WO2011137633A1 - 反馈信道状态信息的方法及装置 - Google Patents

反馈信道状态信息的方法及装置 Download PDF

Info

Publication number
WO2011137633A1
WO2011137633A1 PCT/CN2010/078019 CN2010078019W WO2011137633A1 WO 2011137633 A1 WO2011137633 A1 WO 2011137633A1 CN 2010078019 W CN2010078019 W CN 2010078019W WO 2011137633 A1 WO2011137633 A1 WO 2011137633A1
Authority
WO
WIPO (PCT)
Prior art keywords
codebook
dfll
channel
pmi2
codeword
Prior art date
Application number
PCT/CN2010/078019
Other languages
English (en)
French (fr)
Inventor
李儒岳
陈艺戬
徐俊
张峻峰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2011137633A1 publication Critical patent/WO2011137633A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection

Definitions

  • the present invention relates to channel information feedback and channel precoding techniques, and in particular, to a method and apparatus for feeding back channel state information. Background technique
  • an enhanced technique is that the receiving end feeds back the channel information of the transmitting end, and the transmitting end uses some transmitting precoding techniques according to the obtained channel information, thereby greatly improving the transmission performance.
  • the simple use method is to directly use the channel feature vector information for precoding, mainly used in single-user multiple input multiple output (MIMO), and other better but more complicated methods, mainly for multi-users. In MIMO. But all need more accurate channel information.
  • the feedback of channel information mainly utilizes a simple single codebook feedback method, and the performance of MIMO transmit precoding technology mainly depends on the accuracy of the codebook feedback.
  • the number of available codewords is one.
  • the transmitter and the receiver jointly save or generate the codebook in real time (same as the transceiver).
  • the receiving end selects a codeword that best matches the channel according to a certain criterion and feeds back the codeword sequence number back to the transmitting end.
  • the code word number is called PMI (Precoding Matrix Indicator).
  • the transmitting end finds the corresponding precoding codeword according to the serial number to obtain channel information, and represents the feature vector information of the channel.
  • 9 may be further divided into codebooks corresponding to multiple Ranks, and each Rank corresponds to a plurality of codewords to quantize the precoding matrix formed by the channel feature vectors under the Rank. Since the number of Rank and non-zero feature vectors of the channel are equal, in general, the code word when Rank is N will have N columns. Therefore, the codebook 9 can be divided into multiple subcodebooks according to the difference of Rank, as shown in Table 1.
  • Table 1 is the structure table of the code book 9
  • the codewords to be stored in the range of Rank>l are in the form of a matrix.
  • the codebook in the LTE protocol is a feedback method for such codebook quantization, as shown in Table 2.
  • the vector can also be viewed as a matrix of dimension 1.
  • the protocol is the Release 8 version, which is referred to as the R8 version.
  • the information reflecting the downlink physical channel status has three forms: CQI, Channels quality indication. PMI, rank indication ( RI, Rank Indicator).
  • CQI is an indicator to measure the quality of downlink channels.
  • CQI is represented by an integer value of 0 to 15, which represents different CQI levels, and different CQIs correspond to respective modulation modes and modulation coding modes (MCS, Modulation Coding Scheme), which are divided into 16 types. In case, it can be represented by 4-bit information.
  • PMI refers to user equipment (UE, User only) in closed-loop spatial multiplexing.
  • the device notifies the base station (eNB, eNode B) of the precoding matrix to precode the physical downlink shared channel (PDSCH) to be sent to the UE according to the measured channel quality.
  • the feedback granularity of the PMI may be that the entire bandwidth is fed back to a PMI, or the PMI may be fed back according to a subband.
  • the RI is used to describe the number of spatially independent channels, corresponding to the rank of the channel response matrix.
  • the UE needs to feed back the RI information.
  • the RI information is not required to be fed back.
  • the rank of the channel matrix corresponds to the number of layers. Therefore, the UE feeds back the RI information to the base station, that is, the number of layers of the feedback downlink transmission.
  • the minimum feedback unit of the channel information is a subband, and the subband is composed of a plurality of resource blocks (RBs), and each RB is composed of a plurality of resource elements (REs, Resource Elements).
  • RE is the smallest unit of time-frequency resources in the LTE system, and the resource representation method of the LTE system is used in the LTE-A system.
  • a few Subbands can be called Multi-Subbands, and many Subbands can be called Widebands.
  • the feedback of CQI, PMI, and RI can be periodic feedback or non-periodic feedback. CQI and PMI can be sent simultaneously, or CQI, PMI and RI can be sent simultaneously.
  • the CSI of the periodic feedback is in the format 2, or 2a, or 2b on the physical uplink control channel (PUCCH, Physical Uplink Control Channel) (PUCCH format 2/2a/ 2b M dedicated transmission, when the UE needs to transmit data, the CSI is transmitted in the Physical Uplink Shared Channel (PUSCH); for the aperiodic feedback, it is transmitted only on the PUSCH.
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • the advanced long-term evolution LTE-A system which is an evolution standard of LTE, needs to support a larger system bandwidth (up to 100 MHz), and needs to improve the average spectral efficiency and the spectrum efficiency of cell edge users.
  • the protocol is Release 10 version, referred to as For the R10 version, the LTE-A system introduces many new technologies: (1) downlink high-order multiple input multiple output (MIMO), LTE system downlink supports up to 4 antenna transmission, and high-order MIMO Introduce The LTE-A system supports up to 8 antennas in downlink, and the dimension of the channel state matrix increases. (2) Coordinated multiple point transmission (CoMP), which is a cooperative transmission using multiple cell transmit antennas. Then, the UE may need to feed back channel state information of multiple cells.
  • MIMO downlink high-order multiple input multiple output
  • CoMP Coordinated multiple point transmission
  • the existing state information feedback reporting method is suitable for the performance of the R8 version, and mainly considers SU_MIMO to be better supported under a small overhead, and the precision requirement is relatively low.
  • the multi-user MIMO technology MU-MIMO
  • CoMP technology in order to better suppress interference based on channel information, the demand for feedback has been greatly improved.
  • Existing feedback techniques are no longer suitable for the feedback accuracy requirements of the R10.
  • the precoding/feedback structure of a subband consists of two matrices.
  • the minimum feedback unit of the channel information is a subband, and the subband is composed of several RBs, each RB is composed of multiple resource elements (RE, Resource Element); RE is in the LTE system.
  • the minimum unit of time-frequency resources, the resource representation method of the LTE system is used in the LTE-A system.
  • the precoding structure refers to the precoding recommended by the UE to the base station, and is actually a representation method of the channel information.
  • This precoding/feedback structure can be applied to all transmit antenna array configurations.
  • Each of the two matrices belongs to a separate codebook.
  • the codebook is known in advance by both the base station and the UE. Codebooks can vary at different times and on different subbands.
  • a matrix represents the properties of a wideband or long-term channel. Another matrix represents the properties of the determined frequency band or short-term channel.
  • Rel-8 precoding feedback can be considered as a special form of this structure.
  • the main object of the present invention is to provide a method and apparatus for feeding back channel state information, which can provide higher precision channel information feedback with less overhead and complexity.
  • a method for feeding back channel state information, setting at least two codebooks includes: For one subband, the user equipment UE feeds back to the base station RI, and indicates a first index PMI1 of the codeword in the first codebook C1. a second index PMI2 indicating a codeword in the second codebook C2 and a plurality of channel quality indication CQIs;
  • the base station finds a matrix W1 from C1 according to RI, PMI1; when the W1 is a predetermined N codewords, the base station further finds a codeword matrix W2 from C2 according to PMI2, and uses the function F (W1, W2) Obtaining the channel information; or determining the second codebook corresponding to the PMI2 according to the PMI1 and the specified mapping relationship, determining the codeword W2 according to the PMI2 in the determined codebook, and directly obtaining the channel information according to W2;
  • the base station When the W1 is not the specified N codewords, the base station directly uses the RI and the PMI2 to find a matrix W from the codebook C1 as channel information.
  • the C1 is a codebook of the Long Term Evolution LTE system version 8, and the specified N codewords are the first 8 DFT codewords.
  • the W1 is a Discrete Fourier Transform (DFT) Vector, with j(N t —l)a
  • W2 is used to adjust the phase of Wl, according to F ( Wl , W2 ) to get [1 e ip e is the number of transmitting antennas, ⁇ , ⁇ are the set values of the codebook design Corresponding to the channel to be quantized, [ ⁇ is a matrix transposition operation.
  • the W1 is a dual-polarized DFT vector having aV dfll bv dfli
  • V dfll dv dfli V dfll 1 e Ja e J2G , W2 is used to adjust the phase of Wl, according to F (Wl,
  • v 2 [le jp ee where a, b, c, d, C V dfl2 dv dfl2 ⁇ , ⁇ are the set values at the time of codebook design, related to the channel to be quantized; the number of transmitting antennas;
  • [ ⁇ is a matrix transpose operation.
  • the W1 is a dual polarization fi
  • V dfll 1 e Ja e J2G
  • W2 is used to adjust the phase of Wl, according to F (Wl,
  • C v dfll Dv dfll setting value related to the channel to be quantized; is the number of transmitting antennas; [ ⁇ is matrix transposition operation.
  • the PMI1 is configured for long period feedback and the PMI2 is configured for short period feedback.
  • the base station finds a matrix W1 from a codebook C 1 according to RI, PMI1, and according to
  • W1 obtains channel information
  • the UE When W1 is the N codewords specified therein, the UE further feeds back a second index PMI2 indicating a codeword in the second codebook C2; the base station further finds a code from the second codebook C2 according to PMI2. a word matrix W2, and using the function F (W1, W2) to obtain channel information; or, determining a second-level codebook corresponding to the PMI2 according to the PMI1 and the specified mapping relationship, determining the codeword W2 according to the PMI2 in the determined codebook, and The channel information is obtained directly according to W2.
  • the W1 is a discrete Fourier transform DFT vector, having
  • W2 is used to adjust the phase of W1, according to F ( W1 ,
  • W2 obtains [1 e ip e i2p ⁇ ⁇ ⁇ ⁇ 1) ⁇ , which is the number of transmitting antennas, ⁇ and ⁇ are the set values at the time of codebook design, which are related to the channel to be quantized; [ ⁇ is matrix conversion Set the operation.
  • the W1 is a dual-polarized DFT vector having aV dfll bv dfli
  • V dfll 1 e ia e i in C V dfll dv dfli , W2 is used to adjust the phase of Wl, according to F ( Wl , l2 bv dfl2
  • a, b, c, d, C V dfl2 dv dfl2 ⁇ , ⁇ are the set values at the time of codebook design, which are related to the channel to be quantized;
  • [ ⁇ is a matrix transpose operation.
  • W1 is a dual-polarized DFT vector with a structure of aV df
  • V dfll 1 e ia e i , W2 is used to adjust the phase of Wl, according to F (W1,
  • C v dfll Dv dfll setting value related to the channel to be quantized; is the number of transmitting antennas; [ ⁇ is matrix transposition operation.
  • An apparatus for feeding back channel state information includes a setting unit, a feedback unit, a searching unit, and a channel acquiring unit; wherein:
  • a setting unit configured to set at least two codebooks
  • a feedback unit for one subband, feeding back RI to the base station, indicating the code in the first codebook C1 a first index PMI1 of the word, a second index PMI2 indicating a codeword in the second codebook C2, and a plurality of CQIs;
  • a search unit for finding a matrix W1 from C1 according to RI, PMI1;
  • a channel obtaining unit configured to further find a codeword matrix W2 from C2 according to PMI2 when the W1 is a specified N codewords, and obtain channel information by using a function F(W1, W2); or, according to PMI1 and The specified mapping relationship determines the secondary codebook corresponding to the PMI2, determines the codeword W2 according to the PMI2 in the determined codebook, and obtains the channel information directly according to W2;
  • a matrix W is further found from the codebook C1 using RI and PMI2 as channel information.
  • the W1 is a discrete Fourier transform DFT vector, having
  • W2 is used for phase adjustment of W1
  • the channel acquisition unit obtains [1 e as the number of transmitting antennas according to F ( Wl , W2 ), and ⁇ and ⁇ are settings in the codebook design Value, related to the channel that needs to be quantized; [ ⁇ is matrix transfer
  • the W1 is dual-polarized ll bv dfli
  • a, b, c, d, ⁇ , ⁇ are the set values in the design of the codebook, which are related to the channel to be quantized; the number of transmitting antennas; [ ⁇ is the matrix transposition operation.
  • W1 is a dual-polarized DFT vector with a structure of aV df
  • V dfll 1 e Ja e J2G
  • W2 is used for phase adjustment of W1
  • the channel is obtained
  • the PMI 1 is configured as a long period of feedback and the PMI 2 is configured as a short period of feedback.
  • An apparatus for feeding back channel state information includes a setting unit, a feedback unit, a searching unit, and a channel acquiring unit; wherein:
  • a setting unit configured to set at least two codebooks
  • a feedback unit for a subband, at least feeding back a RI to the base station, indicating a first index PMI1 and a number of CQIs of the codeword in the first codebook C1; and feeding back to the base station when W1 is the N codewords specified therein a second index PMI2 indicating a codeword in the second codebook C2;
  • a search unit for finding a matrix W1 from C1 according to RI, PMI1;
  • a channel obtaining unit obtains channel information according to W1; or, when W1 is N codewords specified therein, find a codeword matrix W2 from the second codebook C2 according to PMI2, and obtain a function F (Wl, W2) Channel information, or determining a secondary codebook corresponding to PMI2 according to PMI1 and a specified mapping relationship, determining a codeword W2 according to PMI2 in the determined codebook, and directly obtaining channel information according to W2.
  • the W1 is a discrete Fourier transform DFT vector having a structure of [1 e Ja e J2a ⁇ w ⁇ ; W2 is used for phase adjustment of W1, and the channel acquisition unit is based on F ( W1 , W2 )
  • ⁇ and ⁇ are the set values of the codebook design, which are related to the channel to be quantized; [ ⁇ is matrix transposed
  • the W1 is a dual-polarized DFT vector having aV dfll bv dfli
  • V dfll 1 e Ja e J2G , W2 is used for phase adjustment of W1 , the channel
  • a, b, c, d, ⁇ , ⁇ are the set values in the design of the codebook, which are related to the channel to be quantized; the number of transmitting antennas; [ ⁇ is the matrix transposition operation.
  • the W1 is a dual-polarized DFT vector having a structure of aV dfll bv dfli
  • V dfll 1 e ia e i2G , W2 is used for phase adjustment of W1 , and the channel acquisition unit obtains Av dfll Bv dfll according to F ( Wl , W2 ); a, b, c, d, A, B, C, D ,
  • the present invention it is judged whether or not the relevant channel is the selected channel, and further precision enhancement is performed for the relevant channel. Since the main application under the non-correlated channel is not MU-MIMO, but high-order SU-MIMO, which does not require very high feedback precision, the present invention can effectively utilize feedback resources and avoid different designs when feedback occurs. Optimized codebooks, as well as the complexity of the different processing functions F (Wl, W2). DRAWINGS
  • Embodiment 1 is a flowchart of Embodiment 1 of a channel precoding method according to the present invention
  • Embodiment 2 is a flowchart of Embodiment 2 of a channel precoding method according to the present invention
  • FIG. 3 is a schematic structural diagram of a device for feeding back channel state information according to the present invention
  • FIG. 4 is another schematic structural diagram of an apparatus for feeding back channel state information according to the present invention. detailed description
  • the basic idea of the present invention is: Configuring two codebooks at the same time on the base station and the UE side to optimize the codebook and the basic codebook, wherein the optimized codebook optimizes only the DFT codewords in the basic codebook, and the UE transmits channels.
  • the corresponding codeword index PMI1, PMI2 will be simultaneously transmitted, and the base station determines, according to the index PMI1, whether the codeword W1 in the codebook C1 indicated by PMI1 is a prescribed N codewords, and indicates the combination of PMI2 when yes.
  • the codeword W2 obtains channel information with higher precision according to the function rule or mapping rule F (Wl, W2) agreed by the UE and the base station.
  • two codebooks are pre-configured in the base station and the UE, one of which is a basic codebook and the other is an optimized codebook; wherein the basic codebook is a codebook specified in the R8 version of the existing LTE system or The codebook specified in the R10 version of the LTE-A system, or the corresponding simple mathematical modification of the codebook specified in the R8 version and the codebook specified in the R10 version.
  • the optimized codebook the following possible relationships are stored:
  • the optimized codebook is determined according to the index PMI1 of the codeword selected in the basic codebook, and there is a mapping relationship. That is, the meaning of W2 is determined according to W1.
  • Wl and W2 correspond to the codewords in two independent codebooks, and together represent the high-precision channel information according to the function relationship F (Wl, W2).
  • a codeword with a PMI of 0 to 7 is a DFT codeword
  • a codeword with a PMI of 8 to 15 is a non-DFT codeword.
  • the UE first selects a codeword from the basic code according to the current channel matrix (the UE obtains according to the downlink pilot and the channel estimation). If the PMI of the selected codeword is 0 to 7, the UE needs to further select another in the optimized codebook. A codeword to optimize the codeword in the basic codebook. In this way, the UE will send PMI information in two codebooks. If the PMI of the selected codeword is 8 to 15, it is no longer necessary to select another codeword in the optimized codebook, so that the UE only sends the PMI information in the basic codebook.
  • two codebooks are pre-configured in the base station and the UE.
  • FIG. 1 is a flowchart of Embodiment 1 of a channel precoding method according to the present invention. As shown in FIG. 1, the example channel precoding method includes the following steps:
  • Step 101 The UE selects a corresponding codeword according to the current channel condition.
  • the channel state information sent by the UE to the base station may need to feed back two PMIs.
  • the two precoding indexes are PMI1 and PMI2, respectively.
  • the selected method is first selected in the basic codebook.
  • the codeword in the selected basic codebook is a DFT codeword
  • the corresponding codeword is selected in the optimized codebook
  • the selected PMI1 and PMI2 are sent to the network.
  • Side base station
  • the codeword selected in the basic codebook is a non-DFT codeword
  • the codeword in the optimized codebook is no longer selected, and the UE only sends the PMI1 to the network side.
  • the network side receives the PMI2 even if it indicates the basic code
  • the DFT codeword in this case, because PMI1 is indicated as the non-DFT codeword in the basic codebook, the network side will still separately generate the precoding matrix with the DFT codeword in the basic codebook, and will not be optimized any more.
  • Step 102 The UE only sends the PMI of the selected codeword to the network side.
  • the feedback granularity of the present invention for transmitting PMI1 and PMI2 is different. Specifically, the period for sending two PMIs is different. For example, PMI1 can be sent in a 100ms cycle, while PMI2 can be sent in a 5ms cycle. Since PMI2 is a codeword indication that needs to be optimized for the codewords in the basic codebook, the period of feedback can be set smaller.
  • the UE feeds back the PMI information to the base station by using the uplink control channel PUCCH or PUSCH.
  • Step 103 The network side generates a precoding array according to the received PMI, and encodes and sends the signal to be sent.
  • the base station After receiving the PMI information fed back by the UE, the base station according to the size of the PMI1, for example, for the codebook of the R8 version, if the value of the PMI1 is less than 8, the codeword in the optimized codebook indicated by the PMI2 is corresponding to the PMI1.
  • the codeword is optimized.
  • first eight codewords are equivalent to 4-dimensional DFT codeword, as follows:
  • the present invention optimizes only the first 8 DFT codewords, and the optimization function can be:
  • n the PMI of the codeword in the optimized codebook, ie PMI2
  • the above g (n) and G are related to the accuracy of the code word adjustment in the basic codebook, and can be set according to the accuracy adjustment request.
  • W R :, m) means from
  • W R% takes all the elements of the mth column.
  • the current precoding is processed according to the relevant provisions of the existing R8 version. After determining the optimization mode and optimizing the codewords in the codebook, it is easy to generate a precoding array, and no specific example is given in this example.
  • the method in this example also applies to the base codebook in the R10 release.
  • FIG. 2 is a flowchart of Embodiment 2 of a channel precoding method according to the present invention. As shown in FIG. 2, the example channel precoding method includes the following steps:
  • Step 201 The UE selects a corresponding codeword according to current channel conditions and antenna configuration information.
  • the channel state information sent by the UE to the base station may need to feed back two PMIs.
  • the two precoding indexes are respectively PMI1 and PMI2, which respectively correspond to the codewords and the optimized code in the basic codebook.
  • the selected method is first selected in the basic codebook.
  • the codeword in the selected basic codebook is a DFT codeword
  • the corresponding codeword is selected in the optimized codebook; the selected PMI1 and PMI2 are sent to the network.
  • Side base station
  • the codeword in the optimized codebook is no longer selected, and the UE only sends the PMI1 to the network side.
  • PMI2 is still transmitted, but the bandwidth corresponding to PMI2 is different from the bandwidth corresponding to PMI1.
  • the bandwidth corresponding to PMI2 is 5M, and the bandwidth corresponding to PMI1 is 20M.
  • PMI1 is a non-DFT codeword.
  • PMI2 may also correspond to the DFT codeword in the basic codebook.
  • the network side receives the PMI2 even if it indicates the DFT codeword in the basic codebook, because PMI1 is indicated as a non-DFT codeword in the basic codebook. Therefore, the network side will still separately generate the precoding matrix with the DFT codeword in the basic codebook, and will not be optimized.
  • Step 202 The UE sends the PMI of the selected codeword only to the network side.
  • the feedback granularity of the present invention for transmitting PMI1 and PMI2 is different.
  • the frequency bands corresponding to sending two PMIs are different.
  • PMI1 can be used to indicate the 20M bandwidth and PMI2 can be used to indicate the 5M bandwidth.
  • the UE feeds back the PMI information to the base station by using the uplink control channel PUCCH or PUSCH.
  • Step 203 The network side generates a precoding array according to the received PMI, and encodes and sends the signal to be sent.
  • the base station After receiving the PMI information fed back by the UE, the base station, according to the size of the PMI1, if the value of the PMI1 is less than 8, according to the codebook of the R8 version, corresponding to the PMI 1 according to the codeword in the optimized codebook indicated by the PMI2.
  • the codeword is optimized.
  • the present invention optimizes only the first 8 DFT codewords, and the optimization function can be:
  • n the PMI of the codeword in the optimized codebook, ie PMI2
  • the above g (n) and G are related to the accuracy of the code word adjustment in the basic codebook, and can be set according to the accuracy adjustment request.
  • W R :, m) means from
  • W R% takes all the elements of the mth column.
  • the current precoding is processed according to the relevant provisions of the existing R8 version. After determining the optimization mode and optimizing the codewords in the codebook, it is easy to generate a precoding array, and no specific example is given in this example.
  • the Rank1 codeword of the LTE system is taken as an example for description.
  • PMI1 indicates a dual-polarized DFT codeword
  • PMI2 can be further fed back for enhanced feedback performance. For example, aV dll bv dfli
  • W 1 indicates that the dual-polarized DFT codeword is a matrix having a structure of f
  • V dfll dv dfli V dfll 1 e Ja e J2a , F (Wl
  • the function F ( ) means that the W2 and W1 points are multiplied by t Or, Wl indicates dual polarization aV d
  • the DFT codeword is a matrix of structures having fll bv dfli,
  • the codeword of the secondary codebook can be uniquely determined.
  • a higher-precision 4-dimensional DFT vector v dft2 is selected from the second-level codebook, and channel information aV dfl2 bv dfl2 with higher precision is obtained according to F ( Wl , W2 ).
  • C V dfl2 dv dfl2 ⁇ , ⁇ are the set values of the codebook design, which are related to the channel to be quantized, where ⁇ is related to the transmitting direction of the signal to be transmitted, ⁇ and the set signal to be transmitted.
  • the direction of the adjustment is related; [ f is a matrix transpose operation.
  • a, b, c, d are the set values at the time of codebook design, and are related to the channel to be quantized.
  • the number of transmitting antennas are the set values of the codebook design, which are related to the channel to be quantized.
  • the set value at this design is related to the channel that needs to be quantized.
  • the device for feeding back channel state information includes a setting unit 30, a feedback unit 31, and a searching unit.
  • the setting unit 30 is configured to set at least two codebooks
  • the feedback unit 31 for one subband, feeds back to the base station RI, a first index PMI1 indicating a codeword in the first codebook C1, a second index PMI2 indicating a codeword in the second codebook C2, and a plurality of CQIs;
  • the searching unit 32 is configured to find a matrix W1 from C1 according to RI and PMI1;
  • the channel obtaining unit 33 is configured to further find a codeword matrix W2 from C2 according to PMI2 when the W1 is a predetermined N codewords, and obtain a channel by using a function F(Wl, W2) Or; determining, according to the PMI 1 and the specified mapping relationship, the second-level codebook corresponding to the PMI2, determining the codeword W2 according to the PMI2 in the determined codebook, and directly obtaining the channel information according to W2; When N code words are used, a matrix W is further found from the codebook C1 using RI and PMI2 as channel information.
  • the above W1 is a DFT vector having a structure of [1 e ia e i2a ⁇ w -; W2 is used for phase adjustment of W1, and the channel acquisition unit 33 obtains [1 ⁇ ] ⁇ e ⁇ ⁇ 6 according to F ( Wl , W2 ) -
  • ⁇ and ⁇ are the set values at the time of codebook design, which are related to the channel to be quantized, where ⁇ is related to the direction of transmission of the signal to be transmitted, and the direction of adjustment of ⁇ and the set signal to be transmitted.
  • [ ⁇ is a matrix transpose operation.
  • the above W1 is a dual-polarized DFT vector having a structure of aV dfll bv dfli, wherein
  • V dfll 1 e Ja e J2G
  • W2 is used for phase adjustment of Wl, channel acquisition unit l2 bv dfl2
  • a, b, c, d, ⁇ , ⁇ are the set values in the design of the codebook, which are related to the channel to be quantized; the number of transmitting antennas; [ ⁇ is the matrix transposition operation.
  • [ ⁇ is the matrix transposition operation.
  • W1 is a dual-polarized DFT vector with a structure of aV df
  • V dfll 1 e Ja e J2G , W2 is used for phase adjustment of Wl, channel acquisition unit ll Bv dfll
  • the above PMI 1 is configured as long-cycle feedback and PMI2 is configured as short-cycle feedback.
  • the apparatus for feeding back channel state information shown in FIG. 3 is designed to implement the foregoing method for feeding back channel state information.
  • the functions of the various processing units in the apparatus shown in FIG. 3 may be implemented by a program running on a processor, or may be implemented by a specific logic circuit.
  • the apparatus for feeding back channel state information includes a setting unit 40, a feedback unit 41, a searching unit 42 and a channel obtaining unit 43. ; among them:
  • a setting unit 40 configured to set at least two codebooks
  • the feedback unit 41 for one subband, feeds back at least RI to the base station, indicating a first index PMI1 of the codeword in the first codebook C1, and several CQIs; when W1 is the N codewords specified therein, Feedback indicating a second index PMI2 of the codeword in the second codebook C2;
  • the searching unit 42 is configured to find a matrix W1 from C1 according to RI and PMI1;
  • the channel obtaining unit 43 obtains channel information according to W1; or, when W1 is N codewords specified therein, finds a codeword matrix W2 from the second codebook C2 according to PMI2, and uses the function F (Wl, W2) Obtaining channel information, or determining a secondary codebook corresponding to PMI2 according to PMI1 and a specified mapping relationship, determining a codeword W2 according to PMI2 in the determined codebook, and directly obtaining channel information according to W2.
  • the above W1 is a DFT vector having a structure of [1 e ia e i2a ⁇ ⁇ w -; W2 is used for phase adjustment of W1, and the channel acquisition unit 43 obtains [1 ⁇ ] ⁇ e ⁇ ⁇ 6 according to F ( Wl , W2 ) -
  • ⁇ and ⁇ are the set values at the time of codebook design, which are related to the channel to be quantized, where ⁇ is related to the direction of transmission of the signal to be transmitted, and the direction of adjustment of ⁇ and the set signal to be transmitted.
  • [ ⁇ is a matrix transpose operation.
  • the above W1 is a dual-polarized DFT vector having a structure of aV dfll bv dfli, wherein
  • V dfll dv dfli V dfll 1 e Ja e J2G , W2 is used for phase adjustment of W1, and channel acquisition unit 43 obtains aV dfl2 bv dfl2 according to F ( Wl , W2 )
  • a, b, c, d, ⁇ , ⁇ are the set values in the design of the codebook, which are related to the channel to be quantized; the number of transmitting antennas; [ ⁇ is the matrix transposition operation.
  • the above W1 is a dual-polarized DFT vector having a structure of aV dfll bv dfli
  • V dfll 1 e Ja e J2G , W2 is used for phase adjustment of Wl, channel acquisition unit
  • C v dfll Dv dfll is the set value of the codebook design, which is related to the channel to be quantized; the number of transmitting antennas; and the matrix transposition operation.
  • the apparatus for feeding back channel state information shown in FIG. 4 is designed to implement the foregoing method for feeding back channel state information.
  • the processing units in the figure reference may be made to the foregoing embodiments 1 to Three related descriptions of the method are understood.
  • the functions of the various processing units in the apparatus shown in Figure 4 can be implemented by a program running on the processor or by a specific logic circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

反馈信道状态信息的方法及装置 技术领域
本发明涉及信道信息反馈及信道预编码技术, 尤其涉及一种反馈信道 状态信息的方法及装置。 背景技术
无线通信中, 如果发送端和接收端都使用多根天线, 可以釆取空间复 用的方式来获取更高的速率。 相对于一般的空间复用方法, 一种增强的技 术是接收端反馈给发送端信道信息, 发送端根据获得的信道信息使用一些 发射预编码技术, 从而极大地提高传输性能。 简单的利用方法即直接使用 信道特征矢量信息进行预编码, 主要用于单用户多输入多输出 (MIMO , Multiple Input Multiple Output ) 中, 也有其它一些更优但更复杂的方法, 主 要用于多用户 MIMO中。 但都需要比较准确的信道信息。
在长期演进计划 (LTE, Long Term Evolution ) 中, 信道信息的反馈主 要是利用较简单的单一码本反馈方法, 而 MIMO的发射预编码技术的性能 主要依赖于其中码本反馈的准确度。
这里将基于码本的信道信息量化反馈的基本原理简要阐述如下。
假设有限反馈信道容量为 Sbps/Hz,那么可用的码字的个数为 个。 信道矩阵的特征矢量空间经过量化构成码本空间 = , F2… }。 发射端与 接收端共同保存或实时产生此码本(收发端相同)。 对每次信道实现, 接收 端根据一定准则从 中选择一个与信道最匹配的码字 并将码字序号 反 馈回发射端。 这里, 码字序号称为 PMI ( Precoding Matrix Indicator )。 发射 端根据此序号 找到相应的预编码码字 从而获得信道信息, 表示了信 道的特征矢量信息。 一般来说, 9 可以进一步的被划分为多个 Rank对应的码本,每个 Rank 下会对应多个码字来量化该 Rank下信道特征矢量构成的预编码矩阵。 由于 信道的 Rank和非零特征矢量个数是相等的, 因此, 一般来说 Rank为 N时 的码字都会有 N列。 所以, 码本 9 可按 Rank的不同分为多个子码本, 如 表 1所示。
表 1为码本 9 的结构表
Figure imgf000004_0001
其中, 在 Rank>l 时需要存储的码字都为矩阵形式, 例如 LTE协议中 的码本就是釆用的这种码本量化的反馈方法, 如表 2所示。 在下文中, 为 了统一起见, 矢量也可以看成一个维度为 1的矩阵。
2为下行 4天线的预编码码本
Figure imgf000004_0002
Figure imgf000005_0001
表示矩阵^的第 ,_/2,..., 列构成的矩阵。
在 LTE系统中, 其协议为 Release 8版本, 简称 R8版本, 反映下行物理信 道状态的信息 (CSI, Channel State Information )有三种形式: 信道质量指 示 ( CQI, Channels quality indication ). PMI、 秩指示 ( RI, Rank Indicator )。
CQI为衡量下行信道质量好坏的一个指标。在 36-213协议中, CQI用 0 ~ 15的整数值来表示, 分别代表了不同的 CQI等级, 不同 CQI对应着各自的调 制方式和调制编码方式( MCS, Modulation Coding Scheme ),共分 16种情况, 可以釆用 4比特信息来表示。
PMI是指仅在闭环空间复用这种发射模式下, 用户设备(UE , User Equipment )根据测得的信道质量通知基站( eNB, eNode B )应使用什么样 的预编码矩阵来给发给该 UE的物理下行共享信道 (PDSCH , Physical Downlink Shared Channel )进行预编码。 PMI的反馈粒度可以是整个带宽反 馈一个 PMI, 也可以根据子带 (subband )来反馈 PMI。
RI用于描述空间独立信道的个数, 对应信道响应矩阵的秩。 在开环空 间复用和闭环空间复用模式下, 需要 UE反馈 RI信息, 其它模式下不需要反 馈 RI信息。 信道矩阵的秩和层数对应, 因此 UE向基站反馈 RI信息即是反馈 下行传输的层数。
LTE系统中, 信道信息的最小反馈单位是子带(Subband ), —个子带由 若干个资源块(RB, Resource Block )组成, 每个 RB由多个资源要素(RE, Resource Element )组成。 RE为 LTE系统中时频资源的最小单位, LTE-A系 统中沿用了 LTE系统的资源表示方法。 较少的几个 Subband可以称为多子带 ( Multi-Subband ),很多个 Subband可以称为宽子带( Wideband )。 CQI、 PMI、 RI的反馈可以是周期性的反馈, 也可以是非周期性的反馈。 CQI和 PMI可同 时发送, 或者 CQI、 PMI和 RI同时发送。 其中, 对于周期性反馈而言, 如果 UE不需要发送数据, 则周期反馈的 CSI在物理上行控制信道(PUCCH, Physical Uplink Control Channel ) 上以格式 2、 或 2a、 或 2b ( PUCCH format2/2a/2b M专输, UE需要发送数据时, CSI在物理上行共享信道( PUSCH, Physical Uplink Shared Channel ) 中传输; 对于非周期性反馈而言, 只在 PUSCH上传输。
作为 LTE的演进标准的高级长期演进 LTE-A系统, 需要支持更大的系统 带宽 (最高可达 100MHz ), 并且需要提高平均频谱效率和小区边缘用户的 频谱效率, 其协议为 Release 10版本, 简称 R10版本, 为此, LTE-A系统引入 了很多新技术: ( 1 ) 下行的高阶多输入多输出 (MIMO , Multiple Input Multiple Output ), LTE系统下行最多支持 4天线传输, 而高阶 MIMO的引入 使得 LTE-A系统下行最多支持 8天线的传输, 则信道状态矩阵的维数增加; ( 2 )协作多点传输 ( CoMP, Coordinated multiple point transmission ), 该技 术就是利用多个小区发射天线的协作传输, 那么 UE可能需要反馈多个小区 的信道状态信息。
现有的状态信息反馈上报方法是适合于 R8版本性能的, 主要考虑在较 小的开销下较好的支持 SU - MIMO ,精度需求比较低,在 R10版本中多用户 MIMO技术, MU-MIMO、 CoMP技术中, 为了更好的根据信道信息抑制干 扰, 对反馈的需求有了较大的提高。 现有的反馈技术不再适合 R10的反馈精 度要求。
更进一步的, LTE-A系统中给出了统一的 MIMO反馈结构:
1 )一个子带的预编码 /反馈结构由两个矩阵组成。在 LTE系统的标准中, 信道信息的最小反馈单位是子带 (Subband ) , —个子带由若干个 RB组成, 每个 RB由多个资源单元(RE, Resource Element )组成; RE为 LTE系统中 时频资源的最小单位, LTE-A系统中沿用了 LTE系统的资源表示方法。 预编 码结构是指 UE向基站推荐的预编码, 实际上也是信道信息的表示方法。
2 )这种预编码 /反馈的结构可以应用到所有的发射天线阵列配置。
3 )两个矩阵中的每一个矩阵都隶属于一个单独的码本。 码本是由基站 和 UE同时预先已知的。 码本可以在不同的时间和不同的子带上有所变化。
4 )一个矩阵表示宽带或者长时信道的属性。 另一个矩阵表示确定频带 上或者短时信道的属性。
5 ) Rel-8预编码反馈可以视为此种结构的特殊形式。
根据上述的设计原则, 在 MIMO的 8天线码本设计中, 需要将 2个码本 CB^a CB2同时配置在 UE和基站端。 在 UE获取信道信息后, 从 CB^a CB2中 分别选取合适的码字 ^和^, 向基站反馈 ^和^的 ΡΜΙ^ ΡΜΙ2。 在基站获 取相应的两个 ΡΜΙ后, 从已有的两个码本 CBi和 CB2中分别选取两个码字 wi 和^ , 然后通过预定的函数关系计算出需要的预编码矩阵 如下式所示, 其中, F ( )表示预定的函数关系, 如乘积函数等。
w = F(wl, w2 )
这种方法, 适合于相关信息, 长期统计提取信道的相关信息, 来优化 反馈。 但该方法的缺点在于, 如果这种方法用于非相关信道, 并不能带来 预期的增益, 相反码本的设计会变得非常复杂, 并增加了不必要的开销。 发明内容
有鉴于此, 本发明的主要目的在于提供一种反馈信道状态信息的方法 及装置, 能够以较小的开销和复杂度提供较高精度的信道信息反馈。
为达到上述目的, 本发明的技术方案是这样实现的:
一种反馈信道状态信息的方法, 设置至少两个码本; 所述方法包括: 对于一个子带, 用户设备 UE向基站反馈 RI、指示第一码本 C1中的码 字的第一索引 PMI1、 指示第二码本 C2中的码字的第二索引 PMI2和若干 个信道质量指示 CQI;
所述基站根据 RI、 PMI1从 C1中找到一个矩阵 W1 ; 所述 W1为规定 的 N个码字时, 基站进一步根据 PMI2从 C2中找到一个码字矩阵 W2, 并 使用函数 F ( W1 , W2 )得到信道信息; 或者, 根据 PMI1和规定的映射关 系确定 PMI2所对应的二级码本,在确定的码本中才艮据 PMI2确定码字 W2, 并直接根据 W2得到信道信息;
所述 W1不为规定的 N个码字时, 所述基站直接使用 RI与 PMI2从码 本 C1中找到一个矩阵 W作为信道信息。
优选地, 所述 C1为长期演进 LTE系统版本 8的码本, 所述规定的 N 个码字为前 8个 DFT码字。
优选地,所述 W1为离散傅里叶变换( DFT, Discrete Fourier Transform ) 矢量, 具有 j(Nt—l)a
[1 eia ei e 的结构; W2用于对 Wl进行相位调整, 根据 F ( Wl , W2 )得到 [1 eip e 为发射天线数, α、 β 均为码本设计时的设定值, 与需要量化的信道有关, [ Γ为矩阵转置运算 优选地, 所述 W1为双极化 DFT矢量, 具有 aVdfll bvdfli
Figure imgf000009_0001
CVdfll dvdfli 中 Vdfll = 1 eJa eJ2G
Figure imgf000009_0002
, W2用于对 Wl进行相位调整,才艮据 F( Wl ,
W2 )得到 aVdfl2 bvdfl2
v 2 =[l ejp e e 其中, a、 b、 c、 d、 CVdfl2 dvdfl2 α、 β均为码本设计时的设定值, 与需要量化的信道有关; 为发射天线数;
[ Γ为矩阵转置运算。 优选地, 所述 W1为双极化 fi
DFT矢量, 具有 aVdfll bvdl 的结构其中
CVdfll dvdfli
Vdfll = 1 eJa eJ2G
Figure imgf000009_0003
, W2用于对 Wl进行相位调整,根据 F ( Wl ,
W2 )得到 Avdfll Bvdfll 均为码本设计时的
Cvdfll Dvdfll 设定值, 与需要量化的信道有关; 为发射天线数; [ Γ为矩阵转置运算。
优选地,所述 PMI1配置为长周期的反馈且 PMI2配置为短周期的反馈。 一种反馈信道状态信息的方法, 设置至少两个码本; 所述方法包括: 对于一个子带, UE向基站至少反馈 RI、 指示第一码本 C1中的码字的 第一索引 PMI1和若干个 CQI;
所述基站根据 RI、 PMI1从一个码本 C 1中找到一个矩阵 Wl , 并根据
W1获得信道信息;
W1为其中规定的 N个码字时,所述 UE还反馈指示第二码本 C2中的码字 的第二索引 PMI2; 所述基站进一步根据 PMI2从第二码本 C2中找到一个码 字矩阵 W2 , 并使用函数 F ( W1 , W2 )得到信道信息; 或者, 根据 PMI1和 规定的映射关系确定 PMI2所对应的二级码本, 在确定的码本中根据 PMI2确 定码字 W2 , 并直接根据 W2得到信道信息。
优选地, 所述 W1 为 离散傅里叶变换 DFT 矢量, 具有
1 eja eJ2a e 的结构; W2用于对 W1进行相位调整,根据 F( W1 ,
W2 )得到 [1 eip ei2p ·· β ΚΝ·~1)β , 为发射天线数, α、 β均为码本设计时 的设定值, 与需要量化的信道有关; [ Γ为矩阵转置运算。 优选地, 所述 W1为双极化 DFT矢量, 具有 aVdfll bvdfli
Figure imgf000010_0001
CVdfll dvdfli 中 Vdfll 1 eia ei
Figure imgf000010_0002
, W2用于对 Wl进行相位调整,才艮据 F( Wl , l2 bvdfl2
W2 )得到 aVdf
Vdft2 1 eJP e
Figure imgf000010_0003
其中, a、 b、 c、 d、 CVdfl2 dvdfl2 α、 β均为码本设计时的设定值, 与需要量化的信道有关; 为发射天线数;
[ Γ为矩阵转置运算。 优选地, 所述 ll bvdfli
W1为双极化 DFT矢量, 具有 aVdf 的结构其中
CVdfll dvdfli
Vdfll 1 eia ei , W2用于对 Wl进行相位调整, 根据 F ( W1 ,
W2 )得到 Avdfll Bvdfll α均为码本设计时的
Cvdfll Dvdfll 设定值, 与需要量化的信道有关; 为发射天线数; [ Γ为矩阵转置运算。
一种反馈信道状态信息的装置, 包括设置单元、 反馈单元、 查找单元 和信道获取单元; 其中:
设置单元, 用于设置至少两个码本;
反馈单元, 对于一个子带, 向基站反馈 RI、 指示第一码本 C1 中的码 字的第一索引 PMI1、 指示第二码本 C2中的码字的第二索引 PMI2和若干 个 CQI;
查找单元, 用于根据 RI、 PMI1从 C1中找到一个矩阵 W1 ;
信道获取单元,用于在所述 W1为规定的 N个码字时,进一步根据 PMI2 从 C2中找到一个码字矩阵 W2, 并使用函数 F ( W1 , W2 )得到信道信息; 或者 , 根据 PMI1和规定的映射关系确定 PMI2所对应的二级码本, 在确定 的码本中根据 PMI2确定码字 W2, 并直接根据 W2得到信道信息;
在所述 W1不为规定的 N个码字时,进一步使用 RI与 PMI2从码本 C1 中找到一个矩阵 W作为信道信息。
优选地, 所述 W1 为 离散傅里叶变换 DFT 矢量, 具有
1 (W,— 1)«
eJa eJ2c e 的结构; W2用于对 Wl进行相位调整, 所述信道 获取单元根据 F ( Wl , W2 )得到 [1 e 为发射天线数, α、 β均为码本设计时的设定值, 与需要量化的信道有关; [ Γ为矩阵转置运
优选地, 所述 W1为双极化 ll bvdfli
DFT矢量, 具有 aVdf
Figure imgf000011_0001
CVdfll dvdfli 中 Vdfll 1 eia ei2G , W2用于对 Wl进行相位调整, 所述信道 获取单元根据 aVdfl2 bvdl
F( Wl , W2 )得到 f2
e
CVdfl2 dvdfl2
其中, a、 b、 c、 d、 α、 β 均为码本设计时的设定值, 与需要量化的信道有 关; 为发射天线数; [ Γ为矩阵转置运算。 优选地, 所述 ll bvdfli
W1为双极化 DFT矢量, 具有 aVdf 的结构其中
CVdfll dvdfli
Vdfll = 1 eJa eJ2G
Figure imgf000011_0002
, W2用于对 Wl进行相位调整, 所述信道获 取单元根据 ll Bvdfll
F ( Wl , W2 )得到 Avdf
a、 b、 c、 d、 A、 B、 C、 D、 Cvdfll Dvdfll
α均为码本设计时的设定值,与需要量化的信道有关; 为发射天线数; [ f 为矩阵转置运算。
优选地, 所述 PMI 1配置为长周期的反馈且 PMI2配置为短周期的反馈。 一种反馈信道状态信息的装置, 包括设置单元、 反馈单元、 查找单元 和信道获取单元; 其中:
设置单元, 用于设置至少两个码本;
反馈单元, 对于一个子带, 向基站至少反馈 RI、 指示第一码本 C1 中 的码字的第一索引 PMI1和若干个 CQI; 在 W1为其中规定的 N个码字时, 还向基站反馈指示第二码本 C2中的码字的第二索引 PMI2;
查找单元, 用于根据 RI、 PMI1从 C1中找到一个矩阵 Wl ;
信道获取单元, 根据 W1获得信道信息; 或者, 在 W1为其中规定的 N个 码字时, 根据 PMI2从第二码本 C2中找到一个码字矩阵 W2 , 并使用函数 F ( Wl , W2 )得到信道信息, 或根据 PMI1和规定的映射关系确定 PMI2所对 应的二级码本, 在确定的码本中根据 PMI2确定码字 W2 , 并直接根据 W2得 到信道信息。
优选地, 所述 W1 为 离散傅里叶变换 DFT 矢量, 具有 [1 eJa eJ2a ·· w- 的结构; W2用于对 Wl进行相位调整, 所述信道 获取单元根据 F ( W1 , W2 )得到 [1 ε e · · ί^'- 为发射天线数, α、 β均为码本设计时的设定值, 与需要量化的信道有关; [ Γ为矩阵转置运
优选地, 所述 W1为双极化 DFT矢量, 具有 aVdfll bvdfli
Figure imgf000012_0001
CVdfll dvdfli 中 Vdfll = 1 eJa eJ2G , W2用于对 Wl进行相位调整, 所述信道
Figure imgf000013_0001
获取单元根据 Vdlf2 bvdfl2
F( Wl , W2 )得到 a
Vdfl2 1 eJP e e
CVdfl2 dvdfl2
其中, a、 b、 c、 d、 α、 β 均为码本设计时的设定值, 与需要量化的信道有 关; 为发射天线数; [ Γ为矩阵转置运算。 优选地, 所述 W1为双极化 DFT矢量, 具有 aVdfll bvdfli 的结构其中
CVdfll dvdfli
Vdfll 1 eia ei2G , W2用于对 Wl进行相位调整, 所述信道获 取单元根据 F ( Wl , W2 )得到 Avdfll Bvdfll ; a、 b、 c、 d、 A、 B、 C、 D、
Cvdfll Dvdfll
α均为码本设计时的设定值,与需要量化的信道有关; 为发射天线数; [ f 为矩阵转置运算。
本发明中, 通过选择的码字判断是否为相关信道, 对于相关信道才进 行进一步的精度增强。 由于非相关信道下主要的应用不是 MU-MIMO, 而 是高阶的 SU-MIMO , 不需要非常高的反馈精度, 因此本发明能有效的利用 反馈资源, 并且避免了在反馈时出现不同设计的优化码本, 以及不同的处 理函数 F ( Wl , W2 ) 带来的复杂度很高的问题。 附图说明
图 1为本发明信道预编码方法实施例一的流程图;
图 2为本发明信道预编码方法实施例二的流程图;
图 3为本发明反馈信道状态信息的装置的一种组成结构示意图; 图 4为本发明反馈信道状态信息的装置的另一种组成结构示意图。 具体实施方式
本发明的基本思想为: 在基站及 UE侧同时配置两个码本, 优化码本及 基本码本, 其中, 优化码本仅对基本码本中的 DFT码字进行优化, 而 UE在 发送信道状态信息时, 将会同时发送相应码字索引 PMI1 , PMI2 , 基站根据 索引 PMI1确定 PMI1指示的码本 C1中的码字 W1是否是规定的 N个码字,并在 是时对结合 PMI2指示的另外 1个码本中码字 W2 , 按照 UE和基站约定的函数 规则或映射规则 F ( Wl , W2 )得到更高精度的信道信息。
为使本发明的目的、 技术方案和优点更加清楚明白, 以下举实施例并 参照附图, 对本发明进一步详细说明。
本发明中, 首先在基站及 UE中预先配置两个码本, 其中一个为基本码 本, 另一个作为优化码本; 其中, 基本码本为现有的 LTE系统 R8版本中规 定码本或是 LTE-A系统中 R10版本中规定的码本, 或者, 是 R8版本中规定码 本及 R10版本中规定的码本的相应的简单数学变形例。 而优化码本中, 存储 在如下一些可能的关系:
1、 根据 W1的索引号 PMI1 , 找到对应的优化码本, 在优化码本中找到 W2作为更高精度的信道信息反馈。 此时优化码本是根据基本码本中选出的 码字的索引 PMI1来确定的, 存在映射关系。 即 W2的含义是根据 W1确定的。 具体可参考本申请人于 2010年 2月 12日申请的、 申请号为 201010125662.3、 发明名称为 "一种获取信道状态信息的方法和系统" 的专利申请文件。
2、 Wl、 W2对应 2个独立码本中的码字, 根据函数关系 F ( Wl , W2 ) 共同表征高精度的信道信息。
定义 DFT码字为具有以下结构的矢量: 「1 J 2a (W,— 1)«
e 定义双极化 DFT码字为具有 aVdfll bvdfli 的结构的矩阵,
CVdfll dvdfli 例如,在 R8版本中规定的码本中, PMI为 0至 7的码字为 DFT码字,而 PMI 为 8至 15的码字为非 DFT码字。 这样, UE根据当前的信道矩阵(UE根据下 行导频和信道估计得到) 首先从基本码中选取码字, 若所选取码字的 PMI 为 0至 7 , 则需进一步在优化码本中选取另一个码字, 以对基本码本中的码 字进行优化。 这样, UE将发两个码本中的 PMI信息。 而若所选取码字的 PMI 为 8至 15时, 则无需再在优化码本中选取另一个码字, 这样, UE仅发送基本 码本中的 PMI信息即可。
以下实施例中, 基站及 UE中都会预先配置两个码本。
实施例一
图 1为本发明信道预编码方法实施例一的流程图, 如图 1所示, 本示例 信道预编码方法包括以下步骤:
步骤 101 : UE根据当前的信道条件选取相应码字。
在本实施例中, UE向基站发送的信道状态信息中, 可能会需要反馈两 个 PMI, 这里, 两个预编码索引分别为 PMI1、 PMI2。 分别对应于基本码本 中的码字以及优化码本中的码字。 选取的方式是首先在基本码本中选取, 当所选取的基本码本中的码字为 DFT码字时 ,再在优化码本中选取相应的码 字; 将所选取的 PMI1以及 PMI2发送到网络侧 (基站)。 当在基本码本中所 选取的码字为非 DFT码字时, 则不再选取优化码本中的码字, UE仅向网络 侧发送 PMI1即可。
或者, 当在基本码本中所选取的码字为非 DFT码字时, 仍然发送 PMI2, 只是发送 PMI2的周期与发送 PMI1的周期不同, 如发送 PMI2的周期为 5ms, 而发送 PMI1的周期为 100ms等, 需要说明的是, 当 PMI1为非 DFT码字而又 发送 PMI2的情况(二者发送周期不同 )下, 如果此时 PMI2也可对应于基本 码本中的 DFT码字, 此时, 网络侧接收到该 PMI2 , 即使其指示的是基本码 本中的 DFT码字, 因为此时 PMIl指示为基本码本中的非 DFT码字, 因此, 网络侧仍将以该基本码本中的 DFT码字单独生成预编码矩阵,将不再进行优 化。
步骤 102: UE仅向网络侧发送所选取码字的 PMI。
当所选取的 PMI为两个时,本发明发送 PMI1以及 PMI2的反馈粒度不同。 具体的, 发送两个 PMI的周期不同。 例如, PMI1可以以 100ms为周期发送, 而 PMI2 , 则可以以 5ms的周期来发送。 由于 PMI2是对基本码本中的码字需 要进行优化的码字指示, 因此, 反馈的周期可以设置的小一些。
这里, PMI2也可对应与基本码本相同的码本, (在 PMI1>=8时), 这时 PMI1和 PMI2同时对应基本码本, 只是它们的反馈周期是不同的, 而且预编 码 w可以独立由 PMI1或 PMI2产生, 即 w=F ( PMIl ) or F ( PMI2 ), 而不像 PMI 8时预编码是基于 PMIl和 PMI2 产生, 即 w=F ( PMIl , PMI2 )。
具体的, UE利用上行控制信道 PUCCH或 PUSCH将 PMI信息反馈给基 站。
步骤 103: 网络侧根据所接收到的 PMI生成预编码阵列, 对待发送信号 进行编码, 并发送。
基站接收到 UE反馈的 PMI信息后, 根据 PMI1的大小, 如对于 R8版本的 码本, 若 PMI1的值小于 8 , 则再根据 PMI2所指示的优化码本中的码字, 对 该 PMI 1对应的码字进行优化。
以下以 LTE系统版本 8的 4天线码本 8为例进行,其中前 8个码字是 相当于 4维的 DFT码字, 如下:
Figure imgf000016_0001
本发明仅对前 8个 DFT码字作优化, 优化函数可以是:
WL2(m,n)--
Figure imgf000017_0001
其中, m = 0,....,6,7 w = 0,....,N- 1, m即为 PMI1, n为优化码本中的码字 的 PMI, 即 PMI2, g ( n )和 G是用来控制基本码本的 DFT码字对应的信 道精度的量, 例如 n=4, g (n) =2n-3, G=32。 上述的 g (n) 、 G与对基本 码本中码字调整的精度有关, 可根据精度调整要求而设定。 WR :,m)表示从
WR%中取第 m列的所有元素。
若 PMI1的值大于等于 8, 则按现有的 R8版本中相关规定处理当前的预 编码。 在确定优化方式及优化码本中的码字后, 生成预编码阵列是容易实 现的, 本示例中不再给出具体的示例。
本示例中的方法同样适用于 R10版本中的基本码本。
实施例二
图 2为本发明信道预编码方法实施例二的流程图, 如图 2所示, 本示例 信道预编码方法包括以下步骤:
步骤 201: UE根据当前的信道条件、 天线配置信息选取相应码字。 在本实施例中, UE向基站发送的信道状态信息中, 可能会需要反馈两 个 PMI, 这里, 两个预编码索引分别为 PMI1、 PMI2, 分别对应于基本码本 中的码字以及优化码本中的码字。 选取的方式是首先在基本码本中选取, 当所选取的基本码本中的码字为 DFT码字时 ,再在优化码本中选取相应的码 字; 将所选取的 PMI1以及 PMI2发送到网络侧 (基站)。 当在基本码本中所 选取的码字为非 DFT码字时, 则不再选取优化码本中的码字, UE仅向网络 侧发送 PMI1即可。 或者, 当在基本码本中所选取的码字为非 DFT码字时, 仍然发送 PMI2,只是 PMI2对应的频带宽度与 PMI1对应的频带宽度不同,如 PMI2对应的频带宽度为 5M, 而 PMI1对应的频带宽度为 20M等, 需要说明的 是, 当 PMI1为非 DFT码字而又发送 PMI2的情况下, 此时 PMI2也可对应于基 本码本中的 DFT码字, 此时, 网络侧接收到该 PMI2, 即使其指示的是基本 码本中的 DFT码字, 因为此时 PMI1指示为基本码本中的非 DFT码字, 因此, 网络侧仍将以该基本码本中的 DFT码字单独生成预编码矩阵,将不再进行优 化。
步骤 202: UE仅向网络侧发送所选取码字的 PMI。
当所选取的 PMI为两个时,本发明发送 PMI1以及 PMI2的反馈粒度不同。 具体的,发送两个 PMI所对应的频带会不同。 例如, PMI1可以用于指示 20M 的频带宽度, 而 PMI2可以用于指示 5M的频带宽度。
这里, PMI2也可对应基本码本,(在 PMI1>=8时) ,这时 PMI1 和 PMI2 同时对应基本码本, 只是它们的反馈周期是不同的, 而且预编码 w可以独立 由 PMI1或 PMI2产生, 即 w=F ( PMIl ) or F ( PMI2 ), 而不像 PMI 8时预 编码是基于 PMI1和 PMI2 产生, 即 w=F (PMIl, PMI2 )。
具体的, UE利用上行控制信道 PUCCH或 PUSCH将 PMI信息反馈给基 站。
步骤 203: 网络侧根据所接收到的 PMI生成预编码阵列, 对待发送信号 进行编码, 并发送。
基站接收到 UE反馈的 PMI信息后, 根据 PMI1的大小, 如对于 R8版本的 码本, 若 PMI1的值小于 8, 则再根据 PMI2所指示的优化码本中的码字, 对 该 PMI 1对应的码字进行优化。
以下以 LTE系统版本 8的 4天线码本 8为例进行说明,其中前 8个码 字是相当于 4维的 DFT码字, 如下:
「1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 + 7 -1 + 7 -1-7 1-7 1 j -1 -j 1 1 —1 —1 j - j j -j -1 1 -1 1 1 -1 1 -1
-1 + 7 1 + 7 1-7 -1-7
1 j -1 j — 1 j 1 -j —1 1 1 —1 本发明仅对前 8个 DFT码字作优化, 优化函数可以是:
m)
Figure imgf000019_0001
其中, m = 0,....,6,7 w = 0,....,N- 1, m即为 PMI1, n为优化码本中的码字 的 PMI, 即 PMI2, g ( n )和 G是用来控制基本码本的 DFT码字对应的信 道精度的量, 例如 n=4, g (n) =2n-3, G=32。 上述的 g (n) 、 G与对基本 码本中码字调整的精度有关, 可根据精度调整要求而设定。 WR :,m)表示从
WR%中取第 m列的所有元素。
若 PMI1的值大于等于 8, 则按现有的 R8版本中相关规定处理当前的预 编码。 在确定优化方式及优化码本中的码字后, 生成预编码阵列是容易实 现的, 本示例中不再给出具体的示例。
实施例三
对于前述实施例一和实施例二, 都是以 LTE系统的 Rankl码字为例进行 说明的。 在 8Tx ( 8天线)情况下, Rank2码字中也会有较多的 Rank2 双极化 DFT码字。 如果 PMI1指示的是双极化 DFT码字, 可以进一步的反馈 PMI2用 于增强反馈性能。 例如, aVdll bvdfli
W 1指示双极化 DFT码字为具有 f 的结构的矩阵, 其
CVdfll dvdfli 中 Vdfll = 1 eJa eJ2a , F (Wl
Figure imgf000019_0002
Avdfll Bvdfll
W2) = α均为码本设计时的设
Cvdfll Dvdfll
定值, 与需要量化的信道有关。 函数 F ( ) 即表示利用 W2与 W1点乘 t 或者, Wl指示双极化 aVd
DFT码字为具有 fll bvdfli 的结构的矩阵, 其
CVdfll dvdfli 中 Vdfll = 1 eJa eJ2G
Figure imgf000020_0001
, W2表示 1个 4Tx ( 4天线) 的二级码本, 根据 PMI1/W1 , 可以唯一地确定二级码本的码字。 进一步的, 从二级码本 中选出一个精度更高的 4维 DFT矢量 vdft2 , 根据 F ( Wl , W2 )得到精度更 高的信道信息 aVdfl2 bvdfl2
Vdfl2 1 eip ei2p
Figure imgf000020_0002
为发射天线数, CVdfl2 dvdfl2 α、 β均为码本设计时的设定值, 与需要量化的信道有关, 其中 α与待发射 信号的发射方向有关,β与设定的对待发射信号调整的方向大小有关; [ f为 矩阵转置运算。 a, b, c, d 均为码本设计时的设定值, 与需要量化的信道 有关。 为发射天线数。
Avdfll Bvdfll
F ( Wl , W2 ) = u b、 c、 d、 A、 B、 C、 D、 α均为码
Cvdfll Dvdfll
本设计时的设定值, 与需要量化的信道有关。
其它处理方式与前述实施例一、 二完全相同, 这里不再赘述。
图 3为本发明反馈信道状态信息的装置的组成结构示意图, 如图 3所示, 本发明反馈信道状态信息的装置包括设置单元 30、 反馈单元 31、 查找单元
32和信道获取单元 33; 其中:
设置单元 30, 用于设置至少两个码本;
反馈单元 31 , 对于一个子带, 向基站反馈 RI、 指示第一码本 C1中的 码字的第一索引 PMI1、 指示第二码本 C2中的码字的第二索引 PMI2和若 干个 CQI;
查找单元 32 , 用于根据 RI、 PMI1从 C1中找到一个矩阵 Wl ;
信道获取单元 33 , 用于在所述 W1为规定的 N个码字时, 进一步根据 PMI2从 C2中找到一个码字矩阵 W2, 并使用函数 F ( Wl , W2 )得到信道 信息; 或者, 根据 PMI 1和规定的映射关系确定 PMI2所对应的二级码本, 在确定的码本中根据 PMI2确定码字 W2 , 并直接根据 W2得到信道信息; 在所述 W1不为规定的 N个码字时,进一步使用 RI与 PMI2从码本 C1 中找到一个矩阵 W作为信道信息。
上述 W1为 DFT矢量, 具有 [1 eia ei2a ·· w- 的结构; W2用于 对 W1 进行相位调整, 信道获取单元 33 根据 F ( Wl , W2 ) 得到 [1 ε e · · 6 - 为发射天线数, α、 β均为码本设计时的设定值, 与需要量化的信道有关, 其中 α与待发射信号的发射方向有关, β与设定的 对待发射信号调整的方向大小有关; [ Γ为矩阵转置运算。 上述 W1 为双极化 DFT 矢量, 具有 aVdfll bvdfli 的结构, 其中
CVdfll dvdfli
Vdfll = 1 eJa eJ2G
Figure imgf000021_0001
, W2用于对 Wl进行相位调整, 信道获取单 元 l2 bvdfl2
33根据 F ( Wl , W2 )得到 aVdf
Vdfl2 1 eJP e e
CVdfl2 dvdfl2
其中, a、 b、 c、 d、 α、 β 均为码本设计时的设定值, 与需要量化的信道有 关; 为发射天线数; [ Γ为矩阵转置运算。 上述 ll bvdfli
W1 为双极化 DFT 矢量, 具有 aVdf 的结构其中
CVdfll dvdfli
Vdfll 1 eJa eJ2G
Figure imgf000021_0002
, W2用于对 Wl进行相位调整, 信道获取单 元 ll Bvdfll
33根据 F ( Wl , W2 )得到 Avdf ; a、 b、 c、 d、 A、 B、 C、 D、 a
Cvdfll Dvdfll
均为码本设计时的设定值,与需要量化的信道有关; 为发射天线数; [ f为 矩阵转置运算。
上述 PMI 1配置为长周期的反馈且 PMI2配置为短周期的反馈。 本领域技术人员应当理解, 图 3所示的反馈信道状态信息的装置是为实 现前述的反馈信道状态信息的方法而设计的, 图中的各处理单元的实现功 能可参照前述实施例一至实施例三所述方法的相关描述而理解。 图 3所示的 装置中各处理单元的功能可通过运行于处理器上的程序而实现, 也可通过 具体的逻辑电路而实现。
图 4为本发明反馈信道状态信息的装置的另一种组成结构示意图, 如图 4所示, 本发明反馈信道状态信息的装置包括设置单元 40、 反馈单元 41、 查 找单元 42和信道获取单元 43; 其中:
设置单元 40, 用于设置至少两个码本;
反馈单元 41 , 对于一个子带, 向基站至少反馈 RI、 指示第一码本 C1 中的码字的第一索引 PMI1和若干个 CQI; 在 W1为其中规定的 N个码字 时, 还向基站反馈指示第二码本 C2中的码字的第二索引 PMI2;
查找单元 42 , 用于根据 RI、 PMI1从 C1中找到一个矩阵 Wl ;
信道获取单元 43 , 根据 W1获得信道信息; 或者, 在 W1为其中规定的 N 个码字时, 根据 PMI2从第二码本 C2中找到一个码字矩阵 W2, 并使用函数 F ( Wl , W2 )得到信道信息, 或根据 PMI1和规定的映射关系确定 PMI2所 对应的二级码本, 在确定的码本中根据 PMI2确定码字 W2 , 并直接根据 W2 得到信道信息。
上述 W1为 DFT矢量, 具有 [1 eia ei2a · · w- 的结构; W2用于 对 W1 进行相位调整, 信道获取单元 43 根据 F ( Wl , W2 ) 得到 [1 ε e · · 6 - 为发射天线数, α、 β均为码本设计时的设定值, 与需要量化的信道有关, 其中 α与待发射信号的发射方向有关, β与设定的 对待发射信号调整的方向大小有关; [ Γ为矩阵转置运算。 上述 W1 为双极化 DFT 矢量, 具有 aVdfll bvdfli 的结构, 其中
CVdfll dvdfli Vdfll = 1 eJa eJ2G
Figure imgf000023_0001
, W2用于对 Wl进行相位调整, 信道获取单 元 43根据 F ( Wl , W2 )得到 aVdfl2 bvdfl2
Vdfl2 1 eJP e e
CVdfl2 dvdfl2
其中, a、 b、 c、 d、 α、 β 均为码本设计时的设定值, 与需要量化的信道有 关; 为发射天线数; [ Γ为矩阵转置运算。 上述 W1为双极化 DFT矢量, 具有 aVdfll bvdfli 的结构其中
CVdfll dvdfli
Vdfll 1 eJa eJ2G , W2用于对 Wl进行相位调整, 信道获取单元
43根据 F ( Wl , W2 )得到 Avdfll Bvdfll a、 b、 c、 d、 A、 B、 C、 D、 a均
Cvdfll Dvdfll 为码本设计时的设定值, 与需要量化的信道有关; 为发射天线数; 为 矩阵转置运算。
本领域技术人员应当理解, 图 4所示的反馈信道状态信息的装置是为实 现前述的反馈信道状态信息的方法而设计的, 图中的各处理单元的实现功 能可参照前述实施例一至实施例三所述方法的相关描述而理解。 图 4所示的 装置中各处理单元的功能可通过运行于处理器上的程序而实现, 也可通过 具体的逻辑电路而实现。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。

Claims

权利要求书
1、 一种反馈信道状态信息的方法, 其特征在于, 设置至少两个码本; 所述方法包括:
对于一个子带, 用户设备 UE向基站反馈秩指示 RI、 指示第一码本 C1 中的码字的第一索引 PMI1、 指示第二码本 C2 中的码字的第二索引 PMI2 和若干个信道质量指示 CQI;
所述基站根据 RI、 PMI1从 C1中找到一个矩阵 W1; 所述 W1为规定 的 N个码字时, 基站进一步根据 PMI2从 C2中找到一个码字矩阵 W2, 并 使用函数 F (W1, W2)得到信道信息; 或者, 根据 PMI1和规定的映射关 系确定 PMI2所对应的二级码本,在确定的码本中才艮据 PMI2确定码字 W2, 并根据 W2得到信道信息;
所述 W1不为规定的 N个码字时, 所述基站直接使用 RI与 PMI2从码 本 C1中找到一个矩阵 W作为信道信息。
2、根据权利要求 1所述的方法,其特征在于,所述 C1为长期演进 LTE 系统版本 8的码本, 所述规定的 N个码字为前 8个 DFT码字。
3、 根据权利要求 1所述的方法, 其特征在于, 所述 W1为离散傅里叶 变换 DFT矢量, 具有 [1 eia ei2a ·· w- 的结构; W2用于对 W1进行 相位调整, 根据 F (W1, W2)得到 [1 ε e ·· ,
Figure imgf000024_0001
其中, 为发 射天线数, α、 β均为码本设计时的设定值, 与需要量化的信道有关, [ f为 矩阵转置运算。
4、 根据权利要求 1所述的方法, 其特征在于, 所述 W1为双极化 DFT 矢量, 具有 aVdfti b dfti 的结构, 其中¾1 = 1 2a
e
Figure imgf000024_0002
, W2
_CVdfll dvdflij 用于对 Wl 进行相位调整, 根据 F ( Wl , W2 ) 得到「"¾2
_CVdfl2 dvdfl2 v 2=[l eip e ·· βΚΝ·-γ)β ; 其中, a、 b、 C、 d、 (X、 β均为码本设计时的 设定值, 与需要量化的信道有关; 为发射天线数; [Γ为矩阵转置运算。
5、 根据权利要求 1所述的方法, 其特征在于, 所述 W1为双极化 DFT aVdfll bvdfli
矢量,具有 的结构其中 a
Vdfll , W2用于 CVdfll dvdfli 对 fl Bvdfll
Wl进行相位调整, 根据 F ( Wl, W2)得到 Avdl
a、 b、 c、 d、 Cvdfll Dvdfll
A、 B、 C、 D、 α均为码本设计时的设定值, 与需要量化的信道有关; 为 发射天线数; [Γ为矩阵转置运算。
6、 根据权利要求 1至 5任一项所述的方法, 其特征在于, 所述 PMI1 配置为长周期的反馈且 PMI2配置为短周期的反馈。
7、 一种反馈信道状态信息的方法, 其特征在于, 设置至少两个码本; 所述方法包括:
对于一个子带, UE向基站至少反馈 RI、 指示第一码本 C1中的码字的 第一索引 PMI1和若干个 CQI;
所述基站根据 RI、 PMI1从一个码本 C1中找到一个矩阵 Wl, 并根据 W1获得信道信息;
W1为其中规定的 N个码字时,所述 UE还反馈指示第二码本 C2中的码字 的第二索引 PMI2; 所述基站进一步根据 PMI2从第二码本 C2中找到一个码 字矩阵 W2, 并使用函数 F (W1, W2)得到信道信息; 或者, 根据 PMI1和 规定的映射关系确定 PMI2所对应的二级码本, 在确定的码本中根据 PMI2确 定码字 W2, 并根据 W2得到信道信息。
8、 根据权利要求 7所述的方法, 其特征在于, 所述 W1为离散傅里叶 变换 DFT矢量, 具有 [1 eJa eJ2a ·· w- 的结构; W2用于对 Wl进行 相位调整, 根据 F (W1, W2)得到 [1 ε e ··
Figure imgf000025_0001
为发射天线 数, α、 β均为码本设计时的设定值, 与需要量化的信道有关; [Γ为矩阵转 置运算。
9、 根据权利要求 7所述的方法, 其特征在于, 所述 W1为双极化 DFT aVdfll bvdfli
矢量, 具有 的结构, 其中 Vdfll 1 eJa ei
Figure imgf000026_0001
, W2
CVdfll dvdfli 用于对 Wl 进行相位调整, 根据 f2
F ( Wl , W2 ) 得到 aVdfl2 bvdl
CVdfl2 dvdfl2 vdft2=[l eip e ·· βΚΝ·-γ)β ; 其中, a、 b、 C、 d、 (X、 β均为码本设计时的 设定值, 与需要量化的信道有关; 为发射天线数; [Γ为矩阵转置运算。
10、 根据权利要求 7所述的方法, 其特征在于, 所述 W1为双极化 DFT aVdfll bvdfli
矢量, 具有 的结构其中 Vdfll 1 eJa eJ2c , W2用于
CVdfll dvdfli 对 vdfll Bvdfll
Wl进行相位调整, 根据 F (W1, W2)得到 A
a、 b、 c、 d、 Cvdfll Dvdfll
A、 B、 C、 D、 α均为码本设计时的设定值, 与需要量化的信道有关; 为 发射天线数; [Γ为矩阵转置运算。
11、 一种反馈信道状态信息的装置, 其特征在于, 所述装置包括设置 单元、 反馈单元、 查找单元和信道获取单元; 其中:
设置单元, 用于设置至少两个码本;
反馈单元, 对于一个子带, 向基站反馈 RI、 指示第一码本 C1 中的码 字的第一索引 PMI1、 指示第二码本 C2中的码字的第二索引 PMI2和若干 个 CQI;
查找单元, 用于根据 RI、 PMI1从 C1中找到一个矩阵 Wl;
信道获取单元,用于在所述 W1为规定的 N个码字时,进一步根据 PMI2 从 C2中找到一个码字矩阵 W2, 并使用函数 F (W1, W2)得到信道信息; 或者, 根据 PMI1和规定的映射关系确定 PMI2所对应的二级码本, 在确定 的码本中根据 PMI2确定码字 W2, 并根据 W2得到信道信息; 在所述 W1 不为规定的 N个码字时, 进一步使用 RI与 PMI2从码本 C1中找到一个矩 阵 W作为信道信息。
12、 根据权利要求 11所述的装置, 其特征在于, 所述 W1为离散傅里 叶变换 DFT矢量, 具有 [1 eia ei2a ·· w- 的结构; W2用于对 Wl进 行相位调整, 所述信道获取单元根据 F ( Wl , W2 ) 得到 [1 ε e ·· 6 - 为发射天线数, α、 β均为码本设计时的设定值, 与需要量化的信道有关; [Γ为矩阵转置运算。
13、根据权利要求 11所述的装置,其特征在于,所述 W1为双极化 DFT aVdfll bvdfli
矢量, 具有 的结构, 其中 1 = 1 eJa eJ2G
Figure imgf000027_0001
, W2
CVdfll dvdfli
用于对 Wl 进行相位调整, 所述信道获取单元根据 F (Wl, W2 )得到 αν 1 bvdfl2
vdft2 =[l eip eilp ·· βΚΝ·~1)β Τ; 其中, a、 b、 C、 d、 (X、 β 均 CVdfl2 dvdfl2 为码本设计时的设定值, 与需要量化的信道有关; 为发射天线数; 为 矩阵转置运算。
14、根据权利要求 11所述的装置,其特征在于,所述 W1为双极化 DFT aVdfll bvdfli
矢量,具有 的结构其中 Vdfll = 1 eJa eJ2G
Figure imgf000027_0002
, W2用于
CVdfll dvdfli 对 ll Bvdfll Wl进行相位调整,所述信道获取单元根据 F( Wl , W2 )得到 Avdf
Cvdfll Dvdfll a、 b、 c、 d、 A、 B、 C、 D、 α均为码本设计时的设定值, 与需要量化的信 道有关; 为发射天线数; [Γ为矩阵转置运算。
15、 根据权利要求 11至 14任一项所述的装置, 其特征在于, 所述 PMI1 配置为长周期的反馈且 PMI2配置为短周期的反馈。
16、 一种反馈信道状态信息的装置, 其特征在于, 所述装置包括设置 单元、 反馈单元、 查找单元和信道获取单元; 其中:
设置单元, 用于设置至少两个码本;
反馈单元, 对于一个子带, 向基站至少反馈 RI、 指示第一码本 C1 中 的码字的第一索引 PMI1和若干个 CQI; 在 W1为其中规定的 N个码字时, 还向基站反馈指示第二码本 C2中的码字的第二索引 PMI2;
查找单元, 用于根据 RI、 PMI1从 C1中找到一个矩阵 W1 ;
信道获取单元, 根据 W1获得信道信息; 或者, 在 W1为其中规定的 N个 码字时, 根据 PMI2从第二码本 C2中找到一个码字矩阵 W2 , 并使用函数 F ( Wl , W2 )得到信道信息, 或根据 PMI1和规定的映射关系确定 PMI2所对 应的二级码本, 在确定的码本中根据 PMI2确定码字 W2 , 并根据 W2得到信 道信息。
17、 根据权利要求 16所述的装置, 其特征在于, 所述 W1为离散傅里 叶变换 DFT矢量, 具有 [1 eia ei2a · · w- 的结构; W2用于对 Wl进 行相位调整, 所述信道获取单元根据 F ( Wl , W2 ) 得到
[1 ε e · · 6 - 为发射天线数, α、 β均为码本设计时的设定值, 与需要量化的信道有关; [ Γ为矩阵转置运算。
18、 根据权利要求 16 所述的装置, 其特征在于, 所述 W1 为双极化 aVdfll bvdfli
DFT矢量, 具有 的结构, 其中 1 = 1
Figure imgf000028_0001
CVdfll dvdfli
W2用于对 Wl进行相位调整, 所述信道获取单元根据 F ( Wl , W2 )得到 αν 1 bvdfl2
vdft2 = [l eip eilp · · βΚΝ·~1)β Τ; 其中, a、 b、 C、 d、 (X、 β 均 CVdfl2 dvdfl2 为码本设计时的设定值, 与需要量化的信道有关; 为发射天线数; 为 矩阵转置运算。
19、 根据权利要求 16 所述的装置, 其特征在于, 所述 W1 为双极化 bvdfli
DFT矢量, 具有 aVdfll
的结构其中 1 = 1 eJa eJ2G
Figure imgf000029_0001
, W2 CVdfll dvdfli
用于对 Wl 进行相位调整, 所述信道获取单元根据 F (Wl, W2)得
Avdfll Bvdfll ; a、 b、 c、 d、 A、 B、 C、 D、 α 均为码本设计时的设定值, Cvdfll Dvdfll 与需要量化的信道有关; 为发射天线数; [ Γ为矩阵转置运算。
PCT/CN2010/078019 2010-05-05 2010-10-22 反馈信道状态信息的方法及装置 WO2011137633A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010177511.2 2010-05-05
CN201010177511.2A CN101826951B (zh) 2010-05-05 2010-05-05 反馈信道状态信息的方法及装置

Publications (1)

Publication Number Publication Date
WO2011137633A1 true WO2011137633A1 (zh) 2011-11-10

Family

ID=42690675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/078019 WO2011137633A1 (zh) 2010-05-05 2010-10-22 反馈信道状态信息的方法及装置

Country Status (2)

Country Link
CN (1) CN101826951B (zh)
WO (1) WO2011137633A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103220068A (zh) * 2012-01-19 2013-07-24 中兴通讯股份有限公司 信道状态信息处理方法、装置及系统
CN111654317A (zh) * 2013-02-12 2020-09-11 德克萨斯仪器股份有限公司 Lte中的4tx码本增强

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101826951B (zh) * 2010-05-05 2016-03-30 中兴通讯股份有限公司 反馈信道状态信息的方法及装置
CN101820335B (zh) * 2010-05-07 2015-12-16 中兴通讯股份有限公司 一种使用二级码字反馈信道状态信息的方法
CN101877627B (zh) 2010-06-21 2015-09-16 中兴通讯股份有限公司 信道状态信息的反馈方法及终端
CN101969363B (zh) * 2010-09-30 2016-03-30 中兴通讯股份有限公司 信道状态信息反馈方法及终端
WO2012109945A1 (zh) * 2011-02-14 2012-08-23 中兴通讯股份有限公司 一种开环空间复用的预编码方法及系统及预编码指示方法
CN103095430B (zh) * 2011-11-07 2016-09-28 上海贝尔股份有限公司 基于单用户的联合传输的高阶反馈方法和设备
CN103209012B (zh) * 2012-01-12 2016-10-05 上海贝尔股份有限公司 用于辅助多维天线阵列的信道测量的方法
CN102916768B (zh) * 2012-09-19 2016-06-29 华为技术有限公司 高速专用物理控制信道的反馈方法、装置和系统
CN104321983B (zh) * 2013-05-17 2018-06-05 华为技术有限公司 传输预编码矩阵的方法、用户设备和基站
CN104243003B (zh) * 2013-06-06 2017-10-27 电信科学技术研究院 一种基于码本的信道状态信息的传输方法和装置
WO2014198037A1 (en) * 2013-06-13 2014-12-18 Qualcomm Incorporated Two-dimensional discrete fourier transform (2d-dft) based codebook for elevation beamforming
CN104348590B (zh) * 2013-07-25 2019-02-01 中兴通讯股份有限公司 反馈信道状态信息的方法、终端及获取预编码的基站
CN104348575A (zh) * 2013-07-26 2015-02-11 中兴通讯股份有限公司 一种预编码矩阵反馈方法和终端
CN104782070B (zh) * 2013-11-01 2018-05-29 华为技术有限公司 确定预编码矩阵指示的方法、接收设备和发送设备
CN114285447B (zh) * 2017-01-09 2022-11-08 中兴通讯股份有限公司 信道状态信息的反馈、确定方法及装置
CN109150270B (zh) 2017-06-28 2021-01-05 华为技术有限公司 信道状态信息反馈和接收方法、发送端设备和接收端设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080080634A1 (en) * 2006-10-02 2008-04-03 Freescale Semiconductor, Inc. MIMO precoding enabling spatial multiplexing, power allocation and adaptive modulation and coding
CN101304300A (zh) * 2008-05-29 2008-11-12 上海交通大学 基于有限反馈的多用户mimo系统信道量化方法和装置
CN101340219A (zh) * 2007-07-04 2009-01-07 华为技术有限公司 信道状态信息反馈方法及无线收发装置
CN101826951A (zh) * 2010-05-05 2010-09-08 中兴通讯股份有限公司 反馈信道状态信息的方法及装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101373951B1 (ko) * 2008-01-30 2014-03-13 엘지전자 주식회사 다중안테나 시스템에서 프리코딩 정보 전송방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080080634A1 (en) * 2006-10-02 2008-04-03 Freescale Semiconductor, Inc. MIMO precoding enabling spatial multiplexing, power allocation and adaptive modulation and coding
CN101340219A (zh) * 2007-07-04 2009-01-07 华为技术有限公司 信道状态信息反馈方法及无线收发装置
CN101304300A (zh) * 2008-05-29 2008-11-12 上海交通大学 基于有限反馈的多用户mimo系统信道量化方法和装置
CN101826951A (zh) * 2010-05-05 2010-09-08 中兴通讯股份有限公司 反馈信道状态信息的方法及装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103220068A (zh) * 2012-01-19 2013-07-24 中兴通讯股份有限公司 信道状态信息处理方法、装置及系统
CN103220068B (zh) * 2012-01-19 2018-10-26 中兴通讯股份有限公司 信道状态信息处理方法、装置及系统
CN111654317A (zh) * 2013-02-12 2020-09-11 德克萨斯仪器股份有限公司 Lte中的4tx码本增强

Also Published As

Publication number Publication date
CN101826951A (zh) 2010-09-08
CN101826951B (zh) 2016-03-30

Similar Documents

Publication Publication Date Title
US11251843B2 (en) Methods and devices for determining precoder parameters in a wireless communication network
WO2011137633A1 (zh) 反馈信道状态信息的方法及装置
US11831379B2 (en) Method for feeding backchannel state information, user equipment, and base station
CN107636984B (zh) 用于操作mimo测量参考信号和反馈的方法和装置
CN106233640B (zh) 无线通信系统中用于信道信息反馈的装置和方法
RU2537273C2 (ru) Разработка и структура кодовой книги для многогранулярной обратной связи
WO2012041107A1 (zh) 信道状态信息反馈方法及终端
CN106160926B (zh) 在多输入多输出系统中反馈信道状态信息的方法和装置
WO2011160557A1 (zh) 一种信道信息获取方法及系统
US9020061B2 (en) Codebook construction
WO2012022208A1 (zh) 信道信息的发送方法、终端、基站及lte-a系统
WO2011160453A1 (zh) 信道状态信息的反馈方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10851002

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10851002

Country of ref document: EP

Kind code of ref document: A1