound is a polymer compound containing a repeating unit represented by the formula (I), It is preferable that the polymer compound has the largest ratio of the repeating units represented by the formula (I) among all the repeating units contained in.
(有機活性層の製造方法)
 本願発明の光電変換素子が有する有機活性層は、バルクへテロ型であり、上記電子供与性化合物、電子受容性化合物、及び必要に応じて配合される他の成分を含む溶液を用いて塗布成膜することにより形成することができる。例えば、該溶液を陽極又は陰極上に塗布し、有機活性層を形成することができる。その後、有機活性層上に他の電極を形成し、光電変換素子を製造することができる。
(Method for producing organic active layer)
The organic active layer of the photoelectric conversion element of the present invention is a bulk hetero type, and is formed by coating using a solution containing the electron donating compound, the electron accepting compound, and other components blended as necessary. It can be formed by forming a film. For example, the solution can be applied on the anode or cathode to form an organic active layer. Then, another electrode can be formed on an organic active layer, and a photoelectric conversion element can be manufactured.
 溶液を用いた塗布成膜に用いられる溶媒は、本発明に用いられる電子供与性化合物及び電子受容性化合物を溶解させ得る沸点が100℃以下の溶媒である。また、溶媒としては、複数の溶媒を混合してもよく、そのうち少なくとも一種類の溶媒の沸点は100℃以下である。
 電子供与性化合物と電子受容性化合物との接合長さを制御して光電変換素子の光電変換効率を高めるために用いられる、沸点が100℃以下の溶媒としては、例えば、四塩化炭素、クロロホルム、ジクロロメタン、ジクロロエタン、ジクロロプロパン、クロロブタン等のハロゲン化飽和炭化水素溶媒、テトラヒドロフラン、テトラヒドロピラン等のエーテル溶媒等が挙げられる。有機活性層を構成する有機材料は、通常、溶媒に0.1重量%以上溶解させることができる。
 より好ましい溶媒としては、クロロホルムが挙げられる。
The solvent used for the coating film formation using a solution is a solvent having a boiling point of 100 ° C. or lower capable of dissolving the electron donating compound and the electron accepting compound used in the present invention. Moreover, as a solvent, you may mix a some solvent, The boiling point of at least 1 type of solvent is 100 degrees C or less.
Examples of the solvent having a boiling point of 100 ° C. or less used for controlling the junction length between the electron donating compound and the electron accepting compound to increase the photoelectric conversion efficiency of the photoelectric conversion element include carbon tetrachloride, chloroform, Examples thereof include halogenated saturated hydrocarbon solvents such as dichloromethane, dichloroethane, dichloropropane and chlorobutane, and ether solvents such as tetrahydrofuran and tetrahydropyran. The organic material constituting the organic active layer can be usually dissolved in a solvent in an amount of 0.1% by weight or more.
A more preferred solvent is chloroform.
 成膜には、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、グラビア印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、ディスペンサー印刷法、ノズルコート法、キャピラリーコート法等の塗布法を用いることができ、スピンコート法、フレキソ印刷法、グラビア印刷法、インクジェット印刷法、ディスペンサー印刷法が好ましい。 For film formation, spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, spray coating method, screen printing method, gravure printing method, Application methods such as flexographic printing method, offset printing method, ink jet printing method, dispenser printing method, nozzle coating method, capillary coating method can be used, spin coating method, flexographic printing method, gravure printing method, ink jet printing method, dispenser A printing method is preferred.
 光電変換素子の製造方法の好ましい一態様は、陽極又は陰極上に、電子供与性化合物と電子受容性化合物と沸点が100℃以下の溶媒とを含む溶液を塗布して有機活性層を製造する工程を含み、電子供与性化合物と電子受容性化合物の少なくとも一方の化合物が、式(I)で表される繰り返し単位を含む高分子化合物であって、該高分子化合物中に含まれる全繰り返し単位中、式(I)で表される繰り返し単位の比率が最も大きい高分子化合物である光電変換素子の製造方法である。 A preferred embodiment of the method for producing a photoelectric conversion element is a step of producing an organic active layer by applying a solution containing an electron donating compound, an electron accepting compound, and a solvent having a boiling point of 100 ° C. or less on an anode or a cathode. Wherein at least one of the electron-donating compound and the electron-accepting compound is a polymer compound containing a repeating unit represented by the formula (I), and is contained in all repeating units contained in the polymer compound This is a method for producing a photoelectric conversion element which is a polymer compound having the largest ratio of repeating units represented by formula (I).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 式(I)中、R1、R2、R3、R4、R5及びR6は、それぞれ独立に、水素原子又は置換基を表す。また、R1、R2、R3、R4、R5、R6は、それぞれ互いに連結して環状構造を形成していてもよい。X1、X2及びX3は、それぞれ独立に、硫黄原子、酸素原子、セレン原子、-N(R7)-又は-C(R8)=C(R9)-を表す。R7、8及びR9は、それぞれ独立に、水素原子又は置換基を表す。n及びmは、それぞれ独立に、0~5の整数を表す。R1、R2、R5、R6、X1、X3が複数個ある場合、それらは同一であっても相異なっていてもよい。
 式(I)で表される繰り返し単位を含む高分子化合物と、沸点が100℃以下の溶媒とを含む溶液を用いて塗布成膜して有機活性層を形成することにより、透過型電子顕微鏡で観察した有機活性層の画像であって明暗を2値化した有機活性層の画像において、電子供与性化合物と電子受容性化合物との接合長さを、有機活性層の画像の面積1μmあたり、100μm以上とすることができ、さらには100μm以上300μm以下とすることができる。
 また、式(I)で表される繰り返し単位を含む高分子化合物と、沸点が100℃以下の溶媒とを含む溶液を用いて塗布成膜して有機活性層を形成することにより、透過型電子顕微鏡で観察した有機活性層の900nm×900nmの範囲の画像であって、明暗を2値化して白色部と黒色部とを形成した画像を均等な面積となる9個の区画に分割し、各区画の黒色部の面積分率から算出した標準偏差を、0.09以下とすることができ、さらには0.03以上0.09以下とすることができる。
In formula (I), R 1 , R 2 , R 3 , R 4 , R 5 and R 6 each independently represent a hydrogen atom or a substituent. R 1 , R 2 , R 3 , R 4 , R 5 and R 6 may be connected to each other to form a cyclic structure. X 1 , X 2 and X 3 each independently represents a sulfur atom, an oxygen atom, a selenium atom, —N (R 7 ) — or —C (R 8 ) ═C (R 9 ) —. R 7, R 8 and R 9 each independently represents a hydrogen atom or a substituent. n and m each independently represents an integer of 0 to 5. When there are a plurality of R 1 , R 2 , R 5 , R 6 , X 1 , and X 3 , they may be the same or different.
By using a solution containing a polymer compound containing a repeating unit represented by the formula (I) and a solvent having a boiling point of 100 ° C. or less to form an organic active layer by a coating electron microscope, In the image of the organic active layer observed and the image of the organic active layer binarized in light and dark, the bonding length between the electron donating compound and the electron accepting compound is expressed as follows per 1 μm 2 of the area of the organic active layer image. It can be set to 100 μm or more, and further can be set to 100 μm or more and 300 μm or less.
Further, a transmission electron is formed by coating and forming an organic active layer using a solution containing a polymer compound containing a repeating unit represented by formula (I) and a solvent having a boiling point of 100 ° C. or less. It is an image of an organic active layer in the range of 900 nm × 900 nm observed with a microscope, and the image obtained by binarizing the brightness and forming the white portion and the black portion is divided into nine sections having an equal area, The standard deviation calculated from the area fraction of the black portion of the compartment can be 0.09 or less, and can be 0.03 or more and 0.09 or less.
(素子の用途)
 本発明の光電変換素子は、透明又は半透明の電極から太陽光等の光を照射することにより、電極間に光起電力が発生し、有機薄膜太陽電池として動作させることができる。有機薄膜太陽電池を複数集積することにより有機薄膜太陽電池モジュールとして用いることもできる。
(Application of the device)
The photoelectric conversion element of the present invention can be operated as an organic thin film solar cell by generating a photovoltaic force between the electrodes by irradiating light such as sunlight from a transparent or translucent electrode. It can also be used as an organic thin film solar cell module by integrating a plurality of organic thin film solar cells.
 また、電極間に電圧を印加した状態、あるいは無印加の状態で、透明又は半透明の電極から光を入射させることにより、光電流が流れ、有機光センサーとして動作させることができる。有機光センサーを複数集積することにより有機イメージセンサーとして用いることもできる。 Also, by applying light from a transparent or translucent electrode in a state where a voltage is applied between the electrodes or in a state where no voltage is applied, a photocurrent flows and it can be operated as an organic photosensor. It can also be used as an organic image sensor by integrating a plurality of organic photosensors.
(太陽電池モジュール)
 有機薄膜太陽電池は、従来の太陽電池モジュールと基本的には同様のモジュール構造をとりうる。太陽電池モジュールは、一般的には金属、セラミック等の支持基板の上にセルが構成され、その上を充填樹脂、保護ガラス等で覆い、支持基板の反対側から光を入射させる構造をとるが、支持基板に強化ガラス等の透明材料を用い、その上にセルを構成してその透明の支持基板側から光を入射させる構造とすることもできる。具体的には、スーパーストレートタイプ、サブストレートタイプ、ポッティングタイプと呼ばれるモジュール構造、アモルファスシリコン太陽電池などで用いられる基板一体型モジュール構造等が知られている。本発明の有機光電変換素子を適用した有機薄膜太陽電池でも使用目的、使用場所及び環境により、適宜これらのモジュール構造を選択できる。
(Solar cell module)
The organic thin film solar cell can basically have the same module structure as a conventional solar cell module. A solar cell module generally has a structure in which cells are formed on a support substrate made of metal, ceramic, etc., which is covered with a filling resin, protective glass, etc., and light is incident from the opposite side of the support substrate. Further, a transparent material such as tempered glass can be used for the support substrate, and a cell can be formed thereon so that light can enter from the transparent support substrate side. Specifically, a module structure called a super straight type, a substrate type, and a potting type, a substrate integrated module structure used in an amorphous silicon solar cell, and the like are known. Even in an organic thin-film solar cell to which the organic photoelectric conversion element of the present invention is applied, these module structures can be appropriately selected depending on the purpose of use, the place of use and the environment.
 代表的なスーパーストレートタイプあるいはサブストレートタイプのモジュールは、片側又は両側が透明で反射防止処理を施された支持基板の間に一定間隔にセルが配置され、隣り合うセル同士が金属リード又はフレキシブル配線等によって接続され、外縁部に集電電極が配置されており、発生した電力を外部に取り出す構造となっている。基板とセルとの間には、セルの保護、集電効率向上のため、目的に応じエチレンビニルアセテート(EVA)等様々な種類のプラスチック材料をフィルム又は充填樹脂の形で用いてもよい。また、外部からの衝撃が少ないところなど表面を硬い素材で覆う必要のない場所において使用する場合には、表面保護層を透明プラスチックフィルムで構成し、又は上記充填樹脂を硬化させることによって保護機能を付与し、片側の支持基板をなくすことができる。支持基板の周囲は、内部の密封及びモジュールの剛性を確保するため金属製のフレームでサンドイッチ状に固定し、支持基板とフレームの間は封止材料で密封シールする。また、セル自体、支持基板、充填材料及び封止材料に可撓性の素材を用いれば、曲面の上に太陽電池を構成することもできる。 In a typical super straight type or substrate type module, cells are arranged at regular intervals between support substrates that are transparent on one or both sides and subjected to antireflection treatment, and adjacent cells are connected by metal leads or flexible wiring. It is connected, and the collector electrode is arrange | positioned in the outer edge part, It has the structure which takes out generated electric power outside. Various types of plastic materials such as ethylene vinyl acetate (EVA) may be used between the substrate and the cell in the form of a film or a filling resin depending on the purpose in order to protect the cell and improve the current collection efficiency. In addition, when used in a place where it is not necessary to cover the surface with a hard material such as a place where there is little impact from the outside, the surface protection layer is made of a transparent plastic film, or the protective function is achieved by curing the filling resin It is possible to eliminate the supporting substrate on one side. The periphery of the support substrate is fixed in a sandwich shape with a metal frame in order to ensure internal sealing and module rigidity, and the support substrate and the frame are hermetically sealed with a sealing material. In addition, if a flexible material is used for the cell itself, the support substrate, the filling material, and the sealing material, a solar cell can be formed on the curved surface.
 ポリマーフィルム等のフレキシブル支持体を用いた太陽電池の場合、ロール状の支持体を送り出しながら順次セルを形成し、所望のサイズに切断した後、周縁部をフレキシブルで防湿性のある素材でシールすることにより電池本体を作製できる。また、Solar Energy Materials and Solar Cells, 48, p383-391記載の「SCAF」とよばれるモジュール構造とすることもできる。更に、フレキシブル支持体を用いた太陽電池は曲面ガラス等に接着固定して使用することもできる。 In the case of a solar cell using a flexible support such as a polymer film, cells are sequentially formed while feeding out a roll-shaped support, cut to a desired size, and then the periphery is sealed with a flexible and moisture-proof material. Thus, the battery body can be produced. Moreover, it can also have a module structure called “SCAF” described in Solar Energy Materials and Solar Cells, 48, p383-391. Furthermore, a solar cell using a flexible support can be used by being bonded and fixed to a curved glass or the like.
 以下、本発明の実施例を説明する。以下に示す実施例は、本発明を説明するための好適な例示であり、本発明を限定するものではない。 Hereinafter, examples of the present invention will be described. The following examples are preferred examples for explaining the present invention, and do not limit the present invention.
 合成例1
(高分子化合物Aの製造)
Synthesis example 1
(Production of polymer compound A)
 単量体(1)0.945g(1.60mmol)と単量体(2)(2.00mmol)0.918gと、テトラキス(トリフェニルホスフィン)パラジウム(0)25mgとを反応容器に仕込み、反応容器内をアルゴンガスで十分置換した。この反応容器に、予めアルゴンガスでバブリングして脱気したトルエン50gを加えた。得られた溶液を、100℃で約10分間攪拌した。次に、得られた溶液に、予めアルゴンガスでバブリングして脱気したテトラエチルアンモニウムヒドロキシド溶液(20%水溶液)5mLを滴下した後、3.5時間還流した。次に、得られた反応溶液に、フェニルホウ酸0.55gを加えた後、8.5時間還流した。なお、反応は、アルゴンガス雰囲気下で行った。 A reaction vessel was charged with 0.945 g (1.60 mmol) of monomer (1), 0.918 g of monomer (2) (2.00 mmol) and 25 mg of tetrakis (triphenylphosphine) palladium (0), and the reaction was performed. The inside of the container was sufficiently replaced with argon gas. To this reaction vessel, 50 g of toluene deaerated previously by bubbling with argon gas was added. The resulting solution was stirred at 100 ° C. for about 10 minutes. Next, 5 mL of a tetraethylammonium hydroxide solution (20% aqueous solution) previously deaerated by bubbling with an argon gas was dropped into the obtained solution, and then refluxed for 3.5 hours. Next, after adding 0.55 g of phenylboric acid to the obtained reaction solution, it was refluxed for 8.5 hours. The reaction was performed in an argon gas atmosphere.
 反応終了後、反応溶液を室温(25℃)で冷却した後、得られた反応溶液を静置し、分液したトルエン層を回収した。次いで、得られたトルエン層をメタノール中に注ぎ込み、再沈し、生成した沈殿を回収した。この沈殿を減圧乾燥した後、クロロホルムに溶解した。次に、得られたクロロホルム溶液をろ過し、不溶物を除去した後、アルミナカラムに通し、精製した。次に、得られたクロロホルム溶液を減圧濃縮した後、メタノール中に注ぎ込み、再沈し、生成した沈殿を回収した。この沈殿をメタノールで洗浄した後、減圧乾燥して、重合体0.93gを得た。以下、この重合体を高分子化合物Aという。高分子化合物Aは、ポリスチレン換算の重量平均分子量が2.0×104であり、ポリスチレン換算の数平均分子量が4.7×103であった。
 高分子化合物Aの全繰り返し単位中、仕込み比から計算した式(2’)で表される繰り返し単位の比率は、55.6%であった。
After completion of the reaction, the reaction solution was cooled at room temperature (25 ° C.), and then the obtained reaction solution was allowed to stand and a separated toluene layer was recovered. Next, the obtained toluene layer was poured into methanol and re-precipitated, and the generated precipitate was collected. This precipitate was dried under reduced pressure and then dissolved in chloroform. Next, the obtained chloroform solution was filtered to remove insoluble matters, and then passed through an alumina column for purification. Next, the obtained chloroform solution was concentrated under reduced pressure, poured into methanol, re-precipitated, and the generated precipitate was collected. This precipitate was washed with methanol and then dried under reduced pressure to obtain 0.93 g of a polymer. Hereinafter, this polymer is referred to as polymer compound A. The polymer compound A had a polystyrene equivalent weight average molecular weight of 2.0 × 10 4 and a polystyrene equivalent number average molecular weight of 4.7 × 10 3 .
The ratio of the repeating unit represented by the formula (2 ′) calculated from the charging ratio among all the repeating units of the polymer compound A was 55.6%.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 実施例1
(有機薄膜太陽電池の作製、評価)
 真空蒸着法により300nmの厚みでITO膜を付けたガラス基板をトルエン、アセトン、エタノール中で、この順に各15分間超音波洗浄を行なった後、オゾンUV処理することにより表面処理を行った。表面処理を行ったITO基板上に、PEDOT(ポリ(3,4-エチレンジオキシチオフェン))とPSS(ポリ(4-スチレンスルホネート))との混合物(PEDOT:PSS)(H.C.Starck社製、PH500)を約40nmの膜厚になるようにスピンコートし、大気中、140℃のホットプレート上にて10分間加熱した。次に、電子受容性化合物である高分子化合物A及び電子供与性化合物であるポリ(3-ヘキシルチオフェン-2,5-ジイル)(P3HT)(レジオレギュラー、アルドリッチ社製)を含むクロロホルム溶液(高分子化合物A/P3HTの重量比=1/1、高分子化合物AとP3HTとの合計の濃度は1重量%)をこのPEDOT:PSS膜上にスピンコートにより塗布して有機活性層を作製した。有機活性層の膜厚は約70nmであった。その後、真空蒸着機によりフッ化リチウムを厚さ1nmで蒸着し、次いでAlを厚さ80nmで蒸着した。その後、グローブボックス中、140℃で10分間有機薄膜太陽電池を加熱した。得られた有機薄膜太陽電池の形状は、半径1.5mmの円状であった。得られた有機薄膜太陽電池にソーラシミュレーター(イーグルエンジニアリング社製、500Wキセノン光源装置LHX-500E3:AM1.5Gフィルター、放射照度100mW/cm)を用いて一定の光を照射し、発生する電流と電圧を測定して光電変換効率、短絡電流密度、開放電圧、フィルファクターを求めた。Jsc(短絡電流密度)は3.94mA/cmであり、Voc(開放電圧)は1.19Vであり、ff(フィルファクター)は0.42であり、光電変換効率(η)は、1.95%であった。
Example 1
(Production and evaluation of organic thin-film solar cells)
A glass substrate on which an ITO film having a thickness of 300 nm was formed by vacuum evaporation was subjected to ultrasonic cleaning in this order for 15 minutes in toluene, acetone, and ethanol, respectively, followed by surface treatment by ozone UV treatment. A mixture of PEDOT (poly (3,4-ethylenedioxythiophene)) and PSS (poly (4-styrenesulfonate)) (PEDOT: PSS) (manufactured by HCStarck, PH500) on a surface-treated ITO substrate Was spin-coated to a thickness of about 40 nm, and heated in the air on a hot plate at 140 ° C. for 10 minutes. Next, a chloroform solution containing a polymer compound A which is an electron-accepting compound and poly (3-hexylthiophene-2,5-diyl) (P3HT) (Resiregular, manufactured by Aldrich Co.) which is an electron-donating compound (high The weight ratio of molecular compound A / P3HT = 1/1, and the total concentration of polymer compound A and P3HT was 1% by weight) was applied onto this PEDOT: PSS film by spin coating to produce an organic active layer. The thickness of the organic active layer was about 70 nm. Then, lithium fluoride was vapor-deposited with a thickness of 1 nm by a vacuum vapor deposition machine, and then Al was vapor-deposited with a thickness of 80 nm. Thereafter, the organic thin film solar cell was heated at 140 ° C. for 10 minutes in the glove box. The shape of the obtained organic thin film solar cell was a circle having a radius of 1.5 mm. The obtained organic thin-film solar cell is irradiated with a constant light using a solar simulator (manufactured by Eagle Engineering, 500 W xenon light source device LHX-500E3: AM1.5G filter, irradiance 100 mW / cm 2 ), The voltage was measured to determine photoelectric conversion efficiency, short circuit current density, open circuit voltage, and fill factor. Jsc (short circuit current density) is 3.94 mA / cm 2 , Voc (open circuit voltage) is 1.19 V, ff (fill factor) is 0.42, and photoelectric conversion efficiency (η) is 1. 95%.
(HOMOのエネルギー準位及びLUMOのエネルギー準位の測定)
 HOMOのエネルギー準位は、光電子分光装置AC-2(理研計器株式会社製)により測定した。LUMOのエネルギー準位は、吸収波長末端(λth(nm))から以下の式を用いて算出した。
(LUMOのエネルギー準位)=(HOMOのエネルギー準位)+1240/λth
 高分子化合物AのHOMOのエネルギー準位は、-5.5eVであり、LUMOのエネルギー準位は、-3.6eVであった。P3HTのHOMOのエネルギー準位は、-4.9eVであり、LUMOのエネルギー準位は、-3.0eVであった。
(Measurement of HOMO energy level and LUMO energy level)
The energy level of HOMO was measured with a photoelectron spectrometer AC-2 (manufactured by Riken Keiki Co., Ltd.). The LUMO energy level was calculated from the end of the absorption wavelength (λth (nm)) using the following equation.
(LUMO energy level) = (HOMO energy level) + 1240 / λth
The HOMO energy level of the polymer compound A was −5.5 eV, and the LUMO energy level was −3.6 eV. The energy level of HOMO of P3HT was -4.9 eV, and the energy level of LUMO was -3.0 eV.
(蛍光消光率の測定)
 有機薄膜太陽電池の作製と同様な操作でガラス基板上に形成したブレンド膜を392nmで励起し、高分子化合物Aの蛍光消光率(Φq)を見積もった。その結果、Φqは、71%であった。
(Measurement of fluorescence quenching rate)
The blend film formed on the glass substrate by the same operation as the production of the organic thin film solar cell was excited at 392 nm, and the fluorescence quenching rate (Φq) of the polymer compound A was estimated. As a result, Φq was 71%.
(相分離構造の観察)
 実施例1の方法で基板上に有機活性層を形成した後、電子供与性化合物を含む相と電子受容性化合物を含む相との相分離の観察を、透過電子顕微鏡(TEM)による電子エネルギー損失分光法(TEM-EELS)の3ウィンドウ法により、硫黄原子のマッピング像を得ることによって行った。TEM観察用試料は、スピンキャストで形成した膜を水に浮かべ、TEM用グリッドですくって得た。TEMは、JEM2200FS(日本電子製)を加速電圧200kVで用い、20000倍で900nm×900nmの範囲の層を512×512ピクセルで観察した。得られた硫黄原子のマッピング像のヒストグラムを算出し、得られたヒストグラムのピークトップを閾値として、硫黄原子(S)組成の高い高分子化合物を含む相を白に、S組成の低い高分子化合物を含む相を黒として2値化を行った。上記のようにして得た2値化像を均等な面積となる9個の区画に分割し、各区画の黒色部分の面積分率を求めた。以上の画像解析は画像解析ソフトimage-Jを用いて行った。得られた9つの区画の黒色部分の面積分率の平均値と標準偏差を計算した。その結果、黒色部の面積分率の平均値は0.454であり、黒色部の面積分率の標準偏差は0.074であった。
(Observation of phase separation structure)
After forming the organic active layer on the substrate by the method of Example 1, observation of phase separation between the phase containing the electron-donating compound and the phase containing the electron-accepting compound was conducted using a transmission electron microscope (TEM). This was performed by obtaining a mapping image of sulfur atoms by the three-window method of spectroscopy (TEM-EELS). A sample for TEM observation was obtained by floating a film formed by spin casting on water and scoring with a TEM grid. For TEM, JEM2200FS (manufactured by JEOL Ltd.) was used at an acceleration voltage of 200 kV, and a layer in the range of 900 nm × 900 nm at 20000 times was observed with 512 × 512 pixels. A histogram of the mapping image of the obtained sulfur atom is calculated, and the phase containing the polymer compound having a high sulfur atom (S) composition is white with the peak top of the obtained histogram as a threshold, and the polymer compound having a low S composition Binarization was performed by setting the phase containing the black as black. The binarized image obtained as described above was divided into nine sections having an equal area, and the area fraction of the black portion of each section was determined. The above image analysis was performed using image analysis software image-J. The average value and standard deviation of the area fractions of the nine black sections obtained were calculated. As a result, the average value of the area fraction of the black portion was 0.454, and the standard deviation of the area fraction of the black portion was 0.074.
 比較例1
(有機薄膜太陽電池の作製、評価)
 クロロホルムの代わりにクロロベンゼンを用いた以外は、実施例1と同様に有機薄膜太陽電池を作製し、評価した。その結果、Jscは0.91mA/cmであり、Vocは1.06Vであり、ffは0,48であり、光電変換効率(η)は、0.46%であった。
 この条件での、高分子化合物Aの蛍光消光率(Φq)を見積もった。その結果、Φqは、50%であった。
 また、TEMで観測した黒色部の面積分率の平均値は0.581、黒色部の面積分率の標準偏差は0.171であった。
Comparative Example 1
(Production and evaluation of organic thin-film solar cells)
An organic thin film solar cell was prepared and evaluated in the same manner as in Example 1 except that chlorobenzene was used instead of chloroform. As a result, Jsc was 0.91 mA / cm 2 , Voc was 1.06 V, ff was 0.48, and the photoelectric conversion efficiency (η) was 0.46%.
Under this condition, the fluorescence quenching rate (Φq) of the polymer compound A was estimated. As a result, Φq was 50%.
Moreover, the average value of the area fraction of the black part observed by TEM was 0.581, and the standard deviation of the area fraction of the black part was 0.171.
 比較例2
(有機薄膜太陽電池の作製、評価)
 クロロホルムの代わりにo-ジクロロベンゼンを用いた以外は、実施例1と同様に有機薄膜太陽電池を作製し、評価した。その結果、Jscは0.84mA/cmであり、Vocは0.80Vであり、ffは0.36であり、光電変換効率(η)は、0.24%であった。
 また、TEMで観測した黒色部の面積分率の平均値は0.535であり、黒色部の面積分率の標準偏差は0.221であった。
Comparative Example 2
(Production and evaluation of organic thin-film solar cells)
An organic thin film solar cell was prepared and evaluated in the same manner as in Example 1 except that o-dichlorobenzene was used instead of chloroform. As a result, Jsc was 0.84 mA / cm 2 , Voc was 0.80 V, ff was 0.36, and the photoelectric conversion efficiency (η) was 0.24%.
Moreover, the average value of the area fraction of the black part observed by TEM was 0.535, and the standard deviation of the area fraction of the black part was 0.221.
 比較例3
(有機薄膜太陽電池の作製、評価)
 クロロホルムの代わりにキシレンを用いた以外は、実施例1と同様に有機薄膜太陽電池を作製し、評価した。その結果、Jscは1.37mA/cmであり、Vocは0.91Vであり、ffは0.54であり、光電変換効率(η)は、0.67%であった。
 また、TEMで観測した黒色部の面積分率の平均値は0.476であり、黒色部の面積分率の標準偏差は0.099であった。
Comparative Example 3
(Production and evaluation of organic thin-film solar cells)
An organic thin film solar cell was prepared and evaluated in the same manner as in Example 1 except that xylene was used instead of chloroform. Consequently, Jsc is 1.37mA / cm 2, Voc is 0.91 V, ff is 0.54, the photoelectric conversion efficiency (eta) was 0.67%.
Moreover, the average value of the area fraction of the black part observed by TEM was 0.476, and the standard deviation of the area fraction of the black part was 0.099.

Claims (41)

  1.  陽極と、陰極と、陽極と陰極との間に設けられる有機活性層とを有し、有機活性層中に電子供与性化合物と電子受容性化合物とを有し、透過型電子顕微鏡で観察した有機活性層の画像であって明暗を2値化した有機活性層の画像において、電子供与性化合物と電子受容性化合物との接合長さが、有機活性層の画像の面積1μmあたり、100μm以上である、光電変換素子。 Organic having an anode, a cathode, and an organic active layer provided between the anode and the cathode, having an electron donating compound and an electron accepting compound in the organic active layer, and being observed with a transmission electron microscope In the image of the active layer and the image of the organic active layer in which the brightness is binarized, the bonding length between the electron donating compound and the electron accepting compound is 100 μm or more per 1 μm 2 of the area of the organic active layer image. There is a photoelectric conversion element.
  2.  電子供与性化合物と電子受容性化合物との接合長さが、有機活性層の画像の面積1μmあたり、300μm以下である、請求項1に記載の光電変換素子。 2. The photoelectric conversion device according to claim 1, wherein the bonding length between the electron donating compound and the electron accepting compound is 300 μm or less per 1 μm 2 of the area of the image of the organic active layer.
  3.  有機活性層中の電子供与性化合物と有機活性層中の電子受容性化合物との少なくとも一方の励起状態の寿命が、1ns以下である、請求項1に記載の光電変換素子。 The photoelectric conversion element according to claim 1, wherein the lifetime of at least one of the electron donating compound in the organic active layer and the electron accepting compound in the organic active layer is 1 ns or less.
  4.  電子供与性化合物と電子受容性化合物との少なくとも一方の化合物が、高分子化合物である、請求項1に記載の光電変換素子。 The photoelectric conversion element according to claim 1, wherein at least one of the electron donating compound and the electron accepting compound is a polymer compound.
  5.  電子供与性化合物と電子受容性化合物とが、ともに高分子化合物である、請求項4に記載の光電変換素子。 The photoelectric conversion element according to claim 4, wherein both the electron donating compound and the electron accepting compound are polymer compounds.
  6.  電子供与性化合物が、その最高占有分子軌道のエネルギー準位が-4.7eV以下であり、かつ、その最低空分子軌道のエネルギー準位が-4.0eV以上である高分子化合物である、請求項4に記載の光電変換素子。 The electron donating compound is a polymer compound having an energy level of its highest occupied molecular orbital of −4.7 eV or lower and an energy level of its lowest unoccupied molecular orbital of −4.0 eV or higher. Item 5. The photoelectric conversion element according to Item 4.
  7.  電子供与性化合物が、ポリチオフェン又はその誘導体である、請求項1に記載の光電変換素子。 The photoelectric conversion element according to claim 1, wherein the electron donating compound is polythiophene or a derivative thereof.
  8.  電子受容性化合物が、その最高占有分子軌道のエネルギー準位が-5.0eV以下であり、かつ、その最低空分子軌道のエネルギー準位が-4.3eV以上である高分子化合物である、請求項4に記載の光電変換素子。 The electron-accepting compound is a polymer compound having an energy level of its highest occupied molecular orbital of −5.0 eV or lower and an energy level of its lowest unoccupied molecular orbital of −4.3 eV or higher. Item 5. The photoelectric conversion element according to Item 4.
  9.  電子受容性化合物が、ベンゾチアジアゾール構造、又は、キノキサリン構造を有する高分子化合物である、請求項4に記載の光電変換素子。 The photoelectric conversion element according to claim 4, wherein the electron-accepting compound is a polymer compound having a benzothiadiazole structure or a quinoxaline structure.
  10.  電子供与性化合物と電子受容性化合物との少なくとも一方の化合物が、式(I)で表される繰り返し単位を含む高分子化合物であって、高分子化合物中に含まれる全繰り返し単位中、式(I)で表される繰り返し単位の比率が最も大きい高分子化合物である、請求項4に記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000001
    (式(I)中、R1、R2、R3、R4、R5及びR6は、それぞれ独立に、水素原子又は置換基を表す。また、R1、R2、R3、R4、R5、R6は、それぞれ互いに連結して環状構造を形成していてもよい。X1、X2及びX3は、それぞれ独立に、硫黄原子、酸素原子、セレン原子、-N(R7)-又は-C(R8)=C(R9)-を表す。R7、8及びR9は、それぞれ独立に、水素原子又は置換基を表す。n及びmは、それぞれ独立に、0~5の整数を表す。R1、R2、R5、R6、X1、X3が複数個ある場合、それらは同一であっても相異なっていてもよい。)
    At least one of the electron-donating compound and the electron-accepting compound is a polymer compound containing a repeating unit represented by the formula (I), wherein all the repeating units contained in the polymer compound are represented by the formula ( The photoelectric conversion element according to claim 4, which is a polymer compound having the largest ratio of the repeating unit represented by I).
    Figure JPOXMLDOC01-appb-C000001
    (In the formula (I), R 1 , R 2 , R 3 , R 4 , R 5 and R 6 each independently represents a hydrogen atom or a substituent. Also, R 1 , R 2 , R 3 , R 4 , R 5 and R 6 may be linked to each other to form a cyclic structure, and X 1 , X 2 and X 3 are each independently a sulfur atom, an oxygen atom, a selenium atom, —N ( R 7 ) — or —C (R 8 ) ═C (R 9 ) — R 7, R 8 and R 9 each independently represents a hydrogen atom or a substituent, n and m each independently Represents an integer of 0 to 5. When there are a plurality of R 1 , R 2 , R 5 , R 6 , X 1 and X 3 , they may be the same or different.
  11.  陽極と、陰極と、陽極と陰極との間に設けられる有機活性層とを有し、有機活性層中に電子供与性化合物と電子受容性化合物とを有し、透過型電子顕微鏡で観察した有機活性層の900nm×900nmの範囲の画像であって、明暗を2値化して白色部と黒色部とを形成した画像を均等な面積となる9個の区画に分割し、各区画の黒色部の面積分率から算出した標準偏差が、0.09以下である、光電変換素子。 Organic having an anode, a cathode, and an organic active layer provided between the anode and the cathode, having an electron donating compound and an electron accepting compound in the organic active layer, and being observed with a transmission electron microscope An image of the active layer in a range of 900 nm × 900 nm, in which brightness and darkness are binarized to form a white portion and a black portion, is divided into nine sections having an equal area, and the black portion of each section is The photoelectric conversion element whose standard deviation computed from the area fraction is 0.09 or less.
  12.  各区画の黒色部の面積分率から算出した標準偏差が、0.03以上である、請求項11に記載の光電変換素子。 The photoelectric conversion element according to claim 11, wherein the standard deviation calculated from the area fraction of the black portion of each section is 0.03 or more.
  13.  有機活性層中の電子供与性化合物と有機活性層中の電子受容性化合物との少なくとも一方の励起状態の寿命が、1ns以下である、請求項11に記載の光電変換素子。 The photoelectric conversion device according to claim 11, wherein the lifetime of at least one of the electron donating compound in the organic active layer and the electron accepting compound in the organic active layer is 1 ns or less.
  14.  電子供与性化合物と電子受容性化合物との少なくとも一方の化合物が、高分子化合物である、請求項11に記載の光電変換素子。 The photoelectric conversion element according to claim 11, wherein at least one of the electron donating compound and the electron accepting compound is a polymer compound.
  15.  電子供与性化合物と電子受容性化合物とが、ともに高分子化合物である、請求項14に記載の光電変換素子。 The photoelectric conversion element according to claim 14, wherein both the electron donating compound and the electron accepting compound are polymer compounds.
  16.  電子供与性化合物が、その最高占有分子軌道のエネルギー準位が-4.7eV以下であり、かつ、その最低空分子軌道のエネルギー準位が-4.0eV以上である高分子化合物である、請求項14に記載の光電変換素子。 The electron donating compound is a polymer compound having an energy level of its highest occupied molecular orbital of −4.7 eV or lower and an energy level of its lowest unoccupied molecular orbital of −4.0 eV or higher. Item 15. The photoelectric conversion element according to Item 14.
  17.  電子供与性化合物が、ポリチオフェン又はその誘導体である、請求項11に記載の光電変換素子。 The photoelectric conversion element according to claim 11, wherein the electron donating compound is polythiophene or a derivative thereof.
  18.  電子受容性化合物が、その最高占有分子軌道のエネルギー準位が-5.0eV以下であり、かつ、その最低空分子軌道のエネルギー準位が-4.3eV以上である高分子化合物である、請求項14に記載の光電変換素子。 The electron-accepting compound is a polymer compound having an energy level of its highest occupied molecular orbital of −5.0 eV or lower and an energy level of its lowest unoccupied molecular orbital of −4.3 eV or higher. Item 15. The photoelectric conversion element according to Item 14.
  19.  電子受容性化合物が、ベンゾチアジアゾール構造、又は、キノキサリン構造を有する高分子化合物である、請求項14に記載の光電変換素子。 The photoelectric conversion element according to claim 14, wherein the electron-accepting compound is a polymer compound having a benzothiadiazole structure or a quinoxaline structure.
  20.  電子供与性化合物と電子受容性化合物との少なくとも一方の化合物が、式(I)で表される繰り返し単位を含む高分子化合物であって、高分子化合物中に含まれる全繰り返し単位中、式(I)で表される繰り返し単位の比率が最も大きい高分子化合物である、請求項14に記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000002
    (式(I)中、R1、R2、R3、R4、R5及びR6は、それぞれ独立に、水素原子又は置換基を表す。また、R1、R2、R3、R4、R5、R6は、それぞれ互いに連結して環状構造を形成していてもよい。X1、X2及びX3は、それぞれ独立に、硫黄原子、酸素原子、セレン原子、-N(R7)-又は-C(R8)=C(R9)-を表す。R7、8及びR9は、それぞれ独立に、水素原子又は置換基を表す。n及びmは、それぞれ独立に、0~5の整数を表す。R1、R2、R5、R6、X1、X3が複数個ある場合、それらは同一であっても相異なっていてもよい。)
    At least one of the electron-donating compound and the electron-accepting compound is a polymer compound containing a repeating unit represented by the formula (I), wherein all the repeating units contained in the polymer compound are represented by the formula ( The photoelectric conversion element according to claim 14, which is a polymer compound having the largest ratio of the repeating unit represented by I).
    Figure JPOXMLDOC01-appb-C000002
    (In the formula (I), R 1 , R 2 , R 3 , R 4 , R 5 and R 6 each independently represents a hydrogen atom or a substituent. Also, R 1 , R 2 , R 3 , R 4 , R 5 and R 6 may be linked to each other to form a cyclic structure, and X 1 , X 2 and X 3 are each independently a sulfur atom, an oxygen atom, a selenium atom, —N ( R 7 ) — or —C (R 8 ) ═C (R 9 ) — R 7, R 8 and R 9 each independently represents a hydrogen atom or a substituent, n and m each independently Represents an integer of 0 to 5. When there are a plurality of R 1 , R 2 , R 5 , R 6 , X 1 and X 3 , they may be the same or different.
  21.  陽極と、陰極と、陽極と陰極との間に設けられる有機活性層とを有し、有機活性層中に電子供与性化合物と電子受容性化合物とを有し、有機活性層中の電子供与性化合物と有機活性層中の電子受容性化合物との少なくとも一方の励起状態の寿命が、1ns以下である、光電変換素子。 Having an anode, a cathode, and an organic active layer provided between the anode and the cathode, having an electron-donating compound and an electron-accepting compound in the organic active layer, and providing an electron-donating property in the organic active layer The photoelectric conversion element whose lifetime of the excited state of at least one of a compound and the electron-accepting compound in an organic active layer is 1 ns or less.
  22.  電子供与性化合物と電子受容性化合物との少なくとも一方の化合物が、高分子化合物である、請求項21に記載の光電変換素子。 The photoelectric conversion element according to claim 21, wherein at least one of the electron donating compound and the electron accepting compound is a polymer compound.
  23.  電子供与性化合物と電子受容性化合物とが、ともに高分子化合物である、請求項22に記載の光電変換素子。 23. The photoelectric conversion element according to claim 22, wherein the electron donating compound and the electron accepting compound are both polymer compounds.
  24.  電子供与性化合物が、その最高占有分子軌道のエネルギー準位が-4.7eV以下であり、かつ、その最低空分子軌道のエネルギー準位が-4.0eV以上である高分子化合物である、請求項22に記載の光電変換素子。 The electron donating compound is a polymer compound having an energy level of its highest occupied molecular orbital of −4.7 eV or lower and an energy level of its lowest unoccupied molecular orbital of −4.0 eV or higher. Item 23. The photoelectric conversion element according to Item 22.
  25.  電子供与性化合物が、ポリチオフェン又はその誘導体である、請求項21に記載の光電変換素子。 The photoelectric conversion element according to claim 21, wherein the electron donating compound is polythiophene or a derivative thereof.
  26.  電子受容性化合物が、その最高占有分子軌道のエネルギー準位が-5.0eV以下であり、かつ、その最低空分子軌道のエネルギー準位が-4.3eV以上である高分子化合物である、請求項21に記載の光電変換素子。 The electron-accepting compound is a polymer compound having an energy level of its highest occupied molecular orbital of −5.0 eV or lower and an energy level of its lowest unoccupied molecular orbital of −4.3 eV or higher. Item 22. The photoelectric conversion element according to Item 21.
  27.  電子受容性化合物が、ベンゾチアジアゾール構造、又は、キノキサリン構造を有する高分子化合物である、請求項21に記載の光電変換素子。 The photoelectric conversion element according to claim 21, wherein the electron-accepting compound is a polymer compound having a benzothiadiazole structure or a quinoxaline structure.
  28.  電子供与性化合物と電子受容性化合物との少なくとも一方の化合物が、式(I)で表される繰り返し単位を含む高分子化合物であって、高分子化合物中に含まれる全繰り返し単位中、式(I)で表される繰り返し単位の比率が最も大きい高分子化合物である、請求項21に記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000003
    (式(I)中、R1、R2、R3、R4、R5及びR6は、それぞれ独立に、水素原子又は置換基を表す。また、R1、R2、R3、R4、R5、R6は、それぞれ互いに連結して環状構造を形成していてもよい。X1、X2及びX3は、それぞれ独立に、硫黄原子、酸素原子、セレン原子、-N(R7)-又は-C(R8)=C(R9)-を表す。R7、8及びR9は、それぞれ独立に、水素原子又は置換基を表す。n及びmは、それぞれ独立に、0~5の整数を表す。R1、R2、R5、R6、X1、X3が複数個ある場合、それらは同一であっても相異なっていてもよい。)
    At least one of the electron-donating compound and the electron-accepting compound is a polymer compound containing a repeating unit represented by the formula (I), wherein all the repeating units contained in the polymer compound are represented by the formula ( The photoelectric conversion element according to claim 21, which is a polymer compound having the largest ratio of the repeating unit represented by I).
    Figure JPOXMLDOC01-appb-C000003
    (In the formula (I), R 1 , R 2 , R 3 , R 4 , R 5 and R 6 each independently represents a hydrogen atom or a substituent. Also, R 1 , R 2 , R 3 , R 4 , R 5 and R 6 may be linked to each other to form a cyclic structure, and X 1 , X 2 and X 3 are each independently a sulfur atom, an oxygen atom, a selenium atom, —N ( R 7 ) — or —C (R 8 ) ═C (R 9 ) — R 7, R 8 and R 9 each independently represents a hydrogen atom or a substituent, n and m each independently Represents an integer of 0 to 5. When there are a plurality of R 1 , R 2 , R 5 , R 6 , X 1 and X 3 , they may be the same or different.
  29.  陽極と、陰極と、陽極と陰極との間に設けられる有機活性層とを有し、有機活性層中に電子供与性化合物と電子受容性化合物とを有し、有機活性層中の電子供与性化合物と有機活性層中の電子受容性化合物との少なくとも一方の蛍光消光率が、60%以上である、光電変換素子。 Having an anode, a cathode, and an organic active layer provided between the anode and the cathode, having an electron-donating compound and an electron-accepting compound in the organic active layer, and providing an electron-donating property in the organic active layer The photoelectric conversion element whose fluorescence quenching rate of at least one of a compound and the electron-accepting compound in an organic active layer is 60% or more.
  30.  電子供与性化合物と電子受容性化合物との少なくとも一方の化合物が、高分子化合物である、請求項29に記載の光電変換素子。 30. The photoelectric conversion element according to claim 29, wherein at least one of the electron donating compound and the electron accepting compound is a polymer compound.
  31.  電子供与性化合物と電子受容性化合物とが、ともに高分子化合物である、請求項30に記載の光電変換素子。 The photoelectric conversion element according to claim 30, wherein both the electron donating compound and the electron accepting compound are polymer compounds.
  32.  電子供与性化合物が、その最高占有分子軌道のエネルギー準位が-4.7eV以下であり、かつ、その最低空分子軌道のエネルギー準位が-4.0eV以上である高分子化合物である、請求項30に記載の光電変換素子。 The electron donating compound is a polymer compound having an energy level of its highest occupied molecular orbital of −4.7 eV or lower and an energy level of its lowest unoccupied molecular orbital of −4.0 eV or higher. Item 30. The photoelectric conversion element according to Item 30.
  33.  電子供与性化合物が、ポリチオフェン又はその誘導体である、請求項29に記載の光電変換素子。 The photoelectric conversion element according to claim 29, wherein the electron donating compound is polythiophene or a derivative thereof.
  34.  電子受容性化合物が、その最高占有分子軌道のエネルギー準位が-5.0eV以下であり、かつ、その最低空分子軌道のエネルギー準位が-4.3eV以上である高分子化合物である、請求項29に記載の光電変換素子。 The electron-accepting compound is a polymer compound having an energy level of its highest occupied molecular orbital of −5.0 eV or lower and an energy level of its lowest unoccupied molecular orbital of −4.3 eV or higher. Item 30. The photoelectric conversion element according to Item 29.
  35.  電子受容性化合物が、ベンゾチアジアゾール構造、又は、キノキサリン構造を有する高分子化合物である、請求項29に記載の光電変換素子。 30. The photoelectric conversion element according to claim 29, wherein the electron-accepting compound is a polymer compound having a benzothiadiazole structure or a quinoxaline structure.
  36.  電子供与性化合物と電子受容性化合物との少なくとも一方の化合物が、式(I)で表される繰り返し単位を含む高分子化合物であって、高分子化合物中に含まれる全繰り返し単位中、式(I)で表される繰り返し単位の比率が最も大きい高分子化合物である、請求項29に記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000004
    (式(I)中、R1、R2、R3、R4、R5及びR6は、それぞれ独立に、水素原子又は置換基を表す。また、R1、R2、R3、R4、R5、R6は、それぞれ互いに連結して環状構造を形成していてもよい。X1、X2及びX3は、それぞれ独立に、硫黄原子、酸素原子、セレン原子、-N(R7)-又は-C(R8)=C(R9)-を表す。R7、8及びR9は、それぞれ独立に、水素原子又は置換基を表す。n及びmは、それぞれ独立に、0~5の整数を表す。R1、R2、R5、R6、X1、X3が複数個ある場合、それらは同一であっても相異なっていてもよい。)
    At least one of the electron-donating compound and the electron-accepting compound is a polymer compound containing a repeating unit represented by the formula (I), wherein all the repeating units contained in the polymer compound are represented by the formula ( 30. The photoelectric conversion device according to claim 29, which is a polymer compound having the largest ratio of the repeating unit represented by I).
    Figure JPOXMLDOC01-appb-C000004
    (In the formula (I), R 1 , R 2 , R 3 , R 4 , R 5 and R 6 each independently represents a hydrogen atom or a substituent. Also, R 1 , R 2 , R 3 , R 4 , R 5 and R 6 may be linked to each other to form a cyclic structure, and X 1 , X 2 and X 3 are each independently a sulfur atom, an oxygen atom, a selenium atom, —N ( R 7 ) — or —C (R 8 ) ═C (R 9 ) — R 7, R 8 and R 9 each independently represents a hydrogen atom or a substituent, n and m each independently Represents an integer of 0 to 5. When there are a plurality of R 1 , R 2 , R 5 , R 6 , X 1 and X 3 , they may be the same or different.
  37.  陽極又は陰極上に、電子供与性化合物と電子受容性化合物と沸点が100℃以下の溶媒とを含む溶液を塗布して有機活性層を製造する工程を含む、請求項1に記載の光電変換素子の製造方法。 The photoelectric conversion device according to claim 1, comprising a step of producing an organic active layer by applying a solution containing an electron donating compound, an electron accepting compound, and a solvent having a boiling point of 100 ° C. or less on the anode or the cathode. Manufacturing method.
  38.  陽極又は陰極上に、電子供与性化合物と電子受容性化合物と沸点が100℃以下の溶媒とを含む溶液を塗布して有機活性層を製造する工程を含み、前記電子供与性化合物と前記電子受容性化合物との少なくとも一方の化合物が、式(I)で表される繰り返し単位を含む高分子化合物であって、高分子化合物中に含まれる全繰り返し単位中、式(I)で表される繰り返し単位の比率が最も大きい高分子化合物である、光電変換素子の製造方法。
    Figure JPOXMLDOC01-appb-C000005
    (式(I)中、R1、R2、R3、R4、R5及びR6は、それぞれ独立に、水素原子又は置換基を表す。また、R1、R2、R3、R4、R5、R6は、それぞれ互いに連結して環状構造を形成していてもよい。X1、X2及びX3は、それぞれ独立に、硫黄原子、酸素原子、セレン原子、-N(R7)-又は-C(R8)=C(R9)-を表す。R7、8及びR9は、それぞれ独立に、水素原子又は置換基を表す。n及びmは、それぞれ独立に、0~5の整数を表す。R1、R2、R5、R6、X1、X3が複数個ある場合、それらは同一であっても相異なっていてもよい。)
    A step of producing an organic active layer by applying a solution containing an electron-donating compound, an electron-accepting compound, and a solvent having a boiling point of 100 ° C. or less on an anode or a cathode, the electron-donating compound and the electron-accepting The compound having at least one of the functional compound is a polymer compound containing a repeating unit represented by the formula (I), and the repeating compound represented by the formula (I) among all the repeating units contained in the polymer compound A method for producing a photoelectric conversion element, which is a polymer compound having the largest unit ratio.
    Figure JPOXMLDOC01-appb-C000005
    (In the formula (I), R 1 , R 2 , R 3 , R 4 , R 5 and R 6 each independently represents a hydrogen atom or a substituent. Also, R 1 , R 2 , R 3 , R 4 , R 5 and R 6 may be linked to each other to form a cyclic structure, and X 1 , X 2 and X 3 are each independently a sulfur atom, an oxygen atom, a selenium atom, —N ( R 7 ) — or —C (R 8 ) ═C (R 9 ) — R 7, R 8 and R 9 each independently represents a hydrogen atom or a substituent, n and m each independently Represents an integer of 0 to 5. When there are a plurality of R 1 , R 2 , R 5 , R 6 , X 1 and X 3 , they may be the same or different.
  39.  請求項38に記載の製造方法により得ることができる、光電変換素子。 A photoelectric conversion element obtainable by the production method according to claim 38.
  40.  請求項1に記載の光電変換素子を含む、太陽電池モジュール。 A solar cell module including the photoelectric conversion element according to claim 1.
  41.  請求項1に記載の光電変換素子を含む、イメージセンサー。 An image sensor comprising the photoelectric conversion element according to claim 1.
PCT/JP2011/060650 2010-05-10 2011-05-09 Photoelectric conversion element WO2011142314A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-108574 2010-05-10
JP2010108574A JP5639783B2 (en) 2010-05-10 2010-05-10 Photoelectric conversion element

Publications (1)

Publication Number Publication Date
WO2011142314A1 true WO2011142314A1 (en) 2011-11-17

Family

ID=44914370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060650 WO2011142314A1 (en) 2010-05-10 2011-05-09 Photoelectric conversion element

Country Status (2)

Country Link
JP (1) JP5639783B2 (en)
WO (1) WO2011142314A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11069869B2 (en) * 2017-10-23 2021-07-20 Sumitomo Chemical Company, Limited Photoelectric conversion element and method for producing the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013207252A (en) * 2012-03-29 2013-10-07 Sumitomo Chemical Co Ltd Photoelectric conversion element
CN105118921B (en) * 2015-09-14 2017-08-04 中国科学院长春应用化学研究所 A kind of organic photodetector of high external quantum efficiency and wide spectrum response and preparation method thereof
US10991842B2 (en) 2017-10-23 2021-04-27 Sumitomo Chemical Company, Limited Photoelectric conversion element

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0974217A (en) * 1995-09-07 1997-03-18 Nippon Shokubai Co Ltd Organic solar battery
JP2004534863A (en) * 2001-01-24 2004-11-18 ケンブリッジ ディスプレイ テクノロジー リミテッド Monomers used in the preparation of polymers to be used in optical devices
JP2006222429A (en) * 2005-02-09 2006-08-24 Hewlett-Packard Development Co Lp High-performance organic material for solar cell
WO2008044585A1 (en) * 2006-10-11 2008-04-17 Toray Industries, Inc. Electron-donating organic material for photovoltaic devices, material for photovoltaic devices, and photovoltaic devices
JP2008536317A (en) * 2005-04-07 2008-09-04 ザ リージェンツ オブ ザ ユニバーシティー オブ カリフォルニア High efficiency polymer solar cell by polymer self-assembly
JP2010041022A (en) * 2008-07-08 2010-02-18 Sumitomo Chemical Co Ltd Photoelectric conversion element
JP2010067642A (en) * 2008-09-08 2010-03-25 Kyoto Univ Photoelectric conversion device, method of manufacturing same, and solar battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0974217A (en) * 1995-09-07 1997-03-18 Nippon Shokubai Co Ltd Organic solar battery
JP2004534863A (en) * 2001-01-24 2004-11-18 ケンブリッジ ディスプレイ テクノロジー リミテッド Monomers used in the preparation of polymers to be used in optical devices
JP2006222429A (en) * 2005-02-09 2006-08-24 Hewlett-Packard Development Co Lp High-performance organic material for solar cell
JP2008536317A (en) * 2005-04-07 2008-09-04 ザ リージェンツ オブ ザ ユニバーシティー オブ カリフォルニア High efficiency polymer solar cell by polymer self-assembly
WO2008044585A1 (en) * 2006-10-11 2008-04-17 Toray Industries, Inc. Electron-donating organic material for photovoltaic devices, material for photovoltaic devices, and photovoltaic devices
JP2010041022A (en) * 2008-07-08 2010-02-18 Sumitomo Chemical Co Ltd Photoelectric conversion element
JP2010067642A (en) * 2008-09-08 2010-03-25 Kyoto Univ Photoelectric conversion device, method of manufacturing same, and solar battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11069869B2 (en) * 2017-10-23 2021-07-20 Sumitomo Chemical Company, Limited Photoelectric conversion element and method for producing the same

Also Published As

Publication number Publication date
JP2011238762A (en) 2011-11-24
JP5639783B2 (en) 2014-12-10

Similar Documents

Publication Publication Date Title
Soci et al. Photoconductivity of a low‐bandgap conjugated polymer
US20120204960A1 (en) Organic photovoltaic cell and method for manufacturing the same
JP2013179181A (en) Organic photoelectric conversion element
US9362515B2 (en) Photoelectric conversion element
US20120216866A1 (en) Organic photovoltaic cell
JP6674948B2 (en) Photoelectric conversion element
KR101815755B1 (en) Phenazine derivatives with the extended conjugated structure and applied to the organic photovoltaic polymers
US20120211741A1 (en) Organic photovoltaic cell
JP5639783B2 (en) Photoelectric conversion element
JP5553728B2 (en) Organic photoelectric conversion element
JP2015220331A (en) Photoelectric conversion element
EP2597695A1 (en) Electroactive surfactant improved hybrid bulk heterojunction solar cells
JP2011246594A (en) Polymer compound, and photoelectric conversion element using the same
WO2011052577A1 (en) Organic photoelectric conversion element and production method therefor
JP6032284B2 (en) Manufacturing method of organic photoelectric conversion element
WO2013047293A1 (en) Photoelectric conversion element
JP6995596B2 (en) Photoelectric conversion element
JP6697816B2 (en) Photoelectric conversion element
WO2011158831A1 (en) Process for production of high-molecular compounds
JP2014197688A (en) Photoelectric conversion element
WO2011066954A1 (en) π-CONJUGATED POLYMERS CONTAINING FLUOROARYLVINYLEDENE UNITS AND RELATIVE PREPARATION PROCESS
JP6180099B2 (en) Photoelectric conversion element
KR101580385B1 (en) New Acceptor containing conjugated polymers and organic optoelectronic devices
JP6165536B2 (en) Ink composition and method for producing organic photoelectric conversion element
Wienk et al. Low band gap polymer: fullerene solar cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11780571

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11780571

Country of ref document: EP

Kind code of ref document: A1