WO2011136466A2 - Method for manufacturing lithium manganese oxide - Google Patents

Method for manufacturing lithium manganese oxide Download PDF

Info

Publication number
WO2011136466A2
WO2011136466A2 PCT/KR2011/001080 KR2011001080W WO2011136466A2 WO 2011136466 A2 WO2011136466 A2 WO 2011136466A2 KR 2011001080 W KR2011001080 W KR 2011001080W WO 2011136466 A2 WO2011136466 A2 WO 2011136466A2
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
reactor
lithium
manganese oxide
reaction
Prior art date
Application number
PCT/KR2011/001080
Other languages
French (fr)
Korean (ko)
Other versions
WO2011136466A3 (en
Inventor
김건일
김천중
박연정
장동규
양우영
Original Assignee
삼성정밀화학(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성정밀화학(주) filed Critical 삼성정밀화학(주)
Publication of WO2011136466A2 publication Critical patent/WO2011136466A2/en
Publication of WO2011136466A3 publication Critical patent/WO2011136466A3/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/125Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type[MnO3]n-, e.g. Li2MnO3, Li2[MxMn1-xO3], (La,Sr)MnO3
    • C01G45/1257Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type[MnO3]n-, e.g. Li2MnO3, Li2[MxMn1-xO3], (La,Sr)MnO3 containing lithium, e.g. Li2MnO3, Li2[MxMn1-xO3
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/28Moving reactors, e.g. rotary drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/30Loose or shaped packing elements, e.g. Raschig rings or Berl saddles, for pouring into the apparatus for mass or heat transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1242Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [Mn2O4]-, e.g. LiMn2O4, Li[MxMn2-x]O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • a method for producing lithium manganese oxide is disclosed. More specifically, lithium comprising the step of injecting a reaction raw material including lithium and manganese into the reactor, mixing at the molecular level and chemical reaction (nucleating) A method for producing manganese oxide is disclosed.
  • Lithium manganese oxide (LiMn 2 O 4 , hereinafter referred to as LMO) is a material that is expected to be used as a positive electrode active material of a lithium secondary battery.
  • the solid phase method is a method of producing a LMO by mixing and heat treating a reaction material of a solid phase, it is difficult to produce uniform nanoparticles due to the high heat treatment temperature, the fine particles of several hundred nanometers or less for the production of uniform nanoparticles Since the reaction raw material must be used, there is a problem that the price competitiveness is lowered due to the increased dependency on the reaction raw material. In addition, the share of manganese raw material prices is gradually increasing.
  • the coprecipitation method is a method of coprecipitating manganese salts through an acidic reaction, mixing them with lithium salts, and drying and sintering to prepare LMOs. It is difficult.
  • the pechini method is a method of producing LMO by esterifying ethylene glycol and citric acid and then drying and sintering lithium salt and manganese salt.
  • One embodiment of the present invention comprises the step of injecting a reaction raw material containing lithium and manganese into the reactor to mix at the molecular level (nucleating) by mixing (chemical reaction) at the molecular level (chemical reaction) It provides a method for producing lithium manganese oxide.
  • It provides a method for producing lithium manganese oxide comprising the step of chemical reaction of the reaction raw material in the reactor (nucleating).
  • the chemical reaction may be an acid group reaction.
  • the reaction raw material may be injected into the reactor in the form of at least one of a solution form and a suspension form.
  • the reaction raw material may include an acid raw material and a basic raw material, the acid raw material may be injected into the reactor through a first raw material injection line, and the basic raw material may be injected into the reactor through a second raw material injection line.
  • the acidic raw material may include lithium and manganese, and the basic raw material may include a metal hydroxide.
  • the acidic raw material may include manganese, and the basic raw material may include lithium.
  • the acidic raw material may include lithium, and the basic raw material may include manganese.
  • the basic raw material may include lithium and manganese
  • the acidic raw material may include at least one of an inorganic acid and an organic acid.
  • the time (T M ) required for mixing at the molecular level may be shorter than the time (T N ) required for nucleation.
  • the T M may be 10 to 100 ⁇ s, and the T N may be 1 ⁇ m or less.
  • the molar ratio (Mn / Li) of manganese to lithium in the reaction raw material may be 1.8 to 2.2.
  • the reactor includes a chamber defining an internal space, a rotatable permeable packed bed disposed in the chamber and filled with a porous filler, and at least one raw material for injecting the reaction material into the permeable packed layer. It may be a high gravity rotating packed bed reactor having an injection line and a slurry outlet for discharging the slurry from the inner space.
  • Centrifugal acceleration of the permeable packed layer may be maintained at 10 ⁇ 100,000 m / s 2 .
  • the lithium manganese oxide may have a spinel type crystal structure.
  • a reaction raw material containing lithium and manganese in the form of inexpensive chloride and / or hydrate is injected into a reactor, mixed at the molecular level, and chemically determined.
  • a method for producing lithium manganese oxide having a particle size of several hundred nanometers or less and having a uniform particle size distribution and high-purity LMO can be mass produced at low cost.
  • FIG. 1 is a cross-sectional view schematically showing a high gravity rotary packed bed reactor used in the method for producing lithium manganese oxide according to one embodiment of the present invention.
  • Method for producing a lithium manganese oxide is a step of injecting a reaction raw material containing lithium and manganese into the reactor mixing at the molecular level (mixing at the molecular level) in the reactor, and in the reactor And chemically reacting the reaction raw materials with each other to generate crystal nuclei and to grow them to nanoscale. Thereafter, the slurry discharged from the reaction may be filtered, washed, dried and / or heat treated to obtain a uniform nano-sized lithium manganese oxide (LMO).
  • LMO lithium manganese oxide
  • 'lithium' means a lithium compound, a lithium atom and / or a lithium ion in some cases
  • 'manganese' means a manganese compound, a manganese atom and / or a manganese ion in some cases.
  • the "molecular level of mixing” means the level of mixing at which each molecule is mixed.
  • 'mixing' can be divided into 'macro-mixing' and 'micro-mixing', where macro mixing means mixing at the vessel scale, Micro mixing is synonymous with mixing at the molecular level described above.
  • the reaction raw material may be injected into the reactor in the form of at least one of a solution form and a suspension form.
  • the reaction raw material may include an acid raw material and a basic raw material.
  • the acidic raw material may be injected into the reactor through a first raw material injection line
  • the basic raw material may be injected into the reactor through a second raw material injection line.
  • the acidic raw material and the basic raw material are injected into the reactor through the first raw material injection line and the second raw material injection line, respectively, mixed at the molecular level in the reactor, and then subjected to a chemical reaction such as an acid group reaction. LMO nanoparticles are formed.
  • the acidic raw material may include lithium and manganese.
  • the acidic raw material may include lithium chloride and manganese chloride.
  • the acidic raw material may be, for example, a mixed aqueous solution of LiCl / MnCl 2 or a mixed aqueous suspension.
  • the basic raw material may include a metal hydroxide such as NaOH.
  • the acidic raw material may include manganese, and the basic raw material may include lithium.
  • the acidic raw material may include manganese chloride such as MnCl 2
  • the basic raw material may include lithium hydroxide such as LiOH.
  • the acidic raw material may include lithium
  • the basic raw material may include manganese.
  • the acidic raw material may include lithium chloride such as LiCl
  • the basic raw material may include manganese hydroxide such as Mn (OH) 2 .
  • the basic raw material may include lithium and manganese.
  • the basic raw material may include lithium hydroxide and manganese hydroxide.
  • the basic raw material may be, for example, a mixed aqueous solution of LiOH / Mn (OH) 2 or a mixed aqueous suspension.
  • the acidic raw material may include an inorganic acid and / or an organic acid such as HCl or acetic acid.
  • Such lithium chloride, manganese chloride, lithium hydroxide and manganese hydroxide is low in cost can reduce the manufacturing cost of lithium manganese oxide nanoparticles.
  • the chemical reaction may be an acid group reaction in which the acid and the base in the reaction raw material react by one equivalent, thereby losing the properties of the acid and the base.
  • the time (T M ) required for mixing at the molecular level may be shorter than the time (T N ) required for nucleation.
  • 'T M ' refers to the time taken from the start of mixing until the composition of the mixture becomes spatially uniform
  • 'T N ' means that the seed formation rate is in equilibrium from the point where the seed starts to form. It means the time it takes to reach and produce seed at a constant rate.
  • T M is controlled to be shorter than T N , when the maximum mixing between molecules is achieved before the start of nucleation in the reactor, LMO particles having a uniform particle size distribution can be prepared.
  • the T M may be 10 to 100 ⁇ s, and the T N may be 1 ⁇ m or less. If the T M is less than 10 GPa, it is not preferable from the economical point of view. In addition, when the T N exceeds 1 kPa, an appropriate level of reaction does not occur and thus yield is not preferable.
  • the internal temperature of the reactor may be maintained at 0 ⁇ 90 °C, for example, 20 ⁇ 80 °C. If the temperature is less than 0 ° C., an appropriate level of yield cannot be secured, which is not preferable. If the temperature is higher than 90 ° C., T N is difficult to control, which is not preferable.
  • the molar ratio (Mn / Li) of manganese to lithium in the reaction raw material may be 1.8 to 2.2. If the molar ratio (Mn / Li) is less than 1.8, a LiMnO 2 phase is formed, which is not preferable. If it exceeds 2.2, Mn 2 O 3 is precipitated, which is not preferable.
  • the residence time of the reaction raw material in the reactor may be 1ms ⁇ 10s, for example, 10ms ⁇ 5s.
  • the residence time of the reaction raw material is less than 1 ms, an appropriate level of reaction does not occur, which is not preferable.
  • the reaction time exceeds 10 s it is difficult to control the particle size of the LMO, and it is not preferable because the economy is poor.
  • FIG. 1 is a schematic cross-sectional view of a high gravity rotating packed bed reactor used in a method of manufacturing lithium manganese oxide according to one embodiment of the present invention.
  • This high gravity rotary packed reactor 10 is a chamber 11 defining an interior space, a rotatable permeable packed bed disposed in the chamber 11 and filled with a porous filler 12a ( 12) at least one raw material injection line 14-1, 14-2 for injecting the reaction raw material into the transparent filling layer 12; And a slurry outlet 15 for discharging the slurry from the inner space.
  • the raw material injection lines 14-1 and 14-2 are disposed to extend through the reactor 10 to the center of the rotating shaft of the permeable packed layer 12, and a plurality of injection holes (not shown) are formed at each end of the reactor.
  • the reaction raw material injected into (10) is sprayed into the transparent packed layer 12.
  • the reactor 10 may further include a gas outlet 16 for discharging gas from the internal space.
  • Porous filler 12a may contain titanium which is highly corrosion resistant. Specifically, the porous filler 12a may be titanium foam.
  • the permeable filler layer 12 is filled with a porous filler 12a therein and transmits the reaction raw material injected into the reactor 10 in the form of a solution or a suspension, and may be rotated by the drive shaft 13.
  • the centrifugal acceleration of the permeable filler 12 can be maintained at 10 ⁇ 100,000 m / s 2 . If the centrifugal acceleration of the permeable packed layer 12 is less than 10 m / s 2, the reaction may not proceed to an appropriate level. On the other hand, it is not easy in the reactor design technology that the centrifugal acceleration of the permeable packed layer 12 exceeds 100,000 m / s 2 .
  • the reaction raw materials can be mixed at a molecular level by a large centrifugal force by controlling the rotational speed of the permeable packed bed 12, so that the reaction proceeds smoothly even at low temperatures. You can. That is, uniformly mixing LMO nanoparticles at low temperature can be obtained by mixing fine droplets of reaction raw materials well before the growth of LMO particles. Since the reactor 10 is a continuous reactor, LMO can be produced in large quantities.
  • the LMO prepared by the method for preparing a lithium manganese oxide according to an embodiment of the present invention may have a spinel crystal structure, and an average particle diameter thereof may be 0.01 to 10 ⁇ m, for example, 0.05 to 0.8 ⁇ m. Therefore, the prepared lithium manganese oxide may be used as a cathode active material of a lithium secondary battery.
  • a reactor 10 similar to the reactor of FIG. 1 was manufactured by itself.
  • the specifications of the manufactured reactor 10 were as follows.
  • Permeable filling layer (12) stainless steel, inner diameter 10 cm, outer diameter 30 cm, thickness 10 cm cylindrical
  • Porous filler (12a) 4 pieces of titanium foam (approximately 400 pores per meter, outer diameter 30cm, inner diameter 10.5cm, axial thickness 2.5cm)
  • the drive shaft 13 of the reactor 10 is rotated to rotate the permeable packed bed 12 at a speed of 1440 rpm (centrifugal acceleration: 60,000 m / s 2 ). ) was maintained at 80 ° C.
  • the LiOH / (NH 4 ) OH mixed solution prepared in the above (2) and the MnCl 2 aqueous solution prepared in the above (1) were respectively injected into the first raw material injection line 14-1 and the second raw material injection line 14-2.
  • LMO nanoparticles were prepared in the same manner as in Example 1, except that each of the reactors 10 was continuously injected at a flow rate of 40 L / min through filtration, washing, and drying to obtain LMO nanoparticles. .
  • the ratio of the reaction raw material components injected into the reactor 10, that is, the molar ratio of Mn to Li (Mn / Li) was 2.
  • the internal temperature of the reactor was maintained at 70 ° C., and the LiCl / HCl mixed solution prepared in (1) and the Mn (OH) 2 aqueous solution prepared in (2) were respectively prepared in the first raw material injection line 14-1.
  • LMO nanoparticles were prepared in the same manner as in Example 1, except that the second raw material injection line 14-2 was continuously injected into the reactor 10 at a flow rate of 40 L / min, respectively. Filtration, washing and drying yielded LMO nanoparticles.
  • the ratio of the reaction raw material components injected into the reactor 10 that is, the molar ratio of Mn to Li (Mn / Li) was 2.
  • the LiOH aqueous solution and Mn (OH) 2 aqueous solution were 1: 1 in volume ratio.
  • LMO nanoparticles were prepared in the same manner as in Example 1, except that the reactor 10 was continuously injected at a flow rate of 100 L / min and 40 L / min, respectively, through filtration, washing, and drying. To obtain LMO nanoparticles.
  • the ratio of the reaction raw material components injected into the reactor 10, that is, the molar ratio of Mn to Li (Mn / Li) was 2.
  • each particle produced is LMO (LiMn 2 O 4 ).
  • Each numerical value e.g., 100 nm in Fig. 2 shown in Figs. 2, 4, 6 and 8 means the length of the thick bar shown in each figure, and each numerical value indicated in Figs.
  • (111) of FIG. 3 means a crystal plane index.

Abstract

Disclosed is a method of manufacturing lithium manganese oxide. The disclosed method for manufacturing lithium manganese oxide comprises the steps of: injecting reaction materials containing lithium and manganese into a reactor, and mixing the raw materials at the molecular level in the reactor; and allowing the reaction materials to chemically react in the reactor so as to cause nucleation.

Description

리튬 망간 산화물의 제조방법 Method of producing lithium manganese oxide
리튬 망간 산화물의 제조방법이 개시된다. 보다 상세하게는, 리튬 및 망간을 포함하는 반응원료를 반응기에 주입하여 분자 수준으로 혼합(mixing at the molecular level)하고 화학반응(chemical reaction)시켜 결정핵을 생성(nucleating)하는 단계를 포함하는 리튬 망간 산화물의 제조방법이 개시된다.A method for producing lithium manganese oxide is disclosed. More specifically, lithium comprising the step of injecting a reaction raw material including lithium and manganese into the reactor, mixing at the molecular level and chemical reaction (nucleating) A method for producing manganese oxide is disclosed.
리튬 망간 산화물(LiMn2O4, 이하 LMO라고 함)은 리튬 2차전지의 양극 활물질로 사용될 것으로 기대되고 있는 물질이다. Lithium manganese oxide (LiMn 2 O 4 , hereinafter referred to as LMO) is a material that is expected to be used as a positive electrode active material of a lithium secondary battery.
이러한 LMO의 제조방법으로는, 예를 들어, 고상법, 공침법 및 페치니(Pechini)법이 있다. As a method for producing such LMO, for example, there are a solid phase method, a coprecipitation method and a Pechini method.
상기 고상법은 고상의 반응원료를 혼합하고 열처리하여 LMO를 제조하는 방법으로서, 열처리온도가 높아 균일한 나노입자의 제조가 어려울뿐만 아니라, 균일한 나노입자의 제조를 위해서는 수백 나노미터 이하의 미립의 반응원료를 사용해야 하기 때문에 반응원료에 대한 의존도가 높아져서 가격 경쟁력이 떨어지는 문제점이 있다. 또한 망간 원료 가격 비중이 점차 높아지고 있다.The solid phase method is a method of producing a LMO by mixing and heat treating a reaction material of a solid phase, it is difficult to produce uniform nanoparticles due to the high heat treatment temperature, the fine particles of several hundred nanometers or less for the production of uniform nanoparticles Since the reaction raw material must be used, there is a problem that the price competitiveness is lowered due to the increased dependency on the reaction raw material. In addition, the share of manganese raw material prices is gradually increasing.
상기 공침법은 산염기 반응을 통하여 망간염을 공침시키고 이를 리튬염과 혼합한 후 건조 및 소결하여 LMO를 제조하는 방법으로서, 제조 방법이 비교적 간단하기는 하지만 백 나노미터 이하의 입자를 제조하기가 어렵다.The coprecipitation method is a method of coprecipitating manganese salts through an acidic reaction, mixing them with lithium salts, and drying and sintering to prepare LMOs. It is difficult.
상기 페치니법은 에틸렌글리콜과 구연산을 에스테르화한 후 리튬염과 망간염을 착화시켜 건조하고 소결하여 LMO를 제조하는 방법으로서, 사용되는 반응원료의 가격이 높아 경제성이 떨어진다.The pechini method is a method of producing LMO by esterifying ethylene glycol and citric acid and then drying and sintering lithium salt and manganese salt.
본 발명의 일 구현예는 리튬 및 망간을 포함하는 반응원료를 반응기에 주입하여 분자 수준으로 혼합(mixing at the molecular level)하고 화학반응(chemical reaction)시켜 결정핵을 생성(nucleating)하는 단계를 포함하는 리튬 망간 산화물의 제조방법을 제공한다. One embodiment of the present invention comprises the step of injecting a reaction raw material containing lithium and manganese into the reactor to mix at the molecular level (nucleating) by mixing (chemical reaction) at the molecular level (chemical reaction) It provides a method for producing lithium manganese oxide.
본 발명의 일 측면은,One aspect of the invention,
리튬 및 망간을 포함하는 반응원료를 반응기에 주입하여 상기 반응기내에서 분자 수준으로 혼합(mixing at the molecular level)하는 단계; 및Injecting a reaction raw material including lithium and manganese into a reactor and mixing at the molecular level in the reactor; And
상기 반응기 내에서 상기 반응원료를 화학반응(chemical reaction)시켜 결정핵을 생성(nucleating)하는 단계를 포함하는 리튬 망간 산화물의 제조방법을 제공한다.It provides a method for producing lithium manganese oxide comprising the step of chemical reaction of the reaction raw material in the reactor (nucleating).
상기 화학반응은 산염기 반응일 수 있다.The chemical reaction may be an acid group reaction.
상기 반응원료는 용액 형태 및 현탁액 형태 중 적어도 하나의 형태로 상기 반응기에 주입될 수 있다.The reaction raw material may be injected into the reactor in the form of at least one of a solution form and a suspension form.
상기 반응원료는 산성 원료 및 염기성 원료를 포함하고, 상기 산성 원료는 제1 원료 주입라인을 통해 상기 반응기에 주입되고, 상기 염기성 원료는 제2 원료 주입라인을 통해 상기 반응기에 주입될 수 있다.The reaction raw material may include an acid raw material and a basic raw material, the acid raw material may be injected into the reactor through a first raw material injection line, and the basic raw material may be injected into the reactor through a second raw material injection line.
상기 산성 원료는 리튬 및 망간을 포함하고, 상기 염기성 원료는 금속 수산화물을 포함할 수 있다.The acidic raw material may include lithium and manganese, and the basic raw material may include a metal hydroxide.
상기 산성 원료는 망간을 포함하고, 상기 염기성 원료는 리튬을 포함할 수 있다.The acidic raw material may include manganese, and the basic raw material may include lithium.
상기 산성 원료는 리튬을 포함하고, 상기 염기성 원료는 망간을 포함할 수 있다.The acidic raw material may include lithium, and the basic raw material may include manganese.
상기 염기성 원료는 리튬 및 망간을 포함하고, 상기 산성 원료는 무기산 및 유기산 중 적어도 1종을 포함할 수 있다.The basic raw material may include lithium and manganese, and the acidic raw material may include at least one of an inorganic acid and an organic acid.
상기 분자 수준의 혼합에 소요되는 시간(TM)은 상기 결정핵 생성에 소요되는 시간(TN) 보다 짧을 수 있다. The time (T M ) required for mixing at the molecular level may be shorter than the time (T N ) required for nucleation.
상기 TM은 10~100㎲이고, 상기 TN은 1㎳ 이하일 수 있다.The T M may be 10 to 100 μs, and the T N may be 1 μm or less.
상기 반응원료 중 리튬에 대한 망간의 몰비(Mn/Li)는 1.8~2.2일 수 있다.The molar ratio (Mn / Li) of manganese to lithium in the reaction raw material may be 1.8 to 2.2.
상기 반응기는, 내부공간을 한정하는 챔버(chamber), 상기 챔버내에 배치되고 다공성 충전재가 충전된 회전가능한 투과성 충전층(permeable packed bed), 상기 투과성 충전층에 상기 반응원료를 주입하는 적어도 하나의 원료 주입라인, 및 상기 내부공간으로부터 슬러리를 배출하는 슬러리 배출구를 구비하는 고중력 회전 충전형 반응기(high gravity rotating packed bed reactor)일 수 있다.The reactor includes a chamber defining an internal space, a rotatable permeable packed bed disposed in the chamber and filled with a porous filler, and at least one raw material for injecting the reaction material into the permeable packed layer. It may be a high gravity rotating packed bed reactor having an injection line and a slurry outlet for discharging the slurry from the inner space.
상기 투과성 충전층의 원심 가속도는 10~100,000m/s2로 유지될 수 있다.Centrifugal acceleration of the permeable packed layer may be maintained at 10 ~ 100,000 m / s 2 .
상기 리튬 망간 산화물은 스피넬형 결정구조(spinel type crystal structure)를 가질 수 있다.The lithium manganese oxide may have a spinel type crystal structure.
본 발명의 일 구현예에 의하면, 저렴한 염화물 및/또는 수화물 형태의 리튬 및 망간을 포함하는 반응원료를 반응기에 주입하여 분자 수준으로 혼합(mixing at the molecular level)하고 화학반응(chemical reaction)시켜 결정핵을 생성(nucleating)하는 단계를 포함함으로써, 수백 나노미터 이하의 입자크기를 가지며 입도분포가 균일하고 순도가 높은 LMO를 저렴한 비용으로 대량 생산할 수 있는 리튬 망간 산화물의 제조방법이 제공될 수 있다.According to one embodiment of the present invention, a reaction raw material containing lithium and manganese in the form of inexpensive chloride and / or hydrate is injected into a reactor, mixed at the molecular level, and chemically determined. By including nucleating, a method for producing lithium manganese oxide having a particle size of several hundred nanometers or less and having a uniform particle size distribution and high-purity LMO can be mass produced at low cost.
도 1은 본 발명의 일 구현예에 따른 리튬 망간 산화물의 제조방법에 사용되는 고중력 회전 충전층 반응기를 개략적으로 도시한 단면도이다.1 is a cross-sectional view schematically showing a high gravity rotary packed bed reactor used in the method for producing lithium manganese oxide according to one embodiment of the present invention.
도 2, 4, 6 및 8은 본 발명의 실시예 1~4에서 각각 제조된 리튬 망간 산화물 나노입자의 TEM 사진이다.2, 4, 6 and 8 are TEM photographs of lithium manganese oxide nanoparticles prepared in Examples 1 to 4 of the present invention, respectively.
도 3, 5, 7 및 9는 본 발명의 실시예 1~4에서 각각 제조된 리튬 망간 산화물 나노입자의 XRD 회절 패턴이다.3, 5, 7 and 9 are XRD diffraction patterns of the lithium manganese oxide nanoparticles prepared in Examples 1 to 4 of the present invention, respectively.
이어서, 본 발명의 일 구현예에 따른 리튬 망간 산화물의 제조방법에 관하여 상세히 설명한다. Next, a method of manufacturing lithium manganese oxide according to one embodiment of the present invention will be described in detail.
본 발명의 일 구현예에 따른 리튬 망간 산화물의 제조방법은 리튬 및 망간을 포함하는 반응원료를 반응기에 주입하여 상기 반응기내에서 분자 수준으로 혼합(mixing at the molecular level)하는 단계, 및 상기 반응기 내에서 상기 반응원료를 화학반응(chemical reaction)시켜 결정핵을 생성(nucleating)하고 이를 나노크기로 성장시키는(crystal growing) 단계를 포함한다. 이후 상기 반응에서 배출된 슬러리를 여과, 세척, 건조 및/또는 열처리함으로써 균일한 나노크기의 리튬 망간 산화물(LMO)를 얻을 수 있다.Method for producing a lithium manganese oxide according to an embodiment of the present invention is a step of injecting a reaction raw material containing lithium and manganese into the reactor mixing at the molecular level (mixing at the molecular level) in the reactor, and in the reactor And chemically reacting the reaction raw materials with each other to generate crystal nuclei and to grow them to nanoscale. Thereafter, the slurry discharged from the reaction may be filtered, washed, dried and / or heat treated to obtain a uniform nano-sized lithium manganese oxide (LMO).
본 명세서에서, '리튬'이란 경우에 따라 리튬 화합물, 리튬 원자 및/또는 리튬 이온을 의미하고, '망간'이란 경우에 따라 망간 화합물, 망간 원자 및/또는 망간 이온을 의미한다. In the present specification, 'lithium' means a lithium compound, a lithium atom and / or a lithium ion in some cases, and 'manganese' means a manganese compound, a manganese atom and / or a manganese ion in some cases.
또한 본 명세서에서, '분자 수준의 혼합'이란 각 분자끼리 혼합되는 수준의 혼합을 의미한다. 일반적으로, '혼합(mixing)'은 '매크로 혼합(macro-mixing)'과 '마이크로 혼합(micro-mixing)'으로 구분될 수 있는데, 매크로 혼합은 용기 수준(vessel scale)의 혼합을 의미하고, 마이크로 혼합은 전술한 분자 수준의 혼합과 동일한 의미이다.In addition, in the present specification, the "molecular level of mixing" means the level of mixing at which each molecule is mixed. In general, 'mixing' can be divided into 'macro-mixing' and 'micro-mixing', where macro mixing means mixing at the vessel scale, Micro mixing is synonymous with mixing at the molecular level described above.
상기 반응원료는 용액 형태 및 현탁액 형태 중 적어도 하나의 형태로 상기 반응기에 주입될 수 있다.The reaction raw material may be injected into the reactor in the form of at least one of a solution form and a suspension form.
또한, 상기 반응원료는 산성 원료 및 염기성 원료를 포함할 수 있다. 이 경우, 상기 산성 원료는 제1 원료 주입라인을 통해 상기 반응기에 주입되고, 상기 염기성 원료는 제2 원료 주입라인을 통해 상기 반응기에 주입될 수 있다. 구체적으로, 상기 산성 원료와 상기 염기성 원료는 각각 상기 제1 원료 주입라인 및 제2 원료 주입라인을 통해 상기 반응기에 주입되어 상기 반응기 내에서 분자 수준으로 혼합된 후 산염기 반응과 같은 화학반응을 거쳐 LMO 나노입자를 형성하게 된다.In addition, the reaction raw material may include an acid raw material and a basic raw material. In this case, the acidic raw material may be injected into the reactor through a first raw material injection line, and the basic raw material may be injected into the reactor through a second raw material injection line. Specifically, the acidic raw material and the basic raw material are injected into the reactor through the first raw material injection line and the second raw material injection line, respectively, mixed at the molecular level in the reactor, and then subjected to a chemical reaction such as an acid group reaction. LMO nanoparticles are formed.
상기 산성 원료는 리튬 및 망간을 포함할 수 있다. 구체적으로, 상기 산성 원료는 리튬 염화물 및 망간 염화물을 포함할 수 있다. 상기 산성 원료는, 예를 들어, LiCl/MnCl2 혼합 수용액 또는 혼합 수현탁액일 수 있다. 이 경우, 상기 염기성 원료는 NaOH와 같은 금속 수산화물을 포함할 수 있다.The acidic raw material may include lithium and manganese. Specifically, the acidic raw material may include lithium chloride and manganese chloride. The acidic raw material may be, for example, a mixed aqueous solution of LiCl / MnCl 2 or a mixed aqueous suspension. In this case, the basic raw material may include a metal hydroxide such as NaOH.
또한, 상기 산성 원료는 망간을 포함하고, 상기 염기성 원료는 리튬을 포함할 수 있다. 구체적으로, 상기 산성 원료는 MnCl2와 같은 망간 염화물을 포함하고, 상기 염기성 원료는 LiOH와 같은 리튬 수산화물을 포함할 수 있다.In addition, the acidic raw material may include manganese, and the basic raw material may include lithium. Specifically, the acidic raw material may include manganese chloride such as MnCl 2, and the basic raw material may include lithium hydroxide such as LiOH.
또한, 상기 산성 원료는 리튬을 포함하고, 상기 염기성 원료는 망간을 포함할 수 있다. 구체적으로, 상기 산성 원료는 LiCl과 같은 리튬 염화물을 포함하고, 상기 염기성 원료는 Mn(OH)2와 같은 망간 수산화물을 포함할 수 있다.In addition, the acidic raw material may include lithium, and the basic raw material may include manganese. Specifically, the acidic raw material may include lithium chloride such as LiCl, and the basic raw material may include manganese hydroxide such as Mn (OH) 2 .
또한, 상기 염기성 원료는 리튬 및 망간을 포함할 수 있다. 구체적으로, 상기 염기성 원료는 리튬 수산화물 및 망간 수산화물을 포함할 수 있다. 상기 염기성 원료는, 예를 들어, LiOH/Mn(OH)2 혼합 수용액 또는 혼합 수현탁액일 수 있다. 이 경우, 상기 산성 원료는 HCl 또는 아세트산과 같은 무기산 및/또는 유기산을 포함할 수 있다.In addition, the basic raw material may include lithium and manganese. Specifically, the basic raw material may include lithium hydroxide and manganese hydroxide. The basic raw material may be, for example, a mixed aqueous solution of LiOH / Mn (OH) 2 or a mixed aqueous suspension. In this case, the acidic raw material may include an inorganic acid and / or an organic acid such as HCl or acetic acid.
이러한 리튬 염화물, 망간 염화물, 리튬 수산화물 및 망간 수산화물은 가격이 저렴하여 리튬 망간 산화물 나노입자의 제조비용을 절감할 수 있다.Such lithium chloride, manganese chloride, lithium hydroxide and manganese hydroxide is low in cost can reduce the manufacturing cost of lithium manganese oxide nanoparticles.
상기 화학반응은 상기 반응원료 중의 산과 염기가 1당량씩 반응하여 산 및 염기로서의 성질을 잃는 산염기 반응일 수 있다. The chemical reaction may be an acid group reaction in which the acid and the base in the reaction raw material react by one equivalent, thereby losing the properties of the acid and the base.
상기 분자 수준의 혼합에 소요되는 시간(TM)은 상기 결정핵 생성에 소요되는 시간(TN) 보다 짧을 수 있다.The time (T M ) required for mixing at the molecular level may be shorter than the time (T N ) required for nucleation.
본 명세서에서, 'TM'은 혼합 개시 시점에서부터 혼합물의 조성이 공간적으로 균일해질 때까지 걸리는 시간을 의미하고, 'TN'은 결정핵이 생성되기 시작하는 시점에서부터 결정핵 생성속도가 평형에 도달하여 결정핵이 일정한 속도로 생성될 때까지 소요되는 시간을 의미한다.In the present specification, 'T M ' refers to the time taken from the start of mixing until the composition of the mixture becomes spatially uniform, and 'T N ' means that the seed formation rate is in equilibrium from the point where the seed starts to form. It means the time it takes to reach and produce seed at a constant rate.
이와 같이 TM을 TN 보다 짧도록 조절함으로써, 반응기내에서 핵생성이 시작되기 전에 분자간의 최대 혼합을 이루게 되면 입도분포가 균일한 나노크기의 LMO 입자를 제조할 수 있다. As such, by controlling T M to be shorter than T N , when the maximum mixing between molecules is achieved before the start of nucleation in the reactor, LMO particles having a uniform particle size distribution can be prepared.
상기 TM은 10~100㎲이고, 상기 TN은 1㎳ 이하일 수 있다. 상기 TM이 10㎲ 미만이면 경제성 측면에서 바람직하지 않고, 100㎲를 초과하면 입도 균일도가 떨어져서 바람직하지 않다. 또한, 상기 TN이 1㎳를 초과하면 적정한 수준의 반응이 일어나지 않아 수율이 떨어지므로 바람직하지 않다.The T M may be 10 to 100 μs, and the T N may be 1 μm or less. If the T M is less than 10 GPa, it is not preferable from the economical point of view. In addition, when the T N exceeds 1 kPa, an appropriate level of reaction does not occur and thus yield is not preferable.
상기 LMO 나노입자의 제조시 상기 반응기의 내부 온도는 0~90℃, 예를 들어, 20~80℃로 유지될 수 있다. 상기 온도가 0℃ 미만이면 적정한 수준의 수율을 확보할 수 없어서 바람직하지 않고, 90℃를 초과하면 TN의 조절이 어려워져서 바람직하지 않다. In the production of the LMO nanoparticles, the internal temperature of the reactor may be maintained at 0 ~ 90 ℃, for example, 20 ~ 80 ℃. If the temperature is less than 0 ° C., an appropriate level of yield cannot be secured, which is not preferable. If the temperature is higher than 90 ° C., T N is difficult to control, which is not preferable.
또한, 상기 반응원료, 즉 상기 반응기에 주입되는 반응원료 중 리튬에 대한 망간의 몰비(Mn/Li)는 1.8~2.2일 수 있다. 상기 몰비(Mn/Li)가 1.8 미만이면 LiMnO2 상이 형성되어 바람직하지 않고, 2.2를 초과하면 Mn2O3가 석출되어 바람직하지 않다.In addition, the molar ratio (Mn / Li) of manganese to lithium in the reaction raw material, that is, the reaction raw material injected into the reactor may be 1.8 to 2.2. If the molar ratio (Mn / Li) is less than 1.8, a LiMnO 2 phase is formed, which is not preferable. If it exceeds 2.2, Mn 2 O 3 is precipitated, which is not preferable.
상기 반응기 내에서 상기 반응원료의 체류시간은 1㎳~10s, 예를 들어, 10㎳~5s일 수 있다. 상기 반응원료의 체류시간이 1㎳ 미만이면 적정한 수준의 반응이 일어나지 않아서 바람직하지 않고, 10s를 초과하면 LMO의 입자크기 조절이 어려워지고, 경제성이 떨어져서 바람직하지 않다.The residence time of the reaction raw material in the reactor may be 1㎳ ~ 10s, for example, 10㎳ ~ 5s. When the residence time of the reaction raw material is less than 1 ms, an appropriate level of reaction does not occur, which is not preferable. When the reaction time exceeds 10 s, it is difficult to control the particle size of the LMO, and it is not preferable because the economy is poor.
도 1은 본 발명의 일 구현예에 따른 리튬 망간 산화물의 제조방법에 사용되는 고중력 회전 충전층 반응기(high gravity rotating packed bed reactor)를 개략적으로 도시한 단면도이다.FIG. 1 is a schematic cross-sectional view of a high gravity rotating packed bed reactor used in a method of manufacturing lithium manganese oxide according to one embodiment of the present invention.
이러한 고중력 회전 충전형 반응기(10)는 내부공간을 한정하는 챔버(chamber)(11), 챔버(11)내에 배치되고 다공성 충전재(12a)가 충전된 회전가능한 투과성 충전층(permeable packed bed)(12), 이러한 투과성 충전층(12)에 상기 반응원료를 주입하는 적어도 하나의 원료 주입라인(14-1, 14-2); 및 상기 내부공간으로부터 슬러리를 배출하는 슬러리 배출구(15)를 구비할 수 있다. This high gravity rotary packed reactor 10 is a chamber 11 defining an interior space, a rotatable permeable packed bed disposed in the chamber 11 and filled with a porous filler 12a ( 12) at least one raw material injection line 14-1, 14-2 for injecting the reaction raw material into the transparent filling layer 12; And a slurry outlet 15 for discharging the slurry from the inner space.
원료 주입라인(14-1, 14-2)은 반응기(10)를 관통하여 투과성 충전층(12)의 회전축 중심부까지 연장되게 배치되고 각 단부에 복수개의 분사공(미도시)이 형성되어 있어 반응기(10)에 주입된 반응원료를 투과성 충전층(12) 내부로 분사시킨다.The raw material injection lines 14-1 and 14-2 are disposed to extend through the reactor 10 to the center of the rotating shaft of the permeable packed layer 12, and a plurality of injection holes (not shown) are formed at each end of the reactor. The reaction raw material injected into (10) is sprayed into the transparent packed layer 12.
또한, 상기 반응기(10)는 상기 내부공간으로부터 가스를 배출하는 가스 배출구(16)를 추가로 구비할 수 있다.In addition, the reactor 10 may further include a gas outlet 16 for discharging gas from the internal space.
다공성 충전재(12a)는 내부식성 강한 티타늄을 함유할 수 있다. 구체적으로, 이러한 다공성 충전재는(12a)은 티타늄 폼(titanium foam)일 수 있다. Porous filler 12a may contain titanium which is highly corrosion resistant. Specifically, the porous filler 12a may be titanium foam.
투과성 충전층(12)은 그 내부에 다공성 충전재(12a)가 충전되어 있으며 용액 형태 또는 현탁액 형태로 반응기(10)에 주입된 반응원료를 투과시키는 것으로, 구동축(13)에 의해 회전될 수 있다. 이러한 투과성 충전충(12)의 원심 가속도는 10~100,000m/s2로 유지될 수 있다. 상기 투과성 충전층(12)의 원심 가속도가 10m/s2 미만이면 반응이 적정 수준으로 진행되지 못한다. 한편, 상기 투과성 충전층(12)의 원심 가속도가 100,000m/s2를 초과하는 것은 반응기 설계 기술상 용이하지 않다.The permeable filler layer 12 is filled with a porous filler 12a therein and transmits the reaction raw material injected into the reactor 10 in the form of a solution or a suspension, and may be rotated by the drive shaft 13. The centrifugal acceleration of the permeable filler 12 can be maintained at 10 ~ 100,000 m / s 2 . If the centrifugal acceleration of the permeable packed layer 12 is less than 10 m / s 2, the reaction may not proceed to an appropriate level. On the other hand, it is not easy in the reactor design technology that the centrifugal acceleration of the permeable packed layer 12 exceeds 100,000 m / s 2 .
상기와 같은 구성을 갖는 반응기(10)는 대기압하에서 작동되지만 투과성 충전층(12)의 회전속도를 조절함으로써 큰 원심력에 의해 반응원료를 분자 수준으로 혼합할 수 있기 때문에, 저온에서도 반응을 원활하게 진행시킬 수 있다. 즉, 미세한 액적의 반응원료를 LMO 입자의 성장 전에 잘 혼합함으로써 저온에서 균일한 LMO 나노입자를 얻을 수 있다. 상기 반응기(10)는 연속 반응기이므로 LMO를 대량으로 생산할 수 있다.Although the reactor 10 having the above configuration is operated under atmospheric pressure, the reaction raw materials can be mixed at a molecular level by a large centrifugal force by controlling the rotational speed of the permeable packed bed 12, so that the reaction proceeds smoothly even at low temperatures. You can. That is, uniformly mixing LMO nanoparticles at low temperature can be obtained by mixing fine droplets of reaction raw materials well before the growth of LMO particles. Since the reactor 10 is a continuous reactor, LMO can be produced in large quantities.
본 발명의 일 구현예에 따른 리튬 망간 산화물의 제조방법에 의해 제조된 LMO는 스피넬형 결정구조를 가질 수 있으며, 그 평균입경이 0.01~10㎛, 예를 들어, 0.05~0.8㎛일 수 있다. 따라서, 상기 제조된 리튬 망간 산화물은 리튬 2차전지의 양극 활물질 등으로 사용될 수 있다. The LMO prepared by the method for preparing a lithium manganese oxide according to an embodiment of the present invention may have a spinel crystal structure, and an average particle diameter thereof may be 0.01 to 10 μm, for example, 0.05 to 0.8 μm. Therefore, the prepared lithium manganese oxide may be used as a cathode active material of a lithium secondary battery.
이하, 실시예들을 들어 본 발명에 관하여 더욱 상세히 설명하지만, 본 발명이 이러한 실시예들에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
실시예EXAMPLE
실시예 1Example 1
(1) 6.0mol/L의 NaOH 수용액을 제조하여, 이를 염기성 원료로 사용하였다. (1) 6.0 mol / L aqueous NaOH solution was prepared and used as the basic raw material.
(2) 2.0mol/L의 LiCl 수용액 및 2.0mol/L의 MnCl2 수용액을 각각 제조한 후 상기 2종의 수용액을 1:2의 부피비로 서로 혼합하여 이 혼합액을 산성 원료로 사용하였다. 이때, 상기 LiCl/MnCl2 혼합용액 중 Li 대비 Mn의 몰비(Mn/Li)는 2이었다.(2) A 2.0 mol / L LiCl aqueous solution and a 2.0 mol / L MnCl 2 aqueous solution were prepared, respectively, and the two aqueous solutions were mixed with each other in a volume ratio of 1: 2 to use the mixed solution as an acidic raw material. At this time, the molar ratio (Mn / Li) of Mn to Li in the LiCl / MnCl 2 mixed solution was 2.
(3) 도 1의 반응기와 유사한 반응기(10)를 자체 제작하였다. 제작된 반응기(10)의 사양은 하기와 같았다.(3) A reactor 10 similar to the reactor of FIG. 1 was manufactured by itself. The specifications of the manufactured reactor 10 were as follows.
■ 투과성 충전층(12): 스테인리스 스틸 재질, 내경 10cm, 외경 30cm, 두께 10cm인 원통형Permeable filling layer (12): stainless steel, inner diameter 10 cm, outer diameter 30 cm, thickness 10 cm cylindrical
■ 다공성 충전재(12a): 4장의 티타늄 폼(1m당 약 400개의 공극, 외경 30cm, 내경 10.5cm, 축방향 두께 2.5cm)Porous filler (12a): 4 pieces of titanium foam (approximately 400 pores per meter, outer diameter 30cm, inner diameter 10.5cm, axial thickness 2.5cm)
(4) LMO 나노입자의 제조를 위해, 상기 반응기(10)의 구동축(13)을 회전시켜 투과성 충전층(12)을 1440rpm의 속도(원심 가속도: 60,000m/s2)로 회전시키면서 반응기(10)의 내부온도를 80℃로 유지시켰다.(4) In order to manufacture the LMO nanoparticles, the drive shaft 13 of the reactor 10 is rotated to rotate the permeable packed bed 12 at a speed of 1440 rpm (centrifugal acceleration: 60,000 m / s 2 ). ) Was maintained at 80 ° C.
(5) 상기 (2)에서 제조한 산성 원료 및 상기 (1)에서 제조한 염기성 원료를 각각 제1 원료 주입라인(14-1) 및 제2 원료 주입라인(14-2)을 통해 상기 반응기(10)에 각각 40L/min의 유속으로 연속적으로 주입하여 LMO 나노입자를 얻었다. (5) The acidic raw material prepared in the above (2) and the basic raw material prepared in the above (1) are respectively passed through the first raw material injection line 14-1 and the second raw material injection line 14-2. 10) was continuously injected at a flow rate of 40 L / min to obtain LMO nanoparticles.
(6) 상기 제조된 LMO 나노입자를 함유하는 슬러리를 슬러리 배출구(15)로 배출시켰다.(6) The slurry containing the prepared LMO nanoparticles was discharged to the slurry outlet 15.
(7) 상기 슬러리를 필터로 여과하고, 물로 세척한후, 건조기에서 120℃의 온도로 건조시켜 LMO 나노입자를 얻었다.(7) The slurry was filtered with a filter, washed with water, and then dried at a temperature of 120 ° C. in a dryer to obtain LMO nanoparticles.
실시예 2Example 2
(1) 4.0mol/L의 MnCl2 수용액을 제조하였다. (1) A 4.0 mol / L aqueous MnCl 2 solution was prepared.
(2) 2.0mol/L의 LiOH 수용액 및 2.0mol/L의 (NH4)OH 수용액을 각각 제조한 후 상기 2종의 수용액을 1:1의 부피비로 서로 혼합하였다. (2) A 2.0 mol / L LiOH aqueous solution and a 2.0 mol / L (NH 4 ) OH aqueous solution were prepared, respectively, and the two aqueous solutions were mixed with each other in a volume ratio of 1: 1.
상기 (2)에서 제조한 LiOH/(NH4)OH 혼합용액 및 상기 (1)에서 제조한 MnCl2 수용액을 각각 제1 원료 주입라인(14-1) 및 제2 원료 주입라인(14-2)을 통해 상기 반응기(10)에 각각 40L/min의 유속으로 연속적으로 주입한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 LMO 나노입자를 제조하고, 여과, 세척 및 건조하여 LMO 나노입자를 얻었다. 본 실시예에서, 상기 반응기(10)에 주입되는 반응원료 성분들의 비, 즉 Li 대비 Mn의 몰비(Mn/Li)는 2이었다.The LiOH / (NH 4 ) OH mixed solution prepared in the above (2) and the MnCl 2 aqueous solution prepared in the above (1) were respectively injected into the first raw material injection line 14-1 and the second raw material injection line 14-2. LMO nanoparticles were prepared in the same manner as in Example 1, except that each of the reactors 10 was continuously injected at a flow rate of 40 L / min through filtration, washing, and drying to obtain LMO nanoparticles. . In this embodiment, the ratio of the reaction raw material components injected into the reactor 10, that is, the molar ratio of Mn to Li (Mn / Li) was 2.
실시예 3Example 3
(1) 2.0mol/L의 LiCl 수용액 및 2.0mol/L의 HCl 수용액을 각각 제조한 후 상기 2종의 수용액을 1:1의 부피비로 서로 혼합하였다.(1) After preparing 2.0 mol / L LiCl aqueous solution and 2.0 mol / L HCl aqueous solution, respectively, the two aqueous solutions were mixed with each other in a volume ratio of 1: 1.
(2) 4.0mol/L의 Mn(OH)2 수용액을 제조한다.(2) 4.0 mol / L of Mn (OH) 2 aqueous solution was prepared.
상기 반응기의 내부온도를 70℃로 유지하고, 상기 (1)에서 제조한 LiCl/HCl 혼합용액 및 상기 (2)에서 제조한 Mn(OH)2 수용액을 각각 제1 원료 주입라인(14-1) 및 제2 원료 주입라인(14-2)을 통해 상기 반응기(10)에 각각 40L/min의 유속으로 연속적으로 주입한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 LMO 나노입자를 제조하고, 여과, 세척 및 건조하여 LMO 나노입자를 얻었다. 본 실시예에서, 상기 반응기(10)에 주입되는 반응원료 성분들의 비, 즉 Li 대비 Mn의 몰비(Mn/Li)는 2이었다.The internal temperature of the reactor was maintained at 70 ° C., and the LiCl / HCl mixed solution prepared in (1) and the Mn (OH) 2 aqueous solution prepared in (2) were respectively prepared in the first raw material injection line 14-1. And LMO nanoparticles were prepared in the same manner as in Example 1, except that the second raw material injection line 14-2 was continuously injected into the reactor 10 at a flow rate of 40 L / min, respectively. Filtration, washing and drying yielded LMO nanoparticles. In this embodiment, the ratio of the reaction raw material components injected into the reactor 10, that is, the molar ratio of Mn to Li (Mn / Li) was 2.
실시예 4Example 4
2.0mol/L의 HCl 수용액, 2.0mol/L의 LiOH 수용액 및 4.0mol/L의 Mn(OH)2 수용액을 각각 제조한 후, 상기 LiOH 수용액 및 Mn(OH)2 수용액을 1:1의 부피비로 혼합하고, 상기 반응기의 내부온도를 80℃로 유지하고, 상기 HCl 수용액 및 상기 LiOH/Mn(OH)2 혼합용액을 각각 제1 원료 주입라인(14-1) 및 제2 원료 주입라인(14-2)을 통해 상기 반응기(10)에 각각 100L/min 및 40L/min의 유속으로 연속적으로 주입한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 LMO 나노입자를 제조하고, 여과, 세척 및 건조하여 LMO 나노입자를 얻었다. 본 실시예에서, 상기 반응기(10)에 주입되는 반응원료 성분들의 비, 즉 Li 대비 Mn의 몰비(Mn/Li)는 2이었다.After preparing 2.0 mol / L HCl aqueous solution, 2.0 mol / L LiOH aqueous solution and 4.0 mol / L Mn (OH) 2 aqueous solution, respectively, the LiOH aqueous solution and Mn (OH) 2 aqueous solution were 1: 1 in volume ratio. Mixing, maintaining the internal temperature of the reactor at 80 ° C., and mixing the HCl aqueous solution and the LiOH / Mn (OH) 2 mixed solution with the first raw material injection line 14-1 and the second raw material injection line 14-, respectively. LMO nanoparticles were prepared in the same manner as in Example 1, except that the reactor 10 was continuously injected at a flow rate of 100 L / min and 40 L / min, respectively, through filtration, washing, and drying. To obtain LMO nanoparticles. In this embodiment, the ratio of the reaction raw material components injected into the reactor 10, that is, the molar ratio of Mn to Li (Mn / Li) was 2.
분석예Analysis example
상기 실시예 1~4에서 제조한 리튬 망간 산화물 나노입자의 TEM 사진 및 XRD 회절 패턴을 분석하여 도 2 내지 도 9에 각각 나타내었다. 사용된 TEM 및 XRD의 사양 및 분석조건을 하기 표 1에 나타내었다.TEM images and XRD diffraction patterns of the lithium manganese oxide nanoparticles prepared in Examples 1 to 4 were analyzed and shown in FIGS. 2 to 9, respectively. The specifications and analysis conditions of the TEM and XRD used are shown in Table 1 below.
표 1
TEM XRD
사양 제조사 JEOL Rikagu
모델명 2100F D/Max-2500VK/PC
분석조건 200kV CuKa radiation, speed 4°min-1
Table 1
TEM XRD
Specification manufacturer JEOL Rikagu
model name 2100F D / Max-2500VK / PC
Analysis condition 200 kV CuKa radiation, speed 4 ° min -1
도 2 내지 도 9를 참조하면, 가격이 저렴한 반응원료를 사용하였음에도 불구하고 입도분포가 비교적 균일하고 나노크기를 갖는 LMO 입자를 얻을 수 있음을 확인할 수 있다. 구체적으로, 도 2, 4, 6 및 8로부터는 실시예 1~4에서 제조된 입자가 나노크기를 갖는다는 사실 및 각 입자의 입도분포가 균일하다는 사실을 알 수 있고, 도 3, 5, 7 및 9로부터는 상기 제조된 각 입자가 LMO(LiMn2O4)라는 사실을 알 수 있다. 도 2, 4, 6 및 8에 표시된 각 수치(예를 들어, 도 2의 100㎚)는 각 도면에 도시된 굵은 바의 길이를 의미하고, 도 3, 5, 7 및 9에 표시된 각 수치(예를 들어, 도 3의 (111))는 결정면지수를 의미한다.Referring to Figures 2 to 9, it can be seen that even though a low-cost reaction raw material is used, LMO particles having a relatively uniform particle size distribution and nano-sized particles can be obtained. Specifically, it can be seen from FIGS. 2, 4, 6, and 8 that the particles prepared in Examples 1 to 4 have a nano size and that the particle size distribution of each particle is uniform, and FIGS. 3, 5, and 7 From 9 and it can be seen that each particle produced is LMO (LiMn 2 O 4 ). Each numerical value (e.g., 100 nm in Fig. 2) shown in Figs. 2, 4, 6 and 8 means the length of the thick bar shown in each figure, and each numerical value indicated in Figs. For example, (111) of FIG. 3 means a crystal plane index.
이상에서 도면 및 실시예를 참조하여 본 발명에 따른 바람직한 실시예가 설명되었으나, 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 수 있을 것이다. 따라서, 본 발명의 보호범위는 첨부된 특허청구범위에 의해서 정해져야 할 것이다.Although preferred embodiments of the present invention have been described above with reference to the drawings and embodiments, these are merely exemplary, and various modifications and equivalent other embodiments are possible to those skilled in the art. You will understand. Therefore, the protection scope of the present invention should be defined by the appended claims.

Claims (14)

  1. 리튬 및 망간을 포함하는 반응원료를 반응기에 주입하여 상기 반응기내에서 분자 수준으로 혼합(mixing at the molecular level)하는 단계; 및Injecting a reaction raw material including lithium and manganese into a reactor and mixing at the molecular level in the reactor; And
    상기 반응기 내에서 상기 반응원료를 화학반응(chemical reaction)시켜 결정핵을 생성(nucleating)하는 단계를 포함하는 리튬 망간 산화물의 제조방법.A method for producing lithium manganese oxide comprising the step of chemical reaction (nucleating) the reaction raw material in the reactor (nucleating).
  2. 제1항에 있어서, The method of claim 1,
    상기 화학반응은 산염기 반응인 리튬 망간 산화물의 제조방법.The chemical reaction is an acid group reaction method for producing lithium manganese oxide.
  3. 제1항에 있어서, The method of claim 1,
    상기 반응원료는 용액 형태 및 현탁액 형태 중 적어도 하나의 형태로 상기 반응기에 주입되는 리튬 망간 산화물의 제조방법.Wherein the reaction raw material is injected into the reactor in the form of at least one of a solution form and a suspension form.
  4. 제3항에 있어서, The method of claim 3,
    상기 반응원료는 산성 원료 및 염기성 원료를 포함하고, 상기 산성 원료는 제1 원료 주입라인을 통해 상기 반응기에 주입되고, 상기 염기성 원료는 제2 원료 주입라인을 통해 상기 반응기에 주입되는 리튬 망간 산화물의 제조방법.The reaction raw material includes an acidic raw material and a basic raw material, the acidic raw material is injected into the reactor through a first raw material injection line, the basic raw material of the lithium manganese oxide injected into the reactor through a second raw material injection line Manufacturing method.
  5. 제4항에 있어서, The method of claim 4, wherein
    상기 산성 원료는 리튬 및 망간을 포함하고, 상기 염기성 원료는 금속 수산화물을 포함하는 리튬 망간 산화물의 제조방법.The acidic raw material includes lithium and manganese, and the basic raw material is a method of producing a lithium manganese oxide containing a metal hydroxide.
  6. 제4항에 있어서, The method of claim 4, wherein
    상기 산성 원료는 망간을 포함하고, 상기 염기성 원료는 리튬을 포함하는 리튬 망간 산화물의 제조방법.The acidic raw material includes manganese, and the basic raw material comprises a lithium manganese oxide.
  7. 제4항에 있어서, The method of claim 4, wherein
    상기 산성 원료는 리튬을 포함하고, 상기 염기성 원료는 망간을 포함하는 리튬 망간 산화물의 제조방법.The acid raw material comprises lithium, and the basic raw material manufacturing method of lithium manganese oxide containing manganese.
  8. 제4항에 있어서, The method of claim 4, wherein
    상기 염기성 원료는 리튬 및 망간을 포함하고, 상기 산성 원료는 무기산 및 유기산 중 적어도 1종을 포함하는 리튬 망간 산화물의 제조방법.The basic raw material includes lithium and manganese, and the acidic raw material comprises at least one of an inorganic acid and an organic acid.
  9. 제1항에 있어서, The method of claim 1,
    상기 분자 수준의 혼합에 소요되는 시간(TM)은 상기 결정핵 생성에 소요되는 시간(TN) 보다 짧은 리튬 망간 산화물의 제조방법. The time (T M ) required for the mixing of the molecular level is shorter than the time (T N ) for the production of nuclei.
  10. 제9항에 있어서, The method of claim 9,
    상기 TM은 10~100㎲이고, 상기 TN은 1㎳ 이하인 리튬 망간 산화물의 제조방법.The T M is 10 ~ 100 ㎲, T N is 1 ㎳ or less manufacturing method of lithium manganese oxide.
  11. 제1항에 있어서, The method of claim 1,
    상기 반응원료 중 리튬에 대한 망간의 몰비(Mn/Li)는 1.8~2.2인 리튬 망간 산화물의 제조방법.A molar ratio (Mn / Li) of manganese to lithium in the reaction raw material is a method of producing lithium manganese oxide of 1.8 ~ 2.2.
  12. 제1항에 있어서, The method of claim 1,
    상기 반응기는,The reactor,
    내부공간을 한정하는 챔버(chamber);A chamber defining an interior space;
    상기 챔버내에 배치되고 다공성 충전재가 충전된 회전가능한 투과성 충전층(permeable packed bed);A rotatable permeable packed bed disposed in said chamber and filled with a porous filler;
    상기 투과성 충전층에 상기 반응원료를 주입하는 적어도 하나의 원료 주입라인; 및At least one raw material injection line for injecting the reaction raw material into the transparent packing layer; And
    상기 내부공간으로부터 슬러리를 배출하는 슬러리 배출구를 구비하는 고중력 회전 충전형 반응기(high gravity rotating packed bed reactor)인 리튬 망간 산화물의 제조방법.A method for producing lithium manganese oxide, which is a high gravity rotating packed bed reactor having a slurry outlet for discharging a slurry from the internal space.
  13. 제12항에 있어서, The method of claim 12,
    상기 투과성 충전층의 원심 가속도는 10~100,000m/s2로 유지되는 리튬 망간 산화물의 제조방법.Centrifugal acceleration of the permeable packed layer is a manufacturing method of lithium manganese oxide is maintained at 10 ~ 100,000 m / s 2 .
  14. 제1항에 있어서, The method of claim 1,
    상기 리튬 망간 산화물은 스피넬형 결정구조(spinel type crystal structure)를 갖는 리튬 망간 산화물의 제조방법.The lithium manganese oxide is a manufacturing method of lithium manganese oxide having a spinel type crystal structure (spinel type crystal structure).
PCT/KR2011/001080 2010-04-30 2011-02-18 Method for manufacturing lithium manganese oxide WO2011136466A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100040798A KR101825914B1 (en) 2010-04-30 2010-04-30 Method of preparing lithium manganese oxide
KR10-2010-0040798 2010-04-30

Publications (2)

Publication Number Publication Date
WO2011136466A2 true WO2011136466A2 (en) 2011-11-03
WO2011136466A3 WO2011136466A3 (en) 2012-01-12

Family

ID=44861989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/001080 WO2011136466A2 (en) 2010-04-30 2011-02-18 Method for manufacturing lithium manganese oxide

Country Status (2)

Country Link
KR (1) KR101825914B1 (en)
WO (1) WO2011136466A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103066270B (en) * 2012-12-28 2015-07-22 湘潭大学 Preparation method of nano-spinel type LiMn2O4

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000086244A (en) * 1998-09-10 2000-03-28 Toyota Central Res & Dev Lab Inc Production of lithium manganate powder
JP2001163622A (en) * 1999-10-01 2001-06-19 Tosoh Corp Lithium manganese oxide, its production process and secondary cell using the same oxide

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10182159A (en) * 1996-12-18 1998-07-07 Tosoh Corp Lithium manganate and its production and lithium secondary battery using lithium manganate as anode
CN1313378C (en) 2002-09-24 2007-05-02 北京化工大学 method for preparation of Sr titanate powder
ITRM20020523A1 (en) 2002-10-15 2004-04-16 Euroeco S P A CIVIL AND INDUSTRIAL WASTE WATER PURIFIER WITH COMPACT VERTICAL REACTOR WITH REDUCED ENVIRONMENTAL IMPACT.
US8715614B2 (en) * 2003-07-21 2014-05-06 Beijing University Of Chemical Technology High-gravity reactive precipitation process for the preparation of barium titanate powders

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000086244A (en) * 1998-09-10 2000-03-28 Toyota Central Res & Dev Lab Inc Production of lithium manganate powder
JP2001163622A (en) * 1999-10-01 2001-06-19 Tosoh Corp Lithium manganese oxide, its production process and secondary cell using the same oxide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Q. FENG ET AL.: 'Synthesis of lithium manganese oxides from layered manganese oxides by hydrothermal soft chemical process' JOURNAL OF MATERIALS SCIENCE LETTERS vol. 20, no. 3, 2001, pages 269 - 271 *

Also Published As

Publication number Publication date
WO2011136466A3 (en) 2012-01-12
KR101825914B1 (en) 2018-02-06
KR20110121273A (en) 2011-11-07

Similar Documents

Publication Publication Date Title
WO2011019171A2 (en) Method for producing nanoscale lithium titanate particles
US11554966B2 (en) Nanostructured titanic acid salts and preparation process and use thereof
WO2018043842A1 (en) Nanofiber-nanowire composite and preparation method therefor
TWI517487B (en) Complexometric precursor formulation methodology for industrial production of fine and ultrafine powders and nanopowders of layered lithium mixed metal oxides for battery applications
WO2014025126A1 (en) Method for preparing nano-sized iron phosphate particles
CN112456528B (en) Boehmite and preparation method and application thereof
CN110357068B (en) Synthetic method of hierarchical porous carbon nano material
WO2014025125A1 (en) Method for preparing lithium metal phosphor oxide
WO2013115446A1 (en) Reactor for preparing precursor of lithium composite transition metal oxide, and method for preparing precursor
CN103556303B (en) Preparation method of tin oxide fiber precursor and tin oxide crystal fibers
WO2011136497A2 (en) Method for manufacturing a lithium transition metal phosphate
WO2016108385A1 (en) Precursor of cathode active material for lithium secondary batteries, method of preparing same, cathode active material for lithium secondary batteries, method of preparing same, and lithium secondary battery comprising said cathode active material
CN101293674A (en) Method for preparing spindle shaped alpha-Fe2O3 powder
WO2014107022A1 (en) Device for manufacturing lithium composite transition metal oxide, lithium composite transition metal oxide manufactured using same and method for manufacturing lithium composite transition metal oxide
CN104141181A (en) Preparation method for ZrO2 fiber with SiO2 doped
CN105810894A (en) Multilayer coated structure lithium ion battery positive electrode material preparation method
WO2011136466A2 (en) Method for manufacturing lithium manganese oxide
WO2011136467A2 (en) Preparation method of lithium transition metal oxide
CN111087027A (en) Flower-shaped Co3O4Preparation method of micro-sodium structure
CN106745210A (en) A kind of Li doping SrTiO3The preparation method and product of porous surface nano particle
CN110422854B (en) Preparation method of pure silicon beta molecular sieve nanocrystal
WO2014178455A1 (en) Method for manufacturing transition metal-silicone hollow microspheres
CN106745211B (en) A kind of Li adulterates SrTiO3The preparation method and product of square nano particle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11775172

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11775172

Country of ref document: EP

Kind code of ref document: A2