WO2011137264A1 - Imagerie thermique d'objets moulés - Google Patents

Imagerie thermique d'objets moulés Download PDF

Info

Publication number
WO2011137264A1
WO2011137264A1 PCT/US2011/034384 US2011034384W WO2011137264A1 WO 2011137264 A1 WO2011137264 A1 WO 2011137264A1 US 2011034384 W US2011034384 W US 2011034384W WO 2011137264 A1 WO2011137264 A1 WO 2011137264A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermal
image
molded object
reference template
images
Prior art date
Application number
PCT/US2011/034384
Other languages
English (en)
Inventor
Matthias Walther
Timothy P. White
Original Assignee
Mettler-Toledo, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mettler-Toledo, Inc. filed Critical Mettler-Toledo, Inc.
Publication of WO2011137264A1 publication Critical patent/WO2011137264A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/72Investigating presence of flaws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/78Measuring, controlling or regulating
    • B29C49/80Testing, e.g. for leaks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/78Measuring, controlling or regulating

Definitions

  • Embodiments of the invention relate generally to the use of thermal imaging for non-destructive testing and detection of thickness and structural variations in opaque and semi-opaque non-metallic composites and plastic materials.
  • IR infrared
  • thermographic techniques provide the ability to determine the size and relative depth of flaws or deviations from a template within an opaque, yet thermally translucent material, provided that at least one region on the object is slightly hotter or cooler than an adjacent region or the surroundings.
  • a formed part e.g., a blow- molded plastic bottle
  • the mold is rapidly cooled on its surface by the mold in order to facilitate its release therefrom, and is subsequently allowed to cool further in ambient air.
  • the molded part may have a surface skin temperature that is discernibly cooler than its sub-layers or even its surroundings.
  • the process of heat convection will begin spreading and removing heat from the part until an equilibrium has been reached, first within the molded part and later with the surroundings. It has been found that wall sections having a greater cross-section (i.e., wall thickness) will remain warmer for a longer period of time due to the greater heat capacity of their relative mass, and this phenomenon is easily visible with thermography.
  • IR intensity also known as total emittance (which is registered by the bolometer array of an uncooled IR camera) is actually composed of the sum of emissivities of the object in the field-of-view (FOV), the atmosphere between the object and the camera, as well as all contributions from nearby IR emitters (such as lighting, nearby machinery, and people) which can be compared to an effect similar to that of a variable complex filter.
  • FOV field-of-view
  • the exemplary embodiments of the invention utilize a system and method for several infrared thermographic techniques that utilize thermal reference templates, either synthetic or acquired, in determining various material properties as well as embedded irregularities of various structures in order to provide structural and material integrity information not accessible without extraordinary visual or mechanical means.
  • One or more IR cameras may be used to measure recently molded objects.
  • a vision processor may compare the measurements from the IR cameras with established templates for the corresponding mold. The vision processor can yield a variety of data relevant to the object molding process where the data can be used to inform operators of the status of the molding process and to allow for active feedback mechanisms for optimizing the molding process.
  • FIGURE 1 is a schematic representation of the basic components of one embodiment of a system of the invention.
  • FIGURE 2 is a flow chart illustrating the performance of an exemplary method of the invention, as well as the logic for controlling an exemplary embodiment of a system thereof;
  • FIGURE 1 schematically represents the basic components of one exemplary embodiment of a system of the invention.
  • a multi-cavity molding machine 100 is shown to produce molded products 1 10 from a plurality of mold cavities 1 01 .
  • a product 1 10 is molded and sufficiently cooled, it is released from its mold cavity and transferred to a downstream process(es) which, in this case, includes thermal imaging.
  • a visual template 700 corresponding to the normal appearance of a product may be generated for each mold cavity 101 and may be stored within a vision processor 150 or another storage device associated with the system.
  • Such a visual template 700 may be a nominal image of a product from a given mold cavity, the nominal image serving as a unique template against which may be compared run-time products produced by an associated molding machine.
  • a nominal image of a product from each mold cavity may be created.
  • this particular system includes two I R cameras 200 and 201 that are located so as to produce thermal images of the products 1 1 0 at various time increments after the molded products 1 10 exit the mold cavities 101 .
  • These images may be referred to as 'run-time' images because they are generated in real-time as actual molded products 1 10 leave the mold cavities 101 .
  • the IR cameras 200, 201 are located so that the molded products 100 are imaged at the point of maximum thermal emissivity difference between the thicker and thinner portions of the product sidewalls. Such a camera placement is preferable because this point in the product cooling cycle may provide some of the most valuable thermal inspection data with respect to thickness defects in the molded products 1 10.
  • more than two IR cameras can be used with other embodiments in order to provide additional data and ensure that the point of maximum thermal emissivity difference has been measured.
  • only a single IR camera may be used.
  • the run-time thermal images from the IR cameras 200, 201 may be sent to the vision processor 150 of the system and compared with a template 700 corresponding to the particular mold cavity 101 in which the molded product 1 10 was created.
  • the vision processor is capable of selecting a corresponding or pre-defined template based on the thermal age of the object.
  • the run-time thermal image may be compared with the template using a number of different image comparison algorithms.
  • An exemplary i o embodiment may use an image subtraction algorithm that subtracts the thermographic image of an object from a corresponding template image, or vice versa, to obtain a 'difference' or 'delta' image that is subsequently stored in memory.
  • the resulting delta image can then be interpreted through many different algorithms to indicate different defect conditions, typically with
  • a 20 vision tool may be used to measure the standard deviation of brightness values within a given region or across the entire delta image of the molded product 1 10.
  • the resulting information produced by such vision tools may be associated with minimum or maximum acceptable limits, such that when these limits are exceeded, an appropriate control signal is sent to a process controller for automatic process adjustment.
  • an image of a molded product may be presented to an operator on a user interface (Ul), such that the operator may analyze the delta image or any of the data resulting from the vision tools. Defect areas may be highlighted and further analyzed.
  • the Ul may also be in communication with the vision processor 1 50, to allow for appropriate process adjustments to be made by the operator upon review of the delta image and/or related data. In either case, the process may be adjusted in real-time to minimize any product defects or loss of production parts due to quality control issues.
  • FIGURE 2 provides a flow chart for performing one exemplary method of the invention, and also illustrates the logic for controlling an exemplary embodiment of an associated system.
  • optimum inspection point(s) should be selected to optimize the radiance signature for the features of interest in the molded product or other object of interest.
  • I R cameras should be located so that thermal images captured thereby may be produced at these optimum inspection point(s).
  • a product template image should be generated and stored for the mold cavity, or for each mold cavity if using a multi-cavity mold machine.
  • a template image may be created in a number of ways. One method for creating a template image is to synthetically create the template image based on user-defined requirements. Another method for creating such a template image is to create a thermographic image of an ideal or normal molded product for each mold cavity involved.
  • the run-time thermal images for mold cavity N are acquired at the inspection 5 point(s). If the molded product is moving while the run-time thermal images are produced, it may be preferable to apply image blur correction (e.g., by using a linear transform algorithm) to the thermal images. It may also be preferable to include an ambient temperature indicator in the FOV of the I R camera(s), such as by employing a piece of thin, blackened aluminum, or a i o calibrated black-body radiation source. The data from this ambient temperature indicator can be used to normalize the grey-scale histogram of the run-time image. Alternatively, a remote temperature sensor could be used to detect the ambient temperature of a thermally sensitive object in the immediate vicinity of the molded product and this could be used to normalize
  • the previously-generated template image for mold N should then be accessed.
  • the run-time image and the template image may then be normalized through an analysis of their grey-scale histograms so that the images match as closely as possible. This could be done by normalizing the
  • the template image is then normalized with the current ambient radiation environment. Further, it may be preferable to normalize the template image with the ambient temperature. This could be done by using data received from the blackened aluminum, calibrated black-body radiation source, or the remote temperature sensor data.
  • the delta image may be created, by subtracting the runtime image from the template image or vice versa.
  • the delta image can then 10 be analyzed using a number of different vision tools.
  • tools known as blob, edge, masking, and more advanced vision tools can be implemented to extract detailed image features from these thermal or delta images.
  • statistical vision tools can be applied to desired areas of the delta image for determining maximum/minimum threshold limits, Mini s Max calculations, as well as standard deviation estimates.
  • a statistical approach towards image analysis may accelerate the decision-making process when a decision for discarding a faulty or non-standard object must be made during a time span before the next object arrives.
  • the delta image may be displayed and analyzed on the U l 20 according to a preferred false color scheme, such as by manipulating an image of a molded part to highlight various defect conditions by overlaying selected colors on top of a run-time image to indicate good and bad areas thereof, etc.
  • the Ul could display a running average delta image for the most recent X number of molded products issued from any specific mold cavity, according to a preferred false color scheme.
  • the Ul could display a standard deviation image of the most recent X number of molded products issued from any specific mold cavity, according to a preferred false color scheme.
  • the Ul could display a running average delta image of the most recent X number of molded products issued from all mold cavities, according to a preferred false color scheme.
  • the Ul could display a standard deviation image of the most recent X number of molded products issued from all mold cavities, according to a preferred false color scheme.
  • the Ul could display the X most recent molded products displaying data outside the bounds of the acceptable thresholds.
  • the data from a plurality of running average delta images could be analyzed to provide feed-back signals to the process controller. These feed-back signals may be used to adjust the process in order to minimize the overall intensity and/or standard deviation within selected portions of the images.
  • FIGURE 3 is a schematic view showing an embodiment similar to the embodiment shown in FIGURE 1 , with the molds and molded products shown with shading again indicating the typically-observed heating and cooling of the products while inside and outside of the mold cavities.
  • the exemplary embodiments herein do not require the use of emission- creating IR light sources.
  • the invention involves a passive system for thermal analysis of opaque and semi-opaque non-metallic composites and plastic materials.
  • IR radiation is known to originate from anywhere within the material.
  • intensity variations originating from sub-surface regions can be detected according to the invention and these images can be processed for display.
  • Exemplary methods could also be used, for example, to produce images showing the inside or back wall of a closed container.
  • the embodiments herein can interpret the transient depth thermographic data of sub-surface and inside (back wall) structures in order to locate variations and/or flaws, which is especially useful with respect to opaque objects such as containers.
  • the delta images of the invention are not limited to creation by subtraction methods. Rather, some delta images may be created using subtraction, division, multiplication, or a combination of these operations via a formula.
  • An exemplary formula could mathematically simulate an optical filter or lens that may be used to compensate for an optical aberration or curvature.
  • One exemplary purpose for this process would be to flatten the images for further processing and analysis.
  • Embodiments of the invention may be used as a perspective transformation matrix method of correlating one view of a thermal image with another view of the same thermal image in order to create a 3D view.
  • two thermal images of the same molded product could be correlated with respect to one camera-specific (also viewer specific) global coordinate system in which case both images may be stereoscopically combined for 3D display within the global coordinate system.
  • the 3D display could be colored based on an assignment of pre-selected colors to a specific image intensity (i.e. temperature) gradient indicating its relative slope. This could be used to automatically make visible contours of sloped areas and their heights.
  • Stereoscopic image analysis can be accomplished with two camera positions, one camera position and sequential thermographs, or one camera position using one sample thermograph and a template thermograph. Using two cameras like two eyes on one object is mathematically similar to using one camera on two shifted views of the same object. Additionally, if only one image is available, it is possible to use a pre-defined template in place of the second image.
  • a system and method of the invention may provide various benefits.
  • a method of the invention may be generally used to monitor continuous in-line emissivity variations and image analysis of thermal objects in real time.
  • a method of the invention may also be generally used to interpret thermographic data in specific but selectable regions, lines or points on or within a thermal image; to correlate and compare such selected regions, lines or points to each other; and to align sequential or referential thermographic images based on digital locators such as thermal laser dots within the images.
  • a method of the invention may further be generally used to correlate image regions to each other for the purpose of statistical analysis such as normalization, standard deviation, Min-Max, histrogram, etc.
  • a method of the invention may also be employed to monitor the rate of demolded parts in order to adjust image analysis processing by taking into account the thermal age of the parts (e.g., in case demolded part conveyor speed changes) or to monitor successive thermographs for variations indicating abnormal mold function.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

La présente invention concerne un système et un procédé pour le test et la détection non destructifs de variations d'épaisseur et de structure dans matériaux plastiques et des composites non métalliques opaques et semi-opaques. Les systèmes et procédés de l'invention comprennent des procédés thermographiques infrarouges pouvant utiliser des modèles de référence thermique, soit synthétiques soit acquis, pour déterminer les propriétés des matériaux sur la face interne et le côté arrière, ainsi que les irrégularités encastrées des structures opaques et fermées, par exemple. Dans un exemple de réalisation, un système de vision artificielle et des capteurs associés sont employés pour fournir les données nécessaires à un processus de moulage d'objet et les données sont utilisées pour informer les opérateurs de l'état du processus de moulage et pour permettre à des mécanismes de rétroaction active d'optimiser le processus de moulage.
PCT/US2011/034384 2010-04-28 2011-04-28 Imagerie thermique d'objets moulés WO2011137264A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US32889310P 2010-04-28 2010-04-28
US61/328,893 2010-04-28

Publications (1)

Publication Number Publication Date
WO2011137264A1 true WO2011137264A1 (fr) 2011-11-03

Family

ID=44201285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2011/034384 WO2011137264A1 (fr) 2010-04-28 2011-04-28 Imagerie thermique d'objets moulés

Country Status (1)

Country Link
WO (1) WO2011137264A1 (fr)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012135952A1 (fr) * 2011-04-05 2012-10-11 The Governing Council Of The University Of Toronto Systèmes et procédés d'imagerie dynamique thermophotonique
EP2685249A1 (fr) * 2012-07-12 2014-01-15 ABB Research Ltd. Procédé et dispositif pour détecter une émission de chaleur anormale dans un processus industriel
US20150076353A1 (en) * 2012-03-27 2015-03-19 Msc & Sgcc Method and installation for measuring the glass distribution in containers
CN104626492A (zh) * 2015-01-08 2015-05-20 中国计量学院 一种基于机器视觉的注塑加工监控检测系统及操作方法
WO2015047597A3 (fr) * 2013-09-26 2015-06-04 Rosemount Inc. Diagnostics de procédés industriels à l'aide de la détection thermique par infrarouge
CN104809725A (zh) * 2015-04-23 2015-07-29 广东工业大学 一种布匹缺陷视觉识别检测装置和方法
DE102015007843A1 (de) * 2014-06-20 2015-12-24 Engel Austria Gmbh Anordnung und Verfahren zur Bereitstellung von Formteilen
US20160035077A1 (en) * 2010-07-13 2016-02-04 Prüftechnik Ag System for predicting errors on components of rotating machines by thermography
US9488527B2 (en) 2014-03-25 2016-11-08 Rosemount Inc. Process temperature measurement using infrared detector
CN106079338A (zh) * 2016-06-21 2016-11-09 电子科技大学中山学院 一种基于小波钝化的嵌入式模具保护装置及其图像处理方法
RU2601346C2 (ru) * 2012-12-13 2016-11-10 Сентрум воор Технише Информатика Б.В. Способ производства стеклянных изделий из материала для них и устройство для выполнения указанного способа
US9857228B2 (en) 2014-03-25 2018-01-02 Rosemount Inc. Process conduit anomaly detection using thermal imaging
DE102016118670A1 (de) * 2016-09-30 2018-04-05 Intravis Gmbh Verfahren und Vorrichtung zur Prüfung von Preforms
CN109374682A (zh) * 2018-11-26 2019-02-22 中国工程物理研究院化工材料研究所 一种脆性材料起裂时间的监测装置
WO2019133504A1 (fr) * 2017-12-27 2019-07-04 Applied Vision Corporation Système d'inspection de récipient en verre
US10638093B2 (en) 2013-09-26 2020-04-28 Rosemount Inc. Wireless industrial process field device with imaging
US10773438B2 (en) 2013-01-07 2020-09-15 Husky Injection Molding Systems Ltd. Molding system
US10823592B2 (en) 2013-09-26 2020-11-03 Rosemount Inc. Process device with process variable measurement using image capture device
US10914635B2 (en) 2014-09-29 2021-02-09 Rosemount Inc. Wireless industrial process monitor
WO2021083917A1 (fr) * 2019-10-30 2021-05-06 Sidel Participations Procede de controle d'un recipient en matiere plastique et machine de fabrication d'un tel recipient
CN112888543A (zh) * 2018-10-12 2021-06-01 科思创知识产权两合公司 用于改进带壳设备的生产的方法和系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0643297A1 (fr) * 1993-09-09 1995-03-15 TCE CONSULTANCY & ENGINEERING Système analytique pour analyser, contrôler, diagnostiquer et/ou réguler un procédé pour la fabrication de produits d'emballage en verre, dans laquelle l'analyse à lien directement après le procédé du formage du verre
US5483604A (en) * 1992-02-20 1996-01-09 Thermoteknix Systems Ltd. Monitoring changes in image characteristics
US20090161720A1 (en) * 2007-12-20 2009-06-25 Honeywell International, Inc. Passive thermal image glass breakage detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5483604A (en) * 1992-02-20 1996-01-09 Thermoteknix Systems Ltd. Monitoring changes in image characteristics
EP0643297A1 (fr) * 1993-09-09 1995-03-15 TCE CONSULTANCY & ENGINEERING Système analytique pour analyser, contrôler, diagnostiquer et/ou réguler un procédé pour la fabrication de produits d'emballage en verre, dans laquelle l'analyse à lien directement après le procédé du formage du verre
US20090161720A1 (en) * 2007-12-20 2009-06-25 Honeywell International, Inc. Passive thermal image glass breakage detector

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DALSTRA J: "Application of IR-sensors in container glass forming process", CERAMIC ENGINEERING AND SCIENCE PROCEEDINGS, vol. 26, no. 1, 1 January 2005 (2005-01-01), AMERICAN CERAMIC SOCIETY INC, US, pages 11 - 24, XP009149908, ISSN: 0196-6219, [retrieved on 20080326] *
RIGNEY M P ET AL: "Machine vision applications of low-cost thermal infrared camera", PROCEEDINGS OF THE SPIE - THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING, vol. 4020, 2000, SPIE-INT. SOC. OPT. ENG. USA, pages 15 - 26, XP002647520, ISSN: 0277-786X *

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160035077A1 (en) * 2010-07-13 2016-02-04 Prüftechnik Ag System for predicting errors on components of rotating machines by thermography
WO2012135952A1 (fr) * 2011-04-05 2012-10-11 The Governing Council Of The University Of Toronto Systèmes et procédés d'imagerie dynamique thermophotonique
US9584771B2 (en) 2011-04-05 2017-02-28 Andreas Mandelis Systems and methods for thermophotonic dynamic imaging
US20150076353A1 (en) * 2012-03-27 2015-03-19 Msc & Sgcc Method and installation for measuring the glass distribution in containers
US9803974B2 (en) * 2012-03-27 2017-10-31 Msc & Sgcc Method and installation for measuring the glass distribution in containers
EP2685249A1 (fr) * 2012-07-12 2014-01-15 ABB Research Ltd. Procédé et dispositif pour détecter une émission de chaleur anormale dans un processus industriel
WO2014009064A1 (fr) * 2012-07-12 2014-01-16 Abb Research Ltd Procédé et dispositif de détection d'une émission anormale de chaleur dans un processus industriel
RU2601346C2 (ru) * 2012-12-13 2016-11-10 Сентрум воор Технише Информатика Б.В. Способ производства стеклянных изделий из материала для них и устройство для выполнения указанного способа
US10773438B2 (en) 2013-01-07 2020-09-15 Husky Injection Molding Systems Ltd. Molding system
US10823592B2 (en) 2013-09-26 2020-11-03 Rosemount Inc. Process device with process variable measurement using image capture device
US10638093B2 (en) 2013-09-26 2020-04-28 Rosemount Inc. Wireless industrial process field device with imaging
RU2642931C2 (ru) * 2013-09-26 2018-01-29 Роузмаунт Инк. Диагностика промышленных процессов c помощью измерений температуры инфракрасного излучения
WO2015047597A3 (fr) * 2013-09-26 2015-06-04 Rosemount Inc. Diagnostics de procédés industriels à l'aide de la détection thermique par infrarouge
US11076113B2 (en) 2013-09-26 2021-07-27 Rosemount Inc. Industrial process diagnostics using infrared thermal sensing
US9488527B2 (en) 2014-03-25 2016-11-08 Rosemount Inc. Process temperature measurement using infrared detector
US9857228B2 (en) 2014-03-25 2018-01-02 Rosemount Inc. Process conduit anomaly detection using thermal imaging
DE102015007843A1 (de) * 2014-06-20 2015-12-24 Engel Austria Gmbh Anordnung und Verfahren zur Bereitstellung von Formteilen
US11927487B2 (en) 2014-09-29 2024-03-12 Rosemount Inc. Wireless industrial process monitor
US10914635B2 (en) 2014-09-29 2021-02-09 Rosemount Inc. Wireless industrial process monitor
CN104626492A (zh) * 2015-01-08 2015-05-20 中国计量学院 一种基于机器视觉的注塑加工监控检测系统及操作方法
CN104626492B (zh) * 2015-01-08 2018-10-30 中国计量学院 一种基于机器视觉的注塑加工监控检测系统及操作方法
CN104809725A (zh) * 2015-04-23 2015-07-29 广东工业大学 一种布匹缺陷视觉识别检测装置和方法
CN106079338A (zh) * 2016-06-21 2016-11-09 电子科技大学中山学院 一种基于小波钝化的嵌入式模具保护装置及其图像处理方法
DE102016118670A1 (de) * 2016-09-30 2018-04-05 Intravis Gmbh Verfahren und Vorrichtung zur Prüfung von Preforms
DE102016118670B4 (de) 2016-09-30 2023-03-02 INTRAVIS Gesellschaft für Lieferungen und Leistungen von bildgebenden und bildverarbeitenden Anlagen und Verfahren mbH Verfahren und Vorrichtung zur Prüfung von Preforms
CN111886472A (zh) * 2017-12-27 2020-11-03 应用视觉公司 玻璃容器检查系统
US10495445B2 (en) 2017-12-27 2019-12-03 Applied Vision Corporation Glass container inspection system
WO2019133504A1 (fr) * 2017-12-27 2019-07-04 Applied Vision Corporation Système d'inspection de récipient en verre
CN112888543A (zh) * 2018-10-12 2021-06-01 科思创知识产权两合公司 用于改进带壳设备的生产的方法和系统
CN112888543B (zh) * 2018-10-12 2023-03-28 科思创知识产权两合公司 用于改进带壳设备的生产的方法和系统
CN109374682B (zh) * 2018-11-26 2023-08-22 中国工程物理研究院化工材料研究所 一种脆性材料起裂时间的监测装置
CN109374682A (zh) * 2018-11-26 2019-02-22 中国工程物理研究院化工材料研究所 一种脆性材料起裂时间的监测装置
WO2021083917A1 (fr) * 2019-10-30 2021-05-06 Sidel Participations Procede de controle d'un recipient en matiere plastique et machine de fabrication d'un tel recipient
FR3102703A1 (fr) * 2019-10-30 2021-05-07 Sidel Participations Procédé de contrôle d’un récipient en matière plastique et machine de fabrication d’un tel récipient
EP4051484B1 (fr) 2019-10-30 2023-08-16 Sidel Participations Procede de controle d'un recipient en matiere plastique et machine de fabrication d'un tel recipient

Similar Documents

Publication Publication Date Title
WO2011137264A1 (fr) Imagerie thermique d'objets moulés
Moylan et al. Infrared thermography for laser-based powder bed fusion additive manufacturing processes
US8204294B2 (en) Systems and methods for detecting defects in coatings utilizing color-based thermal mismatch
EP2616799B1 (fr) Appareil et procédé de contrôle automatique des trous traversants d'un composant
CN104395693B (zh) 测量容器中的玻璃分布的方法和装置
CN103196564B (zh) 一种通过图像分割修正表面发射率的红外热成像测温方法
US10520427B2 (en) Method and device for evaluating the quality of a component produced by means of an additive laser sintering and/or laser melting method
EP2508882B1 (fr) Procédé et système de détermination de la qualité de produits pharmaceutiques
RU2601346C2 (ru) Способ производства стеклянных изделий из материала для них и устройство для выполнения указанного способа
CN107992857A (zh) 一种高温蒸汽泄漏自动巡检识别方法及识别系统
US20090245321A1 (en) Characterization of flaws in composites identified by thermography
US20120086810A1 (en) Method for a touchless determination of the temperature of an object and corresponding thermal imaging camera
EP0643297B1 (fr) Système analytique pour analyser, contrôler, diagnostiquer et/ou réguler un procédé pour la fabrication de produits d'emballage en verre, dans laquelle l'analyse à lien directement après le procédé du formage du verre
US20190195619A1 (en) Glass container inspection system
CN115512307B (zh) 广域空间红外多点实时火灾探测方法及系统、定位方法
AbouelNour et al. Assisted defect detection by in-process monitoring of additive manufacturing using optical imaging and infrared thermography
JP7464689B2 (ja) 複数のガラス容器の壁の厚さを測定するための設備及び方法
JP5372612B2 (ja) ガラス製品検査装置
CN107246913B (zh) 基于多次判别机制的森林防火检测方法
KR100983877B1 (ko) 물체의 반사율을 측정하는 시스템 및 방법
Żaba et al. Application of non-destructive methods to quality assessment of pattern assembly and ceramic mould in the investment casting elements of aircraft engines
Zhang et al. Research and Application of Temperature Monitoring and Error Correction System for High-Strength Steel Hot Stamping Parts
EP3692326B1 (fr) Système de mesure comportant une mesure de la chaleur
CN110542688A (zh) 实时监测建筑构件耐火试验过程中炉内温度及缺陷的方法
WO2023104974A3 (fr) Dispositif de stéréovision d'un récipient translucide à chaud

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11720229

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11720229

Country of ref document: EP

Kind code of ref document: A1