WO2014178455A1 - Method for manufacturing transition metal-silicone hollow microspheres - Google Patents

Method for manufacturing transition metal-silicone hollow microspheres Download PDF

Info

Publication number
WO2014178455A1
WO2014178455A1 PCT/KR2013/003737 KR2013003737W WO2014178455A1 WO 2014178455 A1 WO2014178455 A1 WO 2014178455A1 KR 2013003737 W KR2013003737 W KR 2013003737W WO 2014178455 A1 WO2014178455 A1 WO 2014178455A1
Authority
WO
WIPO (PCT)
Prior art keywords
transition metal
silicon
producing
microspheres
solution containing
Prior art date
Application number
PCT/KR2013/003737
Other languages
French (fr)
Korean (ko)
Inventor
김해진
이진배
홍원기
Original Assignee
한국기초과학지원연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기초과학지원연구원 filed Critical 한국기초과학지원연구원
Publication of WO2014178455A1 publication Critical patent/WO2014178455A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • B22F1/0655Hollow particles

Definitions

  • the present invention relates to a method for producing a transition metal-silicon microspheres, and more particularly, to a method for producing a transition metal-silicon microspheres, in which a simple and bulky transition metal-silicon hollow sphere can be produced in large quantities. It is about.
  • the fine hollow spheres have a low density and a large specific surface area, and are capable of exchanging materials through micropores, and have a strong characteristic against physical impact or pressure due to their spherical shape.
  • micro hollow spheres of metal materials are known, and due to the characteristics of the materials and the characteristics of the micro hollow spheres, hydrogen storage media, building materials, heat radiation materials, sound insulation and electromagnetic shielding materials, beauty materials , Coating materials, filling materials, catalyst carriers, drug delivery materials, adsorbents for removing harmful substances, fuel cell electrode materials, etc. are being used.
  • hydrogen storage media building materials
  • heat radiation materials heat radiation materials
  • sound insulation and electromagnetic shielding materials beauty materials
  • Coating materials filling materials
  • catalyst carriers drug delivery materials
  • micro hollow spheres are mostly to manufacture micro hollow spheres with a single series of materials such as metal materials, organic materials, and inorganic materials, and thus are applicable to the manufacture of fine hollow spheres of composite materials such as metal-inorganic materials. There is a limit to doing so.
  • an object of the present invention is to provide a method for producing a transition metal-silicon micro-hollow sphere that can easily produce a large amount of hollow spheres having a fine size.
  • Another object of the present invention is to provide a method for producing fine hollow spheres made of a composite material of a transition metal and silicon.
  • the present invention provides a method for producing a transition metal-silicon microspheres, the method for producing a transition metal-silicon microspheres,
  • the reaction made in the second step is preferably performed for 5 to 50 hours in a temperature range of 100 to 300 °C.
  • the heat treatment performed in the third step is preferably performed for 1 to 10 hours in a temperature range of 300 to 500 °C under a vacuum atmosphere.
  • the fine hollow spheres produced by the present invention have the characteristics that the size of the microspheres is uniform and small, and the wall thickness is thin, compared to the hollow spheres produced by the conventional method.
  • the fine hollow sphere prepared by the present invention can express the properties of the material having a transition metal and silicon in addition to the properties of the fine hollow sphere itself can be effectively applied to a variety of industries.
  • 1 is a TEM image of manganese-silicon microspheres prepared according to an embodiment of the present invention.
  • Figure 2 shows the XRD data of the manganese-silicon microspheres prepared by the embodiment of the present invention.
  • FIG. 3 is a TEM image of the manganese-silicon microspheres prepared by Comparative Example 1.
  • FIG. 4 is a TEM image of manganese-silicon microspheres prepared by Comparative Example 2.
  • FIG. 5 is a TEM image of manganese-silicon microspheres prepared by Comparative Example 3.
  • FIG. 5 is a TEM image of manganese-silicon microspheres prepared by Comparative Example 3.
  • the hollow spheres are relatively large, the wall thickness is relatively thick, the process conditions are complicated, and the control is not easy, so it is not suitable for mass production, and is a single series such as metal or inorganic materials.
  • the hollow spheres of the material there has been a limit in expressing a variety of functions.
  • the inventors of the present invention have studied a method for producing a micro hollow sphere made of a composite material of a transition metal and silicon, which is applied to various industrial fields due to its characteristics, and in the following process, a transition metal-silicon The present invention was completed by confirming that fine hollow spheres can be efficiently produced.
  • the transition metal precursor may be variously selected according to the characteristics of the transition metal to be imparted to the micro hollow spheres, as long as it is known as a transition metal precursor may be used.
  • a transition metal precursor in particular, manganese (Mn) is more environmentally friendly than other transition metals, and is relatively inexpensive and has a high energy density so that it can be efficiently applied to various fields. Therefore, it is preferable to use a manganese precursor as the transition metal precursor. Can be.
  • the manganese precursor may be used as long as it is known as a manganese precursor.
  • the compound containing silicon may be used as long as the compound containing silicon.
  • the compound containing silicon may include Na 2 SiO 3 , SiCl 4 , Si (OCOCH 3 ) 4 , SiI 4 , SiF 4 , SiC 32 H 8 O 2 , SiC 48 H 26 N 8 O 2 , SiC 32 H 18 N 2 O 2 and mixtures thereof, but is not limited thereto.
  • the solvent used in the first step may be used as long as it dissolves the compound including the transition metal precursor and silicon.
  • Various organic solvents, water and the like can be used.
  • the solvent for dissolving the transition metal precursor is preferably alcohol, more preferably ethanol.
  • alcohol more preferably ethanol.
  • the solvent for dissolving the transition metal precursor is not limited to alcohol, in particular ethanol.
  • a transition metal-silicon hollow sphere is formed by reacting the solution containing the transition metal prepared in the first step with a solution containing silicon. That is, in the second step, when the solution containing the transition metal and the solution containing silicon are reacted at a specific temperature range and reaction time, the two solutions react to form a transition metal-silicon composite, and as the reaction proceeds, The transition metal-silicon composite is dried into a hollow sphere shape to form a transition metal-silicon micro hollow sphere. In other words, after the transition metal-silicon composite is formed, if the reaction proceeds continuously, the transition metal-silicon composite formed due to the difference in the material properties of the transition metal and silicon is dried, and the reaction proceeds to form a hollow sphere. do.
  • the transition metal-silicon micro hollow spheres formed in this step are in the shape of hollow spheres, but are not perfectly stabilized, and are perfectly stabilized through heat treatment to be described later.
  • the reaction is preferably carried out for 5 to 50 hours in the temperature range of 100 to 300 °C, when the reaction temperature and the reaction time is less than the lower limit, the transition metal-silicon composite may not be sufficiently formed with a spherical shape If the reaction temperature and the reaction time exceeds the upper limit, the transition metal-silicon hollow sphere formed as the transition metal-silicon composite is cracked or crushed is spherical. It is not preferable because it may have a shape other than a phase.
  • the transition metal-silicon hollow sphere formed through the second step may be subjected to a process of washing and drying, wherein the washing and drying are for minimizing unwanted side reactions in the heat treatment process to be described later, As such, detailed description thereof will be omitted.
  • transition metal-silicon hollow sphere is heat-treated through the process of the third step, and the shape of the hollow sphere perfectly stabilized through the heat treatment.
  • the heat treatment is preferably carried out in a vacuum atmosphere, but not performed in a vacuum atmosphere, for example, when the heat treatment is performed in an air atmosphere, a part of the manufactured micro hollow spheres may be changed into transition metal oxide micro hollow spheres. Not. That is, when the heat treatment is performed in an air atmosphere, a part of the transition metal-silicon hollow spheres is changed to transition metal oxide hollow spheres, so that the transition metal-silicon micro hollow spheres and the transition metal oxide micro hollow spheres are simultaneously prepared to obtain the transition metal-silicon micro hollow spheres. Yield may be lowered, which is not preferred.
  • transition metal-silicon hollow spheres do not change into transition metal oxide hollow spheres, and thus, a stabilized transition metal-silicon microspheres can be obtained, thereby increasing the yield.
  • the heat treatment is preferably performed for 1 to 10 hours in the temperature range of 300 to 500 °C, when the heat treatment temperature and time is less than the lower limit, the transition metal-silicon micro hollow spheres are not sufficiently stable, This is not preferable because there is a fear of lowering, and when the heat treatment temperature and time exceeds the upper limit, there is a possibility that the transition metal-silicon micro hollow spheres may be broken or the structure may be deformed.
  • the manganese-containing solution and the silicon-containing solution were reacted at 185 ° C. for 30 hours to prepare manganese-silicon micro hollow spheres.
  • the prepared manganese-silicon microspheres were washed three times with distilled water, and then dried at 50 ° C. in a vacuum atmosphere for 5 hours.
  • the dried manganese-silicon microspheres were heat-treated at 400 ° C. for 2 hours in a vacuum atmosphere to prepare stabilized manganese-silicon microspheres.
  • the manganese-silicon microspheres prepared according to an embodiment of the present invention may have a uniform hollow sphere shape while having a size of about 6 to 7 nm or less.
  • Figure 2 shows the XRD data of the manganese-silicon microspheres prepared by the embodiment of the present invention. As shown in FIG. 2, in the case of the manganese-silicon micro hollow spheres prepared according to the embodiment of the present invention, it was confirmed that the micro hollow spheres were made of manganese-silicon composite (MnSiO 3 ).
  • FIG. 3 is a TEM image of the manganese-silicon microspheres prepared by Comparative Example 1.
  • FIG. 3 As shown in FIG. 3, in the case of Comparative Example 1, it could be confirmed that there was a portion that could not be rolled into a hollow sphere shape.
  • FIG. 4 is a TEM image of manganese-silicon microspheres prepared by Comparative Example 2.
  • FIG. 4 As shown in FIG. 4, in the case of Comparative Example 2, it could be confirmed that the hollow sphere shape was partially broken due to excessive reaction.
  • FIG. 5 is a TEM image of manganese-silicon microspheres prepared by Comparative Example 3.
  • FIG. 5 As shown in FIG. 5, in the case of Comparative Example 3, the hollow sphere shape was broken or collapsed due to excessive heat treatment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Silicon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

A method for manufacturing transition metal-silicone hollow microspheres is disclosed. The method for manufacturing transition metal-silicone hollow microspheres, according to the present invention, comprises: (1) the first step for preparing a solution containing transition metals by adding a solvent to a transition metal precursor, and preparing a solution containing silicone by adding a solvent to a compound containing silicone; (2) the second step for forming transition metal-silicone hollow microspheres by reacting the solution containing the transition metals with the solution containing silicone, which are prepared in the first step; and (3) the third step for stabilizing the metal-silicone hollow microspheres by performing a heat treatment on the metal-silicone hollow microspheres formed through the second step. The method for manufacturing transition metal-silicone hollow microspheres, according to the present invention, can facilitate mass-production of the hollow microspheres which have a uniform small size and formed from composite material of transition metal and silicone.

Description

전이금속-실리콘 미세 중공구의 제조방법Method for preparing transition metal-silicon microspheres
본 발명은 전이금속-실리콘 미세 중공구의 제조방법에 관한 것으로서, 보다 상세하게는 미세하고도 균일한 전이금속-실리콘 중공구를 간단하게 대량으로 제조할 수 있는 전이금속-실리콘 미세 중공구의 제조방법에 관한 것이다.The present invention relates to a method for producing a transition metal-silicon microspheres, and more particularly, to a method for producing a transition metal-silicon microspheres, in which a simple and bulky transition metal-silicon hollow sphere can be produced in large quantities. It is about.
미세 중공구는 밀도가 낮으면서도 비표면적이 클 뿐만 아니라, 미세기공을 통해 물질 교환이 가능하며, 구형상의 특징으로 인하여 물리적인 충격 또는 압력에도 강한 특성을 지니고 있다. 또한 상기 미세 중공구 자체의 특성에 더하여, 미세 중공구를 형성하는 재질에 따라 다양한 특성 부여가 가능하다. The fine hollow spheres have a low density and a large specific surface area, and are capable of exchanging materials through micropores, and have a strong characteristic against physical impact or pressure due to their spherical shape. In addition to the properties of the micro hollow sphere itself, it is possible to impart various characteristics depending on the material to form the micro hollow sphere.
현재 금속 재질의 미세 중공구, 유기 또는 무기물질의 미세 중공구 등이 알려져 있으며, 재질의 특성 및 미세 중공구의 특성으로 인하여, 수소저장매체, 건축재료, 방열재료, 방음 및 전자파차폐 재료, 미용재료, 코팅재료, 충진재료, 촉매담체, 약물전달물질, 유해물질제거용 흡착제, 연료전지 전극물질 등의 용도로 활용하는 연구가 진행되고 있으며, 최근에는 첨단 산업분야에 적용시키고자 하는 연구가 활발히 진행되고 있다. Currently, micro hollow spheres of metal materials, micro hollow spheres of organic or inorganic materials are known, and due to the characteristics of the materials and the characteristics of the micro hollow spheres, hydrogen storage media, building materials, heat radiation materials, sound insulation and electromagnetic shielding materials, beauty materials , Coating materials, filling materials, catalyst carriers, drug delivery materials, adsorbents for removing harmful substances, fuel cell electrode materials, etc. are being used. Recently, researches to be applied to high-tech industries are actively conducted. It is becoming.
현재 미세 중공구를 제조하는 방법의 대부분은 대한민국 공개특허 제2009-0048964호에 개시된 것과 같이, 특정 용매에 용해될 수 있는 구형상의 형판(template)을 제조하고, 여기에 제조하고자 하는 물질을 덮어씌운 후, 용매를 이용하여 내부의 형판을 제거하는 방식에 의하고 있다. 이외에도 가스를 주입하여, 주입하는 가스를 형판(template)으로 이용하는 방법 등이 알려져 있으나, 상술한 방법에 의하여 미세 중공구를 제조하는 경우, 아주 작은 크기의 중공구를 제조하기가 어려우며, 중공구의 벽 두께가 비교적 두껍고, 공정조건이 복잡하여 대량 생산에 적합하지 않다는 문제점을 지니고 있다.Currently, most of the methods for producing the microspheres are prepared in the form of a spherical template that can be dissolved in a specific solvent, as disclosed in Korean Patent Laid-Open Publication No. 2009-0048964, covering the material to be prepared therewith. Then, it is based on the method of removing the inside template using a solvent. In addition, a method of injecting a gas and using the gas to be injected as a template is known, but in the case of manufacturing the fine hollow sphere by the above-described method, it is difficult to produce a very small hollow sphere, and the wall of the hollow sphere It has a relatively thick thickness and complicated process conditions, making it unsuitable for mass production.
또한 종래 알려진 미세 중공구의 제조방법은 금속재질, 유기물질, 무기물질 등의 단일 계열의 물질로 미세 중공구를 제조하는 것이 대부분이므로, 금속물질-무기물질과 같은 복합재료의 미세 중공구 제조에 적용하는 데에는 한계가 있다.In addition, conventionally known methods for manufacturing micro hollow spheres are mostly to manufacture micro hollow spheres with a single series of materials such as metal materials, organic materials, and inorganic materials, and thus are applicable to the manufacture of fine hollow spheres of composite materials such as metal-inorganic materials. There is a limit to doing so.
본 발명은 상술한 종래의 문제점을 해결하기 위하여 안출된 것으로서, 본 발명은 미세한 크기 갖는 중공구를 용이하게 대량으로 제조할 수 있는 전이금속-실리콘 미세 중공구의 제조방법을 제공하는 것을 목적으로 한다. The present invention has been made to solve the above-mentioned conventional problems, an object of the present invention is to provide a method for producing a transition metal-silicon micro-hollow sphere that can easily produce a large amount of hollow spheres having a fine size.
본 발명의 다른 목적은 전이금속과 실리콘의 복합재료로 이루어진 미세 중공구의 제조방법을 제공하는 것에 있다.Another object of the present invention is to provide a method for producing fine hollow spheres made of a composite material of a transition metal and silicon.
상술한 목적을 달성하기 위하여 본 발명은 전이금속-실리콘 미세 중공구의 제조방법을 제공하는데, 본 발명의 일례에 따른 전이금속-실리콘 미세 중공구의 제조방법은, In order to achieve the above object, the present invention provides a method for producing a transition metal-silicon microspheres, the method for producing a transition metal-silicon microspheres,
(1) 전이금속 전구체에 용매를 가하여 전이금속이 함유된 용액을 준비하고, 실리콘을 포함하는 화합물에 용매를 가하여 실리콘이 함유된 용액을 준비하는 제1단계;(1) preparing a solution containing a transition metal by adding a solvent to the transition metal precursor, and preparing a solution containing silicon by adding a solvent to a compound containing silicon;
(2) 상기 제1단계에서 준비된 전이금속이 함유된 용액과 실리콘이 함유된 용액을 반응시켜 전이금속-실리콘 중공구를 형성하는 제2단계; 및(2) a second step of forming a transition metal-silicon hollow sphere by reacting the solution containing the transition metal and the solution containing silicon prepared in the first step; And
(3) 제2단계를 통하여 형성된 전이금속-실리콘 중공구를 열처리하여 안정화시키는 제3단계를 포함하여 이루어어진다. (3) a third step of stabilizing the transition metal-silicon hollow sphere formed through the second step by heat treatment.
상기 제2단계에서 이루어지는 반응은 100 내지 300℃의 온도범위에서, 5 내지 50시간 동안 이루어지는 것이 바람직하다. The reaction made in the second step is preferably performed for 5 to 50 hours in a temperature range of 100 to 300 ℃.
또한 상기 제3단계에서 이루어지는 열처리는 진공분위기하의 300 내지 500℃의 온도범위에서, 1 내지 10시간 동안 이루어지는 것이 바람직하다.In addition, the heat treatment performed in the third step is preferably performed for 1 to 10 hours in a temperature range of 300 to 500 ℃ under a vacuum atmosphere.
상술한 본 발명에 의할 경우, 전이금속과 실리콘의 복합재료로 이루어지는 미세 중공구를 용이하게 대량으로 제조할 수 있게 된다. According to the present invention described above, it is possible to easily produce a large amount of fine hollow sphere made of a composite material of a transition metal and silicon.
본 발명에 의하여 제조되는 미세 중공구는 종래 방법에 의하여 제조되는 중공구에 비하여 그 크기가 균일하면서도 작고, 벽 두께가 얇은 특징을 갖는다.The fine hollow spheres produced by the present invention have the characteristics that the size of the microspheres is uniform and small, and the wall thickness is thin, compared to the hollow spheres produced by the conventional method.
또한 본 발명에 의하여 제조되는 미세 중공구는 미세 중공구 자체의 특성에 더하여 전이금속과 실리콘이 가지는 재질의 특성을 발현시킬 수 있으므로 다양한 산업분야에 효과적으로 적용될 수 있다.In addition, the fine hollow sphere prepared by the present invention can express the properties of the material having a transition metal and silicon in addition to the properties of the fine hollow sphere itself can be effectively applied to a variety of industries.
도 1은 본 발명의 실시예에 의하여 제조된 망간-실리콘 미세 중공구의 TEM 이미지이다. 1 is a TEM image of manganese-silicon microspheres prepared according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 의하여 제조된 망간-실리콘 미세 중공구의 XRD 데이타를 나타낸 것이다. Figure 2 shows the XRD data of the manganese-silicon microspheres prepared by the embodiment of the present invention.
도 3은 비교예 1에 의하여 제조된 망간-실리콘 미세 중공구의 TEM 이미지이다. 3 is a TEM image of the manganese-silicon microspheres prepared by Comparative Example 1. FIG.
도 4는 비교예 2에 의하여 제조된 망간-실리콘 미세 중공구의 TEM 이미지이다. 4 is a TEM image of manganese-silicon microspheres prepared by Comparative Example 2. FIG.
도 5는 비교예 3에 의하여 제조된 망간-실리콘 미세 중공구의 TEM 이미지이다.5 is a TEM image of manganese-silicon microspheres prepared by Comparative Example 3. FIG.
이하 본 발명을 상세하게 설명한다. Hereinafter, the present invention will be described in detail.
종래 알려진 중공구의 제조방법은, 대부분이 하나 또는 둘 이상의 금속을 이용하여 중공구를 제조하거나, 하나 또는 둘 이상의 무기물질을 이용하여 중공구를 제조하는 등, 동일 계열의 물질을 이용하여 중공구를 제조하는 것이었다. 또한 전술한 바와 같이 대부분이 특정 용매에 용해될 수 있는 구형상의 형판(template)을 제조하고, 여기에 제조하고자 하는 물질을 덮어씌운 후, 용매를 이용하여 내부에 있는 구형상의 형판을 제거하는 방식에 의하여 중공구를 제조하였다. Conventionally known methods for producing hollow spheres, most of which produce a hollow sphere using one or two or more metals, or a hollow sphere using one or more inorganic materials, such as to produce a hollow sphere using the same series of materials Was to make. In addition, as described above, a method of preparing a spherical template that can be dissolved in a specific solvent and covering the material to be manufactured thereon, and then removing the spherical template in the interior using a solvent. Thereby preparing a hollow sphere.
상기와 같은 종래의 방법에 의할 경우, 중공구의 크기가 비교적 크고, 벽 두께가 상대적으로 두꺼우며, 공정조건이 복잡하고 제어가 용이하지 않아 대량생산에 적합하지 않고, 금속 또는 무기물질 등 단일계열의 물질로 중공구를 제조함으로써, 다양한 기능을 발현하는데 한계가 있어왔다. According to the conventional method as described above, the hollow spheres are relatively large, the wall thickness is relatively thick, the process conditions are complicated, and the control is not easy, so it is not suitable for mass production, and is a single series such as metal or inorganic materials. By manufacturing the hollow spheres of the material, there has been a limit in expressing a variety of functions.
이에 본 발명의 발명자들은 그 특성으로 인하여 다양한 산업분야에 적용되고 있는 전이금속과 실리콘의 복합재료로 이루어지는 미세 중공구의 제조방법을 연구하기에 이르렀으며, 아래와 같은 과정에 의할 경우, 전이금속-실리콘 미세 중공구를 효율적으로 제조할 수 있음을 확인함으로써 본 발명을 완성하였다. Accordingly, the inventors of the present invention have studied a method for producing a micro hollow sphere made of a composite material of a transition metal and silicon, which is applied to various industrial fields due to its characteristics, and in the following process, a transition metal-silicon The present invention was completed by confirming that fine hollow spheres can be efficiently produced.
즉, 본 발명의 일례에 따른 전이금속-실리콘 미세 중공구의 제조방법은,That is, the method for producing a transition metal-silicon microspheres according to an example of the present invention,
(1) 전이금속 전구체에 용매를 가하여 전이금속이 함유된 용액을 준비하고, 실리콘을 포함하는 화합물에 용매를 가하여 실리콘이 함유된 용액을 준비하는 제1단계;(1) preparing a solution containing a transition metal by adding a solvent to the transition metal precursor, and preparing a solution containing silicon by adding a solvent to a compound containing silicon;
(2) 상기 제1단계에서 준비된 전이금속이 함유된 용액과 실리콘이 함유된 용액을 반응시켜 전이금속-실리콘 중공구를 형성하는 제2단계; 및(2) a second step of forming a transition metal-silicon hollow sphere by reacting the solution containing the transition metal and the solution containing silicon prepared in the first step; And
(3) 제2단계를 통하여 형성된 전이금속-실리콘 중공구를 열처리하여 안정화시키는 제3단계를 포함하여 이루어진다. (3) and a third step of stabilizing by heat-treating the transition metal-silicon hollow sphere formed through the second step.
상기 전이금속 전구체는 미세 중공구에 부여하고자 하는 전이금속의 특성에 따라 다양하게 선택될 수 있으며, 전이금속 전구체로 알려진 것이라면 어느 것을 사용하여도 무방하다. 다양한 전이금속 중에서 특히 망간(Mn)은 다른 전이금속에 비하여 친환경적이고, 가격이 비교적 저렴하며 높은 에너지 밀도를 가져 다양한 분야에 효율적으로 적용될 수 있으므로, 상기 전이금속 전구체는 망간 전구체를 사용하는 것이 바람직할 수 있다. 상기 망간 전구체는 망간 전구체로 알려진 것이라면 어느 것을 사용하여도 무방하며, 일례로서 Mn(NO3)2·4H2O, Mn(CH3CO2)2, Mn(CH3CO2)2·4H2O, Mn(ClO4)2·6H2O, MnSO4·xH2O, MnSO4·H2O 및 이들의 혼합물로부터 선택될 수 있으나, 이에 한정되는 것은 아니다. The transition metal precursor may be variously selected according to the characteristics of the transition metal to be imparted to the micro hollow spheres, as long as it is known as a transition metal precursor may be used. Among the various transition metals, in particular, manganese (Mn) is more environmentally friendly than other transition metals, and is relatively inexpensive and has a high energy density so that it can be efficiently applied to various fields. Therefore, it is preferable to use a manganese precursor as the transition metal precursor. Can be. The manganese precursor may be used as long as it is known as a manganese precursor. For example, Mn (NO 3 ) 2 .4H 2 O, Mn (CH 3 CO 2 ) 2 , Mn (CH 3 CO 2 ) 2 .4H 2. O, Mn (ClO 4 ) 2 · 6H 2 O, MnSO 4 · xH 2 O, MnSO 4 · H 2 O and mixtures thereof, but is not limited thereto.
또한 상기 실리콘을 포함하는 화합물은 실리콘을 포함하는 화합물이라면 어느 것을 사용하여도 무방하다. 일례로서 상기 실리콘을 포함하는 화합물은 Na2SiO3, SiCl4, Si(OCOCH3)4, SiI4, SiF4, SiC32H8O2, SiC48H26N8O2, SiC32H18N2O2 및 이들의 혼합물로부터 선택될 수 있으나, 이에 한정되는 것은 아니다. In addition, the compound containing silicon may be used as long as the compound containing silicon. As an example, the compound containing silicon may include Na 2 SiO 3 , SiCl 4 , Si (OCOCH 3 ) 4 , SiI 4 , SiF 4 , SiC 32 H 8 O 2 , SiC 48 H 26 N 8 O 2 , SiC 32 H 18 N 2 O 2 and mixtures thereof, but is not limited thereto.
상기 제1단계에서 사용되는 용매는 전이금속 전구체와 실리콘을 포함하는 화합물을 용해시키는 것이라면 어느 것을 사용하여도 무방하다. 각종 유기용매, 물 등이 사용될 수 있다. The solvent used in the first step may be used as long as it dissolves the compound including the transition metal precursor and silicon. Various organic solvents, water and the like can be used.
상기 제1단계에서 사용되는 용매 중에서 상기 전이금속 전구체를 용해시키는 용매는 알코올(alcohol)인 것이 바람직하며, 에탄올(ethanol)인 것이 보다 바람직하다. 본 발명의 완성과정에서 전이금속 전구체를 용해시키는 용매를 다양하게 선택해서 실험해 본 결과, 다른 용매에 비하여 알코올, 특히 에탄올을 사용할 경우, 보다 신뢰성 있는 결과를 얻을 수 있었다. 그러나 다른 용매를 사용할 경우에도 미세 중공구를 제조할 수 있었으며, 따라서 상기 전이금속 전구체를 용해시키는 용매를 알코올, 특히 에탄올로 한정하는 것은 아니다.Among the solvents used in the first step, the solvent for dissolving the transition metal precursor is preferably alcohol, more preferably ethanol. As a result of experiments by selecting a variety of solvents to dissolve the transition metal precursor in the completion of the present invention, when using alcohol, in particular ethanol compared to other solvents, more reliable results were obtained. However, even when other solvents were used, fine hollow spheres could be produced, and thus, the solvent for dissolving the transition metal precursor is not limited to alcohol, in particular ethanol.
상기 제2단계에서는 상기 제1단계에서 준비된 전이금속이 함유된 용액과 실리콘이 함유된 용액을 반응시켜 전이금속-실리콘 중공구를 형성하게 된다. 즉, 상기 제2단계에서 전이금속이 함유된 용액과 실리콘이 함유된 용액을 특정 온도범위 와 반응시간에서 반응시키게 되면 두 용액이 반응하면서 전이금속-실리콘 복합재가 형성되고, 반응의 진행에 따라 상기 전이금속-실리콘 복합재가 중공구 형상으로 말리면서 전이금속-실리콘 미세 중공구를 형성하게 된다. 즉, 전이금속-실리콘 복합재가 형성된 후, 계속하여 반응을 진행시키면, 전이금속과 실리콘의 재질 특성 차이로 인하여 형성된 전이금속-실리콘 복합재가 말리게 되고, 계속하여 반응을 진행시키면 중공구 형상을 하게 된다. 본 단계에서 형성되는 전이금속-실리콘 미세 중공구는 중공구의 형상을 하고는 있으나 완벽하게 안정화된 상태는 아니며, 후술할 열처리를 통하여 완벽하게 안정화된다.In the second step, a transition metal-silicon hollow sphere is formed by reacting the solution containing the transition metal prepared in the first step with a solution containing silicon. That is, in the second step, when the solution containing the transition metal and the solution containing silicon are reacted at a specific temperature range and reaction time, the two solutions react to form a transition metal-silicon composite, and as the reaction proceeds, The transition metal-silicon composite is dried into a hollow sphere shape to form a transition metal-silicon micro hollow sphere. In other words, after the transition metal-silicon composite is formed, if the reaction proceeds continuously, the transition metal-silicon composite formed due to the difference in the material properties of the transition metal and silicon is dried, and the reaction proceeds to form a hollow sphere. do. The transition metal-silicon micro hollow spheres formed in this step are in the shape of hollow spheres, but are not perfectly stabilized, and are perfectly stabilized through heat treatment to be described later.
이때 상기 반응은 100 내지 300℃의 온도범위에서, 5 내지 50시간 동안 이루어지는 것이 바람직한데, 반응온도와 반응시간이 상기 하한치 미만일 경우에는, 전이금속-실리콘 복합재가 충분히 형성되지 못할 우려와 더불어 구형상으로 말리지 않을 우려가 있어 바람직하지 않고, 반응온도와 반응시간이 상기 상한치를 초과하는 경우에는, 전이금속-실리콘 복합재가 말리면서 형성되는 전이금속-실리콘 중공구가 깨지거나 찌그러지는 형상을 갖는 등 구형상이 아닌 다른 형상을 가질 우려가 있어 바람직하지 않다. At this time, the reaction is preferably carried out for 5 to 50 hours in the temperature range of 100 to 300 ℃, when the reaction temperature and the reaction time is less than the lower limit, the transition metal-silicon composite may not be sufficiently formed with a spherical shape If the reaction temperature and the reaction time exceeds the upper limit, the transition metal-silicon hollow sphere formed as the transition metal-silicon composite is cracked or crushed is spherical. It is not preferable because it may have a shape other than a phase.
상기 제2단계를 통하여 형성된 전이금속-실리콘 중공구는 세척 및 건조를 하는 과정을 거칠 수 있으며, 상기 세척 및 건조는 후술할 열처리 과정에서의 원치 않는 부반응을 최소화하기 위한 것으로서, 통상의 알려진 방법에 의하여 이루어질 수 있으므로, 이의 상세한 설명은 생략한다. The transition metal-silicon hollow sphere formed through the second step may be subjected to a process of washing and drying, wherein the washing and drying are for minimizing unwanted side reactions in the heat treatment process to be described later, As such, detailed description thereof will be omitted.
다음으로 전이금속-실리콘 중공구는 제3단계의 과정을 통하여 열처리를 하게 되며, 열처리를 통하여 완벽하게 안정화된 중공구의 형상을 하게 된다. Next, the transition metal-silicon hollow sphere is heat-treated through the process of the third step, and the shape of the hollow sphere perfectly stabilized through the heat treatment.
상기 열처리는 진공분위기에서 수행되는 것이 바람직한데, 진공분위기에서 수행되지 않고, 예를 들어 공기분위기에서 열처리가 수행되는 경우, 제조되는 미세 중공구의 일부가 전이금속산화물 미세 중공구로 변화될 우려가 있어 바람직하지 않다. 즉, 공기분위기하에서 열처리를 하는 경우에 전이금속-실리콘 중공구의 일부가 전이금속산화물 중공구로 변화되어, 전이금속-실리콘 미세 중공구와 전이금속산화물 미세 중공구가 동시에 제조되어 전이금속-실리콘 미세 중공구의 수율이 저하될 수 있어 바람직하지 않다. 공기분위기가 아닌 진공분위기하에서 열처리를 하는 경우에는 전이금속-실리콘 중공구가 전이금속산화물 중공구로 변화되지 않고, 안정화된 전이금속-실리콘 미세 중공구를 얻을 수 있어, 수율을 높일 수 있게 된다. The heat treatment is preferably carried out in a vacuum atmosphere, but not performed in a vacuum atmosphere, for example, when the heat treatment is performed in an air atmosphere, a part of the manufactured micro hollow spheres may be changed into transition metal oxide micro hollow spheres. Not. That is, when the heat treatment is performed in an air atmosphere, a part of the transition metal-silicon hollow spheres is changed to transition metal oxide hollow spheres, so that the transition metal-silicon micro hollow spheres and the transition metal oxide micro hollow spheres are simultaneously prepared to obtain the transition metal-silicon micro hollow spheres. Yield may be lowered, which is not preferred. When the heat treatment is performed under a vacuum atmosphere rather than an air atmosphere, the transition metal-silicon hollow spheres do not change into transition metal oxide hollow spheres, and thus, a stabilized transition metal-silicon microspheres can be obtained, thereby increasing the yield.
또한 상기 열처리는 300 내지 500℃의 온도범위에서, 1 내지 10시간 동안 이루어지는 것이 바람직한데, 열처리 온도 및 시간이 상기 하한치 미만일 경우에는, 제조되는 전이금속-실리콘 미세 중공구가 충분히 안정되지 않아, 물성이 저하될 우려가 있어서 바람직하지 않고, 열처리 온도 및 시간이 상기 상한치를 초과할 경우에는 전이금속-실리콘 미세 중공구가 깨지거나 구조가 변형될 우려가 있어 바람직하지 않다. In addition, the heat treatment is preferably performed for 1 to 10 hours in the temperature range of 300 to 500 ℃, when the heat treatment temperature and time is less than the lower limit, the transition metal-silicon micro hollow spheres are not sufficiently stable, This is not preferable because there is a fear of lowering, and when the heat treatment temperature and time exceeds the upper limit, there is a possibility that the transition metal-silicon micro hollow spheres may be broken or the structure may be deformed.
이하 실시예를 통하여 본 발명을 더욱 상세하게 설명한다. Hereinafter, the present invention will be described in more detail with reference to the following examples.
실시예 : 망간-실리콘 미세 중공구의 제조Example Preparation of Manganese-Si Micro Hollow Spheres
망간 전구체인 Mn(NO3)2·4H2O 5.2g을 250㎖의 에탄올에 녹여 망간이 함유된 용액을 준비하였다. 또한 실리콘을 포함하는 화합물인 Na2SiO3를 증류수에 녹여 0.5M, 50㎖의 실리콘을 함유하는 용액을 준비하였다. 5.2 g of Mn (NO 3 ) 2 .4H 2 O, a manganese precursor, was dissolved in 250 ml of ethanol to prepare a solution containing manganese. In addition, Na 2 SiO 3 , a compound containing silicon, was dissolved in distilled water to prepare a solution containing 0.5 M and 50 mL of silicon.
상기 망간이 함유된 용액과 실리콘이 함유된 용액을 185℃에서 30시간 동안 반응시켜, 망간-실리콘 미세 중공구를 제조하였다.   The manganese-containing solution and the silicon-containing solution were reacted at 185 ° C. for 30 hours to prepare manganese-silicon micro hollow spheres.
다음으로 제조된 망간-실리콘 미세 중공구를 증류수를 이용하여 3차례 세척한 후, 진공분위기의 50℃에서 5시간 동안 건조시켰다. Next, the prepared manganese-silicon microspheres were washed three times with distilled water, and then dried at 50 ° C. in a vacuum atmosphere for 5 hours.
최종적으로 건조된 망간-실리콘 미세 중공구를 진공분위기의 400℃에서 2시간 동안 열처리하여 안정화된 망간-실리콘 미세 중공구를 제조하였다. Finally, the dried manganese-silicon microspheres were heat-treated at 400 ° C. for 2 hours in a vacuum atmosphere to prepare stabilized manganese-silicon microspheres.
*비교예 Comparative Example
하기 표에 기재된 일부 조건만을 변경하였을 뿐, 상기 실시예와 동일한 방법에 의하여 망간-실리콘 미세 중공구를 제조하였으며, 이를 비교예로 선정하였다.Only some of the conditions described in the following table were changed, and the manganese-silicon micro hollow spheres were prepared by the same method as the above example, which was selected as a comparative example.
[표 1] 실시예 및 비교예의 제조 조건 TABLE 1 Production conditions of Examples and Comparative Examples
Figure PCTKR2013003737-appb-I000001
Figure PCTKR2013003737-appb-I000001
특성평가Characteristic evaluation
도 1은 본 발명의 실시예에 의하여 제조된 망간-실리콘 미세 중공구의 TEM 이미지이다. 도 1에 도시된 바와 같이 본 발명의 실시예에 의하여 제조된 망간-실리콘 미세 중공구는 약 6~7 nm 이하의 크기를 가지면서도 균일한 중공구의 형상을 지님을 확인할 수 있었다. 1 is a TEM image of manganese-silicon microspheres prepared according to an embodiment of the present invention. As shown in FIG. 1, the manganese-silicon microspheres prepared according to the embodiment of the present invention may have a uniform hollow sphere shape while having a size of about 6 to 7 nm or less.
도 2는 본 발명의 실시예에 의하여 제조된 망간-실리콘 미세 중공구의 XRD 데이타를 나타낸 것이다. 도 2에 도시된 바와 같이 본 발명의 실시예에 의하여 제조된 망간-실리콘 미세 중공구의 경우 망간-실리콘 복합재(MnSiO3)로 미세 중공구가 제조되었음을 확인할 수 있었다. Figure 2 shows the XRD data of the manganese-silicon microspheres prepared by the embodiment of the present invention. As shown in FIG. 2, in the case of the manganese-silicon micro hollow spheres prepared according to the embodiment of the present invention, it was confirmed that the micro hollow spheres were made of manganese-silicon composite (MnSiO 3 ).
도 3은 비교예 1에 의하여 제조된 망간-실리콘 미세 중공구의 TEM 이미지이다. 도 3에 도시된 바와 같이 비교예 1의 경우는 중공구 형상으로 말리지 못한 부분이 있음을 확인할 수 있었다. 3 is a TEM image of the manganese-silicon microspheres prepared by Comparative Example 1. FIG. As shown in FIG. 3, in the case of Comparative Example 1, it could be confirmed that there was a portion that could not be rolled into a hollow sphere shape.
도 4는 비교예 2에 의하여 제조된 망간-실리콘 미세 중공구의 TEM 이미지이다. 도 4에 도시된 바와 같이 비교예 2의 경우, 과도한 반응으로 인하여 중공구 형상이 무너진 부분이 일부 존재함을 확인할 수 있었다. 4 is a TEM image of manganese-silicon microspheres prepared by Comparative Example 2. FIG. As shown in FIG. 4, in the case of Comparative Example 2, it could be confirmed that the hollow sphere shape was partially broken due to excessive reaction.
도 5는 비교예 3에 의하여 제조된 망간-실리콘 미세 중공구의 TEM 이미지이다. 도 5에 도시된 바와 같이 비교예 3의 경우, 과도한 열처리로 인하여 중공구 형상이 깨지거나 무너진 부분이 존재함을 확인할 수 있었다. 5 is a TEM image of manganese-silicon microspheres prepared by Comparative Example 3. FIG. As shown in FIG. 5, in the case of Comparative Example 3, the hollow sphere shape was broken or collapsed due to excessive heat treatment.
본 발명은 상기한 실시예와 첨부한 도면을 참조하여 설명되었지만, 본 발명의 개념 및 범위 내에서 상이한 실시예를 구성할 수도 있다. 따라서 본 발명의 범위는 첨부된 청구범위 및 이와 균등한 것들에 의해 정해지며, 본 명세서에 기재된 특정 실시예에 의해 한정되지는 않는다.Although the present invention has been described with reference to the above-described embodiments and the accompanying drawings, other embodiments may be configured within the spirit and scope of the present invention. Therefore, the scope of the present invention is defined by the appended claims and equivalents thereof, and is not limited by the specific embodiments described herein.

Claims (10)

  1. (1) 전이금속 전구체에 용매를 가하여 전이금속이 함유된 용액을 준비하고, 실리콘을 포함하는 화합물에 용매를 가하여 실리콘이 함유된 용액을 준비하는 제1단계;(1) preparing a solution containing a transition metal by adding a solvent to the transition metal precursor, and preparing a solution containing silicon by adding a solvent to a compound containing silicon;
    (2) 상기 제1단계에서 준비된 전이금속이 함유된 용액과 실리콘이 함유된 용액을 반응시켜 전이금속-실리콘 중공구를 형성하는 제2단계; 및(2) a second step of forming a transition metal-silicon hollow sphere by reacting the solution containing the transition metal and the solution containing silicon prepared in the first step; And
    (3) 제2단계를 통하여 형성된 전이금속-실리콘 중공구를 열처리하여 안정화시키는 제3단계를 포함하여 이루어지는 전이금속-실리콘 미세 중공구의 제조방법.(3) A method for producing a transition metal-silicon microspheres comprising a third step of stabilizing by heat-treating the transition metal-silicon hollow spheres formed through the second step.
  2. 제1항에 있어서, The method of claim 1,
    제2단계 이후에 상기 제2단계를 통하여 형성된 전이금속-실리콘 중공구를 세척 및 건조하는 단계를 추가로 포함하는 것을 특징으로 하는 전이금속-실리콘 미세 중공구의 제조방법.Method for producing a transition metal-silicon microspheres further comprising the step of washing and drying the transition metal-silicon hollow sphere formed through the second step after the second step.
  3. 제1항에 있어서, The method of claim 1,
    상기 전이금속 전구체는 망간 전구체인 것을 특징으로 하는 전이금속-실리콘 미세 중공구의 제조방법.The transition metal precursor is a method for producing a transition metal-silicon microspheres, characterized in that the manganese precursor.
  4. 제3항에 있어서, The method of claim 3,
    상기 망간 전구체는 Mn(NO3)2·4H2O, Mn(CH3CO2)2, Mn(CH3CO2)2·4H2O, Mn(ClO4)2·6H2O, MnSO4·xH2O, MnSO4·H2O 및 이들의 혼합물로 이루어지는 군으로부터 선택되는 것을 특징으로 하는 전이금속-실리콘 미세 중공구의 제조방법.The manganese precursors are Mn (NO 3 ) 2 4H 2 O, Mn (CH 3 CO 2 ) 2 , Mn (CH 3 CO 2 ) 2 4H 2 O, Mn (ClO 4 ) 2 · 6H 2 O, MnSO 4 XH 2 O, MnSO 4 H 2 O and a mixture thereof, the method for producing a transition metal-silicon micro hollow spheres.
  5. 제1항에 있어서, The method of claim 1,
    상기 실리콘을 포함하는 화합물은 Na2SiO3, SiCl4, Si(OCOCH3)4, SiI4, SiF4, SiC32H8O2, SiC48H26N8O2, SiC32H18N2O2 및 이들의 혼합물로 이루어지는 군으로부터 선택되는 것을 특징으로 하는 전이금속-실리콘 미세 중공구의 제조방법.The compound containing silicon is Na 2 SiO 3 , SiCl 4 , Si (OCOCH 3 ) 4 , SiI 4 , SiF 4 , SiC 32 H 8 O 2 , SiC 48 H 26 N 8 O 2 , SiC 32 H 18 N 2 Method for producing a transition metal-silicon microspheres characterized in that it is selected from the group consisting of O 2 and mixtures thereof.
  6. 제1항에 있어서, The method of claim 1,
    상기 전이금속 전구체에 가해지는 용매는 알코올(alcohol)인 것을 특징으로 하는 전이금속-실리콘 미세 중공구의 제조방법.The solvent applied to the transition metal precursor is alcohol (alcohol), characterized in that the transition metal-silicon micro hollow sphere production method.
  7. 제6항에 있어서, The method of claim 6,
    상기 알코올(alcohol)은 에탄올(ethanol)인 것을 특징으로 하는 전이금속-실리콘 미세 중공구의 제조방법.The alcohol (alcohol) is a method for producing a transition metal-silicon microspheres, characterized in that ethanol (ethanol).
  8. 제1항에 있어서, The method of claim 1,
    상기 제2단계에서 이루어지는 반응은 100 내지 300℃의 온도범위에서, 5 내지 50시간 동안 이루어지는 것을 특징으로 하는 전이금속-실리콘 미세 중공구의 제조방법.The reaction made in the second step is a method for producing a transition metal-silicon microspheres, characterized in that for 5 to 50 hours in a temperature range of 100 to 300 ℃.
  9. 제1항에 있어서, The method of claim 1,
    상기 제3단계에서 이루어지는 열처리는 진공분위기에서 이루어지는 것을 특징으로 하는 전이금속-실리콘 미세 중공구의 제조방법.The heat treatment in the third step is a method for producing a transition metal-silicon microspheres, characterized in that the vacuum atmosphere.
  10. 제1항에 있어서,The method of claim 1,
    상기 제3단계에서 이루어지는 열처리는 300 내지 500℃의 온도범위에서, 1 내지 10시간 동안 이루어지는 것을 특징으로 하는 전이금속-실리콘 미세 중공구의 제조방법.Heat treatment made in the third step is a method for producing a transition metal-silicon microspheres, characterized in that made for 1 to 10 hours in a temperature range of 300 to 500 ℃.
PCT/KR2013/003737 2013-04-29 2013-04-30 Method for manufacturing transition metal-silicone hollow microspheres WO2014178455A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130047461A KR101526476B1 (en) 2013-04-29 2013-04-29 Manufacturing method for fine hollow sphere of transition metal and silicon
KR10-2013-0047461 2013-04-29

Publications (1)

Publication Number Publication Date
WO2014178455A1 true WO2014178455A1 (en) 2014-11-06

Family

ID=51843575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/003737 WO2014178455A1 (en) 2013-04-29 2013-04-30 Method for manufacturing transition metal-silicone hollow microspheres

Country Status (2)

Country Link
KR (1) KR101526476B1 (en)
WO (1) WO2014178455A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104439273A (en) * 2014-11-06 2015-03-25 南京航空航天大学 Preparation method for FeCo/ZnO composite wave-absorbing material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060055722A (en) * 2004-11-19 2006-05-24 주식회사 사임당화장품 A physical method to produce hollow polymer spheres
KR20080006402A (en) * 2006-07-12 2008-01-16 한국화학연구원 Hollow graphitic nanocarbon using polymers incorporated with metal catalysts and preparation method of it
KR20080071856A (en) * 2007-01-31 2008-08-05 부산대학교 산학협력단 Hallow sphere for semiconductor and preparation method thereof
KR20100090551A (en) * 2009-02-06 2010-08-16 에이비씨상사 주식회사 Method of maufacturing graphene hollow nanospheres
KR20120076043A (en) * 2010-12-29 2012-07-09 한국세라믹기술원 Silica hollow particles using spray drier and producing method thereof and silica-titania composite hollow particles and producing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060055722A (en) * 2004-11-19 2006-05-24 주식회사 사임당화장품 A physical method to produce hollow polymer spheres
KR20080006402A (en) * 2006-07-12 2008-01-16 한국화학연구원 Hollow graphitic nanocarbon using polymers incorporated with metal catalysts and preparation method of it
KR20080071856A (en) * 2007-01-31 2008-08-05 부산대학교 산학협력단 Hallow sphere for semiconductor and preparation method thereof
KR20100090551A (en) * 2009-02-06 2010-08-16 에이비씨상사 주식회사 Method of maufacturing graphene hollow nanospheres
KR20120076043A (en) * 2010-12-29 2012-07-09 한국세라믹기술원 Silica hollow particles using spray drier and producing method thereof and silica-titania composite hollow particles and producing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104439273A (en) * 2014-11-06 2015-03-25 南京航空航天大学 Preparation method for FeCo/ZnO composite wave-absorbing material
CN104439273B (en) * 2014-11-06 2017-01-11 南京航空航天大学 Preparation method for FeCo/ZnO composite wave-absorbing material

Also Published As

Publication number Publication date
KR101526476B1 (en) 2015-06-10
KR20140129447A (en) 2014-11-07

Similar Documents

Publication Publication Date Title
CN107922201B (en) Metal oxide-silicon dioxide composite aerogel and preparation method thereof
WO2016029841A1 (en) Nickel cobalt oxide mesoporous microsphere and preparation method therefor
CN107683173B (en) Preparation method of metal oxide-silicon dioxide composite aerogel and prepared metal oxide-silicon dioxide composite aerogel
KR20180134362A (en) Method for manufacturing boron-doped porous carbon spheres
CN106887569A (en) A kind of new structure graphene coated nano silicon particles and preparation method thereof
CN107735169B (en) Preparation method of metal oxide-silicon dioxide composite aerogel and prepared metal oxide-silicon dioxide composite aerogel
US7816007B2 (en) Spherical carbon particles and their aggregates
WO2010090480A2 (en) Method for preparing carbon particles / copper composite materials
CN109943902A (en) A kind of modified polyester fiber and preparation method
CN103949193A (en) Universal method for preparation of inorganic hollow microspheres
WO2010089654A9 (en) Silica structure and method of producing the same, and heat insulating material
WO2020032684A1 (en) Graphene wet spinning coagulation bath and method for manufacturing graphene oxide fiber using the same
CN108996557B (en) Hollow sphere structured nickel oxide/copper oxide composite nano material and preparation method thereof
CN103922308B (en) The preparation method of the ordered porous carbon material of N doping honeycomb
WO2015080519A1 (en) Yolk-shell particles, catalyst, and preparation method therefor
JP2008280193A (en) Method for producing mesoporous silica fine particle, coating liquid for forming silica-based coating film, and silica-based coating film
CN109650381A (en) A kind of sea urchin shape graphene and preparation method thereof
CN110668446B (en) Preparation method of high-temperature-resistant SiC aerogel
CN109761239B (en) Composite material for sensing, photoelectric or lithium ion battery and preparation method thereof
WO2014178455A1 (en) Method for manufacturing transition metal-silicone hollow microspheres
KR101908092B1 (en) hollow spherical lithium-transition metal-silicate composites, pereparation method thereof, and Cathode Active Material for lithium secondary batteries comprising the same
WO2016114625A1 (en) Nanoporous polymer membrane and method for preparing same
CN112194113A (en) Morphology-controllable carbon material based on porous aromatic skeleton and preparation method and application thereof
KR100975427B1 (en) Preparation of mesoporous hollow core-shell particles
CN116177551A (en) Preparation method of high-reactivity silicon nano-particles with mesoporous structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13883715

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13883715

Country of ref document: EP

Kind code of ref document: A1