WO2011138477A1 - Fotobiorreactor laminar para la producción de microalgas - Google Patents

Fotobiorreactor laminar para la producción de microalgas Download PDF

Info

Publication number
WO2011138477A1
WO2011138477A1 PCT/ES2011/000104 ES2011000104W WO2011138477A1 WO 2011138477 A1 WO2011138477 A1 WO 2011138477A1 ES 2011000104 W ES2011000104 W ES 2011000104W WO 2011138477 A1 WO2011138477 A1 WO 2011138477A1
Authority
WO
WIPO (PCT)
Prior art keywords
microalgae
photobioreactor
frame
photobioreactor according
sheets
Prior art date
Application number
PCT/ES2011/000104
Other languages
English (en)
French (fr)
Inventor
Jesús FERNÁNDEZ GONZÁLEZ
Original Assignee
Universidad Politécnica de Madrid
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Politécnica de Madrid filed Critical Universidad Politécnica de Madrid
Priority to MX2012012569A priority Critical patent/MX2012012569A/es
Priority to EP11777300.2A priority patent/EP2568038A4/en
Priority to US13/695,709 priority patent/US20130115688A1/en
Priority to BR112012028149A priority patent/BR112012028149A2/pt
Publication of WO2011138477A1 publication Critical patent/WO2011138477A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/04Flat or tray type, drawers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/48Holding appliances; Racks; Supports
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/02Membranes; Filters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M33/00Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus
    • C12M33/22Settling tanks; Sedimentation by gravity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation

Definitions

  • the laminar photobioreactor of the invention has application in the field of large-scale microalgae biomass production.
  • the biomass produced can serve as raw material for obtaining biofuels, feed and food products, as well as for future biorefineries.
  • microalgae for the production of biomass is an ancient idea, which had its origins in the 70s of the last century, following the first oil crisis of 1973, conducting research in various laboratories in the world to treat of producing liquid or gaseous biofuels. In this sense, the work carried out in the USA between 1978 and 1986 was very important, concluding that already at that time the production of biofuels with microalgae was potentially viable from a technical point of view, although not yet from an economic point of view.
  • microalgae biomass To achieve a high production of microalgae biomass, the following limiting factors must be controlled: a) Adequate illumination of the microalgae, necessary to perform photosynthesis and that the energy of the light radiation is transformed into chemical energy to obtain activated electrons, between other products. b) Continuous supply of C0 2 during the phase of illumination of the microalgae, necessary to accept the activated electrons and produce the initial molecules of the photosynthetic metabolism (sugars). c) Elimination of oxygen formed in photosynthesis so as not to affect the photosynthetic capacity of microalgae by photorespiration. d) Suitable temperature for the type of microalgae that is to be cultivated (there are psychrophilic, mesophilic and thermophilic). e) Nutrients in proportion and adequate quantity. f) Physicochemical characteristics of the culture medium (mainly pH, conductivity and salinity).
  • the systems used so far for the cultivation of large-scale microalgae are of two basic types, with different variants each: Channels or tanks open to the atmosphere with or without energy consumption for the recirculation of the medium and photobioreactors.
  • the medium containing the microalgae is isolated from the atmosphere and is continuously recirculated inside transparent structures of glass or plastic material of various shapes, such as tubular coils, tubes, bags or vertical panels, inclined panels or tubes or combinations of these.
  • the channels or tanks open to the atmosphere have a reasonable construction cost, but also a relatively low productivity due to the difficulty of providing the necessary C0 2 to the crop and the difficulty of uniformly illuminating all the algae present in the environment when the crop is grown.
  • the C0 2 is transferred to the aqueous medium by diffusion from air, where the concentration of this compound is relatively low, of the order of 0.03%. In the channels with forced water circulation these are mitigated effects but energy consumption makes production more expensive making it economically unfeasible for the production of biofuels.
  • US 2009/0203116 A1 describes a tubular reactor in which the interior lighting is reinforced by means of optical fibers.
  • US 2009/0151241 A1 describes the use of a solution of "perfluorodecalin" emulsified and a surfactant to increase the solubility of C0 2 in the middle and facilitate removal of oxygen formed during photosynthesis.
  • US 2008/0286851 A1 in turn describes a closed reactor, constructed of transparent and light plastic materials, which can be deployed in the field. All of them are relatively expensive investment. Its maintenance cost for obtaining low price products, as raw material to produce biofuels, is also too high.
  • the present invention solves the problem of algae illumination by running these on a geotextile support sheet, which allows a total and simultaneous illumination of all the microalgae that run through said sheet. It also allows easily remove oxygen as the outer face of the geotextile is exposed to the atmosphere while the internal face receives the C0 2 by diffusion in the right proportion.
  • WO 2008/008262 International Application A2 describes a system of closed photobioreactors linear channels formed by a transparent cover, which is circulated medium with algae and mixture enriched in C0 2 gases. The covered channels can be interconnected with each other.
  • WO 2008/134010 describes a closed photobioreactor with plastic cover and floating on a channel, through which a stream of the liquid medium is passed through the microalgae and gases from emissions from industrial facilities.
  • WO 2007/011343 A1 describes an inclined tubular reactor illuminated and connected with another opaque vertical tube.
  • the microalgae are alternately passed through the illuminated and opaque tube.
  • the problem that therefore arises in the art is to achieve an industrial process in the production of microalgae biomass efficient in both capacity and cost.
  • the solution provided by the present invention is a laminar photobioreactor with optimal lighting and supply conditions of C0 2 that achieves high algae productions with low investment and maintenance costs.
  • the photobioreactor of the invention for production of microalgae is particularly suitable for absorbing gases emission high in C0 2. It is based on the continuous recirculation of a liquid medium containing the microalgae through one or more overlapping layers of tissue, facilitating the absorption of C0 2 and lighting microalgae.
  • each module of the photobioreactor is constituted by a panel ( Figures 1, 2 and 3), which comprises a square or rectangular frame or frame (1) on which one or several sheets of fabric are placed on both sides. Inside the frame a porous pipe (2) is placed, which is connected to the outside by means of a valve (3) and which is attached to a plastic support (4) fixed to the frame of the frame.
  • the frame of a certain thickness, is closed on the front and back sides with a light mesh screen type mosquito net (5).
  • the meshes on both sides leave an air chamber delimited by the internal faces of the frame of the frame and the meshes themselves.
  • the meshes must be of a light small enough so that the surface tension of the culture medium with the microalgae causes the liquid to completely cover said light, and that when descending it forms a continuous film.
  • Tissue sheets (6) can be placed on the mesh sheets of the frame. These sheets of fabric, once moistened, adhere directly to the mesh sheets that cover both sides of the frame, and are fixed to it by means of angular slats (7) that adapt to their corners. In this way, with the same frame-support, different types of sheets with different properties can be used as regards the adhesion of the different microalgae.
  • the assembly is placed in an upright position on a support structure ( Figures 4 and 5), which carries a channel (8) at a certain height from the ground a width slightly greater than that of the frame and on which it rests the lower part of the panel.
  • the sides of the panel are fixed on the sides of the structure (9).
  • the invention is a laminar photobioreactor for the production of microalgae, which comprises a panel formed by a frame or frame covered on both sides by at least one mesh sheet through which a liquid medium containing microalgae flows downwards, and an inner chamber between said mesh sheets and the walls of the air-tight frame or frame by hydraulic closure. Said chamber is limited by the walls of the frame and by the moistened fabric side walls so that the moistened walls constitute the hydraulic closure at the exit of the interior air of the chamber.
  • An embodiment of the photobioreactor of the invention is that said mesh sheet is made of synthetic material, fiberglass, natural fiber, metallic material, or combinations thereof.
  • a preferred embodiment of the photobioreactor is that said mesh sheet is supplemented by at least one tissue sheet, and a more preferred embodiment is that said tissue sheet is made of synthetic material, natural fibers, or combinations thereof.
  • the most preferred embodiment is that said synthetic material is selected from the group consisting of pvc, polystyrene and polypropylene.
  • the sheets of fabric can also be covered on the outside with transparent plastic when desired. Between the sheets of tissue and the transparent plastic there must be a small distance of 1 or 2 cm that will protect the crop from low temperatures, where appropriate, or will also allow the renewal of the air by convection and the drag of the water vapor formed , which automatically achieves panel cooling, important for high temperatures. So another embodiment of the invention is that the photobioreactor has a transparent plastic covering on said sheets on both sides.
  • the liquid culture medium containing the microalgae which descends along the side sheets forming a continuous film, is poured through the upper part of the frame and along its entire length.
  • the liquid that descends is collected in a collecting channel that pours the medium with the microalgae on a reservoir system (11), from which a pump (12) can propel it again through a conduit (13), equipped with a valve of regulation of the flow (14) and of a flow indicator (15), to the pipe of the upper part of the frame (10).
  • the lower edges of said sheets deliver the liquid medium containing microalgae to a channel (8) that communicates with a reservoir system (11) located at the bottom of the photobioreactor.
  • a "deposit system” means one or more deposits arranged in series.
  • a single tank at the bottom of the panel with the circulation pump will be necessary.
  • at least one decanter tank prior to the previous one will be included, which directly collects the discharge of the liquid with microalgae and allows sedimentation. The remaining liquid from said decanter tank will be collected by the next tank, which will contain the circulation pump.
  • a preferable embodiment of the photobioreactor of the invention includes that the liquid medium is recirculated to the upper part of the frame from the deposit system, and in another embodiment, said deposit system includes a decanter tank that allows the microalgae to settle. . Another embodiment contemplates that said sedimentation be performed in the presence of flocculants.
  • a conduit with a valve (16) that connects with the perforated or porous pipe inside the panel (2).
  • An embodiment of the photobioreactor of the invention is that said gas introduces a gas into said chamber.
  • a preferable embodiment is that said gas is isolated from direct solar radiation.
  • the preferable composition of said gas is air, carbon dioxide, combustion gases or mixtures thereof.
  • the transfer of C0 2 to the microalgae culture medium is produced by diffusion from the inside of the chamber to the walls of the chamber, through which the culture medium flows downward.
  • the outer part of the side plates is in direct contact with atmospheric air.
  • a transparent polyethylene plastic film can be placed, for example, adhered to the outside of the photobioreactor sheets with continuity through the top of the perforated pipe located above the frame, to also prevent contamination of monospecific crops, then acting on the photobioreactor isolated from outside air.
  • the photobioreactor (PBR) of the invention can be used to produce algal biomass, and also allows the microalgae biomass to be concentrated and facilitated harvesting.
  • PBR photobioreactor
  • PBR mesh sheets made of low or no microalgae adhesion material are used, such as metallic cloth, pvc fabric or fiberglass.
  • the operation of the PBR can be continued for several days without replenishing the water that evaporates; In this way the microalgae are concentrated in the liquid medium.
  • the device When lateral meshes are used that have little or no adhesion capacity, the device also serves as a microalgae concentrator in the liquid medium itself. Once the harvest of concentrated algae has been removed, new medium is added to the lower deposition system of the photobioreactor (11) and a new cycle is started.
  • PBR As a single phase PBR, for the production of microalgae in the liquid medium working continuously.
  • PBR meshes are used as in type A) but the circulation of microalgae can be suspended at will; especially during night periods when lighting is missing.
  • the medium with the grown algae and its sedimentation can be removed from the container without affecting those microalgae that are retained in the liquid that embeds the photobioreactor meshes. Subsequently the container is filled with new culture medium until reaching the desired volume.
  • D) As PBR of immobilized cells of continuous growth with decantation collection. It is a system analogous to that described in C) but allowing growth to continue until the microalgae layer is so thick that it detaches and falls with the liquid medium to the collecting channel. For this case it is necessary to insert a decanter tank before the one containing the circulation pump, in order to remove the masses of decanted microalgae.
  • tissue sheets would be used as those used in type C) superimposed on the meshes.
  • the circulation of the medium should be stopped and, once the sheets were dried with the immobilized microalgae, they would be removed to proceed to concentrate those included in the liquid medium by circulation of this on the meshes of the PBR.
  • a PBR can be made up of several modules that pour into a common channel and that receive the culture medium with the microalgae through a common duct, from which a socket for each panel comes out. It would be a modular device by repetition of the same structure an indefinite number of times of variable length depending on the modules that are connected. So the most preferable embodiment of the invention is a set of at least two photobioreactors connected in parallel in a modular type structure.
  • Example 1 Modular photobioreactor.
  • a frame was built (Figure 1) with a square PVC hollow tube (1) of 7 x 7 cm of outer section and 2 mm thick.
  • the frame had external measures 200 cm long, 150 cm high and 7 cm thick.
  • the inner area bounded by the frame of the frame was 1, 86 cm long, 1, 36 cm high and 7 cm deep, resulting in an internal volume of 177 liters.
  • Inside the frame was placed a porous rubber pipe (2) whose pores open at an internal pressure from 0.5 atmospheres, connected to the outside through the frame frame (3) to join the pipe that carried enriched air with C0 2 .
  • the porous pipe was placed on an H-bracket, made of PVC pipe (4).
  • a sheet of plastic mesh of "mosquito net” type of 1 square millimeter of light was placed on both sides of the frame, which was tensioned and adhered to it with glue (5 of Figure 2). Both sides of the frame were coated with a 150 g / m 2 geotextile cloth (6 in Figure 3) that was placed on the mesh and fixed by means of 25 x 25 mm angled pvc slats (7) placed on the outer corners of the side tubes that form the walls of said frame. The moistened geotextile fabric adhered perfectly to the mesh screen.
  • a grooved pipe (10) was placed according to a generatrix, through which the culture medium was flowed with the microalgae.
  • the liquid that drains from the walls of the photobioreactor is collected in the channel (8) and poured into a lower collection tank of transparent plastic (11), located below the channel, inside which there is a submerged pump (12) that raises the water through a vertical pipe (13) to the spilled pipe (10) that waters the upper part of the frame.
  • An intermediate valve (14) in the riser tube regulates the proper discharge flow of the medium without causing any excess fluid that cannot be absorbed by the geotextile or lack of flow that leaves the sheets dry.
  • a flow indicator (15) is inserted into the pipe to verify the movement of the liquid inside.
  • enriched air is injected in C0 2 non-toxic to the algae.
  • the photobioreactor of Example 1 was used with the frame covered only by the polyethylene mesh screen, for the production of algae biomass.
  • An amount of 120 liters of culture medium was prepared, based on mineral compounds manufactured from fertilizers used in fertirrigation, with a molar concentration of 8.8 x 10 "4 M of N0 3 " and 3.6 x 10 " 5 M of P0 4 3 " , suitable for the cultivation of microalgae.
  • This culture medium was introduced into the lower reservoir (11) of the photobioreactor.
  • a polyspecific microalgae culture was used, with the predominance of Chlorella sorokiniana, which was added to the culture medium of the reservoir.
  • the amount of inoculum added was 0.174 g of dry matter per liter of culture medium (20.88 g for 120 liters), which gave an initial measurement of optical density of 0.541 at 580 nm wavelength.
  • the culture medium with the microalgae that exited through the perforated tube descended through the sheets of pvc mesh that form side walls of the photobioreactor (5) and was collected in the lower channel (8) that redirected it to the reservoir (11) to be pumped back to the perforated pvc pipe, in a cyclic operation.
  • the system was maintained in a natural cycle of natural lighting and darkness. Due to the external intake of the porous pipe inside the reactor, the gas from a gasoline engine exhaust was injected at a rate of 1 liter of exhaust gas per minute, its average content in C0 2 being around 8% in volume, which in Normal Conditions would provide approximately 9.8 g of C0 2 / hour.
  • the example described corresponds to a period of 12 hours, whereby 117.6 g of C0 2 were provided daily, whose carbon content would be 32 g.
  • the 27 liters of concentrated algae culture were concentrated by centrifugation from 120 to 30 liters (75% reduction).
  • Example 3 Photobioreactor consisting of several modules connected in parallel.
  • FIG 1 Photobioreactor panel support frame
  • Porous pipe for supplying gases into the photobioreactor chamber.
  • FIG. 1 Photobioreactor frame covered on both sides by mesh sheets.
  • Lightweight mesh screen that covers both sides of the frame, leaving an air chamber between them.
  • Figure 3 Photobioreactor frame covered on both sides by mesh sheets and by a tissue sheet.
  • Figure 4. Support structure of a panel of the photobioreactor.
  • Valve for regulating the flow of the culture medium with the microalgae 14.
  • Figure 5. Modular photobioreactor unit.
  • Gas inlet duct that connects to the porous pipe inside the photobioreactor chamber, which contains a flow regulation valve.
  • FIG. 6 Overview of a 3 module photobioreactor.

Abstract

La presente invención es un fotobiorreactor modular para producción de microalgas especialmente indicado para absorber gases de emisión de alto contenido en anhídrido carbónico (CO2). Está basado en la recirculación continua de un medio líquido que contiene microalgas a través de láminas de tejido que facilitan la absorción de CO2 y la iluminación de las microalgas. La invención permite que dichos gases se puedan aportar al cultivo desde el interior de la cámara. Presenta las ventajas de que ofrece alta eficiencia en la iluminación de las algas, permite el fácil intercambio de CO2 desde los gases de emisión al cultivo y es aplicable a gran escala y con bajo coste.

Description

FOTOBIORREACTOR LAMINAR PARA LA PRODUCCIÓN DE MICROALGAS
CAMPO TÉCNICO DE LA INVENCIÓN
El fotobiorreactor laminar de la invención tiene aplicación en el campo de la producción de biomasa de microalgas a gran escala. La biomasa producida puede servir como materia prima para la obtención de biocarburantes, piensos y productos alimenticios, así como para futuras biorrefinerías. También puede utilizarse en funciones de sumidero de gases de efecto invernadero, principalmente dióxido de carbono (C02) y óxidos de nitrógeno procedentes de instalaciones industriales, con mínimo riesgo para operarios y para el entorno.
ANTECEDENTES DE LA INVENCIÓN
La utilización de microalgas para la producción de biomasa es una idea antigua, que tuvo sus orígenes en la década de los 70 del pasado siglo, a raíz de la primera crisis del petróleo de 1973, realizándose trabajos de investigación en diversos laboratorios del mundo para tratar de producir biocombustibles líquidos o gaseosos. En este sentido resultó muy importante el trabajo desarrollado en EEUU entre 1978 y 1986, que concluía que ya en aquella época la producción de biocombustibles con microalgas era potencialmente viable desde un punto de vista técnico, aunque aún no desde un punto de vista económico.
En los últimos años la idea de producir biocombustibles a partir de microalgas ha resurgido con mucho ímpetu, con un incremento considerable en la publicación de trabajos dedicados a la producción de microalgas y captación de C02, la obtención de estirpes con características específicas o la obtención de productos de uso en diversas ramas de la industria y la salud. Este interés creciente por el cultivo de las microalgas viene motivado, entre otras causas, por considerarlos potenciales sumideros de C02 de origen industrial, por la inestabilidad de los precios e inseguridad en el suministro futuro del petróleo y por el descrédito que ha tenido ante la opinión pública el uso de materias primas de uso alimentario para la producción de biocarburantes. A pesar del creciente interés por su cultivo todavía no se ha llegado a un sistema comercial capaz de producir biomasa de microalgas a precios competitivos para hacer viable desde un punto de vista económico la producción de biocombustibles. Para lograr una alta producción de biomasa de microalgas, hay que controlar los siguientes factores limitantes: a) Iluminación adecuada de las microalgas, necesaria para realizar la fotosíntesis y que la energía de la radiación luminosa se transforme en energía química para obtener electrones activados, entre otros productos. b) Suministro continuo de C02 durante la fase de iluminación de las microalgas, necesario para aceptar los electrones activados y producir las moléculas iniciales del metabolismo fotósintético (azúcares). c) Eliminación del oxígeno formado en la fotosíntesis para no afectar por fotorrespiración la capacidad fotosintética de las microalgas. d) Temperatura adecuada para el tipo de microalgas que se quiera cultivar (las hay psicrófilas, mesófilas y termófilas). e) Nutrientes en proporción y cantidad adecuada. f) Características fisico-químicas del medio de cultivo (principalmente pH, conductividad y salinidad).
Los sistemas empleados hasta ahora para el cultivo de las microalgas a gran escala son de dos tipos básicos, con diferentes variantes cada uno de ellos: Los canales o tanques abiertos a la atmósfera con o sin consumo energético para la recirculación del medio y los fotobiorreactores. En estos últimos el medio que contiene las microalgas está aislado de la atmósfera y es recirculado continuamente por el interior de estructuras transparentes de vidrio o de material plástico de diversas formas, como serpentines tubulares, tubos, bolsas o paneles verticales, paneles o tubos inclinados o combinaciones de éstos.
Los canales o tanques abiertos a la atmósfera tienen un coste de construcción razonable, pero también una relativamente baja productividad debido a la dificultad de proporcionar el C02 necesario al cultivo y a la dificultad de iluminar de forma uniforme todas las algas presentes en el medio cuando el cultivo está crecido. El C02 se transfiere al medio acuoso por difusión a partir del aire, donde la concentración de este compuesto es relativamente baja, del orden de 0,03 %. En los canales con circulación forzada del agua se mitigan estos efectos pero el consumo energético encarece la producción haciéndola económicamente inviable para la producción de biocarburantes.
En los fotobiorreactores existentes hasta el momento, con el medio de cultivo confinado en el interior de estructuras transparentes, se pueden controlar bien los factores referentes a la temperatura, nutrientes y el medio de cultivo, incluso la iluminación de las microalgas, diseñando una geometría adecuada y/o utilizando iluminación artificial, pero el coste de producción para la obtención de biocarburantes no resulta hasta la fecha económicamente viable. Para aumentar la concentración de C02 en el medio de los fotobiorreactores experimentales se recurre al uso de C02 comprimido, lo que resulta prohibitivo para la producción de biomasa a gran escala. Para lograr la eliminación del oxígeno formado en la fotosíntesis e impedir su efecto inhibidor, se utilizan sistemas abiertos de aireación, lo que también supone un coste muy elevado por tener que restituir continuamente el C02 comprimido. A pesar de que en teoría se pueden utilizar gases procedentes de combustión de combustibles fósiles de instalaciones industriales, hasta ahora no se han realizado instalaciones a nivel comercial que resulten económicamente viables.
Los primeros fotobiorreactores tubulares se patentaron a finales del siglo pasado, destacando entre éstos el desarrollado por el Dr. Otto Pulz y su equipo (W01998/045409). Entre las patentes recientes relacionadas con este tipo de fotobiorreactores para el cultivo de microalgas cabe citar las siguientes:
La solicitud US 2009/0203116 A1 describe un reactor tubular en el que se refuerza la iluminación interior por medio de fibras ópticas. US 2009/0151241 A1 describe la utilización de una solución de "perfluorodecalina" y un surfactante emulsificados para aumentar la solubilidad del C02 en el medio y facilitar la eliminación del oxígeno formado en la fotosíntesis. US 2008/0286851 A1 describe a su vez un reactor cerrado, construido con materiales plásticos transparentes y ligeros, que puede ser desplegado en el campo. Todos ellos resultan relativamente costosos de inversión. Su coste de mantenimiento para la obtención de productos de bajo precio, como materia prima para producir biocarburantes, también es demasiado alto.
La presente invención da solución al problema de la iluminación de las algas al hacer discurrir éstas sobre una lámina soporte de geotextil, que permite una iluminación total y simultánea de todas las microalgas que discurren por dicha lámina. También permite eliminar fácilmente el oxígeno ya que la cara externa del geotextil está expuesta a la atmósfera mientras que la cara interna recibe el C02 por difusión en la proporción adecuada. La solicitud internacional WO 2008/008262 A2 describe un sistema de fotobiorreactores lineales cerrados formados por canales con una cubierta transparente, por los que se hace circular el medio con las algas y la mezcla de gases enriquecidos en C02. Los canales cubiertos se pueden interconectar unos con otros. WO 2008/134010 describe un fotobiorreactor cerrado con cubierta de plástico y flotante sobre un canal, por cuyo interior se hace pasar una corriente del medio líquido con las microalgas y gases procedentes de emisiones de instalaciones industriales. WO 2007/011343 A1 describe un reactor tubular inclinado iluminado y conectado con otro tubo vertical opaco. Las microalgas se hacen pasar alternativamente por el tubo iluminado y el opaco. Estas tres solicitudes anteriores tratan de biorreactores cerrados, en los que la alta concentración de C02 produce "efecto invernadero" con el consiguiente recalentamiento del medio de cultivo y mortandad de las algas. Es éste un problema resuelto por la presente invención, que evita dicho efecto invernadero al estar las microalgas y el medio en contacto directo con la atmósfera. Además, la invención disipa el calor de la radiación térmica que recibe gracias a la evaporación de una parte del agua del médio.
Para que la producción de biomasa de microalgas pueda desarrollarse a gran escala y contribuir sensiblemente a la reducción de las emisiones de las instalaciones industriales, es preciso desarrollar sistemas de bajo coste y fácil instalación que permitan implantarse en grandes extensiones de terreno. Así, para captar el 10 % del C02 que se produciría en una planta convencional de electricidad de 100 MW que trabajara unas 8000 horas al año cuyas emisiones fueran a razón de 781 t de C02 por GWhe producido, serían necesarias algo más de 600 ha de cultivo de algas, suponiendo que la fijación de C02 se produjera a razón de 150 t/ha año (para una producción de unas 80 1 de materia seca por ha y año).
El problema que se plantea por tanto en la técnica es conseguir un proceso industrial en la producción de biomasa de microalgas eficiente tanto en capacidad como en coste. La solución que aporta la presente invención es un fotobiorreactor laminar con condiciones óptimas de iluminación y de suministro de C02 que consigue altas producciones de algas con bajos costes de inversión y mantenimiento.
DESCRIPCIÓN DE LA INVENCIÓN
El fotobiorreactor de la invención para producción de microalgas está especialmente indicado para absorber gases de emisión de alto contenido en C02. Está basado en la recirculación continua de un medio líquido que contiene las microalgas a través de una o varias láminas superpuestas de tejido, facilitando la absorción de C02 y la iluminación de las microalgas.
El cuerpo de cada módulo del fotobiorreactor está constituido por un panel (Figuras 1 , 2 y 3), que comprende un bastidor o marco (1) cuadrado o rectangular sobre el que se colocan por ambos lados una o varias láminas de tejido. En el interior del bastidor se coloca una tubería porosa (2) que se conecta al exterior por medio de una válvula (3) y que está sujeta a un soporte de plástico (4) fijo al marco del bastidor. El bastidor, de un cierto espesor, está cerrado por los lados delantero y posterior con lámina de malla ligera tipo mosquitera (5). Las mallas a ambos lados dejan una cámara de aire delimitada por las caras internas del marco del bastidor y las propias mallas. Las mallas deben ser de una luz lo suficientemente pequeña para que la tensión superficial del medio de cultivo con las microalgas haga que el líquido cubra totalmente dicha luz, y que al descender forme una película continua.
Sobre las láminas de malla del bastidor pueden colocarse láminas de tejido (6). Estas láminas de tejido, una vez humedecidas se adhieren directamente a las láminas de malla que recubren ambos lados del bastidor, y se fijan a éste por medio de unos listones angulares (7) que se adaptan a sus esquinas. De esta manera, con el mismo bastidor- soporte, se pueden utilizar distintos tipos de láminas con diferentes propiedades en cuanto a la adherencia de las distintas microalgas.
El conjunto se coloca en posición vertical sobre una estructura soporte (Figuras 4 y 5), que lleva en su parte inferior, y a una cierta altura del suelo un canal (8) de una anchura ligeramente superior a la del bastidor y sobre el que reposa la parte baja del panel. Los laterales del panel se fijan sobre los laterales de la estructura (9).
De forma que la invención es un fotobiorreactor laminar para la producción de microalgas, que comprende un panel formado por un marco o bastidor tapado por ambos lados por al menos una lámina de malla por la que fluye en sentido descendente un medio líquido que contiene microalgas, y una cámara interior entre dichas láminas de malla y las paredes del marco o bastidor estanca al aire mediante cierre hidráulico. Dicha cámara está limitada por las paredes del bastidor y por las paredes laterales de tejido humedecidas de forma que las paredes humedecidas constituyen el cierre hidráulico a la salida del aire interior de la cámara. Una realización del fotobiorreactor de la invención, es que dicha lámina de malla sea de material sintético, fibra de vidrio, fibra natural, material metálico, o combinaciones de ellos. Una realización preferente del fotobiorreactor es que dicha lámina de malla esté suplementada por al menos una lámina de tejido, y una realización más preferente aún es que dicha lámina de tejido sea de material sintético, fibras naturales, o combinaciones de ellos. La realización más preferente es que dicho material sintético esté seleccionado del grupo compuesto por pvc, poliestireno y polipropileno.
Las láminas de tejido también pueden cubrirse por la parte externa con plástico transparente cuando se desee. Entre las láminas de tejido y el plástico transparente deberá existir una pequeña distancia de 1 ó 2 cm que permitirá proteger al cultivo de las bajas temperaturas, en su caso, o permitirá también la renovación del aire por convección y el arrastre del vapor de agua formado, lo que consigue automáticamente la refrigeración del panel, importante para temperaturas altas. De forma que otra realización de la invención es que el fotobiorreactor presente un cubrimiento de plástico transparente sobre dichas láminas en ambos lados.
Por la parte superior del bastidor y en toda su longitud se vierte por medio de una tubería perforada o acanalada (10) el medio de cultivo líquido que contiene las microalgas, el cual desciende por las láminas laterales formando una película continua. El líquido que desciende es recogido en un canal colector que vierte el medio con las microalgas sobre un sistema de depósito (11), del que una bomba (12) lo puede impulsar nuevamente a través de un conducto (13), dotado de una válvula de regulación del flujo (14) y de un indicador de caudal (15), a la tubería de la parte superior del bastidor (10).
De forma que en otra realización de la invención los bordes inferiores de dichas láminas entregan el medio líquido que contiene microalgas a un canal (8) que comunica con un sistema de depósito (11) situado en la parte inferior del fotobiorreactor.
En la presente solicitud se entiende por un "sistema de depósito" uno o varios depósitos dispuestos en serie. En caso de que el fotobiorreactor contemple sólo la recirculación del medio líquido será necesario un único depósito en la parte inferior del panel con la bomba de circulación. En el caso de que se desee la sedimentación de las microalgas se incluirá al menos un depósito decantador previo al anterior, que recoja directamente el vertido del líquido con microalgas y permita la sedimentación. El líquido sobrante de dicho depósito decantador será recogido por el depósito siguiente, que contendrá la bomba de circulación. De forma que una realización preferible del fotobiorreactor de la invención incluye que el medio líquido sea recirculado a la parte superior del bastidor desde el sistema de depósito, y en otra realización más dicho sistema de depósito incluye un depósito decantador que permite la sedimentación de las microalgas. Otra realización contempla que dicha sedimentación se realice en presencia de floculantes.
En la parte externa del bastidor existe un conducto con una válvula (16) que conecta con la tubería perforada o porosa del interior del panel (2). Una realización del fotobiorreactor de la invención es que por dicha tubería se introduzca un gas al interior de dicha cámara. Una realización preferible es que dicho gas esté aislado de la radiación solar directa. La composición preferible de dicho gas es aire, anhídrido carbónico, gases procedentes de combustión o sus mezclas.
La transferencia del C02 al medio de cultivo de las microalgas se produce por difusión desde el interior de la cámara hasta las paredes de ésta, por las que discurre el medio de cultivo en flujo descendente. La parte externa de las láminas laterales está en contacto directo con el aire atmosférico.
La exposición directa de las láminas de tejido al aire ambiente favorece la evaporación continua del agua del medio que baña dichas láminas y produce la concentración de las microalgas en el medio, lo que consigue un ahorro energético a la hora de separar las microalgas de la fase líquida. En el caso de que no se desee que se evapore el agua del medio, se puede colocar un film de plástico transparente de polietileno, por ejemplo, adherido a la parte externa de las láminas del fotobiorreactor con continuidad por la parte superior de la tubería perforada situada por encima del bastidor, para evitar además la contaminación de cultivos monoespecíficos, actuando entonces el fotobiorreactor aislado del aire del exterior.
El fotobiorreactor (PBR) de la invención puede utilizarse para producir biomasa de algas, y permite también concentrar la biomasa de las microalgas y facilitar su cosecha. Para complementar y explicar la información anterior, se pueden considerar las siguientes modalidades de funcionamiento,:
A) Como PBR de una fase, para la producción de las microalgas en el medio líquido trabajando en discontinuo. Para esta modalidad se utilizan las láminas de malla del PBR fabricadas en material de escasa o nula adherencia de las microalgas como por ejemplo tela metálica, tela de pvc o fibra de vidrio. Una vez conseguida la concentración adecuada de microalgas en el medio, se puede continuar el funcionamiento del PBR durante varios días sin reponer el agua que se evapora; de esta forma se concentran las microalgas en el medio líquido. Cuando se utilizan mallas laterales que presentan poca o nula capacidad de adhesión, el dispositivo sirve también como concentrador de microalgas en el propio medio líquido. Una vez retirada la cosecha de algas concentradas se añade nuevo medio al sistema de depósito inferior del fotobiorreactor (11 ) y se empieza un nuevo ciclo.
B) Como PBR de una fase, para la producción de las microalgas en el medio líquido trabajando en continuo. Para esta modalidad se utilizan las mallas del PBR igual que en el tipo A) pero la circulación de las microalgas puede suspenderse a voluntad; en especial durante los periodos nocturnos en que falta la iluminación. Durante los períodos de parada de la bomba de circulación se puede proceder a retirar del contenedor el medio con las algas crecidas y a su sedimentación sin afectar a aquellas microalgas que se encuentran retenidas en el líquido que embebe las mallas del fotobiorreactor. Posteriormente se rellena con medio de cultivo nuevo el contenedor hasta alcanzar el volumen deseado.
C) Como PBR de células inmovilizadas y adheridas al tejido que proliferan "in situ" quedando atrapadas hasta formar una capa lo suficientemente gruesa como para que se pueda retirar junto con el tejido soporte. Para esta finalidad serían recomendables los tejidos de poliestireno tipo geotextil o tejidos de celulosa o fibras naturales, que se colocarían sobre las láminas de malla de los bastidores. Una vez que las microalgas hayan alcanzado la densidad adecuada sobre el tejido soporte se detendría el suministro del medio a la tubería perforada y, una vez secas las láminas al aire, se retiraría el tejido con las microalgas adheridas desecadas para ser sometido a un proceso de extracción adecuado según los productos que se deseen.
D) Como PBR de células inmovilizadas de crecimiento continuo con recolección por decantación. Se trata de un sistema análogo al descrito en C) pero dejando que continúe el crecimiento hasta que la capa de microalgas sea tan gruesa que se desprenda y caiga con el medio líquido al canal colector. Para este caso se necesita intercalar un depósito decantador antes del que contiene la bomba de circulación, para ir retirando las masas de microalgas decantadas.
E) Como PBR mixto con poblaciones heterogéneas de microalgas, en el que algunas especies podrían quedar inmovilizadas y otras de menor tamaño o dotadas de flagelos o cilios podrían moverse en la corriente del agua sin ser atrapadas en el tejido de la lámina. Para esta finalidad se utilizarían láminas de tejido como las utilizadas en el tipo C) superpuestas sobre las mallas. Para la recolección de ambos tipos de algas se debería detener la circulación del medio y, una vez secas las láminas con las microalgas inmovilizadas, se retirarían para proceder al concentrado de aquellas incluidas en el medio líquido por circulación de este sobre las mallas del PBR.
El fotobiorreactor de la invención presenta las siguientes ventajas:
- a) es aplicable a gran escala y con bajo coste,
- b) consigue una alta eficiencia en la iluminación de las algas,
- c) permite el fácil intercambio de C02 desde los gases de emisión al cultivo,
- d) ofrece la posibilidad de realizar la sedimentación de las microalgas del medio líquido sin afectar a las que están embebidas en las láminas de geotextil, que siguen multiplicándose,
- e) posibilita recolectar las microalgas desecadas incluidas en una lámina de tejido,
- f) permite la concentración del cultivo de algas, y
- g) evita el calentamiento del cultivo al tratarse de un dispositivo con refrigeración natural continua que elimina el calor latente del agua evaporada de la capa más externa de la lámina de tejido, y por estar confinado el C02 en el interior de la cámara donde apenas llega radiación infrarroja.
Un PBR puede estar compuesto por varios módulos que vierten a un canal común y que reciben el medio de cultivo con las microalgas a través de un conducto también común, del que sale una toma para cada panel. Se trataría de un dispositivo modular por repetición de la misma estructura un número indefinido de veces de longitud variable en función de los módulos que se conecten. De forma que la realización más preferible de la invención es un conjunto de al menos dos fotobiorreactores conectados en paralelo en una estructura de tipo modular.
Con la intención de mostrar la presente invención de un modo ilustrativo, aunque en ningún modo limitante, se aportan los siguientes ejemplos. EJEMPLOS
Ejemplo 1 : Fotobiorreactor modular.
Se construyó un bastidor (Figura 1) con tubo hueco cuadrado de PVC (1) de 7 x 7 cm de sección exterior y 2 mm de espesor. El bastidor tenía unas medidas exteriores de 200 cm de largo, 150 cm de alto y 7 cm de espesor. La zona interior delimitada por el marco del bastidor tenía una longitud de 1 ,86 cm de largo, 1 ,36 cm de alto y 7 cm de profundidad, lo que resultaba en un volumen interno de 177 litros. En el interior del bastidor se colocó una tubería de caucho porosa (2) cuyos poros se abren a una presión interior a partir de 0,5 atmósferas, conectada al exterior a través del marco del bastidor (3) para unirse a la tubería que llevaba aire enriquecido con el C02. La tubería porosa se colocó sobre un soporte en H, fabricado con tubo de pvc (4). Se colocó una lámina de malla de plástico de tipo "mosquitera" de 1 milímetro cuadrado de luz a ambos lados del bastidor, que se tensó y se adhirió a éste con pegamento (5 de la Figura 2). Ambos lados del bastidor se recubrieron con un paño de geotextil (6 de la Figura 3) de 150 g/m2 que se colocó sobre la malla y se fijó por medio de listones angulares de pvc (7) de 25 x 25 mm colocados sobre las esquinas exteriores de los tubos laterales que forman las paredes de dicho bastidor. El tejido geotextil humedecido se adhería perfectamente a la lámina de malla mosquitera.
El bastidor se colocó reposando sobre el fondo de un canal (8 de la Figura 4) de pvc de 10 cm de anchura, incluido en una estructura de acero protegido de la oxidación (9) a la que se fijó (Figura 5).
En la parte superior de las láminas se colocó una tubería (10) acanalada según una generatriz, por la que se hizo fluir el medio de cultivo con las microalgas. El líquido que escurre de las paredes del fotobiorreactor es recogido en el canal (8) y se vierte a un depósito colector inferior de plástico transparente (11), situado por debajo del canal, en cuyo interior hay una bomba sumergida (12) que eleva el agua a través de una tubería vertical (13) a la tubería acanalada de vertido (10) que riega la parte alta del bastidor. Una válvula intermedia (14) en el tubo de subida regula el flujo adecuado de vertido del medio sin que se produzcan ni excesos de fluido que no puedan ser absorbidos por el geotextil ni falta de flujo que deje secas las láminas. Se intercala en la tubería un indicador de flujo (15) para verificar el movimiento del líquido en su interior. Por el conector externo (16) de la tubería porosa (2) del interior del panel, se inyecta aire enriquecido en C02 no tóxico para las algas. Ejemplo 2: Funcionamiento de fotobiorreactor modular en la modalidad de "producción discontinua"
Se utilizó el fotobiorreactor del ejemplo 1 con el bastidor cubierto únicamente por la lámina de malla mosquitera de polietileno, para la producción de biomasa de algas. Se preparó una cantidad de 120 litros de medio de cultivo, a base de compuestos minerales fabricado a partir de fertilizantes utilizados en fertirrigación, con una concentración molar de 8,8 x 10"4 M de N03 " y 3,6 x 10"5 M de P04 3", idóneo para el cultivo de microalgas. Este medio de cultivo se introdujo en el depósito inferior (11) del fotobiorreactor. Como inoculo se utilizó un cultivo poliespecífico de microalgas, con el predominio de Chlorella sorokiniana, que se añadió al medio de cultivo del depósito. La cantidad de inoculo añadida fue de 0,174 g de materia seca por litro de medio de cultivo (20,88 g para los 120 litros), lo que dio una medida inicial de densidad óptica de 0,541 a 580 nm de longitud de onda. El depósito (11), incorporaba en su interior una bomba sumergida (12) para impulsar el medio de cultivo con las microalgas hasta la tubería perforada que lo vertía sobre la parte superior del panel. El medio de cultivo con las microalgas que salía por el tubo perforado descendía por las láminas de malla de pvc que forman paredes laterales del fotobiorreactor (5) y se recogía en el canal inferior (8) que lo reconducía al depósito (11) para ser bombeado de nuevo a la tubería de pvc perforada, en un funcionamiento cíclico. El sistema se mantuvo en un ciclo natural de iluminación y oscuridad naturales. Por la toma externa de la tubería porosa situada en el interior del reactor se inyectó el gas procedente de un escape de motor de gasolina a razón de 1 litro de gas de escape por minuto, siendo su contenido medio en C02 del orden del 8 % en volumen, lo que en Condiciones Normales proporcionaría aproximadamente 9,8 g de C02/hora. El ejemplo que se describe corresponde a un periodo de 12 horas, con lo que se proporcionaron al cultivo 117,6 g de C02 diariamente, cuyo contenido en carbono sería de 32 g.
Debido a la evaporación que ocurre en los paneles, al cabo de 5 días de cultivo el volumen del líquido del depósito había pasado de 120 a 30 litros y la cantidad de microalgas contenida en dicho medio era de 234,12 g (expresada en materia seca) lo que supuso un incremento de 213,12 g en los 5 días (incremento medio de 42,6 g/día). Del volumen final (30 L), cuya concentración era de 7,8 g/litro de materia seca de microalgas, se retiraban 27 litros y se dejaba el resto para que sirviera de inoculo para el siguiente cultivo (23,4 g) procediéndose a completar el resto del volumen hasta los 120 litros con medio de cultivo recién preparado. Se repitió el ciclo durante otros 5 días y así sucesivamente. Los 27 litros de cultivo concentrado de algas se concentraron por centrifugación de 120 a 30 litros (reducción de un 75%). Los 213,12 g de materia seca de microalgas producidas en los 5 días tenían un contenido en carbono de 85,25 g (40 % de la materia seca) y el C02 suministrado en los 5 días procedente del escape del motor tenía un contenido en carbono de 32 x 5 =160 g, por lo que la tasa de fijación de C02 respecto al C02 suministrado fue del 53,3 %.
Ejemplo 3: Fotobiorreactor constituido por varios módulos conectados en paralelo.
Tres unidades del fotobiorreactor del ejemplo 1 se combinaron de forma lineal utilizando el mismo canal de recolección para todas ellas (Figura 6). El suministro de aire enriquecido con C02 se realizó a través de una tubería principal (17) de la que se sacaron tomas para cada unidad de fotobiorreactor. El medio de cultivo con las microalgas impulsado por la bomba (12) sumergida en el depósito (11), se distribuyó a cada unidad de fotobiorreactor por medio de una tubería general (18) de la que salían las tomas para cada unidad. Es decir, las conexiones de cada unidad con las líneas de suministro de gases y del cultivo con las microalgas, se realizó "en paralelo".
BREVE DESCRIPCIÓN DE LAS FIGURAS
Figura 1 : Bastidor soporte del panel fotobiorreactor
1. Marco del bastidor
2. Tubería porosa para suministro de gases al interior de la cámara del fotobiorreactor.
3. Válvula y conducto para la entrada de gases a la tubería porosa
4. Soporte de la tubería porosa en el interior de la cámara del fotobiorreactor
Figura 2 - Bastidor del fotobiorreactor cubierto en ambos lados por las láminas de malla.
5. Lámina de malla ligera tipo mosquitera que cubre ambos lados del bastidor, dejando una cámara de aire entre ellas.
Figura 3.- Bastidor del fotobiorreactor cubierto en ambos lados por láminas de malla y por una lámina de tejido.
6. Lámina de tejido colocada sobre la lámina de malla del fotobiorreactor.
7. Listones angulares para la sujeción de las láminas de tejido al bastidor del fotobiorreactor.
Figura 4.- Estructura soporte de un panel del fotobiorreactor.
8. Canal sobre el que descansa el bastidor del fotobiorreactor que actúa como receptor del flujo de cultivo de microalgas que descienden por las láminas laterales de los paneles.
9. Soportes laterales de los paneles y del canal. 10. Tubería acanalada de vertido del medio de cultivo con las microalgas sobre la parte superior del bastidor del fotobiorreactor.
11. Sistema de depósito colector del medio de cultivo con las microalgas.
12. Bomba de circulación del medio de cultivo con las microalgas.
13. Tubería de subida del medio de cultivo con las microalgas.
14. Válvula de regulación del flujo del medio de cultivo con las microalgas.
15. Indicador de flujo
Figura 5.- Unidad modular de fotobiorreactor.
16. Conducto de entrada de gases que conecta con la tubería porosa del interior de la cámara del fotobiorreactor, que contiene una válvula de regulación del caudal.
Figura 6.- Visión de conjunto de un fotobiorreactor de 3 módulos.
17. Conducto general de los gases que se van a introducir en el interior de las cámaras de cada unidad de fotobiorreactor.
18. Tubería general de conducción del medio de cultivo con las microalgas que se distribuye a cada panel a través de las respectivas tuberías perforadas situadas encima de cada bastidor.

Claims

REIVINDICACIONES
1. Fotobiorreactor laminar para la producción de microalgas, que comprende:
- un panel formado por un marco o bastidor (1) tapado por ambos lados por al menos una lámina de malla (5) por la que fluye en sentido descendente un medio líquido que contiene microalgas, y
- una cámara interior entre dichas láminas de malla (5) y las paredes del marco o bastidor (1 ), estanca al aire mediante cierre hidráulico.
2. Un fotobiorreactor según la reivindicación 1 , en el que dicha lámina de malla (5) es de material sintético, fibra de vidrio, fibra natural, material metálico, o combinaciones de ellos.
3. Un fotobiorreactor según las reivindicaciones 1 ó 2, en el que dicha lámina de malla (5) está suplementada por al menos una lámina de tejido (6).
4. Un fotobiorreactor según la reivindicación 3, en el que dicha lámina de tejido (6) es de material sintético, fibras naturales, o combinaciones de ellos.
5. Un fotobiorreactor según la reivindicación 4, en el que dicho material sintético está seleccionado del grupo compuesto por pvc, poliestireno y polipropileno.
6. Un fotobiorreactor según cualquiera de las reivindicaciones 1 a 5, que presenta un cubrimiento de plástico transparente sobre dichas láminas por ambos lados.
7. Un fotobiorreactor según cualquiera de las reivindicaciones anteriores, en el que los bordes inferiores de dichas láminas (5, 6) vierten el medio líquido que contiene microalgas a un canal (8) que comunica con un sistema de depósito (1 1) situado en la parte Inferior del fotobiorreactor.
8. Un fotobiorreactor según la reivindicación 7, en que el medio líquido es recirculado a la parte superior del bastidor (1) desde dicho sistema de depósito (1 1).
9. Un fotobiorreactor según una de las reivindicaciones 7 u 8, en el que dicho sistema de depósito (1 1) incluye un depósito decantador que permite la sedimentación de las microalgas.
10. Un fotobiorreactor según la reivindicación 9, en el que dicha sedimentación se realiza en presencia de floculantes.
11. Un fotobiorreactor según cualquiera de las reivindicaciones 1 a 10, en el que se introduce un gas al interior de dicha cámara.
12. Un fotobiorreactor según la reivindicación 11 , en el que dicho gas está aislado de la radiación solar directa.
13. Un fotobiorreactor según las reivindicaciones 11 ó 12, en el que dicho gas es aire, anhídrido carbónico, gases procedentes de combustión, o sus mezclas.
14. Conjunto de al menos dos fotobiorreactores según cualquiera de las reivindicaciones anteriores, conectados en paralelo en una estructura de tipo modular.
PCT/ES2011/000104 2010-05-03 2011-04-07 Fotobiorreactor laminar para la producción de microalgas WO2011138477A1 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
MX2012012569A MX2012012569A (es) 2010-05-03 2011-04-07 Fotobiorreactor laminar para la produccion de microalgas.
EP11777300.2A EP2568038A4 (en) 2010-05-03 2011-04-07 LAMINAR PHOTOBIOREACTOR FOR THE PRODUCTION OF MICRO ALGAE
US13/695,709 US20130115688A1 (en) 2010-05-03 2011-04-07 Laminar photobioreactor for the production of microalgae
BR112012028149A BR112012028149A2 (pt) 2010-05-03 2011-04-07 fotobiorreator laminar para a produção de microalgas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201030651A ES2347515B2 (es) 2010-05-03 2010-05-03 Fotobiorreactor laminar para la produccion de microalgas.
ESP201030651 2010-05-03

Publications (1)

Publication Number Publication Date
WO2011138477A1 true WO2011138477A1 (es) 2011-11-10

Family

ID=42942295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2011/000104 WO2011138477A1 (es) 2010-05-03 2011-04-07 Fotobiorreactor laminar para la producción de microalgas

Country Status (8)

Country Link
US (1) US20130115688A1 (es)
EP (1) EP2568038A4 (es)
BR (1) BR112012028149A2 (es)
CL (1) CL2012003035A1 (es)
CO (1) CO6630155A2 (es)
ES (1) ES2347515B2 (es)
MX (1) MX2012012569A (es)
WO (1) WO2011138477A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2673369A1 (es) * 2017-12-21 2018-06-21 Microalgae Solutions S.L. Método de cultivo, sistema de cultivo y biomasa de consorcios ad-hoc de microalgas y cianobacterias en biofilm con fines industriales.

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012176021A1 (es) * 2011-06-24 2012-12-27 Clean Energy Esb S.A Sistema para la obtención de biomasa
ES2525598B1 (es) * 2013-06-20 2016-01-05 Universidad De Valladolid Proceso para la producción de enmienda edáfica de algas e instalación diseñada para tal fin
CN104328030A (zh) * 2014-10-30 2015-02-04 国家开发投资公司 夹心结构的表面生长式培养板、系统及培养方法
CN104328048B (zh) * 2014-10-30 2017-03-29 国家开发投资公司 表面生长式光合微生物培养板及其系统
CN104328032A (zh) * 2014-10-30 2015-02-04 国家开发投资公司 表面生长式光合微生物培养单元、培养系统及培养方法
CN104328031A (zh) * 2014-10-30 2015-02-04 国家开发投资公司 表面生长式培养板、培养单元、培养系统及方法
WO2017033190A1 (en) * 2015-08-25 2017-03-02 Hinoman Ltd A system for cultivating aquatic plants and method thereof
FR3059334B1 (fr) * 2016-11-25 2019-01-25 Brochier Technologies Panneau pour photobioreacteur et procede de fabrication
EP3703843A1 (de) 2017-11-04 2020-09-09 UB - ONE Stiftungs GmbH Vorrichtung und verfahren zur sequestrierung von atmosphärischen kohlendioxid
WO2023010153A1 (en) * 2021-08-05 2023-02-09 Southern Green Gas Limited A distributed algae manufacturing assembly
DE102021214010A1 (de) 2021-12-08 2023-06-15 Jan-Heiner Küpper Verfahren zur Sequestrierung von Kohlenstoff
WO2023228010A1 (en) 2022-05-23 2023-11-30 Food For Future Sarl System for cultivating and harvesting biomass

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5585266A (en) * 1995-10-05 1996-12-17 Plitt; Cheryl A. Immobilized cell bioreactor
WO1998045409A1 (de) 1997-04-10 1998-10-15 Bioprodukte Prof. Steinberg Gmbh Verfahren zur herstellung von biomasse mittels photosynthese
US20020072109A1 (en) * 2000-07-18 2002-06-13 Bayless David J. Enhanced practical photosynthetic CO2 mitigation
WO2004074423A2 (en) * 2003-02-24 2004-09-02 Universita'degli Studi Di Firenze Reactor for industrial culture of photosynthetic micro-organisms
WO2005006838A2 (en) * 2003-07-21 2005-01-27 Ben-Gurion University Of The Negev Flat panel photobioreactor
WO2007011343A1 (en) 2005-07-18 2007-01-25 Greenfuel Technologies Corporation Photobioreactor and process for biomass production and mitigation of pollutants in flue gases
WO2008008262A2 (en) 2006-07-10 2008-01-17 Greenfuel Technologies Corp. Photobioreactor systems and methods for treating co2-enriched gas and producing biomass
WO2008134010A2 (en) 2007-04-27 2008-11-06 Greenfuel Technologies Corp. Photobioreactor systems positioned on bodies of water
US20080286851A1 (en) 2007-05-14 2008-11-20 Sunrise Ridge Holdings Inc. Large-scale photo-bioreactor using flexible materials, large bubble generator, and unfurling site set up method
US20090151241A1 (en) 2007-12-14 2009-06-18 Dressler Lawrence V Method for producing algae in photobioreactor
US20090203116A1 (en) 2008-02-13 2009-08-13 Bazaire Keith E System to improve algae production in a photo-bioreactor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8415142B2 (en) * 2006-06-14 2013-04-09 Malcolm Glen Kertz Method and apparatus for CO2 sequestration

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5585266A (en) * 1995-10-05 1996-12-17 Plitt; Cheryl A. Immobilized cell bioreactor
WO1998045409A1 (de) 1997-04-10 1998-10-15 Bioprodukte Prof. Steinberg Gmbh Verfahren zur herstellung von biomasse mittels photosynthese
US20020072109A1 (en) * 2000-07-18 2002-06-13 Bayless David J. Enhanced practical photosynthetic CO2 mitigation
WO2004074423A2 (en) * 2003-02-24 2004-09-02 Universita'degli Studi Di Firenze Reactor for industrial culture of photosynthetic micro-organisms
WO2005006838A2 (en) * 2003-07-21 2005-01-27 Ben-Gurion University Of The Negev Flat panel photobioreactor
WO2007011343A1 (en) 2005-07-18 2007-01-25 Greenfuel Technologies Corporation Photobioreactor and process for biomass production and mitigation of pollutants in flue gases
WO2008008262A2 (en) 2006-07-10 2008-01-17 Greenfuel Technologies Corp. Photobioreactor systems and methods for treating co2-enriched gas and producing biomass
WO2008134010A2 (en) 2007-04-27 2008-11-06 Greenfuel Technologies Corp. Photobioreactor systems positioned on bodies of water
US20080286851A1 (en) 2007-05-14 2008-11-20 Sunrise Ridge Holdings Inc. Large-scale photo-bioreactor using flexible materials, large bubble generator, and unfurling site set up method
US20090151241A1 (en) 2007-12-14 2009-06-18 Dressler Lawrence V Method for producing algae in photobioreactor
US20090203116A1 (en) 2008-02-13 2009-08-13 Bazaire Keith E System to improve algae production in a photo-bioreactor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2568038A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2673369A1 (es) * 2017-12-21 2018-06-21 Microalgae Solutions S.L. Método de cultivo, sistema de cultivo y biomasa de consorcios ad-hoc de microalgas y cianobacterias en biofilm con fines industriales.

Also Published As

Publication number Publication date
ES2347515A1 (es) 2010-10-29
US20130115688A1 (en) 2013-05-09
MX2012012569A (es) 2013-03-18
CO6630155A2 (es) 2013-03-01
EP2568038A4 (en) 2015-07-08
BR112012028149A2 (pt) 2015-11-24
ES2347515B2 (es) 2011-05-20
EP2568038A1 (en) 2013-03-13
CL2012003035A1 (es) 2013-09-06

Similar Documents

Publication Publication Date Title
ES2347515B2 (es) Fotobiorreactor laminar para la produccion de microalgas.
US8372632B2 (en) Method and apparatus for CO2 sequestration
CA2777567C (en) An apparatus and method for algae growth
ES2433367T3 (es) Aparato de producción y de cosecha de algas
ES2410885T3 (es) Dispositivo de cultivo de algas y/o de microorganismos para el tratamiento de un efluente y biofachada
US20080311649A1 (en) Pressurized flexible tubing system for producing Algae
ES2651353T3 (es) Instalación de tratamiento y de aprovechamiento de efluentes de explotación ganadera que comprende una metanización, unos cultivos de microalgas y de macrofitos y un lombricultivo
KR101122986B1 (ko) 미세조류를 이용한 배기가스 중의 이산화탄소 제거방법
US20140315290A1 (en) Low-cost photobioreactor
ES2754265T3 (es) Dispositivo de producción de un cultivo fotosintético por medio de un fotobiorreactor y al menos un distribuidor de luz
WO2008074906A1 (es) Fotobiorreactor electromagnético para la obtención de biomasa
ES2653848T3 (es) Procedimiento en continuo para la generación de un producto de valor nutricional elevado y de recursos energéticos
CN108947134A (zh) 一种沼液光处理养殖系统
ES2319376B1 (es) "fotobiorreactor".
BR102012011807A2 (pt) sistema de cultivo de microalgas
CN105209591A (zh) 用固定的藻类或蓝细菌的生物质进行co2生物封存的光生物反应器
CN105039138A (zh) 带有太阳能电池板的微藻养殖系统及其培养方法
CN102559478B (zh) 一种可控坡式微藻养殖系统及其微藻养殖方法
ES2395947B1 (es) Fotobiorreactor para cultivar microorganismos fotoautótrofos
CN106305572A (zh) 珍珠蚌养殖池
CN202465662U (zh) 一种可控坡式微藻养殖系统
ES2688654T3 (es) Equipo y procedimiento para eliminar co2, así como aplicaciones del mismo
CN201395597Y (zh) 一种快速养殖微藻的装置
ES2528388B1 (es) Procedimiento de obtención de biomasa y productos derivados a partir de algas unicelulares, e instalación para la ejecución del mismo
CN109864018A (zh) 保温大棚池塘罗非鱼循环水高产高效养殖方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11777300

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12190979

Country of ref document: CO

WWE Wipo information: entry into national phase

Ref document number: MX/A/2012/012569

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 222834

Country of ref document: IL

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011777300

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011777300

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13695709

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012028149

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012028149

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20121101