WO2011141907A1 - Low volume accurate injector - Google Patents

Low volume accurate injector Download PDF

Info

Publication number
WO2011141907A1
WO2011141907A1 PCT/IL2011/000368 IL2011000368W WO2011141907A1 WO 2011141907 A1 WO2011141907 A1 WO 2011141907A1 IL 2011000368 W IL2011000368 W IL 2011000368W WO 2011141907 A1 WO2011141907 A1 WO 2011141907A1
Authority
WO
WIPO (PCT)
Prior art keywords
needle
substance
dosage
cartridge
housing
Prior art date
Application number
PCT/IL2011/000368
Other languages
French (fr)
Inventor
Ruth Alon
Original Assignee
Medimop Medical Projects Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medimop Medical Projects Ltd. filed Critical Medimop Medical Projects Ltd.
Priority to EP11780304.9A priority Critical patent/EP2569031B1/en
Priority to US13/643,470 priority patent/US9452261B2/en
Publication of WO2011141907A1 publication Critical patent/WO2011141907A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/20Automatic syringes, e.g. with automatically actuated piston rod, with automatic needle injection, filling automatically
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/24Ampoule syringes, i.e. syringes with needle for use in combination with replaceable ampoules or carpules, e.g. automatic
    • A61M2005/2403Ampoule inserted into the ampoule holder
    • A61M2005/2411Ampoule inserted into the ampoule holder from the front
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M2005/3125Details specific display means, e.g. to indicate dose setting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M2005/3125Details specific display means, e.g. to indicate dose setting
    • A61M2005/3126Specific display means related to dosing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31565Administration mechanisms, i.e. constructional features, modes of administering a dose
    • A61M5/31576Constructional features or modes of drive mechanisms for piston rods
    • A61M2005/31588Constructional features or modes of drive mechanisms for piston rods electrically driven
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/14244Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/145Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons
    • A61M5/1452Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons pressurised by means of pistons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/24Ampoule syringes, i.e. syringes with needle for use in combination with replaceable ampoules or carpules, e.g. automatic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/3146Priming, e.g. purging, reducing backlash or clearance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31533Dosing mechanisms, i.e. setting a dose
    • A61M5/31545Setting modes for dosing
    • A61M5/31548Mechanically operated dose setting member
    • A61M5/3156Mechanically operated dose setting member using volume steps only adjustable in discrete intervals, i.e. individually distinct intervals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31565Administration mechanisms, i.e. constructional features, modes of administering a dose
    • A61M5/31566Means improving security or handling thereof
    • A61M5/31573Accuracy improving means
    • A61M5/31575Accuracy improving means using scaling up or down transmissions, e.g. gearbox
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/32Needles; Details of needles pertaining to their connection with syringe or hub; Accessories for bringing the needle into, or holding the needle on, the body; Devices for protection of needles
    • A61M5/3202Devices for protection of the needle before use, e.g. caps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/48Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests having means for varying, regulating, indicating or limiting injection pressure
    • A61M5/484Regulating injection pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/48Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests having means for varying, regulating, indicating or limiting injection pressure
    • A61M5/488Limiting injection pressure

Definitions

  • Applications of the present invention relate generally to substance administration, and specifically to apparatus and methods for administering cosmeceuticals and other drugs.
  • Mesotherapy is described by Wikipedia as a non-surgical cosmetic medicine treatment.
  • Mesotherapy employs multiple injections of pharmaceutical and homeopathic medications, plant extracts, vitamins, and other ingredients into the subcutaneous fat.
  • WO 08/057976 to Sibbitt et al. describes multiple dose syringe apparatus and methods which are described as being suitable for use to administer multiple small doses of drugs particularly for dermatology, plastic surgery, cosmetic surgery, and neurological medicine.
  • the multiple dose syringes can be constructed from a conventional syringe and conventional plunger with adapters, and also by individual injection mounding.
  • WO 06/102676 to Perez et al. describes injectable implants that are described as being useful in supplementing soft tissue, particularly skin.
  • the publication relates to dermal filler compositions of biocompatible polyethylene oxides that may be introduced, perhaps by injection, into areas of soft tissue often considered in need of augmentation. Examples include cosmetic enhancement or correction of facial defects due to scarring, aging and the like.
  • US 3,794,028 to Mueller et al. describes a method of depilation in a human by injecting a dose of chemical depilatory solution into a hair follicle to permanently destroy hair growth at that location.
  • Injection of the chemical depilatory solution may be effected by means of a hypodermic syringe for penetrating beneath the skin surface and for dispensing effective dosage amounts of the depilatory solution into the follicle.
  • US 5,366,498 to Brannan et al. describes a device for correcting fine superficial facial lines, which comprises a syringe fitted with a 31-33 gauge needle and an aqueous suspension of non-crosslinked fibrillar atelopeptide collagen contained within the syringe barrel, the concentration of collagen in the suspension being in the range of 10 to 50 mg/ml, and the suspension exhibiting an extrusion plot in which there is a smooth substantially linear increase in force up to a substantially constant force in the range of 5 to 30 newtons.
  • a device for practicing the method includes a needle cannula having a forward tip and a limiter portion having a skin engaging surface surrounding the needle cannula.
  • the needle cannula is in fluid communication with the substance and the tip of the needle cannula extends beyond the skin engaging surface a distance equal to approximately 0.5 mm to 3.0 mm.
  • the needle cannula includes a fixed angle of orientation relative to the plane of the skin engaging surface.
  • the skin engaging surface limits penetration of the needle tip into the skin so that the substance can be expelled through the needle tip into the dermis layer.
  • the fixed angle of orientation of the needle cannula is generally perpendicular relative to the skin surface, and the skin engaging surface is generally flat.
  • US Patent Application Publication 2008/0262436 to Olson describes an injection device comprising a tubular elongated main body, a needle shield slidably arranged in said main body, a needle shield link slidably connected to said needle shield, a enclosure containing medicament arranged in said main body, a needle connected to said enclosure, a plunger operatively arranged to said enclosure for ejecting said medicament through said needle and arranged on its upper part with a number of outwardly extending stop members, spring means arranged to said plunger for operating said plunger, a dose activating means, a needle shield spring surrounding the needle shield link.
  • the device is characterised in that said injection device further comprises a first tubular member rotationally and slidably arranged inside said needle shield link, said tubular member comprises a number or ridges and protrusions on both its outer and inner surfaces, said ridges and protrusions on the outer surface of the tubular member co-operate with guide members arranged on the inner surface of said needle shield link, said ridges and protrusions on the inner surface of the tubular member co-operate with the outwardly extending stop members of the plunger that said injection device further comprises a second tubular member arranged inside said housing, arranged and designed with a number of ridges and protrusions on its inner and outer surfaces capable of setting and delivering a certain preset dose.
  • US Patent 7,364,570 to Gerondale et al. describes a controlled volume injection/aspiration device includes a syringe having a body for containing a medicament, a needle and a piston slidably disposed within the body.
  • a shell is provided for receiving the syringe body and a plunger rack is disposed within the shell.
  • a manually operated control is disposed in an operative relationship with the plunger rack for moving the plunger rack in a stepwise forward direction causing the piston to eject discrete doses of medication from the syringe body through the needle.
  • the manual operated control is also operative for moving the piston in a stepwise reverse direction causing the piston to aspirate fluid into the syringe body through the needle.
  • An insulin pen is described by Wikipedia as an insulin injection system for the treatment of diabetes.
  • a pen has a disposable needle, a vial of insulin, and the pen housing.
  • the user screws on a new needle, turns a dial on the end of the pen to the number of units of insulin needed, and inserts the needle into the skin. She then presses a button on the end of the pen to deliver the selected dose, waits until the dose is delivered, and removes the needle.
  • a hand-held device which comprises a dosage regulator for regulating the dosage and speed of delivery of substances such as drugs, vitamins, amino acids, collagen, BotoxTM, viscous substances, and/or other substances to a treatment site on skin of a subject.
  • the hand-held device is couplable to or is coupled to a needle which has a skin-insertion portion that is 0.3-2.5 mm in length, and an outer diameter that is less than 0.23 mm.
  • the hand-held device accommodates variously sized cartridges containing various substances. Expulsion of the substances from the cartridge is controlled by the dosage regulator, which is actuated by a user.
  • the electronic dosage regulator actuates the motor in a pulsatile manner so as to produce brief periods of high pressure in the device that expel a predetermined volume of the substance through the needle at a controlled rate.
  • This pulsatile mode of operation of the device is particularly useful for regulating the pressure of a highly viscous substance, such as collagen and BotoxTM, as it passes through the needle. Because of this regulation in pressure, the device allows the use of small diameter needles, which reduces or eliminates discomfort associated with multiple injections, as are facilitated by the handheld device.
  • the dosage is user-selectable by the user, who adjusts a setting of the dosage regulator.
  • the dosage regulator provides a plurality of possible settings of the dosage, including at least one dosage that is less than or equal to 10 ul (microliters), and typically other dosages that are higher than this value.
  • a user-activatable injection driver drives the substance through the needle.
  • the hand-held device accommodates variously sized cartridges containing various substances.
  • An example of such cartridge includes a vial of BotoxTM powder which is applied to the hand-held device, and which functions as the cartridge.
  • a small-diameter needle is coupled to the device, and the device facilitates drawing of saline solution through the needle and into the vial in order to suspend the BotoxTM powder.
  • the device eliminates a step in the BotoxTM procedure of having to suspend the BotoxTM powder externally to the delivery system.
  • substance-administration apparatus including: a housing;
  • a needle couplable to the housing, having a skin-insertion portion 0.3-2.5 mm in length and an outer diameter that is less than 0.23 mm;
  • a dosage regulator coupled to the housing, which regulates a dosage of a substance injected in a single injection through the needle, the dosage being selectable in accordance with a setting of the dosage regulator to be one of a plurality of selectable dosages, the plurality of selectable dosages including at least one dosage that is less than or equal to 10 ul;
  • an injection driver activatable by a user to drive the substance through the needle
  • a motor coupled to the injection driver, the motor being actuated by the dosage regulator in a pulsatile manner so as to produce brief periods of high pressure in the apparatus that expel a predetermined volume of the substance through the needle at a controlled rate.
  • the skin-insertion portion is 1-2.5 mm in length.
  • the apparatus is generally cylindrical.
  • the plurality of selectable dosages includes at least one dosage that is greater than 10 ul.
  • the plurality of selectable dosages does not include any dosages that are greater than 50 ul.
  • the at least one dosage is 5-10 ul.
  • the at least one dosage is 1-5 ul. In some applications of the present invention, the outer diameter of the needle is less than 0.21 mm.
  • the outer diameter of the needle is between 0.15 mm and 0.23 mm.
  • the substance includes a viscous substance, and the dosage regulator is configured to regulate the dosage of the viscous substance injected in the single injection through the needle.
  • the apparatus includes a cartridge, pre-filled with the substance, couplable to the housing, for providing the substance in a plurality of injections.
  • the needle is couplable to the housing by being couplable to the cartridge, and the needle and the cartridge are couplable to the housing by the user, prior to use of the apparatus.
  • the cartridge is pre-filled with powder of botulinum toxin
  • the housing is configured to receive the cartridge and to facilitate suspension of the powder subsequently to the receiving of the cartridge.
  • the apparatus includes the substance, and the substance includes a depilatory agent.
  • a substance-administration method including:
  • regulating a dosage of a substance by selecting one of a plurality of selectable dosages, the plurality of selectable dosages including at least one dosage that is less than or equal to 10 ul;
  • inserting the needle includes inserting the needle to a depth of 1-2.5 mm.
  • the plurality of selectable dosages further includes at least one dosage that is greater than 10 ul, and selecting includes selecting the at least one dosage that is greater than 10 ul. In some applications of the present invention, the plurality of selectable dosages does not include any dosages that are greater than 50 ul, and selecting includes selecting a dosage from the plurality of selectable dosages that does not include any dosages that are greater than 50 ul.
  • the at least one dosage is 5-10 ul
  • selecting includes selecting the at least one dosage that is 5-10 ul.
  • the at least one dosage is 1-5 ul
  • selecting includes selecting the at least one dosage that is 1-5 ul.
  • the outer diameter of the needle is less than 0.21 mm
  • inserting the needle includes inserting the needle that has an outer diameter that is less than 0.21 mm.
  • the substance includes a depilatory agent
  • administering the substance includes administering the depilatory agent
  • the substance includes a viscous substance
  • administering the substance includes administering the viscous substance
  • the method includes coupling to the needle a cartridge that is pre-filled with the substance, and providing the substance from the cartridge in a plurality of injections.
  • the cartridge is pre-filled with powder of botulinum toxin
  • the method further includes receive suspending the powder prior to the providing the substance from the cartridge in the plurality of injections.
  • inserting the needle in the skin includes inserting the needle in at least one site selected from the group consisting of: skin of a face of the subject and skin of a neck of the subject.
  • inserting the needle in the at least one selected site includes inserting the needle and administering the substance at at least 5 sites.
  • inserting the needle in the at least one selected site includes inserting the needle at two sites separated by less than 1 mm.
  • a substance-administration method including:
  • Fig. 1 is a schematic illustration of an exploded view of a hand-held device comprising an electronic dosage regulator and a small needle couplable to the hand-held device, the device being configured for administration of substances to a subject, in accordance with some applications of the present invention
  • Fig. 2 is a schematic illustration of a portion of the hand-held device of Fig. 1 , in accordance with some applications of the present invention
  • Figs. 3A-B are schematic illustrations of components of the hand-held device of Fig. 1, in accordance with some applications of the present invention.
  • Figs. 4A-B are schematic illustrations of loading of a cartridge which is then coupled to the hand-held device of Fig. 1, in accordance with some applications of the present invention
  • Figs. 5A-B and 6 are schematic illustrations of coupling a needle to the cartridge of Figs. 4A-B, in accordance with some applications of the present invention
  • Figs. 7A-B are schematic illustrations of the loading of the cartridge of Figs. 4A-B into the hand-held device of Fig. 1 ;
  • Fig. 8 is a schematic illustration of preparing the hand-held device for use, in accordance with some applications of the present invention.
  • Figs. 9 and 10 are schematic illustrations of the hand-held device of Fig. 1 ready for use, in accordance with some applications of the present invention
  • FIG. 11 is a schematic illustration of use of the hand-held device of Fig. 1, in accordance with some applications of the present invention
  • Figs. 12A-B are schematic illustrations of the hand-held device of Fig. 1 following use, in accordance with some applications of the present invention.
  • Fig. 13 is a schematic illustration of the loading of the hand-held device of Fig. 1, in accordance with some other applications of the present invention.
  • Fig. 1 is a schematic illustration of apparatus 20 for administering a substance, comprising a hand-held housing 22, a needle 80 couplable to housing 22, and, typically, a cartridge 40, e.g., a vial, designated for containing the substance, in accordance with some applications of the present invention.
  • Needle 80 comprises a very-fine needles which has a skin-insertion portion that has a length of 0.3- 2.5 mm (e.g., 1-2.5 mm), and an outer diameter D that is less than 0.23 mm, e.g., less than 0.21 mm.
  • outer diameter D is between 0.15 mm and 0.23 mm.
  • needle 80 may comprise a 32 or 33 gauge needle, or one or more microneedles.
  • the overall length L of needle 80 is between 0.6 and 5 mm.
  • At least the distal portion of housing 22 is generally cylindrical.
  • An electronic dosage regulator 60 is coupled to housing 22, and regulates a dosage of the substance injected in a single injection through needle 80.
  • the dosage is user selectable by a user, who adjusts a setting of the dosage regulator.
  • the dosage regulator provides a plurality of possible settings of the dosage.
  • the dosage range includes at least one dosage that is less than or equal to 10 ul (microliters), e.g., 1-5 ul or 5-10 ul, but may also include dosages that are higher than this value, e.g., greater than 10 ul.
  • Dosage regulator 60 typically comprises a motor (e.g., a stepper motor or a DC motor) and an electronic panel which displays to the user information relating to the dosage.
  • dosage regulator 60 comprises a user interface 58 (e.g., a knob or a button) for the user to set the dosage, volume, and/or the speed of delivery of the dosage.
  • the motor of electronic dosage regulator 60 facilitates pulsatile delivery of the viscous substance within cartridge 40, through needle 80, thereby minimizing pressure through the small needle 80 which would otherwise build up in needle 80 without such pulsatile delivery of the substance through needle 80 by the motor of regulator 60.
  • Hand-held housing 22 comprises an upper body portion 24a and a lower body portion 24b. Upper and lower body portions 24a and 24b are held together by screws 25.
  • a panel 50 is disposed within housing 22 which comprises a structural component and electronics to transfer signals from user interface 58 and a reset button 56 toward regulator 60 coupled to panel 50.
  • the motor of regulator 60 is coupled to a rotator 63 which is in turn coupled to a gear system 64. Gear system 64 actuates the displacement of an injection driver 54.
  • dosage regulator 60 activates the motor which activates injection driver 54.
  • Regulator 60 actuates the motor in a pulsatile manner so as to produce brief periods of high pressure in apparatus 20 that expel a predetermined volume of the substance through needle 80 at a controlled rate. Every time the user presses actuation button 29, the motor of dosage regulator 60 runs and expels the substance within cartridge 40 through needle 80 by a predetermined, controlled amount. The user may release button 29 when he or she determines sufficient injection to a given area has been achieved.
  • Injection driver 54 comprises a flat surface 55 which pushes against a plunger 42 disposed within cartridge 40.
  • An elongate rod is coupled to flat surface 55 and slides within a cylindrical housing 52 coupled to panel 50.
  • a structural component 32 is disposed between panel 50 and upper body portion 24a.
  • Structural component 32 is shaped so as to define a first hole 34 which enables passage therethrough of the rod of driver 54 while restricting proximal passage of flat surface 55 of driver 54.
  • structural component 32 is shaped so as to define a second hole 36 which enables rotation of rotator 63.
  • the motor of dosage regulator 60 is coupled to driver 54 and regulates (1) the speed of movement of driver 54 and (2) the distance driver 54 moves with each injection in order to control the dosage delivered to the treatment site with each injection.
  • the motor is connected to a rotating indicator 62 which indicates the number of rotations of the motor, as is described hereinbelow.
  • a pre-filled cartridge 40 is couplable to housing 22 by being fed (e.g., slid) into an opening 10 at a distal end of housing 22 (the end of housing 22 that is closest to the skin of the user during the injection of the substance).
  • the pre-filled cartridge 40 provides the substance to the user in a plurality of injections, e.g., for administration at at least 5 sites of tissue of a subject being administered the substance.
  • two injection sites are separated by less than 1 mm.
  • cartridge 40 is coupled to housing 22 without having been pre-filled with the substance. Prior to use, cartridge 40 is loaded with the substance to be administered, e.g., by drawing proximally injection driver 54, as described hereinbelow.
  • cartridge 40 prior to use of apparatus 20, cartridge 40 is couplable to needle 80 at a distal end of cartridge 40 (e.g., when needle 80 punctures a septum 43 at a distal end 44 of cartridge 40), and then cartridge 40 and needle 80 are couplable to (e.g., slid into) housing 22 by the user, prior to use of apparatus 20.
  • Needle 80 is typically held in place by a needle-holder 70.
  • a cap 72 covers needle 80 when hand-held housing 22 is not being used.
  • Cap 72 is couplable to needle holder 70.
  • Cartridge 40 slides into concave surface 30 which holds cartridge 40.
  • Cartridge 40 is visible through a window 26 at upper body portion 24a of housing 22. Window 26 enables a user to view the amount of substance that has exited cartridge 40 during use of apparatus.
  • the dosage range may include at least one dosage that is 5-10 ul and/or at least one dosage that is 1-5 ul.
  • Injection driver 54 may comprise any user-activatable apparatus (e.g., a plunger, as shown) suitable for initiating and/or driving the movement of a substance through a needle into tissue of the subject.
  • a plunger e.g., a plunger, as shown
  • the substance typically comprises one or more components for esthetic or medical treatment of the skin or near underlying tissue, such as adipose tissue.
  • Apparatus 20 is particularly suitable for providing treatments to the face and neck, where known therapies (e.g., mesotherapy) have not provided satisfactory solutions in terms of dosage accuracy and minimization of pain.
  • the needles in typical mesotherapy guns range from 30 gauge (0.305 mm outer diameter) to 26 gauge (0.457 mm), and frequently provide per-injection dosages of even as high as 100-200 ul.
  • Mesotherapy guns are additionally generally too heavy and bulky to facilitate easy, accurate placement of the needle at a range of sites on the face or neck in close proximity to each other.
  • the large dosages and large needles used in mesotherapy frequently result in leakage of the administered substance out of the injection site, meaning that control of the administered dosage is suboptimal.
  • Some applications of the present invention solve the problem of the inability of the prior art to adequately treat the face and neck by providing a device that is, for example, similar in general shape and user interface to an insulin pen, but with a significantly shorter needle than is used in an insulin pen. It is noted that, fundamentally, an insulin pen is designed to facilitate systemic delivery of a drug, and therefore has a long needle length, e.g., 5-12 mm.
  • the goal is to treat the upper layers of the skin - typically, within 0.3-2.0 mm of the surface, and therefore these embodiments of the invention utilize a significantly shorter needle, e.g., 0.3-2.5 mm in length.
  • the administered substance may comprise one or more of the following:
  • vitamins e.g., C, B10, B8, B9, 1, B3 B6, B2, E, A, B12;
  • one or more minerals e.g., calcium chloride, potassium chloride, magnesium sulphate, sodium acetate, sodium chloride, sodium dihydrogen phosphate
  • minerals e.g., calcium chloride, potassium chloride, magnesium sulphate, sodium acetate, sodium chloride, sodium dihydrogen phosphate
  • nucleic acids e.g., deoxyadenosine, deoxycytidine, deoxyguanosine, deoxythymidine, methylcytosine
  • amino acids e.g., Alainin, Arginine, Asparagine, Aspartic acid, Cystein, Glutamin, glutamic acid, glycine, histine, hydroxyproline, isoleucin, Leucine, Lysine, Methionine, Ornithine, Phenylalanine, Prolin, Serine, Taurine, Threonin, Tryptophan, Tyrosine, Valine;
  • coenzymes e.g., cocarboxylase, coenzyme A, flavin adenine dinucleotide phosphate, nicotinamide adenine dinucleotide, nicotinamide adenine dinucleotide phosphate, uridine triphosphate
  • cocarboxylase e.g., cocarboxylase, coenzyme A, flavin adenine dinucleotide phosphate, nicotinamide adenine dinucleotide, nicotinamide adenine dinucleotide phosphate, uridine triphosphate
  • coenzymes e.g., cocarboxylase, coenzyme A, flavin adenine dinucleotide phosphate, nicotinamide adenine dinucleotide, nicotinamide adenine dinucleotide phosphate, uridine triphosphate
  • reducing agents e.g., ascorbic acid, glutathione
  • apparatus 20 described hereinabove is used to administer a depilatory agent, such as caustic soda, directly into a hair follicle.
  • a depilatory agent such as caustic soda
  • the small needle diameter and length provided by these embodiments of the invention e.g., 32 or 33 gauge, 0.3-2.5 mm in length
  • Fig. 2 shows a view that has been flipped from the view as shown in Fig. 1, in accordance with some applications of the present invention.
  • Fig. 2 shows the assembled state of the inner mechanism which couples dosage regulator 60, rotator 63, and gear assembly 64 to driver 54.
  • Panel 50 is coupled to an actuator 66 which is coupled to indicator 62 and records the number or rotations of indicator 62.
  • Actuator 66 quantifies the number of rotations of indicator 62 and transfers the information to a display, thereby indicating the advancement of driver 54 within cartridge 40.
  • actuator provides an audible indication of the advancement of driver 54 within cartridge 40.
  • Panel 50 is coupled and electronically coupled to a second user interface 59, e.g., a switch, which, when enabled by the user, turns on or off apparatus 20.
  • a second user interface 59 e.g., a switch, which, when enabled by the user, turns on or off apparatus 20.
  • Upper body portion 24a is shown in phantom to indicate the flipped view of apparatus 20 in Fig. 2.
  • flat surface 55 of driver 54 is disposed in communication with a proximal end of cartridge 40 and plunger 42 disposed therein.
  • Cartridge 40 is shown coupled to needle holder 70 which is, in turn, coupled to cap 72.
  • Fig. 3A is identical to Fig. 2, as described hereinabove, with the exception that upper body portion 24a is shown as being coupled to the inner components of apparatus 20, in accordance with some applications of the present invention. Fig. 3A is shown without lower body portion 24b so as to show the inner components of apparatus 20.
  • Fig. 3B is a schematic illustration of a flipped view to the view shown in Fig. 3A, in accordance with some applications of the present invention. As shown, lower body portion 24b is shown as being coupled to the inner components of apparatus 20. Fig. 3b is shown without upper body portion 24a so as to show the inner components of apparatus 20.
  • Figs. 4A-B show a user loading cartridge 40 with a solution 100, e.g., saline, prior to use of the hand-held device of apparatus 20, in accordance with some applications of the present invention.
  • cartridge 40 contains a concentrated powder 90 (i.e., the substance to be injected into the user or by the user to a receiver of the substance) at a distal end and a plunger 42 disposed proximally to powder 90.
  • the user holds in one hand a syringe 102 full of solution 100, and in the other hand holds cartridge 40.
  • a needle coupled to syringe 102 punctures septum 43 at distal end 44 of cartridge 40 so as to facilitate injection of solution 100 into cartridge 40.
  • plunger 42 within cartridge 40 slides proximally, as shown in Fig. 4B, and a suspension 104 of powder 90 of the substance to be injected is created.
  • cartridge 40 contains BotoxTM powder which is loaded with a solution prior to loading of cartridge into hand-held housing 22 of apparatus 20. That is, for such applications, cartridge 40 contains BotoxTM powder 90 and a plunger 42. Cartridge 40 is typically disposable.
  • cartridge 40 is shown as being loaded with solution 100 by way of illustration and not limitation, and that the scope of the present invention includes use of cartridges that are already pre-loaded with solution 100, i.e., cartridges that already contain suspension 104 of the substance to be injected.
  • Figs. 5A-B and 6 show the coupling of needle 80 to cartridge 40, in accordance with some applications of the present invention.
  • the loaded cartridge 40 with suspension 104 of the substance to be injected is coupled to needle holder 70 holding needle 80.
  • Holder 70 is coupled to cartridge 40 at a distal end 44 of cartridge 40 by being screwed, or otherwise coupled to a distal end of hand-held housing 22.
  • a proximal end of needle 80 punctures septum 43, as shown in the cross-sectional illustration in Fig. 6.
  • needle 80 accesses suspension 104 within cartridge 40.
  • Figs. 7A-B show the loading of the pre-loaded, or pre-filled cartridge 40 within hand-held housing 22 of apparatus 20, in accordance with some applications of the present invention. As shown, cartridge 40 slides into opening 10 at the distal end of handheld housing 22. It is to be noted that (1) needle holder 70 and needle 80 may be coupled to cartridge 40, and (2) cap 72 may be coupled to needle holder 72, at any stage before, during, and after loading of cartridge 40 into hand-held housing 22.
  • Fig. 8 shows expulsion of any air bubbles 106 within cartridge 40 following the loading of the pre-loaded, or pre-filled cartridge 40 within hand-held housing 22, in accordance with some applications of the present invention.
  • the user removes cap 72 to expose the distal end of needle 80 and, viewing the air bubble 106 through window 26 of hand-held housing 22, activates apparatus 20 (i.e., by pushing on the on actuation button 29, as described hereinabove) to expel air bubble 106 from cartridge 40.
  • Figs. 9-1 1 show apparatus 20 loaded with cartridge 40, coupled to needle 80, and ready for use, in accordance with some applications of the present invention.
  • Fig. 9 shows an isometric view of the hand-held device of apparatus 20, and
  • Fig. 10 shows a cross-sectional illustration of the hand-held device of apparatus 20, as described hereinabove.
  • cap 72 Prior to use, cap 72 is removed.
  • apparatus 20 is turned on by interface 59 (not shown for clarity of illustration) and is set by interface 58 to one of three settings, as shown in Fig. 11. It is to be noted that any suitable number of settings may be selected by interface 58.
  • Fig. 11 shows use of hand-held housing 22 of the hand-held device by a user.
  • driver 54 and flat surface 55 ate disposed in their proximal-most position.
  • actuation button 29 which activates the motor of electronic dosage regulator 60.
  • Activation of the motor effects rotation of rotator 63 which rotates gear assembly 64 to advance distally driver 54 which enters cartridge 40 at a proximal end thereof and pushes plunger 42 distally.
  • the motor functions in a pulsatile manner transferring high burst of pressure to driver 54.
  • apparatus 20 comprises a pressure sensor at the proximal end of hand-held housing 22 which measures the pressure of the viscous substances which exit the very-fine needle 80.
  • Fig. 12A shows apparatus 20 following use, in accordance with some applications of the present invention.
  • cap 72 is again coupled to needle holder 70 in order to cover needle 80.
  • plunger 42 is disposed at distal end 44 of cartridge 40 and flat surface 55 of driver 54 is disposed at a distal-most position.
  • Fig. 12B shows resetting of apparatus 20 following use, in accordance with some applications of the present invention.
  • the user pushes distally reset button 56 located at a proximal end of hand-held housing 22, typically by inserting a pin in an opening at the proximal end of hand-held housing 22.
  • Pushing of reset button 56 pulls proximally driver 54 to its start position.
  • needle holder 70 is decoupled from the distal end of hand-held housing 22, e.g., by being unscrewed therefrom, and the empty cartridge 40 is removed, e.g., by being slid distally through opening 10 of hand-held housing 22.
  • Cartridge 40 is typically disposable.
  • Fig. 13 is a schematic illustration of apparatus 22 prior to use in which a cartridge 40 containing powder 90 is disposed within hand-held housing 22, in accordance with some applications of the present invention.
  • cartridge is then loaded with a solution in order to suspend powder 90.
  • flat surface 55 driver 54 is reversibly coupled to plunger 42 of cartridge 40, e.g., by being magnetically coupled to plunger 42. That is, for such applications of the present invention, flat surface 55 is not disposed in its proximal- most position as described hereinabove .
  • apparatus 20 eliminates a step in the BotoxTM procedure of having to suspend the BotoxTM powder externally to the delivery system.
  • powder 90 comprises BotoxTM powder by way of illustration and not limitation. It is to be noted that powder 90 may comprise powder of any of the designated-for-injection substances listed herein.

Landscapes

  • Health & Medical Sciences (AREA)
  • Vascular Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Abstract

Substance-administration apparatus (20) is provided, including a housing (22), and a needle (80), couplable to the housing (22), having a skin-insertion portion 0.3-2.5 mm in length and an outer diameter less than 0.23 mm. A dosage regulator (60) regulates a dosage of substance injected in a single injection through the needle (80). Dosage is selectable by a setting of the dosage regulator (60) as one of a plurality of selectable dosages. At least one dosage is less than or equal to 10 ul. An injection driver (54), activatable by a user, drives the substance through the needle (80). A motor coupled to the injection driver (54) is actuated by the dosage regulator (60) in a pulsatile manner to produce brief periods of high pressure in the apparatus (20) that expel a predetermined volume of the substance through the needle (80) at a controlled rate. Other applications are also described.

Description

LOW VOLUME ACCURATE INJECTOR
CROSS-REFERENCES TO RELATED APPLICATIONS
The present application claims the priority of US Provisional Patent Application 61/332,855 to Alon, entitled "Low volume accurate injector," filed May 10, 2010.
The present application is related to US Patent Application 12/615,828 to Alon entitled, "Low volume accurate injector," filed November 10, 2009, which published as US 2010/0145305 and claims the priority of US Provisional Patent Application 61/198,906 to Alon entitled, "Low volume accurate injector," filed November 10, 2008.
All of these applications are incorporated herein by reference. FIELD OF THE INVENTION
Applications of the present invention relate generally to substance administration, and specifically to apparatus and methods for administering cosmeceuticals and other drugs.
BACKGROUND OF THE INVENTION
Mesotherapy is described by Wikipedia as a non-surgical cosmetic medicine treatment. Mesotherapy employs multiple injections of pharmaceutical and homeopathic medications, plant extracts, vitamins, and other ingredients into the subcutaneous fat.
WO 08/057976 to Sibbitt et al. describes multiple dose syringe apparatus and methods which are described as being suitable for use to administer multiple small doses of drugs particularly for dermatology, plastic surgery, cosmetic surgery, and neurological medicine. The multiple dose syringes can be constructed from a conventional syringe and conventional plunger with adapters, and also by individual injection mounding.
WO 06/102676 to Perez et al. describes injectable implants that are described as being useful in supplementing soft tissue, particularly skin. The publication relates to dermal filler compositions of biocompatible polyethylene oxides that may be introduced, perhaps by injection, into areas of soft tissue often considered in need of augmentation. Examples include cosmetic enhancement or correction of facial defects due to scarring, aging and the like.
US 3,794,028 to Mueller et al. describes a method of depilation in a human by injecting a dose of chemical depilatory solution into a hair follicle to permanently destroy hair growth at that location. Injection of the chemical depilatory solution may be effected by means of a hypodermic syringe for penetrating beneath the skin surface and for dispensing effective dosage amounts of the depilatory solution into the follicle.
US 5,366,498 to Brannan et al. describes a device for correcting fine superficial facial lines, which comprises a syringe fitted with a 31-33 gauge needle and an aqueous suspension of non-crosslinked fibrillar atelopeptide collagen contained within the syringe barrel, the concentration of collagen in the suspension being in the range of 10 to 50 mg/ml, and the suspension exhibiting an extrusion plot in which there is a smooth substantially linear increase in force up to a substantially constant force in the range of 5 to 30 newtons.
US 6,689,118 to Alchas et al. describes a method of performing an intradermal injection using a drug delivery device containing the substance to be injected. A device for practicing the method includes a needle cannula having a forward tip and a limiter portion having a skin engaging surface surrounding the needle cannula. The needle cannula is in fluid communication with the substance and the tip of the needle cannula extends beyond the skin engaging surface a distance equal to approximately 0.5 mm to 3.0 mm. The needle cannula includes a fixed angle of orientation relative to the plane of the skin engaging surface. The skin engaging surface limits penetration of the needle tip into the skin so that the substance can be expelled through the needle tip into the dermis layer. Preferably, the fixed angle of orientation of the needle cannula is generally perpendicular relative to the skin surface, and the skin engaging surface is generally flat.
US Patent Application Publication 2008/0262436 to Olson describes an injection device comprising a tubular elongated main body, a needle shield slidably arranged in said main body, a needle shield link slidably connected to said needle shield, a enclosure containing medicament arranged in said main body, a needle connected to said enclosure, a plunger operatively arranged to said enclosure for ejecting said medicament through said needle and arranged on its upper part with a number of outwardly extending stop members, spring means arranged to said plunger for operating said plunger, a dose activating means, a needle shield spring surrounding the needle shield link. The device is characterised in that said injection device further comprises a first tubular member rotationally and slidably arranged inside said needle shield link, said tubular member comprises a number or ridges and protrusions on both its outer and inner surfaces, said ridges and protrusions on the outer surface of the tubular member co-operate with guide members arranged on the inner surface of said needle shield link, said ridges and protrusions on the inner surface of the tubular member co-operate with the outwardly extending stop members of the plunger that said injection device further comprises a second tubular member arranged inside said housing, arranged and designed with a number of ridges and protrusions on its inner and outer surfaces capable of setting and delivering a certain preset dose.
US Patent 7,364,570 to Gerondale et al. describes a controlled volume injection/aspiration device includes a syringe having a body for containing a medicament, a needle and a piston slidably disposed within the body. A shell is provided for receiving the syringe body and a plunger rack is disposed within the shell. A manually operated control is disposed in an operative relationship with the plunger rack for moving the plunger rack in a stepwise forward direction causing the piston to eject discrete doses of medication from the syringe body through the needle. The manual operated control is also operative for moving the piston in a stepwise reverse direction causing the piston to aspirate fluid into the syringe body through the needle.
The following references may be of interest:
PCT Publication WO 08/072229 to Levin et al.
US Design Patent D593,677 to Mudd et al.
US Patent 5,858,001 to Tsals et al.
US Patent Application Publication 2008/0021439 to Brittingham et al.
An insulin pen is described by Wikipedia as an insulin injection system for the treatment of diabetes. A pen has a disposable needle, a vial of insulin, and the pen housing. To use a pen, the user screws on a new needle, turns a dial on the end of the pen to the number of units of insulin needed, and inserts the needle into the skin. She then presses a button on the end of the pen to deliver the selected dose, waits until the dose is delivered, and removes the needle. SUMMARY OF EMBODIMENTS OF THE INVENTION
In some embodiments of the present invention, a hand-held device is provided which comprises a dosage regulator for regulating the dosage and speed of delivery of substances such as drugs, vitamins, amino acids, collagen, Botox™, viscous substances, and/or other substances to a treatment site on skin of a subject. The hand-held device is couplable to or is coupled to a needle which has a skin-insertion portion that is 0.3-2.5 mm in length, and an outer diameter that is less than 0.23 mm. The hand-held device accommodates variously sized cartridges containing various substances. Expulsion of the substances from the cartridge is controlled by the dosage regulator, which is actuated by a user. The electronic dosage regulator actuates the motor in a pulsatile manner so as to produce brief periods of high pressure in the device that expel a predetermined volume of the substance through the needle at a controlled rate. This pulsatile mode of operation of the device is particularly useful for regulating the pressure of a highly viscous substance, such as collagen and Botox™, as it passes through the needle. Because of this regulation in pressure, the device allows the use of small diameter needles, which reduces or eliminates discomfort associated with multiple injections, as are facilitated by the handheld device.
The dosage is user-selectable by the user, who adjusts a setting of the dosage regulator. The dosage regulator provides a plurality of possible settings of the dosage, including at least one dosage that is less than or equal to 10 ul (microliters), and typically other dosages that are higher than this value. A user-activatable injection driver drives the substance through the needle.
Additionally, the hand-held device accommodates variously sized cartridges containing various substances. An example of such cartridge includes a vial of Botox™ powder which is applied to the hand-held device, and which functions as the cartridge.
Once the vial of Botox™ powder is coupled to the device, a small-diameter needle is coupled to the device, and the device facilitates drawing of saline solution through the needle and into the vial in order to suspend the Botox™ powder. As such, the device eliminates a step in the Botox™ procedure of having to suspend the Botox™ powder externally to the delivery system.
There is therefore provided, in accordance with some applications of the present invention, substance-administration apparatus, including: a housing;
a needle, couplable to the housing, having a skin-insertion portion 0.3-2.5 mm in length and an outer diameter that is less than 0.23 mm;
a dosage regulator coupled to the housing, which regulates a dosage of a substance injected in a single injection through the needle, the dosage being selectable in accordance with a setting of the dosage regulator to be one of a plurality of selectable dosages, the plurality of selectable dosages including at least one dosage that is less than or equal to 10 ul;
an injection driver, activatable by a user to drive the substance through the needle, and
a motor coupled to the injection driver, the motor being actuated by the dosage regulator in a pulsatile manner so as to produce brief periods of high pressure in the apparatus that expel a predetermined volume of the substance through the needle at a controlled rate.
In some applications of the present invention, the skin-insertion portion is 1-2.5 mm in length.
In some applications of the present invention, the apparatus is generally cylindrical.
In some applications of the present invention, the plurality of selectable dosages includes at least one dosage that is greater than 10 ul.
In some applications of the present invention, the plurality of selectable dosages does not include any dosages that are greater than 50 ul.
In some applications of the present invention, the at least one dosage is 5-10 ul.
In some applications of the present invention, the at least one dosage is 1-5 ul. In some applications of the present invention, the outer diameter of the needle is less than 0.21 mm.
In some applications of the present invention, the outer diameter of the needle is between 0.15 mm and 0.23 mm. In some applications of the present invention, the substance includes a viscous substance, and the dosage regulator is configured to regulate the dosage of the viscous substance injected in the single injection through the needle.
In some applications of the present invention, the apparatus includes a cartridge, pre-filled with the substance, couplable to the housing, for providing the substance in a plurality of injections.
In some applications of the present invention, the needle is couplable to the housing by being couplable to the cartridge, and the needle and the cartridge are couplable to the housing by the user, prior to use of the apparatus.
In some applications of the present invention, the cartridge is pre-filled with powder of botulinum toxin, and the housing is configured to receive the cartridge and to facilitate suspension of the powder subsequently to the receiving of the cartridge.
In some applications of the present invention, the apparatus includes the substance, and the substance includes a depilatory agent.
There is additionally provided, in accordance with some applications of the present invention, a substance-administration method, including:
regulating a dosage of a substance by selecting one of a plurality of selectable dosages, the plurality of selectable dosages including at least one dosage that is less than or equal to 10 ul;
inserting a needle having an outer diameter that is less than 0.23 mm into skin of a subject to a depth of 0.3-2.5 mm;
expelling a predetermined volume of the substance through the needle at a controlled rate by producing brief periods of high pressure in a device used to administer the substance; and
administering the substance at the selected dosage through the needle.
In some applications of the present invention, inserting the needle includes inserting the needle to a depth of 1-2.5 mm.
In some applications of the present invention, the plurality of selectable dosages further includes at least one dosage that is greater than 10 ul, and selecting includes selecting the at least one dosage that is greater than 10 ul. In some applications of the present invention, the plurality of selectable dosages does not include any dosages that are greater than 50 ul, and selecting includes selecting a dosage from the plurality of selectable dosages that does not include any dosages that are greater than 50 ul.
In some applications of the present invention, the at least one dosage is 5-10 ul, and selecting includes selecting the at least one dosage that is 5-10 ul.
In some applications of the present invention, the at least one dosage is 1-5 ul, and selecting includes selecting the at least one dosage that is 1-5 ul.
In some applications of the present invention, the outer diameter of the needle is less than 0.21 mm, and inserting the needle includes inserting the needle that has an outer diameter that is less than 0.21 mm.
In some applications of the present invention, the substance includes a depilatory agent, and administering the substance includes administering the depilatory agent.
In some applications of the present invention, the substance includes a viscous substance, and administering the substance includes administering the viscous substance.
In some applications of the present invention, the method includes coupling to the needle a cartridge that is pre-filled with the substance, and providing the substance from the cartridge in a plurality of injections.
In some applications of the present invention, the cartridge is pre-filled with powder of botulinum toxin, and the method further includes receive suspending the powder prior to the providing the substance from the cartridge in the plurality of injections.
In some applications of the present invention, inserting the needle in the skin includes inserting the needle in at least one site selected from the group consisting of: skin of a face of the subject and skin of a neck of the subject.
In some applications of the present invention, inserting the needle in the at least one selected site includes inserting the needle and administering the substance at at least 5 sites.
In some applications of the present invention, inserting the needle in the at least one selected site includes inserting the needle at two sites separated by less than 1 mm. There is also provided, in accordance with some applications of the present invention, a substance-administration method, including:
inserting a needle having an outer diameter that is less than 0.23 mm into skin of a subject to a depth of 0.3-2.5 mm;
expelling a predetermined volume of the substance through the needle at a controlled rate by producing brief periods of high pressure in a device used to administer the substance; and
administering the substance at the selected dosage through the needle.
The present invention will be more fully understood from the following detailed description of embodiments thereof, taken together with the drawing, in which:
BRIEF DESCRIPTION OF THE DRAWING
Fig. 1 is a schematic illustration of an exploded view of a hand-held device comprising an electronic dosage regulator and a small needle couplable to the hand-held device, the device being configured for administration of substances to a subject, in accordance with some applications of the present invention;
Fig. 2 is a schematic illustration of a portion of the hand-held device of Fig. 1 , in accordance with some applications of the present invention;
Figs. 3A-B are schematic illustrations of components of the hand-held device of Fig. 1, in accordance with some applications of the present invention;
Figs. 4A-B are schematic illustrations of loading of a cartridge which is then coupled to the hand-held device of Fig. 1, in accordance with some applications of the present invention;
Figs. 5A-B and 6 are schematic illustrations of coupling a needle to the cartridge of Figs. 4A-B, in accordance with some applications of the present invention;
Figs. 7A-B are schematic illustrations of the loading of the cartridge of Figs. 4A-B into the hand-held device of Fig. 1 ;
Fig. 8 is a schematic illustration of preparing the hand-held device for use, in accordance with some applications of the present invention;
Figs. 9 and 10 are schematic illustrations of the hand-held device of Fig. 1 ready for use, in accordance with some applications of the present invention;
Fig. 11 is a schematic illustration of use of the hand-held device of Fig. 1, in accordance with some applications of the present invention; Figs. 12A-B are schematic illustrations of the hand-held device of Fig. 1 following use, in accordance with some applications of the present invention; and
Fig. 13 is a schematic illustration of the loading of the hand-held device of Fig. 1, in accordance with some other applications of the present invention.
DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION
Reference is now made to Fig. 1 , which is a schematic illustration of apparatus 20 for administering a substance, comprising a hand-held housing 22, a needle 80 couplable to housing 22, and, typically, a cartridge 40, e.g., a vial, designated for containing the substance, in accordance with some applications of the present invention. Needle 80 comprises a very-fine needles which has a skin-insertion portion that has a length of 0.3- 2.5 mm (e.g., 1-2.5 mm), and an outer diameter D that is less than 0.23 mm, e.g., less than 0.21 mm. For some embodiments, outer diameter D is between 0.15 mm and 0.23 mm. For example, needle 80 may comprise a 32 or 33 gauge needle, or one or more microneedles. The overall length L of needle 80 is between 0.6 and 5 mm. At least the distal portion of housing 22 is generally cylindrical. An electronic dosage regulator 60 is coupled to housing 22, and regulates a dosage of the substance injected in a single injection through needle 80. The dosage is user selectable by a user, who adjusts a setting of the dosage regulator. The dosage regulator provides a plurality of possible settings of the dosage. The dosage range includes at least one dosage that is less than or equal to 10 ul (microliters), e.g., 1-5 ul or 5-10 ul, but may also include dosages that are higher than this value, e.g., greater than 10 ul. Typically, the plurality of selectable dosages does not include any dosages that are greater than 50 ul. Dosage regulator 60 typically comprises a motor (e.g., a stepper motor or a DC motor) and an electronic panel which displays to the user information relating to the dosage. In such an application, dosage regulator 60 comprises a user interface 58 (e.g., a knob or a button) for the user to set the dosage, volume, and/or the speed of delivery of the dosage. The motor of electronic dosage regulator 60 facilitates pulsatile delivery of the viscous substance within cartridge 40, through needle 80, thereby minimizing pressure through the small needle 80 which would otherwise build up in needle 80 without such pulsatile delivery of the substance through needle 80 by the motor of regulator 60.
Hand-held housing 22 comprises an upper body portion 24a and a lower body portion 24b. Upper and lower body portions 24a and 24b are held together by screws 25. A panel 50 is disposed within housing 22 which comprises a structural component and electronics to transfer signals from user interface 58 and a reset button 56 toward regulator 60 coupled to panel 50. The motor of regulator 60 is coupled to a rotator 63 which is in turn coupled to a gear system 64. Gear system 64 actuates the displacement of an injection driver 54. When the user activates apparatus 20 via an actuation button 29 located at an upper portion 28 of housing 22, dosage regulator 60 activates the motor which activates injection driver 54. Regulator 60 actuates the motor in a pulsatile manner so as to produce brief periods of high pressure in apparatus 20 that expel a predetermined volume of the substance through needle 80 at a controlled rate. Every time the user presses actuation button 29, the motor of dosage regulator 60 runs and expels the substance within cartridge 40 through needle 80 by a predetermined, controlled amount. The user may release button 29 when he or she determines sufficient injection to a given area has been achieved.
Injection driver 54 comprises a flat surface 55 which pushes against a plunger 42 disposed within cartridge 40. An elongate rod is coupled to flat surface 55 and slides within a cylindrical housing 52 coupled to panel 50. A structural component 32 is disposed between panel 50 and upper body portion 24a. Structural component 32 is shaped so as to define a first hole 34 which enables passage therethrough of the rod of driver 54 while restricting proximal passage of flat surface 55 of driver 54. Additionally, structural component 32 is shaped so as to define a second hole 36 which enables rotation of rotator 63.
Typically, the motor of dosage regulator 60 is coupled to driver 54 and regulates (1) the speed of movement of driver 54 and (2) the distance driver 54 moves with each injection in order to control the dosage delivered to the treatment site with each injection. The motor is connected to a rotating indicator 62 which indicates the number of rotations of the motor, as is described hereinbelow.
For some embodiments of the present invention, a pre-filled cartridge 40 is couplable to housing 22 by being fed (e.g., slid) into an opening 10 at a distal end of housing 22 (the end of housing 22 that is closest to the skin of the user during the injection of the substance). Typically, the pre-filled cartridge 40 provides the substance to the user in a plurality of injections, e.g., for administration at at least 5 sites of tissue of a subject being administered the substance. For some embodiments, two injection sites are separated by less than 1 mm.
Alternatively, cartridge 40 is coupled to housing 22 without having been pre-filled with the substance. Prior to use, cartridge 40 is loaded with the substance to be administered, e.g., by drawing proximally injection driver 54, as described hereinbelow.
For some embodiments, prior to use of apparatus 20, cartridge 40 is couplable to needle 80 at a distal end of cartridge 40 (e.g., when needle 80 punctures a septum 43 at a distal end 44 of cartridge 40), and then cartridge 40 and needle 80 are couplable to (e.g., slid into) housing 22 by the user, prior to use of apparatus 20. Needle 80 is typically held in place by a needle-holder 70. A cap 72 covers needle 80 when hand-held housing 22 is not being used. Cap 72 is couplable to needle holder 70. Cartridge 40 slides into concave surface 30 which holds cartridge 40. Cartridge 40 is visible through a window 26 at upper body portion 24a of housing 22. Window 26 enables a user to view the amount of substance that has exited cartridge 40 during use of apparatus.
As appropriate for a given application and administered substance, the dosage range may include at least one dosage that is 5-10 ul and/or at least one dosage that is 1-5 ul.
Injection driver 54 may comprise any user-activatable apparatus (e.g., a plunger, as shown) suitable for initiating and/or driving the movement of a substance through a needle into tissue of the subject.
The substance typically comprises one or more components for esthetic or medical treatment of the skin or near underlying tissue, such as adipose tissue. Apparatus 20 is particularly suitable for providing treatments to the face and neck, where known therapies (e.g., mesotherapy) have not provided satisfactory solutions in terms of dosage accuracy and minimization of pain. In particular, the needles in typical mesotherapy guns range from 30 gauge (0.305 mm outer diameter) to 26 gauge (0.457 mm), and frequently provide per-injection dosages of even as high as 100-200 ul. Mesotherapy guns are additionally generally too heavy and bulky to facilitate easy, accurate placement of the needle at a range of sites on the face or neck in close proximity to each other. The large dosages and large needles used in mesotherapy frequently result in leakage of the administered substance out of the injection site, meaning that control of the administered dosage is suboptimal. Some applications of the present invention solve the problem of the inability of the prior art to adequately treat the face and neck by providing a device that is, for example, similar in general shape and user interface to an insulin pen, but with a significantly shorter needle than is used in an insulin pen. It is noted that, fundamentally, an insulin pen is designed to facilitate systemic delivery of a drug, and therefore has a long needle length, e.g., 5-12 mm. By contrast, in these embodiments of the present invention, the goal is to treat the upper layers of the skin - typically, within 0.3-2.0 mm of the surface, and therefore these embodiments of the invention utilize a significantly shorter needle, e.g., 0.3-2.5 mm in length.
As appropriate for a given application, the administered substance may comprise one or more of the following:
hyaluronic acid;
one or more vitamins (e.g., C, B10, B8, B9, 1, B3 B6, B2, E, A, B12);
one or more minerals (e.g., calcium chloride, potassium chloride, magnesium sulphate, sodium acetate, sodium chloride, sodium dihydrogen phosphate);
one or more nucleic acids (e.g., deoxyadenosine, deoxycytidine, deoxyguanosine, deoxythymidine, methylcytosine);
one or more amino acids (e.g., Alainin, Arginine, Asparagine, Aspartic acid, Cystein, Glutamin, glutamic acid, glycine, histine, hydroxyproline, isoleucin, Leucine, Lysine, Methionine, Ornithine, Phenylalanine, Prolin, Serine, Taurine, Threonin, Tryptophan, Tyrosine, Valine);
one or more coenzymes (e.g., cocarboxylase, coenzyme A, flavin adenine dinucleotide phosphate, nicotinamide adenine dinucleotide, nicotinamide adenine dinucleotide phosphate, uridine triphosphate);
one or more reducing agents (e.g., ascorbic acid, glutathione);
Botox™;
Collagen (cross-linked and not cross-linked);
growth hormone at homeopathic concentrations or greater; and
other hormones at homeopathic concentrations or greater. In some embodiments, apparatus 20 described hereinabove is used to administer a depilatory agent, such as caustic soda, directly into a hair follicle. Advantageously, the small needle diameter and length provided by these embodiments of the invention (e.g., 32 or 33 gauge, 0.3-2.5 mm in length) allows relatively painless and accurate administration of the depilatory agent.
Fig. 2 shows a view that has been flipped from the view as shown in Fig. 1, in accordance with some applications of the present invention. Fig. 2 shows the assembled state of the inner mechanism which couples dosage regulator 60, rotator 63, and gear assembly 64 to driver 54. Panel 50 is coupled to an actuator 66 which is coupled to indicator 62 and records the number or rotations of indicator 62. Actuator 66 quantifies the number of rotations of indicator 62 and transfers the information to a display, thereby indicating the advancement of driver 54 within cartridge 40. For some applications, actuator provides an audible indication of the advancement of driver 54 within cartridge 40. Panel 50 is coupled and electronically coupled to a second user interface 59, e.g., a switch, which, when enabled by the user, turns on or off apparatus 20. Upper body portion 24a is shown in phantom to indicate the flipped view of apparatus 20 in Fig. 2.
As shown, flat surface 55 of driver 54 is disposed in communication with a proximal end of cartridge 40 and plunger 42 disposed therein. Cartridge 40 is shown coupled to needle holder 70 which is, in turn, coupled to cap 72.
Fig. 3A is identical to Fig. 2, as described hereinabove, with the exception that upper body portion 24a is shown as being coupled to the inner components of apparatus 20, in accordance with some applications of the present invention. Fig. 3A is shown without lower body portion 24b so as to show the inner components of apparatus 20.
Fig. 3B is a schematic illustration of a flipped view to the view shown in Fig. 3A, in accordance with some applications of the present invention. As shown, lower body portion 24b is shown as being coupled to the inner components of apparatus 20. Fig. 3b is shown without upper body portion 24a so as to show the inner components of apparatus 20.
Figs. 4A-B show a user loading cartridge 40 with a solution 100, e.g., saline, prior to use of the hand-held device of apparatus 20, in accordance with some applications of the present invention. As shown, cartridge 40 contains a concentrated powder 90 (i.e., the substance to be injected into the user or by the user to a receiver of the substance) at a distal end and a plunger 42 disposed proximally to powder 90. As shown in Fig. 4A, the user holds in one hand a syringe 102 full of solution 100, and in the other hand holds cartridge 40. A needle coupled to syringe 102 punctures septum 43 at distal end 44 of cartridge 40 so as to facilitate injection of solution 100 into cartridge 40. As solution 100 is injected into cartridge 40, plunger 42 within cartridge 40 slides proximally, as shown in Fig. 4B, and a suspension 104 of powder 90 of the substance to be injected is created.
For some applications of the present invention, cartridge 40 contains Botox™ powder which is loaded with a solution prior to loading of cartridge into hand-held housing 22 of apparatus 20. That is, for such applications, cartridge 40 contains Botox™ powder 90 and a plunger 42. Cartridge 40 is typically disposable.
Reference is again made to Figs. 4A-B. It is to be noted that cartridge 40 is shown as being loaded with solution 100 by way of illustration and not limitation, and that the scope of the present invention includes use of cartridges that are already pre-loaded with solution 100, i.e., cartridges that already contain suspension 104 of the substance to be injected.
Figs. 5A-B and 6 show the coupling of needle 80 to cartridge 40, in accordance with some applications of the present invention. The loaded cartridge 40 with suspension 104 of the substance to be injected is coupled to needle holder 70 holding needle 80. Holder 70 is coupled to cartridge 40 at a distal end 44 of cartridge 40 by being screwed, or otherwise coupled to a distal end of hand-held housing 22. A proximal end of needle 80 punctures septum 43, as shown in the cross-sectional illustration in Fig. 6. As such, needle 80 accesses suspension 104 within cartridge 40.
Figs. 7A-B show the loading of the pre-loaded, or pre-filled cartridge 40 within hand-held housing 22 of apparatus 20, in accordance with some applications of the present invention. As shown, cartridge 40 slides into opening 10 at the distal end of handheld housing 22. It is to be noted that (1) needle holder 70 and needle 80 may be coupled to cartridge 40, and (2) cap 72 may be coupled to needle holder 72, at any stage before, during, and after loading of cartridge 40 into hand-held housing 22.
Fig. 8 shows expulsion of any air bubbles 106 within cartridge 40 following the loading of the pre-loaded, or pre-filled cartridge 40 within hand-held housing 22, in accordance with some applications of the present invention. The user removes cap 72 to expose the distal end of needle 80 and, viewing the air bubble 106 through window 26 of hand-held housing 22, activates apparatus 20 (i.e., by pushing on the on actuation button 29, as described hereinabove) to expel air bubble 106 from cartridge 40.
Figs. 9-1 1 show apparatus 20 loaded with cartridge 40, coupled to needle 80, and ready for use, in accordance with some applications of the present invention. Fig. 9 shows an isometric view of the hand-held device of apparatus 20, and Fig. 10 shows a cross-sectional illustration of the hand-held device of apparatus 20, as described hereinabove. Prior to use, cap 72 is removed. Subsequently, apparatus 20 is turned on by interface 59 (not shown for clarity of illustration) and is set by interface 58 to one of three settings, as shown in Fig. 11. It is to be noted that any suitable number of settings may be selected by interface 58.
Reference is now made to Figs. 10 and 11. Fig. 11 shows use of hand-held housing 22 of the hand-held device by a user. Prior to use, driver 54 and flat surface 55 ate disposed in their proximal-most position. During the actuation of apparatus 20, the user pushes on actuation button 29 which activates the motor of electronic dosage regulator 60. Activation of the motor effects rotation of rotator 63 which rotates gear assembly 64 to advance distally driver 54 which enters cartridge 40 at a proximal end thereof and pushes plunger 42 distally. As described hereinabove, the motor functions in a pulsatile manner transferring high burst of pressure to driver 54. In turn, driver 54 pushes plunger 42 to expel controlled amounts of suspension 104 containing the substance to be injected through needle 80. Use of the motor in the pulsatile manner at the proximal end of cartridge 40 reduces pressure at distal end 44 of cartridge 40 and through the very- fine needle 80 as the viscous substance is expelled from cartridge 40 and through needle 80. For some applications of the present invention apparatus 20 comprises a pressure sensor at the proximal end of hand-held housing 22 which measures the pressure of the viscous substances which exit the very-fine needle 80.
Fig. 12A shows apparatus 20 following use, in accordance with some applications of the present invention. As shown, cap 72 is again coupled to needle holder 70 in order to cover needle 80. Following use, plunger 42 is disposed at distal end 44 of cartridge 40 and flat surface 55 of driver 54 is disposed at a distal-most position.
Fig. 12B shows resetting of apparatus 20 following use, in accordance with some applications of the present invention. The user pushes distally reset button 56 located at a proximal end of hand-held housing 22, typically by inserting a pin in an opening at the proximal end of hand-held housing 22. Pushing of reset button 56 pulls proximally driver 54 to its start position. Subsequently, needle holder 70 is decoupled from the distal end of hand-held housing 22, e.g., by being unscrewed therefrom, and the empty cartridge 40 is removed, e.g., by being slid distally through opening 10 of hand-held housing 22. Cartridge 40 is typically disposable.
Fig. 13 is a schematic illustration of apparatus 22 prior to use in which a cartridge 40 containing powder 90 is disposed within hand-held housing 22, in accordance with some applications of the present invention. Following the coupling of cartridge 40 (i.e., by sliding cartridge 40 through opening 10 in hand-held housing 22, as described hereinabove), and following the coupling of needle 80 to cartridge 50 via needle holder 70, cartridge is then loaded with a solution in order to suspend powder 90. In such an embodiment, prior to use of apparatus 20, flat surface 55 driver 54 is reversibly coupled to plunger 42 of cartridge 40, e.g., by being magnetically coupled to plunger 42. That is, for such applications of the present invention, flat surface 55 is not disposed in its proximal- most position as described hereinabove .
As such, apparatus 20 eliminates a step in the Botox™ procedure of having to suspend the Botox™ powder externally to the delivery system.
The user then takes a vial of solution and punctures the vial with needle 80, now coupled to cartridge 40 and thereby to hand-held housing 22. The user activates apparatus 20 such that it functions in a manner reverse to the manner as described hereinabove, so as to move driver 54 proximally (thereby move plunger 42 proximally) in order to draw the solution into cartridge 40 and suspend powder 90 disposed within cartridge 40. Apparatus 20 is then actuated to operate as described hereinabove with reference to Figs. 10 and 11, so as to expel in a controlled manner and with reduced pressure the suspension of powder 90 through needle 80 and inject the substance into the receiver of the substance. For some applications, powder 90 comprises Botox™ powder by way of illustration and not limitation. It is to be noted that powder 90 may comprise powder of any of the designated-for-injection substances listed herein.
For some applications, techniques described herein are practiced in combination with techniques described in one or more of the references cited in the Background section and Cross-references section of the present patent application. It will be appreciated by persons skilled in the art that the present invention is not limited to what has been particularly shown and described hereinabove. Rather, the scope of the present invention includes both combinations and subcombinations of the various features described hereinabove, as well as variations and modifications thereof that are not in the prior art, which would occur to persons skilled in the art upon reading the foregoing description.

Claims

1. Substance-administration apparatus, comprising:
a housing;
a needle, couplable to the housing, having a skin-insertion portion 0.3-2.5 mm in length and an outer diameter that is less than 0.23 mm;
a dosage regulator coupled to the housing, which regulates a dosage of a substance injected in a single injection through the needle, the dosage being selectable in accordance with a setting of the dosage regulator to be one of a plurality of selectable dosages, the plurality of selectable dosages including at least one dosage that is less than or equal to 10 ul;
an injection driver, activatable by a user to drive the substance through the needle, and
a motor coupled to the injection driver, the motor being actuated by the dosage regulator in a pulsatile manner so as to produce brief periods of high pressure in the apparatus that expel a predetermined volume of the substance through the needle at a controlled rate.
2. The apparatus according to claim 1, wherein the skin-insertion portion is 1-2.5 mm in length.
3. The apparatus according to claim 1, wherein the apparatus is generally cylindrical.
4. The apparatus according to claim 1, wherein the plurality of selectable dosages includes at least one dosage that is greater than 10 ul.
5. The apparatus according to claim 1, wherein the plurality of selectable dosages does not include any dosages that are greater than 50 ul.
6. The apparatus according to claim 1, wherein the at least one dosage is 5-10 ul.
7. The apparatus according to claim 1, wherein the at least one dosage is 1-5 ul.
8. The apparatus according to claim 1, wherein the outer diameter of the needle is less than 0.21 mm.
9. The apparatus according to claim 1, wherein the outer diameter of the needle is between 0.15 mm and 0.23 mm.
10. The apparatus according to claim 1, wherein the substance includes a viscous substance, and wherein the dosage regulator is configured to regulate the dosage of the viscous substance injected in the single injection through the needle.
11. The apparatus according to claim 1, wherein the apparatus comprises the substance, and wherein the substance comprises a depilatory agent.
12. The apparatus according to any one of claims 1-11, further comprising a cartridge, pre-filled with the substance, couplable to the housing, for providing the substance in a plurality of injections.
13. The apparatus according to claim 12, wherein the needle is couplable to the housing by being couplable to the cartridge, and wherein the needle and the cartridge are couplable to the housing by the user, prior to use of the apparatus.
14. The apparatus according to claim 12, wherein the cartridge is pre-filled with powder of botulinum toxin, and wherein the housing is configured to receive the cartridge and to facilitate suspension of the powder subsequently to the receiving of the cartridge.
15. A substance-administration method, comprising:
regulating a dosage of a substance by selecting one of a plurality of selectable dosages, the plurality of selectable dosages including at least one dosage that is less than or equal to 10 ul;
inserting a needle having an outer diameter that is less than 0.23 mm into skin of a subject to a depth of 0.3-2.5 mm;
expelling a predetermined volume of the substance through the needle at a controlled rate by producing brief periods of high pressure in a device used to administer the substance; and
administering the substance at the selected dosage through the needle.
16. The method according to claim 15, wherein inserting the needle comprises inserting the needle to a depth of 1-2.5 mm.
17. The method according to claim 15, wherein the plurality of selectable dosages further includes at least one dosage that is greater than 10 ul, and wherein selecting comprises selecting the at least one dosage that is greater than 10 ul.
18. The method according to claim 15, wherein the plurality of selectable dosages does not include any dosages that are greater than 50 ul, and wherein selecting comprises selecting a dosage from the plurality of selectable dosages that does not include any dosages that are greater than 50 ul.
19. The method according to claim 15, wherein the at least one dosage is 5-10 ul, and wherein selecting comprises selecting the at least one dosage that is 5-10 ul.
20. The method according to claim 15, wherein the at least one dosage is 1-5 ul, and wherein selecting comprises selecting the at least one dosage that is 1-5 ul.
21. The method according to claim 15, wherein the outer diameter of the needle is less than 0.21 mm, and wherein inserting the needle comprises inserting the needle that has an outer diameter that is less than 0.21 mm.
22. The method according to claim 15, wherein the substance includes a depilatory agent, and wherein administering the substance comprises administering the depilatory agent.
23. The method according to claim 15, wherein the substance includes a viscous substance, and wherein administering the substance comprises administering the viscous substance.
24. The method according to any one of claims 15-23, further comprising coupling to the needle a cartridge that is pre-filled with the substance, and providing the substance from the cartridge in a plurality of injections.
25. The method according to claim 24, wherein the cartridge is pre-filled with powder of botulinum toxin, and wherein the method further comprises receive suspending the powder prior to the providing the substance from the cartridge in the plurality of injections.
26. The method according to any one of claims 15-23, wherein inserting the needle in the skin comprises inserting the needle in at least one site selected from the group consisting of: skin of a face of the subject and skin of a neck of the subject.
27. The method according to claim 26, wherein inserting the needle in the at least one selected site comprises inserting the needle and administering the substance at at least 5 sites.
28. The method according to claim 26, wherein inserting the needle in the at least one selected site comprises inserting the needle at two sites separated by less than 1 mm.
29. A substance-administration method, comprising:
inserting a needle having an outer diameter that is less than 0.23 mm into skin of a subject to a depth of 0.3-2.5 mm;
expelling a predetermined volume of the substance through the needle at a controlled rate by producing brief periods of high pressure in a device used to administer the substance; and
administering the substance at the selected dosage through the needle.
PCT/IL2011/000368 2010-05-10 2011-05-08 Low volume accurate injector WO2011141907A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11780304.9A EP2569031B1 (en) 2010-05-10 2011-05-08 Low volume accurate injector
US13/643,470 US9452261B2 (en) 2010-05-10 2011-05-08 Low volume accurate injector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US33285510P 2010-05-10 2010-05-10
US61/332,855 2010-05-10

Publications (1)

Publication Number Publication Date
WO2011141907A1 true WO2011141907A1 (en) 2011-11-17

Family

ID=44914017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IL2011/000368 WO2011141907A1 (en) 2010-05-10 2011-05-08 Low volume accurate injector

Country Status (3)

Country Link
US (1) US9452261B2 (en)
EP (1) EP2569031B1 (en)
WO (1) WO2011141907A1 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014008393A1 (en) * 2012-07-05 2014-01-09 Unitract Syringe Pty Ltd Automatic injectors for injectable cartridges and drive control mechanisms|therefor
EP2689793A1 (en) * 2012-07-27 2014-01-29 juvaplus SA Injection device for aesthetic medicine
WO2014019997A1 (en) * 2012-07-30 2014-02-06 Ucb Pharma S.A. Auto-injector
WO2014019999A1 (en) * 2012-07-30 2014-02-06 Ucb Pharma S.A. Auto-injector
WO2014020000A1 (en) * 2012-07-30 2014-02-06 Ucb Pharma S.A. Auto-injector
WO2014020001A1 (en) * 2012-07-30 2014-02-06 Ucb Pharma S.A. Auto-injector
US8808244B2 (en) 2011-08-24 2014-08-19 Unitract Syringe Pty Ltd Auto-injector for retractable prefilled syringe
EP2799101A4 (en) * 2011-12-26 2015-06-03 Panasonic Healthcare Holdings Co Ltd Medicine injection device
USD755956S1 (en) 2012-07-30 2016-05-10 Ucb Pharma S.A. Cassette device for administering medication
US9669158B2 (en) 2011-06-02 2017-06-06 Ucb Biopharma Sprl Auto-injector
US9750885B2 (en) 2013-05-01 2017-09-05 Unl Holdings Llc Plunger-driven auto-injectors
US9789254B2 (en) 2014-01-27 2017-10-17 Ucb Biopharma Sprl Auto-injector
US9795534B2 (en) 2015-03-04 2017-10-24 Medimop Medical Projects Ltd. Compliant coupling assembly for cartridge coupling of a drug delivery device
US9821123B2 (en) 2014-01-27 2017-11-21 Ucb Biopharma Sprl Auto-injector
US9901686B2 (en) 2008-01-11 2018-02-27 Ucb Biopharma Sprl Systems and methods for administering medication
US10251813B2 (en) 2015-03-04 2019-04-09 West Pharma. Services IL, Ltd. Flexibly mounted cartridge alignment collar for drug delivery device
US10300201B2 (en) 2012-02-06 2019-05-28 Unl Holdings Llc Plunger sub-assemblies and auto-injectors having low retraction activation force
US10342925B2 (en) 2014-01-27 2019-07-09 Ucb Biopharma Sprl Auto-injector
EP3213784B1 (en) 2013-11-28 2020-08-19 SHL Medical AG Device for a medicament delivery device
US11167086B2 (en) 2008-09-15 2021-11-09 West Pharma. Services IL, Ltd. Stabilized pen injector
US11819666B2 (en) 2017-05-30 2023-11-21 West Pharma. Services IL, Ltd. Modular drive train for wearable injector

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7909789B2 (en) 2006-06-26 2011-03-22 Sight Sciences, Inc. Intraocular implants and methods and kits therefor
US9656019B2 (en) 2007-10-02 2017-05-23 Medimop Medical Projects Ltd. Apparatuses for securing components of a drug delivery system during transport and methods of using same
EP2195052B1 (en) 2007-10-02 2019-09-04 Medimop Medical Projects Ltd. External drug pump
US10420880B2 (en) 2007-10-02 2019-09-24 West Pharma. Services IL, Ltd. Key for securing components of a drug delivery system during assembly and/or transport and methods of using same
JP5856569B2 (en) 2010-02-05 2016-02-10 サイト サイエンシーズ, インコーポレイテッド Device for reducing intraocular pressure and kit including the same
US9095412B2 (en) 2012-03-20 2015-08-04 Sight Sciences, Inc. Ocular delivery systems and methods
US9956341B2 (en) 2012-07-03 2018-05-01 Milestone Scientific, Inc. Drug infusion with pressure sensing and non-continuous flow for identification of and injection into fluid-filled anatomic spaces
US20140350516A1 (en) 2013-05-23 2014-11-27 Allergan, Inc. Mechanical syringe accessory
US20140350518A1 (en) 2013-05-23 2014-11-27 Allergan, Inc. Syringe extrusion accessory
US20150126929A1 (en) * 2013-11-04 2015-05-07 Allergan, Inc. Dermal filler injector
US10029048B2 (en) * 2014-05-13 2018-07-24 Allergan, Inc. High force injection devices
US10583257B2 (en) * 2014-06-30 2020-03-10 BreezzAngel, LLC Method and apparatus for controlling the discharge rate of a syringe
US10226585B2 (en) 2014-10-01 2019-03-12 Allergan, Inc. Devices for injection and dosing
EP3058974A1 (en) * 2015-02-19 2016-08-24 Sanofi-Aventis Deutschland GmbH Injection device with supplementary device
WO2016145230A1 (en) 2015-03-10 2016-09-15 Unger Jacob G Multiple needle injector
US10299958B2 (en) 2015-03-31 2019-05-28 Sight Sciences, Inc. Ocular delivery systems and methods
US10149943B2 (en) 2015-05-29 2018-12-11 West Pharma. Services IL, Ltd. Linear rotation stabilizer for a telescoping syringe stopper driverdriving assembly
CN107683158B (en) 2015-06-04 2021-05-14 麦迪麦珀医疗工程有限公司 Cartridge insertion for drug delivery device
US10086145B2 (en) 2015-09-22 2018-10-02 West Pharma Services Il, Ltd. Rotation resistant friction adapter for plunger driver of drug delivery device
US9987432B2 (en) 2015-09-22 2018-06-05 West Pharma. Services IL, Ltd. Rotation resistant friction adapter for plunger driver of drug delivery device
US10576207B2 (en) 2015-10-09 2020-03-03 West Pharma. Services IL, Ltd. Angled syringe patch injector
CN108472438B (en) 2015-10-09 2022-01-28 西医药服务以色列分公司 Tortuous fluid path attachment to pre-filled fluid reservoirs
US10220180B2 (en) 2015-10-16 2019-03-05 Milestone Scientific, Inc. Method and apparatus for performing a peripheral nerve block
CN109219456B (en) 2016-01-21 2020-05-15 西医药服务以色列有限公司 Force containment in autoinjectors
US10646643B2 (en) 2016-01-21 2020-05-12 West Pharma. Services IL, Ltd. Needle insertion and retraction mechanism
CN113041432B (en) 2016-01-21 2023-04-07 西医药服务以色列有限公司 Medicament delivery device comprising a visual indicator
WO2017161076A1 (en) 2016-03-16 2017-09-21 Medimop Medical Projects Ltd. Staged telescopic screw assembly having different visual indicators
US10376647B2 (en) 2016-03-18 2019-08-13 West Pharma. Services IL, Ltd. Anti-rotation mechanism for telescopic screw assembly
US10596321B2 (en) 2016-04-08 2020-03-24 Allergan, Inc. Aspiration and injection device
FR3053894B1 (en) 2016-07-15 2018-07-20 Nemera La Verpilliere AUTOMATIC INJECTION DEVICE WITH REDUCED RESIDUAL VOLUME.
WO2018026387A1 (en) 2016-08-01 2018-02-08 Medimop Medical Projects Ltd. Anti-rotation cartridge pin
DE102016115268A1 (en) * 2016-08-17 2018-02-22 B. Braun Melsungen Ag Method for controlling a syringe pump
WO2018096534A1 (en) 2016-11-22 2018-05-31 Sorrel Medical Ltd. Apparatus for delivering a therapeutic substance
EP3544661A4 (en) * 2016-11-23 2020-12-23 Fishman Corporation Pencil gun
US10632255B2 (en) 2017-02-15 2020-04-28 Milestone Scientific, Inc. Drug infusion device
USD867582S1 (en) 2017-03-24 2019-11-19 Allergan, Inc. Syringe device
US11471595B2 (en) 2017-05-04 2022-10-18 Milestone Scientific, Inc. Method and apparatus for performing a peripheral nerve block
JP6909066B2 (en) * 2017-05-22 2021-07-28 Phcホールディングス株式会社 Drug cartridge adapter and drug injection adapter to attach it
EP3727514A1 (en) 2017-12-22 2020-10-28 West Pharma Services IL, Ltd. Injector usable with different dimension cartridges
JP7308867B2 (en) * 2018-04-30 2023-07-14 エンベクタ コーポレイション pen needle assembly
EP3744368A1 (en) 2018-10-05 2020-12-02 Sorrel Medical Ltd. Triggering sequence
US20220000661A1 (en) * 2018-10-26 2022-01-06 Singapore Health Services Pte Ltd Device and method for opthalmic extraction and injection
US10646660B1 (en) 2019-05-16 2020-05-12 Milestone Scientific, Inc. Device and method for identification of a target region
US11504270B1 (en) 2019-09-27 2022-11-22 Sight Sciences, Inc. Ocular delivery systems and methods
US11957542B2 (en) 2020-04-30 2024-04-16 Automed Patent Holdco, Llc Sensing complete injection for animal injection device
US11850402B2 (en) 2020-07-09 2023-12-26 Eli Lilly And Company Automatic injection device with reusable portion
WO2022076908A2 (en) 2020-10-09 2022-04-14 Icu Medical, Inc. Fluid transfer device and method of use for same
CN113995917B (en) * 2021-11-04 2023-07-14 周健 Injection syringe

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3794028A (en) * 1973-02-27 1974-02-26 A Griffin Method for injecting chemicals into the papilla for depilation
US20060173439A1 (en) * 2005-01-18 2006-08-03 Thorne Gale H Jr Syringe drive system
US20060211982A1 (en) * 2002-12-20 2006-09-21 Steven Prestrelski Intracutaneous injection
US20070197968A1 (en) * 2004-02-18 2007-08-23 Vincent Pongpairochana Hand-held electronically controlled injection device for injecting liquid medications
US20090041805A1 (en) * 2000-12-05 2009-02-12 Allergan, Inc. Botulinum toxin for treating postherpetic neuralgia
US20090048347A1 (en) * 2007-01-16 2009-02-19 Dermworx Incorporated Topical anesthetic for rapid local anesthesia and method of applying a topical anesthetic

Family Cites Families (447)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1795630A (en) 1928-04-24 1931-03-10 Raymond M Ramsey Screw jack
DE1064693B (en) 1956-03-08 1959-09-03 Josef Klinger Device for the automatic insertion of an injection needle
US2860635A (en) 1957-03-20 1958-11-18 Edgar H Wilburn Sterilizable and sterilized hypodermic syringe assemblies
GB999506A (en) 1960-11-02 1965-07-28 Engis Ltd Improvements in syringes for dispensing paste or the like
US3203269A (en) 1962-10-22 1965-08-31 Lockheed Aircraft Corp Telescoping screw sequencing device
US3994295A (en) 1975-08-22 1976-11-30 Wulff Goldwyn L Hypodermic syringe needle mounting
US4273122A (en) 1976-11-12 1981-06-16 Whitney Douglass G Self contained powered injection system
US4195636A (en) 1978-03-27 1980-04-01 Behnke Robert C Arm flesh injection site clamp
US4218724A (en) 1978-11-21 1980-08-19 Kaufman Lance R Compact circuit package having improved circuit connectors
DE2906830C2 (en) 1979-02-22 1981-07-16 B. Braun Melsungen Ag, 3508 Melsungen Device for continuous infusions
US4241381A (en) 1979-04-04 1980-12-23 Amp Incorporated Bus bar assembly for circuit cards
US4403987A (en) 1982-01-25 1983-09-13 Gottinger Company, Inc. Device for aiding injection of a hypodermic syringe
US4435173A (en) 1982-03-05 1984-03-06 Delta Medical Industries Variable rate syringe pump for insulin delivery
US4465478A (en) 1982-10-14 1984-08-14 Collagen Corporation Syringe force amplification device
ATE23802T1 (en) 1982-10-27 1986-12-15 Duphar Int Res AUTOMATIC INJECTION DEVICE.
DE3468173D1 (en) 1983-09-07 1988-02-04 Disetronic Ag Portable infusion apparatus
US4685903A (en) 1984-01-06 1987-08-11 Pacesetter Infusion, Ltd. External infusion pump apparatus
US4601702A (en) 1984-05-21 1986-07-22 Quest Medical, Inc. Volumetric infusion actuator
US4599082A (en) 1984-08-13 1986-07-08 Becton, Dickinson And Company Two-component syringe assembly
US4810215A (en) 1985-06-06 1989-03-07 Yazaki Corporation Position compensating connector
FR2589215B1 (en) 1985-10-29 1989-05-05 Thomson Csf ELECTRICAL JOINT BETWEEN CONDUCTIVE, ORTHOGONAL, INDEPENDENT WALLS
DE3606163A1 (en) 1986-02-26 1987-08-27 Hoechst Ag DEVICE FOR APPLICATING MEDICAL SUSPENSIONS
US4867743A (en) 1986-11-24 1989-09-19 Vaillancourt Vincent L Ambulatory disposable infusion delivery system
US4698055A (en) 1986-11-24 1987-10-06 Sealfon Andrew I Hypodermic syringe
CA1283827C (en) 1986-12-18 1991-05-07 Giorgio Cirelli Appliance for injection of liquid formulations
NL8701091A (en) 1987-05-08 1988-12-01 Spruyt Hillen Bv INJECTION PEN.
US4919596A (en) 1987-12-04 1990-04-24 Pacesetter Infusion, Ltd. Fluid delivery control and monitoring apparatus for a medication infusion system
CH675078A5 (en) 1988-01-22 1990-08-31 Nosta Ag
US5131816A (en) 1988-07-08 1992-07-21 I-Flow Corporation Cartridge fed programmable ambulatory infusion pumps powered by DC electric motors
US4929241A (en) 1988-08-05 1990-05-29 Kulli John C Medical needle puncture guard
DK68789A (en) 1989-02-14 1990-08-15 Novo Nordisk As injector
IT1231916B (en) 1989-05-29 1992-01-15 Ampliscientifica S R L WEARABLE ARTIFICIAL PANCREAS
USD322671S (en) 1989-11-22 1991-12-24 Becton, Dickinson And Company Needle shield or the like
US5109850A (en) 1990-02-09 1992-05-05 Massachusetts Institute Of Technology Automatic blood monitoring for medication delivery method and apparatus
US5190521A (en) 1990-08-22 1993-03-02 Tecnol Medical Products, Inc. Apparatus and method for raising a skin wheal and anesthetizing skin
US5527288A (en) 1990-12-13 1996-06-18 Elan Medical Technologies Limited Intradermal drug delivery device and method for intradermal delivery of drugs
TW279133B (en) 1990-12-13 1996-06-21 Elan Med Tech
AU654857B2 (en) 1991-03-29 1994-11-24 Collagen Corporation Device and method for treating facial lines
DK175491D0 (en) 1991-10-18 1991-10-18 Novo Nordisk As APPARATUS
US5254096A (en) 1992-09-23 1993-10-19 Becton, Dickinson And Company Syringe pump with graphical display or error conditions
IL107038A (en) 1992-10-05 1997-04-15 Senetek Plc Medicament injectors and methods for injection using same
US5342313A (en) 1992-11-02 1994-08-30 Infusion Technologies Corporation Fluid pump for a flexible, variable geometry reservoir
US5496274A (en) 1992-11-23 1996-03-05 Becton, Dickinson And Company Locking safety needle assembly
JP2708964B2 (en) 1993-01-29 1998-02-04 シェリング−プラウ・ヘルスケア・プロダクツ・インコーポレーテッド Stable sulfurized composition, its use and production method
US5383865A (en) 1993-03-15 1995-01-24 Eli Lilly And Company Medication dispensing device
US5300045A (en) 1993-04-14 1994-04-05 Plassche Jr Walter M Interventional needle having an automatically capping stylet
FR2710537B1 (en) 1993-09-30 1995-12-01 Becton Dickinson Co Method and device for detecting occlusions in a perfusion line.
US5348544A (en) 1993-11-24 1994-09-20 Becton, Dickinson And Company Single-handedly actuatable safety shield for needles
JP3223684B2 (en) 1993-12-31 2001-10-29 ニプロ株式会社 Chemical injection device
US5522804A (en) 1994-02-15 1996-06-04 Lynn; Lawrence A. Aspiration, mixing, and injection syringe
US5804331A (en) 1994-02-15 1998-09-08 Mag Instrument, Inc. Battery device
US5593222A (en) 1994-02-15 1997-01-14 Mag Instrument, Inc. Flashlight
US5482446A (en) 1994-03-09 1996-01-09 Baxter International Inc. Ambulatory infusion pump
US5536249A (en) 1994-03-09 1996-07-16 Visionary Medical Products, Inc. Pen-type injector with a microprocessor and blood characteristic monitor
US5478315A (en) 1994-08-08 1995-12-26 Brothers Family Investments, L.C. Local anesthetic injection system
US5505709A (en) 1994-09-15 1996-04-09 Minimed, Inc., A Delaware Corporation Mated infusion pump and syringe
GB9419316D0 (en) 1994-09-24 1994-11-09 Robertson William F A needle guard
US7027859B1 (en) 1994-09-26 2006-04-11 Alza Corporation Electrotransport delivery device having improved safety and reduced abuse potential
CA2159052C (en) 1994-10-28 2007-03-06 Rainer Alex Injection device
IE72524B1 (en) 1994-11-04 1997-04-23 Elan Med Tech Analyte-controlled liquid delivery device and analyte monitor
GB9501218D0 (en) 1995-01-21 1995-03-15 Boc Group Plc Medical devices
US5690618A (en) * 1995-02-22 1997-11-25 Mark Timothy Smith Electronic syringe
US5647853A (en) 1995-03-03 1997-07-15 Minimed Inc. Rapid response occlusion detector for a medication infusion pump
US5562686A (en) 1995-04-19 1996-10-08 United States Surgical Corporation Apparaus and method for suturing body tissue
ES2208740T3 (en) 1995-04-20 2004-06-16 Acist Medical Systems, Inc. AUTOPURGADOR ANGIOGRAPHIC INJECTOR.
CA2151407A1 (en) 1995-06-09 1996-12-10 Duncan Newman Injection device
EP0851774A1 (en) 1995-06-14 1998-07-08 BERNEY, Jean-Claude Linear-transmission syringe plunger
ATE292484T1 (en) 1995-09-11 2005-04-15 Elan Corp Plc MEDICATION DELIVERY DEVICE
IE77523B1 (en) 1995-09-11 1997-12-17 Elan Med Tech Medicament delivery device
US6277095B1 (en) 1995-10-11 2001-08-21 Science Incorporated Fluid delivery device with full adapter
US5858001A (en) 1995-12-11 1999-01-12 Elan Medical Technologies Limited Cartridge-based drug delivery device
CA2248053C (en) 1996-03-12 2006-08-15 Novo Nordisk A/S Injection device with electronic presentation of set doses
GB9606829D0 (en) 1996-03-30 1996-06-05 Jeffrey Peter Supplying materials etc
US5858008A (en) 1997-04-22 1999-01-12 Becton, Dickinson And Company Cannula sealing shield assembly
USD393314S (en) 1996-08-28 1998-04-07 Medisense, Inc. Meter for analysis of blood constituents
US6146361A (en) 1996-09-26 2000-11-14 Becton Dickinson And Company Medication delivery pen having a 31 gauge needle
US5662678A (en) 1996-10-11 1997-09-02 Macklin; John W. Self injection arm clamp
US5868710A (en) 1996-11-22 1999-02-09 Liebel Flarsheim Company Medical fluid injector
US5766186A (en) 1996-12-03 1998-06-16 Simon Fraser University Suturing device
EP0971760A1 (en) 1997-02-04 2000-01-19 Novo Nordisk A/S A device for the administration of a liquid medicament suspension
US5851197A (en) 1997-02-05 1998-12-22 Minimed Inc. Injector for a subcutaneous infusion set
US7899511B2 (en) 2004-07-13 2011-03-01 Dexcom, Inc. Low oxygen in vivo analyte sensor
US6530900B1 (en) 1997-05-06 2003-03-11 Elan Pharma International Limited Drug delivery device
US6186982B1 (en) 1998-05-05 2001-02-13 Elan Corporation, Plc Subcutaneous drug delivery device with improved filling system
CN1275596C (en) 1997-05-14 2006-09-20 阿特罗吉尼克斯公司 Application of probuco monoester intreating amgiocardiopathy and inflammatry disease
US6558351B1 (en) 1999-06-03 2003-05-06 Medtronic Minimed, Inc. Closed loop system for controlling insulin infusion
US6500150B1 (en) 1997-06-16 2002-12-31 Elan Pharma International Limited Pre-filled drug-delivery device and method of manufacture and assembly of same
ATE274938T1 (en) 1997-06-16 2004-09-15 Elan Corp Plc PREFILLED MEDICATION DISPENSING DEVICE
US5968011A (en) 1997-06-20 1999-10-19 Maersk Medical A/S Subcutaneous injection set
JP2001509426A (en) 1997-07-11 2001-07-24 ノボ ノルディスク アクティーゼルスカブ Equipment for display of medical equipment settings
US5984697A (en) 1997-12-03 1999-11-16 Qualcomm Incorporated Ground clip apparatus for circuit boards
US6033245A (en) 1997-12-05 2000-03-07 Simplex Time Recorder Co. Self-aligning electrical connector
CA2484271C (en) 1997-12-31 2007-04-24 Medtronic Minimed, Inc. Insertion device for an insertion set and method of using the same
PL191327B1 (en) 1998-01-30 2006-04-28 Novo Nordisk As Syringe
US5957895A (en) 1998-02-20 1999-09-28 Becton Dickinson And Company Low-profile automatic injection device with self-emptying reservoir
US5954697A (en) 1998-03-02 1999-09-21 Srisathapat; Chad Threaded nut syringe plunger for use with a medication infusion pump
ATE254938T1 (en) 1998-03-23 2003-12-15 Elan Corp Plc DEVICE FOR DRUG ADMINISTRATION
US6391005B1 (en) 1998-03-30 2002-05-21 Agilent Technologies, Inc. Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
US6200289B1 (en) 1998-04-10 2001-03-13 Milestone Scientific, Inc. Pressure/force computer controlled drug delivery system and the like
TW406018B (en) 1998-05-21 2000-09-21 Elan Corp Plc Improved adhesive system for medical devices
US6503231B1 (en) 1998-06-10 2003-01-07 Georgia Tech Research Corporation Microneedle device for transport of molecules across tissue
US5941850A (en) 1998-06-29 1999-08-24 Shah; Binod Safety cannula
US5993423A (en) 1998-08-18 1999-11-30 Choi; Soo Bong Portable automatic syringe device and injection needle unit thereof
US6554798B1 (en) 1998-08-18 2003-04-29 Medtronic Minimed, Inc. External infusion device with remote programming, bolus estimator and/or vibration alarm capabilities
US6064797A (en) 1998-10-12 2000-05-16 B. Braun Medical, Inc. Volumetric flow equalizing drive control wheel
US6800071B1 (en) 1998-10-29 2004-10-05 Medtronic Minimed, Inc. Fluid reservoir piston
DK1716884T3 (en) 1998-10-29 2014-03-10 Medtronic Minimed Inc reservoir Connection
US7621893B2 (en) 1998-10-29 2009-11-24 Medtronic Minimed, Inc. Methods and apparatuses for detecting occlusions in an ambulatory infusion pump
US20020173748A1 (en) 1998-10-29 2002-11-21 Mcconnell Susan Reservoir connector
US7766873B2 (en) 1998-10-29 2010-08-03 Medtronic Minimed, Inc. Method and apparatus for detecting occlusions in an ambulatory infusion pump
US6248093B1 (en) 1998-10-29 2001-06-19 Minimed Inc. Compact pump drive system
US6641565B1 (en) 1998-11-13 2003-11-04 Elan Pharma International Limited drug delivery systems and methods
US6423029B1 (en) 1999-04-29 2002-07-23 Medtronic, Inc. System and method for detecting abnormal medicament pump fluid pressure
US6336729B1 (en) 1999-05-20 2002-01-08 Richard Pavelle Emergency light device
US6458102B1 (en) 1999-05-28 2002-10-01 Medtronic Minimed, Inc. External gas powered programmable infusion device
US7806886B2 (en) 1999-06-03 2010-10-05 Medtronic Minimed, Inc. Apparatus and method for controlling insulin infusion with state variable feedback
US6743211B1 (en) 1999-11-23 2004-06-01 Georgia Tech Research Corporation Devices and methods for enhanced microneedle penetration of biological barriers
US6752787B1 (en) 1999-06-08 2004-06-22 Medtronic Minimed, Inc., Cost-sensitive application infusion device
US6277099B1 (en) 1999-08-06 2001-08-21 Becton, Dickinson And Company Medication delivery pen
US6377848B1 (en) 1999-08-25 2002-04-23 Vyteris, Inc. Devices activating an iontophoretic delivery device
US6224569B1 (en) 1999-09-24 2001-05-01 Becton, Dickinson And Company Compact needle point shield
US20020193740A1 (en) 1999-10-14 2002-12-19 Alchas Paul G. Method of intradermally injecting substances
US20020095134A1 (en) * 1999-10-14 2002-07-18 Pettis Ronald J. Method for altering drug pharmacokinetics based on medical delivery platform
US6958053B1 (en) 1999-11-24 2005-10-25 Medrad, Inc. Injector providing drive member advancement and engagement with syringe plunger, and method of connecting a syringe to an injector
US6673033B1 (en) 1999-11-24 2004-01-06 Medrad, Inc. Injectors, injector systems and injector control
US6302633B1 (en) 1999-12-17 2001-10-16 L. Richard Poe Multiple pitch threaded fastener apparatus
US20030060765A1 (en) 2000-02-16 2003-03-27 Arthur Campbell Infusion device menu structure and method of using the same
US20010041869A1 (en) 2000-03-23 2001-11-15 Causey James D. Control tabs for infusion devices and methods of using the same
US6485465B2 (en) 2000-03-29 2002-11-26 Medtronic Minimed, Inc. Methods, apparatuses, and uses for infusion pump fluid pressure and force detection
US6836687B2 (en) 2000-03-31 2004-12-28 Medtronic, Inc. Method and system for delivery of a medical electrical lead within a venous system
US6485461B1 (en) 2000-04-04 2002-11-26 Insulet, Inc. Disposable infusion device
US6716198B2 (en) 2000-05-18 2004-04-06 Novo Nordisk A/S Injection device
SE0001893D0 (en) 2000-05-22 2000-05-22 Pharmacia & Upjohn Ab Medical arrangement
US6511336B1 (en) 2000-05-25 2003-01-28 Illinois Tool Works Inc. Solderless flex termination for motor tab
DE10026172A1 (en) 2000-05-26 2001-11-29 Roche Diagnostics Gmbh Body fluid withdrawal system
US6517517B1 (en) 2000-06-08 2003-02-11 Mayo Foundation For Medical Education And Research Automated injection device for administration of liquid medicament
US7530964B2 (en) 2000-06-30 2009-05-12 Elan Pharma International Limited Needle device and method thereof
US6589229B1 (en) 2000-07-31 2003-07-08 Becton, Dickinson And Company Wearable, self-contained drug infusion device
WO2003015847A1 (en) 2000-08-17 2003-02-27 Milestone Scientific Inc. Local anesthetic and delivery injection unit with automated rate control
US6740059B2 (en) 2000-09-08 2004-05-25 Insulet Corporation Devices, systems and methods for patient infusion
US20040260233A1 (en) 2000-09-08 2004-12-23 Garibotto John T. Data collection assembly for patient infusion system
US20020040208A1 (en) 2000-10-04 2002-04-04 Flaherty J. Christopher Data collection assembly for patient infusion system
JP2002191695A (en) 2000-10-20 2002-07-09 Mitsubishi Pencil Co Ltd Needle tip part cover member, assembly method of injection needle with needle tip part cover member, injection needle with needle guard member and syringe with needle guard member
US6508788B2 (en) 2000-10-27 2003-01-21 Novo Nordisk A/S Medication delivery device with telescopic piston rod
WO2002034315A1 (en) 2000-10-27 2002-05-02 Novo Nordisk A/S A medication delivery device with telescopic piston rod
DE60132507T2 (en) 2000-11-09 2008-12-24 Insulet Corp., Beverly Device for the transcutaneous delivery of drugs
US6768425B2 (en) 2000-12-21 2004-07-27 Insulet Corporation Medical apparatus remote control and method
DE10101932A1 (en) 2001-01-17 2002-07-25 Disetronic Licensing Ag Suction piece for a device for administering an injectable product comprises a suction chamber which is placeable on the skin, and has a fluid connection to a product reservoir
US6905298B1 (en) 2001-02-08 2005-06-14 Joseph E. Haring Telescopic nut
US6749587B2 (en) 2001-02-22 2004-06-15 Insulet Corporation Modular infusion device and method
US20040034331A1 (en) 2001-02-23 2004-02-19 Jason Toman Integrated medication delivery system
WO2002068018A2 (en) 2001-02-23 2002-09-06 Stryker Instruments Integrated medication delivery system
AUPR373001A0 (en) 2001-03-14 2001-04-12 Glenord Pty Ltd Improved non-reusable syringe
CA2443326A1 (en) 2001-04-04 2002-10-17 Alza Corporation Transdermal electrotransport delivery device including an antimicrobial compatible reservoir composition
US6595960B2 (en) 2001-04-12 2003-07-22 Becton, Dickinson And Company Flexible needle assembly
WO2002083206A2 (en) 2001-04-13 2002-10-24 Nipro Diabetes Systems Infusion set with tape
US6854620B2 (en) 2001-04-13 2005-02-15 Nipro Diabetes, Systems, Inc. Drive system for an infusion pump
CA2689022C (en) * 2001-05-16 2012-09-18 Eli Lilly And Company Medication injector apparatus with drive assembly that facilitates reset
DK2014324T3 (en) 2001-05-22 2011-02-07 Becton Dickinson Co Needle protection arrangement with a hinged needle protection part
US6767341B2 (en) 2001-06-13 2004-07-27 Abbott Laboratories Microneedles for minimally invasive drug delivery
DK1436020T3 (en) 2001-07-27 2008-09-01 Becton Dickinson Co Luer coupling assembly
CH695288A5 (en) 2001-08-21 2006-03-15 Tecpharma Licensing Ag Fixing device for injection needles.
US6722916B2 (en) 2001-08-30 2004-04-20 Siemens Vdo Automotive Corporation Surface battery clip
USD471983S1 (en) 2001-09-04 2003-03-18 Hypoguard Limited Blood glucose meter
US8152789B2 (en) 2001-10-23 2012-04-10 Medtronic Minimed, Inc. System and method for providing closed loop infusion formulation delivery
US6827702B2 (en) 2001-09-07 2004-12-07 Medtronic Minimed, Inc. Safety limits for closed-loop infusion pump control
US20060122577A1 (en) 2001-09-26 2006-06-08 Poulsen Jens U Modular drug delivery system
USD465026S1 (en) 2001-11-13 2002-10-29 Hypoguard Limited Blood glucose meter
GB0129171D0 (en) 2001-12-06 2002-01-23 Dca Design Int Ltd Improvements in and relating to a medicament cartridge
US7204823B2 (en) 2001-12-19 2007-04-17 Medtronic Minimed, Inc. Medication delivery system and monitor
US7247149B2 (en) 2001-12-20 2007-07-24 Advanced Cardiovascular Systems, Inc. Contact and penetration depth sensor for a needle assembly
ITTO20011228A1 (en) 2001-12-28 2003-06-28 Cane Srl DISPOSABLE NEEDLE CONTAINER.
JP3763141B2 (en) * 2001-12-28 2006-04-05 ニプロ株式会社 Syringe type chemical container
US6786890B2 (en) 2002-01-25 2004-09-07 Novo Nordisk A/S Linear actuator and a medical delivery device comprising such linear actuator
GB0201689D0 (en) 2002-01-25 2002-03-13 Dca Design Consultants Ltd Improvements in and relating to a medicament injection device
KR20040103930A (en) 2002-02-11 2004-12-09 앤태어스 파머, 인코퍼레이티드 Intradermal injector
US7267669B2 (en) 2002-02-23 2007-09-11 Stryker Corporation Two site infusion apparatus
USD471274S1 (en) 2002-02-23 2003-03-04 Stryker Instruments Medication delivery pump
US6744350B2 (en) 2002-02-28 2004-06-01 Smiths Medical Md, Inc. Insulin pump having missed meal bolus alarm
US6805687B2 (en) 2002-03-22 2004-10-19 Codman & Shurtleff, Inc. Infusion pump with access regulator
US7052251B2 (en) * 2002-04-22 2006-05-30 Medtronic Minimed, Inc. Shape memory alloy wire driven positive displacement micropump with pulsatile output
US6656158B2 (en) 2002-04-23 2003-12-02 Insulet Corporation Dispenser for patient infusion device
US6656159B2 (en) 2002-04-23 2003-12-02 Insulet Corporation Dispenser for patient infusion device
US20050238507A1 (en) 2002-04-23 2005-10-27 Insulet Corporation Fluid delivery device
US6960192B1 (en) 2002-04-23 2005-11-01 Insulet Corporation Transcutaneous fluid delivery system
AU2003233504A1 (en) * 2002-05-24 2003-12-12 Eli Lilly And Company Medication injecting apparatus with fluid container piston-engaging drive member having internal hollow for accommodating drive member shifting mechanism
US20030236489A1 (en) 2002-06-21 2003-12-25 Baxter International, Inc. Method and apparatus for closed-loop flow control system
US7338465B2 (en) 2002-07-02 2008-03-04 Patton Medical Devices, Lp Infusion device and method thereof
US20040010207A1 (en) 2002-07-15 2004-01-15 Flaherty J. Christopher Self-contained, automatic transcutaneous physiologic sensing system
US7250037B2 (en) 2002-07-22 2007-07-31 Becton, Dickinson And Company Patch-like infusion device
US7740600B2 (en) 2002-08-02 2010-06-22 Candela Corporation Apparatus and method for inhibiting pain signals transmitted during a skin related medical treatment
WO2004024211A2 (en) 2002-09-12 2004-03-25 Children's Hospital Medical Center Method and device for painless injection of medication
US7435238B2 (en) 2002-09-13 2008-10-14 Alan Reid Needle device having retractable needle providing enhanced safety
US7128727B2 (en) 2002-09-30 2006-10-31 Flaherty J Christopher Components and methods for patient infusion device
US7144384B2 (en) 2002-09-30 2006-12-05 Insulet Corporation Dispenser components and methods for patient infusion device
EP1575656B1 (en) 2002-10-11 2009-06-17 Becton, Dickinson and Company Insulin delivery system with sensor
US20040116866A1 (en) 2002-12-17 2004-06-17 William Gorman Skin attachment apparatus and method for patient infusion device
US6846302B2 (en) 2002-12-31 2005-01-25 Teva Medical Ltd. Needle protector device
EP1583423A4 (en) 2003-01-16 2006-05-10 Becton Dickinson Co Intradermal cellular delivery using narrow gauge micro-cannula
US20090204076A1 (en) 2003-02-03 2009-08-13 Barry Peter Liversidge Medical Injector
US7229419B2 (en) 2003-02-11 2007-06-12 Promex/U.S. Biosy Llc Single-handed biopsy system
US7225694B2 (en) 2003-03-03 2007-06-05 Lockheed Martin Corporation Telescopic actuator
US7390314B2 (en) 2003-03-05 2008-06-24 Medtronic Minimed, Inc. Lead screw driven reservoir with integral plunger nut and method of using the same
US6997727B1 (en) 2003-03-14 2006-02-14 Zierick Manufacturing Corp Compliant surface mount electrical contacts for circuit boards and method of making and using same
MXPA05010886A (en) 2003-04-16 2005-11-25 Allergan Inc Controlled volume injection/aspiration device.
AU2004232289A1 (en) 2003-04-18 2004-11-04 Insulet Corporation User interface for infusion pump remote controller and method of using the same
EP1475113A1 (en) 2003-05-08 2004-11-10 Novo Nordisk A/S External needle inserter
WO2004098682A2 (en) 2003-05-08 2004-11-18 Novo Nordisk A/S Pivotable injection needle unit
WO2004105841A1 (en) 2003-05-29 2004-12-09 It Pharma Llp Syringe with locking member
US8858508B2 (en) 2003-07-31 2014-10-14 West Pharmaceuticals Services of Delaware, Inc. Syringe with automatically triggered safety sleeve
EP1502613A1 (en) 2003-08-01 2005-02-02 Novo Nordisk A/S Needle device with retraction means
EP2609946B1 (en) 2003-08-12 2018-05-16 Becton, Dickinson and Company Patch-like infusion device with shielding member
CN100509069C (en) 2003-08-12 2009-07-08 贝克顿·迪金森公司 Patch-like infusion device
CA2530263C (en) 2003-08-12 2012-04-17 Eli Lilly And Company Medication dispensing apparatus with triple screw threads for mechanical advantage
US7097637B2 (en) 2003-08-27 2006-08-29 C. R. Bard, Inc. Safety needle with positive flush
US7415525B2 (en) 2003-09-29 2008-08-19 Nokia Corporation USB application adopting bluetooth profile with a sharing implementation
US9033920B2 (en) 2003-10-02 2015-05-19 Medtronic, Inc. Determining catheter status
ATE446111T1 (en) 2003-10-21 2009-11-15 Novo Nordisk As INTERNAL FLUID CONNECTOR FOR PRODUCING A FLUID CONNECTION
KR20060099520A (en) 2003-10-21 2006-09-19 노보 노르디스크 에이/에스 Medical skin mountable device
WO2005046436A2 (en) 2003-11-06 2005-05-26 Misonix Incorporated Rf cauterization and ultrasonic ablation instrument with multi-hole collar and electrode mounting sleeve
US7850658B2 (en) 2003-11-10 2010-12-14 Smiths Medical Asd, Inc. Subcutaneous infusion device and method including release feature for adhesive portion
FR2876035B1 (en) 2003-11-14 2007-03-30 Plastic Omnium Cie SAFETY ASSEMBLY FOR EQUIPPING A SYRINGE AND SYRINGE ASSEMBLY
US20050177136A1 (en) 2003-12-19 2005-08-11 Miller Landon C. Externally disposed pump for use with an internally mounted and compliant catheter
US20050159706A1 (en) 2004-01-20 2005-07-21 Becton, Dickinson And Company Medical syringe with safety shield system
JP4549079B2 (en) 2004-03-05 2010-09-22 パナソニック株式会社 Medical dosing device
CN2689323Y (en) 2004-03-11 2005-03-30 鸿富锦精密工业(深圳)有限公司 Fixer of host computer board
US7565208B2 (en) 2004-03-25 2009-07-21 Boston Scientific Scimed, Inc. Catheter with sensor tips, tool and device and methods of use of same
US7699829B2 (en) 2004-03-25 2010-04-20 Boston Scientific Scimed, Inc. Catheter with sensor tip and method of use of same
US7585287B2 (en) 2004-06-16 2009-09-08 Smiths Medical Md, Inc. Device and method for insertion of a cannula of an infusion device
US7588559B2 (en) 2004-07-01 2009-09-15 W&H Dentalwerk Bürmoos GmbH Injection systems
US7255684B2 (en) * 2004-08-09 2007-08-14 Boris Zubry Medical injection system
US20080215006A1 (en) 2004-09-22 2008-09-04 Novo Nordisk A/S Medical Device with Transcutaneous Cannula Device
EP1640029A1 (en) 2004-09-24 2006-03-29 Novo Nordisk A/S Injection device with cap
UA87334C2 (en) 2004-10-04 2009-07-10 Санофи-Авентис Дойчланд Гмбх Drive mechanism for drug delivery device, drug delivery device, use of drive mechanism (variants) and method for assembly of drug delivery device
EP1827537B1 (en) 2004-10-21 2019-08-14 Novo Nordisk A/S Medication delivery system with a detector for providing a signal indicative of an amount of an ejected dose of drug
ATE452671T1 (en) 2004-10-21 2010-01-15 Novo Nordisk As INJECTION DEVICE HAVING A PROCESSOR FOR COLLECTING EXHAUST INFORMATION
CN101119761B (en) 2004-11-24 2010-08-18 Shl医药公司 Injection device
US7303543B1 (en) 2004-12-03 2007-12-04 Medtronic Minimed, Inc. Medication infusion set
USD544092S1 (en) 2004-12-03 2007-06-05 Kci Licensing, Inc. Wearable negative pressure wound care appliance
US20090043245A1 (en) 2004-12-22 2009-02-12 Li Nguyen Device for administering an injection and method of using same
JP5249585B2 (en) 2004-12-27 2013-07-31 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ OTC automatic external defibrillator with quick-attach battery
US9636450B2 (en) 2007-02-19 2017-05-02 Udo Hoss Pump system modular components for delivering medication and analyte sensing at seperate insertion sites
DE102004063664A1 (en) 2004-12-31 2006-07-20 Tecpharma Licensing Ag Real-time display of a device for metered administration of a product
CN100571800C (en) 2005-01-24 2009-12-23 诺和诺德公司 Armarium with protected transcutaneous device
US7547281B2 (en) 2005-02-01 2009-06-16 Medtronic Minimed, Inc. Algorithm sensor augmented bolus estimator for semi-closed loop infusion system
US7731686B2 (en) 2005-02-01 2010-06-08 Intelliject, Inc. Devices, systems and methods for medicament delivery
CA2762072C (en) 2005-02-01 2017-08-29 Intelliject, Inc. Devices, systems, and methods for medicament delivery
US8231573B2 (en) 2005-02-01 2012-07-31 Intelliject, Inc. Medicament delivery device having an electronic circuit system
US9022980B2 (en) 2005-02-01 2015-05-05 Kaleo, Inc. Medical injector simulation device
US7704229B2 (en) 2005-02-03 2010-04-27 Medtronic Minimed, Inc. Insertion device
JP2008529689A (en) 2005-02-21 2008-08-07 ノボ・ノルデイスク・エー/エス Method of keeping the motor speed in the injection device constant
US20090124977A1 (en) 2005-02-23 2009-05-14 Novo Nordisk A/S Method and Apparatus for Reversing a Piston Rod in an Injection Device
BRPI0609511A2 (en) 2005-03-21 2010-04-13 Abbott Diabetes Care Inc system including an infusion device and an analyte monitoring unit, method for integrating analyte monitoring and fluid infusion, apparatus including an analyte sensor and a fluid supply channel, and a fluid supply method and analyte monitoring
WO2006102676A1 (en) 2005-03-23 2006-09-28 Tissue Engineering Refraction, Inc. Injectable polyethylene oxide dermal fillers and related devices
EP1704883B1 (en) 2005-03-24 2008-11-12 Disetronic Licensing AG Device for the dosed administration of a fluid product
JP2008534131A (en) 2005-03-28 2008-08-28 インシュレット コーポレイション Fluid dosing device
EP1874390B1 (en) 2005-03-28 2014-10-01 Insulet Corporation Fluid delivery device
EP1877115A1 (en) 2005-04-06 2008-01-16 M 2 Medical A/S An actuator
US8277415B2 (en) 2006-08-23 2012-10-02 Medtronic Minimed, Inc. Infusion medium delivery device and method with drive device for driving plunger in reservoir
US7905868B2 (en) * 2006-08-23 2011-03-15 Medtronic Minimed, Inc. Infusion medium delivery device and method with drive device for driving plunger in reservoir
US7641649B2 (en) 2005-05-06 2010-01-05 Medtronic Minimed, Inc. Reservoir support and method for infusion device
CN101175516B (en) 2005-05-13 2011-02-16 诺和诺德公司 Medical device adapted to detect disengagement of a transcutaneous device
WO2006126653A1 (en) 2005-05-27 2006-11-30 Olympus Corporation Device for introduction into subject
DE102005025639B4 (en) 2005-06-03 2011-04-07 Innovacell Biotechnologie Gmbh injection device
US20060283465A1 (en) 2005-06-16 2006-12-21 Nickel Janice H Smart drug delivery system and a method of implementation thereof
ES2361563T5 (en) 2005-07-27 2016-03-22 Novo Nordisk A/S Dosing mechanism for an injection device to limit a dose adjustment that corresponds to the amount of medication remaining
US7713240B2 (en) 2005-09-13 2010-05-11 Medtronic Minimed, Inc. Modular external infusion device
US8057436B2 (en) 2005-09-26 2011-11-15 Asante Solutions, Inc. Dispensing fluid from an infusion pump system
US7534226B2 (en) 2005-09-26 2009-05-19 M2 Group Holdings, Inc. Dispensing fluid from an infusion pump system
US8105279B2 (en) 2005-09-26 2012-01-31 M2 Group Holdings, Inc. Dispensing fluid from an infusion pump system
EP2162168B1 (en) 2005-09-26 2018-11-07 Bigfoot Biomedical, Inc. Modular infusion pump having two different energy sources
US8409142B2 (en) 2005-09-26 2013-04-02 Asante Solutions, Inc. Operating an infusion pump system
US8469984B2 (en) 2005-10-25 2013-06-25 Bayer Healthcare Llc Single use lancing device
AU2006310807B2 (en) 2005-11-02 2012-08-02 Medicaltree Patent Ltd Implantable infusion device with advanceable and retractable needle
US7935104B2 (en) 2005-11-07 2011-05-03 Medingo, Ltd. Systems and methods for sustained medical infusion and devices related thereto
DK1951340T4 (en) 2005-11-08 2017-05-22 Bigfoot Biomedical Inc infusion pump
JP4358821B2 (en) 2005-12-15 2009-11-04 オリンパス株式会社 Intra-subject introduction device
DE602006019153D1 (en) 2005-12-23 2011-02-03 Unomedical As injection device
EP2210635A3 (en) * 2006-02-09 2012-11-07 Aderans Research Institute, Inc. Apparatus for delivering fluid and material to a subject
USD578210S1 (en) 2006-03-14 2008-10-07 Hisamitsu Pharmaceutical Co., Inc. Injector
US20070299399A1 (en) 2006-03-16 2007-12-27 Seattle Medical Technologies Infusion device with dosage dial control
DE102006013322A1 (en) 2006-03-21 2007-09-27 Sarstedt Ag & Co. Canula has protective housing consisting of two sections plugged into each other, wherein inner housing has lamella pair, and outer housing is formed as sleeve which is less elastic with regard to inner housing
US9392969B2 (en) 2008-08-31 2016-07-19 Abbott Diabetes Care Inc. Closed loop control and signal attenuation detection
US7589974B2 (en) 2006-04-21 2009-09-15 Helwett-Packard Development Company, L.P. Modular server and method
TWI298216B (en) 2006-04-21 2008-06-21 Hon Hai Prec Ind Co Ltd Power supply devices and electronic products using the same
US20070282269A1 (en) 2006-05-31 2007-12-06 Seattle Medical Technologies Cannula delivery apparatus and method for a disposable infusion device
US7824360B2 (en) 2006-06-28 2010-11-02 Zion Azar Intradermal needles injection device
US7666165B2 (en) 2006-07-06 2010-02-23 Warsaw Orthopedic, Inc. Cannulated sensing device
JP4738275B2 (en) 2006-07-07 2011-08-03 日本航空電子工業株式会社 Lamp tube connector
US8382718B2 (en) 2006-07-31 2013-02-26 B. Braun Melsungen Ag Needle assembly and components thereof
US7740792B2 (en) 2006-08-03 2010-06-22 Medrad, Inc. Methods of molding a syringe
US8206296B2 (en) 2006-08-07 2012-06-26 Abbott Diabetes Care Inc. Method and system for providing integrated analyte monitoring and infusion system therapy management
US7455663B2 (en) 2006-08-23 2008-11-25 Medtronic Minimed, Inc. Infusion medium delivery system, device and method with needle inserter and needle inserter device and method
EP2060606B1 (en) 2006-08-28 2014-05-07 Teijin Limited Polycarbonate resin composition comprising plant-derived component
US8162923B2 (en) 2006-09-06 2012-04-24 Calibra Medical, Inc. Disposable infusion device with automatic unlocking mechanism
DE102006049528A1 (en) 2006-09-28 2008-04-03 Robert Bosch Gmbh Device and method for mounting a needle guard on a syringe body
EP2083896A2 (en) 2006-10-12 2009-08-05 Dynamic Therapeutics Ltd Regulated drug delivery system
WO2008057976A2 (en) 2006-11-03 2008-05-15 Avanca Medical Devices, Inc. Multiple dose syringes
US7780637B2 (en) 2006-11-06 2010-08-24 Steven Jerde Medical device container
EP1923083A1 (en) 2006-11-17 2008-05-21 Sanofi-Aventis Deutschland GmbH Drive mechanisms for use in drug delivery devices
US7704227B2 (en) 2006-11-29 2010-04-27 Medtronic Minimed, Inc. Methods and apparatuses for detecting medical device acceleration, temperature, and humidity conditions
EP2114502B1 (en) 2006-12-08 2014-07-30 Boston Scientific Limited Therapeutic catheter with displacement sensing transducer
WO2008072229A2 (en) 2006-12-12 2008-06-19 Nanopass Technologies Ltd. Methods for dermal filling using microneedles
US8057431B2 (en) 2006-12-21 2011-11-15 B. Braun Melsungen Ag Hinged cap for needle device
HUE061916T2 (en) 2006-12-22 2023-08-28 Hoffmann La Roche Device for sustained delivery of a therapeutic fluid
US7488181B2 (en) 2007-01-09 2009-02-10 Laird Technologies, Inc. Electrocoated contacts compatible with surface mount technology
US8038654B2 (en) 2007-02-26 2011-10-18 Becton, Dickinson And Company Syringe having a hinged needle shield
DE502007004715D1 (en) 2007-03-14 2010-09-23 Hoffmann La Roche Insertion device for an insertion head, in particular for an infusion set
US8034019B2 (en) 2007-04-10 2011-10-11 Amrita Vishwa Vidyapeetham Dual microcontroller-based liquid infusion system
US7501587B2 (en) 2007-04-16 2009-03-10 Laird Technologies, Inc. Mounting clips for use with electromagnetic interference shielding and methods of using the same
BRPI0810582A2 (en) 2007-04-23 2015-10-27 Program For Appropriate Technology In Health methods and devices for intradermal injection
US20080269723A1 (en) 2007-04-25 2008-10-30 Medtronic Minimed, Inc. Closed loop/semi-closed loop therapy modification system
FI7960U1 (en) 2007-04-27 2008-07-28 Bayer Schering Pharma Oy Membrane shell for an implantable dosing system
DK2146760T3 (en) 2007-04-30 2019-01-28 Medtronic Minimed Inc FILLING OF RESERVOIR, BUBBLE MANAGEMENT AND DELIVERY SYSTEMS FOR INFUSION MEDIA AND PROCEDURES
US7963954B2 (en) 2007-04-30 2011-06-21 Medtronic Minimed, Inc. Automated filling systems and methods
US8323250B2 (en) 2007-04-30 2012-12-04 Medtronic Minimed, Inc. Adhesive patch systems and methods
US8081590B2 (en) 2007-05-02 2011-12-20 Synapse Wireless, Inc. Systems and methods for controlling sleep states of network nodes
RU2468828C2 (en) 2007-05-07 2012-12-10 Уномедикал А/С Cannula and introduction device
CA123145S (en) 2007-05-31 2008-06-26 Danfoss Bionics As Insulin pump
US8157693B2 (en) 2007-06-19 2012-04-17 American Axle & Manufacturing, Inc. Helical differential assembly with preloaded adjustment mechanism
US8002752B2 (en) 2007-06-25 2011-08-23 Medingo, Ltd. Protector apparatus
EP2173407B1 (en) 2007-07-02 2020-02-19 Roche Diabetes Care GmbH A device for drug delivery
CN101801438B (en) 2007-07-20 2013-08-07 梅丁格有限公司 Manually operable portable infusion device
WO2009016635A2 (en) 2007-08-01 2009-02-05 Medingo Ltd. Detachable portable infusion device
US7828528B2 (en) 2007-09-06 2010-11-09 Asante Solutions, Inc. Occlusion sensing system for infusion pumps
US7935105B2 (en) 2007-09-07 2011-05-03 Asante Solutions, Inc. Data storage for an infusion pump system
US7879026B2 (en) 2007-09-07 2011-02-01 Asante Solutions, Inc. Controlled adjustment of medicine dispensation from an infusion pump device
US7771391B2 (en) 2007-09-28 2010-08-10 Calibra Medical, Inc. Disposable infusion device with snap action actuation
US8226607B2 (en) 2007-09-28 2012-07-24 Calibra Medical, Inc. Disposable infusion device with dual valve system
US9345836B2 (en) 2007-10-02 2016-05-24 Medimop Medical Projects Ltd. Disengagement resistant telescoping assembly and unidirectional method of assembly for such
US10420880B2 (en) 2007-10-02 2019-09-24 West Pharma. Services IL, Ltd. Key for securing components of a drug delivery system during assembly and/or transport and methods of using same
US7967795B1 (en) 2010-01-19 2011-06-28 Lamodel Ltd. Cartridge interface assembly with driving plunger
US9656019B2 (en) 2007-10-02 2017-05-23 Medimop Medical Projects Ltd. Apparatuses for securing components of a drug delivery system during transport and methods of using same
EP2195052B1 (en) 2007-10-02 2019-09-04 Medimop Medical Projects Ltd. External drug pump
DK2195048T3 (en) 2007-10-11 2019-03-11 Hoffmann La Roche CARRIER FOR AN INFUSION SYSTEM
DE102007049446A1 (en) 2007-10-16 2009-04-23 Cequr Aps Catheter introducer
US7922695B2 (en) 2007-10-18 2011-04-12 Roche Diagnostics Operations, Inc. Drug delivery pump drive using linear piezoelectric motor
EP2052677A1 (en) 2007-10-23 2009-04-29 Sensile Pat AG Medical device for glucose monitoring or regulation
GB2446247B (en) 2007-11-27 2008-12-17 Robert Joseph Wagener Homeostatic insulin pump
US7918825B2 (en) 2007-11-29 2011-04-05 Insulet Corporation Interfacing a prefilled syringe with an infusion pump to fill the infusion pump
US7771392B2 (en) 2007-11-29 2010-08-10 Roche Diagnostics Operations, Inc. Lead screw delivery device using reusable shape memory actuator drive
US7806868B2 (en) 2007-11-30 2010-10-05 Roche Diagnostics Operations, Inc. Drug reservoir loading and unloading mechanism for a drug delivery device using a unidirectional rotated shaft
US20090149830A1 (en) 2007-12-07 2009-06-11 Donald Spector Intelligent needle technology for acupuncture and injection of cosmetic preparations subcutaneously
ES2680896T3 (en) 2007-12-26 2018-09-11 F. Hoffmann-La Roche Ag System for glycemic control
US8313467B2 (en) 2007-12-27 2012-11-20 Medtronic Minimed, Inc. Reservoir pressure equalization systems and methods
CN101896214B (en) 2008-01-15 2013-05-29 西部制药服务公司 Collet mechanism and method of molding cannula to a syringe barrel
US8708961B2 (en) 2008-01-28 2014-04-29 Medsolve Technologies, Inc. Apparatus for infusing liquid to a body
USD604835S1 (en) 2008-02-01 2009-11-24 Conley N Sharon Patient controlled timed medication dispenser
US20090209896A1 (en) 2008-02-19 2009-08-20 Selevan James R Method and apparatus for time-dependent and temperature-dependent clinical alert
US9446185B2 (en) 2008-03-12 2016-09-20 Roche Diabetes Care, Inc. Devices and methods for improving accuracy of fluid delivery
US8540673B2 (en) 2008-03-18 2013-09-24 Calibra Medical, Inc. Disposable infusion device with actuation lock-out
CN103400028B (en) 2008-04-04 2017-04-12 海吉雅有限公司 Device for optimizing patient's insulin dosage regimen
US20090259176A1 (en) 2008-04-09 2009-10-15 Los Gatos Research, Inc. Transdermal patch system
EP2300077B1 (en) 2008-04-09 2017-07-19 Roche Diabetes Care GmbH Modular skin-adherable system for medical fluid delivery
US8287520B2 (en) 2008-04-10 2012-10-16 Medtronic, Inc. Automated integrity tests
US8801679B2 (en) 2008-04-10 2014-08-12 Panasonic Healthcare Co., Ltd. Medication administering device
WO2009144085A2 (en) 2008-04-18 2009-12-03 Kuros Biosurgery Ag Dispensing device, kit containing the device, and method of operating the device
JP5227645B2 (en) 2008-04-21 2013-07-03 矢崎総業株式会社 Board connector
EP2276524B1 (en) 2008-05-07 2011-12-28 Roche Diagnostics GmbH Display for an infusion delivery system
GB0808389D0 (en) * 2008-05-09 2008-06-18 Owen Mumford Ltd Electrically actuated injector
CN102105187A (en) * 2008-05-30 2011-06-22 阿勒根公司 Injection device for soft-tissue augmentation fillers, bioactive agents and other biocompatible materials in liquid or gel form
US20090326509A1 (en) 2008-06-30 2009-12-31 Muse Philip A Context aware medical monitoring and dosage delivery device
PL2140897T3 (en) 2008-06-30 2011-10-31 Animas Corp Drive mechanism
MX2010014260A (en) 2008-07-07 2011-03-21 Unomedical As Inserter for transcutaneous device.
USD602586S1 (en) 2008-07-23 2009-10-20 Animas Corporation Drug delivery pod
USD602155S1 (en) 2008-07-28 2009-10-13 Animas Corporation Drug delivery pod
US8795259B2 (en) 2008-08-01 2014-08-05 Wisconsin Alumni Research Foundation Drug delivery platform incorporating hydrogel pumping mechanism with guided fluid flow
US8986250B2 (en) 2008-08-01 2015-03-24 Wisconsin Alumni Research Foundation Drug delivery platform utilizing hydrogel pumping mechanism
KR101013581B1 (en) 2008-08-06 2011-02-14 라종주 Electric Skin Treatment Device
US8029526B2 (en) 2008-08-14 2011-10-04 Abbott Diabetes Care Inc. Cocking mechanism for lancing device
JP5646479B2 (en) 2008-08-18 2014-12-24 カリブラ メディカル,インク. Medicine injection system with reusable and disposable parts
GB0815897D0 (en) 2008-09-01 2008-10-08 Benmore Ventures Ltd Container illumination device
US20100145305A1 (en) 2008-11-10 2010-06-10 Ruth Alon Low volume accurate injector
WO2010059415A2 (en) 2008-11-18 2010-05-27 B. Braun Melsungen Ag Protective shield for a hypodermic syringe
EP2198904A1 (en) 2008-12-19 2010-06-23 Sanofi-Aventis Deutschland GmbH Interlock mechanism for a drug delivery device and drug delivery device
EP2201968A1 (en) 2008-12-24 2010-06-30 Roche Diagnostics GmbH Insertion system and insertion device
US8152779B2 (en) 2008-12-30 2012-04-10 Medimop Medical Projects Ltd. Needle assembly for drug pump
PL2379104T3 (en) * 2008-12-31 2018-07-31 Revance Therapeutics, Inc. Injectable botulinum toxin formulations
US8790295B1 (en) 2009-01-05 2014-07-29 Medtronic, Inc. Pressure monitoring to control delivery of therapeutic agent
KR20100086881A (en) 2009-01-23 2010-08-02 삼성전자주식회사 Backlight assembly and liquid crystal display having the same
US8221352B2 (en) 2009-01-29 2012-07-17 Michael Merchant Disposable safety needle system and safety enclosure means
DK2241344T3 (en) 2009-04-16 2014-03-03 Hoffmann La Roche Portable infusion with feel-testing device
JP5180379B2 (en) 2009-07-23 2013-04-10 パナソニック株式会社 Syringe drive device and dispensing device
US8900190B2 (en) 2009-09-02 2014-12-02 Medtronic Minimed, Inc. Insertion device systems and methods
US8308679B2 (en) 2009-12-30 2012-11-13 Medtronic Minimed, Inc. Alignment systems and methods
US8157769B2 (en) 2009-09-15 2012-04-17 Medimop Medical Projects Ltd. Cartridge insertion assembly for drug delivery system
JP5408541B2 (en) 2009-11-06 2014-02-05 北川工業株式会社 Surface mount clip
US8241240B2 (en) 2009-11-09 2012-08-14 Medtronic Xomed, Inc. Adjustable valve setting with motor control
DK2327433T3 (en) 2009-11-26 2012-07-23 Hoffmann La Roche Externally releasable needle device
IN2012DN05228A (en) 2009-12-16 2015-10-23 Becton Dickinson Co
US8795260B2 (en) 2009-12-18 2014-08-05 Medtronic, Inc. Refill of implantable fluid delivery devices based on therapeutic fluid expiration
US8858500B2 (en) 2009-12-30 2014-10-14 Medtronic Minimed, Inc. Engagement and sensing systems and methods
US8435209B2 (en) 2009-12-30 2013-05-07 Medtronic Minimed, Inc. Connection and alignment detection systems and methods
US20110172645A1 (en) 2010-01-08 2011-07-14 Ratio, Inc. Wearable drug delivery device including integrated pumping and activation elements
US8348898B2 (en) 2010-01-19 2013-01-08 Medimop Medical Projects Ltd. Automatic needle for drug pump
EP2525851B1 (en) 2010-01-22 2019-05-08 Sanofi-Aventis Deutschland GmbH Coded cartridge holder and fastener enabled by cartridge size
USD650079S1 (en) 2010-02-08 2011-12-06 Abbott Diabetes Care Inc. Analyte meter
ES2572477T3 (en) 2010-03-09 2016-05-31 Shl Group Ab Medication Administration Device
US8751237B2 (en) 2010-03-11 2014-06-10 Panasonic Corporation Text-to-speech device and text-to-speech method
US8674288B2 (en) 2010-03-24 2014-03-18 Medtronic Minimed, Inc. Motor assembly sensor capture systems and methods
USD652503S1 (en) 2010-04-08 2012-01-17 Cequr Sa Medical device
AU2011237892B2 (en) 2010-04-09 2014-09-04 Sanofi-Aventis Deutschland Gmbh Coded drug reservoir connection element with bendable locking elements
US8810394B2 (en) 2010-04-16 2014-08-19 Medtronic, Inc. Reservoir monitoring for implantable fluid delivery devices
JP5809242B2 (en) 2010-04-21 2015-11-10 アッヴィ バイオテクノロジー リミテッド Wearable automatic infusion device for controlled delivery of therapeutic agents
SG184500A1 (en) 2010-04-23 2012-11-29 Sanofi Aventis Deutschland Cartridge holder and alignment interface
US8246573B2 (en) 2010-04-27 2012-08-21 Medtronic, Inc. Detecting empty medical pump reservoir
CN104984438B (en) 2010-05-20 2018-08-10 贝克顿·迪金森公司 Drug delivery devices
EA032537B1 (en) 2010-06-07 2019-06-28 Эмджен Инк. Method of operation of a drug delivery device
WO2011163421A1 (en) 2010-06-22 2011-12-29 Thoratec Corporation Fluid delivery system and method for monitoring fluid delivery system
US20110319861A1 (en) 2010-06-29 2011-12-29 Robert Wilk Medical device mechanical pump
US8172591B2 (en) 2010-07-05 2012-05-08 Hon Hai Precision Ind. Co., Ltd. Electrical connector assembly having electrical connector with low profile and processor with cone pins
USD650903S1 (en) 2010-07-09 2011-12-20 Becton, Dickinson And Company Syringe barrel
US9675751B2 (en) 2010-07-31 2017-06-13 Becton, Dickinson And Company Infusion reservoir with push-on connector features and/or attachments therefor
WO2012032411A2 (en) 2010-09-07 2012-03-15 Tecpharma Licensing Ag Automatic injection device
US9308320B2 (en) 2010-09-24 2016-04-12 Perqflo, Llc Infusion pumps
US8479595B2 (en) 2010-10-20 2013-07-09 Medtronic Minimed, Inc. Sensor assembly and medical device incorporating same
US8495918B2 (en) 2010-10-20 2013-07-30 Medtronic Minimed, Inc. Sensor assembly and medical device incorporating same
US8474332B2 (en) 2010-10-20 2013-07-02 Medtronic Minimed, Inc. Sensor assembly and medical device incorporating same
US9402569B2 (en) 2010-10-28 2016-08-02 Medtronic Minimed, Inc. System and/or method for glucose sensor calibration
TWI425719B (en) 2010-11-16 2014-02-01 Compal Electronics Inc Connecting port
US8446733B2 (en) 2010-11-24 2013-05-21 Lear Corporation Printed circuit board connection assembly
US8469942B2 (en) 2010-12-22 2013-06-25 Medtronic Minimed, Inc. Occlusion detection for a fluid infusion device
US8690855B2 (en) 2010-12-22 2014-04-08 Medtronic Minimed, Inc. Fluid reservoir seating procedure for a fluid infusion device
US8628510B2 (en) 2010-12-22 2014-01-14 Medtronic Minimed, Inc. Monitoring the operating health of a force sensor in a fluid infusion device
US8197444B1 (en) 2010-12-22 2012-06-12 Medtronic Minimed, Inc. Monitoring the seating status of a fluid reservoir in a fluid infusion device
CN201941304U (en) 2010-12-22 2011-08-24 刘天野 File box with alarming function
ES2605817T3 (en) 2011-04-21 2017-03-16 Abbvie Inc. Portable automatic injection device
US8795231B2 (en) 2011-05-10 2014-08-05 Medtronic Minimed, Inc. Automated reservoir fill system
EP2714141B1 (en) 2011-05-25 2018-06-20 Sanofi-Aventis Deutschland GmbH Medicament injection device and priming operation
US8292647B1 (en) 2011-06-13 2012-10-23 Tyco Electronics Corporation Socket connector
US20140194854A1 (en) 2011-08-29 2014-07-10 Sid Technologies Llc Subcutaneous and intradermal patch infusers
USD657462S1 (en) 2011-09-02 2012-04-10 I & J Fisnar, Inc. Liquid dispensing syringe barrel
US9597455B2 (en) 2011-09-30 2017-03-21 Becton Dickinson France S.A.S. Syringe having a spring action plunger rod
KR20130038503A (en) 2011-10-10 2013-04-18 삼성전자주식회사 Sturcture for stacking printed board assemblies in an electronic device
US8523803B1 (en) 2012-03-20 2013-09-03 Medtronic Minimed, Inc. Motor health monitoring and medical device incorporating same
US8603027B2 (en) 2012-03-20 2013-12-10 Medtronic Minimed, Inc. Occlusion detection using pulse-width modulation and medical device incorporating same
US8603026B2 (en) 2012-03-20 2013-12-10 Medtronic Minimed, Inc. Dynamic pulse-width modulation motor control and medical device incorporating same
US8808269B2 (en) 2012-08-21 2014-08-19 Medtronic Minimed, Inc. Reservoir plunger position monitoring and medical device incorporating same
EP2712650A1 (en) 2012-09-27 2014-04-02 F. Hoffmann-La Roche AG Adapter and drug cartridge alignment device
US8870818B2 (en) 2012-11-15 2014-10-28 Medtronic Minimed, Inc. Systems and methods for alignment and detection of a consumable component
US9033924B2 (en) 2013-01-18 2015-05-19 Medtronic Minimed, Inc. Systems for fluid reservoir retention
US9522223B2 (en) 2013-01-18 2016-12-20 Medtronic Minimed, Inc. Systems for fluid reservoir retention
US9107994B2 (en) 2013-01-18 2015-08-18 Medtronic Minimed, Inc. Systems for fluid reservoir retention
US9089475B2 (en) 2013-01-23 2015-07-28 Icu Medical, Inc. Pressure-regulating vial adaptors
JP6273655B2 (en) 2013-01-25 2018-02-07 ユーエヌエル ホールディングス エルエルシーUNL Holdings LLC Integrated fluid pathway connection and drug container
US9308321B2 (en) 2013-02-18 2016-04-12 Medtronic Minimed, Inc. Infusion device having gear assembly initialization
US9814871B2 (en) 2013-03-15 2017-11-14 Bayer Healthcare Llc Connector assembly for syringe system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3794028A (en) * 1973-02-27 1974-02-26 A Griffin Method for injecting chemicals into the papilla for depilation
US20090041805A1 (en) * 2000-12-05 2009-02-12 Allergan, Inc. Botulinum toxin for treating postherpetic neuralgia
US20060211982A1 (en) * 2002-12-20 2006-09-21 Steven Prestrelski Intracutaneous injection
US20070197968A1 (en) * 2004-02-18 2007-08-23 Vincent Pongpairochana Hand-held electronically controlled injection device for injecting liquid medications
US20060173439A1 (en) * 2005-01-18 2006-08-03 Thorne Gale H Jr Syringe drive system
US20090048347A1 (en) * 2007-01-16 2009-02-19 Dermworx Incorporated Topical anesthetic for rapid local anesthesia and method of applying a topical anesthetic

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10661023B2 (en) 2008-01-11 2020-05-26 Ucb Bioparma Sprl Systems and methods for administering medication
US9901686B2 (en) 2008-01-11 2018-02-27 Ucb Biopharma Sprl Systems and methods for administering medication
US11167086B2 (en) 2008-09-15 2021-11-09 West Pharma. Services IL, Ltd. Stabilized pen injector
US9669158B2 (en) 2011-06-02 2017-06-06 Ucb Biopharma Sprl Auto-injector
US10258740B2 (en) 2011-06-02 2019-04-16 Ucb Biopharma Sprl Auto-injector
US9901673B2 (en) 2011-06-02 2018-02-27 Ucb Biopharma Sprl Auto-injector
US9901674B2 (en) 2011-06-02 2018-02-27 Ucb Biopharma Sprl Auto-injector
US9884152B2 (en) 2011-06-02 2018-02-06 Ucb Biopharma Sprl Auto-injector
US9878092B2 (en) 2011-06-02 2018-01-30 Ucb Biopharma Sprl Auto-injector
US9808575B2 (en) 2011-06-02 2017-11-07 Ucb Biopharma Sprl Auto-injector
US9795734B2 (en) 2011-06-02 2017-10-24 Ucb Biopharma Sprl Auto-injector
US9764084B2 (en) 2011-06-02 2017-09-19 Ucb Biopharma Sprl Auto-injector
US10166336B2 (en) 2011-08-24 2019-01-01 Unl Holdings Llc Auto-injector for retractable prefilled syringe
US8808244B2 (en) 2011-08-24 2014-08-19 Unitract Syringe Pty Ltd Auto-injector for retractable prefilled syringe
US9114213B2 (en) 2011-12-26 2015-08-25 Panasonic Healthcare Holdings Co., Ltd. Pharmaceutical injection device
EP2799101A4 (en) * 2011-12-26 2015-06-03 Panasonic Healthcare Holdings Co Ltd Medicine injection device
US10300201B2 (en) 2012-02-06 2019-05-28 Unl Holdings Llc Plunger sub-assemblies and auto-injectors having low retraction activation force
US10894128B2 (en) 2012-07-05 2021-01-19 Unl Holdings Llc Drive control mechanisms and automatic injectors for injectable cartridges
WO2014008393A1 (en) * 2012-07-05 2014-01-09 Unitract Syringe Pty Ltd Automatic injectors for injectable cartridges and drive control mechanisms|therefor
JP2018202214A (en) * 2012-07-05 2018-12-27 ユーエヌエル ホールディングス エルエルシーUNL Holdings LLC Automatic injectors for injectable cartridges and drive control mechanisms therefor
JP2015521920A (en) * 2012-07-05 2015-08-03 ユニトラクト シリンジ プロプライエタリイ リミテッドUnitract Syringe Pty Ltd Automatic injector for injectable cartridge and drive control mechanism therefor
US10046115B2 (en) 2012-07-05 2018-08-14 Unl Holdings Llc Drive control mechanisms and automatic injectors for injectable cartridges
CN104411350A (en) * 2012-07-05 2015-03-11 尤尼特拉克特注射器公司 Automatic injectors for injectable cartridges and drive control mechanisms|therefor
KR102052785B1 (en) 2012-07-05 2019-12-05 유니트랙트 시린지 피티와이 엘티디 Automatic injectors for injectable cartridges and drive control mechanisms therefor
KR20150029010A (en) * 2012-07-05 2015-03-17 유니트랙트 시린지 피티와이 엘티디 Automatic injectors for injectable cartridges and drive control mechanisms therefor
US8920374B2 (en) 2012-07-05 2014-12-30 Unitract Syringe Pty Ltd Drive control mechanisms and automatic injectors for injectable cartridges
EP2689793A1 (en) * 2012-07-27 2014-01-29 juvaplus SA Injection device for aesthetic medicine
US9757524B2 (en) 2012-07-30 2017-09-12 Ucb Biopharma Sprl Auto-injector
WO2014020001A1 (en) * 2012-07-30 2014-02-06 Ucb Pharma S.A. Auto-injector
WO2014020000A1 (en) * 2012-07-30 2014-02-06 Ucb Pharma S.A. Auto-injector
USD755956S1 (en) 2012-07-30 2016-05-10 Ucb Pharma S.A. Cassette device for administering medication
US9764101B2 (en) 2012-07-30 2017-09-19 Ucb Biopharma Sprl Auto-injector
WO2014019999A1 (en) * 2012-07-30 2014-02-06 Ucb Pharma S.A. Auto-injector
US9757521B2 (en) 2012-07-30 2017-09-12 Ucb Biopharma Sprl Auto-injector
US9757513B2 (en) 2012-07-30 2017-09-12 Ucb Biopharma Sprl Auto-injector
WO2014019997A1 (en) * 2012-07-30 2014-02-06 Ucb Pharma S.A. Auto-injector
US11033689B2 (en) 2013-05-01 2021-06-15 Unl Holdings Llc Plunger-driven auto-injectors
US9750885B2 (en) 2013-05-01 2017-09-05 Unl Holdings Llc Plunger-driven auto-injectors
US11806510B2 (en) 2013-11-28 2023-11-07 Shl Medical Ag Shell for a medicament delivery device
EP3213784B1 (en) 2013-11-28 2020-08-19 SHL Medical AG Device for a medicament delivery device
US9789254B2 (en) 2014-01-27 2017-10-17 Ucb Biopharma Sprl Auto-injector
US10342925B2 (en) 2014-01-27 2019-07-09 Ucb Biopharma Sprl Auto-injector
US9821123B2 (en) 2014-01-27 2017-11-21 Ucb Biopharma Sprl Auto-injector
US10251813B2 (en) 2015-03-04 2019-04-09 West Pharma. Services IL, Ltd. Flexibly mounted cartridge alignment collar for drug delivery device
US9795534B2 (en) 2015-03-04 2017-10-24 Medimop Medical Projects Ltd. Compliant coupling assembly for cartridge coupling of a drug delivery device
US11819666B2 (en) 2017-05-30 2023-11-21 West Pharma. Services IL, Ltd. Modular drive train for wearable injector

Also Published As

Publication number Publication date
EP2569031A1 (en) 2013-03-20
US9452261B2 (en) 2016-09-27
EP2569031B1 (en) 2017-10-11
US20130041346A1 (en) 2013-02-14
EP2569031A4 (en) 2014-07-30

Similar Documents

Publication Publication Date Title
US9452261B2 (en) Low volume accurate injector
US20100145305A1 (en) Low volume accurate injector
US11590291B2 (en) External drug pump
US10179204B2 (en) Motion-activated septum puncturing drug delivery device
JP5865368B2 (en) Preservative-free follicle stimulating hormone solution supply device
EP1896099B1 (en) Injection device with secondary reservoir
US9889258B2 (en) Drug filled delivery assembly
US8608684B2 (en) Impulse chamber for jet delivery device
JP2003508164A (en) Retractable needle device
JPWO2013141351A1 (en) Automatic injection device
CN107106766B (en) Time controlled periodic infusion
US20200297936A1 (en) Dispositif d'injection manuelle
Robertson et al. The latest developments in insulin injection devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11780304

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13643470

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011780304

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011780304

Country of ref document: EP