WO2011136435A1 - Aquifer heat storage control system - Google Patents

Aquifer heat storage control system Download PDF

Info

Publication number
WO2011136435A1
WO2011136435A1 PCT/KR2010/003773 KR2010003773W WO2011136435A1 WO 2011136435 A1 WO2011136435 A1 WO 2011136435A1 KR 2010003773 W KR2010003773 W KR 2010003773W WO 2011136435 A1 WO2011136435 A1 WO 2011136435A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
cold
storage
pump
groundwater
Prior art date
Application number
PCT/KR2010/003773
Other languages
French (fr)
Korean (ko)
Inventor
윤운상
박정훈
윤건신
이용호
전재수
Original Assignee
(주)넥스지오
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)넥스지오 filed Critical (주)넥스지오
Publication of WO2011136435A1 publication Critical patent/WO2011136435A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/06Heat pumps characterised by the source of low potential heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/20Geothermal collectors using underground water as working fluid; using working fluid injected directly into the ground, e.g. using injection wells and recovery wells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0052Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using the ground body or aquifers as heat storage medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T2010/50Component parts, details or accessories
    • F24T2010/56Control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to aquifer heat storage control system. Specifically, the present invention relates to an aquifer heat storage control system that utilizes cold / hot heat storage of aquifer for cooling and heating by using an underground aquifer as a cold heat storage body.
  • Geothermal heat storage heat pump system is being developed to secure the heat source required for cooling and heating through heat exchange using geothermal heat with constant temperature even with seasonal changes.
  • Patent documents include a heat storage type geothermal heat pump unit of Korean Patent No. 530259, a geothermal heat pump system of Korean Patent No. 949888, and the like. These conventional patent documents are a closed loop geothermal heat pump system that circulates to pump and recover underground groundwater in one groundwater hole, and is used for cooling and heating by storing a heat medium of cold or heat in a separate heat storage tank.
  • the heat is stored in a heat storage tank about 5 to 10 ° C. through heat exchange in a heat pump using a constant geothermal heat at about 15 ° C. or heat storage in a heat storage tank about 45 to 60 ° C.
  • geothermal heat constant around 15 °C to obtain the target heat storage temperature of the heat pump capacity or load is high.
  • the present invention is to solve the above-mentioned problems, without using geothermal heat around 15 °C as the primary heat source for the heat storage for direct cooling and heating, the groundwater heat exchanged by the operation of the heat pump divided into cold and warm heat again the underground aquifer It is to provide a more efficient heat storage heat pump system using the underground aquifer heat storage body by realizing a closed loop heat storage control system that is recovered and regenerated in the underground aquifer and using the heat accumulating underground aquifer heat storage body as a heat exchange heat source of the heat pump.
  • the cold water crystal is formed in the underground aquifer, the cold water is stored in the cold storage heat accumulation during the summer cooling and the ground water is deprived of heat during the winter heating is cold heat storage;
  • a hot water well formed in the underground aquifer and spaced apart by a predetermined distance limited to cold water crystals and thermal interference, and pumped underground water that has been thermally heated during winter heating and absorbed heat during summer cooling;
  • a groundwater pipe for supplying groundwater pumped from cold and hot water wells to a heat pump, and recovering groundwater heat exchanged from the heat pump and injecting the hot water and cold water wells;
  • a heat pump transferring the cold heat of the cold heat groundwater pumped from the cold water well to the storage heat medium, and transferring the heat of the hot water ground pumped from the hot water well to the storage heat medium;
  • a heat storage tank connected to the heat pump and the heat medium pipe, and storing a storage heat medium of cold or warm heat received from the heat pump through the heat medium pipe;
  • the groundwater heat-exchanged according to the operation of the heat pump is divided into cooling heat and heat and recovered to the underground aquifer.
  • the underground aquifer heat accumulator divided into cold heat and heat is used as a heat exchange heat source of the heat pump, thereby implementing a more efficient aquifer heat storage control system using the underground aquifer heat accumulator.
  • FIG. 1 is a schematic diagram of an aquifer heat storage system applied to an embodiment of the present invention.
  • FIG. 2 is a schematic system diagram of an aquifer heat storage control system according to an embodiment of the present invention.
  • FIG. 3 is a schematic block diagram showing a control state of the aquifer storage control system according to another embodiment of the present invention.
  • FIG. 4 is a schematic view showing a heat pump of the aquifer storage control system according to another embodiment of the present invention.
  • cold water crystal is formed in the underground aquifer, the cold water is stored in the cold storage heat accumulation during the summer cooling and the ground water is deprived of heat during the winter heating is cold storage heat storage;
  • a hot water well formed in the underground aquifer and spaced apart by a predetermined distance limited to cold water crystals and thermal interference, and pumped underground water that has been thermally heated during winter heating and absorbed heat during summer cooling;
  • a groundwater pipe for supplying groundwater pumped from cold and hot water wells to a heat pump, and recovering groundwater heat exchanged from the heat pump and injecting the hot water and cold water wells;
  • a heat pump transferring the cold heat of the cold heat groundwater pumped from the cold water well to the storage heat medium, and transferring the heat of the hot water ground pumped from the hot water well to the storage heat medium;
  • a heat storage tank connected to the heat pump and the heat medium pipe, and storing a storage heat medium of cold or warm heat received from the heat pump through the heat medium pipe;
  • a controller for automatically controlling the
  • the aquifer heat storage control system is installed in a cold water well and a hot water well, respectively, and pumps ground water that is cold-heat-generated during cooling, and ground water that is heat-heat-generated during heating.
  • Submersible motor pump for supplying ground water pipes;
  • a first circulation pump installed on the heat medium pipe and discharging the storage heat medium to the heat pump.
  • controller is configured to stop the operation of the heat pump, the first circulation pump and the submersible motor pump when the temperature of the storage heat medium of the heat storage tank reaches a predetermined target temperature, the storage heat medium stored after the operation stops If the target temperature is out of a predetermined allowable range, the heat pump, the first circulation pump, and the submersible motor pump during operation are controlled to be restarted.
  • the heat storage target temperature of the storage heat medium of the heat storage tank is in the range of 5 to 10 ° C during summer cooling, and in the range of 45 to 55 ° C, preferably 45 to 50 ° C during winter heating.
  • the above-described controller is a groundwater pumping flow rate or / and heat medium from the cold or hot water well depending on the difference between the measured temperature and the set target temperature of the storage heat medium stored in the heat storage tank The circulation flow rate of the storage heat medium to the heat storage tank through the pipe is controlled.
  • the controller is dependent on the temperature of the groundwater pumped from the cold or hot water well, more preferably, the temperature and temperature of the ground water pumped from the cold or hot water well. Depending on the temperature of the groundwater injected into the crystal or cold water well, the flow rate of the ground water pumping from the cold or hot water well and / or the storage heat medium to the heat storage tank via the heat medium pipe is controlled.
  • the controller described above depends on the difference in temperature in the storage heating medium in the above embodiments, or on the temperature of the groundwater, more preferably at the temperature of the groundwater being pumped and the temperature of the groundwater being injected. Accordingly, the treatment capacity of the heat pump is controlled along with controlling the groundwater pumping flow rate and / or the circulation flow rate of the storage heating medium.
  • the aquifer heat storage control system further comprises: an underwater motor pump installed in each of the cold water well and the hot water well, for pumping the ground water regenerated by cold heat during cooling and the ground water regenerated by heat during heating; And a first circulation pump installed on the heat medium pipe and discharging the storage heat medium to the heat pump.
  • the controller described above controls the submersible motor pump to control the groundwater pumping flow rate from the cold water well or hot water well, and the first circulation pump to control the circulation flow rate of the storage heating medium.
  • the aquifer heat storage control system is installed on the groundwater pipeline, and under the control of the controller, the groundwater supply pipeline connected to the submersible motor pump stopped pumping and being pumped Shut-off valves for blocking the groundwater recovery line to the cold or hot water well and simultaneously opening the groundwater supply line connected to the submersible motor pump being pumped and the groundwater recovery line to the stopped pumped cold or hot water well;
  • a cooling and heating conduit for circulating heat storage heat medium of cold storage or heat storage of the heat storage tank to exchange heat with the building air conditioning equipment;
  • a second circulation pump installed on the air conditioning pipe and discharging the storage heat medium to the building air conditioning equipment. It further comprises.
  • the heat medium pipe direction control valve for controlling the flow direction of the heat medium pipe according to the control of the controller so that the storage heat medium heat-exchanged with the heat pump is returned to the bottom of the heat storage tank during the summer cooling, and to the top of the heat storage tank during the winter heating. Further provided with, the heat storage is made so that the storage heat medium stored in the heat storage tank gradually becomes uniform after stratification.
  • the target temperature of the cold water crystal used as the heat storage body as the heat storage body is in the range of 5 to 10 ° C.
  • the target temperature of the hot water crystal as the heat storage body is 20 to 30 ° C., preferably It is in the range of 25 to 30 ° C.
  • FIG. 1 is a schematic diagram of an aquifer heat storage system applied to an embodiment of the present invention
  • FIG. 2 is a schematic system diagram of an aquifer heat storage control system according to an embodiment of the present invention
  • 3 is a schematic block diagram showing a control state of the aquifer storage control system according to another embodiment of the present invention.
  • the present invention relates to an aquifer heat storage control system using an underground aquifer as a cold heat storage body, and a specific embodiment will be described with reference to FIGS. 1 to 3.
  • the aquifer heat storage control system comprises a cold water tank 10, a hot water tank 20, groundwater pipeline 30, heat pump 50, heat storage tank 70 and the controller 40. .
  • the cold water well 10 and the hot water well 20 are formed in an underground aquifer and are spaced apart by a predetermined distance d, which is limited to thermal interference.
  • Each of the cold water well 10 and the hot water well 20 may be one well, preferably at least one well, and preferably each of a plurality of wells.
  • the number of wells is determined in consideration of the quantity of pumpable water and the capacity of the heater pump 50 from day to day over a period of time from each well.
  • the underground aquifer is a layer containing groundwater, which has pores filled with water, and the groundwater can move through the interconnected pores.
  • the underground aquifer since the underground aquifer is used as a heat storage body, it is preferable to have a hydraulic property with a large porosity and a slow flow rate.
  • the underground aquifer may be formed in the porous medium layer or the cracked rock layer.
  • the underground aquifer is a free faced aquifer or a confined aquifer.
  • the free-surface aquifer when the underground aquifer is a free-surface aquifer, the free-surface aquifer is composed of silt or clay at the top and is covered with an impervious layer through which water does not pass well, or the free surface aquifer is low. It is desirable that the top of the underground aquifer plays a role of thermally conductive and / or hydraulic protection for the underground aquifer.
  • the free-surface aquifer can be formed in a crushed or weathered zone, which is an alluvial layer that is a porous medium layer or a cracked rock layer. In the case of an alluvial layer, it is preferable that it consists of sand, gravel, etc. which are covered with the impermeable layer of a clay or a silt layer in the upper part, and it is preferable that it is covered with the impermeable layer of a clay or a silt layer in the upper part in a crushing layer.
  • the underground aquifer when the underground aquifer is a pressured aquifer, the upper part of the pressured aquifer is an impermeable layer ( It is covered with an impermeable layer.
  • the pressured aquifer can be composed of porous rock or cracked rock layers.
  • the impermeable layer is used in the sense of including a non-permeable layer (aquifuge) consisting of an aquiclude layer ( ⁇ ⁇ ⁇ ⁇ , aquiclude) and the water does not penetrate.
  • the underground aquifer has a large porosity and may contain a large amount of groundwater, and it is sufficient if it is formed in a low flow rate layer. Furthermore, it is preferable that the upper part of the underground aquifer plays a thermally conductive and / or hydraulic protection role against the groundwater. desirable.
  • a distance d limited by thermal interference refers to a distance at or above which there is no or extremely limited thermal interference from one groundwater injection well to another groundwater pumping well over a predetermined period of time.
  • the predetermined period may be from 6 months according to the summer and winter season, preferably 3 to 5 months, which is the aquifer heat storage period according to the actual heat pump operation.
  • the distance d in which thermal interference is limited can be set by numerically analyzing the thermal behavior in the ground by the heat flux calculation model proposed by Molson et al.
  • the process of calculating the distance (d) at which thermal interference is limited is not an intrinsic scope of the present invention, and the predetermined distance (d) at which thermal interference is limited is known to those skilled in the art through enumerated copper numerical analysis models. Since the self can be easily performed, a detailed description thereof will be omitted.
  • the cold water well 10 and the hot water well 20 cover the upper part with a cover or a cover box so that external foreign matter does not penetrate into the well, and preferably, the groundwater pipeline 30 passes through the cover or cover box or is at the side of the upper part of the well. Through the groundwater pipe 30 to be injected into the well.
  • the inside of the well of the cold water well 10 and the hot water well 20 grouts the strata formed in the upper part of the underground aquifer to prevent the penetration of groundwater or foreign matter.
  • the cold water crystal 10 and the hot water crystal 20 are used as cold / hot heat accumulators, they are preferably used within one year, more preferably at least 6 months, more preferably at least between winter and summer. There should be little or no thermal interference due to the flow of groundwater between the cold water wells 10 and the hot water wells 20 formed in the underground aquifer within approximately three to five months, the actual duration of the pump 50.
  • the cold water well 10 and the hot water well 20 may be hydraulically isolated by an impermeable layer such as a hard water permeable layer or a non-water permeable layer, and preferably, the depth of the cold water well 10 and the hot water well 20 Are not necessarily the same and may vary in depth.
  • the cold water well 10 and the hot water well 20 have a difference in depth, but the depth of the cold water well 10 is above the underground aquifer, and the depth of the hot water well 20 is below the underground aquifer. It is installed to be located. Further, preferably, the depths of the cold water wells 10 and the hot water wells 20 may be positioned to be hydraulically isolated or nearly isolated by an impermeable layer, such as an impermeable or non-permeable layer.
  • the ground water that is cold-heated and stored during cooling in the summer is pumped, and the ground water which is deprived of heat during the heating in winter is injected and cold-heated.
  • the ground-heated thermal water that is thermally heated during the winter heating is pumped, and the groundwater that absorbs the heat during the summer cooling is injected and thermally stored.
  • the cold water wells 10 and the hot water wells 20 are provided with temperature sensors 15 and 25 for sensing the temperature of the regenerated ground water.
  • the temperature sensors 15 and 25 illustrated in FIG. 3 are groundwater pipes 30 which are introduced into the heat pump 50 and / or discharged from the heat pump 50 instead of the cold water well 10 and the hot water well 20. It may be installed on the side.
  • the groundwater pipeline 30 supplies groundwater pumped from the cold water well 10 and the hot water well 20 to the heat pump 50, and recovers the groundwater heat exchanged from the heat pump 50. Injected into the hot water well 20 and the cold water well 10.
  • the groundwater pipeline 30 supplies the cold heated groundwater pumped from the cold water well 10 to the heat pump 50, recovers groundwater heat exchanged from the heat pump 50, and injects it into the hot water well 20.
  • the groundwater pipe 30 supplies the groundwater pumped from the hot water well 20 to the heat pump 50, recovers the groundwater heat exchanged from the heat pump 50, and injects it into the cold water well 10.
  • the temperature of the groundwater recovered from the heat pump 50 and used as the heat storage body for cooling is 20 to 30 ° C., preferably 25 to 30 ° C., and is recovered from the heat pump 50 for heating and used as the heat storage body.
  • Groundwater temperature is 5 ⁇ 10 °C. That is, preferably, the temperature which thermally thermally accumulates in the hot water well 20 is 20-30 degreeC, Preferably it is 25-30 degreeC, and the temperature which cold-thermally accumulates in the cold water crystal
  • the temperature of the groundwater used as the heat storage body may vary depending on the heat capacity converted by the heat pump 50.
  • the flow rate control valve 35 is further provided on the ground water supply pipe (30a) for supplying the ground water pumped by the heat pump (50).
  • the flow control valve 35 is controlled to supply an appropriate flow rate in accordance with the heat storage temperature of the heat storage tank (70).
  • the flow control valve 35 is composed of a remote control valve.
  • a filtering device 37 is further provided on the ground water supply line 30a for supplying ground water pumped to the heat pump 50.
  • the filtering device 37 filters foreign matter contained in the groundwater.
  • the filtering device 37 is installed between the flow control valve 35 and the heat pump 50.
  • the flow rate control valve 35 As the flow rate control valve 35 is controlled, the flow rate of the groundwater supply to the heat pump 50 is adjusted, and preferably, the control of the submersible motor pumps 11 and 21 installed in the cold water well 10 and the hot water well 20 is performed. Controlled together, the groundwater supply flow rate is regulated. Also preferably, a pressure pump 39 is further provided on the ground water supply line 30a for supplying ground water pumped to the heat pump 50.
  • the heat pump 50 transfers the cold heat of the cold heat ground water pumped from the cold water well 10 to the storage heat medium 71, and the heat of the warm ground water pumped from the hot water well 20 Transfer to the storage heat medium (71).
  • the configuration of the heat pump 50 will be described with reference to FIG. 4.
  • the heat pump 50 includes a first heat exchanger 51, a second heat exchanger 53, a compressor 55, an expansion valve 57, and a heat pump direction control valve 59. Is done. Furthermore, preferably, the heat pump 50 further includes an accumulator 52, an oil separator 54, a receiver 56, a filter drier 58, and a liquid level gauge 60. It is done by
  • the first heat exchanger 51 acts as a condenser during summer cooling and as an evaporator during winter heating to heat the refrigerant with the pumped groundwater.
  • the second heat exchanger 53 acts as an evaporator during summer cooling, and acts as a condenser during winter heating to heat-exchange the refrigerant and the storage heat medium 71 to accumulate cold heat and heat with the storage heat medium 71.
  • the temperature sensor (66a, 66b) for detecting the temperature of the refrigerant is installed on the inlet side and the discharge side of the first heat exchanger 51, the second exchanger 53 Temperature sensors 65a and 65b are installed on the inflow side and the discharge side to detect the temperature of the refrigerant
  • the temperature of the refrigerant measured by the temperature sensors 65a, 65b, 66a and 66b is controlled by the heat pump in the controller 40. It is used as information for controlling 50.
  • the compressor 55 compresses the refrigerant and discharges the refrigerant to a heat exchanger serving as a condenser.
  • the high pressure gauge 63 is installed on the pipeline discharged from the compressor 55, and the low pressure gauge 64 is installed on the pipeline flowing into the compressor 55.
  • 62 is installed to protect the compressor 55 and the heat pump 50 by shutting off the hip pump relay power (not shown) when the pressure of the refrigerant is too high or low.
  • a temperature sensor is installed at the inflow side to the compressor 55 and the discharge side conduit from the compressor 55 to measure the temperature of the refrigerant flowing into or out of the compressor 55.
  • the expansion valve 57 expands the refrigerant passing through the heat exchanger acting as a condenser and sends it to the heat exchanger acting as an evaporator.
  • two expansion valves 57a are operated when the first heat exchanger 51 acts as a condenser and two expansion valves 57b are operated when the second heat exchanger 53 acts as a condenser.
  • the heat pump direction control valve 59 preferably the four-way solenoid valve, controls the flow direction of the refrigerant so that the first heat exchanger 51 and the second heat exchanger 53 alternately act as condensers and evaporators.
  • the heat pump direction control valve 59 sends the refrigerant discharged from the compressor 55 to the first heat exchanger 51.
  • the heat pump direction control valve 59 has a refrigerant flow direction to direct the refrigerant discharged from the compressor 55 to the second heat exchanger 53. Is switched.
  • the liquid separator 52 is installed before the compressor 55 and protects the compressor 55 by preventing liquid back to the compressor 55.
  • the oil separator 54 is installed after the compressor 55 to return oil contained in the refrigerant discharged from the compressor 55 to the compressor 55.
  • a receiver 56 is provided between the heat exchanger serving as a condenser and the expansion valve 57.
  • the receiver 56 temporarily stores the refrigerant liquid condensed in the condenser and sends only the refrigerant required by the evaporator to the expansion valve 57, and serves as a kind of safety device.
  • a filter drier 58 and a sight glass 60 installed after the receiver 56 are installed.
  • the filter drier 58 filters out various foreign matters inside the system.
  • the injection amount and state of the refrigerant can be directly checked.
  • the control unit 40 controls the heat pump 50.
  • the processing capacity of the heat pump 50 can be controlled by controlling the evaporation capacity, the refrigerant speed in the expansion valve 57, and the like.
  • the compression capacity of the compressor 55 and / or the condensation and / or evaporation capacities of the first or second heat exchangers 51, 53 are transferred to the compressor 55 or / and the first and second heat exchangers 51, 53. It can be controlled by controlling the provided RPM controllable inverter motor (not shown).
  • reference numeral 61 denotes a check valve.
  • the heat storage tank 70 is connected to the heat pump 50 and the heat medium pipe 80, the storage of cold or heat received from the heat pump 50 through the heat medium pipe (80)
  • the heat medium 71 is stored.
  • the storage heat medium 71 is water.
  • the heat medium pipe 80 is formed to circulate the storage heat medium 71 between the heat storage tank 70 and the heat pump 50.
  • the heat medium pipe 80 is formed such that the storage heat medium 71 heat-exchanged with the heat pump 50 is returned to the lower portion of the heat storage tank 70 during the summer cooling and to the top of the heat storage tank 70 during the winter heating. do.
  • the heat storage target temperature of the heat storage tank 70 is in the range of 5 to 10 ° C. during summer cooling, and is in the range of 45 to 55 ° C., preferably 45 to 50 ° C. during winter heating.
  • the controller 40 operates the heat pump 50 and pumps ground water from the cold water well 10 and the hot water well 20 and the cold water well 10 according to the set cooling or heating mode. ) And the groundwater injection into the hot water well 20 is automatically controlled.
  • the controller 40 stops and restarts the heat pump 50 according to the temperature of the storage heat medium 71 stored in the heat storage tank 70, and the cold water crystal 10 and the ON. Groundwater pumping stops and repumps from the crystal 20 are controlled.
  • the temperature of the storage heat medium 71 stored in the heat storage tank 70 to be discharged or discharged to the heat pump 50 is relatively high temperature during summer cooling, and relatively low temperature during winter heating.
  • the temperature of the storage heat medium 71 circulated is a temperature sensor 85a provided in the discharge side heat medium pipe 80 from the heat storage tank 70 and / or the inlet side heat medium pipe 80 to the heat pump 50.
  • the aquifer heat storage control system further includes an underwater motor pump 11, 21 and a first circulation pump 81.
  • it further comprises a flow rate control valve 35 installed on the ground water supply pipe (30a) for supplying the ground water pumped by the heat pump (50).
  • the submersible motor pumps 11 and 21 are installed in the cold water well 10 and the hot water well 20, respectively.
  • the submersible motor pumps 11 and 12 are motor pumps in which an inverter is installed to enable RPM control. It is possible to adjust the pumping flow rate by controlling the RPM of the submersible motor pump (11, 21).
  • the submersible motor pumps 11 and 21 installed in the cold water well 10 and the hot water well 20 are alternately operated in accordance with cooling and heating.
  • the submersible motor pump 11 installed in the cold water crystal pump 10 pumps the ground-heat accumulated cold water at the time of cooling
  • the submersible motor pump 21 installed in the hot-water well 20 pumps the ground-heat accumulated thermal water at the time of heating.
  • the submersible motor pumps 11 and 21 pump ground water to supply the groundwater pipe 30.
  • the first circulation pump 81 is provided on the heat medium pipe 80, and the first circulation pump 81 discharges the storage heat medium 71 stored in the heat storage tank 70 to the heat pump 50.
  • the first circulation pump 81 is installed on a pipe or a pipe connected to the lower portion of the heat storage tank 70.
  • the controller 40 may include the heat pump 50, the first circulation pump 81, and the submersible motor pump when the temperature of the storage heat medium 71 of the heat storage tank 70 reaches a predetermined target temperature. 11 or 21 are shut down and the heat pump 50, the first circulation pump 81 and the submersible submersible motor pump are stopped when the stored heat medium 71 after the shutdown is out of a predetermined allowable range of the target temperature. Control to restart (11 or 21).
  • the heat storage target temperature of the storage heat medium 71 of the heat storage tank 70 is in the range of 5 to 10 ° C. during summer cooling, and in the range of 45 to 60 ° C. during winter heating.
  • the controller 40 controls the submersible motor pumps 11, 21 to adjust the groundwater pumping flow rate from the cold water well 10 or the hot water well 20.
  • the submersible motor pump (11, 21), or the flow control valve 35, or the submersible motor pump (11, 21) and the flow control valve 35 to control the cold water crystal 10 or hot water well Groundwater pumping flow rate from 20 is controlled.
  • the controller 40 controls the first circulation pump 81 to adjust the circulation flow rate of the storage heat medium (71).
  • the submersible motor pumps 11 and 21 and the pressurized pump 39 shown in FIG. 2 are controlled or the submersible motor pumps 11 and 21, the flow control valve 35 and the pressurized pump 39 are controlled. To adjust the groundwater pumping flow rate.
  • the controller 40 shown in FIG. 3 uses the cold water crystal 10 according to the difference between the measured temperature and the set target temperature of the storage heat medium 71 stored in the heat storage tank 70. Or the flow rate of the ground water pumping from the hot water well 20 and / or the circulation flow rate of the storage heat medium 71 to the heat storage tank 70 through the heat medium pipe 80.
  • the temperature of the storage heat medium 71 stored in the heat storage tank 70 is preferably a temperature of the discharge side heat medium pipe 80 from the heat storage tank 70 and / or the inlet side heat medium pipe 80 to the heat pump 50. It is measured by the sensor 86a.
  • the preferable heat storage target temperature of the storage heat medium 71 of the heat storage tank 70 is in the range of 5 to 10 ° C. during summer cooling, and in the range of 45 to 55 ° C., preferably 45 to 50 ° C. during winter heating.
  • the controller 40 is the temperature of the storage heat medium 71 introduced into or introduced into the heat storage tank 70 and the storage heat medium 71 to be discharged from or discharged from the heat storage tank 70. Circulating flow rate of the ground water pumping flow from the cold water well 10 or the hot water well 20 and / or the storage heat medium 71 to the heat storage tank 70 through the heat medium pipe 80 according to the temperature difference of have.
  • the controller 40 of FIG. 3 is dependent on the temperature of the groundwater pumped from the cold water well 10 or the hot water well 20, more preferably, the cold water well 10 Or groundwater pumping flow rate from the cold water well (10 or hot water well 20), depending on the temperature of the ground water pumped from the hot water well (20) and the temperature of the ground water that is injected into the hot water well (20) or cold water well (10) and The circulation flow rate of the storage heat medium to the heat storage tank 70 through the heat medium pipe 80 is controlled.
  • the temperature of the groundwater pumped from the cold water well 10 or the hot water well 20 is the inlet side groundwater supply line 30a to the heat pump 50 or / and the cold water well 10 being pumped.
  • the temperature sensor 36a installed in the hot water well 20 the temperature of the ground water injected into the hot water well 20 or the cold water well 10 is discharged from the heat pump 50 to the groundwater recovery pipe line 30b.
  • / and groundwater is recovered and measured by the temperature sensor 36b installed in the cold water well 10 or the hot water well 20 which is undergoing heat storage.
  • the groundwater in consideration of not only the temperature of the groundwater to be pumped but also the temperature difference between the inflow and discharge of the storage heating medium 71 or the difference between the target temperature and the measurement temperature of the storage heating medium 71 in the aforementioned embodiments,
  • the pumping flow rate and / or the circulation flow rate of the storage heating medium 71 is controlled.
  • the controller 40 of FIG. 3 is characterized in that the temperature difference in the storage heat medium 71 (the temperature difference between the storage heat medium 71 introduced and discharged) in the above-described embodiments. Or the difference between the target temperature and the measured temperature) and / or the ground water pumping flow rate and / or the circulation flow rate of the storage heat medium 71 according to the temperature of the ground water.
  • the controller 40 controls the compression capacity of the compressor 55 and / or the condensation and / or evaporation capacity of the first or second heat exchangers 51 and 53, the refrigerant velocity in the expansion valve 57, and the like.
  • the processing capacity of the heat pump 50 can be controlled.
  • the compression capacity of the compressor 55 and / or the condensation and / or evaporation capacity of the first or second heat exchangers 51 and 53 can be controlled by controlling the inverter motor with RPM speed control.
  • the inverter motor is provided in the compressor 55 and / or the first and second heat exchangers 51 and 53.
  • the aquifer storage control system further includes shutoff valves 31 and 33, a cooling and heating conduit 90, and a second circulation pump 91.
  • the ground water pipe 30 includes a ground water supply pipe 30a for supplying ground water to the heat pump 50 and a ground water recovery pipe 30b for recovering ground water from the heat pump 50.
  • groundwater supply line 30a and the groundwater recovery line 30b may form independent lines up to each well 10 and 20, as shown in FIG. 2, or as illustrated in FIG. 1, an underwater motor pump ( 11, 21) can be combined with the piping.
  • the shutoff valves 31 and 33 are installed in the groundwater supply line 30a and the groundwater recovery line 30b.
  • the shut-off valve (s) 31 installed in the groundwater supply line 30a are groundwater supply pipes from the hot water wells 20 during the summer cooling and from the cold water wells 10 during the winter heating under the control of the controller 40.
  • the furnace 30a is blocked.
  • the shutoff valve 31 installed on the ground water supply line 30a is a remote control check valve.
  • the shut-off valve (s) 33 installed in the groundwater recovery pipe line 30b are, depending on the control of the controller 40, the groundwater recovery pipe line to the hot water well 20 for cooling and to the cold water well 10 for heating. Block 30b.
  • the shut-off valve (s) 33 installed on the groundwater recovery line 30b are preferably a remote control check valve.
  • the air conditioning and heating pipe (90) circulates the storage heat medium (71) of the cold or hot heat stored in the heat storage tank (70) to a heating and cooling facility such as a fan coil unit (FCU).
  • a heating and cooling facility such as a fan coil unit (FCU).
  • the cooling and heating pipe (90) is formed so that the storage heat medium (71) is discharged from the lower part of the heat storage tank (70) during the summer cooling, and the upper part of the heat storage tank (70) during the winter heating.
  • the second circulation pump 91 is installed on the cooling and heating conduit 90, and the second circulation pump 91 discharges the storage heat medium 71 stored in the heat storage tank 70 to the building air conditioning equipment side.
  • the second circulation pump 91 is also controlled by the controller 40.
  • the second circulation pump 91 is installed on a pipe or a pipe connected to the lower portion of the heat storage tank 70.
  • a cooling and heating piping direction control valve 93 for example a four-way solenoid valve, so that the discharged position can be changed.
  • a heat pipe direction control valve 83 is further provided.
  • the heat medium pipe direction control valve 83 controls the heat storage medium 71 heat-exchanged with the heat pump 50 to the lower part of the heat storage tank 70 during the summer cooling, and the heat storage tank during the winter heating according to the control of the controller 40.
  • the flow direction of the heat medium pipe 80 is controlled to be returned to the upper portion of the 70.
  • the heat medium pipe direction control valve 83 is a four-way solenoid valve.
  • the high temperature storage heat medium 71a is stored in the upper part of the heat storage tank 70, and the low temperature storage heat medium 71b is stored in the lower part, and stratified.
  • high and low temperatures are a relative concept.
  • a pressurized pump is further provided on the groundwater recovery pipe line 30b for injecting heat-exchanged groundwater into the cold water well 10 and the hot water well 20. It is provided, it is possible to inject the ground water exchanged.
  • a packer through which the groundwater supply line 30a and the groundwater recovery line 30b pass through the groundwater surface G of the underground aquifer, respectively, of the cold water well 10 and the hot water well 20.
  • a cover or cover box (not shown) is installed on the top of the well so that the inside of the well is sealed except the pipeline. The packer or cover, the cover box maintains watertightness, to enable the pressurized injection of groundwater by the pressure pump.
  • the present invention relates to aquifer heat storage control system and is industrially useful.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

According to one aspect of the present invention, an aquifer heat storage control system, which uses an underground aquifer as a heat and cold storage medium, comprises: a cold water reservoir for storing cold by having cold underground water pumped therefrom for cooling during the summer, and having underground water, from which heat is absorbed for heating during the winter, fed therein; a hot water reservoir for storing heat, which is separated by a predetermined distance from the cold water reservoir so as to restrict the transfer of heat therebetween, and from which underground water, in which heat is stored, is pumped for heating during the winter, and having underground water, which has absorbed heat during cooling in the summer, fed therein; underground water piping for supplying pumped underground water to a heat pump and recovering heat-exchanged underground water and introducing same to the hot water reservoir and to the cold water reservoir; said heat pump for transferring cold from cold underground water pumped from the cold water reservoir to a hot/cold storage medium, and for transferring heat from hot underground water pumped from the hot water reservoir to the hot/cold storage medium; a thermal storage tank connected by a thermal medium pipe to the heat pump, so as to store a cold or hot storage medium transferred from the heat pump through the thermal medium pipe; and a controller for automatically controlling the operation of the heat pump according to a set cooling or heating mode, automatically controlling the pumping of underground water from the cold and hot water reservoirs, and automatically controlling the feeding of underground water into the cold and hot water reservoirs.

Description

대수층 축열 제어 시스템Aquifer Regenerative Control System
본 발명은 대수층 축열 제어 시스템에 관한 것이다. 구체적으로는 지하 대수층을 냉온 축열체로 이용하여 대수층의 냉/온 축열을 냉난방에 활용하는 대수층 축열 제어 시스템에 관한 것이다.The present invention relates to aquifer heat storage control system. Specifically, the present invention relates to an aquifer heat storage control system that utilizes cold / hot heat storage of aquifer for cooling and heating by using an underground aquifer as a cold heat storage body.
계절의 변화에도 온도가 일정한 지열을 이용한 열교환을 통해 냉난방에 필요한 열원을 확보하는 지열 이용한 축열식 히트펌프 시스템이 많이 개발되고 있다.Geothermal heat storage heat pump system is being developed to secure the heat source required for cooling and heating through heat exchange using geothermal heat with constant temperature even with seasonal changes.
특허문헌으로는, 한국 등록특허 제530259호의 축열식 지열히트펌프 유닛, 한국 등록특허 제949888호의 지열 히트펌프시스템 등이 있다. 이러한 종래의 특허문헌들에서는 하나의 지하수공에서 지중의 지하수를 펌핑하고 회수하도록 순환시키는 폐회로형 지열 히트펌프 시스템으로, 별도의 축열조에 냉열 또는 온열의 열매체를 저장시켜 냉난방에 이용하고 있다. Patent documents include a heat storage type geothermal heat pump unit of Korean Patent No. 530259, a geothermal heat pump system of Korean Patent No. 949888, and the like. These conventional patent documents are a closed loop geothermal heat pump system that circulates to pump and recover underground groundwater in one groundwater hole, and is used for cooling and heating by storing a heat medium of cold or heat in a separate heat storage tank.
즉, 이러한 종래의 특허문헌들에서는 온도가 15℃ 부근에서 일정한 지열을 이용하여 히트펌프에서 열교환을 통하여 5~10℃ 정도로 축열조에 냉열 축열시키거나 45~60℃ 정도로 축열조에 온열 축열시키고 있다. 냉난방을 위한 축열의 기본 열원이 지열이 15℃ 내외로 일정하여 목표하는 축열 온도를 얻기 위해서는 히트펌프의 용량이 커지거나 부하가 많이 걸리게 된다.That is, in these conventional patent documents, the heat is stored in a heat storage tank about 5 to 10 ° C. through heat exchange in a heat pump using a constant geothermal heat at about 15 ° C. or heat storage in a heat storage tank about 45 to 60 ° C. As the basic heat source of heat storage for cooling and heating is geothermal heat constant around 15 ℃ to obtain the target heat storage temperature of the heat pump capacity or load is high.
본 발명은 전술한 문제를 해결하기 위한 것으로, 15℃ 내외 부근의 지열을 직접 냉난방을 위한 축열의 기본 열원으로 사용하지 않고, 히트펌프의 가동에 따라 열교환된 지하수를 냉열과 온열로 나누어 다시 지하 대수층으로 회수하여 지하 대수층 내에 축열시키고 축열된 지하 대수층 축열체를 히트펌프의 열교환 열원으로 이용하는 폐회로형 축열 제어 시스템을 구현함으로써, 보다 효율적인 지하 대수층 축열체를 이용한 축열식 히트펌프 시스템을 제공하고자 한다.The present invention is to solve the above-mentioned problems, without using geothermal heat around 15 ℃ as the primary heat source for the heat storage for direct cooling and heating, the groundwater heat exchanged by the operation of the heat pump divided into cold and warm heat again the underground aquifer It is to provide a more efficient heat storage heat pump system using the underground aquifer heat storage body by realizing a closed loop heat storage control system that is recovered and regenerated in the underground aquifer and using the heat accumulating underground aquifer heat storage body as a heat exchange heat source of the heat pump.
전술한 목적을 달성하기 위하여, 본 발명의 하나의 모습에 따라, 지하 대수층에 형성되되, 하절기 냉방시 냉열 축열된 지하수가 펌핑되고 동절기 난방시 열을 빼앗긴 지하수가 주입되어 냉열 축열되는 냉수정; 지하 대수층에 형성되되 냉수정과 열간섭 제한되는 소정 거리로 이격되어 있고, 동절기 난방시 온열 축열된 지하수가 펌핑되고 하절기 냉방시 열을 흡수한 지하수가 주입되어 온열 축열되는 온수정; 냉수정 및 온수정으로부터 펌핑된 지하수를 히트펌프로 공급시키고, 히트펌프로부터 열교환된 지하수를 회수하여 온수정 및 냉수정으로 주입시키는 지하수 관로; 냉수정으로부터 펌핑된 냉열 지하수의 냉열을 저장 열매체로 전달하고, 온수정으로부터 펌핑된 온열 지하수의 온열을 저장 열매체로 전달하는 히트펌프; 히트펌프와 열매체 배관으로 연결되며, 열매체 배관을 통해 히트펌프로부터 전달받은 냉열 또는 온열의 저장 열매체를 저장하는 축열조; 및 설정된 냉방 또는 난방 모드에 따라 히트펌프의 작동 및 냉수정 및 온수정으로부터의 지하수 펌핑과 냉수정 및 온수정으로의 지하수 주입을 자동 제어하는 제어기기; 를 포함하여 이루어지는, 지하 대수층을 냉온 축열체로 이용하는 대수층 축열 제어 시스템이 제안된다.In order to achieve the above object, according to one aspect of the present invention, the cold water crystal is formed in the underground aquifer, the cold water is stored in the cold storage heat accumulation during the summer cooling and the ground water is deprived of heat during the winter heating is cold heat storage; A hot water well formed in the underground aquifer and spaced apart by a predetermined distance limited to cold water crystals and thermal interference, and pumped underground water that has been thermally heated during winter heating and absorbed heat during summer cooling; A groundwater pipe for supplying groundwater pumped from cold and hot water wells to a heat pump, and recovering groundwater heat exchanged from the heat pump and injecting the hot water and cold water wells; A heat pump transferring the cold heat of the cold heat groundwater pumped from the cold water well to the storage heat medium, and transferring the heat of the hot water ground pumped from the hot water well to the storage heat medium; A heat storage tank connected to the heat pump and the heat medium pipe, and storing a storage heat medium of cold or warm heat received from the heat pump through the heat medium pipe; And a controller for automatically controlling the operation of the heat pump and the groundwater pumping from the cold and hot water wells and the groundwater injection into the cold and hot water wells according to the set cooling or heating mode. An aquifer heat storage control system using an underground aquifer as a cold / hot heat storage body is proposed.
본 발명의 모습에 따라, 종래와 같이 15℃ 내외 부근의 지열을 직접 냉난방을 위한 축열의 기본 열원으로 사용하지 않고, 히트펌프의 가동에 따라 열교환된 지하수를 냉열과 온열로 나누어 다시 지하 대수층으로 회수하여 지하 대수층 내에 축열시키고, 냉열 및 온열로 나뉘어 축열된 지하 대수층 축열체를 히트펌프의 열교환 열원으로 이용함으로써, 보다 효율적인 지하 대수층 축열체를 이용한 대수층 축열 제어 시스템을 구현하게 되었다.According to the aspect of the present invention, instead of using geothermal heat around 15 ° C as a basic heat source for heat storage for direct heating and cooling as in the prior art, the groundwater heat-exchanged according to the operation of the heat pump is divided into cooling heat and heat and recovered to the underground aquifer. By heat storage in the underground aquifer, the underground aquifer heat accumulator divided into cold heat and heat is used as a heat exchange heat source of the heat pump, thereby implementing a more efficient aquifer heat storage control system using the underground aquifer heat accumulator.
도 1은 본 발명의 실시예에 적용되는 대수층 축열 시스템의 개략적인 도면이다.1 is a schematic diagram of an aquifer heat storage system applied to an embodiment of the present invention.
도 2는 본 발명의 하나의 실시예에 따른 대수층 축열 제어 시스템의 개략적인 시스템도이다.2 is a schematic system diagram of an aquifer heat storage control system according to an embodiment of the present invention.
도 3은 본 발명의 또 하나의 실시예에 따른 대수층 축열 제어 시스템의 제어상태를 나타내는 개략적인 구성 블럭도이다.3 is a schematic block diagram showing a control state of the aquifer storage control system according to another embodiment of the present invention.
도 4는 본 발명의 또 하나의 실시예에 따른 대수층 축열 제어 시스템의 히트펌프를 나타내는 개략적인 도면이다. 4 is a schematic view showing a heat pump of the aquifer storage control system according to another embodiment of the present invention.
본 발명의 하나의 모습에 따라, 지하 대수층에 형성되되, 하절기 냉방시 냉열 축열된 지하수가 펌핑되고 동절기 난방시 열을 빼앗긴 지하수가 주입되어 냉열 축열되는 냉수정; 지하 대수층에 형성되되 냉수정과 열간섭 제한되는 소정 거리로 이격되어 있고, 동절기 난방시 온열 축열된 지하수가 펌핑되고 하절기 냉방시 열을 흡수한 지하수가 주입되어 온열 축열되는 온수정; 냉수정 및 온수정으로부터 펌핑된 지하수를 히트펌프로 공급시키고, 히트펌프로부터 열교환된 지하수를 회수하여 온수정 및 냉수정으로 주입시키는 지하수 관로; 냉수정으로부터 펌핑된 냉열 지하수의 냉열을 저장 열매체로 전달하고, 온수정으로부터 펌핑된 온열 지하수의 온열을 저장 열매체로 전달하는 히트펌프; 히트펌프와 열매체 배관으로 연결되며, 열매체 배관을 통해 히트펌프로부터 전달받은 냉열 또는 온열의 저장 열매체를 저장하는 축열조; 및 설정된 냉방 또는 난방 모드에 따라 히트펌프의 작동 및 냉수정 및 온수정으로부터의 지하수 펌핑과 냉수정 및 온수정으로의 지하수 주입을 자동 제어하는 제어기기; 를 포함하여 이루어지는, 지하 대수층을 냉온 축열체로 이용하는 대수층 축열 제어 시스템이 제안된다.According to one aspect of the present invention, cold water crystal is formed in the underground aquifer, the cold water is stored in the cold storage heat accumulation during the summer cooling and the ground water is deprived of heat during the winter heating is cold storage heat storage; A hot water well formed in the underground aquifer and spaced apart by a predetermined distance limited to cold water crystals and thermal interference, and pumped underground water that has been thermally heated during winter heating and absorbed heat during summer cooling; A groundwater pipe for supplying groundwater pumped from cold and hot water wells to a heat pump, and recovering groundwater heat exchanged from the heat pump and injecting the hot water and cold water wells; A heat pump transferring the cold heat of the cold heat groundwater pumped from the cold water well to the storage heat medium, and transferring the heat of the hot water ground pumped from the hot water well to the storage heat medium; A heat storage tank connected to the heat pump and the heat medium pipe, and storing a storage heat medium of cold or warm heat received from the heat pump through the heat medium pipe; And a controller for automatically controlling the operation of the heat pump and the groundwater pumping from the cold and hot water wells and the groundwater injection into the cold and hot water wells according to the set cooling or heating mode. An aquifer heat storage control system using an underground aquifer as a cold / hot heat storage body is proposed.
바람직하게는, 본 발명의 또 하나의 모습에 따라, 대수층 축열 제어 시스템은: 냉수정과 온수정에 각각 설치되되, 냉방시에 냉열 축열된 지하수를, 그리고 난방시에 온열 축열된 지하수를 각각 펌핑하여 지하수 관로로 공급하는 수중모터펌프; 및 열매체 배관 상에 설치되되 저장 열매체를 히트펌프로 토출시키는 제1 순환펌프; 를 더 포함하여 이루어지고, 전술한 제어기기는 축열조의 저장 열매체의 온도가 소정 목표 온도에 도달시 상기 히트펌프, 제1 순환펌프 및 수중모터펌프의 가동을 중단시키고, 가동 중단 후 저장된 저장 열매체가 목표 온도의 소정의 허용 범위를 벗어나는 경우 히트펌프, 제1 순환펌프 및 가동 중단 중인 수중모터펌프의 재가동이 이루어지도록 제어한다.Preferably, according to yet another aspect of the present invention, the aquifer heat storage control system is installed in a cold water well and a hot water well, respectively, and pumps ground water that is cold-heat-generated during cooling, and ground water that is heat-heat-generated during heating. Submersible motor pump for supplying ground water pipes; And a first circulation pump installed on the heat medium pipe and discharging the storage heat medium to the heat pump. It further comprises, wherein the controller is configured to stop the operation of the heat pump, the first circulation pump and the submersible motor pump when the temperature of the storage heat medium of the heat storage tank reaches a predetermined target temperature, the storage heat medium stored after the operation stops If the target temperature is out of a predetermined allowable range, the heat pump, the first circulation pump, and the submersible motor pump during operation are controlled to be restarted.
또한, 더 바람직하게는, 축열조의 저장 열매체의 축열 목표 온도는 하절기 냉방시 5~10℃ 범위, 그리고 동절기 난방시 45~55℃, 바람직하게는 45~50℃ 범위이다. 나아가 바람직하게는, 전술한 소정의 허용 범위
Figure PCTKR2010003773-appb-I000001
는 냉방시 +(4~7)℃, 바람직하게는 +(4~6)℃ 이고, 난방시 -(4~7)℃, 바람직하게는 -(4~6)℃ 이다.
Further, more preferably, the heat storage target temperature of the storage heat medium of the heat storage tank is in the range of 5 to 10 ° C during summer cooling, and in the range of 45 to 55 ° C, preferably 45 to 50 ° C during winter heating. Further preferably, the above-mentioned predetermined allowable range
Figure PCTKR2010003773-appb-I000001
Is + (4-7) ° C at cooling, preferably + (4-6) ° C, and-(4-7) ° C at heating, preferably-(4-6) ° C.
바람직하게는 또한, 본 발명의 또 하나의 모습에 따라, 전술한 제어기기는 축열조에 저장된 저장 열매체의 측정 온도와 설정 목표 온도의 차이에 따라 냉수정 또는 온수정으로부터의 지하수 펌핑 유량 또는/및 열매체 배관을 통한 축열조로의 저장 열매체의 순환 유량을 제어한다.Preferably, according to still another aspect of the present invention, the above-described controller is a groundwater pumping flow rate or / and heat medium from the cold or hot water well depending on the difference between the measured temperature and the set target temperature of the storage heat medium stored in the heat storage tank The circulation flow rate of the storage heat medium to the heat storage tank through the pipe is controlled.
또 바람직하게는, 본 발명의 또 하나의 모습에 따라, 제어기기는 냉수정 또는 온수정으로부터 펌핑되는 지하수의 온도에 따라, 더 바람직하게는, 냉수정 또는 온수정으로부터 펌핑되는 지하수의 온도와 온수정 또는 냉수정으로 주입되는 지하수의 온도에 따라, 냉수정 또는 온수정으로부터의 지하수 펌핑 유량 또는/및 열매체 배관을 통한 축열조로의 저장 열매체의 순환 유량을 제어한다. Further preferably, according to another aspect of the present invention, the controller is dependent on the temperature of the groundwater pumped from the cold or hot water well, more preferably, the temperature and temperature of the ground water pumped from the cold or hot water well. Depending on the temperature of the groundwater injected into the crystal or cold water well, the flow rate of the ground water pumping from the cold or hot water well and / or the storage heat medium to the heat storage tank via the heat medium pipe is controlled.
바람직하게는, 전술한 제어기기는 전술한 실시예들에서의 저장 열매체에서의 온도의 차이에 따라, 또는 지하수의 온도에 따라, 더 바람직하게는, 펌핑되는 지하수의 온도와 주입되는 지하수의 온도에 따라, 지하수 펌핑 유량 또는/및 저장 열매체의 순환 유량을 제어하는 것과 함께 히트펌프의 처리용량을 제어한다.Preferably, the controller described above depends on the difference in temperature in the storage heating medium in the above embodiments, or on the temperature of the groundwater, more preferably at the temperature of the groundwater being pumped and the temperature of the groundwater being injected. Accordingly, the treatment capacity of the heat pump is controlled along with controlling the groundwater pumping flow rate and / or the circulation flow rate of the storage heating medium.
바람직하게는 또한, 대수층 축열 제어 시스템은: 냉수정과 온수정에 각각 설치되되, 냉방시에 냉열 축열된 지하수를, 그리고 난방시에 온열 축열된 지하수를 각각 펌핑하는 수중모터펌프; 및 열매체 배관 상에 설치되되 저장 열매체를 히트펌프로 토출시키는 제1 순환펌프; 를 더 포함하여 이루어지고, 전술한 제어기기는 수중모터펌프를 제어하여 냉수정 또는 온수정으로부터의 지하수 펌핑 유량을 제어하고, 제1 순환펌프를 제어하여 저장 열매체의 순환 유량 조절한다.Preferably, the aquifer heat storage control system further comprises: an underwater motor pump installed in each of the cold water well and the hot water well, for pumping the ground water regenerated by cold heat during cooling and the ground water regenerated by heat during heating; And a first circulation pump installed on the heat medium pipe and discharging the storage heat medium to the heat pump. It further comprises, the controller described above controls the submersible motor pump to control the groundwater pumping flow rate from the cold water well or hot water well, and the first circulation pump to control the circulation flow rate of the storage heating medium.
또한, 바람직하게는, 본 발명의 또 다른 하나의 모습에 따른 대수층 축열 제어 시스템은: 지하수 관로 상에 설치되되, 제어기기의 제어에 따라, 펌핑 중지된 수중모터펌프와 연결된 지하수 공급관로 및 펌핑 중인 냉수정 또는 온수정으로의 지하수 회수관로를 차단하고 동시에 펌핑 중인 수중모터펌프와 연결된 지하수 공급관로 및 펌핑 중지된 냉수정 또는 온수정으로의 지하수 회수관로를 개방하는 차단용 밸브들; 축열조의 냉열 또는 온열의 저장 열매체를 순환시켜 건물 냉난방 설비와 열교환하도록 하는 냉난방 관로; 및 냉난방 관로 상에 설치되되 저장 열매체를 건물 냉난방 설비로 토출시키는 제2 순환펌프; 를 더 포함하여 이루어진다.Further, preferably, the aquifer heat storage control system according to another aspect of the present invention is installed on the groundwater pipeline, and under the control of the controller, the groundwater supply pipeline connected to the submersible motor pump stopped pumping and being pumped Shut-off valves for blocking the groundwater recovery line to the cold or hot water well and simultaneously opening the groundwater supply line connected to the submersible motor pump being pumped and the groundwater recovery line to the stopped pumped cold or hot water well; A cooling and heating conduit for circulating heat storage heat medium of cold storage or heat storage of the heat storage tank to exchange heat with the building air conditioning equipment; And a second circulation pump installed on the air conditioning pipe and discharging the storage heat medium to the building air conditioning equipment. It further comprises.
또한 바람직하게는, 히트펌프와 열교환된 저장 열매체가 하절기 냉방시 축열조의 하부로, 그리고 동절기 난방시 축열조의 상부로 귀환되도록 제어기기의 제어에 따라 열매체 배관의 흐름 방향을 제어하는 열매체 배관 방향제어밸브를 더 구비하여, 축열조에 저장되는 저장 열매체가 성층화된 후 점차 균일해지도록 축열이 이루어진다.Also preferably, the heat medium pipe direction control valve for controlling the flow direction of the heat medium pipe according to the control of the controller so that the storage heat medium heat-exchanged with the heat pump is returned to the bottom of the heat storage tank during the summer cooling, and to the top of the heat storage tank during the winter heating. Further provided with, the heat storage is made so that the storage heat medium stored in the heat storage tank gradually becomes uniform after stratification.
바람직하게는, 본 발명의 또 하나의 모습에 따라, 축열체로 이용되는 냉수정의 축열체로서의 목표 온도는 5~10℃ 범위이고, 온수정의 축열체로서의 목표 온도는 20~30℃, 바람직하게는 25~30℃ 범위이다.Preferably, according to another aspect of the present invention, the target temperature of the cold water crystal used as the heat storage body as the heat storage body is in the range of 5 to 10 ° C., and the target temperature of the hot water crystal as the heat storage body is 20 to 30 ° C., preferably It is in the range of 25 to 30 ° C.
본 발명의 바람직한 하나의 모습으로 비록 명시적으로 언급되지 않았으나, 앞서 언급된 기술적 특징의 가능한 다양한 조합에 따른 실시예들이 구현 가능함은 자명하다.Although not explicitly mentioned as one preferred aspect of the present invention, it is apparent that embodiments according to various possible combinations of the above-mentioned technical features can be implemented.
전술한 과제를 달성하기 위한 본 발명의 실시예들이 첨부된 도면을 참조하여 설명된다. Embodiments of the present invention for achieving the above object are described with reference to the accompanying drawings.
본 실시예들을 설명함에 있어서, 동일부호는 동일한 구성을 의미하고, 중복되거나 발명의 의미를 한정적으로 해석되게 할 수 있는 부가적인 설명은 본 발명의 실시예들을 설명함에 있어서 생략될 수 있다.In describing the embodiments, the same reference numerals refer to the same configuration, and additional descriptions that may overlap or limit the meaning of the invention may be omitted in describing the embodiments of the present invention.
도 1은 본 발명의 실시예에 적용되는 대수층 축열 시스템의 개략적인 도면이고, 도 2는 본 발명의 하나의 실시예에 따른 대수층 축열 제어 시스템의 개략적인 시스템도이다. 또한, 도 3은 본 발명의 또 하나의 실시예에 따른 대수층 축열 제어 시스템의 제어상태를 나타내는 개략적인 구성 블럭도이다.1 is a schematic diagram of an aquifer heat storage system applied to an embodiment of the present invention, and FIG. 2 is a schematic system diagram of an aquifer heat storage control system according to an embodiment of the present invention. 3 is a schematic block diagram showing a control state of the aquifer storage control system according to another embodiment of the present invention.
본 발명은 지하 대수층을 냉온 축열체로 이용하는 대수층 축열 제어 시스템에 관한 것으로, 구체적인 실시예를 도 1 내지 3을 참조하여 살펴본다. The present invention relates to an aquifer heat storage control system using an underground aquifer as a cold heat storage body, and a specific embodiment will be described with reference to FIGS. 1 to 3.
하나의 실시예에 따르면, 대수층 축열 제어 시스템은 냉수정(10), 온수정(20), 지하수 관로(30), 히트펌프(50), 축열조(70) 및 제어기기(40)를 포함하여 이루어진다.According to one embodiment, the aquifer heat storage control system comprises a cold water tank 10, a hot water tank 20, groundwater pipeline 30, heat pump 50, heat storage tank 70 and the controller 40. .
냉수정(10)과 온수정(20)은 지하 대수층에 형성되어 있으며, 열간섭 제한되는 소정 거리(d)만큼 이격되어 있다. 냉수정(10)과 온수정(20) 각각은 하나의 관정일 수 있으며, 바람직하게는 적어도 하나 이상의 관정이고, 또 바람직하게는 각각 복수 개의 관정이다. 바람직하게, 관정의 갯수는 각 관정으로부터 소정 기간에 걸쳐 날마다 펌핑가능한 수량과 히터펌프(50)의 용량을 고려하여 결정된다.The cold water well 10 and the hot water well 20 are formed in an underground aquifer and are spaced apart by a predetermined distance d, which is limited to thermal interference. Each of the cold water well 10 and the hot water well 20 may be one well, preferably at least one well, and preferably each of a plurality of wells. Preferably, the number of wells is determined in consideration of the quantity of pumpable water and the capacity of the heater pump 50 from day to day over a period of time from each well.
본 발명에서 지하 대수층은 지하수를 함유하고 있는 층으로, 물로 채워진 공극(孔隙)을 가지며, 서로 연결된 공극을 통해 지하수가 이동할 수 있다. 본 발명에서 지하 대수층은 축열체로 사용되므로, 공극율이 크고 유속이 느린 수리특성을 갖는 것이 바람직하다. In the present invention, the underground aquifer is a layer containing groundwater, which has pores filled with water, and the groundwater can move through the interconnected pores. In the present invention, since the underground aquifer is used as a heat storage body, it is preferable to have a hydraulic property with a large porosity and a slow flow rate.
바람직하게, 본 발명에서 지하 대수층은 다공질 매질층이나 균열 암반층에 형성될 수 있다. 바람직하게, 지하 대수층은 자유면 대수층 또는 피압 대수층(confined aquifer)이다. Preferably, in the present invention, the underground aquifer may be formed in the porous medium layer or the cracked rock layer. Preferably, the underground aquifer is a free faced aquifer or a confined aquifer.
본 발명에서 지하 대수층이 자유면 대수층인 경우, 자유면 대수층은 상부에 실트나 점토등으로 구성되어 물이 잘 통과하지 않는 난투수층(難透水層, aquiclude)으로 덮여 있거나, 자유면 지하수위가 낮아 지하 대수층의 상부가 지하 대수층에 대한 열 전도적 또는/및 수리적 보호 역할을 수행하는 것이 바람직하다. 바람직하게, 자유면 대수층은 다공질 매질층인 충적층(alluvial layer, 沖積層) 또는 균열 암반층인 파쇄대 또는 풍화대층에 형성될 수 있다. 충적층의 경우에는 상부에 점토나 실트 층의 난투수층으로 덮여 있는 모래, 자갈 등으로 이루어지는 것이 바람직하고, 파쇄대층의 경우에 상부에 점토나 실트 층의 난투수층으로 덮여 있는 것이 바람직하다. In the present invention, when the underground aquifer is a free-surface aquifer, the free-surface aquifer is composed of silt or clay at the top and is covered with an impervious layer through which water does not pass well, or the free surface aquifer is low. It is desirable that the top of the underground aquifer plays a role of thermally conductive and / or hydraulic protection for the underground aquifer. Preferably, the free-surface aquifer can be formed in a crushed or weathered zone, which is an alluvial layer that is a porous medium layer or a cracked rock layer. In the case of an alluvial layer, it is preferable that it consists of sand, gravel, etc. which are covered with the impermeable layer of a clay or a silt layer in the upper part, and it is preferable that it is covered with the impermeable layer of a clay or a silt layer in the upper part in a crushing layer.
또한 본 발명에서 지하 대수층이 피압 대수층인 경우, 피압 대수층의 상부는 불투수층(
Figure PCTKR2010003773-appb-W000001
透水層, impermeable layer)으로 덮여 있다. 피압 대수층은 다공질 암반 또는 균열 암반층으로 이루어질 수 있다. 본 발명에서 불투수층은 난투수층(難透水層, aquiclude)과 물이 투과하지 않는 암반류로 이루어진 비투수층(非透水層, aquifuge)을 포함하는 의미로 사용된다.
In addition, in the present invention, when the underground aquifer is a pressured aquifer, the upper part of the pressured aquifer is an impermeable layer (
Figure PCTKR2010003773-appb-W000001
It is covered with an impermeable layer. The pressured aquifer can be composed of porous rock or cracked rock layers. In the present invention, the impermeable layer is used in the sense of including a non-permeable layer (aquifuge) consisting of an aquiclude layer (층 水 難 透, aquiclude) and the water does not penetrate.
본 발명에서 지하 대수층은 공극률이 커서 다량의 지하수를 함유할 수 있으며 유속이 느린 층에 형성되면 충분하고, 나아가, 지하 대수층의 상부가 지하수에 대한 열 전도적 또는/및 수리적 보호 역할을 수행하는 것이 바람직하다.In the present invention, the underground aquifer has a large porosity and may contain a large amount of groundwater, and it is sufficient if it is formed in a low flow rate layer. Furthermore, it is preferable that the upper part of the underground aquifer plays a thermally conductive and / or hydraulic protection role against the groundwater. desirable.
도 2를 참조하면, 열간섭 제한되는 소정 거리(d)는 소정 기간에 걸쳐 어느 하나의 지하수 주입 관정으로부터 다른 지하수 양수 관정으로의 열간섭이 없거나 극히 제한되는 거리 또는 그 이상의 거리를 말한다. 이 경우, 바람직하게는, 소정 기간은 하절기와 동절기 구분에 따른 6개월 내지, 바람직하게는, 실질적인 히트펌프 가동에 따른 대수층 축열 기간인 3~5개월로 할 수 있다. Referring to FIG. 2, a distance d limited by thermal interference refers to a distance at or above which there is no or extremely limited thermal interference from one groundwater injection well to another groundwater pumping well over a predetermined period of time. In this case, preferably, the predetermined period may be from 6 months according to the summer and winter season, preferably 3 to 5 months, which is the aquifer heat storage period according to the actual heat pump operation.
하나의 지하수 주입 관정으로부터 다른 하나의 지하수 양수 관정으로의 열간섭이 극히 제한된다고 함은 양 관정의 지하수 축열체들 사이에 형성된 중간 온도의 전이대층이 다른 하나의 지하수 양수 관정까지 형성되지 않고 양 관정 사이에서 다른 하나의 지하수 양수 관정으로부터 적절한 거리 이상으로 이격되게 형성되는 것을 말한다. Extremely limited thermal interference from one groundwater injection well to another groundwater pumping well means that the intermediate temperature transition zone formed between the groundwater heat accumulators of both wells does not form the other groundwater pumping well It is formed to be spaced apart from an appropriate distance from another groundwater pumping well.
일반적인 지반 내 열 거동은 지하수의 유동에 의한 대류(convection), 매질을 통한 전도(conduction) 및 매질의 불균일성에 의한 분산(dispersion)을 통하여 전달된다. 예컨대, Molson 등이 제안한 열유속 산출모델에 의한 지반 내 열 거동을 모델링을 통해 수치해석하여 열간섭이 제한되는 거리(d)를 설정할 수 있다. 열간섭이 제한되는 거리(d)의 산출 과정 자체는 당해 발명의 본질적인 범위가 아니며, 또한 열간섭이 제한되는 소정 거리(d)는 열거동 수치해석 모델을 통해 해당 기술분야에서 통상의 지식을 가진 자가 용이하게 수행될 수 있으므로, 구체적인 설명은 생략하기로 한다.In general ground heat behavior is transmitted through convection by the flow of groundwater, conduction through the medium, and dispersion due to the nonuniformity of the medium. For example, the distance d in which thermal interference is limited can be set by numerically analyzing the thermal behavior in the ground by the heat flux calculation model proposed by Molson et al. The process of calculating the distance (d) at which thermal interference is limited is not an intrinsic scope of the present invention, and the predetermined distance (d) at which thermal interference is limited is known to those skilled in the art through enumerated copper numerical analysis models. Since the self can be easily performed, a detailed description thereof will be omitted.
냉수정(10)과 온수정(20)은 외부 이물질이 관정 내로 침투되지 않도록 상부를 커버 또는 커버박스로 덮고, 바람직하게는 지하수 관로(30)가 커버 또는 커버박스를 관통하거나 관정의 상부의 측면을 통해 지하수 관로(30)가 관정 내로 주입되도록 한다. 바람직하게, 냉수정(10)과 온수정(20)의 관정 내부는 지하 대수층의 상부에 형성된 지층 부분을 그라우팅하여 지표면 지하수 또는 이물질의 침투를 방지한다.The cold water well 10 and the hot water well 20 cover the upper part with a cover or a cover box so that external foreign matter does not penetrate into the well, and preferably, the groundwater pipeline 30 passes through the cover or cover box or is at the side of the upper part of the well. Through the groundwater pipe 30 to be injected into the well. Preferably, the inside of the well of the cold water well 10 and the hot water well 20 grouts the strata formed in the upper part of the underground aquifer to prevent the penetration of groundwater or foreign matter.
본 발명은 냉수정(10)과 온수정(20)을 냉/온 축열체로 이용하므로, 바람직하게는 1년 내, 더 바람직하게는 적어도 동절기와 하절기 사이 교번 간격인 6개월, 더욱 바람직하게는 히트펌프(50)의 실질적인 가동기간인 대략 3~5개월 내 지하 대수층에 형성된 냉수정(10)과 온수정(20) 간에 지하수의 유동에 따른 열간섭이 없거나 거의 제한되어야 한다. In the present invention, since the cold water crystal 10 and the hot water crystal 20 are used as cold / hot heat accumulators, they are preferably used within one year, more preferably at least 6 months, more preferably at least between winter and summer. There should be little or no thermal interference due to the flow of groundwater between the cold water wells 10 and the hot water wells 20 formed in the underground aquifer within approximately three to five months, the actual duration of the pump 50.
바람직하게는, 냉수정(10)과 온수정(20)이 난투수층이나 비투수층 같은 불투수층에 의해 수리적으로 격리될 수 있으며, 또 바람직하게는, 냉수정(10)과 온수정(20)의 깊이는 반드시 동일할 필요는 없으며, 깊이가 다를 수 있다. Preferably, the cold water well 10 and the hot water well 20 may be hydraulically isolated by an impermeable layer such as a hard water permeable layer or a non-water permeable layer, and preferably, the depth of the cold water well 10 and the hot water well 20 Are not necessarily the same and may vary in depth.
바람직하게는, 도시되지 않았으나, 냉수정(10)과 온수정(20)은 깊이 차를 두되, 냉수정(10)의 심도는 지하 대수층 상부에, 온수정(20)의 심도는 지하 대수층 하부에 위치하도록 설치된다. 또한, 바람직하게는, 냉수정(10)과 온수정(20)의 심도가 난투수층이나 비투수층 같은 불투수층에 의해 수리적으로 격리 또는 거의 격리되도록 위치될 수 있다.Preferably, although not shown, the cold water well 10 and the hot water well 20 have a difference in depth, but the depth of the cold water well 10 is above the underground aquifer, and the depth of the hot water well 20 is below the underground aquifer. It is installed to be located. Further, preferably, the depths of the cold water wells 10 and the hot water wells 20 may be positioned to be hydraulically isolated or nearly isolated by an impermeable layer, such as an impermeable or non-permeable layer.
냉수정(10)에서는 하절기 냉방시 냉열 축열된 지하수가 펌핑되고, 동절기 난방시 열을 빼앗긴 지하수가 주입되어 냉열 축열된다.In the cold water well 10, the ground water that is cold-heated and stored during cooling in the summer is pumped, and the ground water which is deprived of heat during the heating in winter is injected and cold-heated.
온수정(20)에서는 동절기 난방시 온열 축열된 지하수가 펌핑되고, 하절기 냉방시 열을 흡수한 지하수가 주입되어 온열 축열된다.In the hot water well 20, the ground-heated thermal water that is thermally heated during the winter heating is pumped, and the groundwater that absorbs the heat during the summer cooling is injected and thermally stored.
도 3을 참조하면, 바람직하게는, 냉수정(10)과 온수정(20)에는 축열된 지하수의 온도를 감지하기 위한 온도센서(15, 25)가 설치된다. 도 3에 도시된 온도센서(15, 25)는 냉수정(10)과 온수정(20)이 아닌 히트펌프(50)로 유입되는 또는/및 히트펌프로(50)부터 토출되는 지하수 관로(30)측에 설치될 수도 있다.Referring to FIG. 3, preferably, the cold water wells 10 and the hot water wells 20 are provided with temperature sensors 15 and 25 for sensing the temperature of the regenerated ground water. The temperature sensors 15 and 25 illustrated in FIG. 3 are groundwater pipes 30 which are introduced into the heat pump 50 and / or discharged from the heat pump 50 instead of the cold water well 10 and the hot water well 20. It may be installed on the side.
또한, 도 2를 참조하면, 지하수 관로(30)는 냉수정(10) 및 온수정(20)으로부터 펌핑된 지하수를 히트펌프(50)로 공급시키고, 히트펌프(50)로부터 열교환된 지하수를 회수하여 온수정(20) 및 냉수정(10)으로 주입시킨다. In addition, referring to FIG. 2, the groundwater pipeline 30 supplies groundwater pumped from the cold water well 10 and the hot water well 20 to the heat pump 50, and recovers the groundwater heat exchanged from the heat pump 50. Injected into the hot water well 20 and the cold water well 10.
냉방시에 지하수 관로(30)는 냉수정(10)으로부터 펌핑된 냉열 지하수를 히트펌프(50)로 공급시키고, 히트펌프(50)에서 열교환된 지하수를 회수하여 온수정(20)으로 주입시킨다. 난방시에 지하수 관로(30)는 온수정(20)으로부터 펌핑된 지하수를 히트펌프(50)로 공급하고, 히트펌프(50)로부터 열교환된 지하수를 회수하여 냉수정(10)으로 주입시킨다.During cooling, the groundwater pipeline 30 supplies the cold heated groundwater pumped from the cold water well 10 to the heat pump 50, recovers groundwater heat exchanged from the heat pump 50, and injects it into the hot water well 20. During heating, the groundwater pipe 30 supplies the groundwater pumped from the hot water well 20 to the heat pump 50, recovers the groundwater heat exchanged from the heat pump 50, and injects it into the cold water well 10.
바람직하게는, 냉방시 히트펌프(50)로부터 회수되어 축열체로 이용되는 지하수의 온도는 20~30℃, 바람직하게는 25~30℃ 이고, 난방시 히트펌프(50)로부터 회수되어 축열체로 이용되는 지하수의 온도는 5~10℃ 이다. 즉, 바람직하게는, 온수정(20)에 온열 축열되는 온도는 20~30℃, 바람직하게는 25~30℃ 이고, 냉수정(10)에 냉열 축열되는 온도는 5~10 ℃이 된다. 축열체로 이용되는 지하수의 온도는 히트펌프(50)에서 전환되는 열용량에 의해 달라질 수 있다.Preferably, the temperature of the groundwater recovered from the heat pump 50 and used as the heat storage body for cooling is 20 to 30 ° C., preferably 25 to 30 ° C., and is recovered from the heat pump 50 for heating and used as the heat storage body. Groundwater temperature is 5 ~ 10 ℃. That is, preferably, the temperature which thermally thermally accumulates in the hot water well 20 is 20-30 degreeC, Preferably it is 25-30 degreeC, and the temperature which cold-thermally accumulates in the cold water crystal | crystallization 10 becomes 5-10 degreeC. The temperature of the groundwater used as the heat storage body may vary depending on the heat capacity converted by the heat pump 50.
또한, 도 2를 참조하면, 본 발명의 또 하나의 실시예에서, 히트펌프(50)로 펌핑된 지하수를 공급하는 지하수 공급관로(30a) 상에 유량조절밸브(35)가 더 구비된다. 바람직하게, 유량조절밸브(35)는 축열조(70)의 축열 온도에 따라 적절한 유량을 공급하도록 제어된다. 바람직하게는, 유량조절밸브(35)는 원격제어밸브로 구성된다.In addition, referring to Figure 2, in another embodiment of the present invention, the flow rate control valve 35 is further provided on the ground water supply pipe (30a) for supplying the ground water pumped by the heat pump (50). Preferably, the flow control valve 35 is controlled to supply an appropriate flow rate in accordance with the heat storage temperature of the heat storage tank (70). Preferably, the flow control valve 35 is composed of a remote control valve.
나아가 도 2를 참조하면, 히트펌프(50)로 펌핑된 지하수를 공급하는 지하수 공급관로(30a) 상에 필터링 디바이스(37)가 더 구비된다. 필터링 디바이스(37)는 지하수 내에 포함된 이물질을 필터링한다. 필터링 디바이스(37)는 유량조절밸브(35)와 히트펌프(50) 사이에 설치된다. Furthermore, referring to FIG. 2, a filtering device 37 is further provided on the ground water supply line 30a for supplying ground water pumped to the heat pump 50. The filtering device 37 filters foreign matter contained in the groundwater. The filtering device 37 is installed between the flow control valve 35 and the heat pump 50.
유량조절밸브(35)가 제어됨에 따라 히트펌프(50)로의 지하수 공급 유량이 조절되고, 바람직하게는 냉수정(10) 및 온수정(20)에 설치된 수중모터펌프(11, 21)의 제어와 함께 제어되어 지하수 공급 유량이 조절된다. 또한 바람직하게는, 히트펌프(50)로 펌핑된 지하수를 공급하는 지하수 공급관로(30a) 상에 가압펌프(39)를 더 구비한다.As the flow rate control valve 35 is controlled, the flow rate of the groundwater supply to the heat pump 50 is adjusted, and preferably, the control of the submersible motor pumps 11 and 21 installed in the cold water well 10 and the hot water well 20 is performed. Controlled together, the groundwater supply flow rate is regulated. Also preferably, a pressure pump 39 is further provided on the ground water supply line 30a for supplying ground water pumped to the heat pump 50.
본 발명의 하나의 실시예에서, 히트펌프(50)는 냉수정(10)으로부터 펌핑된 냉열 지하수의 냉열을 저장 열매체(71)로 전달하고, 온수정(20)으로부터 펌핑된 온열 지하수의 온열을 저장 열매체(71)로 전달한다. 히트펌프(50)의 구성을 도 4를 참조하여 살펴본다. In one embodiment of the present invention, the heat pump 50 transfers the cold heat of the cold heat ground water pumped from the cold water well 10 to the storage heat medium 71, and the heat of the warm ground water pumped from the hot water well 20 Transfer to the storage heat medium (71). The configuration of the heat pump 50 will be described with reference to FIG. 4.
도 4를 참조하면, 히트펌프(50)는 제1 열교환기(51), 제2 열교환기(53), 압축기(55), 팽창밸브(57) 및 히트펌프 방향제어밸브(59)를 포함하여 이루어진다. 나아가, 바람직하게는, 히트펌프(50)는 액분리기(accumulator)(52), 유분리기(oil separator)(54), 수액기(56), 필터드라이어(58) 및 액면계(60)를 더 포함하여 이루어진다.Referring to FIG. 4, the heat pump 50 includes a first heat exchanger 51, a second heat exchanger 53, a compressor 55, an expansion valve 57, and a heat pump direction control valve 59. Is done. Furthermore, preferably, the heat pump 50 further includes an accumulator 52, an oil separator 54, a receiver 56, a filter drier 58, and a liquid level gauge 60. It is done by
제1 열교환기(51)는 하절기 냉방시 응축기로 작용하고 동절기 난방시 증발기로 작용하여 냉매를 펌핑된 지하수와 열교환시킨다. The first heat exchanger 51 acts as a condenser during summer cooling and as an evaporator during winter heating to heat the refrigerant with the pumped groundwater.
제2 열교환기(53)는 하절기 냉방시 증발기로 작용하고 동절기 난방시 응축기로 작용하여 냉매와 저장 열매체(71)를 열교환시켜 저장 열매체(71)로 냉열 및 온열을 축열시킨다. The second heat exchanger 53 acts as an evaporator during summer cooling, and acts as a condenser during winter heating to heat-exchange the refrigerant and the storage heat medium 71 to accumulate cold heat and heat with the storage heat medium 71.
또 바람직하게는, 도 4에 도시된 바와 같이, 제1 열교환기(51)의 유입측 및 토출측에 냉매의 온도를 감지하기 위한 온도센서(66a, 66b)가 설치되고, 제2 교환기(53의 유입측 및 토출측에 냉매의 온도를 감지하기 위한 온도센서(65a, 65b)가 설치된다. 온도센서(65a, 65b, 66a, 66b)에 의해 측정된 냉매의 온도는 제어기기(40)에서 히트펌프(50)를 제어하기 위한 정보로 이용된다.In addition, as shown in Figure 4, the temperature sensor (66a, 66b) for detecting the temperature of the refrigerant is installed on the inlet side and the discharge side of the first heat exchanger 51, the second exchanger 53 Temperature sensors 65a and 65b are installed on the inflow side and the discharge side to detect the temperature of the refrigerant The temperature of the refrigerant measured by the temperature sensors 65a, 65b, 66a and 66b is controlled by the heat pump in the controller 40. It is used as information for controlling 50.
압축기(55)는 냉매를 압축시켜 응축기로 작용하는 열교환기로 토출시킨다. 바람직하게, 도 4를 참조하면, 압축기(55)에서 토출되는 관로 상에는 고압게이지(63), 압축기(55)로 유입되는 관로 상에는 저압게이지(64)가 설치되고, 또 바람직하게는 듀얼압력스위치(62)가 설치되어 냉매의 압력이 너무 높거나 낮으면 히프펌프 릴레이전원(도시되지 않음)을 차단시켜 압축기(55) 및 히트펌프(50)를 보호한다. The compressor 55 compresses the refrigerant and discharges the refrigerant to a heat exchanger serving as a condenser. Preferably, referring to FIG. 4, the high pressure gauge 63 is installed on the pipeline discharged from the compressor 55, and the low pressure gauge 64 is installed on the pipeline flowing into the compressor 55. 62 is installed to protect the compressor 55 and the heat pump 50 by shutting off the hip pump relay power (not shown) when the pressure of the refrigerant is too high or low.
또한 바람직하게는, 압축기(55)로의 유입측 및 압축기(55)로부터의 토출측 관로에 온도센서를 설치하여, 압축기(55)로 유입되거나 압축기(55)로부터 유출되는 냉매의 온도를 측정한다.Also, preferably, a temperature sensor is installed at the inflow side to the compressor 55 and the discharge side conduit from the compressor 55 to measure the temperature of the refrigerant flowing into or out of the compressor 55.
팽창밸브(57)는 응축기로 작용하는 열교환기를 통과한 냉매를 팽창시켜 증발기로 작용하는 열교환기로 내보낸다. 바람직하게는, 제1 열교환기(51)가 응축기로 작용하는 경우 작동되는 팽창밸브(57a)와 제2 열교환기(53)가 응축기로 작용하는 경우 작동되는 팽창밸브(57b) 2개가 구비된다. The expansion valve 57 expands the refrigerant passing through the heat exchanger acting as a condenser and sends it to the heat exchanger acting as an evaporator. Preferably, two expansion valves 57a are operated when the first heat exchanger 51 acts as a condenser and two expansion valves 57b are operated when the second heat exchanger 53 acts as a condenser.
그리고 히트펌프 방향제어밸브(59), 바람직하게 4방솔레노이드밸브는 제1 열교환기(51)와 제2 열교환기(53)가 응축기 및 증발기로 번갈아 작용하도록 냉매의 흐름 방향을 제어한다. The heat pump direction control valve 59, preferably the four-way solenoid valve, controls the flow direction of the refrigerant so that the first heat exchanger 51 and the second heat exchanger 53 alternately act as condensers and evaporators.
도 4를 참조하면, 제1 열교환기(51)가 응축기로 작용하는 경우 히트펌프 방향제어밸브(59)는 압축기(55)로부터 토출된 냉매를 제1 열교환기(51)로 보내도록 냉매 흐름 방향이 전환되고, 반면 제2 열교환기(53)가 응축기로 작용하는 경우 히트펌프 방향제어밸브(59)는 압축기(55)로부터 토출된 냉매를 제2 열교환기(53)로 보내도록 냉매 흐름 방향이 전환된다.Referring to FIG. 4, when the first heat exchanger 51 acts as a condenser, the heat pump direction control valve 59 sends the refrigerant discharged from the compressor 55 to the first heat exchanger 51. When the second heat exchanger 53 acts as a condenser, the heat pump direction control valve 59 has a refrigerant flow direction to direct the refrigerant discharged from the compressor 55 to the second heat exchanger 53. Is switched.
액분리기(52)는 압축기(55) 전에 설치되고, 압축기(55)로의 리퀴드백(liquid back)을 방지하여 압축기(55)를 보호한다. 유분리기(54)는 압축기(55) 후에 설치되어 압축기(55)로부터 토출된 냉매 중에 포함된 오일을 압축기(55)로 되돌려준다. The liquid separator 52 is installed before the compressor 55 and protects the compressor 55 by preventing liquid back to the compressor 55. The oil separator 54 is installed after the compressor 55 to return oil contained in the refrigerant discharged from the compressor 55 to the compressor 55.
또한, 응축기로 작용하는 열교환기와 팽창밸브(57) 사이에 수액기(56)가 설치된다. 수액기(56)는 응축기에서 응축한 냉매 액을 일시 저장하면서 증발기에서 소요되는 만큼의 냉매만을 팽창밸브(57)로 보내주며, 일종의 안전장치 역할을 한다.In addition, a receiver 56 is provided between the heat exchanger serving as a condenser and the expansion valve 57. The receiver 56 temporarily stores the refrigerant liquid condensed in the condenser and sends only the refrigerant required by the evaporator to the expansion valve 57, and serves as a kind of safety device.
수액기(56) 후에 설치된 필터드라이어(filter-drier)(58) 및 액면계(sight glass)(60)가 설치된다. 필터드라이어(58)는 시스템 내부의 각종 이물질을 걸러낸다. 액면계(60)를 통해 냉매의 주입량과 상태를 직접적으로 확인할 수 있다. A filter drier 58 and a sight glass 60 installed after the receiver 56 are installed. The filter drier 58 filters out various foreign matters inside the system. Through the liquid level gauge 60, the injection amount and state of the refrigerant can be directly checked.
바람직하게는, 제1 또는/및 제2 열교환기(51) 측에 설치된 온도센서들(65a, 65b, 66a, 66b) 또는/및 압축기(55) 측에 설치된 온도센서들에 의해 감지된 온도정보를 기초로 제어기기(40)에서 히트펌프(50)를 제어한다. Preferably, the temperature information detected by the temperature sensors 65a, 65b, 66a, 66b installed on the first or / and second heat exchanger 51 side and / or the temperature sensors installed on the compressor 55 side. Based on the control unit 40 controls the heat pump 50.
바람직하게는, 히트펌프(50)에 설치된 온도센서들에 의해 감지된 온도정보를 기초로 압축기(55)의 압축용량 또는/및 제1 또는 제2 열교환기(51, 53)의 응축 또는/및 증발 용량, 팽창밸브(57)에서의 냉매속도 등의 제어를 통하여 히트펌프(50)의 처리용량을 제어할 수 있다. 압축기(55)의 압축용량 또는/및 제1 또는 제2 열교환기(51, 53)의 응축 또는/및 증발 용량은 압축기(55) 또는/및 제1, 제2 열교환기(51, 53)에 구비된 RPM 제어 가능한 인버터 모터(도시되지 않음)를 제어함으로써 제어될 수 있다.Preferably, the compression capacity of the compressor 55 and / or the condensation of the first or second heat exchangers 51 and 53 based on the temperature information detected by the temperature sensors installed in the heat pump 50 and / or The processing capacity of the heat pump 50 can be controlled by controlling the evaporation capacity, the refrigerant speed in the expansion valve 57, and the like. The compression capacity of the compressor 55 and / or the condensation and / or evaporation capacities of the first or second heat exchangers 51, 53 are transferred to the compressor 55 or / and the first and second heat exchangers 51, 53. It can be controlled by controlling the provided RPM controllable inverter motor (not shown).
도 4에서 참조부호 61은 체크밸브를 나타낸다.In FIG. 4, reference numeral 61 denotes a check valve.
또한 본 발명의 하나의 실시예에서, 축열조(70)는 히트펌프(50)와 열매체 배관(80)으로 연결되며, 열매체 배관(80)을 통해 히트펌프(50)로부터 전달받은 냉열 또는 온열의 저장 열매체(71)를 저장한다. In addition, in one embodiment of the present invention, the heat storage tank 70 is connected to the heat pump 50 and the heat medium pipe 80, the storage of cold or heat received from the heat pump 50 through the heat medium pipe (80) The heat medium 71 is stored.
바람직하게는, 저장 열매체(71)는 물이다. 열매체 배관(80)은 축열조(70)와 히트펌프(50) 사이에 저장 열매체(71)를 순환시키도록 형성된다. Preferably, the storage heat medium 71 is water. The heat medium pipe 80 is formed to circulate the storage heat medium 71 between the heat storage tank 70 and the heat pump 50.
또한 바람직하게는, 열매체 배관(80)은 히트펌프(50)와 열교환된 저장 열매체(71)가 하절기 냉방시 축열조(70)의 하부로, 그리고 동절기 난방시 축열조(70)의 상부로 귀환되도록 형성된다.Also preferably, the heat medium pipe 80 is formed such that the storage heat medium 71 heat-exchanged with the heat pump 50 is returned to the lower portion of the heat storage tank 70 during the summer cooling and to the top of the heat storage tank 70 during the winter heating. do.
바람직하게는, 하나의 실시예에서, 축열조(70)의 축열 목표 온도는 하절기 냉방시 5~10℃ 범위이고, 동절기 난방시는 45~55℃, 바람직하게는 45~50℃ 범위이다.Preferably, in one embodiment, the heat storage target temperature of the heat storage tank 70 is in the range of 5 to 10 ° C. during summer cooling, and is in the range of 45 to 55 ° C., preferably 45 to 50 ° C. during winter heating.
본 발명의 하나의 실시예에서, 제어기기(40)는 설정된 냉방 또는 난방 모드에 따라 히트펌프(50)의 작동 및 냉수정(10) 및 온수정(20)으로부터의 지하수 펌핑과 냉수정(10) 및 온수정(20)으로의 지하수 주입을 자동 제어한다.In one embodiment of the invention, the controller 40 operates the heat pump 50 and pumps ground water from the cold water well 10 and the hot water well 20 and the cold water well 10 according to the set cooling or heating mode. ) And the groundwater injection into the hot water well 20 is automatically controlled.
도 2 내지 3을 참조하여 본 발명의 실시예들을 더 살펴본다.With reference to Figures 2 to 3 look at more embodiments of the present invention.
바람직하게는, 하나의 실시예에서, 제어기기(40)는 축열조(70)에 저장된 저장 열매체(71)의 온도에 따라 히트펌프(50)의 가동중단 및 재가동, 그리고 냉수정(10) 및 온수정(20)으로부터의 지하수 펌핑 중단 및 재펌핑을 제어한다. Preferably, in one embodiment, the controller 40 stops and restarts the heat pump 50 according to the temperature of the storage heat medium 71 stored in the heat storage tank 70, and the cold water crystal 10 and the ON. Groundwater pumping stops and repumps from the crystal 20 are controlled.
히트펌프(50)로 토출되거나 토출될 축열조(70)에 저장된 저장 열매체(71)의 온도는 하절기 냉방시에는 상대적 고온이고, 동절기 난방시에는 상대적으로 저온이다. 바람직하게는, 순환되는 저장 열매체(71)의 온도는 축열조(70)로부터의 토출 측 열매체 배관(80) 또는/및 히트펌프(50)로의 유입 측 열매체 배관(80)에 설치되는 온도센서(85a)와, 히트펌프(50)로부터의 토출 측 열매체 배관(80) 또는/및 축열조(70)로의 유입 측 열매체 배관(80)에 설치되는 온도센서(85b)에 의해 측정된다.The temperature of the storage heat medium 71 stored in the heat storage tank 70 to be discharged or discharged to the heat pump 50 is relatively high temperature during summer cooling, and relatively low temperature during winter heating. Preferably, the temperature of the storage heat medium 71 circulated is a temperature sensor 85a provided in the discharge side heat medium pipe 80 from the heat storage tank 70 and / or the inlet side heat medium pipe 80 to the heat pump 50. And the temperature sensor 85b provided in the discharge side heat medium pipe 80 from the heat pump 50 and / or the inlet side heat medium pipe 80 to the heat storage tank 70.
또한 바람직하게는, 도 2를 참조하면, 본 발명의 또 하나의 실시예에서, 대수층 축열 제어 시스템은 수중모터펌프(11, 21) 및 제1 순환펌프(81)를 더 포함하여 이루어진다. Also preferably, referring to FIG. 2, in another embodiment of the present invention, the aquifer heat storage control system further includes an underwater motor pump 11, 21 and a first circulation pump 81.
더 바람직하게는, 히트펌프(50)로 펌핑된 지하수를 공급하는 지하수 공급관로(30a) 상에 설치된 유량조절밸브(35)를 더 포함하여 이루어진다. More preferably, it further comprises a flow rate control valve 35 installed on the ground water supply pipe (30a) for supplying the ground water pumped by the heat pump (50).
수중모터펌프(11, 21)는 냉수정(10)과 온수정(20)에 각각 설치된다. 바람직하게, 수중모터펌프(11, 12)는 RPM 제어가 가능하도록 인버터가 설치된 모터펌프이다. 수중모터펌프(11, 21)의 RPM을 제어하여 펌핑유량 조절이 가능하다. The submersible motor pumps 11 and 21 are installed in the cold water well 10 and the hot water well 20, respectively. Preferably, the submersible motor pumps 11 and 12 are motor pumps in which an inverter is installed to enable RPM control. It is possible to adjust the pumping flow rate by controlling the RPM of the submersible motor pump (11, 21).
제어기기(40)의 제어에 따라, 냉수정(10)과 온수정(20)에 설치된 수중모터펌프(11, 21)는 냉방 및 난방에 따라 교번으로 가동된다. 냉수정(10)에 설치된 수중모터펌프(11)는 냉방시에 냉열 축열된 지하수를 펌핑하고, 온수정(20)에 설치된 수중모터펌프(21)는 난방시에 온열 축열된 지하수를 펌핑한다. 수중모터펌프(11, 21)는 지하수를 펌핑하여 지하수 관로(30)로 공급한다. Under the control of the controller 40, the submersible motor pumps 11 and 21 installed in the cold water well 10 and the hot water well 20 are alternately operated in accordance with cooling and heating. The submersible motor pump 11 installed in the cold water crystal pump 10 pumps the ground-heat accumulated cold water at the time of cooling, and the submersible motor pump 21 installed in the hot-water well 20 pumps the ground-heat accumulated thermal water at the time of heating. The submersible motor pumps 11 and 21 pump ground water to supply the groundwater pipe 30.
열매체 배관(80) 상에는 제1 순환펌프(81)가 설치되고, 제1 순환펌프(81)는 축열조(70)에 저장되어 있던 저장 열매체(71)를 히트펌프(50) 측으로 토출시킨다. 바람직하게, 제1 순환펌프(81)는 축열조(70)의 하부에 연결된 배관 또는 관로 상에 설치된다.The first circulation pump 81 is provided on the heat medium pipe 80, and the first circulation pump 81 discharges the storage heat medium 71 stored in the heat storage tank 70 to the heat pump 50. Preferably, the first circulation pump 81 is installed on a pipe or a pipe connected to the lower portion of the heat storage tank 70.
또한 도 3을 참조하면, 제어기기(40)는 축열조(70)의 저장 열매체(71)의 온도가 소정 목표 온도에 도달시 히트펌프(50), 제1 순환펌프(81) 및 수중모터펌프(11 또는 21)의 가동을 중단시키고, 가동 중단 후 저장된 저장 열매체(71)가 목표 온도의 소정의 허용 범위를 벗어나는 경우 히트펌프(50), 제1 순환펌프(81) 및 가동 중단 중인 수중모터펌프(11 또는 21)의 재가동이 이루어지도록 제어한다.Referring to FIG. 3, the controller 40 may include the heat pump 50, the first circulation pump 81, and the submersible motor pump when the temperature of the storage heat medium 71 of the heat storage tank 70 reaches a predetermined target temperature. 11 or 21 are shut down and the heat pump 50, the first circulation pump 81 and the submersible submersible motor pump are stopped when the stored heat medium 71 after the shutdown is out of a predetermined allowable range of the target temperature. Control to restart (11 or 21).
더 바람직하게는, 축열조(70)의 저장 열매체(71)의 축열 목표 온도는 하절기 냉방시 5~10℃ 범위, 그리고 동절기 난방시 45~60℃ 범위이다.More preferably, the heat storage target temperature of the storage heat medium 71 of the heat storage tank 70 is in the range of 5 to 10 ° C. during summer cooling, and in the range of 45 to 60 ° C. during winter heating.
게다가 바람직하게는, 목표온도에 대한 소정의 허용 범위
Figure PCTKR2010003773-appb-I000002
는 냉방시 +(4~7)℃, 바람직하게는 +(4~6)℃ 이고, 난방시 -(4~7)℃, 바람직하게는 -(4~6)℃ 이다.
Furthermore, preferably, a predetermined allowable range for the target temperature
Figure PCTKR2010003773-appb-I000002
Is + (4-7) ° C at cooling, preferably + (4-6) ° C, and-(4-7) ° C at heating, preferably-(4-6) ° C.
또한, 도 3을 참조하면, 바람직한 하나의 실시예에서, 제어기기(40)는 수중모터펌프(11, 21)를 제어하여 냉수정(10) 또는 온수정(20)으로부터의 지하수 펌핑 유량을 조절하고, 바람직하게는, 수중모터펌프(11, 21), 또는 유량조절밸브(35), 또는 수중모터펌프(11, 21)와 유량조절밸브(35)를 제어하여 냉수정(10) 또는 온수정(20)으로부터의 지하수 펌핑 유량을 제어한다. Also, referring to FIG. 3, in one preferred embodiment, the controller 40 controls the submersible motor pumps 11, 21 to adjust the groundwater pumping flow rate from the cold water well 10 or the hot water well 20. Preferably, the submersible motor pump (11, 21), or the flow control valve 35, or the submersible motor pump (11, 21) and the flow control valve 35 to control the cold water crystal 10 or hot water well Groundwater pumping flow rate from 20 is controlled.
그리고/또는, 제어기기(40)는 제1 순환펌프(81)를 제어하여 저장 열매체(71)의 순환 유량을 조절한다.And / or, the controller 40 controls the first circulation pump 81 to adjust the circulation flow rate of the storage heat medium (71).
또한 바람직하게는, 도 2에 도시된 수중모터펌프(11, 21) 및 가압펌프(39)를 제어하거나 수중모터펌프(11, 21), 유량조절밸브(35) 및 가압펌프(39)를 제어하여 지하수 펌핑 유량을 조절한다. Also preferably, the submersible motor pumps 11 and 21 and the pressurized pump 39 shown in FIG. 2 are controlled or the submersible motor pumps 11 and 21, the flow control valve 35 and the pressurized pump 39 are controlled. To adjust the groundwater pumping flow rate.
도 3을 참조하여 본 발명의 실시예들을 더 살펴본다.With reference to Figure 3 looks at further embodiments of the present invention.
바람직하게는, 본 발명의 하나의 실시예에서, 도 3에 도시된 제어기기(40)는 축열조(70)에 저장된 저장 열매체(71)의 측정 온도와 설정 목표 온도의 차이에 따라 냉수정(10) 또는 온수정(20)으로부터의 지하수 펌핑 유량 또는/및 열매체 배관(80)을 통한 축열조(70)로의 저장 열매체(71)의 순환 유량을 제어한다. Preferably, in one embodiment of the present invention, the controller 40 shown in FIG. 3 uses the cold water crystal 10 according to the difference between the measured temperature and the set target temperature of the storage heat medium 71 stored in the heat storage tank 70. Or the flow rate of the ground water pumping from the hot water well 20 and / or the circulation flow rate of the storage heat medium 71 to the heat storage tank 70 through the heat medium pipe 80.
축열조(70)에 저장된 저장 열매체(71)의 온도는, 바람직하게는, 축열조(70)로부터의 토출 측 열매체 배관(80) 또는/및 히트펌프(50)로의 유입 측 열매체 배관(80)에 온도센서(86a)에 의해 측정된다. 이 경우, 축열조(70)의 저장 열매체(71)의 바람직한 축열 목표 온도는 하절기 냉방시 5~10℃ 범위, 그리고 동절기 난방시 45~55℃, 바람직하게는 45~50℃ 범위이다. The temperature of the storage heat medium 71 stored in the heat storage tank 70 is preferably a temperature of the discharge side heat medium pipe 80 from the heat storage tank 70 and / or the inlet side heat medium pipe 80 to the heat pump 50. It is measured by the sensor 86a. In this case, the preferable heat storage target temperature of the storage heat medium 71 of the heat storage tank 70 is in the range of 5 to 10 ° C. during summer cooling, and in the range of 45 to 55 ° C., preferably 45 to 50 ° C. during winter heating.
또 바람직하게는, 다른 하나의 실시예에서, 제어기기(40)는 축열조(70)로 유입되는 또는 유입된 저장 열매체(71)의 온도와 축열조(70)로부터 배출될 또는 배출되는 저장 열매체(71)의 온도의 차이에 따라 냉수정(10) 또는 온수정(20)으로부터의 지하수 펌핑 유량 또는/및 열매체 배관(80)을 통한 축열조(70)로의 저장 열매체(71)의 순환 유량을 제어할 수 있다. Further preferably, in another embodiment, the controller 40 is the temperature of the storage heat medium 71 introduced into or introduced into the heat storage tank 70 and the storage heat medium 71 to be discharged from or discharged from the heat storage tank 70. Circulating flow rate of the ground water pumping flow from the cold water well 10 or the hot water well 20 and / or the storage heat medium 71 to the heat storage tank 70 through the heat medium pipe 80 according to the temperature difference of have.
더 바람직하게는, 또 하나의 실시예에서, 도 3의 제어기기(40)는 냉수정(10) 또는 온수정(20)으로부터 펌핑되는 지하수의 온도에 따라, 더 바람직하게는, 냉수정(10) 또는 온수정(20)으로부터 펌핑되는 지하수의 온도와 온수정(20) 또는 냉수정(10)으로 주입되는 지하수의 온도에 따라, 냉수정(10 또는 온수정(20)으로부터의 지하수 펌핑 유량 및 열매체 배관(80)을 통한 축열조(70)로의 저장 열매체의 순환 유량을 제어한다. More preferably, in another embodiment, the controller 40 of FIG. 3 is dependent on the temperature of the groundwater pumped from the cold water well 10 or the hot water well 20, more preferably, the cold water well 10 Or groundwater pumping flow rate from the cold water well (10 or hot water well 20), depending on the temperature of the ground water pumped from the hot water well (20) and the temperature of the ground water that is injected into the hot water well (20) or cold water well (10) and The circulation flow rate of the storage heat medium to the heat storage tank 70 through the heat medium pipe 80 is controlled.
도 3 및 4를 참조하면, 냉수정(10) 또는 온수정(20)으로부터 펌핑되는 지하수의 온도는 히트펌프(50)로의 유입 측 지하수 공급 관로(30a) 또는/및 펌핑 진행되는 냉수정(10) 또는 온수정(20) 내에 설치된 온도센서(36a)에 의해, 온수정(20) 또는 냉수정(10)으로 주입되는 지하수의 온도는 히트펌프(50)로부터의 토출 측 지하수 회수 관로(30b) 또는/및 지하수가 회수되어 축열 진행 중인 냉수정(10) 또는 온수정(20) 내에 설치된 온도센서(36b)에 의해 측정된다.3 and 4, the temperature of the groundwater pumped from the cold water well 10 or the hot water well 20 is the inlet side groundwater supply line 30a to the heat pump 50 or / and the cold water well 10 being pumped. Or by the temperature sensor 36a installed in the hot water well 20, the temperature of the ground water injected into the hot water well 20 or the cold water well 10 is discharged from the heat pump 50 to the groundwater recovery pipe line 30b. Or / and groundwater is recovered and measured by the temperature sensor 36b installed in the cold water well 10 or the hot water well 20 which is undergoing heat storage.
바람직하게는, 펌핑되는 지하수의 온도뿐만 아니라 전술한 실시예들에서의 유입 및 토출되는 저장 열매체(71)의 온도차이 또는 저장 열매체(71)의 목표온도와 측정온도의 차이를 함께 고려하여, 지하수 펌핑유량 또는/및 저장 열매체(71)의 순환 유량을 제어한다.Preferably, the groundwater in consideration of not only the temperature of the groundwater to be pumped but also the temperature difference between the inflow and discharge of the storage heating medium 71 or the difference between the target temperature and the measurement temperature of the storage heating medium 71 in the aforementioned embodiments, The pumping flow rate and / or the circulation flow rate of the storage heating medium 71 is controlled.
또 바람직하게는, 하나의 실시예에서, 도 3의 제어기기(40)는 전술한 실시예들에서의 저장 열매체(71)에서의 온도의 차이(유입 및 토출되는 저장열매체(71)의 온도차이 또는 목표온도와 측정온도 사이의 차이) 또는/및 지하수의 온도에 따라 지하수 펌핑 유량 또는/및 저장 열매체(71)의 순환 유량과 함께 히트펌프(50)의 처리용량을 제어한다. Further preferably, in one embodiment, the controller 40 of FIG. 3 is characterized in that the temperature difference in the storage heat medium 71 (the temperature difference between the storage heat medium 71 introduced and discharged) in the above-described embodiments. Or the difference between the target temperature and the measured temperature) and / or the ground water pumping flow rate and / or the circulation flow rate of the storage heat medium 71 according to the temperature of the ground water.
제어기기(40)는 압축기(55)의 압축용량 또는/및 제1 또는 제2 열교환기(51, 53)의 응축 또는/및 증발 용량, 팽창밸브(57)에서의 냉매속도 등의 제어를 통하여 히트펌프(50)의 처리용량을 제어할 수 있다. 바람직하게, 압축기(55)의 압축용량 또는/및 제1 또는 제2 열교환기(51, 53)의 응축 또는/및 증발 용량은 RPM 속도제어되는 인버터 모터를 제어함으로써 제어될 수 있다. 이 경우, 인버터 모터는 압축기(55) 또는/및 제1, 제2 열교환기(51, 53)에 구비된다.The controller 40 controls the compression capacity of the compressor 55 and / or the condensation and / or evaporation capacity of the first or second heat exchangers 51 and 53, the refrigerant velocity in the expansion valve 57, and the like. The processing capacity of the heat pump 50 can be controlled. Preferably, the compression capacity of the compressor 55 and / or the condensation and / or evaporation capacity of the first or second heat exchangers 51 and 53 can be controlled by controlling the inverter motor with RPM speed control. In this case, the inverter motor is provided in the compressor 55 and / or the first and second heat exchangers 51 and 53.
도 2 및 3을 참조하여, 본 발명의 실시예들을 더 살펴본다.2 and 3, embodiments of the present invention are further described.
도 2를 참조하면 바람직한 또 다른 하나의 실시예에 따른 대수층 축열 제어 시스템은 차단용 밸브들(31, 33), 냉난방 관로(90) 및 제2 순환펌프(91)를 더 포함하여 이루어진다. Referring to FIG. 2, the aquifer storage control system according to another preferred embodiment further includes shutoff valves 31 and 33, a cooling and heating conduit 90, and a second circulation pump 91.
지하수 관로(30) 상에는 차단용 밸브들(31, 33)이 설치된다. 지하수 관로(30)는 히트펌프(50)로 지하수를 공급하는 지하수 공급관로(30a)와 히트펌프(50)로부터 지하수를 회수하는 지하수 회수관로(30b)를 포함하여 이루어진다. Shut-off valves 31 and 33 are installed on the groundwater pipe 30. The ground water pipe 30 includes a ground water supply pipe 30a for supplying ground water to the heat pump 50 and a ground water recovery pipe 30b for recovering ground water from the heat pump 50.
지하수 공급관로(30a)와 지하수 회수관로(30b)는 도 2에 도시된 바와 같이 각 관정(10, 20)까지 독립된 관로를 형성할 수 있고, 또는 도 1에 도시된 바와 같이, 수중모터펌프(11, 21)로 연결되는 배관과 합쳐질 수 있다. The groundwater supply line 30a and the groundwater recovery line 30b may form independent lines up to each well 10 and 20, as shown in FIG. 2, or as illustrated in FIG. 1, an underwater motor pump ( 11, 21) can be combined with the piping.
차단용 밸브들(31, 33)은 지하수 공급관로(30a) 및 지하수 회수관로(30b)에 설치된다. 지하수 공급관로(30a)에 설치된 차단용 밸브(들)(31)는 제어기기(40)의 제어에 따라 하절기 냉방시 온수정(20)으로부터의 그리고 동절기 난방시 냉수정(10)으로부터의 지하수 공급관로(30a)를 차단시킨다. 바람직하게, 지하수 공급관로(30a) 상에 설치된 차단용 밸브(31)는 원격제어 체크밸브이다. 지하수 회수관로(30b)에 설치된 차단용 밸브(들)(33)는 제어기기(40)의 제어에 따라, 냉방시 온수정(20)으로의 그리고 난방시 냉수정(10)으로의 지하수 회수관로(30b)를 차단시킨다. 지하수 회수관로(30b) 상에 설치된 차단용 밸브(들)(33)는 바람직하게는 원격제어 체크밸브이다.The shutoff valves 31 and 33 are installed in the groundwater supply line 30a and the groundwater recovery line 30b. The shut-off valve (s) 31 installed in the groundwater supply line 30a are groundwater supply pipes from the hot water wells 20 during the summer cooling and from the cold water wells 10 during the winter heating under the control of the controller 40. The furnace 30a is blocked. Preferably, the shutoff valve 31 installed on the ground water supply line 30a is a remote control check valve. The shut-off valve (s) 33 installed in the groundwater recovery pipe line 30b are, depending on the control of the controller 40, the groundwater recovery pipe line to the hot water well 20 for cooling and to the cold water well 10 for heating. Block 30b. The shut-off valve (s) 33 installed on the groundwater recovery line 30b are preferably a remote control check valve.
냉난방 관로(90)는 축열조(70)에 저장되어 있던 냉열 또는 온열의 저장 열매체(71)를 건물 냉난방 설비, 예컨대 팬코일유닛(FCU) 같은 냉난방 설비로 순환시킨다. The air conditioning and heating pipe (90) circulates the storage heat medium (71) of the cold or hot heat stored in the heat storage tank (70) to a heating and cooling facility such as a fan coil unit (FCU).
바람직하게는, 냉난방 관로(90)는 하절기 냉방시 축열조(70)의 하부에서, 그리고 동절기 난방시 축열조(70)의 상부에서 저장 열매체(71)가 토출되도록 형성된다.Preferably, the cooling and heating pipe (90) is formed so that the storage heat medium (71) is discharged from the lower part of the heat storage tank (70) during the summer cooling, and the upper part of the heat storage tank (70) during the winter heating.
냉난방 관로(90) 상에는 제2 순환펌프(91)가 설치되며, 제2 순환펌프(91)는 축열조(70)에 저장되어 있던 저장 열매체(71)를 건물 냉난방 설비 측으로 토출시킨다. 바람직하게는, 제2 순환펌프(91)도 제어기기(40)에 의해 제어된다. The second circulation pump 91 is installed on the cooling and heating conduit 90, and the second circulation pump 91 discharges the storage heat medium 71 stored in the heat storage tank 70 to the building air conditioning equipment side. Preferably, the second circulation pump 91 is also controlled by the controller 40.
또 바람직하게는, 제2 순환펌프(91)는 축열조(70)의 하부에 연결된 배관 또는 관로 상에 설치된다. 바람직하게는 축열조(70)와 제2 순환펌프(91) 사이에 냉난방배관 방향제어밸브(93), 예컨대 4방솔레노이드밸브를 구비하여, 토출되는 위치가 변경되도록 할 수 있다.Also preferably, the second circulation pump 91 is installed on a pipe or a pipe connected to the lower portion of the heat storage tank 70. Preferably, between the heat storage tank 70 and the second circulation pump 91 is provided with a cooling and heating piping direction control valve 93, for example a four-way solenoid valve, so that the discharged position can be changed.
또한 도 2를 참조하면, 바람직한 또 하나의 실시예에서, 열매체 배관 방향제어밸브(83)가 더 구비된다. Also referring to FIG. 2, in another preferred embodiment, a heat pipe direction control valve 83 is further provided.
열매체 배관 방향제어밸브(83)는 제어기기(40)의 제어에 따라, 히트펌프(50)와 열교환된 저장 열매체(71)가 하절기 냉방시 축열조(70)의 하부로, 그리고 동절기 난방시 축열조(70)의 상부로 귀환되도록 열매체 배관(80)의 흐름 방향을 제어한다. 바람직하게는 열매체 배관 방향제어밸브(83)는 4방솔레노이드밸브이다.The heat medium pipe direction control valve 83 controls the heat storage medium 71 heat-exchanged with the heat pump 50 to the lower part of the heat storage tank 70 during the summer cooling, and the heat storage tank during the winter heating according to the control of the controller 40. The flow direction of the heat medium pipe 80 is controlled to be returned to the upper portion of the 70. Preferably, the heat medium pipe direction control valve 83 is a four-way solenoid valve.
축열조(70)의 상부에는 고온 저장 열매체(71a)가, 하부에는 저온 저장 열매체(71b)가 저장되어 성층화되며, 상하부가 점차 균일해지면서 축열된다. 성층화되는 고온 및 저온 저장 열매체(71a, 71b)에서 고온 및 저온은 상대적인 개념이다.The high temperature storage heat medium 71a is stored in the upper part of the heat storage tank 70, and the low temperature storage heat medium 71b is stored in the lower part, and stratified. In the hot and cold storage thermal mediums 71a and 71b to be stratified, high and low temperatures are a relative concept.
도 2에 도시되지 않았으나, 바람직하게는, 본 발명의 또 하나의 실시예에서, 열교환된 지하수를 냉수정(10) 및 온수정(20)으로 주입시키는 지하수 회수관로(30b) 상에서 가압펌프가 더 구비되고, 열교환된 지하수를 주입할 수 있다. Although not shown in FIG. 2, preferably, in another embodiment of the present invention, a pressurized pump is further provided on the groundwater recovery pipe line 30b for injecting heat-exchanged groundwater into the cold water well 10 and the hot water well 20. It is provided, it is possible to inject the ground water exchanged.
또한 바람직하게는, 냉수정(10) 및 온수정(20)의 각각 지하 대수층의 지하수면(G) 상부에 지하수 공급관로(30a) 및 지하수 회수관로(30b)가 관통하는 패커(도시되지 않음)가 설치되거나 또는 관정 내부가 관로를 제외하고 밀폐되도록 관정의 상부에 커버 또는 커버박스(도시되지 않음)가 설치된다. 패커 또는 커버, 커버박스는 수밀성을 유지하여, 가압펌프에 의한 지하수의 가압 주입을 가능하게 한다.Also preferably, a packer (not shown) through which the groundwater supply line 30a and the groundwater recovery line 30b pass through the groundwater surface G of the underground aquifer, respectively, of the cold water well 10 and the hot water well 20. Is installed or a cover or cover box (not shown) is installed on the top of the well so that the inside of the well is sealed except the pipeline. The packer or cover, the cover box maintains watertightness, to enable the pressurized injection of groundwater by the pressure pump.
이상에서, 본 발명은 첨부된 도면을 참조하여 바람직한 실시예들을 중심으로 설명되었다. 첨부된 도면 및 전술한 실시예들은 본 발명에 대한 당해 기술분야에서 통상의 지식을 가진 자의 이해를 돕기 위해 예시적으로 설명된 것이다. 그러므로, 본 발명의 다양한 실시예는 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있고, 전술한 실시예들은 제한적인 것이 아닌 예시적인 것으로 여겨져야 한다. In the above, the present invention has been described with reference to the preferred embodiments with reference to the accompanying drawings. The accompanying drawings and the foregoing embodiments are described by way of example to help those skilled in the art to understand the present invention. Therefore, various embodiments of the present invention can be implemented in a modified form without departing from the essential characteristics of the present invention, the foregoing embodiments are to be considered as illustrative and not restrictive.
따라서, 본 발명의 범위는 전술한 실시예들이 아니라 첨부된 특허청구범위에 기재된 발명에 따라 해석되어야 하며, 당해 기술분야에서 통상의 지식을 가진 자에 의한 다양한 변경, 대안, 균등물들이 전술한 발명의 범위에 포함되어 있음은 자명하다.Therefore, the scope of the present invention should be interpreted according to the invention described in the appended claims rather than the above-described embodiments, and various modifications, alternatives, and equivalents described by those skilled in the art are described above. It is obvious that it is included in the scope of the.
본 발명은 대수층 축열 제어 시스템에 관한 것으로 산업적으로 유용하다.The present invention relates to aquifer heat storage control system and is industrially useful.

Claims (10)

  1. 지하 대수층에 형성되되, 하절기 냉방시 냉열 축열된 지하수가 펌핑되고 동절기 난방시 열을 빼앗긴 지하수가 주입되어 냉열 축열되는 냉수정;Cold water crystal is formed in the underground aquifer, the ground water is pumped cold cooling during summer cooling, the ground water is deprived of heat during winter heating is cold storage heat storage;
    지하 대수층에 형성되되 상기 냉수정과 열간섭 제한되는 소정 거리로 이격되어 있고, 동절기 난방시 온열 축열된 지하수가 펌핑되고 하절기 냉방시 열을 흡수한 지하수가 주입되어 온열 축열되는 온수정;A hot water well formed in an underground aquifer and spaced apart from the cold water well by a predetermined distance, the hot water well being pumped and heated by the ground water absorbing heat during the summer cooling;
    상기 냉수정 및 온수정으로부터 펌핑된 지하수를 히트펌프로 공급시키고, 상기 히트펌프로부터 열교환된 지하수를 회수하여 상기 온수정 및 냉수정으로 주입시키는 지하수 관로; An underground water pipe for supplying ground water pumped from the cold water well and the hot water well to a heat pump, and recovering ground water heat exchanged from the heat pump to be injected into the hot water well and the cold water well;
    상기 냉수정으로부터 펌핑된 냉열 지하수의 냉열을 저장 열매체로 전달하고, 상기 온수정으로부터 펌핑된 온열 지하수의 온열을 상기 저장 열매체로 전달하는 히트펌프;A heat pump transferring the cold heat of the cold heated groundwater pumped from the cold water well to the storage heat medium, and transferring the heat of the heated groundwater pumped from the hot water well to the storage heat medium;
    상기 히트펌프와 열매체 배관으로 연결되며, 상기 열매체 배관을 통해 상기 히트펌프로부터 전달받은 냉열 또는 온열의 저장 열매체를 저장하는 축열조; 및A heat storage tank connected to the heat pump and the heat medium pipe, and storing a storage heat medium of cold heat or heat received from the heat pump through the heat medium pipe; And
    설정된 냉방 또는 난방 모드에 따라 상기 히트펌프의 작동 및 상기 냉수정 및 온수정으로부터의 지하수 펌핑과 상기 냉수정 및 온수정으로의 지하수 주입을 자동 제어하는 제어기기; 를 포함하여 이루어지는, 지하 대수층을 냉온 축열체로 이용하는 대수층 축열 제어 시스템.A controller for automatically controlling the operation of the heat pump, the groundwater pumping from the cold and hot water wells, and the groundwater injection into the cold and hot water wells according to a set cooling or heating mode; Aquifer storage control system using a, including the underground aquifer as a cold storage heat storage.
  2. 청구항 1에 있어서, 상기 대수층 축열 제어 시스템은:The system of claim 1, wherein the aquifer heat storage control system is:
    상기 냉수정과 온수정에 각각 설치되되, 냉방시에 냉열 축열된 지하수를, 그리고 난방시에 온열 축열된 지하수를 각각 펌핑하여 상기 지하수 관로로 공급하는 수중모터펌프; 및 An underwater motor pump installed in each of the cold water well and the hot water well, and pumping the ground water accumulated in the cold heat during cooling and the ground water accumulated in the heat during heating to supply to the ground water pipe; And
    상기 열매체 배관 상에 설치되되 상기 저장 열매체를 상기 히트펌프로 토출시키는 제1 순환펌프; 를 더 포함하여 이루어지고,A first circulation pump installed on the heat medium pipe and discharging the storage heat medium to the heat pump; It is made, including more
    상기에서 제어기기는 상기 축열조의 저장 열매체의 온도가 소정 목표 온도에 도달시 상기 히트펌프, 상기 제1 순환펌프 및 상기 수중모터펌프의 가동을 중단시키고, 상기 가동 중단 후 상기 저장된 저장 열매체가 상기 목표 온도의 소정의 허용 범위를 벗어나는 경우 상기 히트펌프, 상기 제1 순환펌프 및 상기 가동 중단 중인 수중모터펌프의 재가동이 이루어지도록 제어하는 것을 특징으로 하는 대수층 축열 제어 시스템.The controller stops the operation of the heat pump, the first circulation pump and the submersible motor pump when the temperature of the storage heat medium of the heat storage tank reaches a predetermined target temperature, and after the operation stops, the stored storage heat medium becomes the target. And the heat pump, the first circulation pump and the submersible submersible motor pump are restarted when the temperature is out of a predetermined allowable range.
  3. 청구항 2에 있어서, The method according to claim 2,
    상기 축열조의 저장 열매체의 축열 목표 온도는 하절기 냉방시 5~10℃ 범위, 그리고 동절기 난방시 45~50℃ 범위이고,The heat storage target temperature of the storage heat medium of the heat storage tank is in the range of 5 to 10 ℃ during summer cooling, and in the range of 45 to 50 ℃ during winter heating,
    상기 소정의 허용 범위
    Figure PCTKR2010003773-appb-I000003
    는 냉방시 +(4~6)℃ 이고, 난방시 -(4~6)℃ 인 것을 특징으로 하는 대수층 축열 제어 시스템.
    The predetermined allowable range
    Figure PCTKR2010003773-appb-I000003
    Is + (4 ~ 6) ℃ when cooling,-(4 ~ 6) ℃ heating is aquifer heat storage control system, characterized in that.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 제어기기는 상기 축열조에 저장된 상기 저장 열매체의 측정 온도와 설정 목표 온도의 차이에 따라 상기 냉수정 또는 온수정으로부터의 지하수 펌핑 유량, 또는 상기 열매체 배관을 통한 상기 축열조로의 저장 열매체의 순환 유량, 또는 상기 지하수 펌핑 유량 및 상기 저장 열매체의 순환 유량을 제어하는 것을 특징으로 하는 대수층 축열 제어 시스템.The controller may be a pumped flow rate of groundwater from the cold or hot water well, or a circulation flow rate of the storage heat medium to the heat storage tank through the heat medium pipe according to a difference between the measured temperature of the storage heat medium stored in the heat storage tank and a set target temperature. Or the groundwater pumping flow rate and the circulation flow rate of the storage heating medium.
  5. 청구항 1에 있어서, The method according to claim 1,
    상기 제어기기는 상기 냉수정 또는 온수정으로부터 펌핑되는 지하수의 온도와 상기 온수정 또는 냉수정으로 주입되는 지하수의 온도에 따라 상기 냉수정 또는 온수정으로부터의 지하수 펌핑 유량, 또는 상기 열매체 배관을 통한 상기 축열조로의 저장 열매체의 순환 유량, 또는 상기 지하수 펌핑 유량 및 상기 저장 열매체의 순환 유량을 제어하는 것을 특징으로 하는 대수층 축열 제어 시스템.The controller may be a flow rate of groundwater pumping from the cold or hot water wells, or the heat medium pipe through the heat medium pipe depending on the temperature of the ground water pumped from the cold or hot water wells and the temperature of the ground water injected into the hot or cold water wells. Aquifer heat storage control system for controlling the circulation flow rate of the storage heat medium to the heat storage tank, or the flow rate of the groundwater pumping and the circulation flow rate of the storage heat medium.
  6. 청구항 4 또는 5에 있어서,The method according to claim 4 or 5,
    상기 제어기기는 상기 저장 열매체에서의 온도의 차이에 따라, 또는 상기 펌핑되는 지하수와 상기 주입되는 지하수의 온도에 따라, 상기 펌핑 유량, 상기 순환 유량, 또는 상기 펌핑 및 순환 유량을 제어하는 것과 함께 상기 히트펌프의 처리용량을 제어하는 것을 특징으로 하는 대수층 축열 제어 시스템.The controller may be configured to control the pumping flow rate, the circulation flow rate, or the pumping and circulation flow rate according to a difference in temperature in the storage heating medium or according to the temperature of the pumped ground water and the injected ground water. Aquifer storage control system, characterized in that for controlling the processing capacity of the heat pump.
  7. 청구항 4 또는 5에 있어서, 상기 대수층 축열 제어 시스템은:The method of claim 4 or 5, wherein the aquifer heat storage control system is:
    상기 냉수정과 온수정에 각각 설치되되, 냉방시에 냉열 축열된 지하수를, 그리고 난방시에 온열 축열된 지하수를 각각 펌핑하는 수중모터펌프; 및 An underwater motor pump installed in the cold water well and the hot water well, respectively, for pumping ground water that is cold-heat-generated during cooling, and ground water that is heat-heat-heating when heated; And
    상기 열매체 배관 상에 설치되되 상기 저장 열매체를 상기 히트펌프로 토출시키는 제1 순환펌프; 를 더 포함하여 이루어지고,A first circulation pump installed on the heat medium pipe and discharging the storage heat medium to the heat pump; It is made, including more
    상기에서 제어기기는 상기 수중모터펌프를 제어하여 상기 냉수정 또는 온수정으로부터의 지하수 펌핑 유량을 제어하고, 상기 제1 순환펌프를 제어하여 상기 저장 열매체의 순환 유량을 조절하는 것을 특징으로 하는 대수층 축열 제어 시스템.Wherein the controller controls the submersible motor pump to control the flow rate of the groundwater pumping from the cold or hot water wells, and to control the first circulation pump to adjust the circulation flow rate of the storage heat medium. Control system.
  8. 청구항 1 내지 5 중의 어느 하나의 청구항에 있어서, 상기 대수층 축열 제어 시스템은: The system of claim 1, wherein the aquifer heat storage control system is:
    상기 지하수 관로 상에 설치되되, 상기 제어기기의 제어에 따라, 펌핑 중지된 수중모터펌프와 연결된 지하수 공급관로 및 펌핑 중인 상기 냉수정 또는 온수정으로의 지하수 회수관로를 차단하고 동시에 펌핑 중인 수중모터펌프와 연결된 지하수 공급관로 및 펌핑 중지된 상기 냉수정 또는 온수정으로의 지하수 회수관로를 개방하는 차단용 밸브들;Underwater motor pump is installed on the groundwater pipeline, and under the control of the controller, the groundwater supply pipe connected to the pumping stop the underwater motor pump and the groundwater recovery pipe to the cold water or hot water well being pumped and at the same time pumping the underwater motor pump Shut-off valves for opening the groundwater supply pipe connected to the ground and the groundwater recovery pipe to the cold water or hot water well stopped pumping;
    상기 축열조의 냉열 또는 온열의 저장 열매체를 순환시켜 건물 냉난방 설비와 열교환하도록 하는 냉난방 관로; 및 A cooling and heating conduit for circulating the heat storage medium of cold or warm heat of the heat storage tank to exchange heat with the building air conditioning equipment; And
    상기 냉난방 관로 상에 설치되되 상기 저장 열매체를 상기 건물 냉난방 설비로 토출시키는 제2 순환펌프; 를 더 포함하여 이루어지는 것을 특징으로 하는 대수층 축열 제어 시스템.A second circulation pump installed on the air conditioning pipe and discharging the storage heating medium to the building air conditioning equipment; Aquifer heat storage control system, characterized in that further comprises.
  9. 청구항 8에 있어서,The method according to claim 8,
    상기 히트펌프와 열교환된 상기 저장 열매체가 하절기 냉방시 상기 축열조의 하부로, 그리고 동절기 난방시 상기 축열조의 상부로 귀환되도록 상기 제어기기의 제어에 따라 상기 열매체 배관의 흐름 방향을 제어하는 열매체 배관 방향제어밸브를 더 구비하여, Heat medium pipe direction control for controlling the flow direction of the heat medium pipe according to the control of the controller so that the storage heat medium heat exchanged with the heat pump is returned to the lower portion of the heat storage tank during the summer cooling, and to the top of the heat storage tank during the winter heating Further provided with a valve,
    상기 축열조에 저장되는 상기 저장 열매체가 성층화된 후 점차 균일해지도록 축열이 이루어지는 것을 특징으로 하는 대수층 축열 제어 시스템.The heat storage control system, characterized in that the heat storage is made so that the storage heat medium stored in the heat storage tank gradually becomes uniform after stratification.
  10. 청구항 1 내지 5 중의 어느 하나의 청구항에 있어서,The method according to any one of claims 1 to 5,
    상기 축열체로 이용되는 상기 냉수정의 축열체로서의 목표 온도는 5~10℃ 범위이고, 상기 온수정의 축열체로서의 목표 온도는 20~30℃ 범위인 것을 특징으로 하는 대수층 축열 제어 시스템.The target temperature of the cold water crystal used as the heat storage body as the heat storage body is in the range of 5 to 10 ° C, and the target temperature of the hot water crystal as the heat storage body is in the range of 20 to 30 ° C.
PCT/KR2010/003773 2010-04-27 2010-06-11 Aquifer heat storage control system WO2011136435A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100039198A KR101005231B1 (en) 2010-04-27 2010-04-27 Control system for thermal energy storage in aquifer
KR10-2010-0039198 2010-04-27

Publications (1)

Publication Number Publication Date
WO2011136435A1 true WO2011136435A1 (en) 2011-11-03

Family

ID=43513545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/003773 WO2011136435A1 (en) 2010-04-27 2010-06-11 Aquifer heat storage control system

Country Status (3)

Country Link
KR (1) KR101005231B1 (en)
CN (1) CN102235778B (en)
WO (1) WO2011136435A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104048451A (en) * 2013-03-13 2014-09-17 苏州风格机电安装工程有限公司 Ground source heat pump system and ground source heat pump air conditioner
RU2664276C2 (en) * 2016-04-19 2018-08-15 Открытое акционерное общество "ИНСОЛАР-ИНВЕСТ" Method of regulation of the geothermal heat pump system and device for its implementation
CN116007211A (en) * 2022-12-19 2023-04-25 成都理工大学 Underground aquifer energy storage system based on induction heating technology

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103164569A (en) * 2013-01-31 2013-06-19 尹立河 Determination method of different depth ground water circulation volumes of big size basin
CN204786985U (en) * 2015-05-08 2015-11-18 鲜升文 No humidity water matchmaker temperature control system is imitated on ground
CN106403368B (en) * 2016-08-30 2018-10-19 湖南中大经纬地热开发科技有限公司 The terrestrial heat utilization system of diluvial formation is rushed based on the 4th system
CN109654581B (en) * 2018-04-09 2020-05-05 胡宇昊 Season-crossing heat storage composite heating system based on confined aquifer
CN108954609A (en) * 2018-07-10 2018-12-07 深圳市安思科电子科技有限公司 A kind of air cooler of good fixing effect
KR101992308B1 (en) * 2018-12-07 2019-06-25 주식회사 지앤지테크놀러지 Geothermal System Using a Single Water Supply System for Smart Farm and Building Cooling and Method for constructing this same
CN112197463A (en) * 2020-10-26 2021-01-08 上海市地矿工程勘察院(上海市水文地质工程地质队) Method for relieving thermal interference of underground water source heat pump
JP7179905B2 (en) * 2021-05-06 2022-11-29 三菱重工サーマルシステムズ株式会社 Geothermal heat utilization system, control device, control method, program
JP7096930B1 (en) * 2021-05-06 2022-07-06 三菱重工サーマルシステムズ株式会社 Geothermal heat utilization system, control device, control method, program
CN114076417A (en) * 2021-10-27 2022-02-22 天津大学 Geothermal well operation method taking heat taking and heat storage into consideration
KR102525171B1 (en) 2022-04-21 2023-04-25 주식회사 바토너스 Methods and systems to control temperature of smart farm and predict cultivation time

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62275623A (en) * 1986-05-23 1987-11-30 ヤンマーディーゼル株式会社 Temperature control system of greenhouse
JP2002054857A (en) * 2000-08-10 2002-02-20 Sekisui House Ltd Heat pump system utilizing underground water
KR20090077730A (en) * 2009-03-18 2009-07-15 (주)그린이엔티 Cooling/heating system by using heat pump

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2569053Y (en) * 2002-08-26 2003-08-27 成都希望电子研究所 Composite ground source heat pump air conditioning unit
CN2632593Y (en) * 2003-06-26 2004-08-11 扶承发 Water source well system for sucking and filling alternatively
CN1232774C (en) * 2003-10-23 2005-12-21 上海交通大学 Composite air-conditioning system of energy storing by enclosed dfferent pressure bearing water-containing layer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62275623A (en) * 1986-05-23 1987-11-30 ヤンマーディーゼル株式会社 Temperature control system of greenhouse
JP2002054857A (en) * 2000-08-10 2002-02-20 Sekisui House Ltd Heat pump system utilizing underground water
KR20090077730A (en) * 2009-03-18 2009-07-15 (주)그린이엔티 Cooling/heating system by using heat pump

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104048451A (en) * 2013-03-13 2014-09-17 苏州风格机电安装工程有限公司 Ground source heat pump system and ground source heat pump air conditioner
RU2664276C2 (en) * 2016-04-19 2018-08-15 Открытое акционерное общество "ИНСОЛАР-ИНВЕСТ" Method of regulation of the geothermal heat pump system and device for its implementation
CN116007211A (en) * 2022-12-19 2023-04-25 成都理工大学 Underground aquifer energy storage system based on induction heating technology
CN116007211B (en) * 2022-12-19 2024-01-26 成都理工大学 Underground aquifer energy storage system based on induction heating technology

Also Published As

Publication number Publication date
KR101005231B1 (en) 2010-12-31
CN102235778B (en) 2013-12-04
CN102235778A (en) 2011-11-09

Similar Documents

Publication Publication Date Title
WO2011136435A1 (en) Aquifer heat storage control system
KR101021578B1 (en) Aquifer thermal energy storage system
US20170299279A1 (en) Arrangement and method for storing thermal energy
KR101220531B1 (en) Geothermal system using circulation underground water
US4257239A (en) Earth coil heating and cooling system
WO1983001272A1 (en) Earth storage structural energy system
US7832220B1 (en) Deep well direct expansion heating and cooling system
US5992507A (en) Geothermal community loop field
US8468842B2 (en) DX system having heat to cool valve
CN106593511B (en) A kind of thermal post_buckling roadway support cooling system and method
JP2005207718A (en) Snow melting device utilizing soil heat
CN108486989A (en) Passive geothermal snow melt deicing device and its construction technology
KR100684125B1 (en) Operating control method of solor boiler system
KR100778686B1 (en) System to supply hot water by collecting terrestrial heat
CN107014114A (en) A kind of efficient underground heat-exchanger device of enclosed standing column well earth source heat pump
JPH01123951A (en) Utilization of underground heat by foundation pile and method of accumulating heat
TW201905391A (en) Method for controlling heat exchange device, heat exchange device, and water-cooled heat pump device
WO2015068937A1 (en) System for utilizing and storing groundwater heat using alluvial aquifer
JP2000154985A (en) Underground heat storage system
KR101152732B1 (en) Warm water heating equipment having two-stage heating structure
RU2341736C2 (en) Method of usage geothermal energy "fill well"
JP2528737Y2 (en) Heat exchange system using foundation pile
KR20100128371A (en) Individual lead-in equipment in machine room of earth tube heat exchanger
CN219550870U (en) Tunnel temperature regulating system based on shallow geothermal exchange
JPH10280310A (en) Snow-thawing device by use of underground heat-accumulation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10850801

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10850801

Country of ref document: EP

Kind code of ref document: A1