WO2011142267A1 - Organic semiconductor film and method for manufacturing the same, and stamp for contact printing - Google Patents

Organic semiconductor film and method for manufacturing the same, and stamp for contact printing Download PDF

Info

Publication number
WO2011142267A1
WO2011142267A1 PCT/JP2011/060296 JP2011060296W WO2011142267A1 WO 2011142267 A1 WO2011142267 A1 WO 2011142267A1 JP 2011060296 W JP2011060296 W JP 2011060296W WO 2011142267 A1 WO2011142267 A1 WO 2011142267A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic semiconductor
semiconductor film
stamp
charge mobility
thin film
Prior art date
Application number
PCT/JP2011/060296
Other languages
French (fr)
Japanese (ja)
Inventor
串田 尚
裕義 内藤
Original Assignee
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人株式会社 filed Critical 帝人株式会社
Priority to US13/697,489 priority Critical patent/US20130099215A1/en
Priority to EP11780524A priority patent/EP2571044A1/en
Priority to CN2011800236663A priority patent/CN102870202A/en
Priority to JP2012514763A priority patent/JP5398910B2/en
Priority to KR1020127029412A priority patent/KR20130079393A/en
Publication of WO2011142267A1 publication Critical patent/WO2011142267A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/464Lateral top-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/115Polyfluorene; Derivatives thereof

Definitions

  • the first and second aspects of the present invention relate to a novel organic semiconductor film and a method for manufacturing the same, and an organic semiconductor device and an electric circuit having such an organic semiconductor film.
  • the third aspect of the present invention relates to a novel contact print stamp, in particular, a contact print stamp used for manufacturing an organic semiconductor film, and a method for manufacturing an organic semiconductor film using such a contact print stamp.
  • TFTs thin film transistors
  • solar cells solar cells
  • CVD chemical vapor deposition
  • sputtering is used at the time of manufacture.
  • it is difficult for inorganic semiconductor films to meet low-cost requirements such as lightweight and flexible elements expected to be put to practical use in the future and RF-ID (Radio Frequency IDentification).
  • an organic semiconductor film made of an organic semiconductor material has been proposed to use.
  • a vacuum deposition apparatus and a coating apparatus used for manufacturing an organic semiconductor film are less expensive than a CVD apparatus and a sputtering apparatus used for manufacturing an inorganic semiconductor film.
  • the organic semiconductor film can be formed on a polymer film or paper.
  • a solution method such as a cast method, a spin coat method, a contact print method
  • a solution containing an organic semiconductor material is applied to a substrate, a stamp, etc., and the solvent is removed.
  • vapor deposition methods in which an organic semiconductor material is deposited on a substrate.
  • the solution method is generally known to be preferable with respect to production cost, production rate, and the like, and various studies have been conducted (Patent Documents 1 to 3, and Non-Patent Documents 1 and 2).
  • stably obtaining a high-quality organic semiconductor film by a solution method has not always been sufficiently achieved.
  • Patent Document 4 a field effect transistor having an organic semiconductor layer having at least two or more regions with different mobility has been proposed for the purpose of providing a field effect organic transistor having a high mobility and a high on / off ratio.
  • Patent Document 4 the technique described in Patent Document 4 is to reduce the leakage current by forming regions with different mobility in the organic semiconductor layer, thereby improving the on / off ratio. It is presumed that it does not improve over the organic semiconductor layer.
  • An object of the first and second aspects of the present invention is to provide a novel organic semiconductor film, a manufacturing method thereof, and an organic semiconductor device having such an organic semiconductor film.
  • a third object of the present invention is to provide a novel contact print stamp, particularly a contact print stamp used for manufacturing an organic semiconductor film, and a method for manufacturing an organic semiconductor film using such a contact print stamp. That is.
  • ⁇ First Invention When manufacturing the organic semiconductor film by the solution method, the present inventors are not in contact with the base material or the first stamp by aging the undried organic semiconductor film on the base material or the first stamp. If the charge mobility of the organic semiconductor film is improved on the surface, and if the surface energy of such a substrate or the first stamp is small, the surface of the substrate or the surface contacting the first stamp is also organic The inventors found that the charge mobility of the semiconductor film was improved, and came up with the following novel organic semiconductor film of the present invention, a method for producing the same, and an organic semiconductor device.
  • the ratio of the charge mobility on the two opposite surface sides ⁇ (charge mobility on the surface side with high charge mobility) / (charge mobility on the surface side with low charge mobility) ⁇ is 1 or more and 10
  • the relative X-ray reflection peak height is 2.0 or more when the peak height of the organic semiconductor film of the same thickness and material produced by spin coating on the silicon wafer is used as a reference Organic semiconductor film.
  • ⁇ 4> The organic semiconductor film according to any one of ⁇ 1> to ⁇ 3>, wherein the organic semiconductor film is obtained by a contact printing method.
  • the charge mobility on the surface side where the charge mobility of the organic semiconductor film is large is 1.00 ⁇ 10 ⁇ 5 cm 2 / (V ⁇ s) or more, in the above items ⁇ 1> to ⁇ 4>
  • the organic-semiconductor film in any one.
  • ⁇ 6> providing an organic semiconductor solution in which the organic semiconductor material is dissolved and / or dispersed; Applying the organic semiconductor solution onto a substrate or a first stamp to obtain an undried organic semiconductor film; Aging the undried organic semiconductor film on the substrate or first stamp; And the contact angle with respect to water of the surface of the base material or the first stamp is 100 ° or more.
  • ⁇ 7> The method according to ⁇ 6>, wherein the aging is performed by holding the undried organic semiconductor film for 10 seconds or more.
  • ⁇ 8> The method according to ⁇ 6> or ⁇ 7>, wherein the aging is performed by maintaining the undried organic semiconductor film in an atmosphere of less than 50 ° C.
  • ⁇ 9> The method according to any one of ⁇ 6> to ⁇ 8>, further comprising a step of transferring an organic semiconductor layer aged on the first stamp.
  • ⁇ 10> The method according to any one of ⁇ 6> to ⁇ 9> above, further comprising a step of drying and / or firing the organic semiconductor layer aged on the substrate or the first stamp.
  • ⁇ 11> The method according to any one of ⁇ 6> to ⁇ 10> above, wherein a contact angle with respect to water of the surface of the base material or the first stamp is 105 ° or more.
  • Second Invention When manufacturing the organic semiconductor film by the solution method, the present inventors are not in contact with the base material or the first stamp by aging the undried organic semiconductor film on the base material or the first stamp. In view of this, the inventors have found that the charge mobility of the organic semiconductor film is improved, and have arrived at the following novel organic semiconductor film of the present invention, a method for producing the same, and an organic semiconductor device.
  • the ratio of the charge mobility on the two opposite surface sides ⁇ (charge mobility on the surface side with high charge mobility) / (charge mobility on the surface side with low charge mobility) ⁇ is 2 or more An organic semiconductor film.
  • the relative X-ray reflection peak height is 1.3 or more when the peak thickness of the organic semiconductor film of the same thickness and material produced by spin coating on a silicon wafer is used as a reference
  • ⁇ 23> providing an organic semiconductor solution in which the organic semiconductor material is dissolved and / or dispersed; Applying the organic semiconductor solution onto a substrate or a first stamp to obtain an undried organic semiconductor film; Aging the undried organic semiconductor film on the substrate or first stamp;
  • a method for producing an organic semiconductor film comprising:
  • ⁇ 24> The method according to ⁇ 23>, wherein the aging is performed by holding the undried organic semiconductor film for 10 seconds or more.
  • ⁇ 25> The method according to ⁇ 23> or ⁇ 24>, wherein the aging is performed by maintaining the undried organic semiconductor film in an atmosphere of less than 50 ° C.
  • ⁇ 26> The method according to any one of ⁇ 23> to ⁇ 25>, further comprising a step of transferring an organic semiconductor layer aged on the first stamp.
  • ⁇ 27> The method according to any one of ⁇ 23> to ⁇ 26> above, further comprising a step of drying and / or firing the organic semiconductor layer aged on the substrate or the first stamp.
  • ⁇ 28> The method according to any one of ⁇ 23> to ⁇ 27> above, wherein the contact angle of the surface of the substrate or the first stamp with respect to water is 40 ° or more.
  • the organic semiconductor device according to ⁇ 29> which is a thin film transistor.
  • the organic semiconductor film is obtained by a contact printing method, and the organic semiconductor device is a bottom gate / bottom contact type or top gate / bottom contact type thin film transistor.
  • ⁇ 32> An electric circuit having two or more thin film transistors according to ⁇ 30> or ⁇ 31> above on one surface of a circuit substrate,
  • the organic semiconductor film is disposed so that a surface side of the organic semiconductor film having a large charge mobility faces the circuit base material, and the surface side of the thin film transistor is the thin film transistor.
  • the surface of the organic semiconductor film having a large charge mobility faces the opposite side of the circuit substrate, and the organic semiconductor A film is disposed, and the surface side is an active surface in the thin film transistor. electric circuit.
  • the present inventors improve the charge mobility of the obtained organic semiconductor film by using a contact printing stamp having a low surface energy transfer portion and a high surface energy peripheral portion around the transfer portion.
  • the inventors have devised a novel contact printing stamp of the third invention described below and a method for producing an organic semiconductor film using such a contact printing stamp.
  • a transfer portion for holding the organic semiconductor film to be transferred, and a peripheral edge around the transfer portion, and a contact angle of the transfer portion with respect to water is larger than a contact angle of the peripheral portion with respect to water.
  • Stamp for contact printing that is larger than 20 °.
  • ⁇ 34> The stamp according to ⁇ 33>, wherein a contact angle of the transfer portion with respect to water is 40 ° or more.
  • ⁇ 36> The stamp according to any one of ⁇ 33> to ⁇ 35>, wherein the transfer portion is a recess with respect to the peripheral portion.
  • the size of the transfer portion is 0.01 ⁇ m 2 ⁇ 1,000,000 ⁇ m 2
  • a method for producing an organic semiconductor film comprising:
  • high charge mobility is provided on both the surface not in contact with the base material or the first stamp and the surface in contact with the base material or the first stamp. can do.
  • a large charge mobility can be provided by using a surface having a large charge mobility as an active surface.
  • an organic semiconductor film having improved semiconductor characteristics for example, the organic semiconductor films of the first and second aspects of the present invention can be manufactured.
  • FIG. 1 is a diagram for explaining the organic semiconductor films of the first and second aspects of the present invention.
  • FIG. 2 is a view for explaining the organic semiconductor film manufacturing methods of the first and second aspects of the present invention.
  • FIG. 3 is a diagram for explaining a conventional method of manufacturing an organic semiconductor film.
  • FIG. 4 is a diagram for explaining the thin film transistors of the first and second inventions.
  • FIG. 5 is a view for explaining a third stamp of the present invention having a transfer portion-periphery portion structure.
  • FIG. 6 is a side sectional view of a third stamp of the present invention having a transfer part-periphery part structure.
  • the charge mobility on the surface side 11 in contact with the substrate 15 and the charge mobility on the opposite surface side 12 are The difference is relatively small.
  • the charge mobility can be evaluated not only directly but also from the orientation of the surface of the organic semiconductor film, the degree of crystallinity, and the like.
  • high charge mobility can be provided when any surface is used as an active surface.
  • the relative X-ray reflection peak height is 2.0 or more, 2.2 or more, 2.4 or more, or 2.5 or more.
  • the large value of the relative X-ray reflection peak height means that the degree of crystallization over the entire thickness of the organic semiconductor film is large.
  • the charge mobility on both surfaces is, for example, 1.00 ⁇ 10 ⁇ 5 cm 2 / (V ⁇ s) or more and 1.00 ⁇ 10 ⁇ 4 cm 2 / (V S) or more, or 1.00 ⁇ 10 ⁇ 3 cm 2 / (V ⁇ s) or more.
  • the charge mobility ⁇ cm 2 / (V ⁇ s) ⁇ is the charge mobility on the surface of the organic semiconductor film, and represents the ease of movement of charges that are holes or electrons. .
  • the organic semiconductor film of the first aspect of the present invention can have an arbitrary thickness, for example, a thickness of 1 nm to 1 ⁇ m, or 10 nm to 500 nm.
  • the organic semiconductor film of the first aspect of the present invention may be composed of any organic semiconductor material.
  • organic semiconductor materials include low molecular organic semiconductor molecules such as pentacene, thiophene, perylene, and fullerene materials, polyalkylthiophene, polyphenylene vinylene, polyfluorene-thiophene copolymers, and the like. Mention may be made of molecular organic semiconductor molecules.
  • the organic semiconductor film of the first aspect of the present invention is not limited depending on the manufacturing method thereof, and is therefore obtained by, for example, a molecular beam evaporation method (MBE method), a vacuum evaporation method, a chemical evaporation method, a solution method, or the like. It's okay.
  • the organic semiconductor film of the organic semiconductor film according to the first aspect of the present invention can be manufactured by a solution method, for example, a casting method, a spin coating method, a printing method such as a contact printing method, a dipping method, etc. May be preferred.
  • a solution method for example, a casting method, a spin coating method, a printing method such as a contact printing method, a dipping method, etc. May be preferred.
  • the organic semiconductor film of the present invention is a film obtained by a solution method, it is distinguished from those produced by other methods by the presence of a trace amount of solvent remaining in the organic semiconductor film, the shape and physical properties of the film, etc. be able to.
  • the organic semiconductor film of the present invention can be obtained, for example, using the method of the present invention.
  • the charge mobility can be evaluated not only directly but also from the orientation of the surface of the organic semiconductor film, the degree of crystallinity, and the like.
  • a large charge mobility can be provided by using a surface having a large charge mobility as an active surface.
  • the relative X-ray reflection peak height is 1.3 or more, 1.5 or more, 1.6 or more, 1.7 or more, 1.8 or more, or 1.9 or more.
  • the large value of the relative X-ray reflection peak height means that the degree of crystallization over the entire thickness of the organic semiconductor film is large.
  • the description of the organic semiconductor film of the first invention can be referred to.
  • the description about the organic-semiconductor film of 1st this invention can be referred about the thickness of the organic-semiconductor film of 2nd this invention, organic-semiconductor material, and a manufacturing method.
  • the organic semiconductor film of the second aspect of the present invention is an organic semiconductor film having a large ratio of charge mobility between two opposing surface sides, that is, an organic semiconductor film having different electrical characteristics between the two opposing surface sides. Nevertheless, there can be no discontinuous surface in the thickness direction of the film. That is, in the organic semiconductor film of the second aspect of the present invention, the degree of crystal orientation of the organic semiconductor material constituting the organic semiconductor film may be gradually changed between two opposing surfaces. According to this, it is possible to prevent a problem caused by discontinuously changing the degree of crystal orientation of the organic semiconductor material between two opposing surfaces. Such an organic semiconductor film can be obtained, for example, by forming a film at a time by the method of the second present invention. On the other hand, when the manufacturing conditions of the two opposite surfaces are changed as in Patent Document 4 so that the charge mobility on the two opposing surfaces is different, before and after the change of the manufacturing conditions, It is considered that the characteristics of the semiconductor film become discontinuous.
  • a first inventive method for producing an organic semiconductor film comprises providing an organic semiconductor solution in which an organic semiconductor material is dissolved and / or dispersed, applying the organic semiconductor solution onto a substrate or a first stamp Then, a step of obtaining an undried organic semiconductor film and a step of aging the undried organic semiconductor film on the substrate or the first stamp are included.
  • the contact angle with respect to water of the surface of the substrate or the first stamp to which the organic semiconductor solution is applied is 100 ° or more or 105 ° or more.
  • the organic semiconductor film of the first aspect of the present invention it is possible to manufacture the organic semiconductor film of the first aspect of the present invention, that is, an organic semiconductor film having a large charge mobility on two opposite surface sides. it can.
  • an undried organic semiconductor film 10 is aged on a base material or a first stamp 15 as shown in FIG.
  • the organic semiconductor material in the undried organic semiconductor film is crystallized and self-organized on the surface side 12 not in contact with the base material or the first stamp, that is, the surface side 12 exposed to the surrounding atmosphere. It can be rearranged by sex or the like.
  • the organic semiconductor material in the undried organic semiconductor film is affected by the surface of the base material or the first stamp 15. Therefore, rearrangement is possible due to the crystallinity of the organic semiconductor material itself.
  • the surface side 11 in contact with the base material or the first stamp 15 has a small contact angle with respect to water on the surface of the base material or the first stamp 15, that is, the base material or the first stamp 15. Since the surface energy of the surface of the first stamp 15 is small, the organic semiconductor material in the undried organic semiconductor film 10 is in contact with the substrate or the surface of the first stamp 15. Or it is hard to be influenced by the surface of the 1st stamp 15, Therefore, it can rearrange by the crystallinity etc. of organic-semiconductor material itself.
  • rearrangement can be performed on either of the two surface sides 11 and 12 facing each other due to the crystallinity of the organic semiconductor material itself.
  • an organic semiconductor film having a low charge mobility and a high degree of crystallization over the entire thickness can be obtained.
  • the organic semiconductor solution is dried immediately after the organic semiconductor solution is applied onto the base material or the first stamp 15. Therefore, it is difficult to rearrange the organic semiconductor material not only on the surface side 21 in contact with the base material or the first stamp 15 but also on the surface side 22 not in contact with the base material or the first stamp 15. Become. Therefore, in the conventional method, an organic semiconductor film having a small difference in charge mobility between the two opposing surface sides 21 and 22 but a small degree of crystallization over the entire thickness has been obtained.
  • a second inventive method for producing an organic semiconductor film comprises providing an organic semiconductor solution in which an organic semiconductor material is dissolved and / or dispersed, applying the organic semiconductor solution onto a substrate or a first stamp Then, a step of obtaining an undried organic semiconductor film and a step of aging the undried organic semiconductor film on the substrate or the first stamp are included.
  • the organic semiconductor film of the second aspect of the present invention that is, an organic semiconductor film having a large difference in charge mobility between two opposing surface sides can be produced. it can.
  • the undried organic semiconductor film 10 is aged on a substrate or first stamp 15 as shown in FIG.
  • the organic semiconductor material in the undried organic semiconductor film is crystallized and self-organized on the surface side 12 not in contact with the base material or the first stamp, that is, the surface side 12 exposed to the surrounding atmosphere. It can be rearranged by sex or the like.
  • the organic semiconductor material in the undried organic semiconductor film 10 on the surface side 11 in contact with the substrate or the first stamp 15 is the substrate or the first
  • the rearrangement may be limited by the influence of the surface of the stamp 15, in particular the affinity for the substrate or the surface of the first stamp 15.
  • the organic semiconductor material in the undried organic semiconductor film is not easily affected by the surface of the base material or the first stamp 15 on the surface side 12 not in contact with the base material or the first stamp 15. Therefore, rearrangement can be performed by the crystallinity of the organic semiconductor material itself. That is, in the second method of the present invention, an organic semiconductor film having a large difference in charge mobility between the two surface sides 11 and 12 facing each other can be obtained.
  • the organic semiconductor solution is dried immediately after the organic semiconductor solution is applied onto the base material or the first stamp 15. Therefore, the organic semiconductor material cannot be rearranged not only on the surface side 21 in contact with the base material or the first stamp 15 but also on the surface side 22 not in contact with the base material or the first stamp 15. Therefore, in the conventional method, an organic semiconductor film having a small difference in charge mobility between the two opposing surface sides 21 and 22 has been obtained.
  • the solvent contained in the organic semiconductor solution used in the method of the present invention may be any solvent that can dissolve and / or disperse the organic semiconductor material.
  • examples of such a solvent include toluene, xylene, tetralin, decalin, chloroform, monochlorobenzene, dichlorobenzene, trichlorobenzene, and combinations thereof.
  • the substrate to which the organic semiconductor solution is applied in the first and second methods of the present invention may be any substrate intended to place the organic semiconductor film thereon.
  • examples of such a substrate include an inorganic material such as a silicon wafer and glass, and an organic material such as a polymer film.
  • the first stamp to which the organic semiconductor solution is applied by the method of the present invention is an arbitrary stamp that can form an organic semiconductor film thereon and transfer the organic semiconductor film from the organic semiconductor film to a substrate or the like. It may be a stamp, that is, a contact printing stamp for forming an organic semiconductor film. Such a first stamp can be made of, for example, polysiloxane.
  • the first stamp may be, for example, a stamp according to the third aspect of the present invention having a transfer portion-periphery portion structure described below.
  • the substrate or the first stamp to which the organic semiconductor solution is applied in the method of the first aspect of the invention has a surface having a relatively large contact angle with water, for example, a contact angle with water of 100 ° or more or 105 ° or more. It has a surface. Further, the substrate or the first stamp to which the organic semiconductor solution is applied in the method of the second invention has a surface having a relatively large contact angle with water, that is, the contact angle with water, for example, 40 ° or more and 50 °. As described above, the surface may be 60 ° or more, 70 ° or more, 80 ° or more, 90 ° or more, 100 ° or more, or 105 ° or more.
  • a relatively large contact angle of the surface of the substrate with water means that the surface is relatively lyophobic, that is, the surface energy of the surface is relatively small.
  • the contact angle with respect to water is 25.degree. C., 50 .mu.L of water is dropped on the surface for measuring the contact angle, the shape of the dropped droplet is observed from the side, and the droplet and the surface are formed. It can be determined by measuring the angle.
  • the organic semiconductor material in the undried organic semiconductor film is the substrate or the first stamp. Even on the surface in contact with one stamp, it is hardly affected by the surface of the base material or the first stamp, and therefore can be rearranged by the crystallinity of the organic semiconductor material itself.
  • the base material or the first stamp having a surface with a relatively large contact angle with water can be obtained, for example, by treating the surface of the base material or the first stamp with a lyophobic material.
  • lyophobic materials include silane, silazane, fluorine compounds, polyimide, polyester, polyethylene, polyphenylene sulfide, polyparaxylene, polyethylene terephthalate, polyethylene naphthalate, polydimethylsiloxane, and combinations thereof. it can.
  • any method such as a casting method, a spin coating method, a dipping method, etc. is used in order to apply the organic semiconductor solution to the substrate or the first stamp. Can be used.
  • the aging in the first and second methods of the present invention for producing an organic semiconductor film is, for example, an undried organic semiconductor film for 10 seconds or more, 30 seconds or more, 1 minute or more, 3 minutes or more, 5 minutes or more, or It can be held for 7 minutes or longer.
  • the aging in the method of the present invention can be performed, for example, by holding an undried organic semiconductor film in an undried state for a predetermined period before drying and / or baking.
  • the aging in the method of the present invention can be performed, for example, by holding an undried organic semiconductor film in an atmosphere of less than 50 ° C, less than 40 ° C, or less than 30 ° C.
  • aging the undried organic semiconductor film at a relatively low temperature suppresses drying of the organic semiconductor film, and thus rearranges the organic semiconductor material on the surface not in contact with the substrate or the first stamp. May be preferred to promote
  • conditions such as time and temperature required for aging depend on the organic semiconductor material, solvent, base material, or first stamp used, and those skilled in the art will follow these descriptions in this specification.
  • the conditions can be determined.
  • the “undried organic semiconductor film” is such that the organic semiconductor material in the organic semiconductor film can be rearranged by the crystallinity of the organic semiconductor material itself. This means that the organic semiconductor film contains a solvent.
  • the first and second inventive methods of producing an organic semiconductor film can optionally further comprise drying and / or baking the organic semiconductor layer aged on the substrate or the first stamp.
  • This drying and baking can be performed by exposing the aged organic semiconductor layer to an atmosphere of more than 40 ° C, more than 50 ° C, more than 70 ° C, and more than 100 ° C.
  • This drying can also be performed by removing the solvent from the organic semiconductor solution under reduced pressure.
  • the method of the present invention transfers the organic semiconductor layer aged on the first stamp. It may further comprise a step, for example transferring to a substrate or a second stamp.
  • the organic semiconductor film formed on the first stamp can be directly transferred onto a substrate such as a silicon wafer or a polymer film. Also, in this case, the organic semiconductor film formed on the first stamp can be transferred to the second stamp and transferred from the second stamp to the substrate.
  • the transfer of the organic semiconductor film from the first stamp to the base material or the second stamp can be achieved by bringing the first stamp holding the organic semiconductor film into contact with the base material or the second stamp.
  • the transfer conditions such as the contact time, the temperature of the first stamp, and the substrate can be arbitrarily determined so that transfer is possible.
  • this transfer can be performed such that the temperature of the base material or the second stamp is higher than the temperature of the first stamp.
  • this transfer may treat the surface of the first stamp to reduce adhesion to the organic semiconductor film and / or treat the surface of the substrate or the second stamp to adhere to the organic semiconductor film. This can be achieved by increasing sex. Still further, this transfer can be achieved by a combination of the above.
  • the second stamp used in the method of the present invention can transfer the organic semiconductor film formed on the first stamp, and from there, the organic semiconductor film can be transferred to a substrate or the like. It may be any stamp, ie a contact print stamp. Such a second stamp can be made of, for example, polysiloxane.
  • the transfer of the organic semiconductor film from the second stamp to the base material can be performed as described for the transfer of the organic semiconductor film from the first stamp to the base material or the second stamp.
  • organic semiconductor device means a device having an organic semiconductor film, and other layers such as an electrode layer and a dielectric layer are made of an inorganic material or an organic material. It may be made.
  • the organic semiconductor devices of the first and second inventions may be, for example, thin film transistors having the organic semiconductor films of the first and second inventions.
  • the thin film transistor of the present invention includes (a) bottom gate / top contact type (BGTC type), (b) bottom gate / bottom contact type (BGBC type), and (c) top gate / top contact. Any of a type (TGTC type) and (d) a top gate / bottom contact type (TGBC type) may be used.
  • this thin film transistor is particularly a bottom contact type thin film transistor, that is, a bottom It may be a gate / bottom contact type (BGBC type) or top gate / bottom contact type (TGBC type) thin film transistor.
  • BGBC type gate / bottom contact type
  • TGBC type top gate / bottom contact type
  • the organic semiconductor devices of the first and second inventions may be, for example, solar cells having the organic semiconductor film of the invention.
  • This solar cell has, for example, a structure in which a p-type semiconductor and an n-type semiconductor are joined, and an organic semiconductor film of the organic semiconductor film of the present invention is used as at least one of these p-type and n-type semiconductors.
  • the electric circuit of the present invention is an electric circuit having two or more thin film transistors of the second present invention on one surface of a circuit substrate.
  • the organic semiconductor films 133 and 143 are arranged so that the surface sides 133a and 143a having high charge mobility of the organic semiconductor films 133 and 143 face the circuit substrate, and the surface sides 133a and 143a
  • the thin film transistor 2 is an active surface, that is, a surface on which a channel for carriers is formed. That is, for example, in the electric circuit of the present invention, at least one of the second thin film transistors on one surface of the circuit substrate 100 is the bottom gate type thin film transistors 130 and 140.
  • the organic semiconductor films 153, 163 have a large charge mobility.
  • the organic semiconductor films 153 and 163 are arranged so that 153a and 163a face the opposite side of the circuit substrate 100, and the surface sides 153a and 163a are active surfaces in the thin film transistor. That is, for example, in the electric circuit of the present invention, at least one of the thin film transistors on one surface of the circuit substrate 100 is the top gate type thin film transistors 150 and 160.
  • the surface side of the organic semiconductor layer serving as an active surface in each transistor is a surface side having high charge mobility. That is, in the electric circuit of the present invention, when the thin film transistor of the second present invention is provided, the organic semiconductor film can provide high charge mobility in each thin film transistor.
  • Such an organic semiconductor film for the electric circuit of the present invention can be obtained by using the method of the second present invention for producing the organic semiconductor film of the second present invention.
  • the thin film transistor of the second aspect of the present invention in which the surface side of the organic semiconductor film having a large charge mobility faces the circuit substrate, that is, for example, a bottom gate type thin film transistor as shown in FIG.
  • the obtained organic semiconductor film is used as a circuit.
  • the surface side of the organic semiconductor film having a large charge mobility can be made to face the circuit substrate.
  • the thin film transistor of the second aspect of the present invention in which the surface side of the organic semiconductor film having a large charge mobility faces the opposite side of the circuit substrate, that is, for example, a top gate type thin film transistor 150 as shown in FIG. , 160 in the method of the second present invention for manufacturing an organic semiconductor film, after aging an undried organic semiconductor film on the first stamp, The surface of the organic semiconductor film having high charge mobility can be directed to the opposite side of the circuit substrate.
  • an undried organic semiconductor film is aged on a circuit substrate, and the surface side having a high charge mobility of the organic semiconductor film is formed on the circuit substrate. Can be directed to the other side of the material.
  • the stamp of the present invention having a transfer part-peripheral part structure has a transfer part for holding the organic semiconductor film to be transferred, and a peripheral part around the transfer part, and the contact angle of the transfer part with respect to water is: It is 20 ° or more, 30 ° or more, 40 ° or more, 50 ° or more, 60 ° or more, 70 ° or more, 80 ° or more, 90 ° or more, or 100 ° or more larger than the contact angle of the peripheral portion with water.
  • the contact angle of the transfer portion with respect to water is 105 ° or more or 110 °. That's all.
  • the contact angle of the transfer portion with respect to water is 40 ° or more, 50 ° or more. 70 ° or more, 90 ° or more, 95 ° or more, 100 ° or more, 105 ° or more, or 110 ° or more.
  • the stamp having the transfer part-periphery structure is a contact print stamp in which the transfer part is more lyophobic than the peripheral part.
  • being lyophobic means that the surface energy is low. Therefore, a stamp having a transfer portion-periphery structure has a contact surface with a low surface energy and a large surface energy at the peripheral portion. It can be said that it is a stamp.
  • the organic semiconductor molecules are relatively unaffected by the surface of the transfer portion on the surface in contact with the transfer portion. It can be oriented by the action between organic semiconductor molecules. That is, according to the stamp having the transfer portion-periphery portion structure, when forming the organic semiconductor film from the organic semiconductor solution, an organic semiconductor film having a large charge mobility can be obtained on the surface side in contact with the transfer portion. .
  • the transfer part of a general contact printing stamp generally improves the wettability with respect to the organic semiconductor solution thereon, thereby enabling the formation of a film of the organic semiconductor solution stably.
  • the adhesion between the obtained organic semiconductor film and the transfer portion is relatively weak, and therefore relatively sparse.
  • the organic semiconductor film can be transferred onto the surface of the liquid substrate, that is, the surface of the substrate having a contact angle with water of 50 ° or more, for example.
  • the transfer portion of the conventional contact print stamp is generally lyophilic. Therefore, when an organic semiconductor film is formed from an organic semiconductor solution on a transfer portion of a conventional contact print stamp, the adhesion between the obtained organic semiconductor film and the transfer portion is relatively strong, and therefore relatively lyophobic. It has been difficult to transfer the organic semiconductor film onto the surface of the substrate, that is, the surface of the substrate having a contact angle with water of 50 ° or more, for example.
  • the stamp having the transfer portion-periphery portion structure may be any contact print stamp capable of forming an organic semiconductor film thereon and transferring the organic semiconductor film to a substrate or the like.
  • a first stamp can be made of, for example, polysiloxane.
  • a lyophobic polysiloxane is prepared, and the surface corresponding to the peripheral portion is made lyophilic (hydrophilic) and applied to the transfer portion.
  • a stamp having a transfer part-periphery structure can be obtained.
  • a lyophilic stamp material is prepared, the surface corresponding to the transfer portion is subjected to lyophobic (hydrophobic) treatment, and such treatment is not performed on the portion corresponding to the peripheral portion.
  • a stamp having a part-periphery structure can be obtained.
  • a stamp having a transfer portion-periphery portion structure can be obtained by preparing a stamp material, lyophilicizing the surface corresponding to the peripheral portion, and lyophobicizing the surface corresponding to the transfer portion.
  • a portion corresponding to the transfer portion on the surface of the stamp can be treated with a lyophobic material.
  • lyophobic materials include silane, silazane, fluorine compounds, polyimide, polyester, polyethylene, polyphenylene sulfide, polyparaxylene, polyethylene terephthalate, polyethylene naphthalate, polydimethylsiloxane, and combinations thereof. it can.
  • a portion corresponding to the peripheral portion on the surface of the stamp is treated with ozone, ultraviolet light, an electron beam, a brass or the like.
  • it can be formed of a lyophilic material.
  • a stamp having a transfer-periphery structure can have any shape and size that allows formation of an organic semiconductor film suitable for the intended application. Accordingly, the transfer unit - In the stamp having a peripheral edge structure, the size of one transfer unit, 0.01 ⁇ m 2 ⁇ 1,000,000 ⁇ m 2, 0.1 ⁇ m 2 ⁇ 100,000 ⁇ m 2, or 1 [mu] m 2 ⁇ 10, It may be 000 ⁇ m 2 .
  • the peripheral portion can hold the organic semiconductor solution on the transfer portion, and the organic semiconductor film formed on the transfer portion is transferred to the second stamp or the substrate. It can have any shape and structure as much as possible. Therefore, in the stamp having the transfer portion-peripheral portion structure, the transfer portion and the peripheral portion may be on the same plane, or the transfer portion may be a concave portion with respect to the peripheral portion. Further, in the stamp having the transfer portion-peripheral portion structure, the portion where the organic semiconductor film is formed while holding the organic semiconductor film forms a convex portion, and in this convex portion, the transfer portion and the peripheral peripheral portion around it are formed. You may have.
  • Such a stamp is, for example, as shown in FIG.
  • the stamp 50 shown in FIG. 5 has nine transfer portions 51 corresponding to the organic semiconductor film to be transferred.
  • a peripheral edge 52 for holding the organic semiconductor film to be transferred exists around each transfer portion 51.
  • the transfer portion 51a and the peripheral portion 52a may be on the same plane. In this case, it is possible to promote the holding of the organic semiconductor solution 61 on the transfer portion 51 a by the affinity between the peripheral edge portion 52 a and the organic semiconductor solution 61.
  • the transfer part 51b may be a concave part with respect to the peripheral part 52b.
  • the peripheral portion 52b becomes a three-dimensional enclosure, thereby promoting the holding of the organic semiconductor solution 61 on the transfer portion 51b.
  • the transfer part 51c and the peripheral part 52c may be convex with respect to other parts.
  • the organic semiconductor solution 61 can be held.
  • the portion other than the transfer portion 51c and the peripheral edge portion 52c that are convex portions, that is, the concave portions may have a large or small affinity with the organic semiconductor solution 61, but the organic semiconductor solution 61 If the affinity for the organic semiconductor solution 61 is small, the organic semiconductor solution 61 can be prevented from being held in the recess.
  • a method of manufacturing an organic semiconductor film with a stamp having a transfer portion-periphery portion structure includes a step of providing an organic semiconductor solution containing a solvent and an organic semiconductor material dissolved and / or dispersed in the solvent, and the organic semiconductor Applying the solution to the transfer portion of the stamp having the transfer portion-periphery structure to form an organic semiconductor film.
  • Water contact angle The water contact angle was measured with pure water at 25 ° C. using a water contact angle meter CA-X manufactured by Kyowa Interface Science.
  • Relative X-ray reflection peak height Using RINT TTR II manufactured by Rigaku, the peak height of X-ray symmetric reflection of the organic semiconductor film was measured under the conditions of an X-ray source Cu-K ⁇ ray and a rotating counter cathode 50 kV-300 mA (15 kW). This peak height is standardized to the same thickness based on the peak height of the organic semiconductor film of the material produced by spin coating on a silicon wafer (based on Example 12 (comparative)), and then the relative height evaluated. A large value of the relative X-ray reflection peak height means that the degree of crystallization over the entire thickness of the organic semiconductor film is large.
  • the peak height with respect to (100) plane symmetrical reflection was measured.
  • the height of the X-ray reflection peak was evaluated for the organic semiconductor film transferred once, but the same value as in the case of transfer once can be obtained for transfer twice.
  • Charge mobility The charge mobility of the organic semiconductor film was evaluated using a 4200-SCS type semiconductor evaluation apparatus manufactured by Keithley. The standard deviation of charge mobility was calculated by evaluating the characteristics of 10 or more elements.
  • Examples 1 to 13 >> In Examples 1 to 13, a bottom gate / top contact type (BGTC type) transistor was formed.
  • BGTC type bottom gate / top contact type
  • Example 1 Silicone rubber (SIM-260 manufactured by Shin-Etsu Chemical Co., Ltd.) was cured into a flat plate shape, and the oligomer was removed using hexane, which was provided as a stamp material.
  • the stamp material is cut into 20 mm square, a mask corresponding to the transfer portion is placed on the stamp material, the transfer portion is masked, and the stamp material in which the transfer portion is thus masked is subjected to UV (ultraviolet) -ozone treatment. Performed for 30 minutes. That is, the transfer portion was not subjected to UV-ozone treatment, and the peripheral portion was subjected to UV-ozone treatment. This UV-ozone treatment provided a lyophilic surface at the periphery.
  • the water contact angle of the transfer part not subjected to UV-ozone treatment was 110 °, and the water contact angle of the peripheral part subjected to UV-ozone treatment for 30 minutes was 44 °. Further, twelve transfer portions exist on the stamp, and the size of each transfer portion was 100 ⁇ m ⁇ 2 mm.
  • P3HT regioregular poly (3-hexylthiophene)
  • n-type silicon wafer with a 300 nm thermal oxide film (plane orientation ⁇ 100>, specific resistance 0.05 ⁇ ) was treated with hot concentrated sulfuric acid for 30 minutes, and then several times each using pure water, acetone, toluene, and hexane. Ultrasonic cleaning was performed. Further, this silicon wafer was cleaned with a UV ozone cleaning apparatus for 30 minutes to obtain a substrate. The water contact angle with respect to the surface of the silicon wafer was 4 °.
  • the stamp which has an organic-semiconductor film was fixed to the roller, and the roller with a stamp was obtained.
  • the silicon substrate was heated and held at 75 ° C., and the stamped roller was brought into contact with the silicon substrate and rotated to transfer the entire organic semiconductor film to the substrate.
  • a thin film transistor was obtained using the gate electrode and the oxide film on the surface of the silicon substrate as the gate insulating film. That is, a thin film transistor having a configuration as indicated by 130 in FIG. 4 was obtained.
  • the organic semiconductor film was transferred onto the second stamp instead of the silicon substrate (first transfer). Thereafter, the second stamp having the organic semiconductor film transferred thereon is fixed to a roll, brought into contact with a silicon substrate heated and held at 75 ° C., and rotated to transfer the organic semiconductor film onto the substrate. (Second transcription).
  • the second stamp a stamp material processed in the same manner as the transfer portion of the first stamp was used. That is, the water contact angle with respect to the surface of the second stamp was made the same as the water contact angle with respect to the surface of the transfer portion of the first stamp.
  • the charge mobility of the thin film transistor thus obtained that is, the thin film transistor having the active surface as the surface on the stamp side at the time of film formation was measured. The results are shown in Table 1.
  • Example 2 (Production of stamps for contact printing)
  • the stamp material is cut into 20 mm square, a mask corresponding to the transfer portion is placed on the stamp material, the transfer portion is masked, and the UV-ozone treatment is applied to the stamp material in which the transfer portion is masked for 30 minutes. went. That is, the transfer portion was not subjected to UV-ozone treatment, and the peripheral portion was subjected to UV-ozone treatment. The mask was then removed and UV-ozone treatment was applied for 2 minutes to the entire stamp, ie, both the transfer area and the peripheral area.
  • the water contact angle of the transfer part subjected to UV-ozone treatment for 2 minutes was 107 °
  • the water contact angle of the peripheral part subjected to UV-ozone treatment for a total of 32 minutes was 40 °.
  • Example 1 a thin film transistor was produced by transferring twice.
  • the charge mobility of the thin film transistor thus obtained that is, the thin film transistor having the active surface as the surface on the stamp side during film formation was measured. The results are shown in Table 1.
  • Example 2A (Production of stamps for contact printing)
  • the stamp material is cut into 20 mm square, a mask corresponding to the transfer portion is placed on the stamp material, the transfer portion is masked, and the UV-ozone treatment is applied to the stamp material in which the transfer portion is masked for 30 minutes. went. That is, the transfer portion was not subjected to UV-ozone treatment, and the peripheral portion was subjected to UV-ozone treatment. The mask was then removed and UV-ozone treatment was performed for 2.5 minutes on the entire stamp, ie, both the transfer area and the peripheral area.
  • the water contact angle of the transfer part subjected to UV-ozone treatment for 2 minutes was 105 °
  • the water contact angle of the peripheral part subjected to UV-ozone treatment for a total of 32 minutes was 39 °.
  • Example 1 a thin film transistor was produced by transferring twice.
  • the charge mobility of the thin film transistor thus obtained that is, the thin film transistor having the active surface as the surface on the stamp side during film formation was measured. The results are shown in Table 1.
  • Example 3 (Production of stamps for contact printing)
  • the stamp material is cut into 20 mm square, a mask corresponding to the transfer portion is placed on the stamp material, the transfer portion is masked, and the UV-ozone treatment is applied to the stamp material in which the transfer portion is masked for 30 minutes. went. That is, the transfer portion was not subjected to UV-ozone treatment, and the peripheral portion was subjected to UV-ozone treatment. The mask was then removed and UV-ozone treatment was performed for 3 minutes on the entire stamp, ie, both the transfer area and the peripheral area.
  • the water contact angle of the transfer part subjected to UV-ozone treatment for 3 minutes was 104 °
  • the water contact angle of the peripheral part subjected to UV-ozone treatment for a total of 33 minutes was 37 °.
  • Example 1 a thin film transistor was produced by transferring twice.
  • the charge mobility of the thin film transistor thus obtained that is, the thin film transistor having the active surface as the surface on the stamp side during film formation was measured. The results are shown in Table 1.
  • Example 4 (Production of stamps for contact printing)
  • the stamp material is cut into 20 mm square, a mask corresponding to the transfer portion is placed on the stamp material, the transfer portion is masked, and the UV-ozone treatment is applied to the stamp material in which the transfer portion is masked for 30 minutes. went. That is, the transfer portion was not subjected to UV-ozone treatment, and the peripheral portion was subjected to UV-ozone treatment. The mask was then removed and UV-ozone treatment was performed for 5 minutes on the entire stamp, ie, both the transferred area and the peripheral area.
  • the water contact angle of the transfer portion subjected to UV-ozone treatment for 5 minutes was 99 °
  • the water contact angle of the peripheral portion subjected to UV-ozone treatment for a total of 35 minutes was 33 °.
  • Example 1 a thin film transistor was produced by transferring twice.
  • the charge mobility of the thin film transistor thus obtained that is, the thin film transistor having the active surface as the surface on the stamp side during film formation was measured. The results are shown in Table 1.
  • Example 5 (Production of stamps for contact printing)
  • the stamp material is cut into 20 mm square, a mask corresponding to the transfer portion is placed on the stamp material, the transfer portion is masked, and the UV-ozone treatment is applied to the stamp material in which the transfer portion is masked for 30 minutes. went. That is, the transfer portion was not subjected to UV-ozone treatment, and the peripheral portion was subjected to UV-ozone treatment. The mask was then removed and UV-ozone treatment was applied for 10 minutes to the entire stamp, ie, both the transfer area and the peripheral area.
  • the water contact angle of the transfer part subjected to UV-ozone treatment for 10 minutes was 95 °
  • the water contact angle of the peripheral part subjected to UV-ozone treatment for 40 minutes in total was 21 °.
  • Example 1 a thin film transistor was produced by transferring twice.
  • the charge mobility of the thin film transistor thus obtained that is, the thin film transistor having the active surface as the surface on the stamp side during film formation was measured. The results are shown in Table 1.
  • Example 6 (Production of stamps for contact printing)
  • the stamp material is cut into 20 mm square, a mask corresponding to the transfer portion is placed on the stamp material, the transfer portion is masked, and the UV-ozone treatment is applied to the stamp material in which the transfer portion is masked for 30 minutes. went. That is, the transfer portion was not subjected to UV-ozone treatment, and the peripheral portion was subjected to UV-ozone treatment. Next, the mask was removed, and the entire stamp, that is, both the transfer portion and the peripheral portion, was subjected to UV-ozone treatment for 20 minutes.
  • the water contact angle of the transfer part subjected to UV-ozone treatment for 20 minutes was 72 °
  • the water contact angle of the peripheral part subjected to UV-ozone treatment for 50 minutes in total was 4 °.
  • Example 1 a thin film transistor was produced by transferring twice.
  • the charge mobility of the thin film transistor thus obtained that is, the thin film transistor having the active surface as the surface on the stamp side during film formation was measured. The results are shown in Table 1.
  • Example 7 (Production of stamps for contact printing)
  • the stamp material is cut into 20 mm square, a mask corresponding to the transfer portion is placed on the stamp material, the transfer portion is masked, and the UV-ozone treatment is applied to the stamp material in which the transfer portion is masked for 30 minutes. went. That is, the transfer portion was not subjected to UV-ozone treatment, and the peripheral portion was subjected to UV-ozone treatment. Next, the mask was removed, and the entire stamp, that is, both the transfer portion and the peripheral portion, was subjected to UV-ozone treatment for 30 minutes.
  • the water contact angle of the transfer part subjected to UV-ozone treatment for 30 minutes was 44 °
  • the water contact angle of the peripheral part subjected to UV-ozone treatment for 60 minutes in total was 4 °.
  • Example 1 an attempt was made to produce a thin film transistor in which the surface that was on the stamp side at the time of film formation was the active surface by transferring twice.
  • transfer from the above stamp to the second stamp could not be performed well, and thus a thin film transistor having the active surface as the surface that was on the stamp side during film formation could not be produced.
  • Example 8 (Production of stamps for contact printing)
  • the stamp material is cut into 20 mm square, a mask corresponding to the transfer portion is placed on the stamp material, the transfer portion is masked, and the UV-ozone treatment is applied to the stamp material in which the transfer portion is masked for 30 minutes. went. That is, the transfer portion was not subjected to UV-ozone treatment, and the peripheral portion was subjected to UV-ozone treatment. The mask was then removed and UV-ozone treatment was performed over 45 minutes on the entire stamp, ie, both the transfer and periphery.
  • the water contact angle of the transfer part subjected to UV-ozone treatment for 45 minutes was 8 °
  • the water contact angle of the peripheral part subjected to UV-ozone treatment for 75 minutes in total was 4 °.
  • Example 1 an attempt was made to produce a thin film transistor in which the surface that was on the stamp side at the time of film formation was the active surface by transferring twice.
  • transfer from the above stamp to the second stamp could not be performed well, and thus a thin film transistor having the active surface as the surface that was on the stamp side during film formation could not be produced.
  • Example 9 Using the stamp obtained in the same manner as in Example 1, a thin film transistor having a surface that was on the air side at the time of film formation as an active surface was produced by a single transfer in the same manner as in Example 1. However, in this example, an F8T2 solution obtained as follows was used as the organic semiconductor solution instead of the P3HT solution. The charge mobility of the obtained thin film transistor was measured. The results are shown in Table 1.
  • the F8T2 solution as the organic semiconductor solution is poly [(9,9′-dioctylfluoryl-2,7-diyl) -co-bithiophene] (“F8T2”) (manufactured by American Dice Source) 0.5 mass Part was obtained by dissolving in 99.5 parts by mass of toluene.
  • Example 1 a thin film transistor was produced by transferring twice.
  • the charge mobility of the thin film transistor thus obtained that is, the thin film transistor having the active surface as the surface on the stamp side during film formation was measured.
  • no significant semiconductor characteristics were observed in the organic semiconductor layer obtained in this example. The results are shown in Table 1.
  • Example 10 (Comparison) >> In the same manner as in Example 1 except that the P3HT solution was applied to the stamp by spin coating and immediately transferred to the substrate without aging, the surface that was on the air side at the time of film formation by the single transfer was defined as the active surface. A thin film transistor was manufactured. The charge mobility of the obtained thin film transistor was measured. The results are shown in Table 1.
  • Example 11 (Comparison) The stamp material was cut into 20 mm square and used as it was without any surface treatment. Here, the water contact angle on the surface of the stamp was 110 °. The stamp surface was spin-coated with a P3HT solution in the same manner as in Example 1. However, since the entire stamp surface is lyophobic, the organic semiconductor film cannot be stably formed on the stamp surface.
  • Example 12 (Comparison) The P3HT solution used in Example 1 was spin-coated (1800 rpm, 20 seconds) directly on the silicon substrate used in Example 1. That is, a semiconductor film was formed directly on the substrate without using a stamp.
  • a source electrode and a drain electrode were formed on the obtained organic semiconductor film in the same manner as in Example 1 to obtain a thin film transistor.
  • Example 13 (Comparison) The F8T2 solution used in Example 9 was spin coated (1800 rpm, 20 seconds) directly on the silicon substrate used in Example 1. That is, a semiconductor film was formed directly on the substrate without using a stamp.
  • a source electrode and a drain electrode were formed on the obtained organic semiconductor film in the same manner as in Example 1 to obtain a thin film transistor.
  • the organic semiconductor film could be stably formed even on the lyophobic surface.
  • the organic semiconductor film is stably formed even on a lyophobic surface having a water contact angle exceeding 100 ° C. I was able to.
  • Example 11 it is difficult to stably form an organic semiconductor film on a lyophobic surface with a stamp having no transfer portion-periphery portion structure. Met.
  • the ratio of the charge mobility on the two opposite surface sides ⁇ (charge mobility on the surface side with large charge mobility) / (surface mobility on the surface side with small charge mobility)
  • the value of charge mobility) ⁇ was larger than that of Example 10 (comparison) in which aging was not performed. Further, the value of this ratio is as the lyophobic property in the transfer portion of the stamp used for film formation becomes smaller, that is, as the transfer portion of the stamp used for film formation becomes lyophilic. It became bigger.
  • the ratio of the charge mobility on the two opposite surface sides ⁇ (the charge mobility on the surface side with a large charge mobility) / (the charge mobility on the surface side with a small charge mobility) ⁇ was smaller than those of Examples 3 to 6, and the relative X-ray peak height representing the degree of crystallization over the entire thickness of the organic semiconductor film was large. This is thought to be due to the progress of crystallization of the organic semiconductor material on both the surface side that was in contact with the surface of the substrate or the first stamp during film formation and the surface side opposite to the surface side. It is done.
  • the relative X-ray peak height which represents the degree of crystallization over the entire thickness of the organic semiconductor film, becomes smaller as the water contact angle of the transfer portion becomes smaller (or as the surface of the transfer portion becomes lyophilic), that is, in the transfer portion.
  • the surface energy decreased as the surface energy increased. This is when the water contact angle of the transfer portion is small, as shown by the relatively low charge mobility on the surface side that was in contact with the substrate or the surface of the first stamp 15 during film formation.
  • the surface of the transfer portion is lyophilic, that is, when the surface energy is large, it is considered that the degree of crystallization of the organic semiconductor material is small on this surface side.
  • the value of the organic semiconductor film of Example 1 is temporarily used as the value of the charge mobility of the surface that was on the stamp side at the time of film formation. It is based on the understanding that the change in charge mobility due to the presence or absence of aging is relatively small on the surface that was on the stamp side during film formation.
  • Examples 14 and 15 >> In Examples 14 and 15, a bottom gate / top contact type (BGTC type) transistor was formed.
  • BGTC type bottom gate / top contact type
  • Example 14 In the same manner as in Example 1 except that the silicon substrate was treated with hexamethyldisilazane (HMDS) and the substrate temperature was set to 130 ° C. in the transfer step to facilitate the transfer, air was transferred during film formation by a single transfer. A thin film transistor having an active surface on the side surface was prepared. The charge mobility of the obtained thin film transistor was measured. The results are shown in Table 2. Here, the water contact angle with respect to the surface of the silicon substrate treated with hexamethyldisilazane (HMDS) was 75 °.
  • HMDS hexamethyldisilazane
  • HMDS hexamethyldisilazane
  • a 20 mM toluene solution of HMDS was prepared.
  • the above silicon substrate was immersed in the obtained HMDS solution and held for 7 days. After soaking, the substrate was washed with toluene and ethanol and ultrasonically washed in ethanol for 30 minutes. All the steps so far were performed in a glove box in which the humidity was controlled to 3% or less. Thereafter, the substrate was washed with pure water and heat treated at 100 ° C. for 5 minutes to obtain an HMDS treated substrate.
  • Example 15 In the same manner as in Example 1 except that the silicon substrate was treated with octadecyltrichlorosilane (OTS) and the substrate temperature was set to 130 ° C. in the transfer step to promote transfer, the air side was formed by film transfer once. A thin film transistor having an active surface as a surface suitable for the above was fabricated. The charge mobility of the obtained thin film transistor was measured. The results are shown in Table 2. Here, the water contact angle with respect to the surface of the silicon substrate treated with octadecyltrichlorosilane (OTS) was 108 °.
  • OTS octadecyltrichlorosilane
  • the base material was treated with octadecyltrichlorosilane as follows.
  • a 20 mM toluene solution of OTS was prepared.
  • the above silicon substrate was immersed in the obtained OTS solution and held for 7 days. After soaking, the substrate was washed with toluene and ethanol and ultrasonically washed in ethanol for 30 minutes. All the steps so far were performed in a glove box in which the humidity was controlled to 3% or less. Thereafter, the substrate was washed with pure water and heat-treated at 100 ° C. for 5 minutes to obtain an OTS-treated substrate.
  • Table 2 also shows the results of the organic semiconductor film of Example 1 for comparison.
  • the surface energy of the base material depends on the charge mobility of the organic semiconductor film. Is understood to have an impact. That is, from Table 2, the organic semiconductor film having a high charge mobility has a low surface energy even when the organic semiconductor film is aged on the stamp and then transferred to the base material. It is understood that it is preferred to obtain a membrane.
  • Examples 16 to 27 >> In Examples 16 to 21, a bottom gate / top contact type (BGTC type) transistor was produced, and in Examples 22 to 27, a bottom gate / bottom contact type (BGBC type) transistor was produced.
  • BGTC type bottom gate / top contact type
  • BGBC type bottom gate / bottom contact type
  • Example 16 Example 1 (Air side / stamp side ratio: 2.8, relative X-ray peak intensity, except that 0.5 part by weight of P3HT was dissolved in 99.5 parts by weight of toluene to obtain a P3HT solution as an organic semiconductor solution. : 2.5), a bottom gate / top contact type (BGTC type) thin film transistor was produced.
  • BGTC type bottom gate / top contact type
  • Example 17 Except that the silicon substrate was treated with hexamethyldisilazane (HMDS) as in Example 14 and that the transfer was accelerated by setting the substrate temperature to 130 ° C. in the transfer step, as in Example 16, A BGTC-type thin film transistor was produced in which the active surface was the surface that was on the air side during film formation. The charge mobility of the obtained thin film transistor was measured. The results are shown in Table 3.
  • HMDS hexamethyldisilazane
  • Example 18 As in Example 16, except that the silicon substrate was treated with octadecyltrichlorosilane (OTS) as in Example 15 and that the transfer was accelerated by setting the substrate temperature to 130 ° C. in the transfer step.
  • a BGTC-type thin film transistor was produced in which the active surface was the surface that was on the air side when the film was formed. The charge mobility of the obtained thin film transistor was measured. The results are shown in Table 3.
  • Example 19 (Comparison) The P3HT solution used in Example 16 was directly spin-coated (1800 rpm, 20 seconds) on the silicon substrate used in Example 16 to obtain a BGTC type thin film transistor. Table 3 shows the charge mobility of the obtained thin film transistor.
  • Example 20 (Comparison) The P3HT solution used in Example 16 was spin-coated (1800 rpm, 20 seconds) directly on the HMDS-treated silicon substrate used in Example 17 to obtain a BGTC type thin film transistor. Table 3 shows the charge mobility of the obtained thin film transistor.
  • Example 21 (comparison) >> The P3HT solution used in Example 16 was directly spin-coated (1800 rpm, 20 seconds) on the OTS-treated silicon substrate used in Example 18 to obtain a BGTC type thin film transistor. Table 3 shows the charge mobility of the obtained thin film transistor.
  • BGBC type bottom gate / bottom contact type
  • Example 23 In the same manner as in Example 22, except that the silicon substrate was treated with hexamethyldisilazane (HMDS) as in Example 14 and that the transfer was accelerated by setting the substrate temperature to 130 ° C. in the transfer step. A BGBC type thin film transistor was produced in which the active surface was the surface that was on the air side when the film was formed. The charge mobility of the obtained thin film transistor was measured. The results are shown in Table 3.
  • HMDS hexamethyldisilazane
  • Example 24 As in Example 15, except that the silicon substrate was treated with octadecyltrichlorosilane (OTS) and that the transfer was accelerated by setting the substrate temperature to 130 ° C. in the transfer step.
  • OTS octadecyltrichlorosilane
  • a BGBC type thin film transistor was produced in which the active surface was the surface that was on the air side when the film was formed. The charge mobility of the obtained thin film transistor was measured. The results are shown in Table 3.
  • Example 25 A thin film transistor was prepared in the same manner as in Example 22 except that the contact print stamp was prepared by the method of Example 5 (ratio of air side surface / stamp side surface: 86, relative X-ray peak intensity: 1.9). Table 3 shows the charge mobility of the obtained thin film transistor.
  • Example 26 A thin film transistor was prepared in the same manner as in Example 23 except that the contact print stamp was prepared by the method of Example 5. Table 3 shows the charge mobility of the obtained thin film transistor.
  • Example 27 A thin film transistor was produced in the same manner as in Example 24 except that the contact print stamp was produced by the method of Example 5. Table 3 shows the charge mobility of the obtained thin film transistor.
  • Example 28 (Comparison) The P3HT solution used in Example 22 was directly spin-coated (1800 rpm, 20 seconds) on the silicon substrate used in Example 22 to obtain a BGBC type thin film transistor. Table 3 shows the charge mobility of the obtained thin film transistor.
  • Example 28 (Comparison) The P3HT solution used in Example 22 was directly spin-coated (1800 rpm, 20 seconds) on the HMDS-treated silicon substrate used in Example 23 to obtain a BGBC type thin film transistor. Table 3 shows the charge mobility of the obtained thin film transistor.
  • Example 30 (Comparison) The P3HT solution used in Example 22 was directly spin-coated (1800 rpm, 20 seconds) on the OTS-treated silicon substrate used in Example 24 to obtain a BGBC type thin film transistor. Table 3 shows the charge mobility of the obtained thin film transistor.
  • the thin film transistors of Examples 16 to 18 and Examples 22 to 27 manufactured by the contact printing method are compared with the corresponding thin film transistors of Examples 19 to 21 and Examples 28 to 30 manufactured by the spin coat method. And has a good charge mobility.
  • ratio to spin coating indicates the ratio between the charge mobility of the thin film transistor manufactured by the contact printing method and the mobility of the thin film transistor manufactured by the corresponding spin coating method.
  • the rate of increase in mobility due to the use of the contact printing method in the production of the bottom gate / bottom contact type (BGBC type) thin film transistor is the bottom gate / top contact type (BGTC type). This is larger than that in the case of using the contact printing method in producing the thin film transistor. That is, it is understood that it is particularly preferable to use a contact printing method in the production of a BGBC type thin film transistor.
  • Organic semiconductor film of the present invention 11 Organic semiconductor film of the present invention (surface side in contact with substrate) 12 Organic semiconductor film of the present invention (opposite surface side in contact with substrate) 15, 100 Base material 20 Conventional organic semiconductor film 21 Conventional organic semiconductor film (surface side in contact with base material) 22 Conventional organic semiconductor film (opposite surface side in contact with substrate) 130, 140, 150, 160 Thin film transistor of the present invention 131, 141, 151, 161 Gate electrode 132, 142, 152, 162 Gate insulating film 133, 143, 153, 163 Semiconductor film 134, 144, 154, 164 Source electrode 135, 145, 155, 165 Drain electrode 50 Stamp having transfer part-periphery structure 51, 51a, 51b, 51c Transfer part 52, 52a, 52b, 52c Peripheral part 61 Organic semiconductor solution

Abstract

Disclosed is an organic semiconductor film (10) which has a value of 1 or more but less than 10 for the ratio of the charge mobility [(charge mobility of the surface side having larger charge mobility)/(charge mobility of the surface side having smaller charge mobility)] of two opposing surface sides (11, 12). In addition, the organic semiconductor film (10) has a relative X-ray reflectance peak height of 2.0 or more with respect to the peak height of an organic semiconductor film which has the same thickness and materials and is manufactured by performing spin coating on a silicon wafer. Alternatively, the organic semiconductor film (10) has a value of 2 or more for the ratio of the charge mobility [(charge mobility of the surface side having larger charge mobility)/(charge mobility of the surface side having smaller charge mobility)] of the two opposing surface sides (11, 12).

Description

有機半導体膜及びその製造方法、並びにコンタクトプリント用スタンプORGANIC SEMICONDUCTOR FILM, ITS MANUFACTURING METHOD, AND CONTACT PRINT STAMP
 第1及び第2の本発明は、新規な有機半導体膜及びその製造方法、並びにこのような有機半導体膜を有する有機半導体デバイス及び電気回路に関する。 The first and second aspects of the present invention relate to a novel organic semiconductor film and a method for manufacturing the same, and an organic semiconductor device and an electric circuit having such an organic semiconductor film.
 第3の本発明は、新規なコンタクトプリント用スタンプ、特に有機半導体膜の製造に用いられるコンタクトプリント用スタンプ、及びこのようなコンタクトプリント用スタンプを用いた有機半導体膜の製造方法に関する。 The third aspect of the present invention relates to a novel contact print stamp, in particular, a contact print stamp used for manufacturing an organic semiconductor film, and a method for manufacturing an organic semiconductor film using such a contact print stamp.
 近年、半導体膜は、薄膜トランジスタ(TFT)に代表される半導体素子、太陽電池等のさまざまな用途に用いられるようになっている。 In recent years, semiconductor films have been used for various applications such as semiconductor elements represented by thin film transistors (TFTs) and solar cells.
 現在主に用いられている無機半導体膜、特にシリコンを半導体材料として用いる無機半導体膜は、製造時に化学気相成長(CVD)やスパッタリング等の真空プロセスを用いることから、製造コストが高い。また、無機半導体膜では、プロセス温度の点から、高分子フィルム等の上に形成することが難しい。また更に、無機半導体膜は、将来的に実用化が期待される軽量でフレキシブルな素子やRF-ID(Radio Frequency IDentification)等の低コストの要求に答えることが難しい。 An inorganic semiconductor film mainly used at present, especially an inorganic semiconductor film using silicon as a semiconductor material, has a high manufacturing cost because a vacuum process such as chemical vapor deposition (CVD) or sputtering is used at the time of manufacture. In addition, it is difficult to form an inorganic semiconductor film on a polymer film or the like from the viewpoint of process temperature. Furthermore, it is difficult for inorganic semiconductor films to meet low-cost requirements such as lightweight and flexible elements expected to be put to practical use in the future and RF-ID (Radio Frequency IDentification).
 上記のような課題を解決するために、有機半導体材料から作られた有機半導体膜を用いることが提案されている。有機半導体膜の製造で用いる真空蒸着装置や塗布装置は、無機半導体膜の製造で用いられるCVD装置やスパッタリング装置と比較して安価である。また、有機半導体膜の製造では、プロセス温度が低いため、有機半導体膜を高分子フィルムや紙等の上に形成することも可能である。 In order to solve the above problems, it has been proposed to use an organic semiconductor film made of an organic semiconductor material. A vacuum deposition apparatus and a coating apparatus used for manufacturing an organic semiconductor film are less expensive than a CVD apparatus and a sputtering apparatus used for manufacturing an inorganic semiconductor film. In the production of an organic semiconductor film, since the process temperature is low, the organic semiconductor film can be formed on a polymer film or paper.
 ここで、有機半導体膜の形成においては、有機半導体材料を含有する溶液を基材、スタンプ等に塗布し、そして溶媒を除去する溶液法(キャスト法、スピンコート法、コンタクトプリント法のようなプリント法、ディップ法等)、及び有機半導体材料を基材に蒸着させる蒸着法が知られている。これらの方法のうちの溶液法は一般に、製造コスト、製造速度等に関して好ましいことが知られており、したがって様々な研究がなされている(特許文献1~3、並びに非特許文献1及び2)。しかしながら、溶液法によって質の高い有機半導体膜を安定的に得ることは、必ずしも充分に達成されていなかった。 Here, in the formation of the organic semiconductor film, a solution method (such as a cast method, a spin coat method, a contact print method) in which a solution containing an organic semiconductor material is applied to a substrate, a stamp, etc., and the solvent is removed. And vapor deposition methods in which an organic semiconductor material is deposited on a substrate. Of these methods, the solution method is generally known to be preferable with respect to production cost, production rate, and the like, and various studies have been conducted (Patent Documents 1 to 3, and Non-Patent Documents 1 and 2). However, stably obtaining a high-quality organic semiconductor film by a solution method has not always been sufficiently achieved.
 なお、移動度が大きく、しかもオンオフ比の高い電界効果型有機トランジスタを提供することを目的とした、有機半導体層が移動度の異なる少なくとも2つ以上の領域を有する電界効果トランジスタが提案されている(特許文献4)。しかしながら、特許文献4に記載された技術は、有機半導体層中に異なる移動度の領域を形成することによりリーク電流を低減させ、それによってオンオフ比を向上させるものであるが、移動度に関しては従来の有機半導体層よりも向上するものではないと推察される。 In addition, a field effect transistor having an organic semiconductor layer having at least two or more regions with different mobility has been proposed for the purpose of providing a field effect organic transistor having a high mobility and a high on / off ratio. (Patent Document 4). However, the technique described in Patent Document 4 is to reduce the leakage current by forming regions with different mobility in the organic semiconductor layer, thereby improving the on / off ratio. It is presumed that it does not improve over the organic semiconductor layer.
特開2007-311377号公報JP 2007-311377 A 特開2009-212127号公報JP 2009-212127 A 特開2008-277728号公報JP 2008-277728 A 特開2005-32978号公報JP 2005-32978 A
 第1及び第2の本発明の目的は、新規な有機半導体膜及びその製造方法、並びにこのような有機半導体膜を有する有機半導体デバイスを提供することである。 An object of the first and second aspects of the present invention is to provide a novel organic semiconductor film, a manufacturing method thereof, and an organic semiconductor device having such an organic semiconductor film.
 第3の本発明の目的は、新規なコンタクトプリント用スタンプ、特に有機半導体膜の製造に用いられるコンタクトプリント用スタンプ、及びこのようなコンタクトプリント用スタンプを用いた有機半導体膜の製造方法を提供することである。 A third object of the present invention is to provide a novel contact print stamp, particularly a contact print stamp used for manufacturing an organic semiconductor film, and a method for manufacturing an organic semiconductor film using such a contact print stamp. That is.
 《第1の本発明》
 本件発明者等は、溶液法によって有機半導体膜を製造する際に、基材又は第1のスタンプ上で未乾燥の有機半導体膜を熟成させることによって、基材又は第1のスタンプに接していない面において有機半導体膜の電荷移動度が改良されること、及びこのような基材又は第1のスタンプの表面エネルギーが小さい場合には、基材又は第1のスタンプに接している面においても有機半導体膜の電化移動度が改良されることを見出して、下記の第1の本発明の新規の有機半導体膜及びその製造方法、並びに有機半導体デバイスに想到した。
<< First Invention >>
When manufacturing the organic semiconductor film by the solution method, the present inventors are not in contact with the base material or the first stamp by aging the undried organic semiconductor film on the base material or the first stamp. If the charge mobility of the organic semiconductor film is improved on the surface, and if the surface energy of such a substrate or the first stamp is small, the surface of the substrate or the surface contacting the first stamp is also organic The inventors found that the charge mobility of the semiconductor film was improved, and came up with the following novel organic semiconductor film of the present invention, a method for producing the same, and an organic semiconductor device.
 〈1〉相対する2つの表面側の電荷移動度の比{(電荷移動度が大きい表面側の電荷移動度)/(電荷移動度が小さい表面側の電荷移動度)}の値が1以上10未満であり、且つシリコンウェハ上にスピンコーティングによって作製した同一の厚さ及び材料の有機半導体膜についてのピーク高さを基準としたときに、相対X線反射ピーク高さが2.0以上である、有機半導体膜。 <1> The ratio of the charge mobility on the two opposite surface sides {(charge mobility on the surface side with high charge mobility) / (charge mobility on the surface side with low charge mobility)} is 1 or more and 10 The relative X-ray reflection peak height is 2.0 or more when the peak height of the organic semiconductor film of the same thickness and material produced by spin coating on the silicon wafer is used as a reference Organic semiconductor film.
 〈2〉上記電荷移動度の比の値が5以下である、上記〈1〉項に記載の有機半導体膜。 <2> The organic semiconductor film according to <1>, wherein the value of the charge mobility ratio is 5 or less.
 〈3〉上記有機半導体膜が溶液法によって得られたものである、上記〈1〉又は〈2〉項に記載の有機半導体膜。 <3> The organic semiconductor film according to <1> or <2>, wherein the organic semiconductor film is obtained by a solution method.
 〈4〉上記有機半導体膜がコンタクトプリント法によって得られたものである、上記〈1〉~〈3〉項のいずれかに記載の有機半導体膜。 <4> The organic semiconductor film according to any one of <1> to <3>, wherein the organic semiconductor film is obtained by a contact printing method.
 〈5〉上記有機半導体膜の電荷移動度が大きい表面側の電荷移動度が、1.00×10-5cm/(V・s)以上である、上記〈1〉~〈4〉項のいずれかに記載の有機半導体膜。 <5> The charge mobility on the surface side where the charge mobility of the organic semiconductor film is large is 1.00 × 10 −5 cm 2 / (V · s) or more, in the above items <1> to <4> The organic-semiconductor film in any one.
 〈6〉有機半導体材料が溶解及び/又は分散している有機半導体溶液を提供するステップ、
 上記有機半導体溶液を、基材又は第1のスタンプ上に適用して、未乾燥の有機半導体膜を得るステップ、
 上記基材又は第1のスタンプ上において上記未乾燥の有機半導体膜を熟成させるステップ、
を含み、且つ上記基材又は第1のスタンプの表面の水に対する接触角が100°以上である、有機半導体膜の製造方法。
<6> providing an organic semiconductor solution in which the organic semiconductor material is dissolved and / or dispersed;
Applying the organic semiconductor solution onto a substrate or a first stamp to obtain an undried organic semiconductor film;
Aging the undried organic semiconductor film on the substrate or first stamp;
And the contact angle with respect to water of the surface of the base material or the first stamp is 100 ° or more.
 〈7〉上記熟成を、上記未乾燥の有機半導体膜を10秒以上にわたって保持することによって行う、上記〈6〉項に記載の方法。 <7> The method according to <6>, wherein the aging is performed by holding the undried organic semiconductor film for 10 seconds or more.
 〈8〉上記熟成を、上記未乾燥の有機半導体膜を50℃未満の雰囲気に保持することによって行う、上記〈6〉又は〈7〉項に記載の方法。 <8> The method according to <6> or <7>, wherein the aging is performed by maintaining the undried organic semiconductor film in an atmosphere of less than 50 ° C.
 〈9〉上記第1のスタンプ上において熟成させた有機半導体層を転写するステップを更に含む、上記〈6〉~〈8〉項のいずれかに記載の方法。 <9> The method according to any one of <6> to <8>, further comprising a step of transferring an organic semiconductor layer aged on the first stamp.
 〈10〉上記基材又は第1のスタンプ上において熟成させた有機半導体層を、乾燥及び/又は焼成するステップを更に含む、上記〈6〉~〈9〉項のいずれかに記載の方法。 <10> The method according to any one of <6> to <9> above, further comprising a step of drying and / or firing the organic semiconductor layer aged on the substrate or the first stamp.
 〈11〉上記基材又は第1のスタンプの表面の水に対する接触角が105°以上である、上記〈6〉~〈10〉項のいずれかに記載の方法。 <11> The method according to any one of <6> to <10> above, wherein a contact angle with respect to water of the surface of the base material or the first stamp is 105 ° or more.
 〈12〉上記〈1〉~〈5〉項のいずれかに記載の有機半導体膜を有する、有機半導体デバイス。 <12> An organic semiconductor device having the organic semiconductor film according to any one of <1> to <5> above.
 〈13〉薄膜トランジスタである、上記〈12〉項に記載の有機半導体デバイス。 <13> The organic semiconductor device according to <12>, which is a thin film transistor.
 〈14〉上記有機半導体膜がコンタクトプリント法によって得られたものであり、かつ上記有機半導体デバイスが、ボトムゲート・ボトムコンタクト型又はトップゲート・ボトムコンタクト型の薄膜トランジスタである、上記〈13〉項に記載の有機半導体デバイス。 <14> The item <13>, wherein the organic semiconductor film is obtained by a contact printing method, and the organic semiconductor device is a bottom gate / bottom contact type or top gate / bottom contact type thin film transistor. The organic semiconductor device described.
 《第2の本発明》
 本件発明者等は、溶液法によって有機半導体膜を製造する際に、基材又は第1のスタンプ上で未乾燥の有機半導体膜を熟成させることによって、基材又は第1のスタンプに接していない面において有機半導体膜の電荷移動度が改良されることを見出して、下記の第2の本発明の新規の有機半導体膜及びその製造方法、並びに有機半導体デバイスに想到した。
<< Second Invention >>
When manufacturing the organic semiconductor film by the solution method, the present inventors are not in contact with the base material or the first stamp by aging the undried organic semiconductor film on the base material or the first stamp. In view of this, the inventors have found that the charge mobility of the organic semiconductor film is improved, and have arrived at the following novel organic semiconductor film of the present invention, a method for producing the same, and an organic semiconductor device.
 〈15〉相対する2つの表面側の電荷移動度の比{(電荷移動度が大きい表面側の電荷移動度)/(電荷移動度が小さい表面側の電荷移動度)}の値が2以上である、有機半導体膜。 <15> The ratio of the charge mobility on the two opposite surface sides {(charge mobility on the surface side with high charge mobility) / (charge mobility on the surface side with low charge mobility)} is 2 or more An organic semiconductor film.
 〈16〉電荷移動度の比の値が10以上である、上記〈15〉項に記載の有機半導体膜。 <16> The organic semiconductor film according to <15>, wherein the value of the charge mobility ratio is 10 or more.
 〈17〉上記電荷移動度の比の値が150以下である、上記〈15〉又は〈16〉項に記載の有機半導体膜。 <17> The organic semiconductor film according to <15> or <16>, wherein the charge mobility ratio is 150 or less.
 〈18〉上記有機半導体膜が溶液法によって得られたものである、上記〈15〉~〈17〉項のいずれかに記載の有機半導体膜。 <18> The organic semiconductor film according to any one of <15> to <17>, wherein the organic semiconductor film is obtained by a solution method.
 〈19〉上記有機半導体膜がコンタクトプリント法によって得られたものである、上記〈15〉~〈18〉項のいずれかに記載の有機半導体膜。 <19> The organic semiconductor film according to any one of <15> to <18>, wherein the organic semiconductor film is obtained by a contact printing method.
 〈20〉上記有機半導体膜の電荷移動度が大きい表面側の電荷移動度が、1.00×10-5cm/(V・s)以上である、上記〈15〉~〈19〉項のいずれかに記載の有機半導体膜。 <20> The above <15> to <19>, wherein the charge mobility on the surface side of the organic semiconductor film having a large charge mobility is 1.00 × 10 −5 cm 2 / (V · s) or more. The organic-semiconductor film in any one.
 〈21〉シリコンウェハ上にスピンコーティングによって作製した同一の厚さ及び材料の有機半導体膜についてのピーク高さを基準としたときに、相対X線反射ピーク高さが1.3以上である、上記〈15〉~〈20〉項のいずれかに記載の有機半導体膜。 <21> The relative X-ray reflection peak height is 1.3 or more when the peak thickness of the organic semiconductor film of the same thickness and material produced by spin coating on a silicon wafer is used as a reference The organic semiconductor film according to any one of <15> to <20>.
 〈22〉相対する上記2つの表面の間で、上記有機半導体膜を構成する有機半導体材料の結晶配向の程度が徐々に変化している、上記〈15〉~〈21〉項のいずれかに記載の有機半導体膜。 <22> The item according to any one of <15> to <21>, wherein the degree of crystal orientation of the organic semiconductor material constituting the organic semiconductor film gradually changes between the two opposing surfaces. Organic semiconductor film.
 〈23〉有機半導体材料が溶解及び/又は分散している有機半導体溶液を提供するステップ、
 上記有機半導体溶液を、基材又は第1のスタンプ上に適用して、未乾燥の有機半導体膜を得るステップ、
 上記基材又は第1のスタンプ上において上記未乾燥の有機半導体膜を熟成させるステップ、
を含む、有機半導体膜の製造方法。
<23> providing an organic semiconductor solution in which the organic semiconductor material is dissolved and / or dispersed;
Applying the organic semiconductor solution onto a substrate or a first stamp to obtain an undried organic semiconductor film;
Aging the undried organic semiconductor film on the substrate or first stamp;
A method for producing an organic semiconductor film, comprising:
 〈24〉上記熟成を、上記未乾燥の有機半導体膜を10秒以上にわたって保持することによって行う、上記〈23〉項に記載の方法。 <24> The method according to <23>, wherein the aging is performed by holding the undried organic semiconductor film for 10 seconds or more.
 〈25〉上記熟成を、上記未乾燥の有機半導体膜を50℃未満の雰囲気に保持することによって行う、上記〈23〉又は〈24〉項に記載の方法。 <25> The method according to <23> or <24>, wherein the aging is performed by maintaining the undried organic semiconductor film in an atmosphere of less than 50 ° C.
 〈26〉上記第1のスタンプ上において熟成させた有機半導体層を転写するステップを更に含む、上記〈23〉~〈25〉項のいずれかに記載の方法。 <26> The method according to any one of <23> to <25>, further comprising a step of transferring an organic semiconductor layer aged on the first stamp.
 〈27〉上記基材又は第1のスタンプ上において熟成させた有機半導体層を、乾燥及び/又は焼成するステップを更に含む、上記〈23〉~〈26〉項のいずれかに記載の方法。 <27> The method according to any one of <23> to <26> above, further comprising a step of drying and / or firing the organic semiconductor layer aged on the substrate or the first stamp.
 〈28〉上記基材又は第1のスタンプの表面の水に対する接触角が40°以上である、上記〈23〉~〈27〉項のいずれかに記載の方法。 <28> The method according to any one of <23> to <27> above, wherein the contact angle of the surface of the substrate or the first stamp with respect to water is 40 ° or more.
 〈29〉上記〈15〉~〈22〉項のいずれかに記載の有機半導体膜を有する、有機半導体デバイス。 <29> An organic semiconductor device having the organic semiconductor film according to any one of <15> to <22> above.
 〈30〉薄膜トランジスタである、上記〈29〉項に記載の有機半導体デバイス。 <30> The organic semiconductor device according to <29>, which is a thin film transistor.
 〈31〉上記有機半導体膜がコンタクトプリント法によって得られたものであり、かつ上記有機半導体デバイスが、ボトムゲート・ボトムコンタクト型又はトップゲート・ボトムコンタクト型の薄膜トランジスタである、上記〈30〉項に記載の有機半導体デバイス。 <31> In the above <30>, the organic semiconductor film is obtained by a contact printing method, and the organic semiconductor device is a bottom gate / bottom contact type or top gate / bottom contact type thin film transistor. The organic semiconductor device described.
 〈32〉回路基材の一方の面上に上記〈30〉又は〈31〉項に記載の薄膜トランジスタを2つ以上有する電気回路であって、
 上記薄膜トランジスタのうちの少なくとも1つにおいて、上記有機半導体膜の電荷移動度が大きい表面側が、上記回路基材に向かい合うようにして、上記有機半導体膜が配置されており、且つこの表面側が、上記薄膜トランジスタにおいて活性面となっており、且つ
 上記薄膜トランジスタのうちの少なくとも他の1つにおいて、上記有機半導体膜の電荷移動度が大きい表面側が、上記回路基材の反対側に向くようにして、上記有機半導体膜が配置されており、且つこの表面側が、上記薄膜トランジスタにおいて活性面となっている、
電気回路。
<32> An electric circuit having two or more thin film transistors according to <30> or <31> above on one surface of a circuit substrate,
In at least one of the thin film transistors, the organic semiconductor film is disposed so that a surface side of the organic semiconductor film having a large charge mobility faces the circuit base material, and the surface side of the thin film transistor is the thin film transistor. In the at least another one of the thin film transistors, the surface of the organic semiconductor film having a large charge mobility faces the opposite side of the circuit substrate, and the organic semiconductor A film is disposed, and the surface side is an active surface in the thin film transistor.
electric circuit.
 本件発明者等は、低表面エネルギーの転写部、及びこの転写部の周囲の高表面エネルギーの周縁部を有するコンタクトプリント用スタンプを用いることによって、得られる有機半導体膜の電荷移動度が改良されること見出して、下記の第3の本発明の新規なコンタクトプリント用スタンプ、及びこのようなコンタクトプリント用スタンプを用いる有機半導体膜の製造方法に想到した。 The present inventors improve the charge mobility of the obtained organic semiconductor film by using a contact printing stamp having a low surface energy transfer portion and a high surface energy peripheral portion around the transfer portion. As a result, the inventors have devised a novel contact printing stamp of the third invention described below and a method for producing an organic semiconductor film using such a contact printing stamp.
 〈33〉転写する有機半導体膜を保持するための転写部、及び上記転写部の周囲の周縁部を有し、且つ上記転写部の水に対する接触角が、上記周縁部の水に対する接触角よりも20°以上大きい、コンタクトプリント用スタンプ。 <33> A transfer portion for holding the organic semiconductor film to be transferred, and a peripheral edge around the transfer portion, and a contact angle of the transfer portion with respect to water is larger than a contact angle of the peripheral portion with respect to water. Stamp for contact printing that is larger than 20 °.
 〈34〉上記転写部の水に対する接触角が、40°以上である、上記〈33〉項に記載のスタンプ。 <34> The stamp according to <33>, wherein a contact angle of the transfer portion with respect to water is 40 ° or more.
 〈35〉上記転写部と上記周縁部とが同一平面上にある、上記〈33〉又は〈34〉項に記載のスタンプ。 <35> The stamp according to <33> or <34>, wherein the transfer portion and the peripheral portion are on the same plane.
 〈36〉上記転写部が、上記周縁部に対して凹部となっている、上記〈33〉~〈35〉項のいずれかに記載のスタンプ。 <36> The stamp according to any one of <33> to <35>, wherein the transfer portion is a recess with respect to the peripheral portion.
 〈37〉上記転写部の大きさが、0.01μm~1,000,000μmである、上記〈33〉~〈36〉項のいずれかに記載のスタンプ。 <37> the size of the transfer portion is 0.01μm 2 ~ 1,000,000μm 2, the <33> - <36> stamp according to any one of Items.
 〈38〉溶媒と上記溶媒中に溶解及び/又は分散している有機半導体材料とを含有する有機半導体溶液を提供するステップ、並びに
 有機半導体溶液を、上記〈33〉~〈37〉項のいずれかに記載のスタンプの上記転写部に適用して、有機半導体膜を得るステップ、
を含む、有機半導体膜の製造方法。
<38> a step of providing an organic semiconductor solution containing a solvent and an organic semiconductor material dissolved and / or dispersed in the solvent, and the organic semiconductor solution according to any one of the above items <33> to <37> Applying to the transfer part of the stamp described in to obtain an organic semiconductor film,
A method for producing an organic semiconductor film, comprising:
 第1の本発明の新規な有機半導体膜によれば、基材又は第1のスタンプに接していない面及び基材又は第1のスタンプに接している面の両方において、大きい電荷移動度を提供することができる。 According to the novel organic semiconductor film of the first aspect of the present invention, high charge mobility is provided on both the surface not in contact with the base material or the first stamp and the surface in contact with the base material or the first stamp. can do.
 第2の本発明の新規な有機半導体膜によれば、電荷移動度が大きい面を活性面として用いることによって、大きい電荷移動度を提供することができる。 According to the novel organic semiconductor film of the second aspect of the present invention, a large charge mobility can be provided by using a surface having a large charge mobility as an active surface.
 第3の本発明の新規なコンタクトプリント用スタンプによれば、改良された半導体特性を有する有機半導体膜、例えば第1及び第2の本発明の有機半導体膜を製造することができる。 According to the novel contact printing stamp of the third aspect of the present invention, an organic semiconductor film having improved semiconductor characteristics, for example, the organic semiconductor films of the first and second aspects of the present invention can be manufactured.
図1は、第1及び第2の本発明の有機半導体膜を説明する図である。FIG. 1 is a diagram for explaining the organic semiconductor films of the first and second aspects of the present invention. 図2は、第1及び第2の本発明の有機半導体膜の製造方法を説明する図である。FIG. 2 is a view for explaining the organic semiconductor film manufacturing methods of the first and second aspects of the present invention. 図3は、従来の有機半導体膜の製造方法を説明する図である。FIG. 3 is a diagram for explaining a conventional method of manufacturing an organic semiconductor film. 図4は、第1及び第2の本発明の薄膜トランジスタを説明する図である。FIG. 4 is a diagram for explaining the thin film transistors of the first and second inventions. 図5は、転写部-周縁部構造を有する第3の本発明のスタンプを説明する図である。FIG. 5 is a view for explaining a third stamp of the present invention having a transfer portion-periphery portion structure. 図6は、転写部-周縁部構造を有する第3の本発明のスタンプの側面断面図である。FIG. 6 is a side sectional view of a third stamp of the present invention having a transfer part-periphery part structure.
 《第1の本発明の有機半導体膜》
 第1の本発明の有機半導体膜では、相対する2つの表面側の電荷移動度の比{(電荷移動度が大きい表面側の電荷移動度)/(電荷移動度が小さい表面側の電荷移動度)}の値が1以上10未満であり、且つシリコンウェハ上にスピンコーティングによって作製した同一の厚さ及び材料の有機半導体膜についてのピーク高さを基準としたときに、相対X線反射ピーク高さが2.0以上である。この電荷移動度の比の値は例えば、7以下、5以下、又は3以下であってよい。すなわち、図1で示されているように、第1の本発明の有機半導体膜10では、基材15に接している面側11の電荷移動度と、その反対面側12の電荷移動度との差が比較的小さい。なお、この電荷移動度は、直接に測定するだけでなく、有機半導体膜の表面の配向、結晶化度等から評価することもできる。
<< Organic Semiconductor Film of First Invention >>
In the organic semiconductor film of the first aspect of the present invention, the ratio of the charge mobility on the two opposite surface sides {(the charge mobility on the surface side having a large charge mobility) / (the charge mobility on the surface side having a small charge mobility) )} Value is 1 or more and less than 10 and relative peak heights of organic semiconductor films of the same thickness and material produced by spin coating on a silicon wafer are used as a reference. Is 2.0 or more. The value of the charge mobility ratio may be, for example, 7 or less, 5 or less, or 3 or less. That is, as shown in FIG. 1, in the organic semiconductor film 10 of the first aspect of the present invention, the charge mobility on the surface side 11 in contact with the substrate 15 and the charge mobility on the opposite surface side 12 are The difference is relatively small. The charge mobility can be evaluated not only directly but also from the orientation of the surface of the organic semiconductor film, the degree of crystallinity, and the like.
 第1の本発明の有機半導体膜によれば、いずれの面を活性面として用いた場合にも、大きい電荷移動度を提供することができる。 According to the organic semiconductor film of the first aspect of the present invention, high charge mobility can be provided when any surface is used as an active surface.
 第1の本発明の有機半導体膜では、シリコンウェハ上にスピンコーティングによって作製した同一の厚さ及び材料の有機半導体膜についてのピーク高さを基準としたときに、相対X線反射ピーク高さが、2.0以上、2.2以上、2.4以上、又は2.5以上である。ここで、この相対X線反射ピーク高さの値が大きいことは、有機半導体膜の全厚にわたる結晶化の程度が大きいことを意味している。 In the organic semiconductor film according to the first aspect of the present invention, when the peak height of the organic semiconductor film of the same thickness and material produced on the silicon wafer by spin coating is used as a reference, the relative X-ray reflection peak height is 2.0 or more, 2.2 or more, 2.4 or more, or 2.5 or more. Here, the large value of the relative X-ray reflection peak height means that the degree of crystallization over the entire thickness of the organic semiconductor film is large.
 第1の本発明の有機半導体膜では、両方の表面の電荷移動度が例えば、1.00×10-5cm/(V・s)以上、1.00×10-4cm/(V・s)以上、又は1.00×10-3cm/(V・s)以上であってよい。ここで、本発明に関して電荷移動度{cm/(V・s)}は、有機半導体膜の表面における電荷移動度であり、正孔又は電子である電荷の移動のしやすさを表している。 In the organic semiconductor film of the first aspect of the present invention, the charge mobility on both surfaces is, for example, 1.00 × 10 −5 cm 2 / (V · s) or more and 1.00 × 10 −4 cm 2 / (V S) or more, or 1.00 × 10 −3 cm 2 / (V · s) or more. Here, in the present invention, the charge mobility {cm 2 / (V · s)} is the charge mobility on the surface of the organic semiconductor film, and represents the ease of movement of charges that are holes or electrons. .
 第1の本発明の有機半導体膜は任意の厚さを有することができ、例えば1nm~1μm、又は10nm~500nmの厚さを有することができる。 The organic semiconductor film of the first aspect of the present invention can have an arbitrary thickness, for example, a thickness of 1 nm to 1 μm, or 10 nm to 500 nm.
 第1の本発明の有機半導体膜では、有機半導体膜は任意の有機半導体材料で構成されていてよい。このような有機半導体材料としては例えば、ペンタセン系、チオフェン系、ペリレン系、フラーレン系材料のような低分子系の有機半導体分子、ポリアルキルチオフェン、ポリフェニレンビニレン、ポリフルオレン-チオフェンコポリマー等のような高分子系の有機半導体分子を挙げることができる。 In the organic semiconductor film of the first aspect of the present invention, the organic semiconductor film may be composed of any organic semiconductor material. Examples of such organic semiconductor materials include low molecular organic semiconductor molecules such as pentacene, thiophene, perylene, and fullerene materials, polyalkylthiophene, polyphenylene vinylene, polyfluorene-thiophene copolymers, and the like. Mention may be made of molecular organic semiconductor molecules.
 第1の本発明の有機半導体膜はその製造方法によっては限定されるものではなく、したがって例えば分子線蒸着法(MBE法)、真空蒸着法、化学蒸着法、溶液法等によって得たものであってよい。 The organic semiconductor film of the first aspect of the present invention is not limited depending on the manufacturing method thereof, and is therefore obtained by, for example, a molecular beam evaporation method (MBE method), a vacuum evaporation method, a chemical evaporation method, a solution method, or the like. It's okay.
 ただし、第1の本発明の有機半導体膜の有機半導体膜は、溶液法、すなわち例えばキャスト法、スピンコート法、コンタクトプリント法のようなプリント法、ディップ法等で製造することが、生産性等に関して好ましいことがある。本発明の有機半導体膜が溶液法によって得られた膜である場合、有機半導体膜中に残留する微量の溶媒の存在、膜の形状及び物性等によって、他の方法によって作られたものと区別することができる。本発明の有機半導体膜は例えば、本発明の方法を用いて得ることができる。 However, the organic semiconductor film of the organic semiconductor film according to the first aspect of the present invention can be manufactured by a solution method, for example, a casting method, a spin coating method, a printing method such as a contact printing method, a dipping method, etc. May be preferred. When the organic semiconductor film of the present invention is a film obtained by a solution method, it is distinguished from those produced by other methods by the presence of a trace amount of solvent remaining in the organic semiconductor film, the shape and physical properties of the film, etc. be able to. The organic semiconductor film of the present invention can be obtained, for example, using the method of the present invention.
 《第2の本発明の有機半導体膜》
 第2の本発明の有機半導体膜では、相対する2つの表面側の電荷移動度の比{(電荷移動度が大きい表面側の電荷移動度)/(電荷移動度が小さい表面側の電荷移動度)}の値が2以上、10以上、20以上、50以上、80以上、又は100以上である。また、この比の値は例えば、150以下、130以下、100以下、又は80以下であってよい。すなわち、図1で示されているように、本発明の有機半導体膜10では、基材15に接している面側11の電荷移動度と、その反対面側12の電荷移動度との差が比較的大きい。なお、この電荷移動度は、直接に測定するだけでなく、有機半導体膜の表面の配向、結晶化度等から評価することもできる。
<< Organic Semiconductor Film of Second Invention >>
In the organic semiconductor film of the second aspect of the present invention, the ratio of the charge mobility on the two opposite surface sides {(charge mobility on the surface side having a large charge mobility) / (charge mobility on the surface side having a small charge mobility) )} Is 2 or more, 10 or more, 20 or more, 50 or more, 80 or more, or 100 or more. Moreover, the value of this ratio may be 150 or less, 130 or less, 100 or less, or 80 or less, for example. That is, as shown in FIG. 1, in the organic semiconductor film 10 of the present invention, there is a difference between the charge mobility on the surface side 11 in contact with the base material 15 and the charge mobility on the opposite surface side 12. Relatively large. The charge mobility can be evaluated not only directly but also from the orientation of the surface of the organic semiconductor film, the degree of crystallinity, and the like.
 第2の本発明の有機半導体膜によれば、電荷移動度が大きい面を活性面として用いることによって、大きい電荷移動度を提供することができる。 According to the organic semiconductor film of the second aspect of the present invention, a large charge mobility can be provided by using a surface having a large charge mobility as an active surface.
 第2の本発明の有機半導体膜では、シリコンウェハ上にスピンコーティングによって作製した同一の厚さ及び材料の有機半導体膜についてのピーク高さを基準としたときに、相対X線反射ピーク高さが、1.3以上、1.5以上、1.6以上、1.7以上、又は1.8以上、又は1.9以上であってよい。ここで、この相対X線反射ピーク高さの値が大きいことは、有機半導体膜の全厚にわたる結晶化の程度が大きいことを意味している。 In the organic semiconductor film of the second aspect of the present invention, when the peak thickness of the organic semiconductor film of the same thickness and material produced by spin coating on the silicon wafer is used as a reference, the relative X-ray reflection peak height is 1.3 or more, 1.5 or more, 1.6 or more, 1.7 or more, 1.8 or more, or 1.9 or more. Here, the large value of the relative X-ray reflection peak height means that the degree of crystallization over the entire thickness of the organic semiconductor film is large.
 第2の本発明の有機半導体膜の電荷移動度が大きい表面側の電荷移動度については、第1の本発明の有機半導体膜についての記載を参照できる。また、第2の本発明の有機半導体膜の厚さ、有機半導体材料、製造方法については、第1の本発明の有機半導体膜についての記載を参照できる。 For the charge mobility on the surface side where the charge mobility of the organic semiconductor film of the second invention is large, the description of the organic semiconductor film of the first invention can be referred to. Moreover, the description about the organic-semiconductor film of 1st this invention can be referred about the thickness of the organic-semiconductor film of 2nd this invention, organic-semiconductor material, and a manufacturing method.
 なお、第2の本発明の有機半導体膜は、相対する2つの表面側の電荷移動度の比が大きい有機半導体膜、すなわち相対する2つの表面側の電気的特性が異なる有機半導体膜であるにもかかわらず、膜の厚さ方向について不連続面を有さないことができる。すなわち、第2の本発明の有機半導体膜は、相対する2つの表面の間で、有機半導体膜を構成する有機半導体材料の結晶配向の程度が徐々に変化していてよい。これによれば、相対する2つの表面の間で有機半導体材料の結晶配向の程度が不連続に変化することによる問題を防ぐことができる。このような有機半導体膜は例えば、第2の本発明の方法によって一度に膜を形成して得ることができる。これに対して、特許文献4でのように相対する2つの表面の製造条件を変更させて、相対する2つの表面側の電荷移動度が異なるようにする場合、製造条件の変更の前後で、半導体膜の特性が不連続的になると考えられる。 Note that the organic semiconductor film of the second aspect of the present invention is an organic semiconductor film having a large ratio of charge mobility between two opposing surface sides, that is, an organic semiconductor film having different electrical characteristics between the two opposing surface sides. Nevertheless, there can be no discontinuous surface in the thickness direction of the film. That is, in the organic semiconductor film of the second aspect of the present invention, the degree of crystal orientation of the organic semiconductor material constituting the organic semiconductor film may be gradually changed between two opposing surfaces. According to this, it is possible to prevent a problem caused by discontinuously changing the degree of crystal orientation of the organic semiconductor material between two opposing surfaces. Such an organic semiconductor film can be obtained, for example, by forming a film at a time by the method of the second present invention. On the other hand, when the manufacturing conditions of the two opposite surfaces are changed as in Patent Document 4 so that the charge mobility on the two opposing surfaces is different, before and after the change of the manufacturing conditions, It is considered that the characteristics of the semiconductor film become discontinuous.
 《有機半導体膜を製造する第1の本発明の方法》
 有機半導体膜を製造する第1の本発明の方法は、有機半導体材料が溶解及び/又は分散している有機半導体溶液を提供するステップ、有機半導体溶液を、基材又は第1のスタンプ上に適用して、未乾燥の有機半導体膜を得るステップ、及び基材又は第1のスタンプ上において未乾燥の有機半導体膜を熟成させるステップを含む。ここで、有機半導体溶液を適用される基材又は第1のスタンプの表面の水に対する接触角は、100°以上又は105°以上である。
<< First Method of Manufacturing the Organic Semiconductor Film >>
A first inventive method for producing an organic semiconductor film comprises providing an organic semiconductor solution in which an organic semiconductor material is dissolved and / or dispersed, applying the organic semiconductor solution onto a substrate or a first stamp Then, a step of obtaining an undried organic semiconductor film and a step of aging the undried organic semiconductor film on the substrate or the first stamp are included. Here, the contact angle with respect to water of the surface of the substrate or the first stamp to which the organic semiconductor solution is applied is 100 ° or more or 105 ° or more.
 有機半導体膜を製造する第1の本発明の方法によれば、第1の本発明の有機半導体膜、すなわち相対する2つの表面側の電荷移動度がいずれも大きい有機半導体膜を製造することができる。 According to the method of the first aspect of the present invention for manufacturing an organic semiconductor film, it is possible to manufacture the organic semiconductor film of the first aspect of the present invention, that is, an organic semiconductor film having a large charge mobility on two opposite surface sides. it can.
 具体的には、有機半導体膜を製造する第1の本発明の方法によれば、図2で示すように、未乾燥の有機半導体膜10を基材又は第1のスタンプ15上で熟成させることによって、基材又は第1のスタンプに接していない面側12、すなわち周囲雰囲気に露出されている面側12において、未乾燥の有機半導体膜中の有機半導体材料を、その結晶性、自己組織化性等によって再配列させることができる。 Specifically, according to the first method of the present invention for producing an organic semiconductor film, an undried organic semiconductor film 10 is aged on a base material or a first stamp 15 as shown in FIG. The organic semiconductor material in the undried organic semiconductor film is crystallized and self-organized on the surface side 12 not in contact with the base material or the first stamp, that is, the surface side 12 exposed to the surrounding atmosphere. It can be rearranged by sex or the like.
 より具体的には、基材又は第1のスタンプ15に接していない面側12では、未乾燥の有機半導体膜中の有機半導体材料は、基材又は第1のスタンプ15の表面の影響を受けにくく、したがって有機半導体材料自身の結晶性等によって再配列することができる。 More specifically, on the surface side 12 not in contact with the base material or the first stamp 15, the organic semiconductor material in the undried organic semiconductor film is affected by the surface of the base material or the first stamp 15. Therefore, rearrangement is possible due to the crystallinity of the organic semiconductor material itself.
 また、この熟成の間には、基材又は第1のスタンプ15に接している面側11では、基材又は第1のスタンプ15の表面の水に対する接触角が小さいこと、すなわち基材又は第1のスタンプ15の表面の表面エネルギーが小さいことによって、未乾燥の有機半導体膜10中の有機半導体材料は、この基材又は第1のスタンプ15の表面に接しているにも関わらず、基材又は第1のスタンプ15の表面の影響を受けにくく、したがって有機半導体材料自身の結晶性等によって再配列することができる。 Further, during this aging, the surface side 11 in contact with the base material or the first stamp 15 has a small contact angle with respect to water on the surface of the base material or the first stamp 15, that is, the base material or the first stamp 15. Since the surface energy of the surface of the first stamp 15 is small, the organic semiconductor material in the undried organic semiconductor film 10 is in contact with the substrate or the surface of the first stamp 15. Or it is hard to be influenced by the surface of the 1st stamp 15, Therefore, it can rearrange by the crystallinity etc. of organic-semiconductor material itself.
 すなわち、第1の本発明の方法では、相対する2つの表面側11、12のいずれにおいても、有機半導体材料自身の結晶性等によって再配列することができ、したがってこれらの表面側11、12のいずれにおいても電荷移動度が小さく、且つ全厚にわたる結晶化の程度が大きい有機半導体膜が得られる。 That is, in the method of the first aspect of the present invention, rearrangement can be performed on either of the two surface sides 11 and 12 facing each other due to the crystallinity of the organic semiconductor material itself. In any case, an organic semiconductor film having a low charge mobility and a high degree of crystallization over the entire thickness can be obtained.
 これに対して、有機半導体膜を製造する従来の方法では、図3で示すように、有機半導体溶液を基材又は第1のスタンプ15上に適用後すぐに、有機半導体溶液を乾燥させているので、基材又は第1のスタンプ15に接している面側21だけでなく、基材又は第1のスタンプ15に接していない面側22においても、有機半導体材料が再配列することが困難となる。したがって、従来の方法では、相対する2つの表面側21、22の電荷移動度の差が小さいが、全厚にわたる結晶化の程度が小さい有機半導体膜が得られていた。 On the other hand, in the conventional method of manufacturing the organic semiconductor film, as shown in FIG. 3, the organic semiconductor solution is dried immediately after the organic semiconductor solution is applied onto the base material or the first stamp 15. Therefore, it is difficult to rearrange the organic semiconductor material not only on the surface side 21 in contact with the base material or the first stamp 15 but also on the surface side 22 not in contact with the base material or the first stamp 15. Become. Therefore, in the conventional method, an organic semiconductor film having a small difference in charge mobility between the two opposing surface sides 21 and 22 but a small degree of crystallization over the entire thickness has been obtained.
 《有機半体膜を製造する第2の本発明の方法》
 有機半導体膜を製造する第2の本発明の方法は、有機半導体材料が溶解及び/又は分散している有機半導体溶液を提供するステップ、有機半導体溶液を、基材又は第1のスタンプ上に適用して、未乾燥の有機半導体膜を得るステップ、及び基材又は第1のスタンプ上において未乾燥の有機半導体膜を熟成させるステップを含む。
<< Method of Second Invention for Producing Organic Half Film >>
A second inventive method for producing an organic semiconductor film comprises providing an organic semiconductor solution in which an organic semiconductor material is dissolved and / or dispersed, applying the organic semiconductor solution onto a substrate or a first stamp Then, a step of obtaining an undried organic semiconductor film and a step of aging the undried organic semiconductor film on the substrate or the first stamp are included.
 有機半導体膜を製造する第2の本発明の方法によれば、第2の本発明の有機半導体膜、すなわち相対する2つの表面側の電荷移動度の差が大きい有機半導体膜を製造することができる。 According to the method of the second aspect of the present invention for producing an organic semiconductor film, the organic semiconductor film of the second aspect of the present invention, that is, an organic semiconductor film having a large difference in charge mobility between two opposing surface sides can be produced. it can.
 具体的には、有機半導体膜を製造する第2の本発明の方法によれば、図2で示すように、未乾燥の有機半導体膜10を基材又は第1のスタンプ15上で熟成させることによって、基材又は第1のスタンプに接していない面側12、すなわち周囲雰囲気に露出されている面側12において、未乾燥の有機半導体膜中の有機半導体材料を、その結晶性、自己組織化性等によって再配列させることができる。 Specifically, according to the second method of the present invention for producing an organic semiconductor film, the undried organic semiconductor film 10 is aged on a substrate or first stamp 15 as shown in FIG. The organic semiconductor material in the undried organic semiconductor film is crystallized and self-organized on the surface side 12 not in contact with the base material or the first stamp, that is, the surface side 12 exposed to the surrounding atmosphere. It can be rearranged by sex or the like.
 より具体的には、この熟成の間には、基材又は第1のスタンプ15に接している面側11では、未乾燥の有機半導体膜10中の有機半導体材料は、基材又は第1のスタンプ15の表面の影響、特に基材又は第1のスタンプ15の表面に対する親和性によって、再配列が制限を受けることがある。これに対して、基材又は第1のスタンプ15に接していない面側12では、未乾燥の有機半導体膜中の有機半導体材料は、基材又は第1のスタンプ15の表面の影響を受けにくく、したがって有機半導体材料自身の結晶性等によって再配列することができる。すなわち、第2の本発明の方法では、相対する2つの表面側11、12の電荷移動度の差が大きい有機半導体膜が得られる。 More specifically, during this ripening, the organic semiconductor material in the undried organic semiconductor film 10 on the surface side 11 in contact with the substrate or the first stamp 15 is the substrate or the first The rearrangement may be limited by the influence of the surface of the stamp 15, in particular the affinity for the substrate or the surface of the first stamp 15. On the other hand, the organic semiconductor material in the undried organic semiconductor film is not easily affected by the surface of the base material or the first stamp 15 on the surface side 12 not in contact with the base material or the first stamp 15. Therefore, rearrangement can be performed by the crystallinity of the organic semiconductor material itself. That is, in the second method of the present invention, an organic semiconductor film having a large difference in charge mobility between the two surface sides 11 and 12 facing each other can be obtained.
 これに対して、有機半導体膜を製造する従来の方法では、図3で示すように、有機半導体溶液を基材又は第1のスタンプ15上に適用後すぐに、有機半導体溶液を乾燥させているので、基材又は第1のスタンプ15に接している面側21だけでなく、基材又は第1のスタンプ15に接していない面側22においても、有機半導体材料が再配列することができない。したがって、従来の方法では、相対する2つの表面側21、22の電荷移動度の差が小さい有機半導体膜が得られていた。 On the other hand, in the conventional method of manufacturing the organic semiconductor film, as shown in FIG. 3, the organic semiconductor solution is dried immediately after the organic semiconductor solution is applied onto the base material or the first stamp 15. Therefore, the organic semiconductor material cannot be rearranged not only on the surface side 21 in contact with the base material or the first stamp 15 but also on the surface side 22 not in contact with the base material or the first stamp 15. Therefore, in the conventional method, an organic semiconductor film having a small difference in charge mobility between the two opposing surface sides 21 and 22 has been obtained.
 《有機半導体膜を製造する第1及び第2の方法-有機半導体材料及び溶媒》
 本発明の方法で用いられる有機半導体材料については、本発明の有機半導体膜に関する記載を参照できる。
<< First and Second Methods for Producing Organic Semiconductor Film-Organic Semiconductor Material and Solvent >>
For the organic semiconductor material used in the method of the present invention, the description relating to the organic semiconductor film of the present invention can be referred to.
 本発明の方法で用いられる有機半導体溶液に含有されている溶媒は、有機半導体材料を溶解及び/又は分散させることができる任意の溶媒であってよい。このような溶媒としては、トルエン、キシレン、テトラリン、デカリン、クロロホルム、モノクロロベンゼン、ジクロロベンゼン、トリクロロベンゼン、及びそれらの組み合わせ等を挙げることができる。 The solvent contained in the organic semiconductor solution used in the method of the present invention may be any solvent that can dissolve and / or disperse the organic semiconductor material. Examples of such a solvent include toluene, xylene, tetralin, decalin, chloroform, monochlorobenzene, dichlorobenzene, trichlorobenzene, and combinations thereof.
 《有機半導体膜を製造する第1及び第2の方法-基材及び第1のスタンプ》
 第1及び第2の本発明の方法で有機半導体溶液を適用される基材は、有機半導体膜をその上に配置することを意図する任意の基材であってよい。したがって、例えばこのような基材としては、シリコンウェハ、ガラスのような無機材料、ポリマーフィルムのような有機材料を挙げることができる。
<< First and Second Methods for Producing Organic Semiconductor Film-Base Material and First Stamp >>
The substrate to which the organic semiconductor solution is applied in the first and second methods of the present invention may be any substrate intended to place the organic semiconductor film thereon. Thus, for example, examples of such a substrate include an inorganic material such as a silicon wafer and glass, and an organic material such as a polymer film.
 また、本発明の方法で有機半導体溶液を適用される第1のスタンプは、有機半導体膜をその上で形成して、そしてそこから有機半導体膜を、基材等に転写することができる任意のスタンプ、すなわち有機半導体膜を形成するためのコンタクトプリント用スタンプであってよい。このような第1のスタンプは、例えばポリシロキサン等で作ることができる。また、この第1のスタンプは例えば、下記に示す転写部-周縁部構造を有する第3の本発明のスタンプであってもよい。 Further, the first stamp to which the organic semiconductor solution is applied by the method of the present invention is an arbitrary stamp that can form an organic semiconductor film thereon and transfer the organic semiconductor film from the organic semiconductor film to a substrate or the like. It may be a stamp, that is, a contact printing stamp for forming an organic semiconductor film. Such a first stamp can be made of, for example, polysiloxane. The first stamp may be, for example, a stamp according to the third aspect of the present invention having a transfer portion-periphery portion structure described below.
 第1の本発明の方法において有機半導体溶液を適用される基材又は第1のスタンプは、水に対する接触角が比較的大きい表面、すなわち例えば水に対する接触角が、100°以上又は105°以上である表面を有している。また、第2の本発明の方法において有機半導体溶液を適用される基材又は第1のスタンプは、水に対する接触角が比較的大きい表面、すなわち例えば水に対する接触角が、40°以上、50°以上、60°以上、70°以上、80°以上、90°以上、100°以上、又は105°以上である表面を有していてもよい。このように、基材の表面の水に対する接触角が比較的大きいことは、この表面が比較的疎液性であること、すなわちこの表面の表面エネルギーが比較的小さいことを意味している。 The substrate or the first stamp to which the organic semiconductor solution is applied in the method of the first aspect of the invention has a surface having a relatively large contact angle with water, for example, a contact angle with water of 100 ° or more or 105 ° or more. It has a surface. Further, the substrate or the first stamp to which the organic semiconductor solution is applied in the method of the second invention has a surface having a relatively large contact angle with water, that is, the contact angle with water, for example, 40 ° or more and 50 °. As described above, the surface may be 60 ° or more, 70 ° or more, 80 ° or more, 90 ° or more, 100 ° or more, or 105 ° or more. Thus, a relatively large contact angle of the surface of the substrate with water means that the surface is relatively lyophobic, that is, the surface energy of the surface is relatively small.
 なお、本発明に関して、水に対する接触角は、25℃において、接触角を測定する表面上に50μLの水を滴下し、滴下した液滴の形状を側面から観察し、液滴と表面とのなす角度を計測することによって決定できる。 In the present invention, the contact angle with respect to water is 25.degree. C., 50 .mu.L of water is dropped on the surface for measuring the contact angle, the shape of the dropped droplet is observed from the side, and the droplet and the surface are formed. It can be determined by measuring the angle.
 このように、本発明の方法において有機半導体溶液を適用される基材又は第1のスタンプが、低表面エネルギー表面を有する場合、未乾燥の有機半導体膜中の有機半導体材料は、基材又は第1のスタンプに接している面においても、基材又は第1のスタンプの表面の影響を受けにくく、したがって有機半導体材料自身の結晶性等によって再配列することができる。 Thus, when the substrate or first stamp to which the organic semiconductor solution is applied in the method of the present invention has a low surface energy surface, the organic semiconductor material in the undried organic semiconductor film is the substrate or the first stamp. Even on the surface in contact with one stamp, it is hardly affected by the surface of the base material or the first stamp, and therefore can be rearranged by the crystallinity of the organic semiconductor material itself.
 水に対する接触角が比較的大きい表面を有する基材又は第1のスタンプは例えば、基材又は第1のスタンプの表面を疎液性材料で処理することによって得ることができる。このような疎液性材料としては例えば、シラン、シラザン、フッ素化合物、ポリイミド、ポリエステル、ポリエチレン、ポリフェニレンスルフィド、ポリパラキシレン、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリジメチルシロキサン、及びそれらの組み合わせを挙げることができる。 The base material or the first stamp having a surface with a relatively large contact angle with water can be obtained, for example, by treating the surface of the base material or the first stamp with a lyophobic material. Examples of such lyophobic materials include silane, silazane, fluorine compounds, polyimide, polyester, polyethylene, polyphenylene sulfide, polyparaxylene, polyethylene terephthalate, polyethylene naphthalate, polydimethylsiloxane, and combinations thereof. it can.
 《有機半導体膜を製造する第1及び第2の本発明の方法-適用》
 有機半導体膜を製造する第1及び第2の本発明の方法において、有機半導体溶液を基材又は第1のスタンプに適用するためには、キャスティング法、スピンコート法、ディッピング法等の任意の方法を用いることができる。
<< First and Second Invention Methods for Manufacturing Organic Semiconductor Film-Application >>
In the first and second methods of the present invention for producing an organic semiconductor film, any method such as a casting method, a spin coating method, a dipping method, etc. is used in order to apply the organic semiconductor solution to the substrate or the first stamp. Can be used.
 《有機半導体膜を製造する第1及び第2の本発明の方法-熟成》
 有機半導体膜を製造する第1及び第2の本発明の方法における熟成は例えば、未乾燥の有機半導体膜を、10秒以上、30秒以上、1分以上、3分以上、5分以上、又は7分以上にわたって保持して行うことができる。本発明の方法における熟成は例えば、未乾燥の有機半導体膜を乾燥及び/又は焼成する前に、所定の期間にわたって未乾燥の状態で保持して行うことができる。
<< First and Second Invention Methods for Producing Organic Semiconductor Film-Aging >>
The aging in the first and second methods of the present invention for producing an organic semiconductor film is, for example, an undried organic semiconductor film for 10 seconds or more, 30 seconds or more, 1 minute or more, 3 minutes or more, 5 minutes or more, or It can be held for 7 minutes or longer. The aging in the method of the present invention can be performed, for example, by holding an undried organic semiconductor film in an undried state for a predetermined period before drying and / or baking.
 また、この本発明の方法における熟成は例えば、未乾燥の有機半導体膜を50℃未満、40℃未満、又は30℃未満の雰囲気に保持することによって行うことができる。ここで、比較的低い温度で未乾燥の有機半導体膜の熟成を行うことは、有機半導体膜の乾燥を抑制し、したがって基材又は第1のスタンプに接していない面における有機半導体材料の再配列を促進するために好ましいことがある。 The aging in the method of the present invention can be performed, for example, by holding an undried organic semiconductor film in an atmosphere of less than 50 ° C, less than 40 ° C, or less than 30 ° C. Here, aging the undried organic semiconductor film at a relatively low temperature suppresses drying of the organic semiconductor film, and thus rearranges the organic semiconductor material on the surface not in contact with the substrate or the first stamp. May be preferred to promote
 ただし、熟成のために必要な時間、温度等の条件は、使用する有機半導体材料、溶媒、基材又は第1のスタンプ等に依存し、当業者であれば、本明細書の記載にしたがってこれらの条件を決定することができる。 However, conditions such as time and temperature required for aging depend on the organic semiconductor material, solvent, base material, or first stamp used, and those skilled in the art will follow these descriptions in this specification. The conditions can be determined.
 なお、有機半導体膜を製造する本発明の方法において、「未乾燥の有機半導体膜」は、有機半導体膜中の有機半導体材料が有機半導体材料自身の結晶性等によって再配列することができる程度に、有機半導体膜が溶媒を含有していることを意味している。 In the method of the present invention for producing an organic semiconductor film, the “undried organic semiconductor film” is such that the organic semiconductor material in the organic semiconductor film can be rearranged by the crystallinity of the organic semiconductor material itself. This means that the organic semiconductor film contains a solvent.
 《有機半導体膜を製造する第1及び第2の本発明の方法-乾燥》
 有機半導体膜を製造する第1及び第2の本発明の方法は随意に、基材又は第1のスタンプ上において熟成させた有機半導体層を乾燥及び/又は焼成するステップを更に含むことができる。この乾燥及び焼成は、熟成させた有機半導体層を、40℃超、50℃超、70℃超、100℃超の雰囲気に露出させることによって行うことができる。またこの乾燥は、減圧によって有機半導体溶液から溶媒を除去して行うこともできる。
<< First and Second Invention Methods for Producing Organic Semiconductor Film-Drying >>
The first and second inventive methods of producing an organic semiconductor film can optionally further comprise drying and / or baking the organic semiconductor layer aged on the substrate or the first stamp. This drying and baking can be performed by exposing the aged organic semiconductor layer to an atmosphere of more than 40 ° C, more than 50 ° C, more than 70 ° C, and more than 100 ° C. This drying can also be performed by removing the solvent from the organic semiconductor solution under reduced pressure.
 《有機半導体膜を製造する第1及び第2の本発明の方法-転写》
 有機半導体膜を製造する本発明の方法において有機半導体溶液を第1のスタンプ上に適用して熟成させる場合、本発明の方法は、第1のスタンプ上において熟成させた有機半導体層を、転写するステップ、例えば基材又は第2のスタンプに転写するステップを更に含むことができる。
<< First and Second Invention Methods for Producing Organic Semiconductor Film-Transfer >>
In the method of the present invention for producing an organic semiconductor film, when the organic semiconductor solution is applied and aged on the first stamp, the method of the present invention transfers the organic semiconductor layer aged on the first stamp. It may further comprise a step, for example transferring to a substrate or a second stamp.
 すなわち例えばこの場合、第1のスタンプ上で形成した有機半導体膜を、シリコンウェハ、ポリマーフィルム等の基材上に直接に転写することができる。また、この場合、第1のスタンプ上で形成された有機半導体膜を、第2のスタンプに転写し、そしてこの第2のスタンプから基材に転写することができる。 That is, for example, in this case, the organic semiconductor film formed on the first stamp can be directly transferred onto a substrate such as a silicon wafer or a polymer film. Also, in this case, the organic semiconductor film formed on the first stamp can be transferred to the second stamp and transferred from the second stamp to the substrate.
 なお、第1のスタンプから基材又は第2のスタンプへの有機半導体膜の転写は、有機半導体膜を保持している第1のスタンプを基材又は第2のスタンプと接触させることによって達成できる。ここで、接触時間、第1のスタンプ及び基材の温度等の転写条件は、転写が可能なように任意に決定できる。 The transfer of the organic semiconductor film from the first stamp to the base material or the second stamp can be achieved by bringing the first stamp holding the organic semiconductor film into contact with the base material or the second stamp. . Here, the transfer conditions such as the contact time, the temperature of the first stamp, and the substrate can be arbitrarily determined so that transfer is possible.
 具体的にはこの転写は、基材又は第2のスタンプの温度が、第1のスタンプの温度よりも高くなるようにして行うことができる。また、この転写は、第1のスタンプの表面を処理して、有機半導体膜に対する付着性を小さくすること、及び/又は基材又は第2のスタンプの表面を処理して、有機半導体膜に対する付着性を大きくすることによって達成できる。また更にこの転写は、上記の組み合わせによって達成できる。 Specifically, this transfer can be performed such that the temperature of the base material or the second stamp is higher than the temperature of the first stamp. In addition, this transfer may treat the surface of the first stamp to reduce adhesion to the organic semiconductor film and / or treat the surface of the substrate or the second stamp to adhere to the organic semiconductor film. This can be achieved by increasing sex. Still further, this transfer can be achieved by a combination of the above.
 なお、この本発明の方法で使用される第2のスタンプは、第1のスタンプ上で形成された有機半導体膜を転写され、そしてそこから有機半導体膜を、基材等に転写することができる任意のスタンプ、すなわちコンタクトプリント用スタンプであってよい。このような第2のスタンプは、例えばポリシロキサン等で作ることができる。また、第2のスタンプから基材への有機半導体膜の転写は、第1のスタンプから基材又は第2のスタンプへの有機半導体膜の転写に関して説明したようにして行うことができる。 The second stamp used in the method of the present invention can transfer the organic semiconductor film formed on the first stamp, and from there, the organic semiconductor film can be transferred to a substrate or the like. It may be any stamp, ie a contact print stamp. Such a second stamp can be made of, for example, polysiloxane. The transfer of the organic semiconductor film from the second stamp to the base material can be performed as described for the transfer of the organic semiconductor film from the first stamp to the base material or the second stamp.
 《有機半導体デバイス》
 第1及び第2の本発明の有機半導体デバイスはそれぞれ、第1及び第2の本発明の有機半導体膜を有する。なお、本発明に関して、「有機半導体デバイス」は、有機半導体膜を有するデバイスを意味しており、電極層、誘電体層等の他の層は、無機材料で作られていても、有機材料で作られていてもよい。
《Organic semiconductor device》
The organic semiconductor devices of the first and second inventions each have the organic semiconductor film of the first and second inventions. In the context of the present invention, “organic semiconductor device” means a device having an organic semiconductor film, and other layers such as an electrode layer and a dielectric layer are made of an inorganic material or an organic material. It may be made.
 第1及び第2の本発明の有機半導体デバイスは例えば、第1及び第2の本発明の有機半導体膜を有する薄膜トランジスタであってよい。例えば図4に示すように、本発明の薄膜トランジスタは、(a)ボトムゲート・トップコンタクト型(BGTC型)、(b)ボトムゲート・ボトムコンタクト型(BGBC型)、(c)トップゲート・トップコンタクト型(TGTC型)、及び(d)トップゲート・ボトムコンタクト型(TGBC型)のいずれであってもよい。これらの本発明の薄膜トランジスタ130、140、150及び160では、ソース電極134、144、154、164、ドレイン電極135、145、155、165、ゲート電極131、141、151、161、ゲート絶縁膜132、142、152、162、及び半導体膜133、143、153、163を有し、ゲート絶縁膜によってソース電極及びドレイン電極とゲート電極とを絶縁し、且つゲート電極に印加される電圧によってソース電極からドレイン電極へと半導体膜を通って流れる電流を制御する。 The organic semiconductor devices of the first and second inventions may be, for example, thin film transistors having the organic semiconductor films of the first and second inventions. For example, as shown in FIG. 4, the thin film transistor of the present invention includes (a) bottom gate / top contact type (BGTC type), (b) bottom gate / bottom contact type (BGBC type), and (c) top gate / top contact. Any of a type (TGTC type) and (d) a top gate / bottom contact type (TGBC type) may be used. In these thin film transistors 130, 140, 150 and 160 of the present invention, source electrodes 134, 144, 154, 164, drain electrodes 135, 145, 155, 165, gate electrodes 131, 141, 151, 161, a gate insulating film 132, 142, 152, 162, and semiconductor films 133, 143, 153, 163, the source and drain electrodes and the gate electrode are insulated from each other by the gate insulating film, and the source electrode is drained from the source electrode by the voltage applied to the gate electrode. Controls the current flowing through the semiconductor film to the electrode.
 第1及び第2の本発明の有機半導体デバイスが薄膜トランジスタであり、かつこの薄膜トランジスタの有機半導体層がコンタクトプリント法で得られたものである場合、この薄膜トランジスタは特に、ボトムコンタクト型の薄膜トランジスタ、すなわちボトムゲート・ボトムコンタクト型(BGBC型)又はトップゲート・ボトムコンタクト型(TGBC型)の薄膜トランジスタであってよい。 When the organic semiconductor device of the first and second inventions is a thin film transistor and the organic semiconductor layer of the thin film transistor is obtained by a contact printing method, this thin film transistor is particularly a bottom contact type thin film transistor, that is, a bottom It may be a gate / bottom contact type (BGBC type) or top gate / bottom contact type (TGBC type) thin film transistor.
 ここで、ボトムコンタクト型の薄膜トランジスタを従来のスピンコーティング法で製造する場合、基板上に存在する金属電極と誘電体表面の表面エネルギーに差があるため、特に電極/誘電体の界面付近において、形成される有機トランジスタに配向乱れが生じる。そのため、電極と有機半導体層間の接触抵抗が大きくなる傾向がある。 Here, when a bottom contact type thin film transistor is manufactured by a conventional spin coating method, there is a difference in surface energy between the metal electrode existing on the substrate and the dielectric surface, so that it is formed particularly near the electrode / dielectric interface. An alignment disorder occurs in the organic transistor. Therefore, the contact resistance between the electrode and the organic semiconductor layer tends to increase.
 これに対して、ボトムコンタクト型の薄膜トランジスタをコンタクトプリント法で製造する場合、スタンプ上において有機半導体層を形成し、その後で、この有機半導体層を、電極を有する基材に転写するので、スピンコーティング法の場合のような問題が生じない。したがって、ボトムコンタクト型の薄膜トランジスタでは、コンタクトプリント法で有機半導体層を形成することの利益が大きい。 On the other hand, when a bottom contact type thin film transistor is manufactured by a contact printing method, an organic semiconductor layer is formed on a stamp, and then the organic semiconductor layer is transferred to a substrate having an electrode. There is no problem like the case of law. Therefore, in the bottom contact type thin film transistor, there is a great advantage in forming the organic semiconductor layer by the contact printing method.
 また、第1及び第2の本発明の有機半導体デバイスは例えば、本発明の有機半導体膜を有する太陽電池であってよい。この太陽電池は例えば、p型半導体とn型半導体とが接合した構造を有し、これらのp型及びn型半導体の少なくとも一方として、本発明の有機半導体膜の有機半導体膜を用いる。 Further, the organic semiconductor devices of the first and second inventions may be, for example, solar cells having the organic semiconductor film of the invention. This solar cell has, for example, a structure in which a p-type semiconductor and an n-type semiconductor are joined, and an organic semiconductor film of the organic semiconductor film of the present invention is used as at least one of these p-type and n-type semiconductors.
 《電気回路》
 本発明の電気回路は、回路基材の一方の面上に第2の本発明の薄膜トランジスタを2つ以上有する電気回路である。
"electric circuit"
The electric circuit of the present invention is an electric circuit having two or more thin film transistors of the second present invention on one surface of a circuit substrate.
 本発明の電気回路では、図4に示すように、シリコンウェハ、ポリマーフィルムのような回路基材100の一方の面上の第2の本発明の薄膜トランジスタのうちの少なくとも1つ130、140において、有機半導体膜133、143の電荷移動度が大きい表面側133a、143aが、回路基材に向かい合うようにして、有機半導体膜133、143が配置されており、且つこの表面側133a、143aが、第2の薄膜トランジスタにおいて活性面、すなわちキャリアのためのチャンネルが形成される面となっている。すなわち例えば、本発明の電気回路では、回路基材100の一方の面上の第2の薄膜トランジスタのうちの少なくとも1つが、ボトムゲート型の薄膜トランジスタ130、140である。 In the electric circuit of the present invention, as shown in FIG. 4, in at least one of the second thin film transistors 130 and 140 of the second present invention on one surface of the circuit substrate 100 such as a silicon wafer or a polymer film, The organic semiconductor films 133 and 143 are arranged so that the surface sides 133a and 143a having high charge mobility of the organic semiconductor films 133 and 143 face the circuit substrate, and the surface sides 133a and 143a The thin film transistor 2 is an active surface, that is, a surface on which a channel for carriers is formed. That is, for example, in the electric circuit of the present invention, at least one of the second thin film transistors on one surface of the circuit substrate 100 is the bottom gate type thin film transistors 130 and 140.
 また、本発明の電気回路では、図4に示すように、第2の本発明の薄膜トランジスタのうちの少なくとも他の1つ150、160において、有機半導体膜153、163の電荷移動度が大きい表面側153a、163aが、回路基材100の反対側に向くようにして、有機半導体膜153、163が配置されており、且つこの表面側153a、163aが、薄膜トランジスタにおいて活性面となっている。すなわち例えば、本発明の電気回路では、回路基材100の一方の面上の薄膜トランジスタのうちの少なくとも1つが、トップゲート型の薄膜トランジスタ150、160である。 In the electric circuit of the present invention, as shown in FIG. 4, in at least another one 150, 160 of the thin film transistor of the second invention, the organic semiconductor films 153, 163 have a large charge mobility. The organic semiconductor films 153 and 163 are arranged so that 153a and 163a face the opposite side of the circuit substrate 100, and the surface sides 153a and 163a are active surfaces in the thin film transistor. That is, for example, in the electric circuit of the present invention, at least one of the thin film transistors on one surface of the circuit substrate 100 is the top gate type thin film transistors 150 and 160.
 したがって、本発明の電気回路では、複数の第2の本発明の薄膜トランジスタを有する場合に、それぞれのトランジスタにおいて活性面となる有機半導体層の表面側が、電荷移動度が大きい表面側となっている。すなわち、本発明の電気回路では、複数の第2の本発明の薄膜トランジスタを有する場合に、それぞれの薄膜トランジスタにおいて、有機半導体膜が大きい電荷移動度を提供することができる。 Therefore, in the electric circuit according to the present invention, when a plurality of the thin film transistors according to the second aspect of the present invention are provided, the surface side of the organic semiconductor layer serving as an active surface in each transistor is a surface side having high charge mobility. That is, in the electric circuit of the present invention, when the thin film transistor of the second present invention is provided, the organic semiconductor film can provide high charge mobility in each thin film transistor.
 このような本発明の電気回路のための有機半導体膜は、第2の本発明の有機半導体膜を製造する第2の本発明の方法を用いて得ることができる。 Such an organic semiconductor film for the electric circuit of the present invention can be obtained by using the method of the second present invention for producing the organic semiconductor film of the second present invention.
 より具体的には例えば、有機半導体膜の電荷移動度が大きい表面側が回路基材に向かい合っている第2の本発明の薄膜トランジスタを製造する場合、すなわち例えば図4で示すようなボトムゲート型の薄膜トランジスタ130、140を製造する場合、有機半導体膜を製造する第2の本発明の方法において、第1のスタンプ上において未乾燥の有機半導体膜を熟成させた後で、得られた有機半導体膜を回路基材に転写することによって、有機半導体膜の電荷移動度が大きい表面側を、回路基材に向かい合わせることができる。 More specifically, for example, when manufacturing the thin film transistor of the second aspect of the present invention in which the surface side of the organic semiconductor film having a large charge mobility faces the circuit substrate, that is, for example, a bottom gate type thin film transistor as shown in FIG. When manufacturing 130 and 140, in the second method of the present invention for manufacturing an organic semiconductor film, after aging an undried organic semiconductor film on the first stamp, the obtained organic semiconductor film is used as a circuit. By transferring to the substrate, the surface side of the organic semiconductor film having a large charge mobility can be made to face the circuit substrate.
 また例えば、有機半導体膜の電荷移動度が大きい表面側が回路基材の反対側に向いている第2の本発明の薄膜トランジスタを製造する場合、すなわち例えば図4で示すようなトップゲート型の薄膜トランジスタ150、160を製造する場合、有機半導体膜を製造する第2の本発明の方法において、第1のスタンプ上において未乾燥の有機半導体膜を熟成させた後で、得られた有機半導体膜を第2のスタンプに転写し、そしてその後で、回路基材に転写することによって、有機半導体膜の電荷移動度が大きい表面側を回路基材の反対側に向けることができる。またこの場合、有機半導体膜を製造する第2の本発明の方法において、回路基材上において未乾燥の有機半導体膜を熟成させて、有機半導体膜の電荷移動度が大きい表面側を、回路基材の反対側に向けることができる。 Further, for example, when manufacturing the thin film transistor of the second aspect of the present invention in which the surface side of the organic semiconductor film having a large charge mobility faces the opposite side of the circuit substrate, that is, for example, a top gate type thin film transistor 150 as shown in FIG. , 160 in the method of the second present invention for manufacturing an organic semiconductor film, after aging an undried organic semiconductor film on the first stamp, The surface of the organic semiconductor film having high charge mobility can be directed to the opposite side of the circuit substrate. In this case, in the second method of the present invention for producing an organic semiconductor film, an undried organic semiconductor film is aged on a circuit substrate, and the surface side having a high charge mobility of the organic semiconductor film is formed on the circuit substrate. Can be directed to the other side of the material.
 《転写部-周縁部構造を有する本発明のスタンプ》
 第1及び第2の本発明の方法では、第1及び第2のスタンプとして、下記に示す転写部-周縁部構造を有する本発明のスタンプを用いることとができる。
<< Transfer Part-Stamp of the Present Invention having a Peripheral Part Structure >>
In the first and second methods of the present invention, as the first and second stamps, the stamp of the present invention having the transfer portion-periphery portion structure shown below can be used.
 転写部-周縁部構造を有する本発明のスタンプは、転写する有機半導体膜を保持するための転写部、及びこの転写部の周囲の周縁部を有し、且つ転写部の水に対する接触角が、周縁部の水に対する接触角よりも20°以上、30°以上、40°以上、50°以上、60°以上、70°以上、80°以上、90°以上、又は100°以上大きい。 The stamp of the present invention having a transfer part-peripheral part structure has a transfer part for holding the organic semiconductor film to be transferred, and a peripheral part around the transfer part, and the contact angle of the transfer part with respect to water is: It is 20 ° or more, 30 ° or more, 40 ° or more, 50 ° or more, 60 ° or more, 70 ° or more, 80 ° or more, 90 ° or more, or 100 ° or more larger than the contact angle of the peripheral portion with water.
 ここで、転写部-周縁部構造を有する本発明のスタンプでは、有機半導体膜を製造する第1の本発明の方法で用いる場合、例えば転写部の水に対する接触角が、105°以上又は110°以上であってよい。また、転写部-周縁部構造を有する本発明のスタンプでは、有機半導体膜を製造する第2の本発明の方法で用いる場合、例えば転写部の水に対する接触角が、40°以上、50°以上、70°以上、90°以上、95°以上、100°以上、105°以上、又は110°以上であってよい。 Here, in the stamp of the present invention having the transfer portion-peripheral portion structure, when used in the first method of the present invention for producing an organic semiconductor film, for example, the contact angle of the transfer portion with respect to water is 105 ° or more or 110 °. That's all. Further, in the stamp of the present invention having the transfer portion-peripheral portion structure, when used in the second method of the present invention for manufacturing an organic semiconductor film, for example, the contact angle of the transfer portion with respect to water is 40 ° or more, 50 ° or more. 70 ° or more, 90 ° or more, 95 ° or more, 100 ° or more, 105 ° or more, or 110 ° or more.
 すなわち、転写部-周縁部構造を有するスタンプは、転写部が周縁部よりも疎液性であるコンタクトプリント用スタンプである。ここで、疎液性であることは、表面エネルギーが小さいことを意味するので、転写部-周縁部構造を有するスタンプは、転写部の表面エネルギーが小さく、且つ周縁部の表面エネルギーが大きいコンタクトプリント用スタンプであるということができる。 That is, the stamp having the transfer part-periphery structure is a contact print stamp in which the transfer part is more lyophobic than the peripheral part. Here, being lyophobic means that the surface energy is low. Therefore, a stamp having a transfer portion-periphery structure has a contact surface with a low surface energy and a large surface energy at the peripheral portion. It can be said that it is a stamp.
 転写部-周縁部構造を有するスタンプの転写部上において、有機半導体溶液から有機半導体膜を形成する場合、疎液性の転写部の周囲に、親液性の周縁部が存在することによって、比較的濡れにくい転写部の表面に有機半導体溶液の膜を保持して、転写部の表面上で有機半導体溶液から有機半導体膜を形成することを促進できる。すなわち、このスタンプによれば、比較的濡れにくい転写部の表面上においても、有機半導体膜を形成できる。 When an organic semiconductor film is formed from an organic semiconductor solution on a transfer part of a stamp having a transfer part-periphery part structure, comparison is made by the presence of a lyophilic peripheral part around the lyophobic transfer part. It is possible to promote the formation of the organic semiconductor film from the organic semiconductor solution on the surface of the transfer portion by holding the film of the organic semiconductor solution on the surface of the transfer portion which is not easily wet. That is, according to this stamp, the organic semiconductor film can be formed even on the surface of the transfer portion that is relatively difficult to wet.
 転写部-周縁部構造を有するスタンプの転写部において、有機半導体溶液から有機半導体膜を形成する場合、転写部に接している面において、有機半導体分子が転写部の表面の影響を比較的受けずに有機半導体分子間の作用によって配向することができる。すなわち、転写部-周縁部構造を有するスタンプによれば、有機半導体溶液から有機半導体膜を形成する際に転写部に接している面側において大きい電荷移動度を有する有機半導体膜を得ることができる。 When forming an organic semiconductor film from an organic semiconductor solution in a transfer portion of a stamp having a transfer portion-peripheral portion structure, the organic semiconductor molecules are relatively unaffected by the surface of the transfer portion on the surface in contact with the transfer portion. It can be oriented by the action between organic semiconductor molecules. That is, according to the stamp having the transfer portion-periphery portion structure, when forming the organic semiconductor film from the organic semiconductor solution, an organic semiconductor film having a large charge mobility can be obtained on the surface side in contact with the transfer portion. .
 これに対して、一般的なコンタクトプリント用スタンプの転写部は一般に、その上での有機半導体溶液に対する濡れ性を改良し、それによって有機半導体溶液の膜を安定的に形成を可能にするために、親液性にされている。したがって、一般的なコンタクトプリント用スタンプの転写部上において、有機半導体溶液から有機半導体膜を形成する場合、転写部に接している面において、有機半導体分子が転写部の影響を受け、有機半導体分子間の作用によって配向することが難しい。すなわち、一般的なコンタクトプリント用スタンプでは、有機半導体溶液から有機半導体膜を形成する際に、転写部に接している面側において大きい電荷移動度を有する有機半導体膜を得ることができなかった。 On the other hand, the transfer part of a general contact printing stamp generally improves the wettability with respect to the organic semiconductor solution thereon, thereby enabling the formation of a film of the organic semiconductor solution stably. Has been lyophilic. Therefore, when an organic semiconductor film is formed from an organic semiconductor solution on a transfer portion of a general contact print stamp, the organic semiconductor molecules are affected by the transfer portion on the surface in contact with the transfer portion, and the organic semiconductor molecules It is difficult to align due to the action between. That is, in a general stamp for contact printing, when an organic semiconductor film is formed from an organic semiconductor solution, an organic semiconductor film having a large charge mobility on the side in contact with the transfer portion cannot be obtained.
 また、転写部-周縁部構造を有するスタンプの転写部上において、有機半導体溶液から有機半導体膜を形成する場合、得られた有機半導体膜と転写部との付着が比較的弱く、したがって比較的疎液性の基材の表面、すなわち例えば水に対する接触角が50°以上である基材の表面に、有機半導体膜を転写することができる。 In addition, when an organic semiconductor film is formed from an organic semiconductor solution on a transfer portion of a stamp having a transfer portion-periphery portion structure, the adhesion between the obtained organic semiconductor film and the transfer portion is relatively weak, and therefore relatively sparse. The organic semiconductor film can be transferred onto the surface of the liquid substrate, that is, the surface of the substrate having a contact angle with water of 50 ° or more, for example.
 これに対して、上記記載のように、従来のコンタクトプリント用スタンプの転写部は一般に親液性にされている。したがって、従来のコンタクトプリント用スタンプの転写部上において、有機半導体溶液から有機半導体膜を形成する場合、得られた有機半導体膜と転写部との付着が比較的強く、したがって比較的疎液性の基材の表面、すなわち例えば水に対する接触角が50°以上である基材の表面に、有機半導体膜を転写することは難しかった。 In contrast, as described above, the transfer portion of the conventional contact print stamp is generally lyophilic. Therefore, when an organic semiconductor film is formed from an organic semiconductor solution on a transfer portion of a conventional contact print stamp, the adhesion between the obtained organic semiconductor film and the transfer portion is relatively strong, and therefore relatively lyophobic. It has been difficult to transfer the organic semiconductor film onto the surface of the substrate, that is, the surface of the substrate having a contact angle with water of 50 ° or more, for example.
 転写部-周縁部構造を有するスタンプは、有機半導体膜をその上で形成し、そしてこの有機半導体膜を基材等に転写することができる任意のコンタクトプリント用スタンプであってよい。このような第1のスタンプは、例えばポリシロキサン等で作ることができる。 The stamp having the transfer portion-periphery portion structure may be any contact print stamp capable of forming an organic semiconductor film thereon and transferring the organic semiconductor film to a substrate or the like. Such a first stamp can be made of, for example, polysiloxane.
 転写部-周縁部構造を有するスタンプのための材料としてポリシロキサンを用いる場合、疎液性のポリシロキサンを調製し、周縁部に対応する表面を親液化(親水化)処理し、且つ転写部に対応する部分にこのような処理を行わないことによって、転写部-周縁部構造を有するスタンプを得ることができる。また、反対に、親液性のスタンプ材料を調製し、転写部に対応する表面を疎液化(疎水化)処理し、且つ周縁部に対応する部分にこのような処理を行わないことによって、転写部-周縁部構造を有するスタンプを得ることができる。更に、スタンプ材料を調製し、周縁部に対応する表面を親液化処理し、且つ転写部に対応する表面を疎液化処理して、転写部-周縁部構造を有するスタンプを得ることもできる。 When polysiloxane is used as a material for a stamp having a transfer portion-peripheral portion structure, a lyophobic polysiloxane is prepared, and the surface corresponding to the peripheral portion is made lyophilic (hydrophilic) and applied to the transfer portion. By not performing such processing on the corresponding part, a stamp having a transfer part-periphery structure can be obtained. On the other hand, a lyophilic stamp material is prepared, the surface corresponding to the transfer portion is subjected to lyophobic (hydrophobic) treatment, and such treatment is not performed on the portion corresponding to the peripheral portion. A stamp having a part-periphery structure can be obtained. Further, a stamp having a transfer portion-periphery portion structure can be obtained by preparing a stamp material, lyophilicizing the surface corresponding to the peripheral portion, and lyophobicizing the surface corresponding to the transfer portion.
 具体的には、転写部-周縁部構造を有するスタンプにおいて、疎液性の転写部を得るためには、スタンプの表面の転写部に対応する箇所を疎液性材料で処理することができる。このような疎液性材料としては例えば、シラン、シラザン、フッ素化合物、ポリイミド、ポリエステル、ポリエチレン、ポリフェニレンスルフィド、ポリパラキシレン、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリジメチルシロキサン、及びそれらの組み合わせを挙げることができる。 Specifically, in order to obtain a lyophobic transfer portion in a stamp having a transfer portion-periphery structure, a portion corresponding to the transfer portion on the surface of the stamp can be treated with a lyophobic material. Examples of such lyophobic materials include silane, silazane, fluorine compounds, polyimide, polyester, polyethylene, polyphenylene sulfide, polyparaxylene, polyethylene terephthalate, polyethylene naphthalate, polydimethylsiloxane, and combinations thereof. it can.
 また、転写部-周縁部構造を有するスタンプにおいて、親液性の周縁部を得るためには、スタンプの表面の周縁部に対応する箇所を、オゾン、紫外光、電子ビーム、ブラスマ等によって処理すること、親液性の材料によって形成すること等ができる。 Further, in a stamp having a transfer portion-peripheral portion structure, in order to obtain a lyophilic peripheral portion, a portion corresponding to the peripheral portion on the surface of the stamp is treated with ozone, ultraviolet light, an electron beam, a brass or the like. In addition, it can be formed of a lyophilic material.
 転写部-周縁部構造を有するスタンプは、意図する用途に適した有機半導体膜の形成を可能にする任意の形状及び寸法を有することができる。したがって、転写部-周縁部構造を有するスタンプでは、1つの転写部の大きさは、0.01μm~1,000,000μm、0.1μm~100,000μm、又は1μm~10,000μmであってよい。 A stamp having a transfer-periphery structure can have any shape and size that allows formation of an organic semiconductor film suitable for the intended application. Accordingly, the transfer unit - In the stamp having a peripheral edge structure, the size of one transfer unit, 0.01μm 2 ~ 1,000,000μm 2, 0.1μm 2 ~ 100,000μm 2, or 1 [mu] m 2 ~ 10, It may be 000 μm 2 .
 転写部-周縁部構造を有するスタンプでは、周縁部が転写部上に有機半導体溶液を保持することを可能にし、且つ転写部上で形成された有機半導体膜を第2のスタンプ又は基材に転写できるかぎり、任意の形状、構造を有することができる。したがって、転写部-周縁部構造を有するスタンプでは、転写部と周縁部とは同一平面上にあっても、転写部が周縁部に対して凹部となっていてもよい。また、転写部-周縁部構造を有するスタンプでは、有機半導体膜を保持して有機半導体膜を形成する箇所が凸部を形成しており、この凸部において、転写部及びその周囲の周縁部を有していてもよい。 In the stamp having the transfer portion-peripheral portion structure, the peripheral portion can hold the organic semiconductor solution on the transfer portion, and the organic semiconductor film formed on the transfer portion is transferred to the second stamp or the substrate. It can have any shape and structure as much as possible. Therefore, in the stamp having the transfer portion-peripheral portion structure, the transfer portion and the peripheral portion may be on the same plane, or the transfer portion may be a concave portion with respect to the peripheral portion. Further, in the stamp having the transfer portion-peripheral portion structure, the portion where the organic semiconductor film is formed while holding the organic semiconductor film forms a convex portion, and in this convex portion, the transfer portion and the peripheral peripheral portion around it are formed. You may have.
 このようなスタンプは例えば、図5に示すようなものである。図5に示すスタンプ50では、転写する有機半導体膜に対応する転写部51を9個有する。ここで、個々の転写部51の周囲には、転写する有機半導体膜を保持するための周縁部52が存在している。 Such a stamp is, for example, as shown in FIG. The stamp 50 shown in FIG. 5 has nine transfer portions 51 corresponding to the organic semiconductor film to be transferred. Here, a peripheral edge 52 for holding the organic semiconductor film to be transferred exists around each transfer portion 51.
 具体的には、図6(a)に示すように、転写部-周縁部構造を有するスタンプでは、転写部51aと周縁部52aとは、同一平面上にあってよい。この場合には、周縁部52aと有機半導体溶液61との親和性によって転写部51a上に有機半導体溶液61を保持することを促進できる。 Specifically, as shown in FIG. 6A, in the stamp having the transfer portion-periphery portion structure, the transfer portion 51a and the peripheral portion 52a may be on the same plane. In this case, it is possible to promote the holding of the organic semiconductor solution 61 on the transfer portion 51 a by the affinity between the peripheral edge portion 52 a and the organic semiconductor solution 61.
 また、転写部-周縁部構造を有するスタンプでは、図6(b)に示すように、転写部51bが周縁部52bに対して凹部となっていてもよい。この場合には、周縁部52bと有機半導体溶液61との親和性と並んで、周縁部52bが立体的な囲いとなることによって、転写部51b上に有機半導体溶液61を保持することを促進できる。 Further, in the stamp having the transfer part-periphery part structure, as shown in FIG. 6B, the transfer part 51b may be a concave part with respect to the peripheral part 52b. In this case, along with the affinity between the peripheral portion 52b and the organic semiconductor solution 61, the peripheral portion 52b becomes a three-dimensional enclosure, thereby promoting the holding of the organic semiconductor solution 61 on the transfer portion 51b. .
 また更に、転写部-周縁部構造を有するスタンプでは、図6(c)に示すように、転写部51c及び周縁部52cがその他の部分に対して凸部となっていてもよい。この場合には、周縁部52cと有機半導体溶液61との親和性によって転写部51c上に有機半導体溶液61を保持することを促進でき、また転写部51c及び周縁部52cの形状に対応する形で有機半導体溶液61を保持できる。なお、この場合には、凸部となっている転写部51c及び周縁部52c以外の部分、すなわち凹部は、有機半導体溶液61との親和性が大きくても小さくてもよいが、有機半導体溶液61との親和性が小さいと、凹部に有機半導体溶液61が保持されないようにすることができる。 Furthermore, in the stamp having the transfer part-periphery part structure, as shown in FIG. 6C, the transfer part 51c and the peripheral part 52c may be convex with respect to other parts. In this case, it is possible to promote the holding of the organic semiconductor solution 61 on the transfer part 51c by the affinity between the peripheral part 52c and the organic semiconductor solution 61, and in a form corresponding to the shapes of the transfer part 51c and the peripheral part 52c. The organic semiconductor solution 61 can be held. In this case, the portion other than the transfer portion 51c and the peripheral edge portion 52c that are convex portions, that is, the concave portions may have a large or small affinity with the organic semiconductor solution 61, but the organic semiconductor solution 61 If the affinity for the organic semiconductor solution 61 is small, the organic semiconductor solution 61 can be prevented from being held in the recess.
 転写部-周縁部構造を有するスタンプによって有機半導体膜を製造する方法は、溶媒と溶媒中に溶解及び/又は分散している有機半導体材料とを含有する有機半導体溶液を提供するステップ、並びに有機半導体溶液を、転写部-周縁部構造を有するスタンプの転写部に適用して、有機半導体膜を形成するステップを含む。 A method of manufacturing an organic semiconductor film with a stamp having a transfer portion-periphery portion structure includes a step of providing an organic semiconductor solution containing a solvent and an organic semiconductor material dissolved and / or dispersed in the solvent, and the organic semiconductor Applying the solution to the transfer portion of the stamp having the transfer portion-periphery structure to form an organic semiconductor film.
 以下の例を用いて本発明を詳しく説明するが、本発明はこれに限定されるものではない。なお、以下の例で用いた評価方法は下記の通りである。 The present invention will be described in detail using the following examples, but the present invention is not limited thereto. The evaluation methods used in the following examples are as follows.
 水接触角:
 水接触角は、協和界面科学製水接触角計CA-X型を用いて、25℃の純水で測定した。
Water contact angle:
The water contact angle was measured with pure water at 25 ° C. using a water contact angle meter CA-X manufactured by Kyowa Interface Science.
 相対X線反射ピーク高さ:
 リガク製RINT TTR IIを用いて、X線源Cu-Kα線、回転対陰極50kV-300mA(15kW)の条件で、有機半導体膜のX線の対称反射についてのピーク高さを測定した。このピーク高さは、シリコンウェハ上にスピンコーティングによって作製した材料の有機半導体膜についてのピーク高さを基準(例12(比較)に準拠)として、同一厚さに標準化した後、相対高さによって評価した。相対X線反射ピーク高さの値が大きいことは、有機半導体膜の全厚にわたる結晶化の程度が大きいことを意味している。
Relative X-ray reflection peak height:
Using RINT TTR II manufactured by Rigaku, the peak height of X-ray symmetric reflection of the organic semiconductor film was measured under the conditions of an X-ray source Cu-Kα ray and a rotating counter cathode 50 kV-300 mA (15 kW). This peak height is standardized to the same thickness based on the peak height of the organic semiconductor film of the material produced by spin coating on a silicon wafer (based on Example 12 (comparative)), and then the relative height evaluated. A large value of the relative X-ray reflection peak height means that the degree of crystallization over the entire thickness of the organic semiconductor film is large.
 なお、レジオレギュラーポリ(3-ヘキシルチオフェン)(「P3HT」)の有機半導体膜では、(100)面の対称反射についてのピーク高さを測定した。なお、以下の実施例では1回転写した有機半導体膜についてX線反射ピーク高さを評価したが、2回転写についても1回転写の場合と同じ値が得られる。 In addition, in the organic semiconductor film of regioregular poly (3-hexylthiophene) (“P3HT”), the peak height with respect to (100) plane symmetrical reflection was measured. In the following examples, the height of the X-ray reflection peak was evaluated for the organic semiconductor film transferred once, but the same value as in the case of transfer once can be obtained for transfer twice.
 電荷移動度:
 有機半導体膜の電荷移動度は、ケースレー社製4200-SCS型半導体評価装置を用いて評価した。また、電荷移動度の標準偏差は、10個以上の素子の特性を評価して算出した。
Charge mobility:
The charge mobility of the organic semiconductor film was evaluated using a 4200-SCS type semiconductor evaluation apparatus manufactured by Keithley. The standard deviation of charge mobility was calculated by evaluating the characteristics of 10 or more elements.
 《例1~13》
 例1~13では、ボトムゲート・トップコンタクト型(BGTC型)のトランジスタを作成した。
<< Examples 1 to 13 >>
In Examples 1 to 13, a bottom gate / top contact type (BGTC type) transistor was formed.
 《例1》
 (コンタクトプリント用スタンプの作製)
 シリコーンゴム(信越化学工業製 SIM-260)を平板状に硬化させ、ヘキサンを用いてオリゴマーを除去したものスタンプ材料として提供した。
Example 1
(Production of stamps for contact printing)
Silicone rubber (SIM-260 manufactured by Shin-Etsu Chemical Co., Ltd.) was cured into a flat plate shape, and the oligomer was removed using hexane, which was provided as a stamp material.
 スタンプ材料を20mm角に切り出し、転写部に対応するマスクをこのスタンプ材料に載せて、転写部をマスクし、このように転写部がマスクされているスタンプ材料に、UV(紫外線)-オゾン処理を30分間にわたって行った。すなわち、転写部にUV-オゾン処理を行わず、且つ周縁部にUV-オゾン処理を行った。このUV-オゾン処理によって、周縁部に、親液性の表面を提供した。 The stamp material is cut into 20 mm square, a mask corresponding to the transfer portion is placed on the stamp material, the transfer portion is masked, and the stamp material in which the transfer portion is thus masked is subjected to UV (ultraviolet) -ozone treatment. Performed for 30 minutes. That is, the transfer portion was not subjected to UV-ozone treatment, and the peripheral portion was subjected to UV-ozone treatment. This UV-ozone treatment provided a lyophilic surface at the periphery.
 UV-オゾン処理を行っていない転写部の水接触角は110°であり、UV-オゾン処理を30分間行った周縁部の水接触角は44°であった。また、スタンプ上には、転写部が12個存在しており、個々の転写部の大きさは、100μm×2mmであった。 The water contact angle of the transfer part not subjected to UV-ozone treatment was 110 °, and the water contact angle of the peripheral part subjected to UV-ozone treatment for 30 minutes was 44 °. Further, twelve transfer portions exist on the stamp, and the size of each transfer portion was 100 μm × 2 mm.
 (有機半導体のインキング)
 レジオレギュラーポリ(3-ヘキシルチオフェン)(「P3HT」)(アルドリッチ社販売、プレクトロニクス製、プレックスコアOS1100、MW=25,000~35,000)1質量部を、トルエン99質量部に溶解して、有機半導体溶液としてのP3HT溶液を得た。このP3HT溶液を、パターン形成されたスタンプ材料上にスピンコーティング(1800rpm、20秒間)した。その後、そのまま10分程度放置してP3HT溶液を熟成及び乾燥し、それによってスタンプ上に有機半導体膜を形成した。
(Inking of organic semiconductors)
1 part by mass of regioregular poly (3-hexylthiophene) (“P3HT”) (sold by Aldrich, manufactured by Plextronics, Plexcore OS1100, MW = 25,000-35,000) was dissolved in 99 parts by mass of toluene. A P3HT solution as an organic semiconductor solution was obtained. This P3HT solution was spin coated (1800 rpm, 20 seconds) onto the patterned stamp material. Thereafter, the P3HT solution was aged and dried for about 10 minutes as it was, thereby forming an organic semiconductor film on the stamp.
 (シリコン基材)
 300nmの熱酸化膜付のn型シリコンウェハ(面方位〈100〉、比抵抗0.05Ω)を、熱濃硫酸で30分処理した後、純水、アセトン、トルエン、ヘキサンを用いてそれぞれ数回超音波洗浄を行った。さらに、このシリコンウエハに、UVオゾン洗浄装置にて30分間洗浄を行って、基材とした。このシリコンウェハの表面に対する水接触角は4°であった。
(Silicon base)
An n-type silicon wafer with a 300 nm thermal oxide film (plane orientation <100>, specific resistance 0.05Ω) was treated with hot concentrated sulfuric acid for 30 minutes, and then several times each using pure water, acetone, toluene, and hexane. Ultrasonic cleaning was performed. Further, this silicon wafer was cleaned with a UV ozone cleaning apparatus for 30 minutes to obtain a substrate. The water contact angle with respect to the surface of the silicon wafer was 4 °.
 (1回転写)
 有機半導体膜を有するスタンプをローラーに固定して、スタンプ付ローラーを得た。シリコン基材を75℃に加熱・保持し、その上に上記のスタンプ付ローラーを接触させ、回転させて、有機半導体膜全体を基材に転写した。
(Transfer once)
The stamp which has an organic-semiconductor film was fixed to the roller, and the roller with a stamp was obtained. The silicon substrate was heated and held at 75 ° C., and the stamped roller was brought into contact with the silicon substrate and rotated to transfer the entire organic semiconductor film to the substrate.
 (薄膜トランジスタの作製)
 得られた有機半導体膜の転写部に対応する箇所にマスク蒸着法にて金を真空蒸着して、ソース電極及びドレイン電極を形成し(L/w=50μm/1.5mm)、シリコン基材をゲート電極とし且つシリコン基材の表面の酸化膜をゲート絶縁膜として、薄膜トランジスタを得た。すなわち、図4の130で示すような構成の薄膜トランジスタを得た。
(Production of thin film transistor)
Gold is vacuum-deposited by a mask vapor deposition method at a position corresponding to the transfer part of the obtained organic semiconductor film to form a source electrode and a drain electrode (L / w = 50 μm / 1.5 mm), and a silicon substrate is formed. A thin film transistor was obtained using the gate electrode and the oxide film on the surface of the silicon substrate as the gate insulating film. That is, a thin film transistor having a configuration as indicated by 130 in FIG. 4 was obtained.
 このようにして得られた薄膜トランジスタ、すなわち製膜時に空気側にあった面を活性面とする薄膜トランジスタについて、電荷移動度及びX線反射ピーク高さを測定した。結果を表1に示す。 The charge mobility and the X-ray reflection peak height of the thin film transistor thus obtained, that is, a thin film transistor having an active surface on the air side during film formation, were measured. The results are shown in Table 1.
 (2回転写)
 また、1回転写によって製膜時に空気側にあった面を活性面とする薄膜トランジスタを製造する代わりに、2回転写によって製膜時にスタンプ側にあった面を活性面とする薄膜トランジスタを作製した。
(Twice transfer)
In addition, instead of manufacturing a thin film transistor having an active surface that was on the air side during film formation by a single transfer, a thin film transistor having an active surface on the surface that was on the stamp side by film transfer was fabricated.
 具体的には、シリコン基材の代わりに、第2のスタンプ上に有機半導体膜を転写した(第一転写)。その後、上記の有機半導体膜が転写された第2のスタンプをロールに固定し、75℃に加熱・保持されたシリコン基材上に接触させ、回転させて、有機半導体膜を基材上に転写した(第二転写)。ここで、第2のスタンプとしては、第1のスタンプの転写部と同様に処理したスタンプ材料を用いた。すなわち、第2のスタンプの表面に対する水接触角は、第1のスタンプの転写部の表面に対する水接触角と同じになるようにした。 Specifically, the organic semiconductor film was transferred onto the second stamp instead of the silicon substrate (first transfer). Thereafter, the second stamp having the organic semiconductor film transferred thereon is fixed to a roll, brought into contact with a silicon substrate heated and held at 75 ° C., and rotated to transfer the organic semiconductor film onto the substrate. (Second transcription). Here, as the second stamp, a stamp material processed in the same manner as the transfer portion of the first stamp was used. That is, the water contact angle with respect to the surface of the second stamp was made the same as the water contact angle with respect to the surface of the transfer portion of the first stamp.
 このようにして得られた薄膜トランジスタ、すなわち製膜時にスタンプ側にあった面を活性面とする薄膜トランジスタについて、電荷移動度を測定した。結果を表1に示す。 The charge mobility of the thin film transistor thus obtained, that is, the thin film transistor having the active surface as the surface on the stamp side at the time of film formation was measured. The results are shown in Table 1.
 《例2》
 (コンタクトプリント用スタンプの作製)
 スタンプ材料を20mm角に切り出し、転写部に対応するマスクをこのスタンプ材料に載せて、転写部をマスクし、このように転写部がマスクされているスタンプ材料に、UV-オゾン処理を30分間にわたって行った。すなわち、転写部にUV-オゾン処理を行わず、且つ周縁部にUV-オゾン処理を行った。次いでマスクを除去し、スタンプ全体、すなわち転写部及び周縁部の両方にUV-オゾン処理を2分間にわたって行った。
<< Example 2 >>
(Production of stamps for contact printing)
The stamp material is cut into 20 mm square, a mask corresponding to the transfer portion is placed on the stamp material, the transfer portion is masked, and the UV-ozone treatment is applied to the stamp material in which the transfer portion is masked for 30 minutes. went. That is, the transfer portion was not subjected to UV-ozone treatment, and the peripheral portion was subjected to UV-ozone treatment. The mask was then removed and UV-ozone treatment was applied for 2 minutes to the entire stamp, ie, both the transfer area and the peripheral area.
 UV-オゾン処理を2分間行った転写部の水接触角は107°であり、UV-オゾン処理を計32分間行った周縁部の水接触角は40°であった。 The water contact angle of the transfer part subjected to UV-ozone treatment for 2 minutes was 107 °, and the water contact angle of the peripheral part subjected to UV-ozone treatment for a total of 32 minutes was 40 °.
 (薄膜トランジスタの作製)
 このようにして得たスタンプを用いて、例1と同様にして、1回転写によって製膜時に空気側にあった面を活性面とする薄膜トランジスタを作製した。得られた薄膜トランジスタについて、電荷移動度を測定した。結果を表1に示す。
(Production of thin film transistor)
Using the stamp thus obtained, in the same manner as in Example 1, a thin film transistor was produced in which the surface that was on the air side during film formation was the active surface by single transfer. The charge mobility of the obtained thin film transistor was measured. The results are shown in Table 1.
 また、例1でのように2回転写によって薄膜トランジスタを作製した。このようにして得られた薄膜トランジスタ、すなわち製膜時にスタンプ側にあった面を活性面とする薄膜トランジスタについて、電荷移動度を測定した。結果を表1に示す。 Further, as in Example 1, a thin film transistor was produced by transferring twice. The charge mobility of the thin film transistor thus obtained, that is, the thin film transistor having the active surface as the surface on the stamp side during film formation was measured. The results are shown in Table 1.
 《例2A》
 (コンタクトプリント用スタンプの作製)
 スタンプ材料を20mm角に切り出し、転写部に対応するマスクをこのスタンプ材料に載せて、転写部をマスクし、このように転写部がマスクされているスタンプ材料に、UV-オゾン処理を30分間にわたって行った。すなわち、転写部にUV-オゾン処理を行わず、且つ周縁部にUV-オゾン処理を行った。次いでマスクを除去し、スタンプ全体、すなわち転写部及び周縁部の両方にUV-オゾン処理を2.5分間にわたって行った。
<< Example 2A >>
(Production of stamps for contact printing)
The stamp material is cut into 20 mm square, a mask corresponding to the transfer portion is placed on the stamp material, the transfer portion is masked, and the UV-ozone treatment is applied to the stamp material in which the transfer portion is masked for 30 minutes. went. That is, the transfer portion was not subjected to UV-ozone treatment, and the peripheral portion was subjected to UV-ozone treatment. The mask was then removed and UV-ozone treatment was performed for 2.5 minutes on the entire stamp, ie, both the transfer area and the peripheral area.
 UV-オゾン処理を2分間行った転写部の水接触角は105°であり、UV-オゾン処理を計32分間行った周縁部の水接触角は39°であった。 The water contact angle of the transfer part subjected to UV-ozone treatment for 2 minutes was 105 °, and the water contact angle of the peripheral part subjected to UV-ozone treatment for a total of 32 minutes was 39 °.
 (薄膜トランジスタの作製)
 このようにして得たスタンプを用いて、例1と同様にして、1回転写によって製膜時に空気側にあった面を活性面とする薄膜トランジスタを作製した。得られた薄膜トランジスタについて、電荷移動度を測定した。結果を表1に示す。
(Production of thin film transistor)
Using the stamp thus obtained, in the same manner as in Example 1, a thin film transistor was produced in which the surface that was on the air side during film formation was the active surface by single transfer. The charge mobility of the obtained thin film transistor was measured. The results are shown in Table 1.
 また、例1でのように2回転写によって薄膜トランジスタを作製した。このようにして得られた薄膜トランジスタ、すなわち製膜時にスタンプ側にあった面を活性面とする薄膜トランジスタについて、電荷移動度を測定した。結果を表1に示す。 Further, as in Example 1, a thin film transistor was produced by transferring twice. The charge mobility of the thin film transistor thus obtained, that is, the thin film transistor having the active surface as the surface on the stamp side during film formation was measured. The results are shown in Table 1.
 《例3》
 (コンタクトプリント用スタンプの作製)
 スタンプ材料を20mm角に切り出し、転写部に対応するマスクをこのスタンプ材料に載せて、転写部をマスクし、このように転写部がマスクされているスタンプ材料に、UV-オゾン処理を30分間にわたって行った。すなわち、転写部にUV-オゾン処理を行わず、且つ周縁部にUV-オゾン処理を行った。次いでマスクを除去し、スタンプ全体、すなわち転写部及び周縁部の両方にUV-オゾン処理を3分間にわたって行った。
Example 3
(Production of stamps for contact printing)
The stamp material is cut into 20 mm square, a mask corresponding to the transfer portion is placed on the stamp material, the transfer portion is masked, and the UV-ozone treatment is applied to the stamp material in which the transfer portion is masked for 30 minutes. went. That is, the transfer portion was not subjected to UV-ozone treatment, and the peripheral portion was subjected to UV-ozone treatment. The mask was then removed and UV-ozone treatment was performed for 3 minutes on the entire stamp, ie, both the transfer area and the peripheral area.
 UV-オゾン処理を3分間行った転写部の水接触角は104°であり、UV-オゾン処理を計33分間行った周縁部の水接触角は37°であった。 The water contact angle of the transfer part subjected to UV-ozone treatment for 3 minutes was 104 °, and the water contact angle of the peripheral part subjected to UV-ozone treatment for a total of 33 minutes was 37 °.
 (薄膜トランジスタの作製)
 このようにして得たスタンプを用いて、例1と同様にして、1回転写によって製膜時に空気側にあった面を活性面とする薄膜トランジスタを作製した。得られた薄膜トランジスタについて、電荷移動度を測定した。結果を表1に示す。
(Production of thin film transistor)
Using the stamp thus obtained, in the same manner as in Example 1, a thin film transistor was produced in which the surface that was on the air side during film formation was the active surface by single transfer. The charge mobility of the obtained thin film transistor was measured. The results are shown in Table 1.
 また、例1でのように2回転写によって薄膜トランジスタを作製した。このようにして得られた薄膜トランジスタ、すなわち製膜時にスタンプ側にあった面を活性面とする薄膜トランジスタについて、電荷移動度を測定した。結果を表1に示す。 Further, as in Example 1, a thin film transistor was produced by transferring twice. The charge mobility of the thin film transistor thus obtained, that is, the thin film transistor having the active surface as the surface on the stamp side during film formation was measured. The results are shown in Table 1.
 《例4》
 (コンタクトプリント用スタンプの作製)
 スタンプ材料を20mm角に切り出し、転写部に対応するマスクをこのスタンプ材料に載せて、転写部をマスクし、このように転写部がマスクされているスタンプ材料に、UV-オゾン処理を30分間にわたって行った。すなわち、転写部にUV-オゾン処理を行わず、且つ周縁部にUV-オゾン処理を行った。次いでマスクを除去し、スタンプ全体、すなわち転写部及び周縁部の両方にUV-オゾン処理を5分間にわたって行った。
Example 4
(Production of stamps for contact printing)
The stamp material is cut into 20 mm square, a mask corresponding to the transfer portion is placed on the stamp material, the transfer portion is masked, and the UV-ozone treatment is applied to the stamp material in which the transfer portion is masked for 30 minutes. went. That is, the transfer portion was not subjected to UV-ozone treatment, and the peripheral portion was subjected to UV-ozone treatment. The mask was then removed and UV-ozone treatment was performed for 5 minutes on the entire stamp, ie, both the transferred area and the peripheral area.
 UV-オゾン処理を5分間行った転写部の水接触角は99°であり、UV-オゾン処理を計35分間行った周縁部の水接触角は33°であった。 The water contact angle of the transfer portion subjected to UV-ozone treatment for 5 minutes was 99 °, and the water contact angle of the peripheral portion subjected to UV-ozone treatment for a total of 35 minutes was 33 °.
 (薄膜トランジスタの作製)
 このようにして得たスタンプを用いて、例1と同様にして、1回転写によって製膜時に空気側にあった面を活性面とする薄膜トランジスタを作製した。得られた薄膜トランジスタについて、電荷移動度を測定した。結果を表1に示す。
(Production of thin film transistor)
Using the stamp thus obtained, in the same manner as in Example 1, a thin film transistor was produced in which the surface that was on the air side during film formation was the active surface by single transfer. The charge mobility of the obtained thin film transistor was measured. The results are shown in Table 1.
 また、例1でのように2回転写によって薄膜トランジスタを作製した。このようにして得られた薄膜トランジスタ、すなわち製膜時にスタンプ側にあった面を活性面とする薄膜トランジスタについて、電荷移動度を測定した。結果を表1に示す。 Further, as in Example 1, a thin film transistor was produced by transferring twice. The charge mobility of the thin film transistor thus obtained, that is, the thin film transistor having the active surface as the surface on the stamp side during film formation was measured. The results are shown in Table 1.
 《例5》
 (コンタクトプリント用スタンプの作製)
 スタンプ材料を20mm角に切り出し、転写部に対応するマスクをこのスタンプ材料に載せて、転写部をマスクし、このように転写部がマスクされているスタンプ材料に、UV-オゾン処理を30分間にわたって行った。すなわち、転写部にUV-オゾン処理を行わず、且つ周縁部にUV-オゾン処理を行った。次いでマスクを除去し、スタンプ全体、すなわち転写部及び周縁部の両方にUV-オゾン処理を10分間にわたって行った。
Example 5
(Production of stamps for contact printing)
The stamp material is cut into 20 mm square, a mask corresponding to the transfer portion is placed on the stamp material, the transfer portion is masked, and the UV-ozone treatment is applied to the stamp material in which the transfer portion is masked for 30 minutes. went. That is, the transfer portion was not subjected to UV-ozone treatment, and the peripheral portion was subjected to UV-ozone treatment. The mask was then removed and UV-ozone treatment was applied for 10 minutes to the entire stamp, ie, both the transfer area and the peripheral area.
 UV-オゾン処理を10分間行った転写部の水接触角は95°であり、UV-オゾン処理を計40分間行った周縁部の水接触角は21°であった。 The water contact angle of the transfer part subjected to UV-ozone treatment for 10 minutes was 95 °, and the water contact angle of the peripheral part subjected to UV-ozone treatment for 40 minutes in total was 21 °.
 (薄膜トランジスタの作製)
 このようにして得たスタンプを用いて、例1と同様にして、1回転写によって製膜時に空気側にあった面を活性面とする薄膜トランジスタを作製した。得られた薄膜トランジスタについて、電荷移動度及びX線反射ピーク高さを測定した。結果を表1に示す。
(Production of thin film transistor)
Using the stamp thus obtained, in the same manner as in Example 1, a thin film transistor was produced in which the surface that was on the air side during film formation was the active surface by single transfer. The obtained thin film transistor was measured for charge mobility and X-ray reflection peak height. The results are shown in Table 1.
 また、例1でのように2回転写によって薄膜トランジスタを作製した。このようにして得られた薄膜トランジスタ、すなわち製膜時にスタンプ側にあった面を活性面とする薄膜トランジスタについて、電荷移動度を測定した。結果を表1に示す。 Further, as in Example 1, a thin film transistor was produced by transferring twice. The charge mobility of the thin film transistor thus obtained, that is, the thin film transistor having the active surface as the surface on the stamp side during film formation was measured. The results are shown in Table 1.
 《例6》
 (コンタクトプリント用スタンプの作製)
 スタンプ材料を20mm角に切り出し、転写部に対応するマスクをこのスタンプ材料に載せて、転写部をマスクし、このように転写部がマスクされているスタンプ材料に、UV-オゾン処理を30分間にわたって行った。すなわち、転写部にUV-オゾン処理を行わず、且つ周縁部にUV-オゾン処理を行った。次いでマスクを除去し、スタンプ全体、すなわち転写部及び周縁部の両方にUV-オゾン処理を20分間にわたって行った。
Example 6
(Production of stamps for contact printing)
The stamp material is cut into 20 mm square, a mask corresponding to the transfer portion is placed on the stamp material, the transfer portion is masked, and the UV-ozone treatment is applied to the stamp material in which the transfer portion is masked for 30 minutes. went. That is, the transfer portion was not subjected to UV-ozone treatment, and the peripheral portion was subjected to UV-ozone treatment. Next, the mask was removed, and the entire stamp, that is, both the transfer portion and the peripheral portion, was subjected to UV-ozone treatment for 20 minutes.
 UV-オゾン処理を20分間行った転写部の水接触角は72°であり、UV-オゾン処理を計50分間行った周縁部の水接触角は4°であった。 The water contact angle of the transfer part subjected to UV-ozone treatment for 20 minutes was 72 °, and the water contact angle of the peripheral part subjected to UV-ozone treatment for 50 minutes in total was 4 °.
 (薄膜トランジスタの作製)
 このようにして得たスタンプを用いて、例1と同様にして、1回転写によって製膜時に空気側にあった面を活性面とする薄膜トランジスタを作製した。得られた薄膜トランジスタについて、電荷移動度及びX線反射ピーク高さを測定した。結果を表1に示す。
(Production of thin film transistor)
Using the stamp thus obtained, in the same manner as in Example 1, a thin film transistor was produced in which the surface that was on the air side during film formation was the active surface by a single transfer. The obtained thin film transistor was measured for charge mobility and X-ray reflection peak height. The results are shown in Table 1.
 また、例1でのように2回転写によって薄膜トランジスタを作製した。このようにして得られた薄膜トランジスタ、すなわち製膜時にスタンプ側にあった面を活性面とする薄膜トランジスタについて、電荷移動度を測定した。結果を表1に示す。 Further, as in Example 1, a thin film transistor was produced by transferring twice. The charge mobility of the thin film transistor thus obtained, that is, the thin film transistor having the active surface as the surface on the stamp side during film formation was measured. The results are shown in Table 1.
 《例7》
 (コンタクトプリント用スタンプの作製)
 スタンプ材料を20mm角に切り出し、転写部に対応するマスクをこのスタンプ材料に載せて、転写部をマスクし、このように転写部がマスクされているスタンプ材料に、UV-オゾン処理を30分間にわたって行った。すなわち、転写部にUV-オゾン処理を行わず、且つ周縁部にUV-オゾン処理を行った。次いでマスクを除去し、スタンプ全体、すなわち転写部及び周縁部の両方にUV-オゾン処理を30分間にわたって行った。
Example 7
(Production of stamps for contact printing)
The stamp material is cut into 20 mm square, a mask corresponding to the transfer portion is placed on the stamp material, the transfer portion is masked, and the UV-ozone treatment is applied to the stamp material in which the transfer portion is masked for 30 minutes. went. That is, the transfer portion was not subjected to UV-ozone treatment, and the peripheral portion was subjected to UV-ozone treatment. Next, the mask was removed, and the entire stamp, that is, both the transfer portion and the peripheral portion, was subjected to UV-ozone treatment for 30 minutes.
 UV-オゾン処理を30分間行った転写部の水接触角は44°であり、UV-オゾン処理を計60分間行った周縁部の水接触角は4°であった。 The water contact angle of the transfer part subjected to UV-ozone treatment for 30 minutes was 44 °, and the water contact angle of the peripheral part subjected to UV-ozone treatment for 60 minutes in total was 4 °.
 (薄膜トランジスタの作製)
 このようにして得たスタンプを用いて、例1と同様にして、1回転写によって製膜時に空気側にあった面を活性面とする薄膜トランジスタを作製した。得られた薄膜トランジスタについて、電荷移動度を測定した。結果を表1に示す。
(Production of thin film transistor)
Using the stamp thus obtained, in the same manner as in Example 1, a thin film transistor was produced in which the surface that was on the air side during film formation was the active surface by single transfer. The charge mobility of the obtained thin film transistor was measured. The results are shown in Table 1.
 また、例1でのように2回転写によって製膜時にスタンプ側にあった面を活性面とする薄膜トランジスタを作製することを試みた。しかしながら、この例では、上記のスタンプから第2のスタンプへの転写をうまく行うことができず、したがって製膜時にスタンプ側にあった面を活性面とする薄膜トランジスタは作製できなかった。 In addition, as in Example 1, an attempt was made to produce a thin film transistor in which the surface that was on the stamp side at the time of film formation was the active surface by transferring twice. However, in this example, transfer from the above stamp to the second stamp could not be performed well, and thus a thin film transistor having the active surface as the surface that was on the stamp side during film formation could not be produced.
 《例8》
 (コンタクトプリント用スタンプの作製)
 スタンプ材料を20mm角に切り出し、転写部に対応するマスクをこのスタンプ材料に載せて、転写部をマスクし、このように転写部がマスクされているスタンプ材料に、UV-オゾン処理を30分間にわたって行った。すなわち、転写部にUV-オゾン処理を行わず、且つ周縁部にUV-オゾン処理を行った。次いでマスクを除去し、スタンプ全体、すなわち転写部及び周縁部の両方にUV-オゾン処理を45分間にわたって行った。
Example 8
(Production of stamps for contact printing)
The stamp material is cut into 20 mm square, a mask corresponding to the transfer portion is placed on the stamp material, the transfer portion is masked, and the UV-ozone treatment is applied to the stamp material in which the transfer portion is masked for 30 minutes. went. That is, the transfer portion was not subjected to UV-ozone treatment, and the peripheral portion was subjected to UV-ozone treatment. The mask was then removed and UV-ozone treatment was performed over 45 minutes on the entire stamp, ie, both the transfer and periphery.
 UV-オゾン処理を45分間行った転写部の水接触角は8°であり、UV-オゾン処理を計75分間行った周縁部の水接触角は4°であった。 The water contact angle of the transfer part subjected to UV-ozone treatment for 45 minutes was 8 °, and the water contact angle of the peripheral part subjected to UV-ozone treatment for 75 minutes in total was 4 °.
 (薄膜トランジスタの作製)
 このようにして得たスタンプを用いて、例1と同様にして、1回転写によって製膜時に空気側にあった面を活性面とする薄膜トランジスタを作製した。得られた薄膜トランジスタについて、電荷移動度を測定した。結果を表1に示す。
(Production of thin film transistor)
Using the stamp thus obtained, in the same manner as in Example 1, a thin film transistor was produced in which the surface that was on the air side during film formation was the active surface by single transfer. The charge mobility of the obtained thin film transistor was measured. The results are shown in Table 1.
 また、例1でのように2回転写によって製膜時にスタンプ側にあった面を活性面とする薄膜トランジスタを作製することを試みた。しかしながら、この例では、上記のスタンプから第2のスタンプへの転写をうまく行うことができず、したがって製膜時にスタンプ側にあった面を活性面とする薄膜トランジスタは作製できなかった。 In addition, as in Example 1, an attempt was made to produce a thin film transistor in which the surface that was on the stamp side at the time of film formation was the active surface by transferring twice. However, in this example, transfer from the above stamp to the second stamp could not be performed well, and thus a thin film transistor having the active surface as the surface that was on the stamp side during film formation could not be produced.
 《例9》
 例1でのようにして得たスタンプを用いて、例1と同様にして、1回転写によって製膜時に空気側にあった面を活性面とする薄膜トランジスタを作製した。ただし、この例では、有機半導体溶液として、P3HT溶液の代わりに下記のようにして得たF8T2溶液を用いた。得られた薄膜トランジスタについて、電荷移動度を測定した。結果を表1に示す。
Example 9
Using the stamp obtained in the same manner as in Example 1, a thin film transistor having a surface that was on the air side at the time of film formation as an active surface was produced by a single transfer in the same manner as in Example 1. However, in this example, an F8T2 solution obtained as follows was used as the organic semiconductor solution instead of the P3HT solution. The charge mobility of the obtained thin film transistor was measured. The results are shown in Table 1.
 ここで、有機半導体溶液としてのF8T2溶液は、ポリ[(9,9‘-ジオクチルフルオニル―2,7-ジイル)-コ-ビチオフェン](「F8T2」)(アメリカンダイソース製)0.5質量部を、トルエン99.5質量部に溶解して得た。 Here, the F8T2 solution as the organic semiconductor solution is poly [(9,9′-dioctylfluoryl-2,7-diyl) -co-bithiophene] (“F8T2”) (manufactured by American Dice Source) 0.5 mass Part was obtained by dissolving in 99.5 parts by mass of toluene.
 また、例1でのように2回転写によって薄膜トランジスタを作製した。このようにして得られた薄膜トランジスタ、すなわち製膜時にスタンプ側にあった面を活性面とする薄膜トランジスタについて、電荷移動度を測定した。しかしながら、この例で得られた有機半導体層では有意の半導体特性が観察されなかった。結果を表1に示す。 Further, as in Example 1, a thin film transistor was produced by transferring twice. The charge mobility of the thin film transistor thus obtained, that is, the thin film transistor having the active surface as the surface on the stamp side during film formation was measured. However, no significant semiconductor characteristics were observed in the organic semiconductor layer obtained in this example. The results are shown in Table 1.
 《例10(比較)》
 スピンコーティングによってスタンプにP3HT溶液を適用した後で熟成させずにすぐに基材に転写したこと以外は例1と同様にして、1回転写によって製膜時に空気側にあった面を活性面とする薄膜トランジスタを作製した。得られた薄膜トランジスタについて、電荷移動度を測定した。結果を表1に示す。
<< Example 10 (Comparison) >>
In the same manner as in Example 1 except that the P3HT solution was applied to the stamp by spin coating and immediately transferred to the substrate without aging, the surface that was on the air side at the time of film formation by the single transfer was defined as the active surface. A thin film transistor was manufactured. The charge mobility of the obtained thin film transistor was measured. The results are shown in Table 1.
 《例11(比較)》
 スタンプ材料を20mm角に切り出し、表面処理をせずにそのまま使用した。ここでは、スタンプの表面の水接触角は110°であった。このスタンプ面に、例1と同様にしてP3HT溶液をスピンコーティングした。しかしながら、スタンプ面全体が疎液性であったために、スタンプ面上において有機半導体膜を安定に形成することができなかった。
Example 11 (Comparison)
The stamp material was cut into 20 mm square and used as it was without any surface treatment. Here, the water contact angle on the surface of the stamp was 110 °. The stamp surface was spin-coated with a P3HT solution in the same manner as in Example 1. However, since the entire stamp surface is lyophobic, the organic semiconductor film cannot be stably formed on the stamp surface.
 《例12(比較)》
 例1において用いたP3HT溶液を、例1で用いたシリコン基材上に直接にスピンコーティング(1800rpm、20秒間)した。すなわち、スタンプを用いずに、基材上に直接に半導体膜を形成した。
Example 12 (Comparison)
The P3HT solution used in Example 1 was spin-coated (1800 rpm, 20 seconds) directly on the silicon substrate used in Example 1. That is, a semiconductor film was formed directly on the substrate without using a stamp.
 得られた有機半導体膜に、例1と同様にしてソース電極及びドレイン電極を形成して、薄膜トランジスタを得た。 A source electrode and a drain electrode were formed on the obtained organic semiconductor film in the same manner as in Example 1 to obtain a thin film transistor.
 このようにして得られた薄膜トランジスタ、すなわち有機半導体層の活性面が空気に面した状態での熟成工程を受けていない薄膜トランジスタについて、電荷移動度及びX線反射ピーク高さを測定した。結果を表1に示す。 The charge mobility and the X-ray reflection peak height of the thin film transistor thus obtained, that is, the thin film transistor that was not subjected to the aging process in a state where the active surface of the organic semiconductor layer faced air was measured. The results are shown in Table 1.
 《例13(比較)》
 例9において用いたF8T2溶液を、例1で用いたシリコン基材上に直接にスピンコーティング(1800rpm、20秒間)した。すなわち、スタンプを用いずに、基材上に直接に半導体膜を形成した。
Example 13 (Comparison)
The F8T2 solution used in Example 9 was spin coated (1800 rpm, 20 seconds) directly on the silicon substrate used in Example 1. That is, a semiconductor film was formed directly on the substrate without using a stamp.
 得られた有機半導体膜に、例1と同様にしてソース電極及びドレイン電極を形成して、薄膜トランジスタを得た。 A source electrode and a drain electrode were formed on the obtained organic semiconductor film in the same manner as in Example 1 to obtain a thin film transistor.
 このようにして得られた薄膜トランジスタ、すなわち有機半導体層の活性面が空気に面した状態での熟成工程を受けていない薄膜トランジスタについて、電荷移動度を測定した。しかしながら、この例で得られた有機半導体層では有意の半導体特性が観察されなかった。結果を表1に示す。 The charge mobility of the thin film transistor thus obtained, that is, the thin film transistor not subjected to the aging process in a state where the active surface of the organic semiconductor layer faces air was measured. However, no significant semiconductor characteristics were observed in the organic semiconductor layer obtained in this example. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の例1~10から理解されるように、転写部-周縁部構造を有するスタンプでは、疎液性の表面においても、有機半導体膜を安定に形成することができた。特に表1の例1~3から理解されるように、転写部-周縁部構造を有するスタンプでは、水接触角が100℃を超える疎液性の表面においても、有機半導体膜を安定に形成することができた。これに対して、表1の例11(比較)から理解されるように、転写部-周縁部構造を有さないスタンプでは、疎液性の表面において有機半導体膜を安定に形成することが困難であった。 As understood from Examples 1 to 10 in Table 1, with the stamp having the transfer portion-periphery portion structure, the organic semiconductor film could be stably formed even on the lyophobic surface. In particular, as understood from Examples 1 to 3 in Table 1, in the stamp having the transfer portion-periphery portion structure, the organic semiconductor film is stably formed even on a lyophobic surface having a water contact angle exceeding 100 ° C. I was able to. In contrast, as understood from Example 11 (comparison) in Table 1, it is difficult to stably form an organic semiconductor film on a lyophobic surface with a stamp having no transfer portion-periphery portion structure. Met.
 熟成を行った例1~9の有機半導体膜では、相対する2つの表面側の電荷移動度の比{(電荷移動度が大きい表面側の電荷移動度)/(電荷移動度が小さい表面側の電荷移動度)}の値が、熟成を行わなかった例10(比較)と比べて大きかった。また、この比の値は、製膜のために使用したスタンプの転写部における疎液性が小さくなるにしたがって、すなわち製膜のために使用したスタンプの転写部が親液性になるにしたがって、大きくなった。 In the organic semiconductor films of Examples 1 to 9 where the aging was performed, the ratio of the charge mobility on the two opposite surface sides {(charge mobility on the surface side with large charge mobility) / (surface mobility on the surface side with small charge mobility) The value of charge mobility)} was larger than that of Example 10 (comparison) in which aging was not performed. Further, the value of this ratio is as the lyophobic property in the transfer portion of the stamp used for film formation becomes smaller, that is, as the transfer portion of the stamp used for film formation becomes lyophilic. It became bigger.
 例1~2Aの有機半導体膜では、相対する2つの表面側の電荷移動度の比{(電荷移動度が大きい表面側の電荷移動度)/(電荷移動度が小さい表面側の電荷移動度)}の値が例3~6と比べて小さく、且つ有機半導体膜の全厚にわたる結晶化の程度を表す相対X線ピーク高さが大きかった。これは、製膜の際に基材又は第1のスタンプの表面に接していた表面側と、その反対側の表面側とのいずれにおいても、有機半導体材料の結晶化が進行したことによると考えられる。 In the organic semiconductor films of Examples 1 and 2A, the ratio of the charge mobility on the two opposite surface sides {(the charge mobility on the surface side with a large charge mobility) / (the charge mobility on the surface side with a small charge mobility) } Was smaller than those of Examples 3 to 6, and the relative X-ray peak height representing the degree of crystallization over the entire thickness of the organic semiconductor film was large. This is thought to be due to the progress of crystallization of the organic semiconductor material on both the surface side that was in contact with the surface of the substrate or the first stamp during film formation and the surface side opposite to the surface side. It is done.
 有機半導体膜の全厚にわたる結晶化の程度を表す相対X線ピーク高さは、転写部の水接触角が小さくなるに従って(又は転写部の表面が親液性になるに従って)、すなわち転写部の表面エネルギーが大きくなるに従って小さくなった。これは、製膜の際に基材又は第1のスタンプ15の表面に接していた表面側において電荷移動度が比較的小さいことで示されているように、転写部の水接触角が小さい場合(又は転写部の表面が親液性である場合)、すなわち表面エネルギーが大きい場合には、この表面側において有機半導体材料の結晶化の程度が小さかったことによると考えられる。 The relative X-ray peak height, which represents the degree of crystallization over the entire thickness of the organic semiconductor film, becomes smaller as the water contact angle of the transfer portion becomes smaller (or as the surface of the transfer portion becomes lyophilic), that is, in the transfer portion. The surface energy decreased as the surface energy increased. This is when the water contact angle of the transfer portion is small, as shown by the relatively low charge mobility on the surface side that was in contact with the substrate or the surface of the first stamp 15 during film formation. When the surface of the transfer portion is lyophilic, that is, when the surface energy is large, it is considered that the degree of crystallization of the organic semiconductor material is small on this surface side.
 表1から理解されるように、熟成を行わなかった例10(比較)の有機半導体膜では、相対する2つの表面側の電荷移動度の比の値が小さかったが、有機半導体膜の全厚にわたる結晶化の程度を表す相対X線ピーク高さも小さかった。なお、例10(比較)の有機半導体膜に関しては、製膜時にスタンプ側にあった面の電荷移動度の値として、例1の有機半導体膜の値を仮に用いているが、これは、製膜時にスタンプ側にあった面では、熟成の有無による電荷移動度の変化が比較的少ないとの理解に基づいている。 As can be seen from Table 1, in the organic semiconductor film of Example 10 (comparative) that was not aged, the ratio of the charge mobility on the two opposite surface sides was small, but the total thickness of the organic semiconductor film The relative X-ray peak height representing the degree of crystallization over the range was also small. In addition, regarding the organic semiconductor film of Example 10 (comparative), the value of the organic semiconductor film of Example 1 is temporarily used as the value of the charge mobility of the surface that was on the stamp side at the time of film formation. It is based on the understanding that the change in charge mobility due to the presence or absence of aging is relatively small on the surface that was on the stamp side during film formation.
 《例14及び15》
 例14及び15では、ボトムゲート・トップコンタクト型(BGTC型)のトランジスタを作成した。
<< Examples 14 and 15 >>
In Examples 14 and 15, a bottom gate / top contact type (BGTC type) transistor was formed.
 《例14》
 シリコン基材をヘキサメチルジシラザン(HMDS)で処理したこと、及び転写工程において基材の温度を130℃として転写を促進したこと以外は例1と同様にして、1回転写によって製膜時に空気側にあった面を活性面とする薄膜トランジスタを作製した。得られた薄膜トランジスタについて、電荷移動度を測定した。結果を表2に示す。ここで、ヘキサメチルジシラザン(HMDS)で処理されたシリコン基材の表面に対する水接触角は75°であった。
Example 14
In the same manner as in Example 1 except that the silicon substrate was treated with hexamethyldisilazane (HMDS) and the substrate temperature was set to 130 ° C. in the transfer step to facilitate the transfer, air was transferred during film formation by a single transfer. A thin film transistor having an active surface on the side surface was prepared. The charge mobility of the obtained thin film transistor was measured. The results are shown in Table 2. Here, the water contact angle with respect to the surface of the silicon substrate treated with hexamethyldisilazane (HMDS) was 75 °.
 なお、ヘキサメチルジシラザン(HMDS)による基材の処理は下記のようにして行った。 The base material was treated with hexamethyldisilazane (HMDS) as follows.
 HMDSの20mMトルエン溶液を作製した。得られたHMDS溶液中に上記のシリコン基材を浸漬し、7日間保持した。浸漬の後で、基材をトルエン及びエタノールで洗浄し、エタノール中で30分間にわたって超音波洗浄した。ここまでの工程は全て湿度が3%以下に制御されたグローブボックス中で行った。その後、基材を純水で洗浄し、100℃で5分間熱処理して、HMDS処理基材を得た。 A 20 mM toluene solution of HMDS was prepared. The above silicon substrate was immersed in the obtained HMDS solution and held for 7 days. After soaking, the substrate was washed with toluene and ethanol and ultrasonically washed in ethanol for 30 minutes. All the steps so far were performed in a glove box in which the humidity was controlled to 3% or less. Thereafter, the substrate was washed with pure water and heat treated at 100 ° C. for 5 minutes to obtain an HMDS treated substrate.
 《例15》
 シリコン基材をオクタデシルトリクロロシラン(OTS)で処理したこと、及び転写工程において基材の温度を130℃として転写を促進したこと以外は例1と同様にして、1回転写によって製膜時に空気側にあった面を活性面とする薄膜トランジスタを作製した。得られた薄膜トランジスタについて、電荷移動度を測定した。結果を表2に示す。ここで、オクタデシルトリクロロシラン(OTS)で処理されたシリコン基材の表面に対する水接触角は108°であった。
Example 15
In the same manner as in Example 1 except that the silicon substrate was treated with octadecyltrichlorosilane (OTS) and the substrate temperature was set to 130 ° C. in the transfer step to promote transfer, the air side was formed by film transfer once. A thin film transistor having an active surface as a surface suitable for the above was fabricated. The charge mobility of the obtained thin film transistor was measured. The results are shown in Table 2. Here, the water contact angle with respect to the surface of the silicon substrate treated with octadecyltrichlorosilane (OTS) was 108 °.
 なお、オクタデシルトリクロロシランによる基材の処理は下記のようにして行った。 The base material was treated with octadecyltrichlorosilane as follows.
 OTSの20mMトルエン溶液を作製した。得られたOTS溶液中に上記のシリコン基材を浸漬し、7日間保持した。浸漬の後で、基材をトルエン及びエタノールで洗浄し、エタノール中で30分間にわたって超音波洗浄した。ここまでの工程は全て湿度が3%以下に制御されたグローブボックス中で行った。その後、基材を純水で洗浄し、100℃で5分間熱処理して、OTS処理基材を得た。 A 20 mM toluene solution of OTS was prepared. The above silicon substrate was immersed in the obtained OTS solution and held for 7 days. After soaking, the substrate was washed with toluene and ethanol and ultrasonically washed in ethanol for 30 minutes. All the steps so far were performed in a glove box in which the humidity was controlled to 3% or less. Thereafter, the substrate was washed with pure water and heat-treated at 100 ° C. for 5 minutes to obtain an OTS-treated substrate.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2では、比較のために例1の有機半導体膜での結果も示している。この表2から理解されるように、スタンプ上において有機半導体膜を熟成させ、そしてその後で、基材に転写する場合であっても、基材の表面エネルギーが、有機半導体膜の電荷移動度に影響を与えることが理解される。すなわち、この表2からは、スタンプ上において有機半導体膜を熟成させ、そしてその後で、基材に転写する場合であっても、基材の表面エネルギーが小さいことが、電荷移動度が大きい有機半導体膜を得るために好ましいことが理解される。 Table 2 also shows the results of the organic semiconductor film of Example 1 for comparison. As can be seen from Table 2, even when the organic semiconductor film is aged on the stamp and then transferred to the base material, the surface energy of the base material depends on the charge mobility of the organic semiconductor film. Is understood to have an impact. That is, from Table 2, the organic semiconductor film having a high charge mobility has a low surface energy even when the organic semiconductor film is aged on the stamp and then transferred to the base material. It is understood that it is preferred to obtain a membrane.
 《例16~27》
 例16~21では、ボトムゲート・トップコンタクト型(BGTC型)のトランジスタを作成し、かつ例22~27では、ボトムゲート・ボトムコンタクト型(BGBC型)のトランジスタを作成した。
<< Examples 16 to 27 >>
In Examples 16 to 21, a bottom gate / top contact type (BGTC type) transistor was produced, and in Examples 22 to 27, a bottom gate / bottom contact type (BGBC type) transistor was produced.
 《例16》
 P3HT0.5質量部をトルエン99.5質量部に溶解して、有機半導体溶液としてのP3HT溶液を得たこと以外は例1(空気側面/スタンプ側面の比:2.8、相対X線ピーク強度:2.5)と同様にして、ボトムゲート・トップコンタクト型(BGTC型)の薄膜トランジスタを作成した。
Example 16
Example 1 (Air side / stamp side ratio: 2.8, relative X-ray peak intensity, except that 0.5 part by weight of P3HT was dissolved in 99.5 parts by weight of toluene to obtain a P3HT solution as an organic semiconductor solution. : 2.5), a bottom gate / top contact type (BGTC type) thin film transistor was produced.
 このようにして得られた薄膜トランジスタ、すなわち製膜時に空気側にあった面を活性面とする薄膜トランジスタについて、電荷移動度を測定した。結果を表3に示す。 The charge mobility of the thin film transistor thus obtained, that is, the thin film transistor having the active side as the surface on the air side during film formation was measured. The results are shown in Table 3.
 《例17》
 例14でのようにしてシリコン基材をヘキサメチルジシラザン(HMDS)で処理したこと、及び転写工程において基材の温度を130℃として転写を促進したこと以外は、例16と同様にして、製膜時に空気側にあった面を活性面とするBGTC型薄膜トランジスタを作製した。得られた薄膜トランジスタについて、電荷移動度を測定した。結果を表3に示す。
Example 17
Except that the silicon substrate was treated with hexamethyldisilazane (HMDS) as in Example 14 and that the transfer was accelerated by setting the substrate temperature to 130 ° C. in the transfer step, as in Example 16, A BGTC-type thin film transistor was produced in which the active surface was the surface that was on the air side during film formation. The charge mobility of the obtained thin film transistor was measured. The results are shown in Table 3.
 《例18》
 例15でのようにしてシリコン基材をオクタデシルトリクロロシラン(OTS)で処理したこと、及び転写工程において基材の温度を130℃として転写を促進したこと以外は、例16と同様にして、製膜時に空気側にあった面を活性面とするBGTC型薄膜トランジスタを作製した。得られた薄膜トランジスタについて、電荷移動度を測定した。結果を表3に示す。
Example 18
As in Example 16, except that the silicon substrate was treated with octadecyltrichlorosilane (OTS) as in Example 15 and that the transfer was accelerated by setting the substrate temperature to 130 ° C. in the transfer step. A BGTC-type thin film transistor was produced in which the active surface was the surface that was on the air side when the film was formed. The charge mobility of the obtained thin film transistor was measured. The results are shown in Table 3.
 《例19(比較)》
 例16において用いたP3HT溶液を、例16で用いたシリコン基材上に直接にスピンコーティング(1800rpm、20秒間)して、BGTC型薄膜トランジスタを得た。得られた薄膜トランジスタの電荷移動度を表3に示す。
Example 19 (Comparison)
The P3HT solution used in Example 16 was directly spin-coated (1800 rpm, 20 seconds) on the silicon substrate used in Example 16 to obtain a BGTC type thin film transistor. Table 3 shows the charge mobility of the obtained thin film transistor.
 《例20(比較)》
 例16において用いたP3HT溶液を、例17で用いたHMDS処理済みシリコン基材上に直接にスピンコーティング(1800rpm、20秒間)して、BGTC型薄膜トランジスタを得た。得られた薄膜トランジスタの電荷移動度を表3に示す。
Example 20 (Comparison)
The P3HT solution used in Example 16 was spin-coated (1800 rpm, 20 seconds) directly on the HMDS-treated silicon substrate used in Example 17 to obtain a BGTC type thin film transistor. Table 3 shows the charge mobility of the obtained thin film transistor.
 《例21(比較)》
 例16において用いたP3HT溶液を、例18で用いたOTS処理済みシリコン基材上に直接にスピンコーティング(1800rpm、20秒間)して、BGTC型薄膜トランジスタを得た。得られた薄膜トランジスタの電荷移動度を表3に示す。
<< Example 21 (comparison) >>
The P3HT solution used in Example 16 was directly spin-coated (1800 rpm, 20 seconds) on the OTS-treated silicon substrate used in Example 18 to obtain a BGTC type thin film transistor. Table 3 shows the charge mobility of the obtained thin film transistor.
 《例22》
 P3HT0.5質量部をトルエン99.5質量部に溶解して、有機半導体溶液としてのP3HT溶液を得たこと、及びUVオゾン洗浄後のシリコンウェハ基材上にマスク蒸着法にて金を真空蒸着して、ソース電極及びドレイン電極(L/w=50μm/1.5mm)を形成して、ボトムゲート・ボトムコンタクト型(BGBC型)の薄膜トランジスタとしたこと以外は、例1(空気側面/スタンプ側面の比:2.8、相対X線ピーク強度:2.5)と同様にして、薄膜トランジスタを作成した。すなわち、金の電極を有するシリコンウェハ基材を用いて、BGBC型の薄膜トランジスタとしたこと以外は例6と同様にして、薄膜トランジスタを作成した。
<< Example 22 >>
0.5 parts by mass of P3HT was dissolved in 99.5 parts by mass of toluene to obtain a P3HT solution as an organic semiconductor solution, and gold was vacuum deposited on the silicon wafer substrate after UV ozone cleaning by a mask deposition method. Then, Example 1 (air side surface / stamp side surface) except that a source electrode and a drain electrode (L / w = 50 μm / 1.5 mm) were formed to form a bottom gate / bottom contact type (BGBC type) thin film transistor. Ratio: 2.8, relative X-ray peak intensity: 2.5), and a thin film transistor was prepared. That is, a thin film transistor was formed in the same manner as in Example 6 except that a silicon wafer substrate having a gold electrode was used to form a BGBC type thin film transistor.
 このようにして得られた薄膜トランジスタ、すなわち製膜時に空気側にあった面を活性面とする薄膜トランジスタについて、電荷移動度を測定した。結果を表3に示す。 The charge mobility of the thin film transistor thus obtained, that is, the thin film transistor having the active side as the surface on the air side during film formation was measured. The results are shown in Table 3.
 《例23》
 例14でのようにしてシリコン基材をヘキサメチルジシラザン(HMDS)で処理したこと、及び転写工程において基材の温度を130℃として転写を促進したこと以外は例22と同様にして、製膜時に空気側にあった面を活性面とするBGBC型薄膜トランジスタを作製した。得られた薄膜トランジスタについて、電荷移動度を測定した。結果を表3に示す。
Example 23
In the same manner as in Example 22, except that the silicon substrate was treated with hexamethyldisilazane (HMDS) as in Example 14 and that the transfer was accelerated by setting the substrate temperature to 130 ° C. in the transfer step. A BGBC type thin film transistor was produced in which the active surface was the surface that was on the air side when the film was formed. The charge mobility of the obtained thin film transistor was measured. The results are shown in Table 3.
 《例24》
 例15でのようにしてシリコン基材をオクタデシルトリクロロシラン(OTS)で処理したこと、及び転写工程において基材の温度を130℃として転写を促進したこと以外は、例22と同様にして、製膜時に空気側にあった面を活性面とするBGBC型薄膜トランジスタを作製した。得られた薄膜トランジスタについて、電荷移動度を測定した。結果を表3に示す。
Example 24
As in Example 15, except that the silicon substrate was treated with octadecyltrichlorosilane (OTS) and that the transfer was accelerated by setting the substrate temperature to 130 ° C. in the transfer step. A BGBC type thin film transistor was produced in which the active surface was the surface that was on the air side when the film was formed. The charge mobility of the obtained thin film transistor was measured. The results are shown in Table 3.
 《例25》
 コンタクトプリント用スタンプを例5(空気側面/スタンプ側面の比:86、相対X線ピーク強度:1.9)の方法で作成した以外は、例22と同様に薄膜トランジスタの作成をおこなった。得られた薄膜トランジスタの電荷移動度を表3に示す。
Example 25
A thin film transistor was prepared in the same manner as in Example 22 except that the contact print stamp was prepared by the method of Example 5 (ratio of air side surface / stamp side surface: 86, relative X-ray peak intensity: 1.9). Table 3 shows the charge mobility of the obtained thin film transistor.
 《例26》
 コンタクトプリント用スタンプを例5の方法で作成した以外は、例23と同様に薄膜トランジスタの作成をおこなった。得られた薄膜トランジスタの電荷移動度を表3に示す。
Example 26
A thin film transistor was prepared in the same manner as in Example 23 except that the contact print stamp was prepared by the method of Example 5. Table 3 shows the charge mobility of the obtained thin film transistor.
 《例27》
 コンタクトプリント用スタンプを例5の方法で作成した以外は、例24と同様に薄膜トランジスタの作成をおこなった。得られた薄膜トランジスタの電荷移動度を表3に示す。
Example 27
A thin film transistor was produced in the same manner as in Example 24 except that the contact print stamp was produced by the method of Example 5. Table 3 shows the charge mobility of the obtained thin film transistor.
 《例28(比較)》
 例22において用いたP3HT溶液を、例22で用いたシリコン基材上に直接にスピンコーティング(1800rpm、20秒間)して、BGBC型薄膜トランジスタを得た。得られた薄膜トランジスタの電荷移動度を表3に示す。
Example 28 (Comparison)
The P3HT solution used in Example 22 was directly spin-coated (1800 rpm, 20 seconds) on the silicon substrate used in Example 22 to obtain a BGBC type thin film transistor. Table 3 shows the charge mobility of the obtained thin film transistor.
 《例28(比較)》
 例22において用いたP3HT溶液を、例23で用いたHMDS処理済みシリコン基材上に直接にスピンコーティング(1800rpm、20秒間)して、BGBC型薄膜トランジスタを得た。得られた薄膜トランジスタの電荷移動度を表3に示す。
Example 28 (Comparison)
The P3HT solution used in Example 22 was directly spin-coated (1800 rpm, 20 seconds) on the HMDS-treated silicon substrate used in Example 23 to obtain a BGBC type thin film transistor. Table 3 shows the charge mobility of the obtained thin film transistor.
 《例30(比較)》
 例22において用いたP3HT溶液を、例24で用いたOTS処理済みシリコン基材上に直接にスピンコーティング(1800rpm、20秒間)して、BGBC型薄膜トランジスタを得た。得られた薄膜トランジスタの電荷移動度を表3に示す。
Example 30 (Comparison)
The P3HT solution used in Example 22 was directly spin-coated (1800 rpm, 20 seconds) on the OTS-treated silicon substrate used in Example 24 to obtain a BGBC type thin film transistor. Table 3 shows the charge mobility of the obtained thin film transistor.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3から理解されるように、コンタクトプリント法で製造した例16~18及び例22~27の薄膜トランジスタは、スピンコート法で製造した対応する例19~21及び例28~30の薄膜トランジスタと比較して、良好な電荷移動度を有している。 As can be seen from Table 3, the thin film transistors of Examples 16 to 18 and Examples 22 to 27 manufactured by the contact printing method are compared with the corresponding thin film transistors of Examples 19 to 21 and Examples 28 to 30 manufactured by the spin coat method. And has a good charge mobility.
 この表3において、「スピンコートに対する比」は、コンタクトプリント法で製造した薄膜トランジスタの電荷移動度と、対応するスピンコート法で製造した薄膜トランジスタとの移動度との比を示している。この比から理解されるように、ボトムゲート・ボトムコンタクト型(BGBC型)の薄膜トランジスタの作成の際にコンタクトプリント法を用いることによる移動度の増加率は、ボトムゲート・トップコンタクト型(BGTC型)の薄膜トランジスタの作成の際にコンタクトプリント法を用いる場合よりも大きい。すなわち、BGBC型の薄膜トランジスタの作成においては、コンタクトプリント法を用いることが特に好ましいことが理解される。 In Table 3, “ratio to spin coating” indicates the ratio between the charge mobility of the thin film transistor manufactured by the contact printing method and the mobility of the thin film transistor manufactured by the corresponding spin coating method. As understood from this ratio, the rate of increase in mobility due to the use of the contact printing method in the production of the bottom gate / bottom contact type (BGBC type) thin film transistor is the bottom gate / top contact type (BGTC type). This is larger than that in the case of using the contact printing method in producing the thin film transistor. That is, it is understood that it is particularly preferable to use a contact printing method in the production of a BGBC type thin film transistor.
 10、133、143、153、163  本発明の有機半導体膜
 11  本発明の有機半導体膜(基材に接している面側)
 12  本発明の有機半導体膜(基材に接している面側の反対面側)
 15、100  基材
 20  従来の有機半導体膜
 21  従来の有機半導体膜(基材に接している面側)
 22  従来の有機半導体膜(基材に接している面側の反対面側)
 130、140、150、160  本発明の薄膜トランジスタ
 131、141、151、161  ゲート電極
 132、142、152、162  ゲート絶縁膜
 133、143、153、163  半導体膜
 134、144、154、164  ソース電極
 135、145、155、165  ドレイン電極
 50  転写部-周縁部構造を有するスタンプ
 51、51a、51b、51c  転写部
 52、52a、52b、52c  周縁部
 61  有機半導体溶液
10, 133, 143, 153, 163 Organic semiconductor film of the present invention 11 Organic semiconductor film of the present invention (surface side in contact with substrate)
12 Organic semiconductor film of the present invention (opposite surface side in contact with substrate)
15, 100 Base material 20 Conventional organic semiconductor film 21 Conventional organic semiconductor film (surface side in contact with base material)
22 Conventional organic semiconductor film (opposite surface side in contact with substrate)
130, 140, 150, 160 Thin film transistor of the present invention 131, 141, 151, 161 Gate electrode 132, 142, 152, 162 Gate insulating film 133, 143, 153, 163 Semiconductor film 134, 144, 154, 164 Source electrode 135, 145, 155, 165 Drain electrode 50 Stamp having transfer part- periphery structure 51, 51a, 51b, 51c Transfer part 52, 52a, 52b, 52c Peripheral part 61 Organic semiconductor solution

Claims (38)

  1.  相対する2つの表面側の電荷移動度の比{(電荷移動度が大きい表面側の電荷移動度)/(電荷移動度が小さい表面側の電荷移動度)}の値が1以上10未満であり、且つシリコンウェハ上にスピンコーティングによって作製した同一の厚さ及び材料の有機半導体膜についてのピーク高さを基準としたときに、相対X線反射ピーク高さが2.0以上である、有機半導体膜。 The ratio of the charge mobility on the two opposite surface sides {(charge mobility on the surface side with high charge mobility) / (charge mobility on the surface side with low charge mobility)} is 1 or more and less than 10 And an organic semiconductor having a relative X-ray reflection peak height of 2.0 or more when the peak height of an organic semiconductor film of the same thickness and material produced by spin coating on a silicon wafer is used as a reference film.
  2.  前記電荷移動度の比の値が5以下である、請求項1に記載の有機半導体膜。 The organic semiconductor film according to claim 1, wherein the value of the charge mobility ratio is 5 or less.
  3.  前記有機半導体膜が溶液法によって得られたものである、請求項1又は2に記載の有機半導体膜。 The organic semiconductor film according to claim 1 or 2, wherein the organic semiconductor film is obtained by a solution method.
  4.  前記有機半導体膜がコンタクトプリント法によって得られたものである、請求項1~3のいずれかに記載の有機半導体膜。 The organic semiconductor film according to any one of claims 1 to 3, wherein the organic semiconductor film is obtained by a contact printing method.
  5.  前記有機半導体膜の電荷移動度が大きい表面側の電荷移動度が、1.00×10-5cm/(V・s)以上である、請求項1~4のいずれかに記載の有機半導体膜。 5. The organic semiconductor according to claim 1, wherein the charge mobility on the surface side of the organic semiconductor film having a large charge mobility is 1.00 × 10 −5 cm 2 / (V · s) or more. film.
  6.  有機半導体材料が溶解及び/又は分散している有機半導体溶液を提供するステップ、
     前記有機半導体溶液を、基材又は第1のスタンプ上に適用して、未乾燥の有機半導体膜を得るステップ、
     前記基材又は第1のスタンプ上において前記未乾燥の有機半導体膜を熟成させるステップ、
    を含み、且つ前記基材又は第1のスタンプの表面の水に対する接触角が100°以上である、有機半導体膜の製造方法。
    Providing an organic semiconductor solution in which the organic semiconductor material is dissolved and / or dispersed;
    Applying the organic semiconductor solution onto a substrate or a first stamp to obtain an undried organic semiconductor film;
    Aging the undried organic semiconductor film on the substrate or first stamp;
    And an angle of contact with water on the surface of the base material or the first stamp is 100 ° or more.
  7.  前記熟成を、前記未乾燥の有機半導体膜を10秒以上にわたって保持することによって行う、請求項6に記載の方法。 The method according to claim 6, wherein the aging is performed by holding the undried organic semiconductor film for 10 seconds or more.
  8.  前記熟成を、前記未乾燥の有機半導体膜を50℃未満の雰囲気に保持することによって行う、請求項6又は7に記載の方法。 The method according to claim 6 or 7, wherein the aging is performed by maintaining the undried organic semiconductor film in an atmosphere of less than 50 ° C.
  9.  前記第1のスタンプ上において熟成させた有機半導体層を転写するステップを更に含む、請求項6~8のいずれかに記載の方法。 The method according to any one of claims 6 to 8, further comprising a step of transferring an organic semiconductor layer aged on the first stamp.
  10.  前記基材又は第1のスタンプ上において熟成させた有機半導体層を、乾燥及び/又は焼成するステップを更に含む、請求項6~9のいずれかに記載の方法。 The method according to any one of claims 6 to 9, further comprising a step of drying and / or firing the organic semiconductor layer aged on the substrate or the first stamp.
  11.  前記基材又は第1のスタンプの表面の水に対する接触角が105°以上である、請求項6~10のいずれかに記載の方法。 The method according to any one of claims 6 to 10, wherein a contact angle with respect to water of the surface of the substrate or the first stamp is 105 ° or more.
  12.  請求項1~5のいずれかに記載の有機半導体膜を有する、有機半導体デバイス。 An organic semiconductor device comprising the organic semiconductor film according to any one of claims 1 to 5.
  13.  薄膜トランジスタである、請求項12に記載の有機半導体デバイス。 The organic semiconductor device according to claim 12, which is a thin film transistor.
  14.  前記有機半導体膜がコンタクトプリント法によって得られたものであり、かつ前記有機半導体デバイスが、ボトムゲート・ボトムコンタクト型又はトップゲート・ボトムコンタクト型の薄膜トランジスタである、請求項13に記載の有機半導体デバイス。 The organic semiconductor device according to claim 13, wherein the organic semiconductor film is obtained by a contact printing method, and the organic semiconductor device is a bottom gate / bottom contact type or top gate / bottom contact type thin film transistor. .
  15.  相対する2つの表面側の電荷移動度の比{(電荷移動度が大きい表面側の電荷移動度)/(電荷移動度が小さい表面側の電荷移動度)}の値が2以上である、有機半導体膜。 The ratio of the charge mobility on the two surface sides opposite to each other {(the charge mobility on the surface side having a large charge mobility) / (the charge mobility on the surface side having a small charge mobility)} is 2 or more. Semiconductor film.
  16.  前記電荷移動度の比の値が10以上である、請求項15に記載の有機半導体膜。 The organic semiconductor film according to claim 15, wherein a value of the charge mobility ratio is 10 or more.
  17.  前記電荷移動度の比の値が150以下である、請求項15又は16に記載の有機半導体膜。 The organic semiconductor film according to claim 15 or 16, wherein a value of the charge mobility ratio is 150 or less.
  18.  前記有機半導体膜が溶液法によって得られたものである、請求項15~17のいずれかに記載の有機半導体膜。 The organic semiconductor film according to any one of claims 15 to 17, wherein the organic semiconductor film is obtained by a solution method.
  19.  前記有機半導体膜がコンタクトプリント法によって得られたものである、請求項15~18のいずれかに記載の有機半導体膜。 The organic semiconductor film according to any one of claims 15 to 18, wherein the organic semiconductor film is obtained by a contact printing method.
  20.  前記有機半導体膜の電荷移動度が大きい表面側の電荷移動度が、1.00×10-5cm/(V・s)以上である、請求項15~19のいずれかに記載の有機半導体膜。 The organic semiconductor according to any one of claims 15 to 19, wherein the charge mobility on the surface side of the organic semiconductor film having a large charge mobility is 1.00 × 10 -5 cm 2 / (V · s) or more. film.
  21.  シリコンウェハ上にスピンコーティングによって作製した同一の厚さ及び材料の有機半導体膜についてのピーク高さを基準としたときに、相対X線反射ピーク高さが1.3以上である、請求項15~20のいずれかに記載の有機半導体膜。 The relative X-ray reflection peak height is 1.3 or more when the peak height of an organic semiconductor film of the same thickness and material produced by spin coating on a silicon wafer is used as a reference. The organic semiconductor film according to any one of 20.
  22.  相対する前記2つの表面の間で、前記有機半導体膜を構成する有機半導体材料の結晶配向の程度が徐々に変化している、請求項15~21のいずれかに記載の有機半導体膜。 The organic semiconductor film according to any one of claims 15 to 21, wherein the degree of crystal orientation of the organic semiconductor material constituting the organic semiconductor film gradually changes between the two opposing surfaces.
  23.  有機半導体材料が溶解及び/又は分散している有機半導体溶液を提供するステップ、
     前記有機半導体溶液を、基材又は第1のスタンプ上に適用して、未乾燥の有機半導体膜を得るステップ、
     前記基材又は第1のスタンプ上において前記未乾燥の有機半導体膜を熟成させるステップ、
    を含む、有機半導体膜の製造方法。
    Providing an organic semiconductor solution in which the organic semiconductor material is dissolved and / or dispersed;
    Applying the organic semiconductor solution onto a substrate or a first stamp to obtain an undried organic semiconductor film;
    Aging the undried organic semiconductor film on the substrate or first stamp;
    A method for producing an organic semiconductor film, comprising:
  24.  前記熟成を、前記未乾燥の有機半導体膜を10秒以上にわたって保持することによって行う、請求項23に記載の方法。 The method according to claim 23, wherein the aging is performed by holding the undried organic semiconductor film for 10 seconds or more.
  25.  前記熟成を、前記未乾燥の有機半導体膜を50℃未満の雰囲気に保持することによって行う、請求項23又は24に記載の方法。 The method according to claim 23 or 24, wherein the aging is performed by maintaining the undried organic semiconductor film in an atmosphere of less than 50 ° C.
  26.  前記第1のスタンプ上において熟成させた有機半導体層を転写するステップを更に含む、請求項23~25のいずれかに記載の方法。 The method according to any one of claims 23 to 25, further comprising a step of transferring an organic semiconductor layer aged on the first stamp.
  27.  前記基材又は第1のスタンプ上において熟成させた有機半導体層を、乾燥及び/又は焼成するステップを更に含む、請求項23~26のいずれかに記載の方法。 The method according to any one of claims 23 to 26, further comprising the step of drying and / or baking the organic semiconductor layer aged on the substrate or the first stamp.
  28.  前記基材又は第1のスタンプの表面の水に対する接触角が40°以上である、請求項23~27のいずれかに記載の方法。 The method according to any one of claims 23 to 27, wherein a contact angle of water on the surface of the base material or the first stamp is 40 ° or more.
  29.  請求項15~22のいずれかに記載の有機半導体膜を有する、有機半導体デバイス。 An organic semiconductor device having the organic semiconductor film according to any one of claims 15 to 22.
  30.  薄膜トランジスタである、請求項29に記載の有機半導体デバイス。 The organic-semiconductor device of Claim 29 which is a thin-film transistor.
  31.  前記有機半導体膜がコンタクトプリント法によって得られたものであり、かつ前記有機半導体デバイスが、ボトムゲート・ボトムコンタクト型又はトップゲート・ボトムコンタクト型の薄膜トランジスタである、請求項30に記載の有機半導体デバイス。 The organic semiconductor device according to claim 30, wherein the organic semiconductor film is obtained by a contact printing method, and the organic semiconductor device is a bottom gate / bottom contact type or top gate / bottom contact type thin film transistor. .
  32.  回路基材の一方の面上に請求項30又は31に記載の薄膜トランジスタを2つ以上有する電気回路であって、
     前記薄膜トランジスタのうちの少なくとも1つにおいて、前記有機半導体膜の電荷移動度が大きい表面側が、前記回路基材に向かい合うようにして、前記有機半導体膜が配置されており、且つこの表面側が、前記薄膜トランジスタにおいて活性面となっており、且つ
     前記薄膜トランジスタのうちの少なくとも他の1つにおいて、前記有機半導体膜の電荷移動度が大きい表面側が、前記回路基材の反対側に向くようにして、前記有機半導体膜が配置されており、且つこの表面側が、前記薄膜トランジスタにおいて活性面となっている、
    電気回路。
    An electric circuit having two or more thin film transistors according to claim 30 or 31 on one surface of a circuit substrate,
    In at least one of the thin film transistors, the organic semiconductor film is disposed such that a surface side of the organic semiconductor film having a large charge mobility faces the circuit substrate, and the surface side of the thin film transistor is the thin film transistor. In the organic semiconductor, the surface side of the organic semiconductor film having a large charge mobility faces the opposite side of the circuit substrate in at least another one of the thin film transistors. A film is disposed, and the surface side is an active surface in the thin film transistor.
    electric circuit.
  33.  転写する有機半導体膜を保持するための転写部、及び前記転写部の周囲の周縁部を有し、且つ前記転写部の水に対する接触角が、前記周縁部の水に対する接触角よりも20°以上大きい、コンタクトプリント用スタンプ。 A transfer part for holding the organic semiconductor film to be transferred, and a peripheral part around the transfer part, and the contact angle of the transfer part with water is 20 ° or more than the contact angle with water of the peripheral part A large stamp for contact printing.
  34.  前記転写部の水に対する接触角が、40°以上である、請求項33に記載のスタンプ。 34. The stamp according to claim 33, wherein a contact angle of the transfer portion with respect to water is 40 ° or more.
  35.  前記転写部と前記周縁部とが同一平面上にある、請求項33又は34に記載のスタンプ。 35. The stamp according to claim 33 or 34, wherein the transfer portion and the peripheral portion are on the same plane.
  36.  前記転写部が、前記周縁部に対して凹部となっている、請求項33~35のいずれかに記載のスタンプ。 The stamp according to any one of claims 33 to 35, wherein the transfer portion is a recess with respect to the peripheral portion.
  37.  前記転写部の大きさが、0.01μm~1,000,000μmである、請求項33~36のいずれかに記載のスタンプ。 The size of the transfer portion is 0.01μm 2 ~ 1,000,000μm 2, the stamp according to any one of claims 33-36.
  38.  溶媒と前記溶媒中に溶解及び/又は分散している有機半導体材料とを含有する有機半導体溶液を提供するステップ、並びに
     有機半導体溶液を、請求項33~37のいずれかに記載のスタンプの前記転写部に適用して、有機半導体膜を得るステップ、
    を含む、有機半導体膜の製造方法。
    A step of providing an organic semiconductor solution containing a solvent and an organic semiconductor material dissolved and / or dispersed in the solvent, and the transfer of the stamp as claimed in any of claims 33 to 37. Applying to the part to obtain an organic semiconductor film,
    A method for producing an organic semiconductor film, comprising:
PCT/JP2011/060296 2010-05-12 2011-04-27 Organic semiconductor film and method for manufacturing the same, and stamp for contact printing WO2011142267A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/697,489 US20130099215A1 (en) 2010-05-12 2011-04-27 Organic semiconductor film, production method thereof, and contact printing stamp
EP11780524A EP2571044A1 (en) 2010-05-12 2011-04-27 Organic semiconductor film and method for manufacturing the same, and stamp for contact printing
CN2011800236663A CN102870202A (en) 2010-05-12 2011-04-27 Organic semiconductor film and method for manufacturing the same, and stamp for contact printing
JP2012514763A JP5398910B2 (en) 2010-05-12 2011-04-27 ORGANIC SEMICONDUCTOR FILM, ITS MANUFACTURING METHOD, AND CONTACT PRINT STAMP
KR1020127029412A KR20130079393A (en) 2010-05-12 2011-04-27 Organic semiconductor film and method for manufacturing the same, and stamp for contact printing

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2010-110219 2010-05-12
JP2010110219 2010-05-12
JP2010110263 2010-05-12
JP2010-110230 2010-05-12
JP2010110230 2010-05-12
JP2010-110263 2010-05-12
JP2010-191054 2010-08-27
JP2010191054 2010-08-27
JP2010-191159 2010-08-27
JP2010191159 2010-08-27

Publications (1)

Publication Number Publication Date
WO2011142267A1 true WO2011142267A1 (en) 2011-11-17

Family

ID=44914323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060296 WO2011142267A1 (en) 2010-05-12 2011-04-27 Organic semiconductor film and method for manufacturing the same, and stamp for contact printing

Country Status (7)

Country Link
US (1) US20130099215A1 (en)
EP (1) EP2571044A1 (en)
JP (1) JP5398910B2 (en)
KR (1) KR20130079393A (en)
CN (1) CN102870202A (en)
TW (1) TW201205913A (en)
WO (1) WO2011142267A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013183289A1 (en) * 2012-06-08 2013-12-12 パナソニック株式会社 Thin film transistor, display panel, and method for manufacturing thin film transistor
US20140199807A1 (en) * 2013-01-17 2014-07-17 Stmicroelectronics S.R.L. Thin film transistors formed by organic semiconductors using a hybrid patterning regime

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5688183B2 (en) * 2011-03-30 2015-03-25 ▲海▼洋王照明科技股▲ふん▼有限公司 Substrate and manufacturing method thereof, and organic electroluminescent device using the substrate
CN104218151A (en) * 2014-08-20 2014-12-17 京东方科技集团股份有限公司 Organic thin film transistor, manufacturing method thereof, array substrate and display device
WO2016042924A1 (en) * 2014-09-18 2016-03-24 富士フイルム株式会社 Transistor and method for manufacturing transistor
CN105140261B (en) * 2015-07-28 2018-09-11 京东方科技集团股份有限公司 Organic Thin Film Transistors and preparation method thereof, array substrate and display device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004260121A (en) * 2003-02-28 2004-09-16 Hitachi Ltd Organic semiconductor element and method for manufacturing the same, and display unit using the same
JP2005032978A (en) 2003-07-14 2005-02-03 Canon Inc Field effect organic transistor
JP2005197719A (en) * 2003-12-30 2005-07-21 Samsung Electronics Co Ltd Semiconductor device having adjusted mobility and thin film transistor to which the same is applied
JP2007095777A (en) * 2005-09-27 2007-04-12 Sanyo Electric Co Ltd Organic semiconductor thin film, manufacturing method thereof, and field effect transistor
JP2007311377A (en) 2006-05-16 2007-11-29 Sony Corp Manufacturing method of thin-film transistor, thin-film transistor, and display
JP2008130882A (en) * 2006-11-22 2008-06-05 Konica Minolta Holdings Inc Organic semiconductor thin film, and organic thin film transistor
JP2008277728A (en) 2006-09-29 2008-11-13 Dainippon Printing Co Ltd Organic semiconductor element, manufacturing method thereof, organic transistor array, and display
JP2009526911A (en) * 2006-02-15 2009-07-23 ビーエーエスエフ ソシエタス・ヨーロピア Crystalline compound pattern forming method on surface
JP2009212127A (en) 2008-02-29 2009-09-17 Dainippon Printing Co Ltd Organic transistor and method of manufacturing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4736340B2 (en) * 2004-03-31 2011-07-27 大日本印刷株式会社 Organic semiconductor structure, manufacturing method thereof, and organic semiconductor device
US8202630B2 (en) * 2004-11-05 2012-06-19 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and light emitting device using the same
KR101296712B1 (en) * 2005-04-21 2013-08-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light emitting element, light emitting device, and electronic device
JP2007067390A (en) * 2005-08-05 2007-03-15 Sony Corp Manufacturing method of semiconductor device and manufacturing apparatus of semiconductor device
FR2918797B1 (en) * 2007-07-13 2009-11-06 Sofileta Sa ORGANIC FIELD EFFECT TRANSISTOR AND METHOD OF MANUFACTURING THE TRANSISTOR
JP5576611B2 (en) * 2008-01-25 2014-08-20 旭化成株式会社 Method for producing novel organic semiconductor thin film comprising laminating sheet-like crystals of condensed polycyclic aromatic compound on substrate, and liquid dispersion

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004260121A (en) * 2003-02-28 2004-09-16 Hitachi Ltd Organic semiconductor element and method for manufacturing the same, and display unit using the same
JP2005032978A (en) 2003-07-14 2005-02-03 Canon Inc Field effect organic transistor
JP2005197719A (en) * 2003-12-30 2005-07-21 Samsung Electronics Co Ltd Semiconductor device having adjusted mobility and thin film transistor to which the same is applied
JP2007095777A (en) * 2005-09-27 2007-04-12 Sanyo Electric Co Ltd Organic semiconductor thin film, manufacturing method thereof, and field effect transistor
JP2009526911A (en) * 2006-02-15 2009-07-23 ビーエーエスエフ ソシエタス・ヨーロピア Crystalline compound pattern forming method on surface
JP2007311377A (en) 2006-05-16 2007-11-29 Sony Corp Manufacturing method of thin-film transistor, thin-film transistor, and display
JP2008277728A (en) 2006-09-29 2008-11-13 Dainippon Printing Co Ltd Organic semiconductor element, manufacturing method thereof, organic transistor array, and display
JP2008130882A (en) * 2006-11-22 2008-06-05 Konica Minolta Holdings Inc Organic semiconductor thin film, and organic thin film transistor
JP2009212127A (en) 2008-02-29 2009-09-17 Dainippon Printing Co Ltd Organic transistor and method of manufacturing the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ATSUSHI TAKAKUWA; REIKO AZUMI: "Influence of Solvents in Micropatterning of Semiconductors by Microcontact Printing and Application to Thin-Film Transistor Devices", JPN. J. APPL. PHYS., vol. 47, no. 2, 2008, pages 1115 - 1118
Y.H. KIM: "Fabrication of Poly(3-hexylthiophene) Thin Film Transistors Using Microcontact Printing Technology", PROC. INT. DISP. WORKSHOPS, vol. 9, 2002, pages 255 - 258

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013183289A1 (en) * 2012-06-08 2013-12-12 パナソニック株式会社 Thin film transistor, display panel, and method for manufacturing thin film transistor
US8921867B2 (en) 2012-06-08 2014-12-30 Panasonic Corporation Thin-film transistor, display panel, and method for producing a thin-film transistor
US20140199807A1 (en) * 2013-01-17 2014-07-17 Stmicroelectronics S.R.L. Thin film transistors formed by organic semiconductors using a hybrid patterning regime
US9012259B2 (en) * 2013-01-17 2015-04-21 Stmicroelectronics S.R.L. Thin film transistors formed by organic semiconductors using a hybrid patterning regime

Also Published As

Publication number Publication date
KR20130079393A (en) 2013-07-10
TW201205913A (en) 2012-02-01
US20130099215A1 (en) 2013-04-25
EP2571044A1 (en) 2013-03-20
CN102870202A (en) 2013-01-09
JP5398910B2 (en) 2014-01-29
JPWO2011142267A1 (en) 2013-07-22

Similar Documents

Publication Publication Date Title
JP5398910B2 (en) ORGANIC SEMICONDUCTOR FILM, ITS MANUFACTURING METHOD, AND CONTACT PRINT STAMP
US7485576B2 (en) Method of forming conductive pattern, thin film transistor, and method of manufacturing the same
US8202759B2 (en) Manufacturing method of organic semiconductor device
JP2007512680A (en) Thin film transistor sealing method
US9263686B2 (en) Method of manufacturing organic thin film transistor having organic polymer insulating layer
US7955915B2 (en) Organic field effect transistor and method of manufacturing the same
US20200266353A1 (en) Organic thin film transistor, and fabricating method thereof
US20160072086A1 (en) Thin film transistor, transistor array, method of manufacturing thin film transistor, and method of manufacturing transistor array
JP2007027525A (en) Method of manufacturing semiconductor device, semiconductor device, and method of forming insulation film
JP2010219114A (en) Carbon electrode, method for manufacturing the same, organic transistor and method for manufacturing the same
KR101172187B1 (en) Fabrication of thin film transistor and integrated circuits by spray printing method
US8614445B2 (en) Alkylsilane laminate, production method thereof and thin-film transistor
KR20120135603A (en) Organic semiconductor film fabricated by bar coating method
Yang et al. Effect of In Situ Annealing Treatment on the Mobility and Morphology of TIPS-Pentacene-Based Organic Field-Effect Transistors
US10193068B2 (en) Method of manufacturing a specifically dimensioned thin film transistor, thin film transistor, and transistor array
US20120049173A1 (en) Organic Field Effect Transistor with Block Copolymer Layer
WO2012124666A1 (en) Thin-film transistor and manufacturing method therefor
JP2008071958A (en) Organic thin-film transistor and manufacturing method therefor
Kushida et al. Field-effect transistor characteristics and microstructure of regioregular poly (3-hexylthiophene) on alkylsilane self-assembled monolayers prepared by microcontact printing
US8951922B2 (en) Method for fabricating an interlayer
JP2018037486A (en) Thin film transistor manufacturing method
KR102026191B1 (en) Method for preparing surface modified polymer thin film and method for fabricating organic electronic device comprising the same
JP5630364B2 (en) Organic semiconductor device manufacturing method and organic semiconductor device
JP5757142B2 (en) Method for manufacturing organic semiconductor element
JP5534945B2 (en) Alkylsilane laminate, manufacturing method thereof, and thin film transistor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180023666.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11780524

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2012514763

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127029412

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011780524

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13697489

Country of ref document: US