WO2011137748A1 - 基于电感储能且无电解电容的直流电源电路 - Google Patents

基于电感储能且无电解电容的直流电源电路 Download PDF

Info

Publication number
WO2011137748A1
WO2011137748A1 PCT/CN2011/073697 CN2011073697W WO2011137748A1 WO 2011137748 A1 WO2011137748 A1 WO 2011137748A1 CN 2011073697 W CN2011073697 W CN 2011073697W WO 2011137748 A1 WO2011137748 A1 WO 2011137748A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
circuit
power supply
capacitor
inductive energy
Prior art date
Application number
PCT/CN2011/073697
Other languages
English (en)
French (fr)
Inventor
尤建兴
Original Assignee
Yau Kin Hing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yau Kin Hing filed Critical Yau Kin Hing
Publication of WO2011137748A1 publication Critical patent/WO2011137748A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators

Definitions

  • the invention relates to a power supply circuit, in particular to a DC power supply circuit based on an inductor energy storage and an electroless capacitor. Background technique
  • the DC power supply is a power supply device that converts alternating current into direct current using modern electronic technology. Due to the current technical needs, more electrolytic capacitors are used in the DC power supply to perform energy storage and filtering functions, but the life of the electrolytic capacitor is shorter, thereby shortening the trouble-free working time of the DC power supply and limiting the DC power supply in important projects. Applications in the technical field. Summary of the invention
  • the present invention proposes a DC power supply circuit based on an inductor energy storage and an electrolytic capacitor.
  • the technical solution is:
  • the DC power supply circuit based on the energy storage of the inductor and the electroless capacitor includes a power frequency power input end, a DC power output end, a system working power supply, an inductive energy storage device, a switch circuit, a filter circuit, and the power frequency power input end is connected to the system working power supply,
  • the working power of the system is connected to one end of the inductive energy storage device, and the other end of the inductive energy storage device is connected to the output end of the switch circuit and the filter circuit, and the filter circuit is connected to the output end of the DC power supply.
  • the filter circuit includes a capacitor, and the capacitor adopts a non-electrolytic capacitor, and the single The capacity of only the capacitor is no more than 10 microfarads.
  • the filter circuit includes several capacitors, and a plurality of capacitors form a parallel capacitor group.
  • the filter circuit uses an inductor-capacitor filter circuit or a resistor-capacitor filter circuit.
  • the switch circuit is provided with a triode push-pull switch circuit and an insulated gate field effect transistor, the inductor energy storage device is connected to the drain of the insulated gate field effect transistor, the source of the insulated gate field effect transistor is grounded, and the gate of the insulated gate field effect transistor is connected to the triode The output of the push-pull switch circuit.
  • the triode push-pull switch circuit uses a multi-stage direct-coupled triode push-pull switch circuit.
  • a multi-stage direct-coupled triode push-pull switch circuit is provided with a positive feedback circuit, and a positive feedback circuit is connected in series with an acceleration capacitor and a positive feedback resistor connected in parallel with the acceleration capacitor.
  • the triode push-pull switch circuit is provided with a system operating power supply, and the insulated gate field effect transistor and the inductive energy storage device are provided with another system operating power supply.
  • a switching circuit is also connected between the inductive energy storage device and the system operating power supply, and the switching circuit operates in synchronization with the switching circuit at the other end of the inductive energy storage device.
  • the input of the switching circuit is connected to the switching signal source.
  • the working power of the system is connected to one end of the inductive energy storage device, and the other end of the inductive energy storage device is connected to the output end of the switch circuit and the filter circuit, so that when the switch circuit is turned on, the current flows through the inductive energy storage device, so that the inductive energy storage device stores Energy, when the switching circuit is turned off, the induced electromotive force generated by the current reduction in the inductive energy storage device releases energy, discharges the external load and the filter circuit, and replaces the large-capacity electrolytic capacitor to complete the energy storage and release of energy. It also assists in the operation of a DC power supply circuit based on inductive energy storage and electroless capacitors. It can also be used to increase the output voltage of the DC power supply circuit.
  • the capacitor in the filter circuit is a non-electrolytic capacitor, which completely solves the problem that the short-circuit life of the DC power supply caused by the short life of the electrolytic capacitor is short, and cannot meet the requirements of important engineering fields.
  • Capacitors have a single capacity of no more than 10 microfarads, providing the possibility and realism of using non-electrolytic capacitors as filter capacitors. Since the inductive energy storage device provided by the inductive energy storage and electroless capacitor-free DC power supply circuit of the present invention bears most of the energy storage work normally undertaken by the electrolytic capacitor, which is also based on the inductive energy storage and electrolessing of the present invention. Capacitor DC power circuits create favorable conditions without the use of large-capacity electrolytic capacitors.
  • the filter circuit includes several capacitors, and a plurality of capacitors form a parallel capacitor group.
  • the capacitors of not more than 10 microfarads can be connected in parallel to form a parallel capacitor group with a larger capacity to achieve better filtering effect.
  • the filter circuit adopts an inductor-capacitor filter circuit or a resistor-capacitor filter circuit, which can utilize the filtering effect of the inductor or resistor in the series circuit to cooperate with the filtering function of the capacitor in the parallel circuit to achieve better filtering effect.
  • the switch circuit is provided with a triode push-pull switch circuit and an insulated gate field effect transistor.
  • the triode tube push-pull switch circuit is used to amplify and shape the switch signal, which can ensure that the switch signal outputted by the switch circuit has an ideal and symmetric positive and negative waveform, and the switching signal is improved.
  • the input impedance of the insulated gate field effect transistor is high, the required driving current is extremely small, and the operating frequency is high, the switching speed is fast, and the insulated gate field effect transistor is used as the power switching tube, which can reduce the output power of the driving circuit and increase the switching speed. , improve power conversion efficiency.
  • the triode push-pull switch circuit When the triode push-pull switch circuit is responsible for the negative half-cycle amplification of the switching signal, the gate of the insulated gate field effect transistor that should be turned off can be short-circuited to the ground, so that the charge stored in the gate input capacitor is quickly released, and the insulation is accelerated.
  • the closing speed of the gate field effect transistor improving the basis of the present invention.
  • the multi-stage direct-coupled triode push-pull switch circuit has high current amplification factor and good frequency response.
  • the multi-stage direct-coupled triode push-pull switch circuit can ensure that the switching signal outputted by the switching circuit has an ideal and symmetric positive and negative waveform.
  • the rectangular coefficient of the switching signal waveform shortens the conduction process of the insulated gate field effect transistor due to the charging of the gate input capacitance of the insulated gate field effect transistor, which is beneficial to improving the switching effect of the insulated gate field effect transistor.
  • a multi-stage direct-coupled triode push-pull switch circuit is provided with a positive feedback circuit, which can improve the amplitude of the switching signal outputted by the switching circuit, improve the waveform of the switching signal, and improve the switching characteristics of the insulated gate field effect transistor.
  • the positive feedback circuit is connected with an accelerating capacitor in series, which can improve the switching rate of the switching signal, improve the rectangular coefficient of the switching signal, increase the sharpness of the leading edge of the rectangular waveform of the switching signal, and improve the conduction speed of the insulated gate field effect transistor.
  • a well-designed positive feedback circuit with accelerating capacitors, combined with a higher operating supply voltage, can reduce the on-time of the insulated gate FET to less than 10 nanoseconds, further improving the characteristics of the DC circuit and reducing the output voltage. fluctuation.
  • the triode push-pull switch circuit is provided with a system working power supply
  • the insulated gate field effect transistor and the inductive energy storage device are provided with another system working power supply, which can avoid the power fluctuation caused by the intermittent conduction of the insulated gate field effect transistor and the inductor energy storage device, and the triode push
  • the stability of the switching circuit operation, and the power supply of the insulated gate FET and the inductor energy storage device can be selected according to the output voltage and the output current, without affecting the working state of the triode push-pull switch circuit.
  • the two ends of the inductive energy storage device are respectively provided with a switching circuit, which can eliminate the interference of the electromagnetic energy storage device in the intermittent energization process, induce the electromotive force to other parts of the circuit, and all the electric energy generated by the induced electromotive force is injected into the filter circuit, thereby improving The efficiency of the inductive energy storage and electroless capacitor based DC power supply circuit of the present invention.
  • the input end of the switch circuit is connected to the switch signal source, and the switch signal source can be provided for the switch circuit, so that the switch circuit can output the switch drive signal, so that the DC power supply circuit based on the inductor energy storage and the electroless capacitor has full working capability.
  • the DC power supply circuit based on the inductor energy storage and the electroless capacitor of the invention has high efficiency, low energy consumption, small maintenance work, long trouble-free working time, and can meet the requirements of use in important engineering technical fields.
  • FIG. 1 is a schematic block diagram of a DC power supply circuit based on an inductor energy storage and an electroless capacitor according to the present invention.
  • FIG. 2 is a schematic diagram showing the circuit structure of a DC power supply circuit based on an inductor energy storage and an electroless capacitor according to the present invention.
  • the meanings of the symbols in the drawings are as follows:
  • FIG. 1 The schematic block diagram of the DC power supply circuit based on the inductor energy storage and electroless capacitor is shown in FIG. 1 , which includes the system working power supply, the power frequency power input terminal, the DC power output terminal, the switching signal source, the switch circuit, and the inductor.
  • the energy storage device, the filter circuit and the voltage and current detection protection device, the power frequency power supply enters the system working power source from the power frequency power input end, and supplies energy to the DC power supply circuit based on the inductor energy storage and the electroless capacitor, and the switch signal source generates the inductance based storage.
  • the switching signal of the DC power supply circuit capable of and without electrolytic capacitors is normally operated, and the switching circuit amplifies and shapes the switching signal generated by the switching signal source, so that the switching circuit generates an on-off state synchronized with the switching signal, and the inductive energy storage device switches.
  • the circuit uses the pulsating power that is converted into power and energy into the filter circuit repeatedly, and the storage is converted into a stable DC power source suitable for setting requirements.
  • the voltage and current detection protection device adjusts the working state of the switching circuit when the output voltage of the DC power supply circuit based on the inductor energy storage and the electroless capacitor is higher or lower than the set voltage, so that the output voltage meets the setting
  • switch circuit 2 includes multi-stage direct coupling triode push-pull switch circuit and power switch tube, multi-stage direct coupling triode push-pull switch circuit can be set to level 2 direct
  • FIG. 2 shows the case where three sets of two-stage direct-coupled triode push-pull switch circuit assemblies 21 are electrically connected in series.
  • the power switch tube uses an insulated gate field effect transistor 22.
  • the output end of the switching signal source 1 is electrically connected to the input end of the three sets of two-stage direct-coupled triode push-pull switch circuit assembly 21, and the three sets of two-stage direct-coupled triode push-pull switch circuit assembly 21 are electrically connected in series.
  • the terminal is electrically connected to the gate of the insulated gate field effect transistor 22.
  • One end of the inductive energy storage device 3 is electrically connected to the power output working power source 62, the other end of the inductive energy storage device 3 is electrically connected to the drain of the insulated gate field effect transistor 22, and the filter circuit 31 passes through the freewheeling diode 32 and the inductive energy storage device.
  • the other end of 3 is electrically connected to the drain of the pole insulated gate field effect transistor 22, wherein the anode of the freewheeling diode 32 is electrically connected to the drain of the insulated gate field effect transistor 22.
  • the freewheeling diode 32 is provided for The filter circuit 31 is prevented from being discharged to the ground when the insulated gate field effect transistor 22 is turned on. In order to adapt to the higher switching frequency of the DC power supply circuit based on the inductive energy storage and electroless capacitor, the freewheeling diode 32 should use a fast recovery diode.
  • the 2-stage direct-coupled triode push-pull switch circuit assembly 21 and the insulated gate FET 22 and the inductive energy storage device 3 can share a power source.
  • the stability of the 2-stage direct-coupled triode push-pull switch circuit assembly 21 is affected, and the insulated gate can be adjusted according to the output voltage and the output current.
  • the power supply of the FET 22 and the inductive energy storage device 3 does not affect the operating state of the 2-stage direct-coupled triode push-pull switch circuit 21.
  • the 2-stage direct-coupled triode push-pull switch circuit 21 can be provided with a switching signal operating power supply 61.
  • the insulated gate field effect transistor 22 and the inductive energy storage device 3 are provided with a power output working power supply 62.
  • a power output working power supply 62 three sets of two-stage direct-coupled triode push-pull switch circuit components 21 electrically connected in series are provided to set the switching signal working power supply 61, and the insulation is provided.
  • the gate FET 22 and the energy storage device 3 are provided with a power output operating power source 62.
  • the capacitor used in the filter circuit 31 is a non-electrolytic capacitor. Ceramic capacitors are recommended. The single capacity of the capacitor is not more than 10 microfarads. If necessary, two or more capacitors can be used in parallel. In Figure 2, three capacitors 32 are used in parallel. In order to further improve the filtering effect, the filter circuit 31 may employ an inductor-capacitor filter circuit or a resistor-capacitor filter circuit.
  • the inductance of the inductive energy storage device 3 can be selected and adjusted according to the output voltage and the output current, and the operating frequency of the DC power supply circuit based on the energy storage of the inductor and the electroless capacitor.
  • the 2-stage direct-coupled triode push-pull switch circuit assembly 21 can be provided with a positive feedback circuit 23, and the positive feedback circuit 23 is disposed between the output terminal and the input terminal of the 2-stage direct-coupled triode push-pull switch circuit assembly.
  • the positive feedback circuit 23 is provided with a positive feedback resistor 231 to control the positive feedback amount.
  • the acceleration capacitor 232 connected in parallel with the positive feedback resistor 231 can be set, and the resistance of the positive feedback resistor 231 and the capacity of the acceleration capacitor 232 can be adjusted, and the direct coupling can be changed.
  • the waveform of the switch drive signal output by the triode push-pull switch circuit assembly 21 In FIG.
  • three sets of two-stage direct-coupled triode push-pull switch circuit components 21 are electrically connected in series, and a positive feedback circuit can be set for one, two or three sets of two-stage direct-coupled triode push-pull switch circuit components 21 as needed.
  • a positive feedback circuit can be set for one, two or three sets of two-stage direct-coupled triode push-pull switch circuit components 21 as needed.
  • the direct coupling triode push-pull switch circuit assembly 21 is provided with a positive feedback circuit 23.
  • the resistor 241 provided at the input end of the 2-stage direct-coupled triode push-pull switch circuit 21 for the power supply and the ground can maintain the stable DC potential of the input terminal of the 2-stage direct-coupled triode push-pull switch circuit 21, and stabilize the 2-stage direct-coupled triode push.
  • the capacitor 242 disposed at the input end of the 2-stage direct-coupled triode push-pull switch circuit 21 for the power supply and the ground can absorb the sharp spike of the interference signal and reduce the interference to the 2-stage direct-coupled triode push-pull switch circuit 21.
  • a switching circuit can also be connected between the inductive energy storage device and the system working power supply.
  • the switching circuit also includes a multi-stage direct coupling triode push-pull switching circuit and a power switching tube, and the switching circuit is synchronized with the switching circuit at the other end of the inductive energy storage device. jobs.
  • the circuit settings and power settings of the two switching circuits should ensure that the two switching circuits can work normally and synchronously.
  • the DC power supply circuit based on the inductive energy storage and electroless capacitor of the present invention is not limited by the above embodiments, and the technical solutions formed by the transformation and substitution using the principles and methods of the present invention are all protected by the present invention. Within the scope.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Power Conversion In General (AREA)
  • Inverter Devices (AREA)

Description

基于电感储能且无电解电容的直流电源电路 技术领域
本发明涉及一种电源电路, 特别涉及一种基于电感储能且无电解电容的直流电源电路。 背景技术
直流电源是利用现代电子技术, 将交流电转变为直流电的电源装置。 由于目前技术上 的需要, 直流电源中使用了较多的电解电容担负储能和滤波功能, 但是电解电容的寿命较 短, 从而縮短了直流电源的无故障工作时间, 限制了直流电源在重要工程技术领域中的应 用。 发明内容
为了解决现有直流电源中使用的电解电容寿命较短, 限制了直流电源在重要工程技术 领域中的应用的问题, 本发明提出一种基于电感储能且无电解电容的直流电源电路, 所采 用的技术方案是:
基于电感储能且无电解电容的直流电源电路, 包括工频电源输入端、 直流电源输出端、 系统工作电源、 电感储能装置、 开关电路、 滤波电路, 工频电源输入端连接系统工作电源, 系统工作电源连接电感储能装置的一端, 电感储能装置的另一端连接开关电路的输出端和 滤波电路, 滤波电路连接直流电源输出端, 滤波电路中包括电容, 电容采用非电解电容, 且单只电容的容量不大于 10微法。
滤波电路中包括电容若干个, 若干个电容组成并联电容组。
滤波电路采用电感电容滤波电路或电阻电容滤波电路。
开关电路设有三极管推挽开关电路和绝缘栅场效应管, 电感储能装置连接绝缘栅场效 应管的漏极, 绝缘栅场效应管的源极接地, 绝缘栅场效应管的栅极连接三极管推挽开关电 路的输出端。
三极管推挽开关电路采用多级直接耦合三极管推挽开关电路。
多级直接耦合三极管推挽开关电路中设有正反馈电路, 正反馈电路中串接有加速电容 和与加速电容并联的正反馈电阻。 三极管推挽开关电路设置一系统工作电源, 绝缘栅场效应管和电感储能装置设置另一 系统工作电源。
电感储能装置和系统工作电源之间还连接一个开关电路, 此开关电路与电感储能装置 另一端的开关电路同步工作。
开关电路的输入端连接开关信号源。
本发明的基于电感储能且无电解电容的直流电源电路采用上述技术方案所能取得的技 术效果是:
系统工作电源连接电感储能装置的一端, 电感储能装置的另一端连接开关电路的输出 端和滤波电路, 可以在开关电路导通时使电流流过电感储能装置, 使电感储能装置储存能 量, 在开关电路截止时, 利用电感储能装置中的电流减小时所产生的感生电动势释放能量, 对外部负载和滤波电路放电, 以代替大容量电解电容完成储能和释放能量的工作, 并协助 完成基于电感储能且无电解电容的直流电源电路的工作过程, 同时还可以利用这一过程提 高直流电源电路的输出电压。 滤波电路中的电容为非电解电容, 彻底解决了电解电容寿命 短所导致的直流电源无故障工作时间短, 无法满足重要工程技术领域需求的问题。 电容的 单只容量不大于 10微法, 为使用非电解电容作为滤波电容提供了可能性和现实性。 由于本 发明的基于电感储能且无电解电容的直流电源电路所设置的电感储能装置承担了通常由电 解电容承担的大部分储能工作, 这也为本发明的基于电感储能且无电解电容的直流电源电 路不使用大容量的电解电容创造了有利条件。
滤波电路中包括电容若干个, 若干个电容组成并联电容组, 可以通过多个不大于 10微 法的电容的并联, 组成较大容量的并联电容组, 实现较好的滤波效果。
滤波电路采用电感电容滤波电路或电阻电容滤波电路, 可以利用串联电路中的电感或 电阻的滤波作用, 与并联电路中的电容的滤波作用协同滤波, 从而取得更好的滤波效果。
开关电路设有三极管推挽开关电路和绝缘栅场效应管, 利用三极管推挽开关电路对开 关信号进行放大和整形, 可以保证开关电路输出的开关信号具有理想、 对称的正负波形, 提高开关信号波形的矩形系数。 绝缘栅场效应管的输入阻抗高, 所需要的驱动电流极小, 并且工作频率高, 开关速度快, 使用绝缘栅场效应管作为功率开关管, 可以减小驱动电路 的输出功率, 提高开关速度, 提高电源转换效率。 当三极管推挽开关电路担负开关信号负 半周放大整形的三极管导通时, 可以使应该截止的绝缘栅场效应管的栅极对地短路, 使栅 极输入电容中储存的电荷迅速释放, 加快绝缘栅场效应管的关闭速度, 提高本发明的基于 电感储能且无电解电容的直流电源电路的工作效率。
多级直接耦合三极管推挽开关电路具有很高的电流放大倍数和良好的频率响应, 采用 多级直接耦合三极管推挽开关电路可以保证开关电路输出的开关信号具有理想、 对称的正 负波形, 提高开关信号波形的矩形系数, 縮短由于绝缘栅场效应管的栅极输入电容充电产 生的绝缘栅场效应管的导通过程, 有利于改善绝缘栅场效应管的开关效果。
多级直接耦合三极管推挽开关电路中设有正反馈电路, 可以提高开关电路输出的开关 信号幅值, 改善开关信号的波形, 改善绝缘栅场效应管的开关特性。 正反馈电路中串接有 加速电容, 可以提高开关信号的转换速率, 改善开关信号的矩形系数, 增加开关信号矩形 波形峰顶前缘的尖锐度, 提高绝缘栅场效应管的导通速度, 经过良好设计的设有加速电容 的正反馈电路, 配合较高的工作电源电压, 可以将绝缘栅场效应管的导通时间降低到 10纳 秒以内, 进一步提高直流电路的特性, 减小输出电压的波动。
三极管推挽开关电路设置一系统工作电源, 绝缘栅场效应管和电感储能装置设置另一 系统工作电源, 可以避免绝缘栅场效应管和电感储能装置间歇导通引起的电源波动影响三 极管推挽开关电路工作的稳定性, 并可以根据输出电压和输出电流, 选择绝缘栅场效应管 和电感储能装置的电源, 而不影响三极管推挽开关电路的工作状态。
电感储能装置的两端分别设置开关电路, 可以消除电感储能装置在断续通电过程中, 感生电动势对电路中其他部分的干扰, 使感生电动势产生的电能全部注入滤波电路中, 提 高本发明的基于电感储能且无电解电容的直流电源电路的效率。
开关电路的输入端连接开关信号源, 可以为开关电路提供开关信号源, 使开关电路能 够输出开关驱动信号, 使本发明的基于电感储能且无电解电容的直流电源电路具有完全的 工作能力。
使用本发明的基于电感储能且无电解电容的直流电源电路, 效率高, 能耗低, 维护工 作量小, 无故障工作时间长, 能够满足重要工程技术领域的使用要求。 附图说明
附图 1是本发明的基于电感储能且无电解电容的直流电源电路的原理框图。
附图 2是本发明的基于电感储能且无电解电容的直流电源电路的电路结构示意图。 附图中的标示含义如下:
1一开关信号源, 2—开关电路, 21— 2级直接耦合三极管推挽开关电路组件, 22—绝 缘栅场效应管, 23—正反馈电路, 231—正反馈电阻, 232—加速电容, 3—电感储能装置, 31—滤波电路, 32—续流二极管, 4一工频电源输入端, 5—直流电源输出端, 6—系统工作 电源, 61—开关信号工作电源, 62—功率输出工作电源。 具体实施方式
本发明的基于电感储能且无电解电容的直流电源电路的原理框图如附图 1 所示, 其中 包括系统工作电源、 工频电源输入端、 直流电源输出端、 开关信号源、 开关电路、 电感储 能装置、 滤波电路和电压电流检测保护装置, 工频电源从工频电源输入端进入系统工作电 源, 向基于电感储能且无电解电容的直流电源电路提供能量, 开关信号源产生基于电感储 能且无电解电容的直流电源电路正常工作的开关信号, 开关电路将开关信号源产生的开关 信号进行放大、 整形, 使开关电路产生与开关信号同步的通、 断状态, 电感储能装置将开 关电路利用反复通、 断将电源能量转换成的脉动的电能送进滤波电路, 存储转变为稳定的 适合于设定要求的直流电源。 电压电流检测保护装置, 在基于电感储能且无电解电容的直 流电源电路的输出电压高于或低于设定的电压时, 会对开关电路的工作状态进行调整, 以 使输出电压符合设定的电压, 当输出电压无法恢复到设定的电压, 以及输出电流超过设定 的最大输出电流时, 开关电路会停止工作并报警。
本发明的基于电感储能且无电解电容的直流电源电路的电路结构示意图如附图 2所示, 包括电连接的开关信号源 1、 开关电路 2、 电感储能装置 3、 滤波电路 31、 工频电源输入端 4、 直流电源输出端 5和系统工作电源 6, 开关电路 2包括多级直接耦合三极管推挽开关电 路和功率开关管, 多级直接耦合三极管推挽开关电路可以设置为 2级直接耦合三极管推挽 开关电路组件 21, 在实际的开关电路中, 可以使用 1组 2级直接耦合三极管推挽开关电路 组件 21, 也可以多组 2级直接耦合三极管推挽开关电路组件 21串联电连接后使用, 附图 2 中是 3组 2级直接耦合三极管推挽开关电路组件 21串联电连接使用的情况。 功率开关管选 用绝缘栅场效应管 22。 开关信号源 1的输出端与 3组 2级直接耦合三极管推挽开关电路组 件 21串联电连接后的输入端电连接, 3组 2级直接耦合三极管推挽开关电路组件 21串联电 连接后的输出端与绝缘栅场效应管 22的栅极电连接。 电感储能装置 3的一端与功率输出工 作电源 62电连接, 电感储能装置 3的另一端与绝缘栅场效应管 22的漏极电连接, 滤波电 路 31经过续流二极管 32与电感储能装置 3的另一端和极绝缘栅场效应管 22的漏极电连接, 其中续流二极管 32的正极与绝缘栅场效应管 22的漏极电连接。 设置续流二极管 32是为了 在绝缘栅场效应管 22导通时防止滤波电路 31对地放电。 为了适应基于电感储能且无电解 电容的直流电源电路较高的开关频率, 续流二极管 32应选用快恢复二极管。
2级直接耦合三极管推挽开关电路组件 21与绝缘栅场效应管 22和电感储能装置 3可以 共用电源。 为了避免绝缘栅场效应管 22和电感储能装置 3间歇导通引起的电源波动影响 2 级直接耦合三极管推挽开关电路组件 21工作的稳定性, 并可以根据输出电压和输出电流, 调整绝缘栅场效应管 22和电感储能装置 3的电源, 而不影响 2级直接耦合三极管推挽开关 电路 21的工作状态, 也可以 2级直接耦合三极管推挽开关电路 21设置一开关信号工作电 源 61, 绝缘栅场效应管 22和电感储能装置 3设置一功率输出工作电源 62, 附图 2中就是 串联电连接的 3组 2级直接耦合三极管推挽开关电路组件 21设置开关信号工作电源 61,绝 缘栅场效应管 22和储能装置 3设置功率输出工作电源 62。
滤波电路 31使用的电容为非电解电容,推荐选用陶瓷电容。 电容的单只容量不大于 10 微法,必要时可以使用 2只或多只电容并联使用,附图 2中就采用了 3只电容 32并联使用。 为了进一步提高滤波效果, 滤波电路 31可以采用电感电容滤波电路或电阻电容滤波电路。
电感储能装置 3 的电感量可以根据输出电压和输出电流的大小, 以及基于电感储能且 无电解电容的直流电源电路工作频率的高低选取和调整。
2级直接耦合三极管推挽开关电路组件 21可以设有正反馈电路 23, 正反馈电路 23设 置在 2级直接耦合三极管推挽开关电路组件的输出端与输入端之间。 正反馈电路 23设有正 反馈电阻 231以控制正反馈量, 可以设置与正反馈电阻 231并联的加速电容 232, 调整正反 馈电阻 231的阻值和加速电容 232的容量, 可以改变 2级直接耦合三极管推挽开关电路组 件 21输出的开关驱动信号的波形。 附图 2中共设置了 3组 2级直接耦合三极管推挽开关电 路组件 21串联电连接, 可以根据需要对 1组、 2组或 3组 2级直接耦合三极管推挽开关电 路组件 21设置正反馈电路 23,一般首先从最后面的 2级直接耦合三极管推挽开关电路组件 21开始设置, 以利于改善开关信号的波形, 改善绝缘栅场效应管 22的开关特性, 附图 2中 后 2组 2级直接耦合三极管推挽开关电路组件 21设置了正反馈电路 23。
在 2级直接耦合三极管推挽开关电路 21的输入端对电源和地分别设置的电阻 241可以 保持 2级直接耦合三极管推挽开关电路 21的输入端的稳定的直流电位, 稳定 2级直接耦合 三极管推挽开关电路 21的工作状态。 在 2级直接耦合三极管推挽开关电路 21的输入端对 电源和地分别设置的电容 242, 可以吸收干扰信号尖锐的尖峰, 减少对 2级直接耦合三极管 推挽开关电路 21的干扰。 电感储能装置和系统工作电源之间还可以连接一个开关电路, 这个开关电路也包括多 级直接耦合三极管推挽开关电路和功率开关管, 此开关电路与电感储能装置另一端的开关 电路同步工作。 两个开关电路的电路设置和电源设置应能保证两个开关电路能够分别正常、 同步工作。
本发明的基于电感储能且无电解电容的直流电源电路, 不受上述实施例的限制, 凡是 利用本发明的原理和方式, 经过变换和代换所形成的技术方案, 都在本发明的保护范围内。

Claims

权利要求书
1 . 基于电感储能且无电解电容的直流电源电路, 其特征在于, 包括工频电源输入端、 直 流电源输出端、 系统工作电源、 电感储能装置、 开关电路、 滤波电路, 所述工频电源输入端 连接所述系统工作电源, 所述系统工作电源连接所述电感储能装置的一端, 所述电感储能装 置的另一端连接所述开关电路的输出端和所述滤波电路, 所述滤波电路连接所述直流电源输 出端, 所述滤波电路中包括电容, 所述电容采用非电解电容, 且单只电容的容量不大于 10微 法。
2 . 根据权利要求 1所述的基于电感储能且无电解电容的直流电源电路, 其特征在于: 所 述滤波电路中包括电容若干个, 若干个电容组成并联电容组。
3 . 根据权利要求 1所述的基于电感储能且无电解电容的直流电源电路, 其特征在于: 所 述滤波电路采用电感电容滤波电路或电阻电容滤波电路。
4 . 根据权利要求 1所述的基于电感储能且无电解电容的直流电源电路, 其特征在于: 所 述开关电路设有三极管推挽开关电路和绝缘栅场效应管, 所述电感储能装置连接所述绝缘栅 场效应管的漏极, 所述绝缘栅场效应管的源极接地, 所述绝缘栅场效应管的栅极连接所述三 极管推挽开关电路的输出端。
5 . 根据权利要求 4所述的基于电感储能且无电解电容的直流电源电路, 其特征在于: 所 述三极管推挽开关电路采用多级直接耦合三极管推挽开关电路。
6 . 根据权利要求 5所述的基于电感储能且无电解电容的直流电源电路, 其特征在于: 所 述多级直接耦合三极管推挽开关电路中设有正反馈电路, 所述正反馈电路中串接有加速电容 和与所述加速电容并联的正反馈电阻。
7 . 根据权利要求 4所述的基于电感储能且无电解电容的直流电源电路, 其特征在于: 所 述三极管推挽开关电路设置一系统工作电源, 所述绝缘栅场效应管和所述储能装置设置另一 系统工作电源。
8 . 根据权利要求 1所述的基于电感储能且无电解电容的直流电源电路, 其特征在于: 所 述电感储能装置和所述系统工作电源之间还连接一个开关电路, 所述开关电路与所述电感储 能装置另一端的开关电路同步工作。
9 . 根据权利要求 1所述的基于电感储能且无电解电容的直流电源电路, 其特征在于: 所 述开关电路的输入端连接开关信号源。
PCT/CN2011/073697 2010-05-06 2011-05-05 基于电感储能且无电解电容的直流电源电路 WO2011137748A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010170684A CN101860242A (zh) 2010-05-06 2010-05-06 基于电感储能且无电解电容的直流电源电路
CN201010170684.1 2010-05-06

Publications (1)

Publication Number Publication Date
WO2011137748A1 true WO2011137748A1 (zh) 2011-11-10

Family

ID=42945942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/073697 WO2011137748A1 (zh) 2010-05-06 2011-05-05 基于电感储能且无电解电容的直流电源电路

Country Status (2)

Country Link
CN (1) CN101860242A (zh)
WO (1) WO2011137748A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101860242A (zh) * 2010-05-06 2010-10-13 尤建兴 基于电感储能且无电解电容的直流电源电路
CN107477610B (zh) * 2017-09-22 2023-03-28 中山华帝电子科技有限公司 一种点火器点火频率达标测试装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101282606A (zh) * 2008-05-05 2008-10-08 深圳唐微科技发展有限公司 无电解电容led灯电源适配器的控制方法
CN201204738Y (zh) * 2008-06-13 2009-03-04 深圳唐微科技发展有限公司 无电解电容hid灯电子镇流器
US20100014326A1 (en) * 2008-07-17 2010-01-21 Gu Linlin Means of eliminating electrolytic capacitor as the energy storage component in the single phase ad/dc two-stage converter
CN101860242A (zh) * 2010-05-06 2010-10-13 尤建兴 基于电感储能且无电解电容的直流电源电路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101282606A (zh) * 2008-05-05 2008-10-08 深圳唐微科技发展有限公司 无电解电容led灯电源适配器的控制方法
CN201204738Y (zh) * 2008-06-13 2009-03-04 深圳唐微科技发展有限公司 无电解电容hid灯电子镇流器
US20100014326A1 (en) * 2008-07-17 2010-01-21 Gu Linlin Means of eliminating electrolytic capacitor as the energy storage component in the single phase ad/dc two-stage converter
CN101860242A (zh) * 2010-05-06 2010-10-13 尤建兴 基于电感储能且无电解电容的直流电源电路

Also Published As

Publication number Publication date
CN101860242A (zh) 2010-10-13

Similar Documents

Publication Publication Date Title
CN209948956U (zh) 降压电路及电子设备
CN103095129A (zh) 一种开关频率跳变的同步降压电路
CN103633839A (zh) 一种改进型z源升压dc-dc变换器
CN103001297A (zh) 一种串联电容器组谐振式电压均衡充电方法及其系统
CN103051160B (zh) 一种磁隔离驱动电路
CN102290987A (zh) 开关电源电路
CN206117506U (zh) 恒定导通时间控制Buck变换器多脉冲簇发改善装置
CN203883673U (zh) 一种改进型z源升压dc-dc变换器
WO2011137748A1 (zh) 基于电感储能且无电解电容的直流电源电路
CN104052271B (zh) Z源高增益直流升压变换器
CN202940728U (zh) 一种交错工作的三电平降压电路
CN211405866U (zh) 升降压直流变换电路
CN207732648U (zh) 单端反激电路
CN207530711U (zh) 一种低功耗恒定导通时间定时电路
CN101964652A (zh) 红外感应控制电路、装置及干手器控制装置
CN204361899U (zh) 一种软开关准谐振电路
CN202978699U (zh) 一种多电压切换装置
CN201750351U (zh) 基于电感储能且无电解电容的直流电源电路
CN107809177B (zh) 一种隔离型输出电压可调驱动电路
CN113507230A (zh) 基于开关感容网络的组合式升压逆变系统及其控制方法
CN202004634U (zh) 一种电源限流保护电路
CN208063045U (zh) 一种新型准z源dc-dc变换器
CN107071964B (zh) 低压差输出电流过冲抑制电路
CN105337601B (zh) 一种非对称式时间可调的软启动、软关断电源开关电路
CN205883046U (zh) 可调功率电路及电子烟

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11777169

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11777169

Country of ref document: EP

Kind code of ref document: A1