WO2011136371A1 - Liquid crystal aligning agent, liquid crystal alignment film using same, and liquid crystal display element - Google Patents

Liquid crystal aligning agent, liquid crystal alignment film using same, and liquid crystal display element Download PDF

Info

Publication number
WO2011136371A1
WO2011136371A1 PCT/JP2011/060468 JP2011060468W WO2011136371A1 WO 2011136371 A1 WO2011136371 A1 WO 2011136371A1 JP 2011060468 W JP2011060468 W JP 2011060468W WO 2011136371 A1 WO2011136371 A1 WO 2011136371A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
mass
aligning agent
polyamic acid
polyimide
Prior art date
Application number
PCT/JP2011/060468
Other languages
French (fr)
Japanese (ja)
Inventor
尚士 鉄谷
尚宏 野田
皇晶 筒井
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to JP2012512926A priority Critical patent/JP5900328B2/en
Priority to KR1020127030847A priority patent/KR101819769B1/en
Priority to CN201180031943.5A priority patent/CN102947754B/en
Publication of WO2011136371A1 publication Critical patent/WO2011136371A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133719Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films with coupling agent molecules, e.g. silane
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide

Definitions

  • the present invention relates to a liquid crystal aligning agent excellent in high-temperature and high-humidity resistance, light resistance, and in-plane uniformity of a pretilt angle, a liquid crystal alignment film and a liquid crystal display element using the same.
  • a liquid crystal display element has a structure in which liquid crystal molecules are sandwiched between liquid crystal alignment films formed on a substrate, and is a display element utilizing the fact that liquid crystal molecules aligned in a certain direction by a liquid crystal alignment film respond with voltage.
  • a polyimide film has been mainly used as the liquid crystal alignment film, but as a means for forming the polyimide film on the substrate with electrodes of the liquid crystal display element, a solution of a polyimide precursor such as polyamic acid is used.
  • a method of forming a coating film and imidizing on a substrate, and a method of using a solution containing a soluble polyimide that has been imidized in advance are known.
  • the solution of the polyimide precursor, soluble polyimide, etc. which form these liquid crystal aligning films are called the liquid crystal aligning agent (liquid crystal aligning agent).
  • the method using a solution containing a soluble polyimide is capable of forming a polyimide film with good characteristics when used as a liquid crystal alignment film, even when firing at a relatively low temperature.
  • the solubility is lower than that of polyamic acid, which is inferior in coating and film-forming properties, and the formed liquid crystal alignment film often has insufficient strength. There is a difficulty that peeling easily occurs.
  • the in-plane uniformity of the pretilt angle becomes a problem as the liquid crystal display elements are used in various places and fields.
  • aging resistance to the heat generated from the backlight is a problem, and countermeasures against these are required.
  • a liquid crystal aligning agent containing a soluble polyimide obtained by imidizing a polyamic acid using a specific diamine component which improves the solubility of polyimide in an organic solvent and does not easily cause scratches or peeling of the film due to rubbing treatment.
  • Patent Document 1 a liquid crystal aligning agent containing a soluble polyimide obtained by imidizing a polyamic acid using a specific diamine component, which improves the solubility of polyimide in an organic solvent and does not easily cause scratches or peeling of the film due to rubbing treatment.
  • Patent Document 1 the liquid crystal alignment film also plays an important role of imparting a pretilt angle to the liquid crystal, but the uniformity and stability of the pretilt angle are important issues.
  • a liquid crystal aligning agent using a diamine having an alkyl side chain as a raw material for example, see Patent Document 2
  • a diamine having a steroid skeleton in the side chain is used as a method for imparting a pretilt angle or preventing a decrease in the pretilt angle.
  • a liquid crystal aligning agent (for example, see Patent Document 3) used as a raw material, a liquid crystal aligning agent (for example, see Patent Document 4) using a diamine having a ring structure as a side chain as a raw material, and the like have been proposed.
  • a liquid crystal aligning agent using a diamine having an alkyl side chain has good liquid crystal alignment, but is inferior in thermal stability of the pretilt angle, and the pretilt angle decreases as the temperature increases.
  • a liquid crystal aligning agent using a diamine having a steroid skeleton or a ring structure in the side chain is excellent in thermal stability of a pretilt angle, but tends to decrease liquid crystal alignment and solubility in an organic solvent.
  • an object of the present invention is to form a liquid crystal alignment film that is excellent in in-plane uniformity of a pretilt angle, and that is excellent in resistance to high temperature and high humidity, and heat and light generated from a backlight. And providing a liquid crystal aligning agent having sufficient solubility in an organic solvent, a liquid crystal alignment film using the same, and a liquid crystal display element.
  • X represents an aromatic ring
  • R 1 represents alkylene having 1 to 5 carbon atoms
  • R 2 represents a hydrocarbon group having 1 to 4 carbon atoms.
  • R 1 represents a single bond or a divalent organic group
  • X 1 , X 2 , and X 3 each independently represent a benzene ring or a cyclohexane ring
  • p, q, and r each independently represents 0.
  • an integer of 1 and R 2 represents a hydrogen atom, an alkyl group having 1 to 22 carbon atoms, or a divalent organic group having 12 to 25 carbon atoms having a steroid skeleton.
  • R 1 in the general formula [2] is a divalent organic group selected from —O— and —NHCO—, p is 0 to 1, q is 0 to 1, r is 0, R 5.
  • the organic solvent is N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-vinylpyrrolidone, dimethyl 13.
  • 14 A liquid crystal alignment film obtained using the liquid crystal aligning agent according to any one of 1 to 13 above.
  • 15. 15 A liquid crystal display device comprising the liquid crystal alignment film as described in 14 above.
  • the in-plane uniformity of the pretilt angle over the entire screen which becomes a more and more problem due to the increase in size and brightness of the liquid crystal display element, is excellent in high-temperature and high-humidity resistance, heat generated from the backlight,
  • a liquid crystal aligning agent that can form a liquid crystal alignment film excellent in light resistance and has sufficient solubility in an organic solvent is provided.
  • the liquid crystal aligning agent of the present invention contains a specific soluble polyimide, or the specific soluble polyimide and a polyamic acid.
  • a polyamic acid obtained by reacting a diamine component containing the diamine represented by the formula [2] with tetracarboxylic dianhydride can be obtained by chemical imidization or the like.
  • the in-plane uniformity of the pretilt angle is excellent, the resistance to heat and humidity under high temperature and high humidity, and the heat from the backlight.
  • a liquid crystal alignment film having excellent resistance to light and light can be formed, and the solubility in organic solvents is also improved.
  • a soluble polyimide means the polyimide soluble in the organic solvent used for the liquid crystal aligning agent of this invention.
  • the soluble polyimide used in the present invention can leave many N-substituted amic acid sites having high polarity, it is highly compatible with polyamic acid having high polarity and aggregates despite containing side chain components. And separation is difficult to occur. Moreover, since the varnish using this soluble polyimide is less likely to precipitate due to water absorption, it is excellent in printability.
  • the amic acid part in the conventional soluble polyimide that is, the part where the imide can be ring-closed easily undergoes decomposition such as hydrolysis, causing a decomposition reaction when the coating film is baked, resulting in a decrease in electrical characteristics, which is a long-term reliability. Adversely affect.
  • a soluble polyimide with a high imidization rate if used, the degradation of characteristics due to decomposition as described above can be reduced.
  • a soluble polyimide with a high imidization rate becomes hydrophobic in nature. The compatibility with the acid deteriorates and aggregation and separation are likely to occur. As a result, the uniformity of the pretilt angle cannot be obtained.
  • the N-substituted amic acid moiety is less likely to hydrolyze than ordinary amic acid, and the molecular weight reduction during firing can be reduced. Since it is possible to prevent further decomposition by increasing the conversion rate, it is possible to obtain good reliability over a short period and a long period. Moreover, since it has a structure in which many highly polar amic acid sites remain, a pretilt excellent in in-plane uniformity can be obtained even when blended with polyamic acid.
  • X, R 1 and R 2 are as defined above.
  • X in the formula is a site for giving the diamine an aromatic amine site, and is not particularly limited as long as it is an aromatic ring. From the viewpoints of availability of raw materials, ease of synthesis, liquid crystal alignment, and the like, phenylene, naphthalene and the like are preferable, and phenylene is particularly preferable from the viewpoint of versatility.
  • the substitution position of R 1 is preferably a meta position or a para position.
  • R 1 represents an alkylene having 1 to 5 carbon atoms, for R 1 is that act on imparting solubility in a solvent when it is used for a soluble polyimide, R 1 in view of the solubility of granted so long as the number of carbon atoms It may be branched or have a ring structure. On the other hand, a linear structure is preferable from the viewpoint of liquid crystal alignment and rubbing resistance, and alkylene having 1 to 2 carbon atoms is most preferable from the viewpoint of availability of reagents.
  • R 2 represents an alkyl group having 1 to 4 carbon atoms, which is considered to contribute mainly to inhibition of imide ring closure and imparting solubility of soluble polyimide, and may have a linear or branched structure.
  • a group as small as possible is preferable, and a methyl group and an ethyl group are particularly preferable.
  • Particularly preferred examples of the diamine represented by the formula [1] are shown below, but are not limited thereto.
  • the content of the diamine represented by the formula [1] is not necessarily limited, but it is preferably 5 to 95 mol% of the total diamine component, and is particularly preferably 20 to 20% because the in-plane uniformity of the pretilt is improved. It is preferably 90 mol%.
  • R 1 , X 1 , X 2 , X 3 , p, q, r and R 2 are as defined above.
  • the diamine of the above formula [2] contributes to increasing the pretilt angle of the liquid crystal, and these diamines include a long-chain alkyl group, a perfluoroalkyl group, an aromatic cyclic group, an aliphatic cyclic group, A diamine having a substituent obtained by combining these groups or a steroid skeleton group is preferable.
  • a preferred pretilt angle can be obtained by variously selecting the structure and amount of the diamine.
  • a tilt is exhibited in a TN mode in which a relatively low pretilt angle of 3 to 5 ° is required and an OCB mode in which a relatively high pretilt of 8 to 20 ° is required.
  • Side chain-containing diamines with relatively low performance are preferred.
  • R 1 is preferably —O— or —NHCO— (—CONH—), wherein p is 0 to 1, q is 0 to 1, and r is preferably 0.
  • R 1 is preferably —O—, —COO—, or —CH 2 O—
  • p is 0 to 1
  • q is 0 to 1
  • r is 0 to 1
  • R 2 is preferably 2 to 22.
  • R 2 is preferably a linear alkyl group having 18 to 22 carbon atoms or a divalent organic group that is an organic group having 12 to 25 carbon atoms having a steroid skeleton.
  • Specific structures of side chain diamines having a high tilting ability are shown in Tables 2-1 and 2-2.
  • diamines have high tilting ability and are preferable when used in the VA mode.
  • diamines such as [2-43] and [2-92] are preferable because they have a high ability to develop a tilt and exhibit vertical alignment with a relatively small amount of side chains, and are particularly preferred as [2-52] and [2-101].
  • Diamine is preferable in terms of printability of the aligning agent because it has a very high ability to develop a tilt and can obtain vertical alignment with a very small amount of side chain.
  • R 1 is preferably —NHCO—
  • R 2 is preferably from the viewpoints of high pretilt expression ability, improved pretilt stability, improved liquid crystal orientation, and the like.
  • alkyl group having 1 to 16 carbon atoms, preferably 3 to 10 carbon atoms is preferred.
  • X 1 , X 2 , X 3 and p, q, r are appropriately selected.
  • the position of each substituent on the benzene ring is not particularly limited, but the positional relationship between the two amino groups is preferably meta or para.
  • Examples of preferred diamines represented by the above formula [2] include diamines represented by the following formula (3).
  • n is an integer of 0 to 21, preferably an integer of 0 to 15.
  • n is an integer from 0 to 19.
  • the pretilt angle does not appear, and when it is large, the solubility of soluble polyimide decreases.
  • Preferred n is an integer of 2 to 15, more preferably an integer of 4 to 10.
  • the content of the diamine represented by the above [2] is preferably 5 to 60 mol% in the total amine component, and is particularly preferably 5 to 30 mol% from the viewpoint of pretilt uniformity and printability. Further, the diamine represented by the formula [2] is preferably contained in an amount of 0.1 to 1.2 mol, more preferably 0.3 to 1 with respect to 1 mol of the diamine represented by the formula [1]. 0.0 mole. When the diamine of the formula [2] is within this range, an appropriate pretilt angle can be obtained and good orientation can be obtained.
  • the diamine represented by the formula [1] and the diamine represented by [2] may be only these, but other diamines may be used in combination.
  • the diamine used for manufacture of the polyamic acid used by mixing with the soluble polyimide mentioned later is mentioned.
  • the tetracarboxylic dianhydride component used for producing a soluble polyimide by reacting with a diamine is also preferably a tetracarboxylic acid used for producing a polyamic acid used by mixing with a soluble polyimide described later.
  • Carboxylic dianhydrides are mentioned.
  • the molecular weight of the soluble polyimide contained in the liquid crystal aligning agent of the present invention is not particularly limited, but from the viewpoint of the strength of the coating film and ease of handling as the liquid crystal aligning agent, the weight average molecular weight is 2,000 to 200,000. And more preferably 5,000 to 50,000.
  • a polyamic acid is contained together with a soluble polyimide. Since the liquid crystal aligning agent containing polyamic acid together with soluble polyimide has the advantage of reducing the charge accumulated in the liquid crystal alignment film and facilitating the removal of the accumulated charge compared to the case containing only soluble polyimide. preferable.
  • Such polyamic acid does not contain both the diamine represented by the above formula [1] and the diamine represented by [2], but any one of the diamines may contain a diamine component and a tetracarboxylic dianhydride component. Can be obtained by polycondensation of these.
  • the diamine component used as the raw material of the polyamic acid mixed with the soluble polyimide contains one or more of any of the diamines described below.
  • ⁇ Diamine component> As the diamine component used as the raw material for the polyamic acid, alicyclic diamine, aromatic diamine, aromatic-aliphatic diamine, heterocyclic diamine, aliphatic diamine, and other diamines are used.
  • alicyclic diamines examples include 1,4-diaminocyclohexane, 1,3-diaminocyclohexane, 4,4′-diaminodicyclohexylmethane, 4,4′-diamino-3,3′-dimethyldicyclohexylamine, isophorone Examples include diamines.
  • aromatic diamines examples include o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, 2,4-diaminotoluene, 2,5-diaminotoluene, 3,5-diaminotoluene, 1,4-diamino -2-methoxybenzene, 2,5-diamino-p-xylene, 1,3-diamino-4-chlorobenzene, 3,5-diaminobenzoic acid, 1,4-diamino-2,5-dichlorobenzene, 4,4 '-Diamino-1,2-diphenylethane, 4,4'-diamino-2,2'-dimethylbibenzyl, 4,4'-diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane 4,4′-diamin
  • aromatic-aliphatic diamines include 3-aminobenzylamine, 4-aminobenzylamine, 3-amino-N-methylbenzylamine, 4-amino-N-methylbenzylamine, 3-aminophenethylamine, 4-aminobenzylamine, Aminophenethylamine, 3-amino-N-methylphenethylamine, 4-amino-N-methylphenethylamine, 3- (3-aminopropyl) aniline, 4- (3-aminopropyl) aniline, 3- (3-methylaminopropyl) Aniline, 4- (3-methylaminopropyl) aniline, 3- (4-aminobutyl) aniline, 4- (4-aminobutyl) aniline, 3- (4-methylaminobutyl) aniline, 4- (4-methyl Aminobutyl) aniline, 3- (5-aminopentyl) aniline, 4- (5-aminopentyl) Aniline, 3- (5-methyl)
  • heterocyclic diamines examples include 2,6-diaminopyridine, 2,4-diaminopyridine, 2,4-diamino-1,3,5-triazine, 2,7-diaminodibenzofuran, 3,6-diamino
  • examples thereof include carbazole, 2,4-diamino-6-isopropyl-1,3,5-triazine, 2,5-bis (4-aminophenyl) -1,3,4-oxadiazole.
  • aliphatic diamines examples include 1,2-diaminoethane, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane 1,8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 1,3-diamino-2,2-dimethylpropane, 1,6-diamino-2,5-dimethylhexane, 1,7 -Diamino-2,5-dimethylheptane, 1,7-diamino-4,4-dimethylheptane, 1,7-diamino-3-methylheptane, 1,9-diamino-5-methylheptane, 1,12-diamino Examples include dodecane, 1,18-diaminoocta
  • diamine compound which has an alkyl group, a fluorine-containing alkyl group, an aromatic ring, an aliphatic ring, a heterocyclic ring, or the macrocyclic substituent which consists of them in a side chain.
  • diamines represented by the following formulas [DA1] to [DA26] can be exemplified.
  • R 6 represents an alkyl group having 1 to 22 carbon atoms or a fluorine-containing alkyl group.
  • S 5 represents —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—, —CO—, or —NH—.
  • R 6 represents an alkyl group having 1 to 22 carbon atoms or a fluorine-containing alkyl group.
  • S 6 represents —O—, —OCH 2 —, —CH 2 O—, —COOCH 2 —, or —CH 2 OCO—
  • R 7 represents the number of carbon atoms. 1 to 22 alkyl groups, alkoxy groups, fluorine-containing alkyl groups or fluorine-containing alkoxy groups.
  • S 7 represents —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, — OCH 2 — or —CH 2 —
  • R 8 represents an alkyl group having 1 to 22 carbon atoms, an alkoxy group, a fluorine-containing alkyl group or a fluorine-containing alkoxy group.
  • S 8 represents —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, — OCH 2 —, —CH 2 —, —O—, or —NH—, wherein R 9 is a fluorine group, a cyano group, a trifluoromethane group, a nitro group, an azo group, a formyl group, an acetyl group, an acetoxy group, or a hydroxyl group .
  • R 10 is an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer.
  • a more stable pretilt can be obtained by using the diamine of the general formula [1] in combination with the diamines of the above [DA-1] to [DA-26].
  • More preferred diamines are those of the formulas [DA-10] to [DA-26], and more preferred are diamines of [DA-10] to [DA-16].
  • the preferred content of these diamines is not particularly limited, but is preferably 5 to 50 mol%, and preferably 5 to 30 from the viewpoint of printability.
  • diamine of General formula [1] can also use the following diamine together.
  • n is an integer of 1 to 5.
  • [DA-27], [DA-28], [DA-35], [DA-36], [DA-37] and the like are preferable because they are effective in improving VHR and improving rubbing resistance.
  • [DA-29] to [DA-34] are preferable because they are effective in reducing the storage electrification.
  • tetracarboxylic dianhydride component used as a raw material for the soluble polyimide and polyamic acid, the following are used.
  • the tetracarboxylic dianhydride component may be one type or a mixture of two or more types.
  • As the tetracarboxylic dianhydride component it is preferable to use a tetracarboxylic dianhydride having an alicyclic structure or an aliphatic structure from the viewpoint that the voltage holding ratio of the liquid crystal cell can be increased.
  • Examples of the tetracarboxylic dianhydride having an alicyclic structure or an aliphatic structure include 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2-dimethyl-1,2,3,4-cyclobutane.
  • Tetracarboxylic dianhydride 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutanetetra Carboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 2,3,4,5-tetrahydrofurantetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic Acid dianhydride, 3,4-dicarboxy-1-cyclohexylsuccinic dianhydride, 3,4-dicarboxy-1,2,3,4-tetrahydro-1-naphthalene succinic dianhydride, 1, , 3,4-Butanetetracarboxylic dianhydride, bicyclo [3,3,0] octane-2,4,6,8-tetracarboxylic dianhydride, 3,3 ′, 4,4′-dicyclo
  • the liquid crystal alignment is improved and the accumulated charge of the liquid crystal cell is reduced. Since it can reduce, it is preferable.
  • Aromatic tetracarboxylic dianhydrides include pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic acid Dianhydride, 2,3,3 ′, 4-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 2,3,3 ′, 4-benzophenonetetra Carboxylic dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride And 2,3,6,7-naphthalenetetracarboxylic dianhydride and the like.
  • tetracarboxylic dianhydride having alicyclic structure or aliphatic structure, aromatic tetracarboxylic dianhydride are preferably used in combination.
  • the former / latter molar ratio is preferably 90/10 to 50/50, more preferably 80/20 to 60/40.
  • the weight average molecular weight of the polyamic acid is preferably 10,000 to 305,000, and more preferably 20,000 to 210,000.
  • the number average molecular weight is preferably 5,000 to 152,500, and more preferably 10,000 to 105,000.
  • the soluble polyimide and polyamic acid contained in the liquid crystal aligning agent of the present invention are produced as follows.
  • the soluble polyimide is obtained by imidizing the precursor polyamic acid, but the difference between the polyamic acid which is the precursor of the soluble polyimide and the polyamic acid mixed with the soluble polyimide is that the former is the raw material As the diamine component, the diamines of the above formulas (1) and (2) are used.
  • the polyamic acid mixed with the soluble polyimide and the polyamic acid which is a precursor of the soluble polyimide are both produced by polycondensing a diamine component and a tetracarboxylic dianhydride component in an organic solvent.
  • a solution in which the diamine component is dispersed or dissolved in an organic solvent is stirred, and the tetracarboxylic dianhydride component is used as it is or
  • a method of adding by dispersing or dissolving in an organic solvent a method of adding a diamine component to a solution in which a tetracarboxylic dianhydride component is dispersed or dissolved in an organic solvent, a tetracarboxylic dianhydride component and a diamine component, A method of alternately adding can be mentioned.
  • the tetracarboxylic dianhydride component or the diamine component when they are composed of a plurality of types of compounds, they may be subjected to a polycondensation reaction in a state in which these plural types of compounds are mixed in advance, or may be sequentially subjected to a polycondensation reaction individually. Good.
  • the temperature for the polycondensation reaction of the tetracarboxylic dianhydride component and the diamine component in an organic solvent is usually 0 to 150 ° C., preferably 5 to 100 ° C., more preferably 10 to 80 ° C.
  • the higher the temperature the faster the polycondensation reaction is completed, but if the temperature is too high, a high molecular weight polymer may not be obtained.
  • the polycondensation reaction can be carried out at any concentration. However, if the concentration of the total mass of the tetracarboxylic dianhydride component and the diamine component is too low, it becomes difficult to obtain a high molecular weight polymer.
  • the concentration of the total mass of the acid dianhydride component and the diamine component is too high, the viscosity of the reaction solution becomes too high and uniform stirring becomes difficult, so 1 to 50% by mass, more preferably 5 to 30% is preferable. % By mass.
  • the initial stage of the polycondensation reaction may be performed at a high concentration, and then an organic solvent may be added.
  • the organic solvent used in the above reaction is not particularly limited as long as the generated polyamic acid dissolves. Specific examples are given below. N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam, dimethyl sulfoxide, tetramethyl urea, pyridine, dimethyl sulfone, hexamethyl sulfoxide , ⁇ -butyrolactone, isopropyl alcohol, methoxymethylpentanol, dipentene, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve, ethyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, butyl Car
  • the solvent may be used alone or in combination.
  • it may be used by mixing with the above solvent as long as the produced polyamic acid does not precipitate.
  • the water in the organic solvent inhibits the polycondensation reaction, and Causes hydrolysis of the produced polyamic acid, so that it is preferable to use an organic solvent that has been dehydrated and dried as much as possible.
  • the ratio of the tetracarboxylic dianhydride component and the diamine component used for the polycondensation polycondensation reaction is preferably 1: 0.8 to 1: 1.2 in molar ratio, and this molar ratio is 1: 1.
  • the polyamic acid is produced as described above, and the polyamic acid mixed with the soluble polyimide is used as one component of the liquid crystal aligning agent of the present invention.
  • polyamic acid which is a precursor of soluble polyimide is imidized. The imidization of the polyamic acid is performed by stirring in an organic solvent, preferably in the presence of a basic catalyst and an acid anhydride, preferably for 1 to 100 hours.
  • Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction.
  • Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, acetic anhydride is preferable because the obtained polyimide can be easily purified after imidization.
  • As an organic solvent the solvent used at the time of the polycondensation reaction of the polyamic acid mentioned above can be used. The imidation ratio of the soluble polyimide can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
  • the amount of the basic catalyst at this time is preferably 0.2 to 10 times mol, more preferably 0.5 to 5 times mol of the amic acid group. Further, the amount of the acid anhydride is preferably 1 to 30 times mol, more preferably 1 to 10 times mol of the amic acid group.
  • the reaction temperature is preferably ⁇ 20 to 250 ° C., more preferably 0 to 180 ° C.
  • the reaction time is preferably 1 to 100 hours, preferably 1 to 20 hours.
  • the imidization ratio of the soluble polyimide is not particularly limited, but is preferably 10% or more, more preferably 40% or more, more preferably 60% or more, and particularly preferably 80% or more in order to obtain a high voltage holding ratio. Even if it is a fool, the imidation rate is preferably 10 to 85%, more preferably 20 to 75%.
  • the liquid crystal aligning agent of the present invention since the added catalyst etc. remain in the solution of the obtained soluble polyimide, it is preferable to use the liquid crystal aligning agent of the present invention after recovering and washing the soluble polyimide.
  • the soluble polyimide can be recovered by putting the solution after imidization into a poor solvent that is being stirred, and precipitating the polyimide, followed by filtration.
  • Examples of the poor solvent at this time include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, and benzene.
  • the recovered soluble polyimide can be washed with this poor solvent.
  • the polyimide recovered and washed in this way can be powdered by drying at normal temperature or under reduced pressure at room temperature or by heating.
  • the liquid crystal aligning agent of this invention contains said soluble polyimide or the soluble polyimide and polyamic acid in the form melt
  • the liquid crystal aligning agent preferably contains 3 to 10% by mass of soluble polyimide, more preferably 4 to 7% by mass. Further, when the liquid crystal aligning agent contains a polyamic acid, the polyamic acid is preferably contained in an amount of 3 to 10% by mass, more preferably 4 to 7% by mass.
  • the total content of soluble polyimide and polyamic acid in the liquid crystal aligning agent is preferably 3 to 10% by mass, more preferably 4 to 7% by mass.
  • the polyamic acid is preferably contained in an amount of 10 to 1000 parts by mass, more preferably 10 to 800 parts by mass with respect to 100 parts by mass of the soluble polyimide.
  • the soluble polyimide contained in the liquid crystal aligning agent and the organic solvent used for dissolving the polyamic acid are preferably 90 to 97% by mass, more preferably 93 to 96% by mass.
  • organic solvent used in the liquid crystal aligning agent of the present invention examples include N, N′-dimethylformamide, N, N′-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-ethylpyrrolidone, N-vinylpyrrolidone, dimethyl sulfoxide, tetramethyl urea, pyridine, dimethyl sulfone, hexamethyl sulfoxide, ⁇ -butyrolactone, 1,3-dimethyl-imidazolidinone, dipentene, ethyl amyl ketone, methyl nonyl ketone, Examples thereof include methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, cyclohexanone, ethylene carbonate, propylene carbonate, diglyme, and 4-hydroxy-4-methyl-2-pentanone.
  • heating may be performed for the purpose of promoting the dissolution of the polyimide. If the heating temperature is too high, the molecular weight of the polyimide may decrease, so the temperature is preferably 30 to 100 ° C, more preferably 50 to 90 ° C.
  • the liquid crystal aligning agent of the present invention has, as other components, a solvent and an additive that improve the film thickness uniformity and surface smoothness when the liquid crystal aligning agent is applied, and the adhesion between the liquid crystal aligning film and the substrate. You may contain the additive etc. which improve. These additive components may be added in the middle of dissolving the soluble polyimide and polyamic acid in the organic solvent, or may be added after dissolution.
  • solvent for improving the film thickness uniformity and the surface smoothness include the following.
  • solvents include solvents that cannot dissolve polyamic acid or soluble polyimide alone, but can be mixed with the liquid crystal aligning agent of the present invention as long as polyamic acid or polyimide does not precipitate. .
  • the coating film uniformity is improved upon application to a substrate by appropriately mixing a solvent having a low surface tension, and it is also suitably used in the liquid crystal aligning agent of the present invention.
  • These solvents may be used alone or in combination. When the above solvent is used, it is preferably 5 to 80% by mass, more preferably 20 to 60% by mass, based on the total amount of the solvent contained in the liquid crystal aligning agent.
  • ⁇ Additives that improve film thickness uniformity and surface smoothness examples include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants. More specifically, for example, F-top EF301, EF303, EF352 (manufactured by Tochem Products), MegaFuck F171, F173, R-30 (manufactured by Dainippon Ink), Florard FC430, FC431 (manufactured by Sumitomo 3M) ), Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (Asahi Glass Co., Ltd.). The use ratio of these substances is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the component (B) contained in the liquid crystal aligning agent. .
  • the substance that improves the adhesion between the liquid crystal alignment film and the substrate include the following functional silane-containing compounds and epoxy group-containing compounds.
  • the amount is preferably 0.1 to 30 parts by weight, more preferably 1 to 30 parts by weight based on 100 parts by weight of the soluble polyimide or soluble polyimide and polyamic acid contained in the liquid crystal alignment treatment agent. 20 parts by mass. If the amount is less than 0.1 part by mass, the effect of improving the adhesion cannot be expected, and if it exceeds 30 parts by mass, the orientation of the liquid crystal may deteriorate.
  • the liquid crystal alignment treatment agent of the present invention in addition to the above, as long as the effects of the present invention are not impaired, polymer components other than the specific polymer, and electrical characteristics such as dielectric constant and conductivity of the liquid crystal alignment film are provided.
  • Substances to be changed (dielectrics, conductive substances, etc.), and further crosslinkable substances for the purpose of increasing the hardness and density of the liquid crystal alignment film may be added.
  • the following phenoplast-based additives are particularly preferred because they are expected to have an effect of preventing deterioration of electrical characteristics due to the backlight in addition to improving the adhesion between the substrate and the film. Specific compounds are listed below, but are not limited thereto.
  • the amount used is 0.1 to 30 parts by mass with respect to 100 parts by mass of the resin component contained in the liquid crystal aligning agent.
  • the amount is preferably 1 to 20 parts by mass. If the amount used is less than 0.1 parts by mass, the effect of improving the adhesion cannot be expected, and if it exceeds 30 parts by mass, the orientation of the liquid crystal may deteriorate.
  • the manufacturing method of the liquid crystal aligning agent of this invention is not specifically limited. Usually, it manufactures by mixing the solution of the said soluble polyimide, or the solution of a soluble polyimide, and the solution of a polyamic acid.
  • the reaction solution of polyamic acid obtained by polycondensation may be used as it is, or once polyamic acid is obtained, it is redissolved in an organic solvent to form a polyamic acid solution.
  • the polyamic acid solution may be used after diluted to a desired concentration.
  • the reaction solution of soluble polyimide obtained by imidization may be used as it is, or once polyimide powder is obtained, it is redissolved in an organic solvent as a polyimide solution. Can be used.
  • the polyimide solution may be used after diluting to a desired concentration.
  • the solid content concentration in the liquid crystal aligning agent of the present invention can be appropriately changed depending on the thickness of the liquid crystal alignment film to be formed, but is preferably 0.5 to 10% by mass, and 1 to 8% by mass. More preferably. If the solid content concentration is less than 0.5% by mass, it is difficult to form a uniform and defect-free coating film, and if it exceeds 10% by mass, the storage stability of the solution may be deteriorated.
  • the solid content here means a component obtained by removing the solvent from the liquid crystal aligning agent, and means a polymer such as soluble polyimide and polyamic acid, and various additives described above.
  • the liquid crystal aligning agent of the present invention is preferably filtered before being applied to the substrate, then applied to the substrate, dried and baked to form a coating film. It is used as a liquid crystal alignment film by performing an alignment treatment such as
  • the substrate to be used is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate can be used, and an ITO electrode for driving a liquid crystal is formed. It is preferable to use a new substrate from the viewpoint of simplification of the process.
  • an opaque substrate such as a silicon wafer can be used as long as only one substrate is used. In this case, a material that reflects light such as aluminum can be used as the electrode.
  • Examples of the method for applying the liquid crystal aligning agent include a spin coating method, a printing method, and an ink jet method, but the flexographic printing method is widely used industrially from the viewpoint of productivity.
  • the liquid crystal aligning agent of the present invention Are also preferably used.
  • the drying process after applying the liquid crystal aligning agent is not necessarily required, but if the time from application to baking is not constant for each substrate, or if baking is not performed immediately after application, a drying process is included. Is preferred. This drying is not particularly limited as long as the solvent is evaporated to such an extent that the shape of the coating film is not deformed by transporting the substrate or the like.
  • a method of drying on a hot plate at 50 to 150 ° C., preferably 80 to 120 ° C., for 0.5 to 30 minutes, preferably 1 to 5 minutes is employed.
  • the substrate coated with the liquid crystal aligning agent can be baked at an arbitrary temperature of 100 to 350 ° C., preferably 150 to 300 ° C., more preferably 180 to 250 ° C.
  • the polyamic acid contained in the liquid crystal aligning agent changes the conversion rate from the amic acid to the imide by this firing, but the polyamic acid does not necessarily need to be 100% imidized.
  • baking is preferably performed at a temperature that is 10 ° C. or more higher than the heat treatment temperature required for the manufacturing process of the liquid crystal cell, such as curing of the sealant. If the thickness of the coating film after firing is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered. 50 to 100 nm.
  • An existing rubbing apparatus can be used for rubbing the coating surface formed on the substrate as described above. Examples of the material of the rubbing cloth at this time include cotton, rayon, and nylon.
  • the liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal aligning agent of the present invention by the method described above, and then preparing a liquid crystal cell by a known method.
  • a pair of substrates on which a liquid crystal alignment film is formed is preferably an arbitrary rubbing direction of 0 to 270 ° with a spacer of preferably 1 to 30 ⁇ m, more preferably 2 to 10 ⁇ m sandwiched between them.
  • the angle is set so that the angle is fixed, the periphery is fixed with a sealant, and the liquid crystal is injected and sealed.
  • the method for enclosing the liquid crystal is not particularly limited, and examples thereof include a vacuum method of injecting liquid crystal after reducing the pressure inside the produced liquid crystal cell, and a dropping method of sealing after dropping the liquid crystal.
  • the liquid crystal display device thus obtained has good liquid crystal orientation, and display defects associated with scratches and peeling of the liquid crystal alignment film that occur during rubbing treatment, and alignment defects due to a decrease in pretilt angle at high temperatures are reduced. And a highly reliable liquid crystal display device.
  • B-6 3,5-diaminobenzyl-2-furorate
  • B-7 4-hexadecyloxy-1,3-diaminobenzene
  • B-8 4- (trans-4-pentylcyclohexyl) benzamide-2 ′, 4 '-Phenylenediamine
  • B-9 Cholesteryl 3,5-diaminobenzoate
  • B-10 N-methyl-4,4′-diaminodiphenylamine
  • B-11 4,4′-diaminodiphenylmethane
  • B-12 1,5-bis (4-aminophenoxy) pentane
  • the molecular weight of the polyamic acid and the polyimide was determined by measuring the polyimide with a GPC (room temperature gel permeation chromatography) apparatus, and calculating the number average molecular weight and the weight average molecular weight as polyethylene glycol and polyethylene oxide equivalent values.
  • GPC room temperature gel permeation chromatography
  • GPC device manufactured by Shodex (GPC-101) Column: manufactured by Shodex (series of KD803 and KD805) Column temperature: 50 ° C Eluent: N, N-dimethylformamide (as additive, lithium bromide-hydrate (LiBr ⁇ H 2 O) 30 mmol / L, phosphoric acid / anhydrous crystal (o-phosphoric acid) 30 mmol / L , Tetrahydrofuran (THF) at 10 ml / L) Flow rate: 1.0 ml / min Standard sample for preparing calibration curve: TSK standard polyethylene oxide (molecular weight: about 900,000, 150,000, 100,000, 30,000) manufactured by Tosoh Corporation and polyethylene glycol (molecular weight: about 12,000, 4,000, 1,000) manufactured by Polymer Laboratory .
  • the imidation ratio of polyimide was measured as follows. 20 mg of polyimide powder was put into an NMR sample tube, and 0.53 ml of deuterated dimethyl sulfoxide (DMSO-d 6 , 0.05% TMS mixed product) was added and completely dissolved. This solution was measured for proton NMR at 500 MHz with an NMR measuring instrument (JNM-ECA500) manufactured by JEOL Datum. The imidization rate was calculated by the following formula. In addition, the imidation ratio of the polyimide which does not use the diamine represented by the formula [1] was calculated by setting the value of the “formula [1] diamine introduction amount during polyamic acid polymerization” in the following formula to zero.
  • Imidization rate (%) (100-Polyamic acid polymerization formula [1] Amount of diamine introduced (mol%) / 2) ⁇ ⁇
  • is a proton derived from a structure that does not change before and after imidation as a reference proton, and the proton peak integrated value and a proton peak derived from the NH group of the amic acid appearing in the vicinity of 9.5 to 10.0 ppm. It calculated
  • (1 ⁇ ⁇ x / y)
  • x is the proton peak integrated value derived from the NH group of the amic acid
  • y is the peak integrated value of the reference proton
  • is one NH group proton of the amic acid in the case of polyamic acid (imidation rate is 0%). The number ratio of the reference protons.
  • a liquid crystal aligning agent is spin-coated on a glass substrate with a transparent electrode, dried on a hot plate at a temperature of 70 ° C. for 70 seconds, and then baked on a hot plate at 210 ° C. for 10 minutes to form a coating film having a thickness of 100 nm. It was.
  • This coating film surface was rubbed with a rubbing apparatus having a roll diameter of 120 mm using a rayon cloth under the conditions of a roll rotation speed of 1000 rpm, a roll traveling speed of 50 mm / sec, and an indentation amount of 0.3 mm to obtain a substrate with a liquid crystal alignment film.
  • ⁇ High temperature and high humidity test> A voltage of 4 V is applied for 60 ⁇ s at a temperature of 90 ° C. to the twisted nematic liquid crystal cell manufactured by the method described in ⁇ Preparation of liquid crystal cell> above, and the voltage after 166.7 ms is measured. It was calculated as voltage holding ratio.
  • the voltage holding ratio was measured using a VHR-1 voltage holding ratio measuring device manufactured by Toyo Technica. Furthermore, it was left in a high-temperature and high-humidity device at a temperature of 70 ° C. and a humidity of 80% for 168 hours, and how much voltage was maintained was calculated as a voltage holding ratio (%).
  • ⁇ Backlight aging resistance> A voltage of 4V is applied for 60 ⁇ s at a temperature of 90 ° C. to the twisted nematic liquid crystal cell manufactured by the method described in ⁇ Preparation of liquid crystal cell> above, and the voltage after 166.7 ms is measured. It was calculated as voltage holding ratio. Furthermore, it was left on the backlight module for 40 inch type liquid crystal TV for 168 hours, and how much voltage could be held was calculated as a voltage holding ratio. The voltage holding ratio (%) was measured using the same device as described in ⁇ High temperature and high humidity test>.
  • ⁇ Measurement of pretilt angle> A liquid crystal cell obtained in the same manner as in the above ⁇ Production of liquid crystal cell> was heated at 105 ° C. for 10 minutes, and then used to measure the pretilt angle. For the measurement, an Axo Scan Mueller matrix polarimeter manufactured by Optometrics was used. The measurement was performed at three points on the cell, and the tilt angle uniformity within the surface was confirmed with variations in the values.
  • the polyamic acid had a number average molecular weight of 12465 and a weight average molecular weight of 29304.
  • PAA-1 polyamic acid solution
  • 50 g of the resulting polyamic acid solution (PAA-1) was weighed, diluted by adding 43.8 g of NMP, acetic anhydride 10.92 g (106.95 mmol) and pyridine 8 .46 g (106.95 mmol) was added and reacted at 70 ° C. for 3 hours to imidize.
  • the reaction solution was cooled to about room temperature and then poured into 388.5 ml of methanol to recover the precipitated solid.
  • the polyamic acid had a number average molecular weight of 13482 and a weight average molecular weight of 33283.
  • PAA-2 polyamic acid solution
  • 50 g of the obtained polyamic acid solution (PAA-2) was weighed and diluted by adding 43.8 g of NMP, acetic anhydride 10.92 g (106.95 mmol) and pyridine 8 .46 g (106.95 mmol) was added and reacted at 70 ° C. for 3 hours to imidize.
  • the reaction solution was cooled to about room temperature and then poured into 388.5 ml of methanol to recover the precipitated solid.
  • the polyamic acid had a number average molecular weight of 11987 and a weight average molecular weight of 43283.
  • PAA-5 polyamic acid solution
  • acetic anhydride 10.55 g (103.23 mmol) and pyridine 8 .18 g (103.23 mmol) was added and reacted at 70 ° C. for 3 hours to imidize.
  • the reaction solution was cooled to about room temperature and then poured into 393.6 ml of methanol to recover the precipitated solid.
  • the polyamic acid had a number average molecular weight of 12276 and a weight average molecular weight of 44911.
  • PAA-6 polyamic acid solution
  • acetic anhydride 10.55 g (103.23 mmol) and pyridine 8 .18 g (103.23 mmol) was added and reacted at 70 ° C. for 3 hours to imidize.
  • the reaction solution was cooled to about room temperature and then poured into 393.6 ml of methanol to recover the precipitated solid.
  • the polyamic acid had a number average molecular weight of 12871 and a weight average molecular weight of 46548.
  • PAA-7 polyamic acid solution
  • 50 g of the obtained polyamic acid solution (PAA-7) was weighed, diluted by adding 43.8 g of NMP, 9.43 g (92.36 mmol) of acetic anhydride and pyridine 7 .31 g (92.36 mmol) was added and reacted at 70 ° C. for 3 hours to imidize.
  • the reaction solution was cooled to about room temperature and then poured into 393.6 ml of methanol to recover the precipitated solid.
  • the solid was washed twice with methanol and then dried under reduced pressure at 100 ° C. to obtain a white powder of polyimide (SPI-7).
  • the number average molecular weight of this polyimide was 11566, and the weight average molecular weight was 27827. Moreover, the imidation ratio was 73%.
  • the number average molecular weight of this polyamic acid was 13602, and the weight average molecular weight was 45068.
  • PAA-8 polyamic acid solution
  • 50 g of the obtained polyamic acid solution (PAA-8) was weighed and diluted by adding 43.8 g of NMP, acetic anhydride 10.68 g (104.60 mmol) and pyridine 8 .28 g (104.60 mmol) was added and reacted at 70 ° C. for 3 hours to imidize.
  • the reaction solution was cooled to about room temperature and then poured into 393.6 ml of methanol to recover the precipitated solid.
  • the solid was washed twice with methanol and then dried under reduced pressure at 100 ° C. to obtain a white powder of polyimide (SPI-8).
  • the number average molecular weight of this polyimide was 12566, and the weight average molecular weight was 28865. Further, the imidization ratio was 59%.
  • the polyamic acid had a number average molecular weight of 13301 and a weight average molecular weight of 43912.
  • PAA-9 polyamic acid solution
  • 50 g of the obtained polyamic acid solution (PAA-9) was weighed, diluted by adding 43.8 g of NMP, and 10.38 g (101.67 mmol) of acetic anhydride and pyridine 8 0.04 g (101.67 mmol) was added, and the mixture was reacted at 70 ° C. for 3 hours to imidize.
  • the reaction solution was cooled to about room temperature and then poured into 392.6 ml of methanol to recover the precipitated solid.
  • the number average molecular weight of this polyamic acid was 11254, and the weight average molecular weight was 29483.
  • 50 g of the obtained polyamic acid solution (PAA-10) was weighed and diluted by adding 43.8 g of NMP.
  • 9.60 g (94.02 mmol) of acetic anhydride and pyridine 7 .44 g (94.02 mmol) was added and reacted at 70 ° C. for 3 hours to imidize.
  • the reaction solution was cooled to about room temperature and then poured into 387.8 ml of methanol to recover the precipitated solid.
  • the polyamic acid had a number average molecular weight of 12462 and a weight average molecular weight of 28219.
  • PAA-11 polyamic acid solution
  • acetic anhydride 10.41 g (101.96 mmol) and pyridine 8 0.07 g (101.96 mmol) was added, and the mixture was reacted at 70 ° C. for 3 hours to imidize.
  • the reaction solution was cooled to about room temperature and then poured into 391.0 ml of methanol to recover the precipitated solid.
  • the solid was washed twice with methanol and then dried under reduced pressure at 100 ° C. to obtain a white powder of polyimide (SPI-11).
  • the number average molecular weight of this polyimide was 12143, and the weight average molecular weight was 25345. Moreover, the imidation ratio was 60%.
  • the solid was washed twice with methanol and dried under reduced pressure at 100 ° C. to obtain a white powder of polyimide (SPI-12).
  • the number average molecular weight of this polyimide was 9630, and the weight average molecular weight was 20013. Moreover, the imidation ratio was 85%.
  • the polyamic acid had a number average molecular weight of 15284 and a weight average molecular weight of 46032.
  • PAA-13 polyamic acid solution
  • 50 g of the obtained polyamic acid solution (PAA-13) was weighed, diluted by adding 43.8 g of NMP, 6.80 g (66.60 mmol) of acetic anhydride and pyridine 2 .91 g (36.77 mmol) was added and reacted at 50 ° C. for 3 hours to imidize.
  • the reaction solution was cooled to about room temperature and then poured into 392.1 ml of methanol to recover the precipitated solid.
  • the solid was washed twice with methanol and then dried under reduced pressure at 100 ° C. to obtain a white powder of polyimide (SPI-13).
  • the number average molecular weight of this polyimide was 12436, and the weight average molecular weight was 28954.
  • the imidation ratio was 82%.
  • the polyamic acid had a number average molecular weight of 11382 and a weight average molecular weight of 27679.
  • PAA-14 polyamic acid solution
  • 57.1 g of NMP 50 g was weighed and diluted by adding 57.1 g of NMP, and then 6.65 g (65.13 mmol) of acetic anhydride and pyridine 2 .85 g (36.02 mmol) was added and reacted at 50 ° C. for 3 hours to imidize.
  • the reaction solution was cooled to about room temperature and then poured into 408.3 ml of methanol to recover the precipitated solid.
  • the number average molecular weight of this polyamic acid was 15372, and the weight average molecular weight was 45205.
  • 50 g of the obtained polyamic acid solution (PAA-15) was weighed, diluted by adding 43.75 g of NMP, 9.40 g (92.07 mmol) of acetic anhydride and pyridine 7 .23 g (91.36 mmol) was added and reacted at 50 ° C. for 3 hours to imidize.
  • the reaction solution was cooled to about room temperature and then poured into 380.5 ml of methanol to recover the precipitated solid.
  • the solid was washed twice with methanol and then dried under reduced pressure at 100 ° C. to obtain a white powder of polyimide (SPI-15).
  • the number average molecular weight of this polyimide was 14092, and the weight average molecular weight was 28301.
  • the imidation ratio was 80%.
  • the polyamic acid had a number average molecular weight of 16,332 and a weight average molecular weight of 46963.
  • PAA-16 polyamic acid solution
  • a 200 ml eggplant-shaped flask equipped with a stir bar 50 g of the obtained polyamic acid solution (PAA-16) was weighed, diluted by adding 43.75 g of NMP, 9.79 g (95.89 mmol) of acetic anhydride and pyridine 7 .58 g (95.79 mmol) was added and reacted at 50 ° C. for 3 hours to imidize.
  • the reaction solution was cooled to about room temperature and then poured into 388.5 ml of methanol to recover the precipitated solid.
  • the solid was washed twice with methanol and then dried under reduced pressure at 100 ° C. to obtain a white powder of polyimide (SPI-16).
  • the number average molecular weight of this polyimide was 15302, and the weight average molecular weight was 34024.
  • the imidation ratio was 80%.
  • the number average molecular weight of this polyamic acid was 13603, and the weight average molecular weight was 34217.
  • a 300 ml eggplant-shaped flask equipped with a stir bar 80.0 g of the obtained polyamic acid solution (PAA-17) solution was weighed, 90.0 g of GBL and 30.0 g of BC were added, and the mixture was stirred at room temperature for 2 hours.
  • a polyamic acid solution (PAA-17S) containing 6.0% by mass, NMP 20% by mass, GBL 59% and BC 15% by mass was obtained.
  • the number average molecular weight of this polyamic acid was 10221, and the weight average molecular weight was 25850.
  • a 300 ml eggplant-shaped flask equipped with a stir bar 80.0 g of the obtained polyamic acid solution (PAA-18) solution was weighed, 60.0 g of GBL and 60.0 g of BC were added, and the mixture was stirred at room temperature for 2 hours.
  • a polyamic acid solution (PAA-18S) containing 6.0% by mass, NMP 20% by mass, GBL 44% and BC 30% by mass was obtained.
  • the polyamic acid had a number average molecular weight of 11476 and a weight average molecular weight of 35850.
  • PAA-19 polyamic acid solution
  • 60.0 g of GBL and 60.0 g of BC were added, and the mixture was stirred at room temperature for 2 hours.
  • a polyamic acid solution (PAA-19S) containing 6.0% by mass, NMP 20% by mass, GBL 44% and BC 30% by mass was obtained.
  • the number average molecular weight of this polyamic acid was 1,5992, and the weight average molecular weight was 40463.
  • 50 g of the obtained polyamic acid solution (PAA-20) was weighed and diluted by adding 43.8 g of NMP, and 10.72 g (105.00 mmol) of acetic anhydride and pyridine 8 .30 g (105.00 mmol) was added and reacted at 50 ° C. for 3 hours to imidize.
  • the reaction solution was cooled to about room temperature and then poured into 388.5 ml of methanol to recover the precipitated solid. Further, the solid was washed twice with methanol and then dried under reduced pressure at 100 ° C. to obtain a white powder of polyimide (SPI-17).
  • the number average molecular weight of this polyimide was 14883, and the weight average molecular weight was 33025. Moreover, the imidation ratio was 84%.
  • Example 1 To 2.00 g of the polyimide (SPI-1) obtained in Synthesis Example 1, 14.67 g of GBL was added and stirred at 50 ° C. for 20 hours. The polyimide was completely dissolved at the end of stirring. Further, GBL 3.32 g, NMP 6.67 g BC 6.67 g were added to this solution, and the mixture was stirred at 50 ° C. for 20 hours. The solid content (SPI-1) was 6 mass%, GBL 54 mass%, NMP 20 mass%, and BC A 20% by weight polyimide solution was obtained.
  • Example 2 To 2.00 g of the polyimide (SPI-2) obtained in Synthesis Example 2, 14.67 g of GBL was added and stirred at 50 ° C. for 20 hours. The polyimide was completely dissolved at the end of stirring. Furthermore, GBL 3.32g, NMP 6.67gBC 6.67g was added to this solution, and it stirred at 50 degreeC for 20 hours, solid content (SPI-2) was 6 mass%, GBL 54 mass%, NMP 20 mass%, and BC. A 20% by weight polyimide solution was obtained.
  • Example 3 To 2.00 g of the polyimide (SPI-3) obtained in Synthesis Example 3, 14.67 g of GBL was added and stirred at 50 ° C. for 20 hours. The polyimide was completely dissolved at the end of stirring. Further, 3.32 g of GBL and 6.67 g of NMP were added to this solution, and the mixture was stirred at 50 ° C. for 20 hours. The solid content (SPI-3) was 6 mass%, GBL was 54 mass%, NMP was 20 mass%, and BC was A 20% by weight polyimide solution was obtained.
  • Example 4 14.67 g of GBL was added to 2.00 g of polyimide (SPI-4) obtained in Synthesis Example 4, and the mixture was stirred at 50 ° C. for 20 hours. The polyimide was completely dissolved at the end of stirring. Furthermore, GBL 3.32g, NMP 6.67gBC 6.67g was added to this solution, and it stirred at 50 degreeC for 20 hours, solid content (SPI-4) was 6 mass%, GBL 54 mass%, NMP 20 mass%, and BC. A 20% by weight polyimide solution was obtained.
  • Example 5 14.67 g of GBL was added to 2.00 g of polyimide (SPI-5) obtained in Synthesis Example 5, and the mixture was stirred at 50 ° C. for 20 hours. The polyimide was completely dissolved at the end of stirring. Furthermore, GBL 3.32g, NMP 6.67gBC 6.67g was added to this solution, and it stirred at 50 degreeC for 20 hours, solid content (SPI-5) was 6 mass%, GBL 54 mass%, NMP 20 mass%, and BC. A 20% by weight polyimide solution was obtained.
  • Example 6 14.67 g of GBL was added to 2.00 g of polyimide (SPI-6) obtained in Synthesis Example 6, and the mixture was stirred at 50 ° C. for 20 hours. The polyimide was completely dissolved at the end of stirring. Furthermore, GBL 3.32g, NMP 6.67gBC 6.67g was added to this solution, and it stirred at 50 degreeC for 20 hours, solid content (SPI-6) was 6 mass%, GBL 54 mass%, NMP 20 mass%, and BC. A 20% by weight polyimide solution was obtained.
  • Example 7 14.67 g of GBL was added to 2.00 g of the polyimide (SPI-7) obtained in Synthesis Example 7, and the mixture was stirred at 50 ° C. for 20 hours. The polyimide was completely dissolved at the end of stirring. Further, 3.32 g of GBL, 6.67 g of NMP, and 6.67 g of BC were added to this solution, followed by stirring at 50 ° C. for 20 hours.
  • the solid content (SPI-7) was 6% by mass
  • GBL was 54% by mass
  • NMP was 20% by mass
  • a polyimide solution having a BC of 20% by mass was obtained.
  • Example 8 14.67 g of GBL was added to 2.00 g of the polyimide (SPI-8) obtained in Synthesis Example 8, and the mixture was stirred at 50 ° C. for 20 hours. The polyimide was completely dissolved at the end of stirring. Furthermore, GBL 3.32g, NMP 6.67gBC 6.67g was added to this solution, and it stirred at 50 degreeC for 20 hours, solid content (SPI-8) was 6 mass%, GBL 54 mass%, NMP 20 mass%, and BC. A 20% by weight polyimide solution was obtained.
  • Example 9 To 2.00 g of the polyimide (SPI-9) obtained in Synthesis Example 9, 14.67 g of GBL was added and stirred at 50 ° C. for 20 hours. The polyimide was completely dissolved at the end of stirring. Furthermore, GBL 3.32g, NMP 6.67gBC 6.67g was added to this solution, and it stirred at 50 degreeC for 20 hours, solid content (SPI-9) was 6 mass%, GBL 54 mass%, NMP 20 mass%, and BC. A 20% by weight polyimide solution was obtained.
  • Example 10 SPI-6 polyimide solution obtained by the method described in Example 6 (solid content 6 mass%, GBL 54 mass%, NMP 20 mass%, BC 20 mass%) 30.0 g, 70.0 g of the polyamic acid solution (PAA-17S) prepared by the method was stirred at room temperature for 20 hours, the solid content (mass ratio of SPI-10 and PAA-17 was 3: 7) was 6% by mass, and NMP was 20% by mass. Thus, a liquid crystal aligning agent-10 having a GBL of 57.5% by mass and a BC of 16.5% by mass was obtained.
  • Example 11 To 2.00 g of the polyimide (SPI-10) obtained in Synthesis Example 10, 14.67 g of GBL was added and stirred at 50 ° C. for 20 hours. The polyimide was completely dissolved at the end of stirring. Furthermore, GBL 3.32g, NMP 6.67gBC 6.67g was added to this solution, and it stirred at 50 degreeC for 20 hours, solid content (SPI-10) was 6 mass%, GBL 54 mass%, NMP 20 mass%, and BC. A 20% by weight solution was obtained.
  • Example 12 To 2.00 g of the polyimide (SPI-11) obtained in Synthesis Example 11, 14.67 g of GBL was added and stirred at 50 ° C. for 20 hours. The polyimide was completely dissolved at the end of stirring. Furthermore, GBL 3.32g, NMP 6.67gBC 6.67g was added to this solution, and it stirred at 50 degreeC for 20 hours, solid content (SPI-11) was 6 mass%, GBL 54 mass%, NMP 20 mass%, and BC. A 20% by weight solution was obtained.
  • Example 13 SPI-6 polyimide solution obtained by the method described in Example 6 (solid content 6% by mass, GBL 54% by mass, NMP 20% by mass, BC 20% by mass) 30.0 g, 30.0 g of the polyamic acid solution (PAA-19S) prepared by the method was stirred at room temperature for 20 hours, the solid content (mass ratio of SPI-6 and PAA-19 was 5: 5) was 6% by mass, and NMP was 20% by mass.
  • a liquid crystal aligning agent-13 having a GBL of 45.0% by mass and a BC of 25.0% by mass was obtained.
  • Example 14 SPI-10 polyimide solution obtained by the method described in Example 11 (solid content 6% by mass, GBL 54% by mass, NMP 20% by mass, BC 20% by mass) 30.0 g, 30.0 g of the polyamic acid solution (PAA-17S) prepared by the method was stirred at room temperature for 20 hours, the solid content (mass ratio of SPI-10 and PAA-17 was 5: 5) was 6% by mass, and NMP was 20% by mass.
  • a liquid crystal aligning agent-14 having a GBL of 56.5% by mass and a BC of 17.5% by mass was obtained.
  • Example 15 0.4 g of the polyimide (SPI-5) obtained in Synthesis Example 5 and 1.6 g of the polyimide (SPI-6) obtained in Synthesis Example 6 were mixed, 14.67 g of GBL was added, and the mixture was stirred at 50 ° C. for 20 hours. . The polyimide was completely dissolved at the end of stirring. Further, 3.32 g of GBL and 6.67 g of NMP were added to this solution, and the mixture was stirred at 50 ° C. for 20 hours. A solution containing 20% by mass, 20% by mass of NMP and 20% by mass of BC was obtained.
  • Example 16 0.4 g of the polyimide (SPI-5) obtained in Synthesis Example 5 and 1.6 g of the polyimide (SPI-7) obtained in Synthesis Example 7 were mixed, 14.67 g of GBL was added, and the mixture was stirred at 50 ° C. for 20 hours. . The polyimide was completely dissolved at the end of stirring. Further, 3.32 g of GBL and 6.67 g of NMP were added to this solution, and the mixture was stirred at 50 ° C. for 20 hours. A solution containing 20% by mass, 20% by mass of NMP and 20% by mass of BC was obtained.
  • Example 17 0.4 g of the polyimide (SPI-8) obtained in Synthesis Example 8 and 1.6 g of the polyimide (SPI-9) obtained in Synthesis Example 9 were mixed, 14.67 g of GBL was added, and the mixture was stirred at 50 ° C. for 20 hours. . The polyimide was completely dissolved at the end of stirring. Further, 3.32 g of GBL and 6.67 g of NMP were added to this solution, and the mixture was stirred at 50 ° C. for 20 hours. A solution containing 20% by mass, 20% by mass of NMP and 20% by mass of BC was obtained.
  • Example 18 1.6 g of polyimide (SPI-5) obtained in Synthesis Example 5 and 0.4 g of polyimide (SPI-6) obtained in Synthesis Example 6 were mixed, 14.67 g of GBL was added, and the mixture was stirred at 50 ° C. for 20 hours. . The polyimide was completely dissolved at the end of stirring. Furthermore, GBL 3.32g and NMP 6.67gBC 6.67g were added to this solution, and it stirred at 50 degreeC for 20 hours, solid content (mass ratio of SPI-4 and SPI-5 is 2: 8) is 6 mass%, GBL is 54 A solution containing 20% by mass, 20% by mass of NMP and 20% by mass of BC was obtained.
  • Example 20 A polyimide solution of SPI-1 obtained by the method described in Example 1 (solid content: 6% by mass, GBL: 54% by mass, NMP: 20% by mass, BC: 20% by mass) Liquid crystal aligning agent-20 of the present invention Used for evaluation.
  • Example 21 A polyimide solution of SPI-6 (solid content: 6% by mass, GBL: 54% by mass, NMP: 20% by mass, BC: 20% by mass) obtained by the method described in Example 6 is the liquid crystal aligning agent-21 of the present invention. Used for evaluation.
  • Two tetracarboxylic acids for polyamic acids PAA-1 to PAA-20 and polyimides: SPI-1 to SPI-17 used in the preparation of the liquid crystal aligning agents of Examples 1 to 21 and Comparative Examples 1 to 10 above.
  • Table 3 shows the water component, the diamine component, and the imidization ratio.
  • Tables 4-1 and 4-2 show the mixing ratio of polyamic acid and polyimide in each of the liquid crystal aligning agents of Examples 1 to 21 and Comparative Examples 1 to 10.
  • Table 5 shows the results of the pretilt angle, the high-temperature and high-humidity test, and the backlight aging resistance obtained with the liquid crystal cells produced using the liquid crystal aligning agents of Examples 1 to 21 and Comparative Examples 1 to 10. It was.
  • Examples 1 to 21 show the characteristics of the liquid crystal alignment film using the liquid crystal aligning agent of the present invention, but they have good high temperature and high humidity tests evaluated by voltage holding ratio and backlight aging resistance, and pretilt. A result with little variation in the above is obtained. On the other hand, Comparative Examples 1 to 10 are inferior in the high-temperature / high-humidity test and backlight aging resistance evaluated by the voltage holding ratio, and the pretilt angle varies greatly.
  • the liquid crystal display element produced using the liquid crystal aligning agent of the present invention can be a highly reliable liquid crystal display device, such as a TN liquid crystal display element, an STN liquid crystal display element, a TFT liquid crystal display element, an OCB liquid crystal display element, It is suitably used for display elements using various methods.
  • a TN liquid crystal display element such as a TN liquid crystal display element, an STN liquid crystal display element, a TFT liquid crystal display element, an OCB liquid crystal display element, It is suitably used for display elements using various methods.

Abstract

Disclosed is a liquid crystal aligning agent which is capable of providing a liquid crystal alignment film that has excellent in-plane uniformity of pretilt angles, while exhibiting excellent resistance to high temperatures and high humidities and excellent resistance to the heat and light generated by the backlight. Specifically disclosed is a liquid crystal aligning agent which contains a soluble polyimide that is obtained by imidizing a polyamic acid component that is obtained by causing a diamine component that contains a diamine represented by general formula (1) and a diamine represented by general formula (2) to react with a tetracarboxylic acid dianhydride. (In general formula (1), X represents an aromatic ring; R1 represents an alkylene group having 1-5 carbon atoms; and R2 represents a hydrocarbon group having 1-4 carbon atoms.) (In general formula (2), R1 represents a single bond or a divalent organic group; X1, X2 and X3 each independently represents a benzene ring or a cyclohexane ring; p, q and r each independently represents an integer of 0 or 1; and R2 represents a hydrogen atom, an alkyl group having 1-22 carbon atoms or a divalent organic group having a steroid skeleton and 12-25 carbon atoms.)

Description

液晶配向剤、それを用いた液晶配向膜及び液晶表示素子Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element using the same
 本発明は、高温高湿耐性、光耐性、及びプレチルト角の面内均一性に優れた液晶配向剤、それを用いた液晶配向膜及び液晶表示素子に関する。 The present invention relates to a liquid crystal aligning agent excellent in high-temperature and high-humidity resistance, light resistance, and in-plane uniformity of a pretilt angle, a liquid crystal alignment film and a liquid crystal display element using the same.
 液晶表示素子は、液晶分子が基板に形成された液晶配向膜で挟まれた構造をしており、液晶配向膜によって一定方向に配向した液晶分子が、電圧によって応答することを利用した表示素子である。
 この液晶配向膜として、従来、主に、ポリイミド膜が使用されているが、ポリイミド膜を液晶表示素子の電極付き基板上に形成させる手段としては、ポリアミック酸などのポリイミド前駆体の溶液を使用して塗膜を形成し、基板上でイミド化させる方法と、予めイミド化させてある可溶性ポリイミドを含む溶液を使用する方法とが知られている。なお、これらの液晶配向膜を形成する、ポリイミド前駆体の溶液や可溶性ポリイミドなどは、液晶配向剤(液晶配向処理剤)と呼ばれている。
A liquid crystal display element has a structure in which liquid crystal molecules are sandwiched between liquid crystal alignment films formed on a substrate, and is a display element utilizing the fact that liquid crystal molecules aligned in a certain direction by a liquid crystal alignment film respond with voltage. is there.
Conventionally, a polyimide film has been mainly used as the liquid crystal alignment film, but as a means for forming the polyimide film on the substrate with electrodes of the liquid crystal display element, a solution of a polyimide precursor such as polyamic acid is used. A method of forming a coating film and imidizing on a substrate, and a method of using a solution containing a soluble polyimide that has been imidized in advance are known. In addition, the solution of the polyimide precursor, soluble polyimide, etc. which form these liquid crystal aligning films are called the liquid crystal aligning agent (liquid crystal aligning agent).
 このうち、可溶性ポリイミドを含む溶液を使用する方法は、比較的低温の焼成であっても、液晶配向膜としたときの特性が良好なポリイミド膜を形成させることが可能であるという反面、ポリイミドの溶解性はポリアミック酸に比べて低く、塗布、成膜性に劣り、また、形成された液晶配向膜は強度が不十分なものが多く、特にラビング処理の際に膜表面への傷や膜の剥離が起きやすいという難点がある。
 また、液晶表示素子の大型化、高輝度化により、さらには、液晶表示素子が種々の場所や分野で使用されるのに伴い、プレチルト角の面内均一性が問題になり、高温高湿耐性や、バックライトから発生する熱に対するエージング耐性が問題になり、これらに対する対策が必要になっている。
Among these, the method using a solution containing a soluble polyimide is capable of forming a polyimide film with good characteristics when used as a liquid crystal alignment film, even when firing at a relatively low temperature. The solubility is lower than that of polyamic acid, which is inferior in coating and film-forming properties, and the formed liquid crystal alignment film often has insufficient strength. There is a difficulty that peeling easily occurs.
In addition, due to the increase in size and brightness of liquid crystal display elements, the in-plane uniformity of the pretilt angle becomes a problem as the liquid crystal display elements are used in various places and fields. In addition, aging resistance to the heat generated from the backlight is a problem, and countermeasures against these are required.
 これらへの対策のために従来種々の提案がなされている。例えば、ポリイミドの有機溶媒への溶解性の向上と、ラビング処理による膜表面への傷や膜の剥離が起き難い、特定のジアミン成分を使用したポリアミック酸をイミド化した可溶性ポリイミドを含む液晶配向剤が提案されている(特許文献1)。
 一方で、液晶配向膜は液晶にプレチルト角を付与するという重要な役割も担っているが、プレチルト角の均一性や安定性が重要な課題となっている。例えば、プレチルト角を付与したり、プレチルト角の低下を防止する方法としては、アルキル側鎖を有するジアミンを原料にした液晶配向剤(例えば特許文献2参照)、ステロイド骨格を側鎖に有するジアミンを原料にした液晶配向剤(例えば特許文献3参照)、環構造を側鎖に有するジアミンを原料にした液晶配向剤(例えば特許文献4参照)などが提案されている。
 しかしながら、液晶表示素子の大型化、高輝度化により、さらには、液晶表示素子が長期に渡り種々の場所や分野で使用されるのに伴い、プレチルト角のさらなる安定性や面内均一性が重要になっており、加えて、高温高湿下における素子の劣化や、バックライトから発生する熱や光、さらには太陽光や室内灯などからの光などによる素子の劣化が問題になり、これに対する対策が必要となっている。
Various proposals have been made for countermeasures against these problems. For example, a liquid crystal aligning agent containing a soluble polyimide obtained by imidizing a polyamic acid using a specific diamine component, which improves the solubility of polyimide in an organic solvent and does not easily cause scratches or peeling of the film due to rubbing treatment. Has been proposed (Patent Document 1).
On the other hand, the liquid crystal alignment film also plays an important role of imparting a pretilt angle to the liquid crystal, but the uniformity and stability of the pretilt angle are important issues. For example, as a method for imparting a pretilt angle or preventing a decrease in the pretilt angle, a liquid crystal aligning agent using a diamine having an alkyl side chain as a raw material (for example, see Patent Document 2), a diamine having a steroid skeleton in the side chain is used. A liquid crystal aligning agent (for example, see Patent Document 3) used as a raw material, a liquid crystal aligning agent (for example, see Patent Document 4) using a diamine having a ring structure as a side chain as a raw material, and the like have been proposed.
However, with the increase in size and brightness of the liquid crystal display elements, and the liquid crystal display elements have been used in various places and fields for a long time, further stability of the pretilt angle and in-plane uniformity are important. In addition, the deterioration of the element under high temperature and high humidity, the heat and light generated from the backlight, and the deterioration of the element due to the light from sunlight and room lights, etc. Countermeasures are needed.
国際公開第2006/126555号パンフレットInternational Publication No. 2006/126555 Pamphlet 特開平05-043687号公報Japanese Patent Laid-Open No. 05-043687 特開平04-281427号公報Japanese Patent Laid-Open No. 04-281427 特開平02-223916号公報Japanese Patent Laid-Open No. 02-223916
 一般的にアルキル側鎖を有するジアミンを用いる液晶配向剤は、液晶配向性は良好であるが、プレチルト角の熱安定性に劣り、温度が高くなるとプレチルト角は低下する。また、ステロイド骨格や環構造を側鎖に有するジアミンを用いる液晶配向剤は、プレチルト角の熱安定性に優れるが、液晶配向性、有機溶媒に対する溶解性が低下する傾向にある。
 本発明の目的は、上記の状況を鑑み、プレチルト角の面内均一性に優れ、また、高温高湿耐性や、バックライトから発生する熱や光耐性に優れる液晶配向膜を形成することができ、かつ有機溶媒に対する溶解性も十分な液晶配向剤、及びこれを用いた液晶配向膜、及び液晶表示素子を提供することにある。
In general, a liquid crystal aligning agent using a diamine having an alkyl side chain has good liquid crystal alignment, but is inferior in thermal stability of the pretilt angle, and the pretilt angle decreases as the temperature increases. In addition, a liquid crystal aligning agent using a diamine having a steroid skeleton or a ring structure in the side chain is excellent in thermal stability of a pretilt angle, but tends to decrease liquid crystal alignment and solubility in an organic solvent.
In view of the above situation, an object of the present invention is to form a liquid crystal alignment film that is excellent in in-plane uniformity of a pretilt angle, and that is excellent in resistance to high temperature and high humidity, and heat and light generated from a backlight. And providing a liquid crystal aligning agent having sufficient solubility in an organic solvent, a liquid crystal alignment film using the same, and a liquid crystal display element.
 本発明者は、上記の目的を達成するために鋭意研究を行った結果、本発明に到達したものであり、本発明は以下の要旨を有するものである。
1.下記式一般式[1]にて表されるジアミン及び下記一般式[2]にて表されるジアミンを含有するジアミン成分と、テトラカルボン酸二無水物とを反応して得られるポリアミック酸成分をイミド化した可溶性ポリイミドを含有することを特徴とする液晶配向剤。
Figure JPOXMLDOC01-appb-C000004
(式中、Xは芳香環を表し、R1は炭素数1~5のアルキレンを表し、R2は炭素数1~4の炭化水素基を表す。)
Figure JPOXMLDOC01-appb-C000005
(式中、R1は単結合、二価の有機基を表し、X1、X2、X3はそれぞれ独立してベンゼン環又はシクロヘキサン環を表し、p,q,rはそれぞれ独立して0又は1の整数を表し、R2は、水素原子、炭素数1~22のアルキル基又はステロイド骨格を有する炭素数12~25である2価の有機基を表す。)
As a result of intensive studies to achieve the above object, the present inventor has reached the present invention, and the present invention has the following gist.
1. A polyamic acid component obtained by reacting a diamine represented by the following general formula [1] and a diamine component containing the diamine represented by the following general formula [2] with tetracarboxylic dianhydride: A liquid crystal aligning agent comprising an imidized soluble polyimide.
Figure JPOXMLDOC01-appb-C000004
(In the formula, X represents an aromatic ring, R 1 represents alkylene having 1 to 5 carbon atoms, and R 2 represents a hydrocarbon group having 1 to 4 carbon atoms.)
Figure JPOXMLDOC01-appb-C000005
(In the formula, R 1 represents a single bond or a divalent organic group, X 1 , X 2 , and X 3 each independently represent a benzene ring or a cyclohexane ring, and p, q, and r each independently represents 0. Or an integer of 1 and R 2 represents a hydrogen atom, an alkyl group having 1 to 22 carbon atoms, or a divalent organic group having 12 to 25 carbon atoms having a steroid skeleton.)
2.一般式[1]におけるXがフェニレン基であり、Rが炭素数1~5の直鎖アルキレン基であり、Rがメチル基又はエチル基である上記1に記載の液晶配向剤。
3.一般式[1]におけるXがフェニレン基であり、R1はメチレン基又はエチレン基である上記1又は2に記載の液晶配向剤。
4.一般式[2]におけるR1が-O-、-NHCO-、-COO-及び-CH2O-から選ばれる二価の有機基、R2が水素原子又は炭素数1~18の直鎖アルキル基である上記1~3のいずれかに記載の液晶配向剤。
5.一般式[2]におけるR1が-O-及び-NHCO-から選ばれる二価の有機基であり、pが0~1であり、qが0~1であり、rが0であり、Rが水素原子又は炭素数1~18の直鎖アルキル基である上記1~4のいずれかに記載の液晶配向剤。
6.一般式[2]が式[3]で表されるジアミンである上記1~5のいずれかに記載の液晶配向剤。
Figure JPOXMLDOC01-appb-C000006
2. 2. The liquid crystal aligning agent according to 1 above, wherein X in the general formula [1] is a phenylene group, R 1 is a linear alkylene group having 1 to 5 carbon atoms, and R 2 is a methyl group or an ethyl group.
3. 3. The liquid crystal aligning agent according to 1 or 2 above, wherein X in the general formula [1] is a phenylene group, and R 1 is a methylene group or an ethylene group.
4). In the general formula [2], R 1 is a divalent organic group selected from —O—, —NHCO—, —COO— and —CH 2 O—, and R 2 is a hydrogen atom or a linear alkyl having 1 to 18 carbon atoms. 4. The liquid crystal aligning agent according to any one of the above 1 to 3, which is a group.
5. R 1 in the general formula [2] is a divalent organic group selected from —O— and —NHCO—, p is 0 to 1, q is 0 to 1, r is 0, R 5. The liquid crystal aligning agent according to any one of 1 to 4 above, wherein 2 is a hydrogen atom or a linear alkyl group having 1 to 18 carbon atoms.
6). 6. The liquid crystal aligning agent according to any one of 1 to 5 above, wherein the general formula [2] is a diamine represented by the formula [3].
Figure JPOXMLDOC01-appb-C000006
7.前記ジアミン成分が、式[1]で表されるジアミンを5~95モル%含有する上記1~6のいずれかに記載の液晶配向剤。
8.前記ジアミン成分が、式[2]で表されるジアミンが5~60モル%含有し、かつ式[1]で表されるジアミン1モルに対して0.1~1.2モル含有する上記1~6いずれかに記載の液晶配向剤。
9.前記可溶性ポリイミドが、ポリアミック酸をイミド化率10~85%でイミド化したポリイミドである上記1~8のいずれかに記載の液晶配向剤。
10.前記可溶性ポリイミドが、有機溶媒に溶解して含有され、該前記可溶性ポリイミドが、1~10質量%含有する上記1~9のいずれかに記載の液晶配向剤。
11.さらに、式[1]で表されるジアミン及び式[2]で表されるジアミンを同時に含むことのないジアミン成分とテトラカルボン酸二無水物成分とを反応して得られるポリアミック酸を含有する上記1~10のいずれかに記載の液晶配向剤。
12.前記ポリアミック酸が、前記可溶性ポリイミドの100質量部に対して10~10000質量部含有する上記11に記載の液晶配向剤。
7). 7. The liquid crystal aligning agent according to any one of 1 to 6, wherein the diamine component contains 5 to 95 mol% of the diamine represented by the formula [1].
8). The diamine component contains 5 to 60 mol% of the diamine represented by the formula [2], and 0.1 to 1.2 mol per 1 mol of the diamine represented by the formula [1]. 7. The liquid crystal aligning agent according to any one of 6 to 6.
9. 9. The liquid crystal aligning agent according to any one of 1 to 8, wherein the soluble polyimide is a polyimide obtained by imidizing polyamic acid with an imidization ratio of 10 to 85%.
10. 10. The liquid crystal aligning agent according to any one of 1 to 9 above, wherein the soluble polyimide is contained by being dissolved in an organic solvent, and the soluble polyimide is contained by 1 to 10% by mass.
11. Furthermore, the polyamic acid obtained by reacting the diamine component not containing the diamine represented by the formula [1] and the diamine represented by the formula [2] and the tetracarboxylic dianhydride component at the same time is contained. The liquid crystal aligning agent according to any one of 1 to 10.
12 12. The liquid crystal aligning agent according to 11 above, wherein the polyamic acid is contained in an amount of 10 to 10,000 parts by mass with respect to 100 parts by mass of the soluble polyimide.
13.前記有機溶媒が、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-ビニルピロリドン、ジメチルスルホキシド、テトラメチル尿素、ジメチルスルホン、ヘキサメチルリン酸トリアミド、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、又はそれらの混合物である上記10~12のいずれかに記載の液晶配向剤。
14.上記1~13いずれかに記載の液晶配向剤を用いて得られる液晶配向膜。
15.上記14に記載の液晶配向膜を具備した液晶表示素子。
13. The organic solvent is N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-vinylpyrrolidone, dimethyl 13. The liquid crystal aligning agent according to any one of the above 10 to 12, which is sulfoxide, tetramethylurea, dimethylsulfone, hexamethylphosphoric triamide, γ-butyrolactone, 1,3-dimethyl-imidazolidinone, or a mixture thereof.
14 14. A liquid crystal alignment film obtained using the liquid crystal aligning agent according to any one of 1 to 13 above.
15. 15. A liquid crystal display device comprising the liquid crystal alignment film as described in 14 above.
 本発明によれば、液晶表示素子の大型化、高輝度化によりますます問題となる、画面全体にわたるプレチルト角の面内均一性に優れ、また、高温高湿耐性や、バックライトから発生する熱や光耐性に優れる液晶配向膜を形成することができ、かつ有機溶媒に対する溶解性も十分な液晶配向剤が提供される。 According to the present invention, the in-plane uniformity of the pretilt angle over the entire screen, which becomes a more and more problem due to the increase in size and brightness of the liquid crystal display element, is excellent in high-temperature and high-humidity resistance, heat generated from the backlight, A liquid crystal aligning agent that can form a liquid crystal alignment film excellent in light resistance and has sufficient solubility in an organic solvent is provided.
<可溶性ポリイミド>
 本発明の液晶配向剤は、上記のように、特定の可溶性ポリイミド、又は該特定の可溶性ポリイミドとポリアミック酸とを含有するが、この可溶性ポリイミドは、前記式[1] で表されるジアミンと前記式[2]で表されるジアミンを含有するジアミン成分と、テトラカルボン酸二無水物とを反応させて得られるポリアミック酸を化学イミド化などにより得られる。前記式[1]、及び式[2]で表されるジアミンを併用することで、プレチルト角の面内均一性に優れ、また高温高湿下における熱や湿度に対する耐性や、バックライトからの熱や光に対し優れた耐性を有する液晶配向膜を形成することができ、かつ有機溶媒に対する溶解性も向上する。なお、本発明において、可溶性ポリイミドとは本発明の液晶配向剤に使用される有機溶媒に可溶性のあるポリイミドを言う。
<Soluble polyimide>
As described above, the liquid crystal aligning agent of the present invention contains a specific soluble polyimide, or the specific soluble polyimide and a polyamic acid. A polyamic acid obtained by reacting a diamine component containing the diamine represented by the formula [2] with tetracarboxylic dianhydride can be obtained by chemical imidization or the like. By using together the diamines represented by the above formulas [1] and [2], the in-plane uniformity of the pretilt angle is excellent, the resistance to heat and humidity under high temperature and high humidity, and the heat from the backlight. In addition, a liquid crystal alignment film having excellent resistance to light and light can be formed, and the solubility in organic solvents is also improved. In addition, in this invention, a soluble polyimide means the polyimide soluble in the organic solvent used for the liquid crystal aligning agent of this invention.
 本発明で使用される可溶性ポリイミドは、極性が高いN置換アミド酸部位を多く残すことができるため、極性の高いポリアミック酸との相溶性が高く、側鎖成分が入っているにもかかわらず凝集や分離が起こりにくい。また、この可溶性ポリイミドを用いたワニスは吸水による析出なども起こりにくいため、印刷性にも優れる。
 一方、従来の可溶性ポリイミドにおけるアミド酸部位、すなわち、イミド閉環し得る箇所は加水分解等の分解が起こりやすく、塗布膜の膜焼成時に分解反応が生じてしまい電気特性が低下し、これが長期信頼性に悪影響を及ぼす。他方、高イミド化率の可溶性ポリイミドにすれば上記のような分解による特性低下は軽減できるが、高イミド化率の可溶性ポリイミドは性質としては疎水性になるため、ポリアミック酸とブレンドする場合もポリアミック酸との相溶性が悪くなり、凝集や分離が起こりやすくなる。結果として、プレチルト角の均一性も得られない。
Since the soluble polyimide used in the present invention can leave many N-substituted amic acid sites having high polarity, it is highly compatible with polyamic acid having high polarity and aggregates despite containing side chain components. And separation is difficult to occur. Moreover, since the varnish using this soluble polyimide is less likely to precipitate due to water absorption, it is excellent in printability.
On the other hand, the amic acid part in the conventional soluble polyimide, that is, the part where the imide can be ring-closed easily undergoes decomposition such as hydrolysis, causing a decomposition reaction when the coating film is baked, resulting in a decrease in electrical characteristics, which is a long-term reliability. Adversely affect. On the other hand, if a soluble polyimide with a high imidization rate is used, the degradation of characteristics due to decomposition as described above can be reduced. However, a soluble polyimide with a high imidization rate becomes hydrophobic in nature. The compatibility with the acid deteriorates and aggregation and separation are likely to occur. As a result, the uniformity of the pretilt angle cannot be obtained.
 本発明において、前記式[1]のジアミンを用いた場合、そのN置換アミド酸部位は通常のアミド酸よりも加水分解が起こりにくく、焼成時の分子量低下などを軽減させることができ、またイミド化率を高くすることで分解を更に起こらないようにすることができるため、短期、長期に渡り良好な信頼性を得ることが可能となる。また、極性の高いアミド酸部位が多く残る構造をしているため、ポリアミック酸とのブレンド膜にした場合でも面内均一性に優れたプレチルトを得ることができる。 In the present invention, when the diamine of the formula [1] is used, the N-substituted amic acid moiety is less likely to hydrolyze than ordinary amic acid, and the molecular weight reduction during firing can be reduced. Since it is possible to prevent further decomposition by increasing the conversion rate, it is possible to obtain good reliability over a short period and a long period. Moreover, since it has a structure in which many highly polar amic acid sites remain, a pretilt excellent in in-plane uniformity can be obtained even when blended with polyamic acid.
<一般式[1]で表わされるジアミン>
Figure JPOXMLDOC01-appb-C000007
 上記式[1]における、X、R、及びRは上記に定義したとおりである。式中のXは芳香族アミン部位をジアミンに持たせるための部位であり、従って芳香環であれば特に限定はされない。原料の入手性や合成のし易さ、液晶配向性などの観点でフェニレン、ナフタレンなどが好ましく、汎用性の点ではフェニレンが特に好ましい。Xがフェニレンの場合、すなわち、アミノベンゼンの場合、Rの置換位置はメタ位又はパラ位が好ましい。
 Rは炭素数1~5のアルキレンを表し、Rは可溶性ポリイミドにした際の溶媒への溶解性付与に働きかけるため、溶解性の付与の観点ではRはこの炭素数の範囲であれば分岐していてもよく、環構造をとっていてもい。一方、液晶配向性やラビング耐性の観点では直鎖構造が好ましく、試薬の入手性などの観点からは炭素数が1~2のアルキレンが最も好ましい。
<Diamine Represented by General Formula [1]>
Figure JPOXMLDOC01-appb-C000007
In the above formula [1], X, R 1 and R 2 are as defined above. X in the formula is a site for giving the diamine an aromatic amine site, and is not particularly limited as long as it is an aromatic ring. From the viewpoints of availability of raw materials, ease of synthesis, liquid crystal alignment, and the like, phenylene, naphthalene and the like are preferable, and phenylene is particularly preferable from the viewpoint of versatility. When X is phenylene, that is, aminobenzene, the substitution position of R 1 is preferably a meta position or a para position.
R 1 represents an alkylene having 1 to 5 carbon atoms, for R 1 is that act on imparting solubility in a solvent when it is used for a soluble polyimide, R 1 in view of the solubility of granted so long as the number of carbon atoms It may be branched or have a ring structure. On the other hand, a linear structure is preferable from the viewpoint of liquid crystal alignment and rubbing resistance, and alkylene having 1 to 2 carbon atoms is most preferable from the viewpoint of availability of reagents.
 Rは炭素数1~4のアルキル基を表し、これは主にイミド閉環の阻害や可溶性ポリイミドの溶解性の付与に寄与すると考えられ、直鎖、又は分岐構造をとっていてもよい。一方、液晶配向性やジアミンの反応性の観点からはなるべく小さな基であることが好ましく、メチル基、エチル基が特に好ましい。
 式[1]で表されるジアミンの特に好ましい例を以下に示すが、それらに限定はされない。
R 2 represents an alkyl group having 1 to 4 carbon atoms, which is considered to contribute mainly to inhibition of imide ring closure and imparting solubility of soluble polyimide, and may have a linear or branched structure. On the other hand, from the viewpoint of liquid crystal alignment and diamine reactivity, a group as small as possible is preferable, and a methyl group and an ethyl group are particularly preferable.
Particularly preferred examples of the diamine represented by the formula [1] are shown below, but are not limited thereto.
Figure JPOXMLDOC01-appb-C000008
 
 式[1]で表されるジアミンの含有量は、必ずしも限定されないが、全ジアミン成分の5~95モル%であるのが好ましく、プレチルトの面内均一性が向上するという理由から特には20~90モル%であるのが好ましい。
Figure JPOXMLDOC01-appb-C000008

The content of the diamine represented by the formula [1] is not necessarily limited, but it is preferably 5 to 95 mol% of the total diamine component, and is particularly preferably 20 to 20% because the in-plane uniformity of the pretilt is improved. It is preferably 90 mol%.
<一般式[2]で表わされるジアミン>
Figure JPOXMLDOC01-appb-C000009
 上記式[2]における、R、X、X、X、p,q,r及びRは上記に定義したとおりである。上記式[2]のジアミンは、液晶のプレチルト角を大きくすることに貢献するものであり、これらのジアミンとしては、長鎖アルキル基、パーフルオロアルキル基、芳香族環状基、脂肪族環状基、これらの基を組み合わせた置換基、又はステロイド骨格基などを有するジアミンであることが好ましい。
<Diamine Represented by General Formula [2]>
Figure JPOXMLDOC01-appb-C000009
In the above formula [2], R 1 , X 1 , X 2 , X 3 , p, q, r and R 2 are as defined above. The diamine of the above formula [2] contributes to increasing the pretilt angle of the liquid crystal, and these diamines include a long-chain alkyl group, a perfluoroalkyl group, an aromatic cyclic group, an aliphatic cyclic group, A diamine having a substituent obtained by combining these groups or a steroid skeleton group is preferable.
 プレチルト角の好ましい大きさはモードにより種々異なるが、上記ジアミンの構造や、導入量を種々選択することにより好ましいプレチルト角を得ることができる。
 式[2]で表される側鎖ジアミンにおいて、3~5°の比較的低いプレチルト角が要求されるTNモードや、8~20°の比較的高いプレチルトが要求されるOCBモードなどではチルト発現能が比較的低い側鎖含有ジアミンが好ましい。
 比較的チルト発現能の小さな構造としては、Rは―O-、又は‐NHCO‐(-CONH-)が好ましく、式中pは0~1、qは0~1、rは0が好ましく、p及び/又はqが1の場合、Rは炭素数1~12の直鎖アルキルが好ましく、p=q=r=0の場合、Rは炭素数10~22の直鎖アルキル基又はステロイド骨格を有する炭素数12~25の有機基より選ばれる2価の有機基が好ましい。チルト発現能の小さい側鎖ジアミンの具体的な構造を表1に示すがこれらに限定されない。
Although the preferred magnitude of the pretilt angle varies depending on the mode, a preferred pretilt angle can be obtained by variously selecting the structure and amount of the diamine.
In the side chain diamine represented by the formula [2], a tilt is exhibited in a TN mode in which a relatively low pretilt angle of 3 to 5 ° is required and an OCB mode in which a relatively high pretilt of 8 to 20 ° is required. Side chain-containing diamines with relatively low performance are preferred.
As a structure having a relatively small tilting ability, R 1 is preferably —O— or —NHCO— (—CONH—), wherein p is 0 to 1, q is 0 to 1, and r is preferably 0. When p and / or q is 1, R 2 is preferably a linear alkyl group having 1 to 12 carbon atoms, and when p = q = r = 0, R 2 is a linear alkyl group having 10 to 22 carbon atoms or a steroid A divalent organic group selected from organic groups having 12 to 25 carbon atoms having a skeleton is preferable. Specific structures of side chain diamines having a small tilting ability are shown in Table 1, but are not limited thereto.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 電気特性の観点では、表1の[2-1]~[2-3]のような長鎖アルキル側鎖が好ましく、液晶配向性、プレチルトの安定性の観点から表1の[2-25]~[2-27]で表されるジアミンが好ましい。特に[2-25]で表されるジアミンは式[A]で表されるジアミンを併用するとプレチルト角の面内均一性に優れた液晶配向剤を得ることができるため好ましい。
 一方、VAモードなどはチルト発現能の大きな側鎖を併用することで垂直配向性を得ることができる。VAモードにおける式[2]の好ましい構造としては、式中、Rは‐O‐、‐COO‐、又は-CHO-が好ましく、pは0~1、qは0~1、rは0~1が好ましく、Rは2~22が好ましい。p=q=r=0の場合、Rは炭素数18~22の直鎖アルキル基、又はステロイド骨格を有する炭素数12~25の有機基である2価の有機基が好ましい。チルト発現能の大きな側鎖ジアミンの具体的な構造を表2-1及び表2-2に示す。
From the viewpoint of electrical properties, long-chain alkyl side chains such as [2-1] to [2-3] in Table 1 are preferred. From the viewpoint of liquid crystal orientation and pretilt stability, [2-25] in Table 1 Diamines represented by [2-27] are preferred. In particular, the diamine represented by [2-25] is preferably used in combination with the diamine represented by the formula [A] because a liquid crystal aligning agent having excellent in-plane uniformity of the pretilt angle can be obtained.
On the other hand, in the VA mode or the like, vertical alignment can be obtained by using a side chain having a large tilting ability. As a preferable structure of the formula [2] in the VA mode, R 1 is preferably —O—, —COO—, or —CH 2 O—, p is 0 to 1, q is 0 to 1, and r is 0 to 1 is preferable, and R 2 is preferably 2 to 22. When p = q = r = 0, R 2 is preferably a linear alkyl group having 18 to 22 carbon atoms or a divalent organic group that is an organic group having 12 to 25 carbon atoms having a steroid skeleton. Specific structures of side chain diamines having a high tilting ability are shown in Tables 2-1 and 2-2.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 これらのジアミンはチルト発現能が高く、VAモードに用いる場合好ましい。特に、[2-43]、[2-92]などジアミンは、チルト発現能が高く、比較的少ない側鎖量で垂直配向を示すため好ましく、特に[2-52]や[2-101]のジアミンは、極めてチルト発現能が高く、非常に少ない側鎖量で垂直配向を得ることができるため配向剤の印刷性の点で好ましい。
 一方、前記の式[2]で表されるジアミンにおいては、プレチルト発現能力の高さやプレチルトの安定性向上、液晶配向性向上などの観点で、R1は、-NHCO-が好ましく、R2は、炭素数1~16、好ましくは3~10のアルキル基が好ましい。また、X、X、X及びp、q、rは、適宜の組み合わせが選ばれる。かかるジアミンの構造において、ベンゼン環上の各置換基の位置は特に限定されないが、2つのアミノ基の位置関係はメタ又はパラが好ましい。
These diamines have high tilting ability and are preferable when used in the VA mode. In particular, diamines such as [2-43] and [2-92] are preferable because they have a high ability to develop a tilt and exhibit vertical alignment with a relatively small amount of side chains, and are particularly preferred as [2-52] and [2-101]. Diamine is preferable in terms of printability of the aligning agent because it has a very high ability to develop a tilt and can obtain vertical alignment with a very small amount of side chain.
On the other hand, in the diamine represented by the above formula [2], R 1 is preferably —NHCO—, and R 2 is preferably from the viewpoints of high pretilt expression ability, improved pretilt stability, improved liquid crystal orientation, and the like. An alkyl group having 1 to 16 carbon atoms, preferably 3 to 10 carbon atoms is preferred. Further, X 1 , X 2 , X 3 and p, q, r are appropriately selected. In such a diamine structure, the position of each substituent on the benzene ring is not particularly limited, but the positional relationship between the two amino groups is preferably meta or para.
 上記式[2]で表される好ましいジアミンの例として、下記の式(3)で表わされるジアミンが挙げられる。
Figure JPOXMLDOC01-appb-C000013
 (式(3)中、nは0~21の整数であり、好ましくは0~15の整数である。)
Examples of preferred diamines represented by the above formula [2] include diamines represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000013
(In formula (3), n is an integer of 0 to 21, preferably an integer of 0 to 15.)
 上記式(3)で表されるジアミンの好ましい具体例を以下に挙げるが、これに限定されるものではない。
Figure JPOXMLDOC01-appb-C000014
Although the preferable specific example of the diamine represented by the said Formula (3) is given to the following, it is not limited to this.
Figure JPOXMLDOC01-appb-C000014
 ここで、nは0~19の整数である。nは小さい場合、プレチルト角が発現せず、大きい場合が可溶性ポリイミドの溶解性が低下する。好ましいnは2~15の整数であり、より好ましくは4~10の整数である。
 上記[2]で表されるジアミンの含有量は、全アミン成分中の5~60モル%が好ましく、プレチルトの均一性や印刷性の観点で5~30モル%であるのが特に好ましい。
 また、式〔2〕で表されるジアミンは、式〔1〕で表されるジアミンの1モルに対して0.1~1.2モル含有することが好ましく、より好ましくは0.3~1.0モルである。式〔2〕のジアミンがこの範囲の場合、適切なプレチルト角が得られ、かつ良好な配向性が得られる。
Here, n is an integer from 0 to 19. When n is small, the pretilt angle does not appear, and when it is large, the solubility of soluble polyimide decreases. Preferred n is an integer of 2 to 15, more preferably an integer of 4 to 10.
The content of the diamine represented by the above [2] is preferably 5 to 60 mol% in the total amine component, and is particularly preferably 5 to 30 mol% from the viewpoint of pretilt uniformity and printability.
Further, the diamine represented by the formula [2] is preferably contained in an amount of 0.1 to 1.2 mol, more preferably 0.3 to 1 with respect to 1 mol of the diamine represented by the formula [1]. 0.0 mole. When the diamine of the formula [2] is within this range, an appropriate pretilt angle can be obtained and good orientation can be obtained.
 上記のジアミン成分において、式[1]で表わされるジアミン及び[2]で表わされるジアミンは、これらのみでもよいが、他のジアミンを併用してもよい、その場合の他のジアミンとしては、特に限定されないが、好ましくは、後記する可溶性ポリイミドと混合して使用されるポリアミック酸の製造に使用されるジアミンが挙げられる。また、ジアミンと反応させて可溶性ポリイミドを製造するのに使用されるテトラカルボン酸二無水物成分についても、好ましくは、後記する可溶性ポリイミドと混合して使用されるポリアミック酸の製造に使用されるテトラカルボン酸二無水物が挙げられる。
 本発明の液晶配向剤に含有される可溶性ポリイミドの分子量は特に限定されないが、塗膜の強度と液晶配向剤としての取り扱いのしやすさの観点から、重量平均分子量で2,000~200,000が好ましく、より好ましくは5,000~50,000である。
In the above diamine component, the diamine represented by the formula [1] and the diamine represented by [2] may be only these, but other diamines may be used in combination. Although not limited, Preferably, the diamine used for manufacture of the polyamic acid used by mixing with the soluble polyimide mentioned later is mentioned. In addition, the tetracarboxylic dianhydride component used for producing a soluble polyimide by reacting with a diamine is also preferably a tetracarboxylic acid used for producing a polyamic acid used by mixing with a soluble polyimide described later. Carboxylic dianhydrides are mentioned.
The molecular weight of the soluble polyimide contained in the liquid crystal aligning agent of the present invention is not particularly limited, but from the viewpoint of the strength of the coating film and ease of handling as the liquid crystal aligning agent, the weight average molecular weight is 2,000 to 200,000. And more preferably 5,000 to 50,000.
<ポリアミック酸>
 本発明の液晶配向剤の好ましい態様にでは、可溶性ポリイミドとともにポリアミック酸が含有される。可溶性ポリイミドとともにポリアミック酸を含有する液晶配向剤は、可溶性ポリイミドのみを含有する場合に比べて、液晶配向膜中に蓄積する電荷を低減し、また、蓄積した電荷を抜け易くする利点が得られるので好ましい。
 かかるポリアミック酸は、上記式[1]で表わされるジアミン及び[2]で表わされるジアミンの両者を含まないが、そのいずれか一方のジアミンは含んでもよいジアミン成分とテトラカルボン酸二無水物成分とからをこれらを重縮合することにより得られる。通常、かかる可溶性ポリイミドと混合されるポリアミック酸の原料となるジアミン成分には、下記に記載するいずれかのジアミンの1種又は2種以上が含有される。
<ジアミン成分>
 ポリアミック酸の原料となるジアミン成分は、脂環式ジアミン、芳香族ジアミン、芳香族-脂肪族ジアミン、複素環式ジアミン、脂肪族ジアミン、その他のジアミンが使用される。
 脂環式ジアミン類の例としては、1,4-ジアミノシクロヘキサン、1,3-ジアミノシクロヘキサン、4,4’-ジアミノジシクロヘキシルメタン、4,4’-ジアミノ-3,3’-ジメチルジシクロヘキシルアミン、イソホロンジアミン等が挙げられる。
<Polyamic acid>
In a preferred embodiment of the liquid crystal aligning agent of the present invention, a polyamic acid is contained together with a soluble polyimide. Since the liquid crystal aligning agent containing polyamic acid together with soluble polyimide has the advantage of reducing the charge accumulated in the liquid crystal alignment film and facilitating the removal of the accumulated charge compared to the case containing only soluble polyimide. preferable.
Such polyamic acid does not contain both the diamine represented by the above formula [1] and the diamine represented by [2], but any one of the diamines may contain a diamine component and a tetracarboxylic dianhydride component. Can be obtained by polycondensation of these. Usually, the diamine component used as the raw material of the polyamic acid mixed with the soluble polyimide contains one or more of any of the diamines described below.
<Diamine component>
As the diamine component used as the raw material for the polyamic acid, alicyclic diamine, aromatic diamine, aromatic-aliphatic diamine, heterocyclic diamine, aliphatic diamine, and other diamines are used.
Examples of alicyclic diamines include 1,4-diaminocyclohexane, 1,3-diaminocyclohexane, 4,4′-diaminodicyclohexylmethane, 4,4′-diamino-3,3′-dimethyldicyclohexylamine, isophorone Examples include diamines.
 芳香族ジアミン類の例としては、o-フェニレンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、2,4-ジアミノトルエン、2,5-ジアミノトルエン、3,5-ジアミノトルエン、1,4-ジアミノ-2-メトキシベンゼン、2,5-ジアミノ-p-キシレン、1,3-ジアミノ-4-クロロベンゼン、3,5-ジアミノ安息香酸、1,4-ジアミノ-2,5-ジクロロベンゼン、4,4’-ジアミノ-1,2-ジフェニルエタン、4,4’-ジアミノ-2,2’-ジメチルビベンジル、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノ-3,3’―ジメチルジフェニルメタン、2,2’-ジアミノスチルベン、4,4’-ジアミノスチルベン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノベンゾフェノン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、3,5-ビス(4-アミノフェノキシ)安息香酸、4,4’-ビス(4-アミノフェノキシ)ビベンジル、2,2-ビス[(4-アミノフェノキシ)メチル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフロロプロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、1,1-ビス(4-アミノフェニル)シクロヘキサン、α、α’-ビス(4-アミノフェニル)-1,4-ジイソプロピルベンゼン、9,9-ビス(4-アミノフェニル)フルオレン、2,2-ビス(3-アミノフェニル)ヘキサフロロプロパン、2,2-ビス(4-アミノフェニル)ヘキサフロロプロパン、4,4’-ジアミノジフェニルアミン、2,4-ジアミノジフェニルアミン、1,8-ジアミノナフタレン、1,5-ジアミノナフタレン、1,5-ジアミノアントラキノン、1,3-ジアミノピレン、1,6-ジアミノピレン、1,8―ジアミノピレン、2,7-ジアミノフルオレン、1,3-ビス(4-アミノフェニル)テトラメチルジシロキサン、ベンジジン、2,2’-ジメチルベンジジン、1,2-ビス(4-アミノフェニル)エタン、1,3-ビス(4-アミノフェニル)プロパン、1,4-ビス(4-アミノフェニル)ブタン、1,5-ビス(4-アミノフェニル)ペンタン、1,6-ビス(4-アミノフェニル)ヘキサン、1,7-ビス(4-アミノフェニル)ヘプタン、1,8-ビス(4-アミノフェニル)オクタン、1,9-ビス(4-アミノフェニル)ノナン、1,10-ビス(4-アミノフェニル)デカン、1,3-ビス(4-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)ブタン、1,5-ビス(4-アミノフェノキシ)ペンタン、1,6-ビス(4-アミノフェノキシ)ヘキサン、1,7-ビス(4-アミノフェノキシ)ヘプタン、1,8-ビス(4-アミノフェノキシ)オクタン、1,9-ビス(4-アミノフェノキシ)ノナン、1,10-ビス(4-アミノフェノキシ)デカン、ジ(4-アミノフェニル)プロパン-1,3-ジオエート、ジ(4-アミノフェニル)ブタン-1,4-ジオエート、ジ(4-アミノフェニル)ペンタン-1,5-ジオエート、ジ(4-アミノフェニル)ヘキサン-1,6-ジオエート、ジ(4-アミノフェニル)ヘプタン-1,7-ジオエート、ジ(4-アミノフェニル)オクタン-1,8-ジオエート、ジ(4-アミノフェニル)ノナン-1,9-ジオエート、ジ(4-アミノフェニル)デカン-1,10-ジオエート、1,3-ビス〔4-(4-アミノフェノキシ)フェノキシ〕プロパン、1,4-ビス〔4-(4-アミノフェノキシ)フェノキシ〕ブタン、1,5-ビス〔4-(4-アミノフェノキシ)フェノキシ〕ペンタン、1,6-ビス〔4-(4-アミノフェノキシ)フェノキシ〕ヘキサン、1,7-ビス〔4-(4-アミノフェノキシ)フェノキシ〕ヘプタン、1,8-ビス〔4-(4-アミノフェノキシ)フェノキシ〕オクタン、1,9-ビス〔4-(4-アミノフェノキシ)フェノキシ〕ノナン、1,10-ビス〔4-(4-アミノフェノキシ)フェノキシ〕デカンなどが挙げられる。 Examples of aromatic diamines include o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, 2,4-diaminotoluene, 2,5-diaminotoluene, 3,5-diaminotoluene, 1,4-diamino -2-methoxybenzene, 2,5-diamino-p-xylene, 1,3-diamino-4-chlorobenzene, 3,5-diaminobenzoic acid, 1,4-diamino-2,5-dichlorobenzene, 4,4 '-Diamino-1,2-diphenylethane, 4,4'-diamino-2,2'-dimethylbibenzyl, 4,4'-diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane 4,4′-diamino-3,3′-dimethyldiphenylmethane, 2,2′-diaminostilbene, 4,4′-dia Nostilbene, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 4,4'- Diaminobenzophenone, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 3,5-bis (4- Aminophenoxy) benzoic acid, 4,4'-bis (4-aminophenoxy) bibenzyl, 2,2-bis [(4-aminophenoxy) methyl] propane, 2,2-bis [4- (4-aminophenoxy) Phenyl] hexafluoropropane, 2,2-bis [4- (4-aminophenoxy) phenyl] propane Bis [4- (3-aminophenoxy) phenyl] sulfone, bis [4- (4-aminophenoxy) phenyl] sulfone, 1,1-bis (4-aminophenyl) cyclohexane, α, α′-bis (4- Aminophenyl) -1,4-diisopropylbenzene, 9,9-bis (4-aminophenyl) fluorene, 2,2-bis (3-aminophenyl) hexafluoropropane, 2,2-bis (4-aminophenyl) Hexafluoropropane, 4,4'-diaminodiphenylamine, 2,4-diaminodiphenylamine, 1,8-diaminonaphthalene, 1,5-diaminonaphthalene, 1,5-diaminoanthraquinone, 1,3-diaminopyrene, 1,6 -Diaminopyrene, 1,8-diaminopyrene, 2,7-diaminofluorene, 1,3-bis (4-amino Phenyl) tetramethyldisiloxane, benzidine, 2,2′-dimethylbenzidine, 1,2-bis (4-aminophenyl) ethane, 1,3-bis (4-aminophenyl) propane, 1,4-bis (4 -Aminophenyl) butane, 1,5-bis (4-aminophenyl) pentane, 1,6-bis (4-aminophenyl) hexane, 1,7-bis (4-aminophenyl) heptane, 1,8-bis (4-aminophenyl) octane, 1,9-bis (4-aminophenyl) nonane, 1,10-bis (4-aminophenyl) decane, 1,3-bis (4-aminophenoxy) propane, 1,4 -Bis (4-aminophenoxy) butane, 1,5-bis (4-aminophenoxy) pentane, 1,6-bis (4-aminophenoxy) hexane, 1,7-bis (4 -Aminophenoxy) heptane, 1,8-bis (4-aminophenoxy) octane, 1,9-bis (4-aminophenoxy) nonane, 1,10-bis (4-aminophenoxy) decane, di (4-amino) Phenyl) propane-1,3-dioate, di (4-aminophenyl) butane-1,4-dioate, di (4-aminophenyl) pentane-1,5-dioate, di (4-aminophenyl) hexane-1 , 6-dioate, di (4-aminophenyl) heptane-1,7-dioate, di (4-aminophenyl) octane-1,8-dioate, di (4-aminophenyl) nonane-1,9-dioate, Di (4-aminophenyl) decane-1,10-dioate, 1,3-bis [4- (4-aminophenoxy) phenoxy] propane, 1,4- [4- (4-aminophenoxy) phenoxy] butane, 1,5-bis [4- (4-aminophenoxy) phenoxy] pentane, 1,6-bis [4- (4-aminophenoxy) phenoxy] hexane, 1,7-bis [4- (4-aminophenoxy) phenoxy] heptane, 1,8-bis [4- (4-aminophenoxy) phenoxy] octane, 1,9-bis [4- (4-aminophenoxy) Phenoxy] nonane, 1,10-bis [4- (4-aminophenoxy) phenoxy] decane, and the like.
 芳香族-脂肪族ジアミンの例としては、3-アミノベンジルアミン、4-アミノベンジルアミン、3-アミノ-N-メチルベンジルアミン、4-アミノ-N-メチルベンジルアミン、3-アミノフェネチルアミン、4-アミノフェネチルアミン、3-アミノ-N-メチルフェネチルアミン、4-アミノ-N-メチルフェネチルアミン、3-(3-アミノプロピル)アニリン、4-(3-アミノプロピル)アニリン、3-(3-メチルアミノプロピル)アニリン、4-(3-メチルアミノプロピル)アニリン、3-(4-アミノブチル)アニリン、4-(4-アミノブチル)アニリン、3-(4-メチルアミノブチル)アニリン、4-(4-メチルアミノブチル)アニリン、3-(5-アミノペンチル)アニリン、4-(5-アミノペンチル)アニリン、3-(5-メチルアミノペンチル)アニリン、4-(5-メチルアミノペンチル)アニリン、2-(6-アミノナフチル)メチルアミン、3-(6-アミノナフチル)メチルアミン、2-(6-アミノナフチル)エチルアミン、3-(6-アミノナフチル)エチルアミンなどが挙げられる。 Examples of aromatic-aliphatic diamines include 3-aminobenzylamine, 4-aminobenzylamine, 3-amino-N-methylbenzylamine, 4-amino-N-methylbenzylamine, 3-aminophenethylamine, 4-aminobenzylamine, Aminophenethylamine, 3-amino-N-methylphenethylamine, 4-amino-N-methylphenethylamine, 3- (3-aminopropyl) aniline, 4- (3-aminopropyl) aniline, 3- (3-methylaminopropyl) Aniline, 4- (3-methylaminopropyl) aniline, 3- (4-aminobutyl) aniline, 4- (4-aminobutyl) aniline, 3- (4-methylaminobutyl) aniline, 4- (4-methyl Aminobutyl) aniline, 3- (5-aminopentyl) aniline, 4- (5-aminopentyl) Aniline, 3- (5-methylaminopentyl) aniline, 4- (5-methylaminopentyl) aniline, 2- (6-aminonaphthyl) methylamine, 3- (6-aminonaphthyl) methylamine, 2- (6 -Aminonaphthyl) ethylamine, 3- (6-aminonaphthyl) ethylamine and the like.
 複素環式ジアミン類の例としては、2,6-ジアミノピリジン、2,4-ジアミノピリジン、2,4-ジアミノ-1,3,5-トリアジン、2,7-ジアミノジベンゾフラン、3,6-ジアミノカルバゾール、2,4-ジアミノ-6-イソプロピル-1,3,5-トリアジン、2,5-ビス(4-アミノフェニル)-1,3,4-オキサジアゾールなどが挙げられる。
 脂肪族ジアミン類の例としては、1,2-ジアミノエタン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノヘキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,3-ジアミノ-2,2-ジメチルプロパン、1,6-ジアミノ-2,5-ジメチルヘキサン、1,7-ジアミノ-2,5-ジメチルヘプタン、1,7-ジアミノ-4,4-ジメチルヘプタン、1,7-ジアミノ-3-メチルヘプタン、1,9-ジアミノ-5-メチルヘプタン、1,12-ジアミノドデカン、1,18-ジアミノオクタデカン、1,2-ビス(3-アミノプロポキシ)エタンなどが挙げられる。
Examples of heterocyclic diamines include 2,6-diaminopyridine, 2,4-diaminopyridine, 2,4-diamino-1,3,5-triazine, 2,7-diaminodibenzofuran, 3,6-diamino Examples thereof include carbazole, 2,4-diamino-6-isopropyl-1,3,5-triazine, 2,5-bis (4-aminophenyl) -1,3,4-oxadiazole.
Examples of aliphatic diamines include 1,2-diaminoethane, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane 1,8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 1,3-diamino-2,2-dimethylpropane, 1,6-diamino-2,5-dimethylhexane, 1,7 -Diamino-2,5-dimethylheptane, 1,7-diamino-4,4-dimethylheptane, 1,7-diamino-3-methylheptane, 1,9-diamino-5-methylheptane, 1,12-diamino Examples include dodecane, 1,18-diaminooctadecane, and 1,2-bis (3-aminopropoxy) ethane.
 側鎖にアルキル基、フッ素含有アルキル基、芳香環、脂肪族環、複素環、又はそれらからなる大環状置換体を有するジアミン化合物を併用してもよい。具体的には、下記の式[DA1]~式[DA26]で示されるジアミンを例示することができる。
Figure JPOXMLDOC01-appb-C000015

(式[DA1]~式[DA5]中、Rは、炭素数1~22のアルキル基又はフッ素含有アルキル基である。)
You may use together the diamine compound which has an alkyl group, a fluorine-containing alkyl group, an aromatic ring, an aliphatic ring, a heterocyclic ring, or the macrocyclic substituent which consists of them in a side chain. Specifically, diamines represented by the following formulas [DA1] to [DA26] can be exemplified.
Figure JPOXMLDOC01-appb-C000015

(In the formulas [DA1] to [DA5], R 6 represents an alkyl group having 1 to 22 carbon atoms or a fluorine-containing alkyl group.)
Figure JPOXMLDOC01-appb-C000016
(式[DA6]~式[DA9]中、Sは、-COO-、-OCO-、-CONH-、-NHCO-、-CH-、-O-、-CO-、又は-NH-を示し、Rは炭素数1~22のアルキル基又はフッ素含有アルキル基を示す。)
Figure JPOXMLDOC01-appb-C000016
(In the formulas [DA6] to [DA9], S 5 represents —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—, —CO—, or —NH—. R 6 represents an alkyl group having 1 to 22 carbon atoms or a fluorine-containing alkyl group.)
Figure JPOXMLDOC01-appb-C000017

(式[DA10]及び式[DA11]中、Sは、-O-、-OCH-、-CHO-、-COOCH-、又は-CHOCO-を示し、Rは炭素数1~22のアルキル基、アルコキシ基、フッ素含有アルキル基又はフッ素含有アルコキシ基である。)
Figure JPOXMLDOC01-appb-C000017

(In Formula [DA10] and Formula [DA11], S 6 represents —O—, —OCH 2 —, —CH 2 O—, —COOCH 2 —, or —CH 2 OCO—, and R 7 represents the number of carbon atoms. 1 to 22 alkyl groups, alkoxy groups, fluorine-containing alkyl groups or fluorine-containing alkoxy groups.)
Figure JPOXMLDOC01-appb-C000018
(式[DA12]~式[DA14]中、Sは、-COO-、-OCO-、-CONH-、-NHCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-、又は-CH-を示し、Rは炭素数1~22のアルキル基、アルコキシ基、フッ素含有アルキル基又はフッ素含有アルコキシ基である。)
Figure JPOXMLDOC01-appb-C000018
(In the formulas [DA12] to [DA14], S 7 represents —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, — OCH 2 — or —CH 2 —, and R 8 represents an alkyl group having 1 to 22 carbon atoms, an alkoxy group, a fluorine-containing alkyl group or a fluorine-containing alkoxy group.
Figure JPOXMLDOC01-appb-C000019
(式[DA15]及び式[DA16]中、Sは、-COO-、-OCO-、-CONH-、-NHCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-、-CH-、-O-、又は-NH-を示し、Rはフッ素基、シアノ基、トリフルオロメタン基、ニトロ基、アゾ基、ホルミル基、アセチル基、アセトキシ基、又は水酸基である。)
Figure JPOXMLDOC01-appb-C000019
(In Formula [DA15] and Formula [DA16], S 8 represents —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, — OCH 2 —, —CH 2 —, —O—, or —NH—, wherein R 9 is a fluorine group, a cyano group, a trifluoromethane group, a nitro group, an azo group, a formyl group, an acetyl group, an acetoxy group, or a hydroxyl group .)
Figure JPOXMLDOC01-appb-C000020
(式[DA17]~[DA20]中、R10は炭素数3~12のアルキル基であり、1,4-シクロへキシレンのシス-トランス異性は、それぞれトランス体である。)
Figure JPOXMLDOC01-appb-C000020
(In the formulas [DA17] to [DA20], R 10 is an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer.)
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 本発明の液晶配向剤を光により配向処理する場合においては、一般式[1]のジアミンと上記[DA-1]~[DA-26]のジアミンを併用させることでさらに安定したプレチルトを得ることができるため好ましい。より好ましいジアミンとしては、式[DA-10]~[DA-26]が好ましく、より好ましくは[DA-10]~[DA-16]のジアミンである。これらのジアミンの好ましい含有量は特に限定されないが、5~50mol%が好ましく、印刷性の観点では5~30が好ましい。 When aligning the liquid crystal aligning agent of the present invention with light, a more stable pretilt can be obtained by using the diamine of the general formula [1] in combination with the diamines of the above [DA-1] to [DA-26]. Is preferable. More preferred diamines are those of the formulas [DA-10] to [DA-26], and more preferred are diamines of [DA-10] to [DA-16]. The preferred content of these diamines is not particularly limited, but is preferably 5 to 50 mol%, and preferably 5 to 30 from the viewpoint of printability.
 また、一般式[1]のジアミンは、以下のジアミンを併用することもできる。
Figure JPOXMLDOC01-appb-C000022
Moreover, the diamine of General formula [1] can also use the following diamine together.
Figure JPOXMLDOC01-appb-C000022
 式[DA31]中、mは0~3の整数であり、式[DA34]中、nは1~5の整数である)。[DA-27]、[DA-28]、[DA-35]、[DA-36]、[DA-37]などは導入することによりVHRを向上させ、ラビング耐性向上に効果があるため好ましい。るまた、[DA-29]~[DA-34]は蓄積電化の低減に効果があるため、好ましい。 In the formula [DA31], m is an integer of 0 to 3, and in the formula [DA34], n is an integer of 1 to 5.) [DA-27], [DA-28], [DA-35], [DA-36], [DA-37] and the like are preferable because they are effective in improving VHR and improving rubbing resistance. In addition, [DA-29] to [DA-34] are preferable because they are effective in reducing the storage electrification.
 下記の式[DA27]で示されるようなジアミノシロキサンなども挙げることができる。
Figure JPOXMLDOC01-appb-C000023
(式[DA27]中、mは、1から10の整数である。)
The diaminosiloxane etc. which are shown by the following formula [DA27] can also be mentioned.
Figure JPOXMLDOC01-appb-C000023
(In the formula [DA27], m is an integer of 1 to 10.)
<テトラカルボン酸二無水物>
 可溶性ポリイミド及びポリアミック酸の原料となるテトラカルボン酸二無水物成分としては、下記のものが使用される。テトラカルボン酸二無水物成分は、1種類であってもよく、2種類以上の混合物であってもよい。
 テトラカルボン酸二無水物成分として、液晶セルの電圧保持率を高くできる点などから、脂環式構造又は脂肪族構造を有するテトラカルボン酸二無水物を用いることが好ましい。脂環式構造又は脂肪族構造を有するテトラカルボン酸二無水物としては、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、2,3,4,5-テトラヒドロフランテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、3,4-ジカルボキシ-1-シクロヘキシルコハク酸二無水物、3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸二無水物、1,2,3,4-ブタンテトラカルボン酸二無水物、ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸二無水物、3,3’,4,4’-ジシクロヘキシルテトラカルボン酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、シス-3,7-ジブチルシクロオクタ-1,5-ジエン-1,2,5,6-テトラカルボン酸二無水物、トリシクロ[4.2.1.02,5]ノナン-3,4,7,8-テトラカルボン酸-3,4:7,8-二無水物、ヘキサシクロ[6.6.0.12,7.03,6.19,14.010,13]ヘキサデカン-4,5,11,12-テトラカルボン酸-4,5:11,12-二無水物、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレンー1,2-ジカルボン酸無水物などが挙げられる。
<Tetracarboxylic dianhydride>
As the tetracarboxylic dianhydride component used as a raw material for the soluble polyimide and polyamic acid, the following are used. The tetracarboxylic dianhydride component may be one type or a mixture of two or more types.
As the tetracarboxylic dianhydride component, it is preferable to use a tetracarboxylic dianhydride having an alicyclic structure or an aliphatic structure from the viewpoint that the voltage holding ratio of the liquid crystal cell can be increased. Examples of the tetracarboxylic dianhydride having an alicyclic structure or an aliphatic structure include 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2-dimethyl-1,2,3,4-cyclobutane. Tetracarboxylic dianhydride, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutanetetra Carboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 2,3,4,5-tetrahydrofurantetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic Acid dianhydride, 3,4-dicarboxy-1-cyclohexylsuccinic dianhydride, 3,4-dicarboxy-1,2,3,4-tetrahydro-1-naphthalene succinic dianhydride, 1, , 3,4-Butanetetracarboxylic dianhydride, bicyclo [3,3,0] octane-2,4,6,8-tetracarboxylic dianhydride, 3,3 ′, 4,4′-dicyclohexyltetra Carboxylic dianhydride, 2,3,5-tricarboxycyclopentyl acetic acid dianhydride, cis-3,7-dibutylcycloocta-1,5-diene-1,2,5,6-tetracarboxylic dianhydride , Tricyclo [4.2.1.0 2,5 ] nonane-3,4,7,8-tetracarboxylic acid-3,4: 7,8-dianhydride, hexacyclo [6.6.0.1 2 , 7 . 0 3,6 . 1 9,14 . 0 10,13] hexadecane -4,5,11,12- tetracarboxylic acid-4,5: 11,12-dianhydride, 4- (2,5-di-oxo-tetrahydrofuran-3-yl) -1,2 3,4-tetrahydronaphthalene-1,2-dicarboxylic acid anhydride and the like.
 更には、上記脂環式構造又は脂肪族構造を有するテトラカルボン酸二無水物に加えて、芳香族テトラカルボン酸二無水物を使用すると、液晶配向性が向上し、かつ液晶セルの蓄積電荷を低減させることができるので好ましい。芳香族テトラカルボン酸二無水物としては、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,3,3’,4-ベンゾフェノンテトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物などが挙げられる。 Furthermore, when an aromatic tetracarboxylic dianhydride is used in addition to the tetracyclic dianhydride having the alicyclic structure or aliphatic structure, the liquid crystal alignment is improved and the accumulated charge of the liquid crystal cell is reduced. Since it can reduce, it is preferable. Aromatic tetracarboxylic dianhydrides include pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic acid Dianhydride, 2,3,3 ′, 4-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 2,3,3 ′, 4-benzophenonetetra Carboxylic dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride And 2,3,6,7-naphthalenetetracarboxylic dianhydride and the like.
 液晶配向膜の配向性、電圧保持率、蓄積電荷などの各特性を考慮するならば、脂環式構造又は脂肪族構造を有するテトラカルボン酸二無水物と、芳香族テトラカルボン酸二無水物と、を併用するのが好ましい。その場合、前者/後者のモル比は、90/10~50/50が好ましく、より好ましくは80/20~60/40である。
 ポリアミック酸の重量平均分子量は、好ましくは10,000~305,000であり、より好ましくは、20,000~210,000である。また、数平均分子量は、好ましくは、5,000~152,500であり、より好ましくは、10,000~105,000である。
If each characteristic such as orientation of liquid crystal alignment film, voltage holding ratio, accumulated charge is taken into consideration, tetracarboxylic dianhydride having alicyclic structure or aliphatic structure, aromatic tetracarboxylic dianhydride, Are preferably used in combination. In this case, the former / latter molar ratio is preferably 90/10 to 50/50, more preferably 80/20 to 60/40.
The weight average molecular weight of the polyamic acid is preferably 10,000 to 305,000, and more preferably 20,000 to 210,000. The number average molecular weight is preferably 5,000 to 152,500, and more preferably 10,000 to 105,000.
<可溶性ポリイミド及びポリアミック酸の製造>
 本発明の液晶配向剤に含有される可溶性ポリイミド及びポリアミック酸は、次のようにして製造される。なお、可溶性ポリイミドは、その前駆体であるポリアミック酸をイミド化して得られるが、可溶性ポリイミドの前駆体であるポリアミック酸と、可溶性ポリイミドと混合されるポリアミック酸との違いは、前者は、その原料となるジアミン成分として、上記式(1)と式(2)のジアミンを使用することにある。
 可溶性ポリイミドと混合されるポリアミック酸、及び可溶性ポリイミドの前駆体であるポリアミック酸は、いずれも、ジアミン成分とテトラカルボン酸二無水物成分とを有機溶媒中で重縮合させて製造される。
<Production of soluble polyimide and polyamic acid>
The soluble polyimide and polyamic acid contained in the liquid crystal aligning agent of the present invention are produced as follows. The soluble polyimide is obtained by imidizing the precursor polyamic acid, but the difference between the polyamic acid which is the precursor of the soluble polyimide and the polyamic acid mixed with the soluble polyimide is that the former is the raw material As the diamine component, the diamines of the above formulas (1) and (2) are used.
The polyamic acid mixed with the soluble polyimide and the polyamic acid which is a precursor of the soluble polyimide are both produced by polycondensing a diamine component and a tetracarboxylic dianhydride component in an organic solvent.
 テトラカルボン酸二無水物成分とジアミン成分とを有機溶媒中で重縮合させる方法としては、ジアミン成分を有機溶媒に分散あるいは溶解させた溶液を攪拌させ、テトラカルボン酸二無水物成分をそのまま、又は有機溶媒に分散あるいは溶解させて添加する方法、逆にテトラカルボン酸二無水物成分を有機溶媒に分散あるいは溶解させた溶液にジアミン成分を添加する方法、テトラカルボン酸二無水物成分とジアミン成分とを交互に添加する方法などが挙げられる。また、テトラカルボン酸二無水物成分又はジアミン成分が複数種の化合物からなる場合は、これら複数種の化合物をあらかじめ混合した状態で重縮合反応させてもよく、個別に順次重縮合反応させてもよい。 As a method of polycondensing a tetracarboxylic dianhydride component and a diamine component in an organic solvent, a solution in which the diamine component is dispersed or dissolved in an organic solvent is stirred, and the tetracarboxylic dianhydride component is used as it is or A method of adding by dispersing or dissolving in an organic solvent, a method of adding a diamine component to a solution in which a tetracarboxylic dianhydride component is dispersed or dissolved in an organic solvent, a tetracarboxylic dianhydride component and a diamine component, A method of alternately adding can be mentioned. Further, when the tetracarboxylic dianhydride component or the diamine component is composed of a plurality of types of compounds, they may be subjected to a polycondensation reaction in a state in which these plural types of compounds are mixed in advance, or may be sequentially subjected to a polycondensation reaction individually. Good.
 テトラカルボン酸二無水物成分とジアミン成分を有機溶剤中で重縮合反応させる際の温度は、通常0~150℃、好ましくは5~100℃、より好ましくは10~80℃である。温度が高い方が重縮合反応は早く終了するが、温度が高すぎると高分子量の重合体が得られない場合がある。
 また、重縮合反応は任意の濃度で行うことができるが、テトラカルボン酸二無水物成分とジアミン成分との合計質量の濃度が低すぎると高分子量の重合体を得ることが難しくなり、テトラカルボン酸二無水物成分とジアミン成分との合計質量の濃度が高すぎると反応液の粘性が高くなり過ぎて均一な攪拌が困難となるので、好ましくは1~50質量%、より好ましくは5~30質量%である。重縮合反応初期は高濃度で行い、その後、有機溶媒を追加しても構わない。
The temperature for the polycondensation reaction of the tetracarboxylic dianhydride component and the diamine component in an organic solvent is usually 0 to 150 ° C., preferably 5 to 100 ° C., more preferably 10 to 80 ° C. The higher the temperature, the faster the polycondensation reaction is completed, but if the temperature is too high, a high molecular weight polymer may not be obtained.
The polycondensation reaction can be carried out at any concentration. However, if the concentration of the total mass of the tetracarboxylic dianhydride component and the diamine component is too low, it becomes difficult to obtain a high molecular weight polymer. If the concentration of the total mass of the acid dianhydride component and the diamine component is too high, the viscosity of the reaction solution becomes too high and uniform stirring becomes difficult, so 1 to 50% by mass, more preferably 5 to 30% is preferable. % By mass. The initial stage of the polycondensation reaction may be performed at a high concentration, and then an organic solvent may be added.
 上記反応の際に用いられる有機溶媒は、生成したポリアミック酸が溶解するものであれば特に限定されない。その具体例を以下に挙げる。
 N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、イソプロピルアルコール、メトキシメチルペンタノール、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、メチルセルソルブ、エチルセルソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、ジオキサン、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン、3-メトキシ-N,N-ジメチルプロパンアミド、3-エトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミドなどが挙げられる。これらは単独で使用しても、混合して使用してもよい。さらに、ポリアミド酸を溶解させない溶媒であっても、生成したポリアミド酸が析出しない範囲で、上記溶媒に混合して使用してもよい また、有機溶媒中の水分は重縮合反応を阻害し、さらには生成したポリアミック酸を加水分解させる原因となるので、有機溶媒はなるべく脱水乾燥させたものを用いることが好ましい。
The organic solvent used in the above reaction is not particularly limited as long as the generated polyamic acid dissolves. Specific examples are given below.
N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam, dimethyl sulfoxide, tetramethyl urea, pyridine, dimethyl sulfone, hexamethyl sulfoxide , Γ-butyrolactone, isopropyl alcohol, methoxymethylpentanol, dipentene, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve, ethyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, butyl Carbitol, ethyl carbitol, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethyl Glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol Monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, tripropylene Glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, methylcyclohexene, propyl ether, dihexyl ether, dioxane, n- Hexane, n-pentane, n-octane, diethyl ether, cyclohexanone, ethylene carbonate, propylene carbonate, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether, methyl pyruvate, Ethyl pyruvate, methyl 3-methoxypropionate, methyl ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3-ethoxypropion , 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, diglyme, 4-hydroxy-4-methyl-2-pentanone, 3-methoxy-N, N-dimethylpropanamide, 3-ethoxy -N, N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropanamide and the like. These may be used alone or in combination. Furthermore, even if the solvent does not dissolve the polyamic acid, it may be used by mixing with the above solvent as long as the produced polyamic acid does not precipitate. The water in the organic solvent inhibits the polycondensation reaction, and Causes hydrolysis of the produced polyamic acid, so that it is preferable to use an organic solvent that has been dehydrated and dried as much as possible.
 ポリアミック酸の重縮合反応に用いるテトラカルボン酸二無水物成分とジアミン成分の比率は、モル比で1:0.8~1:1.2であることが好ましく、このモル比が1:1に近いほど得られるポリアミック酸の分子量は大きくなる。
 上記のようにしてポリアミック酸は製造され、可溶性ポリイミドと混合されるポリアミック酸は、本発明の液晶配向剤の一成分として使用される。一方、可溶性ポリイミドの前駆体であるポリアミック酸は、イミド化される。ポリアミック酸のイミド化は、有機溶媒中において、好ましくは塩基性触媒と酸無水物の存在下で好ましくは1~100時間攪拌することにより行われる。
The ratio of the tetracarboxylic dianhydride component and the diamine component used for the polycondensation polycondensation reaction is preferably 1: 0.8 to 1: 1.2 in molar ratio, and this molar ratio is 1: 1. The closer the molecular weight of the polyamic acid obtained, the greater.
The polyamic acid is produced as described above, and the polyamic acid mixed with the soluble polyimide is used as one component of the liquid crystal aligning agent of the present invention. On the other hand, polyamic acid which is a precursor of soluble polyimide is imidized. The imidization of the polyamic acid is performed by stirring in an organic solvent, preferably in the presence of a basic catalyst and an acid anhydride, preferably for 1 to 100 hours.
 塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができる。中でもピリジンは、反応を進行させるのに適度な塩基性を有するので好ましい。
 また、酸無水物としては無水酢酸、無水トリメリット酸、無水ピロメリット酸などを挙げることができる。中でも無水酢酸は、イミド化終了後に、得られたポリイミドの精製が容易となるので好ましい。有機溶媒としては前述したポリアミック酸の重縮合反応時に用いる溶媒を使用することができる。
 可溶性ポリイミドのイミド化率は、触媒量、反応温度、反応時間を調節することにより制御することができる。このときの塩基性触媒の量はアミック酸基の0.2~10倍モルが好ましく、より好ましくは0.5~5倍モルである。また、酸無水物の量はアミック酸基の1~30倍モルが好ましく、より好ましくは1~10倍モルである。反応温度は-20~250℃が好ましく、より好ましくは0~180℃である。反応時間は、好ましくは1~100時間、好ましくは1~20時間である。
Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction.
Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, acetic anhydride is preferable because the obtained polyimide can be easily purified after imidization. As an organic solvent, the solvent used at the time of the polycondensation reaction of the polyamic acid mentioned above can be used.
The imidation ratio of the soluble polyimide can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time. The amount of the basic catalyst at this time is preferably 0.2 to 10 times mol, more preferably 0.5 to 5 times mol of the amic acid group. Further, the amount of the acid anhydride is preferably 1 to 30 times mol, more preferably 1 to 10 times mol of the amic acid group. The reaction temperature is preferably −20 to 250 ° C., more preferably 0 to 180 ° C. The reaction time is preferably 1 to 100 hours, preferably 1 to 20 hours.
 可溶性ポリイミドのイミド化率は特に限定されないが、10%以上が好ましく、40%以上がより好ましく、高い電圧保持率を得るためには60%以上がさらに好ましく、特に好ましくは80%以上である。ばかでも、イミド化率は、好ましくは10~85%であり、更に好ましくは20~75%である。
 なお、得られた可溶性ポリイミドの溶液中には、添加した触媒などが残存しているので、可溶性ポリイミドを回収・洗浄してから本発明の液晶配向剤に用いることが好ましい。
 可溶性ポリイミドの回収は、イミド化後の溶液を攪拌している貧溶媒に投入し、ポリイミドを析出させた後にろ過することで可能である。このときの貧溶媒としてはメタノール、アセトン、ヘキサン、ブチルセロソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼンなどを挙げることができる。回収した可溶性ポリイミドの洗浄も、この貧溶媒で行うことができる。
 このようにして回収・洗浄したポリイミドは、常圧あるいは減圧下で、常温あるいは加熱乾燥して粉末とすることができる。
The imidization ratio of the soluble polyimide is not particularly limited, but is preferably 10% or more, more preferably 40% or more, more preferably 60% or more, and particularly preferably 80% or more in order to obtain a high voltage holding ratio. Even if it is a fool, the imidation rate is preferably 10 to 85%, more preferably 20 to 75%.
In addition, since the added catalyst etc. remain in the solution of the obtained soluble polyimide, it is preferable to use the liquid crystal aligning agent of the present invention after recovering and washing the soluble polyimide.
The soluble polyimide can be recovered by putting the solution after imidization into a poor solvent that is being stirred, and precipitating the polyimide, followed by filtration. Examples of the poor solvent at this time include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, and benzene. The recovered soluble polyimide can be washed with this poor solvent.
The polyimide recovered and washed in this way can be powdered by drying at normal temperature or under reduced pressure at room temperature or by heating.
<液晶配向剤>
 本発明の液晶配向剤は、上記の可溶性ポリイミド、又は可溶性ポリイミドとポリアミック酸とを有機溶媒に溶解した形態で含有する。液晶配向剤には可溶性ポリイミドが、好ましくは3~10質量%、より好ましくは4~7質量%含有される。また、液晶配向剤がポリアミック酸を含有する場合、ポリアミック酸は好ましくは3~10質量%、より好ましくは4~7質量%含有される。液晶配向剤における可溶性ポリイミドとポリアミック酸の合計の含有量は、好ましくは3~10質量%、より好ましくは4~7質量%である。
 また、液晶配向剤がポリアミック酸を含有する場合、上記ポリアミック酸は、可溶性ポリイミド100質量部に対して、好ましくは10~1000質量部、より好ましくは10~800質量部含有される。液晶配向剤に含有される可溶性ポリイミド、及びポリアミック酸を溶解するのに使用される有機溶媒は、好ましくは90~97質量%、より好ましくは93~96質量%であるのが良好である。
<Liquid crystal aligning agent>
The liquid crystal aligning agent of this invention contains said soluble polyimide or the soluble polyimide and polyamic acid in the form melt | dissolved in the organic solvent. The liquid crystal aligning agent preferably contains 3 to 10% by mass of soluble polyimide, more preferably 4 to 7% by mass. Further, when the liquid crystal aligning agent contains a polyamic acid, the polyamic acid is preferably contained in an amount of 3 to 10% by mass, more preferably 4 to 7% by mass. The total content of soluble polyimide and polyamic acid in the liquid crystal aligning agent is preferably 3 to 10% by mass, more preferably 4 to 7% by mass.
When the liquid crystal aligning agent contains a polyamic acid, the polyamic acid is preferably contained in an amount of 10 to 1000 parts by mass, more preferably 10 to 800 parts by mass with respect to 100 parts by mass of the soluble polyimide. The soluble polyimide contained in the liquid crystal aligning agent and the organic solvent used for dissolving the polyamic acid are preferably 90 to 97% by mass, more preferably 93 to 96% by mass.
 本発明の液晶配向剤において使用される有機溶媒としては、 例えば、N,N’-ジメチルホルムアミド、N,N’-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-エチルピロリドン、N-ビニルピロリドン、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノンなどが挙げられる。これらの溶媒は2種類以上を混合して用いてもよい。 Examples of the organic solvent used in the liquid crystal aligning agent of the present invention include N, N′-dimethylformamide, N, N′-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-ethylpyrrolidone, N-vinylpyrrolidone, dimethyl sulfoxide, tetramethyl urea, pyridine, dimethyl sulfone, hexamethyl sulfoxide, γ-butyrolactone, 1,3-dimethyl-imidazolidinone, dipentene, ethyl amyl ketone, methyl nonyl ketone, Examples thereof include methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, cyclohexanone, ethylene carbonate, propylene carbonate, diglyme, and 4-hydroxy-4-methyl-2-pentanone. Two or more kinds of these solvents may be mixed and used.
 ポリイミドを有機溶媒に溶解させる際に、ポリイミドの溶解を促進する目的で、加熱してもよい。加熱する温度が高すぎるとポリイミドの分子量が低下する場合があるので、温度30~100℃が好ましく、より好ましくは50~90℃である。 When the polyimide is dissolved in the organic solvent, heating may be performed for the purpose of promoting the dissolution of the polyimide. If the heating temperature is too high, the molecular weight of the polyimide may decrease, so the temperature is preferably 30 to 100 ° C, more preferably 50 to 90 ° C.
<その他の成分>
 本発明の液晶配向処理剤には、その他の成分として、液晶配向処理剤を塗布した際の膜厚均一性や表面平滑性を向上させる溶媒や添加剤、液晶配向膜と基板との密着性を向上させる添加剤などを含有してもよい。これらの添加剤成分は、可溶性ポリイミド、及びポリアミック酸を有機溶媒に溶解する途中に添加してもよいし、又は溶解後に添加してもよい。
<Other ingredients>
The liquid crystal aligning agent of the present invention has, as other components, a solvent and an additive that improve the film thickness uniformity and surface smoothness when the liquid crystal aligning agent is applied, and the adhesion between the liquid crystal aligning film and the substrate. You may contain the additive etc. which improve. These additive components may be added in the middle of dissolving the soluble polyimide and polyamic acid in the organic solvent, or may be added after dissolution.
<膜厚均一性や表面平滑性を向上させる溶媒>
 膜厚均一性や表面平滑性を向上させる溶媒の具体例としては次のものが挙げられる。
 例えば、イソプロピルアルコール、メトキシメチルペンタノール、メチルセルソルブ、エチルセルソルブ、ブチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチルカルビトールアセテート、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステルなどの低表面張力を有する溶媒などが挙げられる。
<Solvent that improves film thickness uniformity and surface smoothness>
Specific examples of the solvent for improving the film thickness uniformity and the surface smoothness include the following.
For example, isopropyl alcohol, methoxymethylpentanol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, ethyl carbitol, ethyl carbitol acetate, ethylene glycol, ethylene glycol monoacetate, ethylene Glycol monoisopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipro Lenglycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3 -Methoxybutyl acetate, tripropylene glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, methylcyclohexene, propyl ether, dihexyl Ether, n-hexane, n-pentane, n-octane, diethyl ether Methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, methyl ethyl 3-ethoxypropionate, 3-methoxy Ethyl propionate, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1-butoxy- 2-propanol, 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether Ter-2-acetate, dipropylene glycol, 2- (2-ethoxypropoxy) propanol, lactate methyl ester, lactate ethyl ester, lactate n-propyl ester, lactate n-butyl ester, lactyl isoamyl ester, etc. have low surface tension A solvent etc. are mentioned.
 これらの溶媒には、単独ではポリアミック酸、又は可溶性ポリイミドを溶解させることができない溶媒も含まれるが、ポリアミック酸又はポリイミドが析出しない範囲であれば、本発明の液晶配向剤に混合することができる。特に、低表面張力を有する溶媒を適度に混合させることにより、基板への塗布時に塗膜均一性が向上することが知られており、本発明の液晶配向剤においても好適に用いられる。
 これらの溶媒は1種類でも複数種類を混合して用いてもよい。上記のような溶媒を用いる場合は、液晶配向処理剤に含まれる溶媒全体の5~80質量%であることが好ましく、より好ましくは20~60質量%である。
These solvents include solvents that cannot dissolve polyamic acid or soluble polyimide alone, but can be mixed with the liquid crystal aligning agent of the present invention as long as polyamic acid or polyimide does not precipitate. . In particular, it is known that the coating film uniformity is improved upon application to a substrate by appropriately mixing a solvent having a low surface tension, and it is also suitably used in the liquid crystal aligning agent of the present invention.
These solvents may be used alone or in combination. When the above solvent is used, it is preferably 5 to 80% by mass, more preferably 20 to 60% by mass, based on the total amount of the solvent contained in the liquid crystal aligning agent.
<膜厚均一性や表面平滑性を向上させる添加剤>
 膜厚均一性や表面平滑性を向上させる物質としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤などが挙げられる。
 より具体的には、例えば、エフトップEF301、EF303、EF352(トーケムプロダクツ社製))、メガファックF171、F173、R-30(大日本インキ社製)、フロラードFC430、FC431(住友スリーエム社製)、アサヒガードAG710、サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(旭硝子社製)などが挙げられる。これらの物質の使用割合は、液晶配向処理剤に含有される(B)成分の100質量部に対して、好ましくは0.01~2質量部、より好ましくは0.01~1質量部である。
<Additives that improve film thickness uniformity and surface smoothness>
Examples of substances that improve film thickness uniformity and surface smoothness include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants.
More specifically, for example, F-top EF301, EF303, EF352 (manufactured by Tochem Products), MegaFuck F171, F173, R-30 (manufactured by Dainippon Ink), Florard FC430, FC431 (manufactured by Sumitomo 3M) ), Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (Asahi Glass Co., Ltd.). The use ratio of these substances is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the component (B) contained in the liquid crystal aligning agent. .
<液晶配向膜と基板との密着性を向上させる添加剤>
 液晶配向膜と基板との密着性を向上させる物質の具体例としては、次に示す官能性シラン含有化合物やエポキシ基含有化合物が挙げられる。
 例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N’,N’,-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’,-テトラグリシジル-4、4’-ジアミノジフェニルメタンなどが挙げられる。
<Additive for improving adhesion between liquid crystal alignment film and substrate>
Specific examples of the substance that improves the adhesion between the liquid crystal alignment film and the substrate include the following functional silane-containing compounds and epoxy group-containing compounds.
For example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl-3-aminopropyltrimethoxysilane, N-ethoxy Carbonyl-3-aminopropyltriethoxysilane, N-triethoxysilylpropyltriethylenetriamine, N-trimethoxysilylpropyltriethylenetriamine, 10-trimethoxysilyl-1,4,7-triazadecane, 10-to Ethoxysilyl-1,4,7-triazadecane, 9-trimethoxysilyl-3,6-diazanonyl acetate, 9-triethoxysilyl-3,6-diazanonyl acetate, N-benzyl-3-aminopropyltri Methoxysilane, N-benzyl-3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltriethoxysilane, N-bis (oxyethylene) -3-amino Propyltrimethoxysilane, N-bis (oxyethylene) -3-aminopropyltriethoxysilane, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether , Polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetra Glycidyl-2,4-hexanediol, N, N, N ′, N ′,-tetraglycidyl-m-xylenediamine, 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane, N, N, N Examples include ', N',-tetraglycidyl-4,4'-diaminodiphenylmethane.
 これら添加剤を使用する場合は、液晶配向処理剤に含有される可溶性ポリイミド、又は可溶性ポリイミドとポリアミック酸100質量部に対して0.1~30質量部であることが好ましく、より好ましくは1~20質量部である。0.1質量部未満であると密着性向上の効果は期待できず、30質量部よりも多くなると液晶の配向性が悪くなる場合がある。
 本発明の液晶配向処理剤には、上記の他、本発明の効果が損なわれない範囲であれば、特定重合体以外のポリマー成分や、液晶配向膜の誘電率や導電性などの電気特性を変化させる物質(誘電体や導電物質等)、さらには、液晶配向膜にした際の膜の硬度や緻密度を高める目的の架橋性物質を添加してもよい。
 例えば、以下のようなフェノプラスト系の添加剤などは基板と膜の密着性向上に加え、バックライトによる電気特性低下などを防ぐ効果が期待されるため特に好ましい。具体的な化合物を以下に挙げるが、これに限定するわけではない。
When these additives are used, the amount is preferably 0.1 to 30 parts by weight, more preferably 1 to 30 parts by weight based on 100 parts by weight of the soluble polyimide or soluble polyimide and polyamic acid contained in the liquid crystal alignment treatment agent. 20 parts by mass. If the amount is less than 0.1 part by mass, the effect of improving the adhesion cannot be expected, and if it exceeds 30 parts by mass, the orientation of the liquid crystal may deteriorate.
In the liquid crystal alignment treatment agent of the present invention, in addition to the above, as long as the effects of the present invention are not impaired, polymer components other than the specific polymer, and electrical characteristics such as dielectric constant and conductivity of the liquid crystal alignment film are provided. Substances to be changed (dielectrics, conductive substances, etc.), and further crosslinkable substances for the purpose of increasing the hardness and density of the liquid crystal alignment film may be added.
For example, the following phenoplast-based additives are particularly preferred because they are expected to have an effect of preventing deterioration of electrical characteristics due to the backlight in addition to improving the adhesion between the substrate and the film. Specific compounds are listed below, but are not limited thereto.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 本発明の液晶配向剤中に基板との密着性を向上させる化合物を使用する場合、その使用量は、液晶配向剤に含有される樹脂成分の100質量部に対して0.1~30質量部であることが好ましく、より好ましくは1~20質量部である。使用量が0.1質量部未満であると密着性向上の効果は期待できず、30質量部よりも多くなると液晶の配向性が悪くなる場合がある。
 本発明の液晶配向剤の製造方法は特に限定されない。通常は、上記可溶性ポリイミドの溶液、又は可溶性ポリイミドの溶液とポリアミック酸の溶液とを混合することにより製造される。ポリアミック酸の場合、重縮合にて得られたポリアミック酸の反応溶液をそのまま使用してもよいし、また、一旦、ポリアミック酸を得てから、これを有機溶媒に再溶解させてポリアミック酸溶液として使用することができる。ポリアミック酸溶液は、所望の濃度まで希釈して使用してもよい。
When the compound that improves the adhesion to the substrate is used in the liquid crystal aligning agent of the present invention, the amount used is 0.1 to 30 parts by mass with respect to 100 parts by mass of the resin component contained in the liquid crystal aligning agent. The amount is preferably 1 to 20 parts by mass. If the amount used is less than 0.1 parts by mass, the effect of improving the adhesion cannot be expected, and if it exceeds 30 parts by mass, the orientation of the liquid crystal may deteriorate.
The manufacturing method of the liquid crystal aligning agent of this invention is not specifically limited. Usually, it manufactures by mixing the solution of the said soluble polyimide, or the solution of a soluble polyimide, and the solution of a polyamic acid. In the case of polyamic acid, the reaction solution of polyamic acid obtained by polycondensation may be used as it is, or once polyamic acid is obtained, it is redissolved in an organic solvent to form a polyamic acid solution. Can be used. The polyamic acid solution may be used after diluted to a desired concentration.
 一方、可溶性ポリイミドの場合、イミド化して得られた可溶性ポリイミドの反応溶液をそのまま使用してもよいし、また、一旦、ポリイミド粉末を得てから、これを有機溶媒に再溶解させてポリイミド溶液として使用することができる。ポリイミド溶液は、所望の濃度まで希釈して使用してもよい。
 本発明の液晶配向剤中の固形分濃度は、形成する液晶配向膜の厚みの設定によって適宜変更することができるが、0.5~10質量%とすることが好ましく、1~8質量%とすることがより好ましい。固形分濃度が0.5質量%未満では均一で欠陥のない塗膜を形成させることが困難となり、10質量%よりも多いと溶液の保存安定性が悪くなる場合がある。ここで言う固形分とは、液晶配向剤から溶媒を除いた成分を言い、可溶性ポリイミド及びポリアミック酸などのポリマー、及び上記した各種の添加剤を意味する。
 本発明の液晶配向剤は、好ましくは、基板に塗布する前に濾過した後、基板に塗布し、乾燥、焼成することで塗膜とすることができ、この塗膜面をラビング処理や光照射などの配向処理をすることにより、液晶配向膜として使用される。
On the other hand, in the case of soluble polyimide, the reaction solution of soluble polyimide obtained by imidization may be used as it is, or once polyimide powder is obtained, it is redissolved in an organic solvent as a polyimide solution. Can be used. The polyimide solution may be used after diluting to a desired concentration.
The solid content concentration in the liquid crystal aligning agent of the present invention can be appropriately changed depending on the thickness of the liquid crystal alignment film to be formed, but is preferably 0.5 to 10% by mass, and 1 to 8% by mass. More preferably. If the solid content concentration is less than 0.5% by mass, it is difficult to form a uniform and defect-free coating film, and if it exceeds 10% by mass, the storage stability of the solution may be deteriorated. The solid content here means a component obtained by removing the solvent from the liquid crystal aligning agent, and means a polymer such as soluble polyimide and polyamic acid, and various additives described above.
The liquid crystal aligning agent of the present invention is preferably filtered before being applied to the substrate, then applied to the substrate, dried and baked to form a coating film. It is used as a liquid crystal alignment film by performing an alignment treatment such as
 この際、用いる基板としては透明性の高い基板であれば特に限定されず、ガラス基板、アクリル基板やポリカーボネート基板などのプラスチック基板などを用いることができ、液晶駆動のためのITO電極などが形成された基板を用いることがプロセスの簡素化の観点から好ましい。また、反射型の液晶表示素子では、片側の基板のみにならばシリコンウエハー等の不透明な基板でも使用でき、この場合の電極はアルミ等の光を反射する材料も使用できる。 At this time, the substrate to be used is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate can be used, and an ITO electrode for driving a liquid crystal is formed. It is preferable to use a new substrate from the viewpoint of simplification of the process. In the reflective liquid crystal display element, an opaque substrate such as a silicon wafer can be used as long as only one substrate is used. In this case, a material that reflects light such as aluminum can be used as the electrode.
 液晶配向剤の塗布方法としては、スピンコート法、印刷法、インクジェット法などが挙げられるが、生産性の面から工業的にはフレキソ印刷法が広く用いられており、本発明の液晶配向剤においても好適に用いられる。
 液晶配向剤を塗布した後の乾燥の工程は、必ずしも必要とされないが、塗布後から焼成までの時間が基板ごとに一定していない場合や、塗布後ただちに焼成されない場合には、乾燥工程を含める方が好ましい。この乾燥は、基板の搬送等により塗膜形状が変形しない程度に溶媒が蒸発していればよく、乾燥手段については特に限定されない。具体例を挙げるならば、50~150℃、好ましくは80~120℃のホットプレート上で、0.5~30分、好ましくは1~5分乾燥させる方法がとられる。
Examples of the method for applying the liquid crystal aligning agent include a spin coating method, a printing method, and an ink jet method, but the flexographic printing method is widely used industrially from the viewpoint of productivity. In the liquid crystal aligning agent of the present invention, Are also preferably used.
The drying process after applying the liquid crystal aligning agent is not necessarily required, but if the time from application to baking is not constant for each substrate, or if baking is not performed immediately after application, a drying process is included. Is preferred. This drying is not particularly limited as long as the solvent is evaporated to such an extent that the shape of the coating film is not deformed by transporting the substrate or the like. As a specific example, a method of drying on a hot plate at 50 to 150 ° C., preferably 80 to 120 ° C., for 0.5 to 30 minutes, preferably 1 to 5 minutes is employed.
 液晶配向剤を塗布した基板の焼成は、100~350℃の任意の温度で行うことができるが、好ましくは150℃~300℃であり、さらに好ましくは180℃~250℃である。液晶配向剤中に含有されるポリアミック酸は、この焼成によってアミック酸からイミドへの転化率が変化するが、ポリアミック酸は、必ずしも100%イミド化させる必要は無い。ただし、液晶セルの製造工程で必要とされる、シール剤硬化などの熱処理温度より、10℃以上高い温度で焼成することが好ましい。
 焼成後の塗膜の厚みは、厚すぎると液晶表示素子の消費電力の面で不利となり、薄すぎると液晶表示素子の信頼性が低下する場合があるので、好ましくは10~200nm、より好ましくは50~100nmである。
 上記のようにして基板上に形成された塗膜面のラビング処理は、既存のラビング装置を使用することができる。この際のラビング布の材質としては、コットン、レーヨン、ナイロンなどが挙げられる。
The substrate coated with the liquid crystal aligning agent can be baked at an arbitrary temperature of 100 to 350 ° C., preferably 150 to 300 ° C., more preferably 180 to 250 ° C. The polyamic acid contained in the liquid crystal aligning agent changes the conversion rate from the amic acid to the imide by this firing, but the polyamic acid does not necessarily need to be 100% imidized. However, baking is preferably performed at a temperature that is 10 ° C. or more higher than the heat treatment temperature required for the manufacturing process of the liquid crystal cell, such as curing of the sealant.
If the thickness of the coating film after firing is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered. 50 to 100 nm.
An existing rubbing apparatus can be used for rubbing the coating surface formed on the substrate as described above. Examples of the material of the rubbing cloth at this time include cotton, rayon, and nylon.
 本発明の液晶表示素子は、上記した手法により本発明の液晶配向剤から液晶配向膜付き基板を得た後、公知の方法で液晶セルを作製し、液晶表示素子としたものである。
 液晶セル作製の一例を挙げるならば、液晶配向膜の形成された1対の基板を、好ましくは1~30μm、より好ましくは2~10μmのスペーサーを挟んで、ラビング方向が0~270°の任意の角度となるように設置して周囲をシール剤で固定し、液晶を注入して封止する方法が一般的である。液晶封入の方法については特に制限されず、作製した液晶セル内を減圧にした後液晶を注入する真空法、液晶を滴下した後封止を行う滴下法などが例示できる。
 このようにして得られた液晶表示素子は、液晶配向性が良好で、ラビング処理時に発生する液晶配向膜の傷や膜の剥離に伴う表示不良、高温でのプレチルト角低下による配向不良が軽減され、信頼性の高い液晶表示デバイスとすることができる。
The liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal aligning agent of the present invention by the method described above, and then preparing a liquid crystal cell by a known method.
As an example of liquid crystal cell fabrication, a pair of substrates on which a liquid crystal alignment film is formed is preferably an arbitrary rubbing direction of 0 to 270 ° with a spacer of preferably 1 to 30 μm, more preferably 2 to 10 μm sandwiched between them. In general, the angle is set so that the angle is fixed, the periphery is fixed with a sealant, and the liquid crystal is injected and sealed. The method for enclosing the liquid crystal is not particularly limited, and examples thereof include a vacuum method of injecting liquid crystal after reducing the pressure inside the produced liquid crystal cell, and a dropping method of sealing after dropping the liquid crystal.
The liquid crystal display device thus obtained has good liquid crystal orientation, and display defects associated with scratches and peeling of the liquid crystal alignment film that occur during rubbing treatment, and alignment defects due to a decrease in pretilt angle at high temperatures are reduced. And a highly reliable liquid crystal display device.
<実施例>
 以下、実施例を挙げて本発明を説明するが、本発明はこれらに限定して解釈されるものではないことはもちろんである。実施例及び比較例で使用する化合物の略号は以下の通りである。
<テトラカルボン酸二無水物>
A-1:1,2,3,4-シクロブタンテトラカルボン酸二無水物
A-2:3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸二無水物
A-3:ピロメリット酸二無水物
A-4:ビシクロ[3,3,0]オクタンー2,4,6,8-テトラカルボン酸二無水物
A-5:2,3,5-トリカルボキシシクロペンチル酢酸―1,4:2,3-二無水物
<Example>
Hereinafter, the present invention will be described with reference to examples, but the present invention is of course not limited to these examples. The abbreviations of the compounds used in Examples and Comparative Examples are as follows.
<Tetracarboxylic dianhydride>
A-1: 1,2,3,4-cyclobutanetetracarboxylic dianhydride A-2: 3,4-dicarboxy-1,2,3,4-tetrahydro-1-naphthalene succinic dianhydride A- 3: pyromellitic dianhydride A-4: bicyclo [3,3,0] octane-2,4,6,8-tetracarboxylic dianhydride A-5: 2,3,5-tricarboxycyclopentylacetic acid 1,4: 2,3-dianhydride
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
<ジアミン>
B-1:3-((N-メチルアミノ)メチル)アニリン
B-2:4-((N-メチルアミノ)メチル)アニリン
B-3:4-((N-メチルアミノ)エチル)アニリン
B-4:p-フェニレンジアミン
B-5:3-アミノベンジルアミン
<Diamine>
B-1: 3-((N-methylamino) methyl) aniline B-2: 4-((N-methylamino) methyl) aniline B-3: 4-((N-methylamino) ethyl) aniline B- 4: p-phenylenediamine B-5: 3-aminobenzylamine
B-6:3,5-ジアミノベンジル-2-フロイレート
B-7:4-ヘキサデシルオキシ-1,3-ジアミノベンゼン
B-8:4-(トランス-4-ペンチルシクロヘキシル)ベンズアミド‐2’,4’-フェニレンジアミン
B-9:3,5-ジアミノ安息香酸コレステリル
Figure JPOXMLDOC01-appb-C000027
B-6: 3,5-diaminobenzyl-2-furorate B-7: 4-hexadecyloxy-1,3-diaminobenzene B-8: 4- (trans-4-pentylcyclohexyl) benzamide-2 ′, 4 '-Phenylenediamine B-9: Cholesteryl 3,5-diaminobenzoate
Figure JPOXMLDOC01-appb-C000027
B-10:N-メチル-4,4’-ジアミノジフェニルアミン
B-11:4,4’-ジアミノジフェニルメタン
B-12:1,5-ビス(4-アミノフェノキシ)ペンタン
Figure JPOXMLDOC01-appb-C000028
B-10: N-methyl-4,4′-diaminodiphenylamine B-11: 4,4′-diaminodiphenylmethane B-12: 1,5-bis (4-aminophenoxy) pentane
Figure JPOXMLDOC01-appb-C000028
<有機溶媒>
 NMP:N-メチル-2-ピロリドン
 GBL:γ-ブチロラクトン
 BC:ブチルセロソルブ
 以下に、本実施例で行った評価方法について示す。
<Organic solvent>
NMP: N-methyl-2-pyrrolidone GBL: γ-butyrolactone BC: Butyl cellosolve The evaluation method performed in this example is described below.
<分子量の測定>
 ポリアミック酸及びポリイミドの分子量は、該ポリイミドをGPC(常温ゲル浸透クロマトグラフィー)装置によって測定し、ポリエチレングリコール、ポリエチレンオキシド換算値として数平均分子量と重量平均分子量を算出した。
 GPC装置:Shodex社製(GPC-101)
 カラム:Shodex社製(KD803、KD805の直列)
 カラム温度:50℃
 溶離液:N,N-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30ミリモル/L、リン酸・無水結晶(o-リン酸)が30ミリモル/L、テトラヒドロフラン(THF)が10ml/L)
 流速:1.0ml/分
 検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(分子量約900,000、150,000、100,000、30,000)、及び、ポリマーラボラトリー社製ポリエチレングリコール(分子量約12,000、4,000、1,000)。
<Measurement of molecular weight>
The molecular weight of the polyamic acid and the polyimide was determined by measuring the polyimide with a GPC (room temperature gel permeation chromatography) apparatus, and calculating the number average molecular weight and the weight average molecular weight as polyethylene glycol and polyethylene oxide equivalent values.
GPC device: manufactured by Shodex (GPC-101)
Column: manufactured by Shodex (series of KD803 and KD805)
Column temperature: 50 ° C
Eluent: N, N-dimethylformamide (as additive, lithium bromide-hydrate (LiBr · H 2 O) 30 mmol / L, phosphoric acid / anhydrous crystal (o-phosphoric acid) 30 mmol / L , Tetrahydrofuran (THF) at 10 ml / L)
Flow rate: 1.0 ml / min Standard sample for preparing calibration curve: TSK standard polyethylene oxide (molecular weight: about 900,000, 150,000, 100,000, 30,000) manufactured by Tosoh Corporation and polyethylene glycol (molecular weight: about 12,000, 4,000, 1,000) manufactured by Polymer Laboratory .
<イミド化率の測定>
 ポリイミドのイミド化率は次のようにして測定した。ポリイミド粉末20mgをNMRサンプル管に入れ、重水素化ジメチルスルホキシド(DMSO-d、0.05%TMS混合品)0.53mlを添加し、完全に溶解させた。この溶液を日本電子データム社製NMR測定器(JNM-ECA500)にて500MHzのプロトンNMRを測定した。
 イミド化率は、以下の式によって算出した。なお、式[1]で表されるジアミンを用いないポリイミドのイミド化率は、下記の式中の「ポリアミック酸重合時の式[1]ジアミンの導入量」の値をゼロとして算出した。
 イミド化率(%)=
  (100-ポリアミック酸重合時の式[1]ジアミンの導入量(mol%)/2)×α
 式中αは、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5~10.0ppm付近に現れるアミック酸のNH基に由来するプロトンピーク積算値とを用い次式によって求めた。
  α=(1-α・x/y)
 上記式において、xはアミック酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミック酸(イミド化率が0%)の場合におけるアミック酸のNH基プロトン一個に対する基準プロトンの個数割合である。
<Measurement of imidization ratio>
The imidation ratio of polyimide was measured as follows. 20 mg of polyimide powder was put into an NMR sample tube, and 0.53 ml of deuterated dimethyl sulfoxide (DMSO-d 6 , 0.05% TMS mixed product) was added and completely dissolved. This solution was measured for proton NMR at 500 MHz with an NMR measuring instrument (JNM-ECA500) manufactured by JEOL Datum.
The imidization rate was calculated by the following formula. In addition, the imidation ratio of the polyimide which does not use the diamine represented by the formula [1] was calculated by setting the value of the “formula [1] diamine introduction amount during polyamic acid polymerization” in the following formula to zero.
Imidization rate (%) =
(100-Polyamic acid polymerization formula [1] Amount of diamine introduced (mol%) / 2) × α
In the formula, α is a proton derived from a structure that does not change before and after imidation as a reference proton, and the proton peak integrated value and a proton peak derived from the NH group of the amic acid appearing in the vicinity of 9.5 to 10.0 ppm. It calculated | required by following Formula using the integrated value.
α = (1−α · x / y)
In the above formula, x is the proton peak integrated value derived from the NH group of the amic acid, y is the peak integrated value of the reference proton, and α is one NH group proton of the amic acid in the case of polyamic acid (imidation rate is 0%). The number ratio of the reference protons.
<液晶セルの作製>
 液晶配向剤を透明電極付きガラス基板にスピンコートし、温度70℃のホットプレート上で70秒乾燥させた後、210℃のホットプレートで10分間焼成を行い、膜厚100nmの塗膜を形成させた。この塗膜面をロール径120mmのラビング装置でレーヨン布を用いて、ロール回転数1000rpm、ロール進行速度50mm/sec、押し込み量0.3mmの条件でラビングし、液晶配向膜付き基板を得た。
 この基板を2枚用意し、その1枚の液晶配向膜面上に6μmのスペーサーを散布し、その上からシール剤を印刷し、もう1枚の基板を液晶配向膜面が向き合いラビング方向が直行するようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-2003(メルク・ジャパン社製)を注入し、注入口を封止して、ツイストネマティック液晶セルを得た。
<Production of liquid crystal cell>
A liquid crystal aligning agent is spin-coated on a glass substrate with a transparent electrode, dried on a hot plate at a temperature of 70 ° C. for 70 seconds, and then baked on a hot plate at 210 ° C. for 10 minutes to form a coating film having a thickness of 100 nm. It was. This coating film surface was rubbed with a rubbing apparatus having a roll diameter of 120 mm using a rayon cloth under the conditions of a roll rotation speed of 1000 rpm, a roll traveling speed of 50 mm / sec, and an indentation amount of 0.3 mm to obtain a substrate with a liquid crystal alignment film.
Prepare two sheets of this substrate, spray a 6μm spacer on the surface of the liquid crystal alignment film, print a sealant on it, and the other substrate faces the liquid crystal alignment film and the rubbing direction is perpendicular. After the lamination, the sealing agent was cured to produce an empty cell. Liquid crystal MLC-2003 (manufactured by Merck Japan) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain a twisted nematic liquid crystal cell.
<高温高湿試験>
 上記の<液晶セルの作製>に記載の方法で作製したツイストネマティック液晶セルに、90℃の温度下で4Vの電圧を60μs間印加し、166.7ms後の電圧を測定し、電圧がどのくらい保持できているかを電圧保持率として計算した。なお、電圧保持率の測定には東陽テクニカ社製のVHR-1電圧保持率測定装置を使用した。さらに高温高湿装置内に温度70℃、湿度80%下で168時間放置し、電圧がどのくらい保持できているかを電圧保持率(%)として計算した。
<High temperature and high humidity test>
A voltage of 4 V is applied for 60 μs at a temperature of 90 ° C. to the twisted nematic liquid crystal cell manufactured by the method described in <Preparation of liquid crystal cell> above, and the voltage after 166.7 ms is measured. It was calculated as voltage holding ratio. The voltage holding ratio was measured using a VHR-1 voltage holding ratio measuring device manufactured by Toyo Technica. Furthermore, it was left in a high-temperature and high-humidity device at a temperature of 70 ° C. and a humidity of 80% for 168 hours, and how much voltage was maintained was calculated as a voltage holding ratio (%).
<バックライトエージング耐性>
 上記の<液晶セルの作製>に記載の方法で作製したツイストネマティック液晶セルに、90℃の温度にて4Vの電圧を60μs間印加し、166.7ms後の電圧を測定し、電圧がどのくらい保持できているかを電圧保持率として計算した。さらに、40inch型液晶TV用バックライトモジュール上に168時間放置し、電圧がどのくらい保持できているかを電圧保持率として計算した。なお、電圧保持率(%)の測定には、<高温高湿試験>に記載されているものと同じ装置を用いた。
<Backlight aging resistance>
A voltage of 4V is applied for 60 μs at a temperature of 90 ° C. to the twisted nematic liquid crystal cell manufactured by the method described in <Preparation of liquid crystal cell> above, and the voltage after 166.7 ms is measured. It was calculated as voltage holding ratio. Furthermore, it was left on the backlight module for 40 inch type liquid crystal TV for 168 hours, and how much voltage could be held was calculated as a voltage holding ratio. The voltage holding ratio (%) was measured using the same device as described in <High temperature and high humidity test>.
<プレチルト角の測定>
 上記の<液晶セルの作製>と同様にして得られた液晶セルを105℃で10分間加熱した後、用いてプレチルト角の測定を行った。測定にはオプトメトリクス社製 Axo Scan ミュラーマトリクスポーラリメーターを用いた。測定しセル上の測定箇所を三点測定し、その値のばらつきをもって面内におけるチルト角均一性を確認した。
<Measurement of pretilt angle>
A liquid crystal cell obtained in the same manner as in the above <Production of liquid crystal cell> was heated at 105 ° C. for 10 minutes, and then used to measure the pretilt angle. For the measurement, an Axo Scan Mueller matrix polarimeter manufactured by Optometrics was used. The measurement was performed at three points on the cell, and the tilt angle uniformity within the surface was confirmed with variations in the values.
(合成例1)
 メカニカルスターラーを備えた100ml四口フラスコを用いて、テトラカルボン酸二無水物成分として、A-1を4.73g(24.13mmol)、ジアミン成分として、B-1を3.00g(22.05mmol)、B-7を 0.85g(2.45mmol)用いNMP48.7g中、窒素雰囲気にて室温で24時間反応させ、濃度15質量%のポリアミック酸溶液(PAA-1)を得た。このポリアミック酸溶液の温度25℃における粘度は162mPa・sであった。またこのポリアミック酸の数平均分子量は12465、重量平均分子量は29304であった。
 攪拌子を備えた200mlナス型フラスコに、得られたポリアミック酸溶液(PAA-1)を50g測り取り、NMPを43.8g加えて希釈し、無水酢酸10.92g(106.95mmol)とピリジン8.46g(106.95mmol)を加え、70℃で3時間反応させてイミド化した。この反応溶液を室温程度まで冷却後、メタノール388.5ml中に投入し、沈殿した固形物を回収した。さらに、この固形物をメタノールで2回洗浄した後、100℃で減圧乾燥して、ポリイミド(SPI-1)の白色粉末を得た。このポリイミドの数平均分子量は11323、重量平均分子量は26879であった。また、イミド化率は52%であった。
(Synthesis Example 1)
Using a 100 ml four-necked flask equipped with a mechanical stirrer, 4.71 g (24.13 mmol) of A-1 as the tetracarboxylic dianhydride component and 3.00 g (22.05 mmol) of B-1 as the diamine component ), 0.85 g (2.45 mmol) of B-7 was reacted in 48.7 g of NMP in a nitrogen atmosphere at room temperature for 24 hours to obtain a polyamic acid solution (PAA-1) having a concentration of 15% by mass. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 162 mPa · s. The polyamic acid had a number average molecular weight of 12465 and a weight average molecular weight of 29304.
In a 200 ml eggplant-shaped flask equipped with a stir bar, 50 g of the resulting polyamic acid solution (PAA-1) was weighed, diluted by adding 43.8 g of NMP, acetic anhydride 10.92 g (106.95 mmol) and pyridine 8 .46 g (106.95 mmol) was added and reacted at 70 ° C. for 3 hours to imidize. The reaction solution was cooled to about room temperature and then poured into 388.5 ml of methanol to recover the precipitated solid. Further, the solid was washed twice with methanol and then dried under reduced pressure at 100 ° C. to obtain a white powder of polyimide (SPI-1). The number average molecular weight of this polyimide was 11323, and the weight average molecular weight was 26879. Moreover, the imidation ratio was 52%.
(合成例2)
 メカニカルスターラーを備えた100ml四口フラスコを用いて、テトラカルボン酸二無水物成分として、A-1を4.73g(24.13mmol)、ジアミン成分として、B-2を3.00g(22.05mmol)、B-7を 0.85g(2.45mmol)用いNMP48.7g中、窒素雰囲気にて室温で24時間反応させ、濃度15質量%のポリアミック酸溶液(PAA-2)を得た。このポリアミック酸溶液の温度25℃における粘度は198mPa・sであった。またこのポリアミック酸の数平均分子量は13482、重量平均分子量は33283であった。
 攪拌子を備えた200mlナス型フラスコに、得られたポリアミック酸溶液(PAA-2)を50g測り取り、NMPを43.8g加えて希釈し、無水酢酸10.92g(106.95mmol)とピリジン8.46g(106.95mmol)を加え、70℃で3時間反応させてイミド化した。この反応溶液を室温程度まで冷却後、メタノール388.5ml中に投入し、沈殿した固形物を回収した。さらに、この固形物をメタノールで2回洗浄した後、100℃で減圧乾燥して、ポリイミド(SPI-2)の白色粉末を得た。このポリイミドの数平均分子量は12663、重量平均分子量は27320であった。また、イミド化率は53%であった。
(Synthesis Example 2)
Using a 100 ml four-necked flask equipped with a mechanical stirrer, 4.73 g (24.13 mmol) of A-1 as the tetracarboxylic dianhydride component and 3.00 g (22.05 mmol) of B-2 as the diamine component ), 0.85 g (2.45 mmol) of B-7 was reacted in 48.7 g of NMP in a nitrogen atmosphere at room temperature for 24 hours to obtain a polyamic acid solution (PAA-2) having a concentration of 15% by mass. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 198 mPa · s. The polyamic acid had a number average molecular weight of 13482 and a weight average molecular weight of 33283.
In a 200 ml eggplant-shaped flask equipped with a stir bar, 50 g of the obtained polyamic acid solution (PAA-2) was weighed and diluted by adding 43.8 g of NMP, acetic anhydride 10.92 g (106.95 mmol) and pyridine 8 .46 g (106.95 mmol) was added and reacted at 70 ° C. for 3 hours to imidize. The reaction solution was cooled to about room temperature and then poured into 388.5 ml of methanol to recover the precipitated solid. Further, the solid was washed twice with methanol and then dried under reduced pressure at 100 ° C. to obtain a white powder of polyimide (SPI-2). The number average molecular weight of this polyimide was 12663, and the weight average molecular weight was 27320. The imidation ratio was 53%.
(合成例3)
 メカニカルスターラーを備えた100ml四口フラスコを用いて、テトラカルボン酸二無水物成分として、A-1を3.38g(17.25mmol)、A-4を1.88g(7.50mmol)ジアミン成分として、B-4を1.22g(11.25mmol)、B-3を1.69g(11.25mmol)、B-7を0.87g(2.50mmol)を用い、NMP51.2g中、窒素雰囲気にて40℃で24時間反応させ、濃度15質量%のポリアミック酸溶液(PAA-3)を得た。このポリアミック酸溶液の温度25℃における粘度は205mPa・sであった。またこのポリアミック酸の数平均分子量は16632、重量平均分子量は39420であった。
 攪拌子を備えた200mlナス型フラスコに、得られたポリアミック酸溶液(PAA-3)を50g測り取り、NMPを43.8g加えて希釈し、無水酢酸10.59g(103.72mmol)とピリジン8.21g(103.72mmol)を加え、70℃で3時間反応させてイミド化した。この反応溶液を室温程度まで冷却後、メタノール388.5ml中に投入し、沈殿した固形物を回収した。さらに、この固形物をメタノールで2回洗浄した後、100℃で減圧乾燥して、ポリイミド(SPI-3)の白色粉末を得た。このポリイミドの数平均分子量は15663、重量平均分子量は33256であった。また、イミド化率は50%であった。
(Synthesis Example 3)
Using a 100 ml four-necked flask equipped with a mechanical stirrer, A-1 as 3.38 g (17.25 mmol) and A-4 as 1.88 g (7.50 mmol) diamine component as tetracarboxylic dianhydride components , B-4 1.22 g (11.25 mmol), B-3 1.69 g (11.25 mmol), B-7 0.87 g (2.50 mmol) and NMP 51.2 g in a nitrogen atmosphere. For 24 hours at 40 ° C. to obtain a polyamic acid solution (PAA-3) having a concentration of 15% by mass. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 205 mPa · s. The number average molecular weight of this polyamic acid was 16632, and the weight average molecular weight was 39420.
In a 200 ml eggplant-shaped flask equipped with a stir bar, 50 g of the resulting polyamic acid solution (PAA-3) was weighed, diluted by adding 43.8 g of NMP, acetic anhydride 10.59 g (103.72 mmol) and pyridine 8 .21 g (103.72 mmol) was added and reacted at 70 ° C. for 3 hours to imidize. The reaction solution was cooled to about room temperature and then poured into 388.5 ml of methanol to recover the precipitated solid. Further, the solid was washed twice with methanol and dried under reduced pressure at 100 ° C. to obtain a white powder of polyimide (SPI-3). The number average molecular weight of this polyimide was 15663, and the weight average molecular weight was 33256. Moreover, the imidation ratio was 50%.
(合成例4)
 メカニカルスターラーを備えた100ml四口フラスコを用いて、テトラカルボン酸二無水物成分として、A-5を5.55g(24.75mmol)、ジアミン成分として、B-4を1.22g(11.25mmol)、B-2を1.53g(11.25mmol)、B-7を0.87g(2.50mmol)を用い、NMP52.0g中、窒素雰囲気にて40℃で24時間反応させ、濃度15質量%のポリアミック酸溶液(PAA-4)を得た。このポリアミック酸溶液の温度25℃における粘度は133mPa・sであった。またこのポリアミック酸の数平均分子量は17212、重量平均分子量は40192であった。
 攪拌子を備えた200mlナス型フラスコに、得られたポリアミック酸溶液(PAA-4)を50g測り取り、NMPを43.8g加えて希釈し、無水酢酸10.38g(101.67mmol)とピリジン9.51g(101.67mmol)を加え、110℃で3時間反応させてイミド化した。この反応溶液を室温程度まで冷却後、メタノール333.5ml中に投入し、沈殿した固形物を回収した。さらに、この固形物をメタノールで2回洗浄した後、100℃で減圧乾燥して、ポリイミド(SPI-4)の白色粉末を得た。このポリイミドの数平均分子量は14949、重量平均分子量は38211であった。また、イミド化率は57%であった。
(Synthesis Example 4)
Using a 100 ml four-necked flask equipped with a mechanical stirrer, 5.55 g (24.75 mmol) of A-5 was used as the tetracarboxylic dianhydride component, and 1.22 g (11.25 mmol) of B-4 was used as the diamine component. ), 1.53 g (11.25 mmol) of B-2, 0.87 g (2.50 mmol) of B-7, and reacted for 24 hours at 40 ° C. in a nitrogen atmosphere in 52.0 g of NMP. % Polyamic acid solution (PAA-4) was obtained. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 133 mPa · s. The number average molecular weight of this polyamic acid was 17212, and the weight average molecular weight was 40192.
In a 200 ml eggplant-shaped flask equipped with a stir bar, 50 g of the obtained polyamic acid solution (PAA-4) was weighed and diluted by adding 43.8 g of NMP, acetic anhydride 10.38 g (101.67 mmol) and pyridine 9 .51 g (101.67 mmol) was added and reacted at 110 ° C. for 3 hours to imidize. The reaction solution was cooled to about room temperature and then poured into 333.5 ml of methanol to recover the precipitated solid. Further, the solid was washed twice with methanol and dried under reduced pressure at 100 ° C. to obtain a white powder of polyimide (SPI-4). The number average molecular weight of this polyimide was 14949, and the weight average molecular weight was 38211. The imidation ratio was 57%.
(合成例5)
 メカニカルスターラーを備えた100ml四口フラスコを用いて、テトラカルボン酸二無水物成分として、A-1を7.53g(38.42mmol)、ジアミン成分として、B-1を3.98g(29.25mmol)、B-6を1.81g(7.80mmol)、B-8を0.79g(1.95mmol)用い、NMP80.0g中、窒素雰囲気にて室温で24時間反応させ、濃度15質量%のポリアミック酸溶液(PAA-5)を得た。このポリアミック酸溶液の温度25℃における粘度は152mPa・sであった。またこのポリアミック酸の数平均分子量は11987、重量平均分子量は43283であった。
 攪拌子を備えた200mlナス型フラスコに、得られたポリアミック酸溶液(PAA-5)を50g測り取り、NMPを43.8g加えて希釈し、無水酢酸10.55g(103.23mmol)とピリジン8.18g(103.23mmol)を加え、70℃で3時間反応させてイミド化した。この反応溶液を室温程度まで冷却後、メタノール393.6ml中に投入し、沈殿した固形物を回収した。さらに、この固形物をメタノールで2回洗浄した後、100℃で減圧乾燥して、ポリイミド(SPI-5)の白色粉末を得た。このポリイミドの数平均分子量は11859、重量平均分子量は28493であった。また、イミド化率は59%であった。
(Synthesis Example 5)
Using a 100 ml four-necked flask equipped with a mechanical stirrer, 7.51 g (38.42 mmol) of A-1 as the tetracarboxylic dianhydride component and 3.98 g (29.25 mmol) of B-1 as the diamine component ), 1.81 g (7.80 mmol) of B-6 and 0.79 g (1.95 mmol) of B-8, and reacted for 8 hours at room temperature in a nitrogen atmosphere in 80.0 g of NMP. A polyamic acid solution (PAA-5) was obtained. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 152 mPa · s. The polyamic acid had a number average molecular weight of 11987 and a weight average molecular weight of 43283.
In a 200 ml eggplant-shaped flask equipped with a stir bar, 50 g of the obtained polyamic acid solution (PAA-5) was weighed and diluted by adding 43.8 g of NMP, acetic anhydride 10.55 g (103.23 mmol) and pyridine 8 .18 g (103.23 mmol) was added and reacted at 70 ° C. for 3 hours to imidize. The reaction solution was cooled to about room temperature and then poured into 393.6 ml of methanol to recover the precipitated solid. Further, the solid was washed twice with methanol and then dried under reduced pressure at 100 ° C. to obtain a white powder of polyimide (SPI-5). The number average molecular weight of this polyimide was 11859, and the weight average molecular weight was 28493. Further, the imidization ratio was 59%.
(合成例6)
 メカニカルスターラーを備えた100ml四口フラスコを用いて、テトラカルボン酸二無水物成分として、A-1を7.72g(39.40mmol)、ジアミン成分として、B-1を3.81g(28.00mmol)、B-6を1.86g(8.00mmol)、B-8を1.63g(4.00mmol)を用い、NMP88.0g中、窒素雰囲気にて室温で24時間反応させ、濃度15質量%のポリアミック酸溶液(PAA-6)を得た。このポリアミック酸溶液の温度25℃における粘度は156mPa・sであった。またこのポリアミック酸の数平均分子量は12276、重量平均分子量は44911であった。
 攪拌子を備えた200mlナス型フラスコに、得られたポリアミック酸溶液(PAA-6)を50g測り取り、NMPを43.8g加えて希釈し、無水酢酸10.55g(103.23mmol)とピリジン8.18g(103.23mmol)を加え、70℃で3時間反応させてイミド化した。この反応溶液を室温程度まで冷却後、メタノール393.6ml中に投入し、沈殿した固形物を回収した。さらに、この固形物をメタノールで2回洗浄した後、100℃で減圧乾燥して、ポリイミド(SPI-6)の白色粉末を得た。このポリイミドの数平均分子量は11332、重量平均分子量は24325であった。また、イミド化率は58%であった。
(Synthesis Example 6)
Using a 100 ml four-necked flask equipped with a mechanical stirrer, 7.72 g (39.40 mmol) of A-1 as a tetracarboxylic dianhydride component and 3.81 g (28.00 mmol) of B-1 as a diamine component ), 1.86 g (8.00 mmol) of B-6 and 1.63 g (4.00 mmol) of B-8, and reacted in NMP 88.0 g for 24 hours at room temperature in a nitrogen atmosphere. A polyamic acid solution (PAA-6) was obtained. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 156 mPa · s. The polyamic acid had a number average molecular weight of 12276 and a weight average molecular weight of 44911.
In a 200 ml eggplant-shaped flask equipped with a stir bar, 50 g of the obtained polyamic acid solution (PAA-6) was weighed, diluted by adding 43.8 g of NMP, and acetic anhydride 10.55 g (103.23 mmol) and pyridine 8 .18 g (103.23 mmol) was added and reacted at 70 ° C. for 3 hours to imidize. The reaction solution was cooled to about room temperature and then poured into 393.6 ml of methanol to recover the precipitated solid. Further, the solid was washed twice with methanol and then dried under reduced pressure at 100 ° C. to obtain a white powder of polyimide (SPI-6). The number average molecular weight of this polyimide was 11332, and the weight average molecular weight was 24325. The imidation ratio was 58%.
(合成例7)
 メカニカルスターラーを備えた100ml四口フラスコを用いて、テトラカルボン酸二無水物成分として、A-1を7.72g(39.40mmol)、ジアミン成分として、B-1を2.17g(16.00mmol)、B-6を4.64g(0.020mol)、B-8を1.63g(4.00mmol)を用い、NMP91.7g中、窒素雰囲気にて室温で24時間反応させ、濃度15質量%のポリアミック酸溶液(PAA-7)を得た。このポリアミック酸溶液の温度25℃における粘度は136mPa・sであった。またこのポリアミック酸の数平均分子量は12871、重量平均分子量は46548であった。
 攪拌子を備えた200mlナス型フラスコに、得られたポリアミック酸溶液(PAA-7)を50g測り取り、NMPを43.8g加えて希釈し、無水酢酸9.43g(92.36mmol)とピリジン7.31g(92.36mmol)を加え、70℃で3時間反応させてイミド化した。この反応溶液を室温程度まで冷却後、メタノール393.6ml中に投入し、沈殿した固形物を回収した。さらに、この固形物をメタノールで2回洗浄した後、100℃で減圧乾燥して、ポリイミド(SPI-7)の白色粉末を得た。このポリイミドの数平均分子量は11566、重量平均分子量は27827であった。また、イミド化率は73%であった。
(Synthesis Example 7)
Using a 100 ml four-necked flask equipped with a mechanical stirrer, 7.72 g (39.40 mmol) of A-1 as the tetracarboxylic dianhydride component, 2.17 g (16.00 mmol) of B-1 as the diamine component ), B-6 (4.64 g, 0.020 mol) and B-8 (1.63 g, 4.00 mmol) were reacted in 91.7 g of NMP in a nitrogen atmosphere at room temperature for 24 hours to obtain a concentration of 15% by mass. A polyamic acid solution (PAA-7) was obtained. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 136 mPa · s. The polyamic acid had a number average molecular weight of 12871 and a weight average molecular weight of 46548.
In a 200 ml eggplant-shaped flask equipped with a stir bar, 50 g of the obtained polyamic acid solution (PAA-7) was weighed, diluted by adding 43.8 g of NMP, 9.43 g (92.36 mmol) of acetic anhydride and pyridine 7 .31 g (92.36 mmol) was added and reacted at 70 ° C. for 3 hours to imidize. The reaction solution was cooled to about room temperature and then poured into 393.6 ml of methanol to recover the precipitated solid. The solid was washed twice with methanol and then dried under reduced pressure at 100 ° C. to obtain a white powder of polyimide (SPI-7). The number average molecular weight of this polyimide was 11566, and the weight average molecular weight was 27827. Moreover, the imidation ratio was 73%.
 (合成例8)
 メカニカルスターラーを備えた100ml四口フラスコを用いて、テトラカルボン酸二無水物成分として、A-1を7.69g(39.20mmol)、ジアミン成分として、B-1を4.09g(30.00mmol)、B-6を1.86g(8.00mmol)、B-7を0.69g(2.00mmol)を用い、NMP91.7g中、窒素雰囲気にて室温で24時間反応させ、濃度15質量%のポリアミック酸溶液(PAA-8)を得た。このポリアミック酸溶液の温度25℃における粘度は136mPa・sであった。またこのポリアミック酸の数平均分子量は13602、重量平均分子量は45068であった。
 攪拌子を備えた200mlナス型フラスコに、得られたポリアミック酸溶液(PAA-8)を50g測り取り、NMPを43.8g加えて希釈し、無水酢酸10.68g(104.60mmol)とピリジン8.28g(104.60mmol)を加え、70℃で3時間反応させてイミド化した。この反応溶液を室温程度まで冷却後、メタノール393.6ml中に投入し、沈殿した固形物を回収した。さらに、この固形物をメタノールで2回洗浄した後、100℃で減圧乾燥して、ポリイミド(SPI-8)の白色粉末を得た。このポリイミドの数平均分子量は12566、重量平均分子量は28865であった。また、イミド化率は59%であった。
(Synthesis Example 8)
Using a 100 ml four-necked flask equipped with a mechanical stirrer, 7.69 g (39.20 mmol) of A-1 as a tetracarboxylic dianhydride component and 4.09 g (30.00 mmol) of B-1 as a diamine component ), 1.86 g (8.00 mmol) of B-6, 0.69 g (2.00 mmol) of B-7, and reacted in 91.7 g of NMP in a nitrogen atmosphere at room temperature for 24 hours, concentration of 15% by mass A polyamic acid solution (PAA-8) was obtained. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 136 mPa · s. The number average molecular weight of this polyamic acid was 13602, and the weight average molecular weight was 45068.
In a 200 ml eggplant-shaped flask equipped with a stir bar, 50 g of the obtained polyamic acid solution (PAA-8) was weighed and diluted by adding 43.8 g of NMP, acetic anhydride 10.68 g (104.60 mmol) and pyridine 8 .28 g (104.60 mmol) was added and reacted at 70 ° C. for 3 hours to imidize. The reaction solution was cooled to about room temperature and then poured into 393.6 ml of methanol to recover the precipitated solid. The solid was washed twice with methanol and then dried under reduced pressure at 100 ° C. to obtain a white powder of polyimide (SPI-8). The number average molecular weight of this polyimide was 12566, and the weight average molecular weight was 28865. Further, the imidization ratio was 59%.
(合成例9)
 メカニカルスターラーを備えた100ml四口フラスコを用いて、テトラカルボン酸二無水物成分として、A-1を7.68g(39.16mmol)、ジアミン成分として、B-1を3.81g(28.00mmol)、B-6を1.85g(8.00mmol)、B-7を 1.39g(4.00mmol)を用い、NMP83.55g中、窒素雰囲気にて室温で24時間反応させ、濃度15質量%のポリアミック酸溶液(PAA-9)を得た。このポリアミック酸溶液の温度25℃における粘度は150mPa・sであった。またこのポリアミック酸の数平均分子量は13301、重量平均分子量は43912であった。
 攪拌子を備えた200mlナス型フラスコに、得られたポリアミック酸溶液(PAA-9)を50g測り取り、NMPを43.8g加えて希釈し、無水酢酸10.38g(101.67mmol)とピリジン8.04g(101.67mmol)を加え、70℃で3時間反応させてイミド化した。この反応溶液を室温程度まで冷却後、メタノール392.6ml中に投入し、沈殿した固形物を回収した。さらに、この固形物をメタノールで2回洗浄した後、100℃で減圧乾燥して、ポリイミド(SPI-9)の白色粉末を得た。このポリイミドの数平均分子量は12736、重量平均分子量は27885であった。また、イミド化率は58%であった。
(Synthesis Example 9)
Using a 100 ml four-necked flask equipped with a mechanical stirrer, 7.68 g (39.16 mmol) of A-1 as a tetracarboxylic dianhydride component and 3.81 g (28.00 mmol) of B-1 as a diamine component ), 1.85 g (8.00 mmol) of B-6 and 1.39 g (4.00 mmol) of B-7, and reacted in 83.55 g of NMP in a nitrogen atmosphere at room temperature for 24 hours to obtain a concentration of 15% by mass. A polyamic acid solution (PAA-9) was obtained. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 150 mPa · s. The polyamic acid had a number average molecular weight of 13301 and a weight average molecular weight of 43912.
In a 200 ml eggplant-shaped flask equipped with a stir bar, 50 g of the obtained polyamic acid solution (PAA-9) was weighed, diluted by adding 43.8 g of NMP, and 10.38 g (101.67 mmol) of acetic anhydride and pyridine 8 0.04 g (101.67 mmol) was added, and the mixture was reacted at 70 ° C. for 3 hours to imidize. The reaction solution was cooled to about room temperature and then poured into 392.6 ml of methanol to recover the precipitated solid. Further, the solid was washed twice with methanol and then dried under reduced pressure at 100 ° C. to obtain a white powder of polyimide (SPI-9). The number average molecular weight of this polyimide was 12736, and the weight average molecular weight was 27858. The imidation ratio was 58%.
(合成例10)
 メカニカルスターラーを備えた100ml四口フラスコを用いて、テトラカルボン酸二無水物成分として、A-1を5.76g(29.40mmol)、ジアミン成分として、B-3を2.93g(19.50mmol)、B-6を 1.74g(7.50mmol)、B-8を1.22g(3.00mmol)用い、NMP66.1g中、窒素雰囲気にて室温で24時間反応させ、濃度15質量%のポリアミック酸溶液(PAA-10)を得た。このポリアミック酸溶液の温度25℃における粘度は188mPa・sであった。またこのポリアミック酸の数平均分子量は11254、重量平均分子量は29483であった。
 攪拌子を備えた200mlナス型フラスコに、得られたポリアミック酸溶液(PAA-10)を50g測り取り、NMPを43.8g加えて希釈し、無水酢酸9.60g(94.02mmol)とピリジン7.44g(94.02mmol)を加え、70℃で3時間反応させてイミド化した。この反応溶液を室温程度まで冷却後、メタノール387.8ml中に投入し、沈殿した固形物を回収した。さらに、この固形物をメタノールで2回洗浄した後、100℃で減圧乾燥して、ポリイミド(SPI-10)の白色粉末を得た。このポリイミドの数平均分子量は10983、重量平均分子量は22321であった。また、イミド化率は63%であった
(Synthesis Example 10)
Using a 100 ml four-necked flask equipped with a mechanical stirrer, 5.76 g (29.40 mmol) of A-1 as a tetracarboxylic dianhydride component, 2.93 g (19.50 mmol) of B-3 as a diamine component ), 1.74 g (7.50 mmol) of B-6 and 1.22 g (3.00 mmol) of B-8, and reacted in 66.1 g of NMP at room temperature in a nitrogen atmosphere for 24 hours. A polyamic acid solution (PAA-10) was obtained. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 188 mPa · s. The number average molecular weight of this polyamic acid was 11254, and the weight average molecular weight was 29483.
In a 200 ml eggplant-shaped flask equipped with a stir bar, 50 g of the obtained polyamic acid solution (PAA-10) was weighed and diluted by adding 43.8 g of NMP. 9.60 g (94.02 mmol) of acetic anhydride and pyridine 7 .44 g (94.02 mmol) was added and reacted at 70 ° C. for 3 hours to imidize. The reaction solution was cooled to about room temperature and then poured into 387.8 ml of methanol to recover the precipitated solid. Further, the solid was washed twice with methanol and then dried under reduced pressure at 100 ° C. to obtain a white powder of polyimide (SPI-10). The number average molecular weight of this polyimide was 10983, and the weight average molecular weight was 22321. Moreover, the imidation ratio was 63%.
(合成例11)
 メカニカルスターラーを備えた100ml四口フラスコを用いて、テトラカルボン酸二無水物成分として、A-1を7.39g(37.73mmol)、ジアミン成分として、B-3を4.33g(28.88mol)、B-6を 1.79g(7.70mmol)、B-9を1.00g(1.93mmol)用い、NMP82.3g中、窒素雰囲気にて室温で24時間反応させ、濃度15質量%のポリアミック酸溶液(PAA-11)を得た。このポリアミック酸溶液の温度25℃における粘度は176mPa・sであった。またこのポリアミック酸の数平均分子量は12462、重量平均分子量は28219であった。
 攪拌子を備えた200mlナス型フラスコに、得られたポリアミック酸溶液(PAA-11)を50g測り取り、NMPを43.8g加えて希釈し、無水酢酸10.41g(101.96mmol)とピリジン8.07g(101.96mmol)を加え、70℃で3時間反応させてイミド化した。この反応溶液を室温程度まで冷却後、メタノール391.0ml中に投入し、沈殿した固形物を回収した。さらに、この固形物をメタノールで2回洗浄した後、100℃で減圧乾燥して、ポリイミド(SPI-11)の白色粉末を得た。このポリイミドの数平均分子量は12143、重量平均分子量は25345であった。また、イミド化率は60%であった。
(Synthesis Example 11)
Using a 100 ml four-necked flask equipped with a mechanical stirrer, 7.39 g (37.73 mmol) of A-1 as the tetracarboxylic dianhydride component, 4.33 g (28.88 mol) of B-3 as the diamine component ), B-6 (1.79 g (7.70 mmol)) and B-9 (1.00 g (1.93 mmol)) were reacted in NMP (82.3 g) in a nitrogen atmosphere at room temperature for 24 hours. A polyamic acid solution (PAA-11) was obtained. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 176 mPa · s. The polyamic acid had a number average molecular weight of 12462 and a weight average molecular weight of 28219.
In a 200 ml eggplant-shaped flask equipped with a stir bar, 50 g of the obtained polyamic acid solution (PAA-11) was weighed, diluted by adding 43.8 g of NMP, acetic anhydride 10.41 g (101.96 mmol) and pyridine 8 0.07 g (101.96 mmol) was added, and the mixture was reacted at 70 ° C. for 3 hours to imidize. The reaction solution was cooled to about room temperature and then poured into 391.0 ml of methanol to recover the precipitated solid. Further, the solid was washed twice with methanol and then dried under reduced pressure at 100 ° C. to obtain a white powder of polyimide (SPI-11). The number average molecular weight of this polyimide was 12143, and the weight average molecular weight was 25345. Moreover, the imidation ratio was 60%.
(合成例12)
 メカニカルスターラーを備えた100ml四口フラスコを用いて、テトラカルボン酸二無水物成分として、A-2を10.30g(34.30mmol)、ジアミン成分として、B-4を3.41g(31.50mmol)、B-7を1.22g(3.50mmol)、B-7を 1.39g(4.00mmol)を用い、NMP59.7g中、窒素雰囲気にて室温で24時間反応させ、濃度15質量%のポリアミック酸溶液(PAA-12)を得た。このポリアミック酸溶液の温度25℃における粘度は1023mPa・sであった。またこのポリアミック酸の数平均分子量は9890、重量平均分子量は24302であった。
 攪拌子を備えた200mlナス型フラスコに、得られたポリアミック酸溶液(PAA-12)を50g測り取り、NMPを116.7g加えて希釈し、無水酢酸28.43g(278.45mmol)とピリジン13.22g(167.01mmol)を加え、40℃で3時間反応させてイミド化した。この反応溶液を室温程度まで冷却後、メタノール729.1ml中に投入し、沈殿した固形物を回収した。さらに、この固形物をメタノールで2回洗浄した後、100℃で減圧乾燥して、ポリイミド(SPI-12)の白色粉末を得た。このポリイミドの数平均分子量は9630、重量平均分子量は20013であった。また、イミド化率は85%であった。
(Synthesis Example 12)
Using a 100 ml four-necked flask equipped with a mechanical stirrer, 10.2 g (34.30 mmol) of A-2 as a tetracarboxylic dianhydride component and 3.41 g (31.50 mmol) of B-4 as a diamine component ), 1.22 g (3.50 mmol) of B-7 and 1.39 g (4.00 mmol) of B-7, and reacted in 59.7 g of NMP in a nitrogen atmosphere at room temperature for 24 hours to obtain a concentration of 15% by mass. A polyamic acid solution (PAA-12) was obtained. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 1023 mPa · s. The number average molecular weight of this polyamic acid was 9890, and the weight average molecular weight was 24302.
In a 200 ml eggplant-shaped flask equipped with a stir bar, 50 g of the obtained polyamic acid solution (PAA-12) was weighed and diluted by adding 116.7 g of NMP, and 28.43 g (278.45 mmol) of acetic anhydride and pyridine 13 were added. .22 g (167.01 mmol) was added and reacted at 40 ° C. for 3 hours to imidize. The reaction solution was cooled to about room temperature and then poured into 729.1 ml of methanol to recover the precipitated solid. Further, the solid was washed twice with methanol and dried under reduced pressure at 100 ° C. to obtain a white powder of polyimide (SPI-12). The number average molecular weight of this polyimide was 9630, and the weight average molecular weight was 20013. Moreover, the imidation ratio was 85%.
(合成例13)
 メカニカルスターラーを備えた100ml四口フラスコを用いて、テトラカルボン酸二無水物成分として、A-1を8.32g(42.43mmol)、ジアミン成分としてB-5を4.76g(38.97mmol)、B-7を1.51g(4.33mmol)を用い、NMP82.7g中、窒素雰囲気にて室温で24時間反応させ、濃度15質量%のポリアミック酸溶液(PAA-13)を得た。このポリアミック酸溶液の温度25℃における粘度は188mPa・sであった。またこのポリアミック酸の数平均分子量は15284、重量平均分子量は46032であった。
 攪拌子を備えた200mlナス型フラスコに、得られたポリアミック酸溶液(PAA-13)を50g測り取り、NMPを43.8g加えて希釈し、無水酢酸6.80g(66.60mmol)とピリジン2.91g(36.77mmol)を加え、50℃で3時間反応させてイミド化した。この反応溶液を室温程度まで冷却後、メタノール392.1ml中に投入し、沈殿した固形物を回収した。さらに、この固形物をメタノールで2回洗浄した後、100℃で減圧乾燥して、ポリイミド(SPI-13)の白色粉末を得た。このポリイミドの数平均分子量は12436、重量平均分子量は28954であった。また、イミド化率は82%であった。
(Synthesis Example 13)
Using a 100 ml four-necked flask equipped with a mechanical stirrer, 8.32 g (42.43 mmol) of A-1 as a tetracarboxylic dianhydride component and 4.76 g (38.97 mmol) of B-5 as a diamine component Then, 1.51 g (4.33 mmol) of B-7 was reacted in 82.7 g of NMP in a nitrogen atmosphere at room temperature for 24 hours to obtain a polyamic acid solution (PAA-13) having a concentration of 15% by mass. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 188 mPa · s. The polyamic acid had a number average molecular weight of 15284 and a weight average molecular weight of 46032.
In a 200 ml eggplant-shaped flask equipped with a stir bar, 50 g of the obtained polyamic acid solution (PAA-13) was weighed, diluted by adding 43.8 g of NMP, 6.80 g (66.60 mmol) of acetic anhydride and pyridine 2 .91 g (36.77 mmol) was added and reacted at 50 ° C. for 3 hours to imidize. The reaction solution was cooled to about room temperature and then poured into 392.1 ml of methanol to recover the precipitated solid. The solid was washed twice with methanol and then dried under reduced pressure at 100 ° C. to obtain a white powder of polyimide (SPI-13). The number average molecular weight of this polyimide was 12436, and the weight average molecular weight was 28954. The imidation ratio was 82%.
(合成例14)
 メカニカルスターラーを備えた100ml四口フラスコを用いて、テトラカルボン酸二無水物成分として、A-1を8.32g(42.43mmol)、ジアミン成分としてB-5を4.76g(38.97mmol)、B-8を 1.76g(4.33mmol)を用い、NMP64.1g中、窒素雰囲気にて室温で24時間反応させ、濃度15質量%のポリアミック酸溶液(PAA-14)を得た。このポリアミック酸溶液の温度25℃における粘度は163mPa・sであった。またこのポリアミック酸の数平均分子量は11382、重量平均分子量は27679であった。
 攪拌子を備えた200mlナス型フラスコに、得られたポリアミック酸溶液(PAA-14)を50g測り取り、NMPを57.1g加えて希釈し、無水酢酸6.65g(65.13mmol)とピリジン2.85g(36.02mmol)を加え、50℃で3時間反応させてイミド化した。この反応溶液を室温程度まで冷却後、メタノール408.3ml中に投入し、沈殿した固形物を回収した。さらに、この固形物をメタノールで2回洗浄した後、100℃で減圧乾燥して、ポリイミド(SPI-14)の白色粉末を得た。このポリイミドの数平均分子量は10932、重量平均分子量は23243であった。また、イミド化率は82%であった。
(Synthesis Example 14)
Using a 100 ml four-necked flask equipped with a mechanical stirrer, 8.32 g (42.43 mmol) of A-1 as a tetracarboxylic dianhydride component and 4.76 g (38.97 mmol) of B-5 as a diamine component , B-8 (1.76 g, 4.33 mmol) was reacted in 64.1 g of NMP in a nitrogen atmosphere at room temperature for 24 hours to obtain a polyamic acid solution (PAA-14) having a concentration of 15% by mass. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 163 mPa · s. The polyamic acid had a number average molecular weight of 11382 and a weight average molecular weight of 27679.
In a 200 ml eggplant type flask equipped with a stir bar, 50 g of the obtained polyamic acid solution (PAA-14) was weighed and diluted by adding 57.1 g of NMP, and then 6.65 g (65.13 mmol) of acetic anhydride and pyridine 2 .85 g (36.02 mmol) was added and reacted at 50 ° C. for 3 hours to imidize. The reaction solution was cooled to about room temperature and then poured into 408.3 ml of methanol to recover the precipitated solid. Further, the solid was washed twice with methanol and then dried under reduced pressure at 100 ° C. to obtain a white powder of polyimide (SPI-14). The number average molecular weight of this polyimide was 10932, and the weight average molecular weight was 23243. The imidation ratio was 82%.
(合成例15)
 メカニカルスターラーを備えた100ml四口フラスコを用いて、テトラカルボン酸二無水物成分として、A-1を7.69g(39.20mmol)、ジアミン成分としてB-5を3.42g(28.00mmol)、B-6を1.86g(8.00mmol)、B-7を1.39g(4.00mmol)を用い、NMP81.4g中、窒素雰囲気にて室温で24時間反応させ、濃度15質量%のポリアミック酸溶液(PAA-15)を得た。このポリアミック酸溶液の温度25℃における粘度は152mPa・sであった。またこのポリアミック酸の数平均分子量は15372、重量平均分子量は45205であった。
 攪拌子を備えた200mlナス型フラスコに、得られたポリアミック酸溶液(PAA-15)を50g測り取り、NMPを43.75g加えて希釈し、無水酢酸9.40g(92.07mmol)とピリジン7.23g(91.36mmol)を加え、50℃で3時間反応させてイミド化した。この反応溶液を室温程度まで冷却後、メタノール380.5ml中に投入し、沈殿した固形物を回収した。さらに、この固形物をメタノールで2回洗浄した後、100℃で減圧乾燥して、ポリイミド(SPI-15)の白色粉末を得た。このポリイミドの数平均分子量は14092、重量平均分子量は28301であった。また、イミド化率は80%であった。
(Synthesis Example 15)
Using a 100 ml four-necked flask equipped with a mechanical stirrer, 7.69 g (39.20 mmol) of A-1 as the tetracarboxylic dianhydride component and 3.42 g (28.00 mmol) of B-5 as the diamine component , B-6 1.86 g (8.00 mmol) and B-7 1.39 g (4.00 mmol) were reacted in 81.4 g of NMP at room temperature in a nitrogen atmosphere for 24 hours. A polyamic acid solution (PAA-15) was obtained. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 152 mPa · s. The number average molecular weight of this polyamic acid was 15372, and the weight average molecular weight was 45205.
In a 200 ml eggplant type flask equipped with a stir bar, 50 g of the obtained polyamic acid solution (PAA-15) was weighed, diluted by adding 43.75 g of NMP, 9.40 g (92.07 mmol) of acetic anhydride and pyridine 7 .23 g (91.36 mmol) was added and reacted at 50 ° C. for 3 hours to imidize. The reaction solution was cooled to about room temperature and then poured into 380.5 ml of methanol to recover the precipitated solid. The solid was washed twice with methanol and then dried under reduced pressure at 100 ° C. to obtain a white powder of polyimide (SPI-15). The number average molecular weight of this polyimide was 14092, and the weight average molecular weight was 28301. The imidation ratio was 80%.
(合成例16)
 メカニカルスターラーを備えた100ml四口フラスコを用いて、テトラカルボン酸二無水物成分として、A-1を8.26g(42.14mmol)、ジアミン成分としてB-5を3.68g(30.10mmol)、B-6を2.00g(8.60mmol)、B-8を1.75g(4.30mmol)を用い、NMP88.9g中、窒素雰囲気にて室温で24時間反応させ、濃度15質量%のポリアミック酸溶液(PAA-16)を得た。このポリアミック酸溶液の温度25℃における粘度は156mPa・sであった。またこのポリアミック酸の数平均分子量は16332、重量平均分子量は46963であった。
 攪拌子を備えた200mlナス型フラスコに、得られたポリアミック酸溶液(PAA-16)を50g測り取り、NMPを43.75g加えて希釈し、無水酢酸9.79g(95.89mmol)とピリジン7.58g(95.79mmol)を加え、50℃で3時間反応させてイミド化した。この反応溶液を室温程度まで冷却後、メタノール388.5ml中に投入し、沈殿した固形物を回収した。さらに、この固形物をメタノールで2回洗浄した後、100℃で減圧乾燥して、ポリイミド(SPI-16)の白色粉末を得た。このポリイミドの数平均分子量は15302、重量平均分子量は34024であった。また、イミド化率は80%であった。
(Synthesis Example 16)
Using a 100 ml four-necked flask equipped with a mechanical stirrer, 8.26 g (42.14 mmol) of A-1 as a tetracarboxylic dianhydride component and 3.68 g (30.10 mmol) of B-5 as a diamine component , B-6 (2.00 g (8.60 mmol)) and B-8 (1.75 g (4.30 mmol)) were reacted in NMP 88.9 g at room temperature in a nitrogen atmosphere for 24 hours. A polyamic acid solution (PAA-16) was obtained. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 156 mPa · s. The polyamic acid had a number average molecular weight of 16,332 and a weight average molecular weight of 46963.
In a 200 ml eggplant-shaped flask equipped with a stir bar, 50 g of the obtained polyamic acid solution (PAA-16) was weighed, diluted by adding 43.75 g of NMP, 9.79 g (95.89 mmol) of acetic anhydride and pyridine 7 .58 g (95.79 mmol) was added and reacted at 50 ° C. for 3 hours to imidize. The reaction solution was cooled to about room temperature and then poured into 388.5 ml of methanol to recover the precipitated solid. The solid was washed twice with methanol and then dried under reduced pressure at 100 ° C. to obtain a white powder of polyimide (SPI-16). The number average molecular weight of this polyimide was 15302, and the weight average molecular weight was 34024. The imidation ratio was 80%.
(合成例17)
 メカニカルスターラーを備えた100ml四口フラスコを用いて、テトラカルボン酸二無水物成分として、A-1を3.92g(0.037mmol),A-3を3.66g(0.017mmol)、ジアミン成分として、B-11を7.93g(0.040mmol)を用い、NMP44.2g,γ-BL44.2g中、窒素雰囲気にて室温で24時間反応させ、濃度15質量%のポリアミック酸溶液(PAA-17)を得た。このポリアミック酸溶液の温度25℃における粘度は331mPa・sであった。またこのポリアミック酸の数平均分子量は13603、重量平均分子量は34217であった。
 攪拌子を備えた300mlナス型フラスコに、得られたポリアミック酸溶液(PAA-17)溶液を80.0g測り取り、GBL90.0g、BC30.0gを加え、室温で2時間攪拌し、固形分が6.0質量%、NMP20質量%、GBLが59%、BCが15質量%のポリアミック酸溶液(PAA-17S)を得た。
(Synthesis Example 17)
Using a 100 ml four-necked flask equipped with a mechanical stirrer, as tetracarboxylic dianhydride components, 3.92 g (0.037 mmol) of A-1, 3.66 g (0.017 mmol) of A-3, a diamine component As a result, 7.93 g (0.040 mmol) of B-11 was reacted in NMP 44.2 g and γ-BL 44.2 g for 24 hours at room temperature in a nitrogen atmosphere, and a polyamic acid solution (PAA- 17) was obtained. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 331 mPa · s. The number average molecular weight of this polyamic acid was 13603, and the weight average molecular weight was 34217.
In a 300 ml eggplant-shaped flask equipped with a stir bar, 80.0 g of the obtained polyamic acid solution (PAA-17) solution was weighed, 90.0 g of GBL and 30.0 g of BC were added, and the mixture was stirred at room temperature for 2 hours. A polyamic acid solution (PAA-17S) containing 6.0% by mass, NMP 20% by mass, GBL 59% and BC 15% by mass was obtained.
(合成例18)
 メカニカルスターラーを備えた100ml四口フラスコを用いて、テトラカルボン酸二無水物成分として、A-1を6.38g(32.55mmol)、ジアミン成分として、B-10を5.23g(24.50mmol)、B-12を3.01g(10.50mmol)を用い、NMP41.4g,γ-BL41.4g中、窒素雰囲気にて室温で6時間反応させ、濃度15質量%のポリアミック酸溶液(PAA-18)を得た。このポリアミック酸溶液の温度25℃における粘度は350mPa・sであった。またこのポリアミック酸の数平均分子量は10221、重量平均分子量は25850であった。
 攪拌子を備えた300mlナス型フラスコに、得られたポリアミック酸溶液(PAA-18)溶液を80.0g測り取り、GBL60.0g、BC60.0gを加え、室温で2時間攪拌し、固形分が6.0質量%、NMP20質量%、GBLが44%、BCが30質量%のポリアミック酸溶液(PAA-18S)を得た。
(Synthesis Example 18)
Using a 100 ml four-necked flask equipped with a mechanical stirrer, 6.38 g (32.55 mmol) of A-1 as a tetracarboxylic dianhydride component, 5.23 g (24.50 mmol) of B-10 as a diamine component ), And B-12 (3.01 g, 10.50 mmol) in NMP (41.4 g) and γ-BL (41.4 g) for 6 hours at room temperature in a nitrogen atmosphere to obtain a 15% strength by weight polyamic acid solution (PAA- 18) was obtained. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 350 mPa · s. The number average molecular weight of this polyamic acid was 10221, and the weight average molecular weight was 25850.
In a 300 ml eggplant-shaped flask equipped with a stir bar, 80.0 g of the obtained polyamic acid solution (PAA-18) solution was weighed, 60.0 g of GBL and 60.0 g of BC were added, and the mixture was stirred at room temperature for 2 hours. A polyamic acid solution (PAA-18S) containing 6.0% by mass, NMP 20% by mass, GBL 44% and BC 30% by mass was obtained.
(合成例19)
 メカニカルスターラーを備えた100ml四口フラスコを用いて、テトラカルボン酸二無水物成分として、A-1を6.38g(32.55mmol)、ジアミン成分として、B-10を5.23g(24.50mmol)、B-11を2.08g(10.50mmol)を用い、NMP38.8g,γ-BL38.8g中、窒素雰囲気にて室温で6時間反応させ、濃度15質量%のポリアミック酸溶液(PAA-19)を得た。このポリアミック酸溶液の温度25℃における粘度は350mPa・sであった。またこのポリアミック酸の数平均分子量は11476、重量平均分子量は35850であった。
 攪拌子を備えた300mlナス型フラスコに、得られたポリアミック酸溶液(PAA-19)溶液を80.0g測り取り、GBL60.0g、BC60.0gを加え、室温で2時間攪拌し、固形分が6.0質量%、NMP20質量%、GBLが44%、BCが30質量%のポリアミック酸溶液(PAA-19S)を得た。
(Synthesis Example 19)
Using a 100 ml four-necked flask equipped with a mechanical stirrer, 6.38 g (32.55 mmol) of A-1 as a tetracarboxylic dianhydride component, 5.23 g (24.50 mmol) of B-10 as a diamine component ) And B-11 in 2.08 g (10.50 mmol) and reacted in NMP 38.8 g and γ-BL 38.8 g for 6 hours at room temperature in a nitrogen atmosphere to obtain a polyamic acid solution (PAA- 19) was obtained. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 350 mPa · s. The polyamic acid had a number average molecular weight of 11476 and a weight average molecular weight of 35850.
In a 300 ml eggplant-shaped flask equipped with a stir bar, 80.0 g of the obtained polyamic acid solution (PAA-19) solution was measured, 60.0 g of GBL and 60.0 g of BC were added, and the mixture was stirred at room temperature for 2 hours. A polyamic acid solution (PAA-19S) containing 6.0% by mass, NMP 20% by mass, GBL 44% and BC 30% by mass was obtained.
(合成例20)
 メカニカルスターラーを備えた100ml四口フラスコを用いて、テトラカルボン酸二無水物成分として、A-1を4.82g(24.63mmol)、ジアミン成分としてB-5を2.29g(18.75mmol)、B-6を1.16g(5.00mmol)、B-9を1.25g(1.25mmol)を用い、NMP50.6g中、窒素雰囲気にて室温で24時間反応させ、濃度15質量%のポリアミック酸溶液(PAA-20)を得た。このポリアミック酸溶液の温度25℃における粘度は207mPa・sであった。またこのポリアミック酸の数平均分子量は15992、重量平均分子量は40463であった。
 攪拌子を備えた200mlナス型フラスコに、得られたポリアミック酸溶液(PAA-20)を50g測り取り、NMPを43.8g加えて希釈し、無水酢酸10.72g(105.00mmol)とピリジン8.30g(105.00mmol)を加え、50℃で3時間反応させてイミド化した。この反応溶液を室温程度まで冷却後、メタノール388.5ml中に投入し、沈殿した固形物を回収した。さらに、この固形物をメタノールで2回洗浄した後、100℃で減圧乾燥して、ポリイミド(SPI-17)の白色粉末を得た。このポリイミドの数平均分子量は14883、重量平均分子量は33025であった。また、イミド化率は84%であった。
(Synthesis Example 20)
Using a 100 ml four-necked flask equipped with a mechanical stirrer, 4.82 g (24.63 mmol) of A-1 as a tetracarboxylic dianhydride component and 2.29 g (18.75 mmol) of B-5 as a diamine component , B-6 (1.16 g, 5.00 mmol) and B-9 (1.25 g, 1.25 mmol) were reacted in NMP (50.6 g) at room temperature in a nitrogen atmosphere at room temperature for 15 hours. A polyamic acid solution (PAA-20) was obtained. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 207 mPa · s. The number average molecular weight of this polyamic acid was 1,5992, and the weight average molecular weight was 40463.
In a 200 ml eggplant-shaped flask equipped with a stir bar, 50 g of the obtained polyamic acid solution (PAA-20) was weighed and diluted by adding 43.8 g of NMP, and 10.72 g (105.00 mmol) of acetic anhydride and pyridine 8 .30 g (105.00 mmol) was added and reacted at 50 ° C. for 3 hours to imidize. The reaction solution was cooled to about room temperature and then poured into 388.5 ml of methanol to recover the precipitated solid. Further, the solid was washed twice with methanol and then dried under reduced pressure at 100 ° C. to obtain a white powder of polyimide (SPI-17). The number average molecular weight of this polyimide was 14883, and the weight average molecular weight was 33025. Moreover, the imidation ratio was 84%.
(実施例1)
 合成例1で得られたポリイミド(SPI-1)2.00gに、GBL14.67gを加え、50℃で20時間攪拌した。攪拌終了時点でポリイミドは完全に溶解していた。さらにこの溶液にGBL3.32g、NMP6.67gBC6.67gを加え、50℃で20時間攪拌し、固形分(SPI-1)が6質量%、GBLが54質量%、NMPが20質量%、BCが20質量%のポリイミド溶液を得た。
 このポリイミド溶液30.0gと、合成例18の手法にて調製したポリアミック酸溶液(PAA-18S)70.0gを室温で20時間攪拌し、固形分(SPI-1とPAA-18の質量比が3:7)が6質量%、NMP20質量%、GBLが47質量%、BCが27質量%の液晶配向剤-1を得た。
Example 1
To 2.00 g of the polyimide (SPI-1) obtained in Synthesis Example 1, 14.67 g of GBL was added and stirred at 50 ° C. for 20 hours. The polyimide was completely dissolved at the end of stirring. Further, GBL 3.32 g, NMP 6.67 g BC 6.67 g were added to this solution, and the mixture was stirred at 50 ° C. for 20 hours. The solid content (SPI-1) was 6 mass%, GBL 54 mass%, NMP 20 mass%, and BC A 20% by weight polyimide solution was obtained.
30.0 g of this polyimide solution and 70.0 g of the polyamic acid solution (PAA-18S) prepared by the method of Synthesis Example 18 were stirred at room temperature for 20 hours, and the solid content (mass ratio of SPI-1 and PAA-18 was 3: 7) was 6 mass%, NMP 20 mass%, GBL 47 mass%, and BC 27 mass%.
(実施例2)
 合成例2で得られたポリイミド(SPI-2)2.00gに、GBL14.67gを加え、50℃で20時間攪拌した。攪拌終了時点でポリイミドは完全に溶解していた。さらにこの溶液にGBL3.32g、NMP6.67gBC6.67gを加え、50℃で20時間攪拌し、固形分(SPI-2)が6質量%、GBLが54質量%、NMPが20質量%、BCが20質量%のポリイミド溶液を得た。
 このポリイミド溶液30.0gと、合成例18の手法にて調製したポリアミック酸溶液(PAA-18S)70.0gを室温で20時間攪拌し、固形分(SPI-2とPAA-18の質量比が3:7)が6質量%、NMP20質量%、GBLが47質量%、BCが27質量%の液晶配向剤-2を得た。
(Example 2)
To 2.00 g of the polyimide (SPI-2) obtained in Synthesis Example 2, 14.67 g of GBL was added and stirred at 50 ° C. for 20 hours. The polyimide was completely dissolved at the end of stirring. Furthermore, GBL 3.32g, NMP 6.67gBC 6.67g was added to this solution, and it stirred at 50 degreeC for 20 hours, solid content (SPI-2) was 6 mass%, GBL 54 mass%, NMP 20 mass%, and BC. A 20% by weight polyimide solution was obtained.
30.0 g of this polyimide solution and 70.0 g of polyamic acid solution (PAA-18S) prepared by the method of Synthesis Example 18 were stirred at room temperature for 20 hours, and the solid content (the mass ratio of SPI-2 and PAA-18 was 3: 7) was 6 mass%, NMP 20 mass%, GBL 47 mass%, and BC 27 mass%.
(実施例3)
 合成例3で得られたポリイミド(SPI-3)2.00gに、GBL14.67gを加え、50℃で20時間攪拌した。攪拌終了時点でポリイミドは完全に溶解していた。さらにこの溶液にGBL3.32g、NMP6.67gBC6.67gを加え、50℃で20時間攪拌し、固形分(SPI-3)が6質量%、GBLが54質量%、NMPが20質量%、BCが20質量%のポリイミド溶液を得た。
 このポリイミド溶液20.0gと、合成例17にて調製したポリアミック酸溶液(PAA-17S)80.0gを室温で20時間攪拌し、固形分(SPI-3とPAA-17の質量比が2:8)が6質量%、NMP20質量%、GBLが58質量%、BCが16質量%の液晶配向剤-3を得た。
(Example 3)
To 2.00 g of the polyimide (SPI-3) obtained in Synthesis Example 3, 14.67 g of GBL was added and stirred at 50 ° C. for 20 hours. The polyimide was completely dissolved at the end of stirring. Further, 3.32 g of GBL and 6.67 g of NMP were added to this solution, and the mixture was stirred at 50 ° C. for 20 hours. The solid content (SPI-3) was 6 mass%, GBL was 54 mass%, NMP was 20 mass%, and BC was A 20% by weight polyimide solution was obtained.
20.0 g of this polyimide solution and 80.0 g of the polyamic acid solution (PAA-17S) prepared in Synthesis Example 17 were stirred at room temperature for 20 hours, and the solid content (mass ratio of SPI-3 and PAA-17 was 2: A liquid crystal aligning agent-3 having 6% by mass of 8), 20% by mass of NMP, 58% by mass of GBL, and 16% by mass of BC was obtained.
(実施例4)
 合成例4で得られたポリイミド(SPI-4)2.00gに、GBL14.67gを加え、50℃で20時間攪拌した。攪拌終了時点でポリイミドは完全に溶解していた。さらにこの溶液にGBL3.32g、NMP6.67gBC6.67gを加え、50℃で20時間攪拌し、固形分(SPI-4)が6質量%、GBLが54質量%、NMPが20質量%、BCが20質量%のポリイミド溶液を得た。
 このポリイミド溶液20.0gと、合成例17の手法にて調製したポリアミック酸溶液(PAA-17S)80.0gを室温で20時間攪拌し、固形分(SPI-4とPAA-17の質量比が2:8)が6質量%、NMP20質量%、GBLが58質量%、BCが16質量%の液晶配向剤-4を得た。
Example 4
14.67 g of GBL was added to 2.00 g of polyimide (SPI-4) obtained in Synthesis Example 4, and the mixture was stirred at 50 ° C. for 20 hours. The polyimide was completely dissolved at the end of stirring. Furthermore, GBL 3.32g, NMP 6.67gBC 6.67g was added to this solution, and it stirred at 50 degreeC for 20 hours, solid content (SPI-4) was 6 mass%, GBL 54 mass%, NMP 20 mass%, and BC. A 20% by weight polyimide solution was obtained.
20.0 g of this polyimide solution and 80.0 g of the polyamic acid solution (PAA-17S) prepared by the method of Synthesis Example 17 were stirred at room temperature for 20 hours, and the solid content (the mass ratio of SPI-4 to PAA-17 was 2: 8) was 6 mass%, NMP 20 mass%, GBL 58 mass%, and BC 16 mass%.
(実施例5)
 合成例5で得られたポリイミド(SPI-5)2.00gに、GBL14.67gを加え、50℃で20時間攪拌した。攪拌終了時点でポリイミドは完全に溶解していた。さらにこの溶液にGBL3.32g、NMP6.67gBC6.67gを加え、50℃で20時間攪拌し、固形分(SPI-5)が6質量%、GBLが54質量%、NMPが20質量%、BCが20質量%のポリイミド溶液を得た。
 このポリイミド溶液30.0gと、合成例18の手法にて調製したポリアミック酸溶液(PAA-18S)70.0gを室温で20時間攪拌し、固形分(SPI-5とPAA-18の質量比が3:7)が6質量%、NMP20質量%、GBLが47質量%、BCが27質量%の液晶配向剤-5を得た。
(Example 5)
14.67 g of GBL was added to 2.00 g of polyimide (SPI-5) obtained in Synthesis Example 5, and the mixture was stirred at 50 ° C. for 20 hours. The polyimide was completely dissolved at the end of stirring. Furthermore, GBL 3.32g, NMP 6.67gBC 6.67g was added to this solution, and it stirred at 50 degreeC for 20 hours, solid content (SPI-5) was 6 mass%, GBL 54 mass%, NMP 20 mass%, and BC. A 20% by weight polyimide solution was obtained.
30.0 g of this polyimide solution and 70.0 g of the polyamic acid solution (PAA-18S) prepared by the method of Synthesis Example 18 were stirred at room temperature for 20 hours, and the solid content (the mass ratio of SPI-5 and PAA-18 was 3: 7) was 6 mass%, NMP 20 mass%, GBL 47 mass%, and BC 27 mass%.
(実施例6)
 合成例6で得られたポリイミド(SPI-6)2.00gに、GBL14.67gを加え、50℃で20時間攪拌した。攪拌終了時点でポリイミドは完全に溶解していた。さらにこの溶液にGBL3.32g、NMP6.67gBC6.67gを加え、50℃で20時間攪拌し、固形分(SPI-6)が6質量%、GBLが54質量%、NMPが20質量%、BCが20質量%のポリイミド溶液を得た。
 このポリイミド溶液30.0gと、合成例18の手法にて調製したポリアミック酸溶液(PAA-18S)70.0gを室温で20時間攪拌し、固形分(SPI-6とPAA-18の質量比が3:7)が6質量%、NMP20質量%、GBLが47質量%、BCが27質量%の液晶配向剤-6を得た。
(Example 6)
14.67 g of GBL was added to 2.00 g of polyimide (SPI-6) obtained in Synthesis Example 6, and the mixture was stirred at 50 ° C. for 20 hours. The polyimide was completely dissolved at the end of stirring. Furthermore, GBL 3.32g, NMP 6.67gBC 6.67g was added to this solution, and it stirred at 50 degreeC for 20 hours, solid content (SPI-6) was 6 mass%, GBL 54 mass%, NMP 20 mass%, and BC. A 20% by weight polyimide solution was obtained.
30.0 g of this polyimide solution and 70.0 g of the polyamic acid solution (PAA-18S) prepared by the method of Synthesis Example 18 were stirred at room temperature for 20 hours, and the solid content (the mass ratio of SPI-6 and PAA-18 was 3: 7) was obtained, 6% by mass of NMP, 20% by mass of NMP, 47% by mass of GBL, and 27% by mass of BC, and liquid crystal aligning agent-6 was obtained.
(実施例7)
 合成例7で得られたポリイミド(SPI-7)2.00gに、GBL14.67gを加え、50℃で20時間攪拌した。攪拌終了時点でポリイミドは完全に溶解していた。さらにこの溶液にGBL3.32g、NMP6.67g、BC6.67gを加え、50℃で20時間攪拌し、固形分(SPI-7)が6質量%、GBLが54質量%、NMPが20質量%、BCが20質量%のポリイミド溶液を得た。
 このポリイミド溶液30.0gと、合成例18の手法にて調製したポリアミック酸溶液(PAA-18S)70.0gを室温で20時間攪拌し、固形分(SPI-7とPAA-18の質量比が3:7)が6質量%、NMP20質量%、GBLが47質量%、BCが27質量%の液晶配向剤-7を得た。
(Example 7)
14.67 g of GBL was added to 2.00 g of the polyimide (SPI-7) obtained in Synthesis Example 7, and the mixture was stirred at 50 ° C. for 20 hours. The polyimide was completely dissolved at the end of stirring. Further, 3.32 g of GBL, 6.67 g of NMP, and 6.67 g of BC were added to this solution, followed by stirring at 50 ° C. for 20 hours. The solid content (SPI-7) was 6% by mass, GBL was 54% by mass, NMP was 20% by mass, A polyimide solution having a BC of 20% by mass was obtained.
30.0 g of this polyimide solution and 70.0 g of the polyamic acid solution (PAA-18S) prepared by the method of Synthesis Example 18 were stirred at room temperature for 20 hours, and the solid content (the mass ratio of SPI-7 and PAA-18 was 3: 7) was 6 mass%, NMP 20 mass%, GBL 47 mass%, and BC 27 mass%.
(実施例8)
 合成例8で得られたポリイミド(SPI-8)2.00gに、GBL14.67gを加え、50℃で20時間攪拌した。攪拌終了時点でポリイミドは完全に溶解していた。さらにこの溶液にGBL3.32g、NMP6.67gBC6.67gを加え、50℃で20時間攪拌し、固形分(SPI-8)が6質量%、GBLが54質量%、NMPが20質量%、BCが20質量%のポリイミド溶液を得た。
 このポリイミド溶液30.0gと、合成例18の手法にて調製したポリアミック酸溶液(PAA-18S)70.0gを室温で20時間攪拌し、固形分(SPI-8とPAA-18の質量比が3:7)が6質量%、NMP20質量%、GBLが47質量%、BCが27質量%の液晶配向剤-8を得た。
(Example 8)
14.67 g of GBL was added to 2.00 g of the polyimide (SPI-8) obtained in Synthesis Example 8, and the mixture was stirred at 50 ° C. for 20 hours. The polyimide was completely dissolved at the end of stirring. Furthermore, GBL 3.32g, NMP 6.67gBC 6.67g was added to this solution, and it stirred at 50 degreeC for 20 hours, solid content (SPI-8) was 6 mass%, GBL 54 mass%, NMP 20 mass%, and BC. A 20% by weight polyimide solution was obtained.
30.0 g of this polyimide solution and 70.0 g of the polyamic acid solution (PAA-18S) prepared by the method of Synthesis Example 18 were stirred at room temperature for 20 hours, and the solid content (the mass ratio of SPI-8 to PAA-18 was 3: 7) was 6 mass%, NMP 20 mass%, GBL 47 mass%, and BC 27 mass%.
(実施例9)
 合成例9で得られたポリイミド(SPI-9)2.00gに、GBL14.67gを加え、50℃で20時間攪拌した。攪拌終了時点でポリイミドは完全に溶解していた。さらにこの溶液にGBL3.32g、NMP6.67gBC6.67gを加え、50℃で20時間攪拌し、固形分(SPI-9)が6質量%、GBLが54質量%、NMPが20質量%、BCが20質量%のポリイミド溶液を得た。
 このポリイミド溶液30.0gと、合成例19の手法にて調製したポリアミック酸溶液(PAA-18S)70.0gを室温で20時間攪拌し、固形分(SPI-9とPAA-18の質量比が3:7)が6質量%、NMP20質量%、GBLが47質量%、BCが27質量%の液晶配向剤-9を得た。
Example 9
To 2.00 g of the polyimide (SPI-9) obtained in Synthesis Example 9, 14.67 g of GBL was added and stirred at 50 ° C. for 20 hours. The polyimide was completely dissolved at the end of stirring. Furthermore, GBL 3.32g, NMP 6.67gBC 6.67g was added to this solution, and it stirred at 50 degreeC for 20 hours, solid content (SPI-9) was 6 mass%, GBL 54 mass%, NMP 20 mass%, and BC. A 20% by weight polyimide solution was obtained.
30.0 g of this polyimide solution and 70.0 g of the polyamic acid solution (PAA-18S) prepared by the method of Synthesis Example 19 were stirred at room temperature for 20 hours, and the solid content (the mass ratio of SPI-9 to PAA-18 was 3: 7) was 6 mass%, NMP 20 mass%, GBL 47 mass%, and BC 27 mass%.
(実施例10)
 実施例6記載の手法で得られるSPI-6のポリイミド溶液(固形分が6質量%、GBLが54質量%、NMPが20質量%、BCが20質量%)30.0gと、合成例17の手法にて調製したポリアミック酸溶液(PAA-17S)70.0gを室温で20時間攪拌し、固形分(SPI-10とPAA-17の質量比が3:7)が6質量%、NMP20質量%、GBLが57.5質量%、BCが16.5質量%の液晶配向剤-10を得た。
(Example 10)
SPI-6 polyimide solution obtained by the method described in Example 6 (solid content 6 mass%, GBL 54 mass%, NMP 20 mass%, BC 20 mass%) 30.0 g, 70.0 g of the polyamic acid solution (PAA-17S) prepared by the method was stirred at room temperature for 20 hours, the solid content (mass ratio of SPI-10 and PAA-17 was 3: 7) was 6% by mass, and NMP was 20% by mass. Thus, a liquid crystal aligning agent-10 having a GBL of 57.5% by mass and a BC of 16.5% by mass was obtained.
(実施例11)
 合成例10で得られたポリイミド(SPI-10)2.00gに、GBL14.67gを加え、50℃で20時間攪拌した。攪拌終了時点でポリイミドは完全に溶解していた。さらにこの溶液にGBL3.32g、NMP6.67gBC6.67gを加え、50℃で20時間攪拌し、固形分(SPI-10)が6質量%、GBLが54質量%、NMPが20質量%、BCが20質量%の溶液を得た。
 このポリイミド溶液30.0gと、合成例17の手法にて調製したポリアミック酸溶液(PAA-17S)70.0gを室温で20時間攪拌し、固形分(SPI-10とPAA-17の質量比が3:7)が6質量%、NMP20質量%、GBLが57.5質量%、BCが16.5質量%の液晶配向剤-11を得た。
(Example 11)
To 2.00 g of the polyimide (SPI-10) obtained in Synthesis Example 10, 14.67 g of GBL was added and stirred at 50 ° C. for 20 hours. The polyimide was completely dissolved at the end of stirring. Furthermore, GBL 3.32g, NMP 6.67gBC 6.67g was added to this solution, and it stirred at 50 degreeC for 20 hours, solid content (SPI-10) was 6 mass%, GBL 54 mass%, NMP 20 mass%, and BC. A 20% by weight solution was obtained.
30.0 g of this polyimide solution and 70.0 g of the polyamic acid solution (PAA-17S) prepared by the method of Synthesis Example 17 were stirred at room temperature for 20 hours, and the solid content (the mass ratio of SPI-10 to PAA-17 was 3: 7) was 6 mass%, NMP 20 mass%, GBL 57.5 mass%, and BC 16.5 mass%.
(実施例12)
 合成例11で得られたポリイミド(SPI-11)2.00gに、GBL14.67gを加え、50℃で20時間攪拌した。攪拌終了時点でポリイミドは完全に溶解していた。さらにこの溶液にGBL3.32g、NMP6.67gBC6.67gを加え、50℃で20時間攪拌し、固形分(SPI-11)が6質量%、GBLが54質量%、NMPが20質量%、BCが20質量%の溶液を得た。
 このポリイミド溶液30.0gと、合成例17の手法にて調製したポリアミック酸溶液(PAA-17S)70.0gを室温で20時間攪拌し、固形分(SPI-11とPAA-17の質量比が3:7)が6質量%、NMP20質量%、GBLが57.5質量%、BCが16.5質量%の液晶配向剤-12を得た。
(Example 12)
To 2.00 g of the polyimide (SPI-11) obtained in Synthesis Example 11, 14.67 g of GBL was added and stirred at 50 ° C. for 20 hours. The polyimide was completely dissolved at the end of stirring. Furthermore, GBL 3.32g, NMP 6.67gBC 6.67g was added to this solution, and it stirred at 50 degreeC for 20 hours, solid content (SPI-11) was 6 mass%, GBL 54 mass%, NMP 20 mass%, and BC. A 20% by weight solution was obtained.
30.0 g of this polyimide solution and 70.0 g of the polyamic acid solution (PAA-17S) prepared by the method of Synthesis Example 17 were stirred at room temperature for 20 hours, and the solid content (the mass ratio of SPI-11 to PAA-17 was 3: 7) was 6 mass%, NMP 20 mass%, GBL 57.5 mass%, and BC 16.5 mass% liquid crystal aligning agent-12.
(実施例13)
 実施例6記載の手法で得られるSPI-6のポリイミド溶液(固形分が6質量%、GBLが54質量%、NMPが20質量%、BCが20質量%)30.0gと、合成例19の手法にて調製したポリアミック酸溶液(PAA-19S)30.0gを室温で20時間攪拌し、固形分(SPI-6とPAA-19の質量比が5:5)が6質量%、NMP20質量%、GBLが45.0質量%、BCが25.0質量%の液晶配向剤-13を得た。
(Example 13)
SPI-6 polyimide solution obtained by the method described in Example 6 (solid content 6% by mass, GBL 54% by mass, NMP 20% by mass, BC 20% by mass) 30.0 g, 30.0 g of the polyamic acid solution (PAA-19S) prepared by the method was stirred at room temperature for 20 hours, the solid content (mass ratio of SPI-6 and PAA-19 was 5: 5) was 6% by mass, and NMP was 20% by mass. Thus, a liquid crystal aligning agent-13 having a GBL of 45.0% by mass and a BC of 25.0% by mass was obtained.
(実施例14)
 実施例11記載の手法で得られるSPI-10のポリイミド溶液(固形分が6質量%、GBLが54質量%、NMPが20質量%、BCが20質量%)30.0gと、合成例17の手法にて調製したポリアミック酸溶液(PAA-17S)30.0gを室温で20時間攪拌し、固形分(SPI-10とPAA-17の質量比が5:5)が6質量%、NMP20質量%、GBLが56.5質量%、BCが17.5質量%の液晶配向剤-14を得た。
(Example 14)
SPI-10 polyimide solution obtained by the method described in Example 11 (solid content 6% by mass, GBL 54% by mass, NMP 20% by mass, BC 20% by mass) 30.0 g, 30.0 g of the polyamic acid solution (PAA-17S) prepared by the method was stirred at room temperature for 20 hours, the solid content (mass ratio of SPI-10 and PAA-17 was 5: 5) was 6% by mass, and NMP was 20% by mass. Thus, a liquid crystal aligning agent-14 having a GBL of 56.5% by mass and a BC of 17.5% by mass was obtained.
(実施例15)
 合成例5で得られたポリイミド(SPI-5)0.4gと合成例6で得られたポリイミド(SPI-6)1.6gを混合し、GBL14.67gを加え、50℃で20時間攪拌した。攪拌終了時点でポリイミドは完全に溶解していた。さらにこの溶液にGBL3.32g、NMP6.67gBC6.67gを加え、50℃で20時間攪拌し、固形分(SPI-5とSPI-6の質量比が2:8)が6質量%、GBLが54質量%、NMPが20質量%、BCが20質量%の溶液を得た。
 このポリイミド溶液30.0gと、合成例18にて調製したポリアミック酸溶液(PAA-18S)70.0gを室温で20時間攪拌し、固形分(SPI-5/SPI-6/PAA-18:質量比=6/24/70)が6質量%、NMP20質量%、GBLが47質量%、BCが27質量%の液晶配向剤-15を得た。
(Example 15)
0.4 g of the polyimide (SPI-5) obtained in Synthesis Example 5 and 1.6 g of the polyimide (SPI-6) obtained in Synthesis Example 6 were mixed, 14.67 g of GBL was added, and the mixture was stirred at 50 ° C. for 20 hours. . The polyimide was completely dissolved at the end of stirring. Further, 3.32 g of GBL and 6.67 g of NMP were added to this solution, and the mixture was stirred at 50 ° C. for 20 hours. A solution containing 20% by mass, 20% by mass of NMP and 20% by mass of BC was obtained.
30.0 g of this polyimide solution and 70.0 g of the polyamic acid solution (PAA-18S) prepared in Synthesis Example 18 were stirred at room temperature for 20 hours to obtain a solid content (SPI-5 / SPI-6 / PAA-18: mass). Ratio = 6/24/70) was 6 mass%, NMP 20 mass%, GBL 47 mass%, and BC 27 mass%.
(実施例16)
 合成例5で得られたポリイミド(SPI-5)0.4gと合成例7で得られたポリイミド(SPI-7)1.6gを混合し、GBL14.67gを加え、50℃で20時間攪拌した。攪拌終了時点でポリイミドは完全に溶解していた。さらにこの溶液にGBL3.32g、NMP6.67gBC6.67gを加え、50℃で20時間攪拌し、固形分(SPI-5とSPI-7の質量比が2:8)が6質量%、GBLが54質量%、NMPが20質量%、BCが20質量%の溶液を得た。
 このポリイミド溶液30.0gと、合成例18にて調製したポリアミック酸溶液(PAA-18S)70.0gを室温で20時間攪拌し、固形分(SPI-5/SPI-7/PAA-18:質量比=6/24/70)が6質量%、NMP20質量%、GBLが47質量%、BCが27質量%の液晶配向剤-16を得た。
(Example 16)
0.4 g of the polyimide (SPI-5) obtained in Synthesis Example 5 and 1.6 g of the polyimide (SPI-7) obtained in Synthesis Example 7 were mixed, 14.67 g of GBL was added, and the mixture was stirred at 50 ° C. for 20 hours. . The polyimide was completely dissolved at the end of stirring. Further, 3.32 g of GBL and 6.67 g of NMP were added to this solution, and the mixture was stirred at 50 ° C. for 20 hours. A solution containing 20% by mass, 20% by mass of NMP and 20% by mass of BC was obtained.
30.0 g of this polyimide solution and 70.0 g of the polyamic acid solution (PAA-18S) prepared in Synthesis Example 18 were stirred at room temperature for 20 hours to obtain a solid content (SPI-5 / SPI-7 / PAA-18: mass). Ratio = 6/24/70) was 6 mass%, NMP 20 mass%, GBL 47 mass%, and BC 27 mass%.
(実施例17)
 合成例8で得られたポリイミド(SPI-8)0.4gと合成例9で得られたポリイミド(SPI-9)1.6gを混合し、GBL14.67gを加え、50℃で20時間攪拌した。攪拌終了時点でポリイミドは完全に溶解していた。さらにこの溶液にGBL3.32g、NMP6.67gBC6.67gを加え、50℃で20時間攪拌し、固形分(SPI-8とSPI-9の質量比が2:8)が6質量%、GBLが54質量%、NMPが20質量%、BCが20質量%の溶液を得た。
 このポリイミド溶液30.0gと、合成例18にて調製したポリアミック酸溶液(PAA-18S)70.0gを室温で20時間攪拌し、固形分(SPI-8/SPI-9/PAA-18:質量比=6/24/70)が6質量%、NMP20質量%、GBLが47質量%、BCが27質量%の液晶配向剤-17を得た。
(Example 17)
0.4 g of the polyimide (SPI-8) obtained in Synthesis Example 8 and 1.6 g of the polyimide (SPI-9) obtained in Synthesis Example 9 were mixed, 14.67 g of GBL was added, and the mixture was stirred at 50 ° C. for 20 hours. . The polyimide was completely dissolved at the end of stirring. Further, 3.32 g of GBL and 6.67 g of NMP were added to this solution, and the mixture was stirred at 50 ° C. for 20 hours. A solution containing 20% by mass, 20% by mass of NMP and 20% by mass of BC was obtained.
30.0 g of this polyimide solution and 70.0 g of the polyamic acid solution (PAA-18S) prepared in Synthesis Example 18 were stirred at room temperature for 20 hours to obtain a solid content (SPI-8 / SPI-9 / PAA-18: mass). Ratio = 6/24/70) was 6 mass%, NMP 20 mass%, GBL 47 mass%, and BC 27 mass%.
(実施例18)
 合成例5で得られたポリイミド(SPI-5)1.6gと合成例6で得られたポリイミド(SPI-6)0.4gを混合し、GBL14.67gを加え、50℃で20時間攪拌した。攪拌終了時点でポリイミドは完全に溶解していた。さらにこの溶液にGBL3.32g、NMP6.67gBC6.67gを加え、50℃で20時間攪拌し、固形分(SPI-4とSPI-5の質量比が2:8)が6質量%、GBLが54質量%、NMPが20質量%、BCが20質量%の溶液を得た。
 このポリイミド溶液30.0gと、合成例18にて調製したポリアミック酸溶液(PAA-18S)70.0gを室温で20時間攪拌し、固形分(SPI-5/SPI-6/PAA-18:質量比=24/6/70)が6質量%、NMP20質量%、GBLが47質量%、BCが27質量%の液晶配向剤-18を得た。
(Example 18)
1.6 g of polyimide (SPI-5) obtained in Synthesis Example 5 and 0.4 g of polyimide (SPI-6) obtained in Synthesis Example 6 were mixed, 14.67 g of GBL was added, and the mixture was stirred at 50 ° C. for 20 hours. . The polyimide was completely dissolved at the end of stirring. Furthermore, GBL 3.32g and NMP 6.67gBC 6.67g were added to this solution, and it stirred at 50 degreeC for 20 hours, solid content (mass ratio of SPI-4 and SPI-5 is 2: 8) is 6 mass%, GBL is 54 A solution containing 20% by mass, 20% by mass of NMP and 20% by mass of BC was obtained.
30.0 g of this polyimide solution and 70.0 g of the polyamic acid solution (PAA-18S) prepared in Synthesis Example 18 were stirred at room temperature for 20 hours to obtain a solid content (SPI-5 / SPI-6 / PAA-18: mass). Ratio = 24/6/70) was 6 mass%, NMP 20 mass%, GBL 47 mass%, and BC 27 mass%.
(実施例19)
 実施例18記載の手法で得られるSPI-5とSPI-6の混合ポリイミド溶液(SPI-5:SPI-6=8:2、固形分が6質量%、GBLが54質量%、NMPが20質量%、BCが20質量%)30.0gと、合成例19にて調製したポリアミック酸溶液(PAA-19S)70.0gを室温で20時間攪拌し、固形分(SPI-5/SPI-6/PAA-19:質量比=24/6/70)が6質量%、NMP20質量%、GBLが47質量%、BCが27質量%の液晶配向剤-19を得た。
(Example 19)
Mixed polyimide solution of SPI-5 and SPI-6 obtained by the method described in Example 18 (SPI-5: SPI-6 = 8: 2, solid content 6 mass%, GBL 54 mass%, NMP 20 mass) %, BC is 20% by mass) and 30.0 g of the polyamic acid solution (PAA-19S) prepared in Synthesis Example 19 were stirred at room temperature for 20 hours to obtain a solid content (SPI-5 / SPI-6 / PAA-19: mass ratio = 24/6/70) was 6 mass%, NMP 20 mass%, GBL 47 mass%, and BC 27 mass%.
(実施例20)
 実施例1記載の手法で得られるSPI-1のポリイミド溶液(固形分が6質量%、GBLが54質量%、NMPが20質量%、BCが20質量%)を本発明の液晶配向剤―20として評価に用いた。
(Example 20)
A polyimide solution of SPI-1 obtained by the method described in Example 1 (solid content: 6% by mass, GBL: 54% by mass, NMP: 20% by mass, BC: 20% by mass) Liquid crystal aligning agent-20 of the present invention Used for evaluation.
(実施例21)
 実施例6記載の手法で得られるSPI-6のポリイミド溶液(固形分が6質量%、GBLが54質量%、NMPが20質量%、BCが20質量%)を本発明の液晶配向剤―21として評価に用いた。
(Example 21)
A polyimide solution of SPI-6 (solid content: 6% by mass, GBL: 54% by mass, NMP: 20% by mass, BC: 20% by mass) obtained by the method described in Example 6 is the liquid crystal aligning agent-21 of the present invention. Used for evaluation.
(比較例1)
 合成例12で得られたポリイミド(SPI-12)2.00gに、GBL14.67gを加え、50℃で20時間攪拌した。攪拌終了時点でポリイミドは完全に溶解していた。さらにこの溶液にGBL18.66gを加え、50℃で20時間攪拌し、固形分(SPI-12)が6質量%、GBLが94質量%の溶液を得た。
 このポリイミド溶液20.0gと、合成例17の手法にて調製したポリアミック酸溶液(PAA-17S)80.0gを室温で20時間攪拌し、固形分(SPI-12とPAA-17の質量比が2:8)が6質量%、NMP18質量%、GBLが62.0質量%、BCが12.0質量%の液晶配向剤-22を得た。
(Comparative Example 1)
To 2.00 g of the polyimide (SPI-12) obtained in Synthesis Example 12, 14.67 g of GBL was added and stirred at 50 ° C. for 20 hours. The polyimide was completely dissolved at the end of stirring. Further, 18.66 g of GBL was added to this solution and stirred at 50 ° C. for 20 hours to obtain a solution having a solid content (SPI-12) of 6 mass% and a GBL of 94 mass%.
20.0 g of this polyimide solution and 80.0 g of a polyamic acid solution (PAA-17S) prepared by the method of Synthesis Example 17 were stirred at room temperature for 20 hours, and the solid content (mass ratio of SPI-12 and PAA-17 was 2: 8) was 6 mass%, NMP 18 mass%, GBL 62.0 mass%, and BC 12.0 mass%.
(比較例2)
 合成例13で得られたポリイミド(SPI-13)2.00gに、GBL14.67gを加え、50℃で20時間攪拌した。攪拌終了時点でポリイミドは完全に溶解していた。さらにこの溶液にGBL3.32g、NMP6.67gBC6.67gを加え、50℃で20時間攪拌し、固形分(SPI-13)が6質量%、GBLが54質量%、NMPが20質量%、BCが20質量%の溶液を得た。
 このポリイミド溶液30.0gと、合成例18の手法にて調製したポリアミック酸溶液(PAA-18S)70.0gを室温で20時間攪拌し、固形分(SPI-13とPAA-18の質量比が3:7)が6質量%、NMP20質量%、GBLが47.0質量%、BCが27.0質量%の液晶配向剤-23を得た。
(Comparative Example 2)
14.67 g of GBL was added to 2.00 g of the polyimide (SPI-13) obtained in Synthesis Example 13, and the mixture was stirred at 50 ° C. for 20 hours. The polyimide was completely dissolved at the end of stirring. Furthermore, GBL 3.32g, NMP 6.67gBC 6.67g was added to this solution, and it stirred at 50 degreeC for 20 hours, solid content (SPI-13) was 6 mass%, GBL 54 mass%, NMP 20 mass%, and BC. A 20% by weight solution was obtained.
30.0 g of this polyimide solution and 70.0 g of the polyamic acid solution (PAA-18S) prepared by the method of Synthesis Example 18 were stirred at room temperature for 20 hours, and the solid content (the mass ratio of SPI-13 to PAA-18 was 3: 7) was 6 mass%, NMP 20 mass%, GBL 47.0 mass%, and BC 27.0 mass%.
(比較例3)
 合成例14で得られたポリイミド(SPI-14)2.00gに、GBL14.67gを加え、50℃で20時間攪拌した。攪拌終了時点でポリイミドは完全に溶解していた。さらにこの溶液にGBL3.32g、NMP6.67gBC6.67gを加え、50℃で20時間攪拌し、固形分(SPI-14)が6質量%、GBLが54質量%、NMPが20質量%、BCが20質量%の溶液を得た。
 このポリイミド溶液30.0gと、合成例18の手法にて調製したポリアミック酸溶液(PAA-18S)70.0gを室温で20時間攪拌し、固形分(SPI-14とPAA-18の質量比が3:7)が6質量%、NMP20質量%、GBLが47.0質量%、BCが27.0質量%の液晶配向剤-24を得た。
(Comparative Example 3)
14.67 g of GBL was added to 2.00 g of polyimide (SPI-14) obtained in Synthesis Example 14, and the mixture was stirred at 50 ° C. for 20 hours. The polyimide was completely dissolved at the end of stirring. Furthermore, GBL 3.32g, NMP 6.67gBC 6.67g was added to this solution, and it stirred at 50 degreeC for 20 hours, solid content (SPI-14) was 6 mass%, GBL 54 mass%, NMP 20 mass%, and BC. A 20% by weight solution was obtained.
30.0 g of this polyimide solution and 70.0 g of polyamic acid solution (PAA-18S) prepared by the method of Synthesis Example 18 were stirred at room temperature for 20 hours, and the solid content (the mass ratio of SPI-14 to PAA-18 was 3: 7) was obtained, 6% by mass of NMP, 20% by mass of NMP, 47.0% by mass of GBL, and 27.0% by mass of BC.
(比較例4)
 合成例15で得られたポリイミド(SPI-15)2.00gに、GBL14.67gを加え、50℃で20時間攪拌した。攪拌終了時点でポリイミドは完全に溶解していた。さらにこの溶液にGBL3.32g、NMP6.67gBC6.67gを加え、50℃で20時間攪拌し、固形分(SPI-15)が6質量%、GBLが54質量%、NMPが20質量%、BCが20質量%の溶液を得た。
 このポリイミド溶液30.0gと、合成例18の手法にて調製したポリアミック酸溶液(PAA-18S)70.0gを室温で20時間攪拌し、固形分(SPI-15とPAA-18の質量比が3:7)が6質量%、NMP20質量%、GBLが47.0質量%、BCが27.0質量%の液晶配向剤-25を得た。
(Comparative Example 4)
14.67 g of GBL was added to 2.00 g of the polyimide (SPI-15) obtained in Synthesis Example 15, and the mixture was stirred at 50 ° C. for 20 hours. The polyimide was completely dissolved at the end of stirring. Furthermore, GBL 3.32g, NMP 6.67gBC 6.67g was added to this solution, and it stirred at 50 degreeC for 20 hours, solid content (SPI-15) was 6 mass%, GBL 54 mass%, NMP 20 mass%, and BC. A 20% by weight solution was obtained.
30.0 g of this polyimide solution and 70.0 g of the polyamic acid solution (PAA-18S) prepared by the method of Synthesis Example 18 were stirred at room temperature for 20 hours, and the solid content (the mass ratio of SPI-15 to PAA-18 was A liquid crystal aligning agent-25 having a ratio of 3: 7) of 6% by mass, NMP of 20% by mass, GBL of 47.0% by mass, and BC of 27.0% by mass was obtained.
(比較例5)
 合成例16で得られたポリイミド(SPI-16)2.00gに、GBL14.67gを加え、50℃で20時間攪拌した。攪拌終了時点でポリイミドは完全に溶解していた。さらにこの溶液にGBL3.32g、NMP6.67gBC6.67gを加え、50℃で20時間攪拌し、固形分(SPI-16)が6質量%、GBLが54質量%、NMPが20質量%、BCが20質量%の溶液を得た。
 このポリイミド溶液30.0gと、合成例18の手法にて調製したポリアミック酸溶液(PAA-18S)70.0gを室温で20時間攪拌し、固形分(SPI-16とPAA-18の質量比が3:7)が6質量%、NMP20質量%、GBLが47.0質量%、BCが27.0質量%の液晶配向剤-26を得た。
(Comparative Example 5)
14.67 g of GBL was added to 2.00 g of the polyimide (SPI-16) obtained in Synthesis Example 16, and the mixture was stirred at 50 ° C. for 20 hours. The polyimide was completely dissolved at the end of stirring. Furthermore, GBL 3.32g, NMP 6.67gBC 6.67g was added to this solution, and it stirred at 50 degreeC for 20 hours, solid content (SPI-16) was 6 mass%, GBL 54 mass%, NMP 20 mass%, and BC. A 20% by weight solution was obtained.
30.0 g of this polyimide solution and 70.0 g of the polyamic acid solution (PAA-18S) prepared by the method of Synthesis Example 18 were stirred at room temperature for 20 hours, and the solid content (the mass ratio of SPI-16 to PAA-18 was 3: 7) was 6 mass%, NMP 20 mass%, GBL 47.0 mass%, and BC 27.0 mass%.
(比較例6)
 比較例5記載の手法で得られるSPI-16のポリイミド溶液(固形分が6質量%、GBLが54質量%、NMPが20質量%、BCが20質量%)30.0gと、合成例17の手法にて調製したポリアミック酸溶液(PAA-17S)70.0gを室温で20時間攪拌し、固形分(SPI-16とPAA-17の質量比が3:7)が6質量%、NMP20質量%、GBLが57.5質量%、BCが16.5質量%の液晶配向剤-27を得た。
(Comparative Example 6)
SPI-16 polyimide solution obtained by the method described in Comparative Example 5 (solid content 6% by mass, GBL 54% by mass, NMP 20% by mass, BC 20% by mass) 30.0 g, 70.0 g of the polyamic acid solution (PAA-17S) prepared by the above method was stirred at room temperature for 20 hours, the solid content (mass ratio of SPI-16 and PAA-17 was 3: 7) was 6% by mass, and NMP was 20% by mass. Thus, a liquid crystal aligning agent-27 having a GBL content of 57.5 mass% and a BC content of 16.5 mass% was obtained.
(比較例7)
 比較例5記載の手法で得られるSPI-16のポリイミド溶液(固形分が6質量%、GBLが54質量%、NMPが20質量%、BCが20質量%)30.0gと、合成例19の手法にて調製したポリアミック酸溶液(PAA-19S)70.0gを室温で20時間攪拌し、固形分(SPI-16とPAA-19の質量比が3:7)が6質量%、NMP20質量%、GBLが47.0質量%、BCが27.0質量%の液晶配向剤-28を得た。
(Comparative Example 7)
SPI-16 polyimide solution obtained by the method described in Comparative Example 5 (solid content 6% by mass, GBL 54% by mass, NMP 20% by mass, BC 20% by mass) 30.0 g, 70.0 g of the polyamic acid solution (PAA-19S) prepared by the method was stirred at room temperature for 20 hours, the solid content (mass ratio of SPI-16 to PAA-19 was 3: 7) was 6% by mass, and NMP was 20% by mass. Thus, a liquid crystal aligning agent-28 having a GBL of 47.0% by mass and a BC of 27.0% by mass was obtained.
(比較例8)
 合成例20で得られたポリイミド(SPI-17)2.00gに、GBL14.67gを加え、50℃で20時間攪拌した。攪拌終了時点でポリイミドは完全に溶解していた。さらにこの溶液にGBL3.32g、NMP6.67gBC6.67gを加え、50℃で20時間攪拌し、固形分(SPI-20)が6質量%、GBLが54質量%、NMPが20質量%、BCが20質量%の溶液を得た。
 このポリイミド溶液30.0gと、合成例18の手法にて調製したポリアミック酸溶液(PAA-18S)70.0gを室温で20時間攪拌し、固形分(SPI-16とPAA-18の質量比が3:7)が6質量%、NMP20質量%、GBLが47.0質量%、BCが27.0質量%の液晶配向剤-29を得た。
(Comparative Example 8)
14.67 g of GBL was added to 2.00 g of the polyimide (SPI-17) obtained in Synthesis Example 20, and the mixture was stirred at 50 ° C. for 20 hours. The polyimide was completely dissolved at the end of stirring. Furthermore, GBL 3.32g, NMP 6.67gBC 6.67g was added to this solution, and it stirred at 50 degreeC for 20 hours, solid content (SPI-20) was 6 mass%, GBL 54 mass%, NMP 20 mass%, and BC. A 20% by weight solution was obtained.
30.0 g of this polyimide solution and 70.0 g of the polyamic acid solution (PAA-18S) prepared by the method of Synthesis Example 18 were stirred at room temperature for 20 hours, and the solid content (the mass ratio of SPI-16 to PAA-18 was A liquid crystal aligning agent-29 having 3: 7) of 6% by mass, NMP of 20% by mass, GBL of 47.0% by mass and BC of 27.0% by mass was obtained.
(比較例9)
 比較例2記載の手法で得られるSPI-13のポリイミド溶液(固形分が6質量%、GBLが54質量%、NMPが20質量%、BCが20質量%)を液晶配向剤―30として評価に用いた。
(Comparative Example 9)
Evaluation of SPI-13 polyimide solution (solid content 6% by mass, GBL 54% by mass, NMP 20% by mass, BC 20% by mass) obtained by the method described in Comparative Example 2 as liquid crystal aligning agent-30 Using.
(比較例10)
 比較例5記載の手法で得られるSPI-16のポリイミド溶液(固形分が6質量%、GBLが54質量%、NMPが20質量%、BCが20質量%)を液晶配向剤―31として評価に用いた。
(Comparative Example 10)
Evaluation of SPI-16 polyimide solution (solid content 6 mass%, GBL 54 mass%, NMP 20 mass%, BC 20 mass%) obtained by the method described in Comparative Example 5 as liquid crystal aligning agent-31 Using.
 上記の実施例1~21及び比較例1~10の各液晶配向剤の調製で使用した、ポリアミック酸:PAA-1~PAA-20及びポリイミド:SPI-1~SPI-17についてのテトラカルボン酸二水物成分、ジアミン成分及びイミド化率を表3に示す。
 また、実施例1~21及び比較例1~10の各液晶配向剤におけるポリアミック酸とポリイミドとの混合比率を表4-1および表4-2に示す。
 さらに、実施例1~21及び比較例1~10の各液晶配向剤を使用して作製した液晶セルで得られた、プレチルト角、高温高湿試験及びバックライトエージング耐性の結果を表5に示した。
Two tetracarboxylic acids for polyamic acids: PAA-1 to PAA-20 and polyimides: SPI-1 to SPI-17 used in the preparation of the liquid crystal aligning agents of Examples 1 to 21 and Comparative Examples 1 to 10 above. Table 3 shows the water component, the diamine component, and the imidization ratio.
Tables 4-1 and 4-2 show the mixing ratio of polyamic acid and polyimide in each of the liquid crystal aligning agents of Examples 1 to 21 and Comparative Examples 1 to 10.
Further, Table 5 shows the results of the pretilt angle, the high-temperature and high-humidity test, and the backlight aging resistance obtained with the liquid crystal cells produced using the liquid crystal aligning agents of Examples 1 to 21 and Comparative Examples 1 to 10. It was.
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
 実施例1~21は、本発明の液晶配向剤が使用された液晶配向膜の特性を示すが、電圧保持率で評価される高温・高湿試験やバックライトエージング耐性が良好であり、またプレチルトのばらつきが少ない結果が得られている。一方、比較例1~10は、電圧保持率で評価される高温・高湿試験やバックライトエージング耐性が劣り、また、プレチルト角のばらつきも大きい。 Examples 1 to 21 show the characteristics of the liquid crystal alignment film using the liquid crystal aligning agent of the present invention, but they have good high temperature and high humidity tests evaluated by voltage holding ratio and backlight aging resistance, and pretilt. A result with little variation in the above is obtained. On the other hand, Comparative Examples 1 to 10 are inferior in the high-temperature / high-humidity test and backlight aging resistance evaluated by the voltage holding ratio, and the pretilt angle varies greatly.
 本発明の液晶配向剤を用いて作製した液晶表示素子は、信頼性の高い液晶表示デバイスとすることができ、TN液晶表示素子、STN液晶表示素子、TFT液晶表示素子、OCB液晶表示素子など、種々の方式による表示素子に好適に用いられる。

 なお、2010年4月30日に出願された日本特許出願2010-105933号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The liquid crystal display element produced using the liquid crystal aligning agent of the present invention can be a highly reliable liquid crystal display device, such as a TN liquid crystal display element, an STN liquid crystal display element, a TFT liquid crystal display element, an OCB liquid crystal display element, It is suitably used for display elements using various methods.

The entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2010-105933 filed on April 30, 2010 are incorporated herein as the disclosure of the specification of the present invention. Is.

Claims (15)

  1.  下記式一般式[1]にて表されるジアミン及び下記一般式[2]にて表されるジアミンを含有するジアミン成分と、テトラカルボン酸二無水物とを反応して得られるポリアミック酸成分をイミド化した可溶性ポリイミドを含有することを特徴とする液晶配向剤。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Xは芳香環を表し、R1は炭素数1~5のアルキレンを表し、R2は炭素数1~4の炭化水素基を表す。)
    Figure JPOXMLDOC01-appb-C000002
    (式中、R1は単結合、二価の有機基を表し、X1、X2、X3はそれぞれ独立してベンゼン環又はシクロヘキサン環を表し、p,q,rはそれぞれ独立して0又は1の整数を表し、R2は、水素原子、炭素数1~22のアルキル基又はステロイド骨格を有する炭素数12~25である2価の有機基を表す。)
    A polyamic acid component obtained by reacting a diamine represented by the following general formula [1] and a diamine component containing the diamine represented by the following general formula [2] with tetracarboxylic dianhydride: A liquid crystal aligning agent comprising an imidized soluble polyimide.
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, X represents an aromatic ring, R 1 represents alkylene having 1 to 5 carbon atoms, and R 2 represents a hydrocarbon group having 1 to 4 carbon atoms.)
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, R 1 represents a single bond or a divalent organic group, X 1 , X 2 , and X 3 each independently represent a benzene ring or a cyclohexane ring, and p, q, and r each independently represents 0. Or an integer of 1 and R 2 represents a hydrogen atom, an alkyl group having 1 to 22 carbon atoms, or a divalent organic group having 12 to 25 carbon atoms having a steroid skeleton.)
  2.  一般式[1]におけるXがフェニレン基であり、Rが炭素数1~5の直鎖アルキレン基であり、Rがメチル基又はエチル基である請求項1に記載の液晶配向剤。 2. The liquid crystal aligning agent according to claim 1, wherein X in the general formula [1] is a phenylene group, R 1 is a linear alkylene group having 1 to 5 carbon atoms, and R 2 is a methyl group or an ethyl group.
  3.  一般式[1]におけるXがフェニレン基であり、R1はメチレン基又はエチレン基である請求項1に記載の液晶配向剤。 The liquid crystal aligning agent according to claim 1 , wherein X in the general formula [1] is a phenylene group, and R 1 is a methylene group or an ethylene group.
  4.  一般式[2]におけるR1が-O-、-NHCO-、-COO-及び-CH2O-から選ばれる二価の有機基、R2が水素原子又は炭素数1~18の直鎖アルキル基である請求項1~3のいずれかに記載の液晶配向剤。 In the general formula [2], R 1 is a divalent organic group selected from —O—, —NHCO—, —COO— and —CH 2 O—, and R 2 is a hydrogen atom or a linear alkyl having 1 to 18 carbon atoms. The liquid crystal aligning agent according to any one of claims 1 to 3, which is a group.
  5.  一般式[2]におけるR1が-O-及び-NHCO-から選ばれる二価の有機基であり、pが0~1であり、qが0~1であり、rが0であり、Rが水素原子又は炭素数1~18の直鎖アルキル基である請求項1~3のいずれかに記載の液晶配向剤。 R 1 in the general formula [2] is a divalent organic group selected from —O— and —NHCO—, p is 0 to 1, q is 0 to 1, r is 0, R 4. The liquid crystal aligning agent according to claim 1, wherein 2 is a hydrogen atom or a linear alkyl group having 1 to 18 carbon atoms.
  6.  一般式[2]が式[3]で表されるジアミンである請求項1~5のいずれかに記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000003
    6. The liquid crystal aligning agent according to claim 1, wherein the general formula [2] is a diamine represented by the formula [3].
    Figure JPOXMLDOC01-appb-C000003
  7.  前記ジアミン成分が、式[1]で表されるジアミンを5~95モル%含有する請求項1~6のいずれかに記載の液晶配向剤。 The liquid crystal aligning agent according to any one of claims 1 to 6, wherein the diamine component contains 5 to 95 mol% of the diamine represented by the formula [1].
  8.  前記ジアミン成分が、式[2]で表されるジアミンが5~60モル%含有し、かつ式[1]で表されるジアミン1モルに対して0.1~1.2モル含有する請求項1~6いずれかに記載の液晶配向剤。 The diamine component contains 5 to 60 mol% of the diamine represented by the formula [2] and 0.1 to 1.2 mol relative to 1 mol of the diamine represented by the formula [1]. The liquid crystal aligning agent according to any one of 1 to 6.
  9.  前記可溶性ポリイミドが、ポリアミック酸をイミド化率10~85%でイミド化したポリイミドである請求項1~8のいずれかに記載の液晶配向剤。 The liquid crystal aligning agent according to any one of claims 1 to 8, wherein the soluble polyimide is a polyimide obtained by imidizing polyamic acid at an imidization ratio of 10 to 85%.
  10.  前記可溶性ポリイミドが有機溶媒に溶解して含有され、前記可溶性ポリイミドが1~10質量%含有する請求項1~9のいずれかに記載の液晶配向剤。 10. The liquid crystal aligning agent according to claim 1, wherein the soluble polyimide is contained by being dissolved in an organic solvent, and the soluble polyimide is contained in an amount of 1 to 10% by mass.
  11.  さらに、式[1]で表されるジアミン及び式[2]で表されるジアミンを同時に含むことのないジアミン成分とテトラカルボン酸二無水物成分とを反応して得られるポリアミック酸を含有する請求項1~10のいずれかに記載の液晶配向剤。 And a polyamic acid obtained by reacting a diamine component not containing the diamine represented by the formula [1] and the diamine represented by the formula [2] with a tetracarboxylic dianhydride component. Item 11. The liquid crystal aligning agent according to any one of Items 1 to 10.
  12.  前記ポリアミック酸が、前記可溶性ポリイミドの100質量部に対して10~10000質量部含有される請求項11に記載の液晶配向剤。 The liquid crystal aligning agent according to claim 11, wherein the polyamic acid is contained in an amount of 10 to 10,000 parts by mass with respect to 100 parts by mass of the soluble polyimide.
  13.  前記有機溶媒が、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-ビニルピロリドン、ジメチルスルホキシド、テトラメチル尿素、ジメチルスルホン、ヘキサメチルリン酸トリアミド、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、又はそれらの混合物である請求項10~12のいずれかに記載の液晶配向剤。 The organic solvent is N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-vinylpyrrolidone, dimethyl The liquid crystal aligning agent according to any one of claims 10 to 12, which is sulfoxide, tetramethylurea, dimethylsulfone, hexamethylphosphoric triamide, γ-butyrolactone, 1,3-dimethyl-imidazolidinone, or a mixture thereof.
  14.  前記請求項1~13いずれかに記載の液晶配向剤を用いて得られる液晶配向膜。 A liquid crystal alignment film obtained using the liquid crystal aligning agent according to any one of claims 1 to 13.
  15.  請求項14に記載の液晶配向膜を具備した液晶表示素子。 A liquid crystal display device comprising the liquid crystal alignment film according to claim 14.
PCT/JP2011/060468 2010-04-30 2011-04-28 Liquid crystal aligning agent, liquid crystal alignment film using same, and liquid crystal display element WO2011136371A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012512926A JP5900328B2 (en) 2010-04-30 2011-04-28 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element using the same
KR1020127030847A KR101819769B1 (en) 2010-04-30 2011-04-28 Liquid crystal aligning agent, liquid crystal alignment film using same, and liquid crystal display element
CN201180031943.5A CN102947754B (en) 2010-04-30 2011-04-28 Aligning agent for liquid crystal, the liquid crystal orientation film using it and liquid crystal display cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010105933 2010-04-30
JP2010-105933 2010-04-30

Publications (1)

Publication Number Publication Date
WO2011136371A1 true WO2011136371A1 (en) 2011-11-03

Family

ID=44861663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060468 WO2011136371A1 (en) 2010-04-30 2011-04-28 Liquid crystal aligning agent, liquid crystal alignment film using same, and liquid crystal display element

Country Status (5)

Country Link
JP (1) JP5900328B2 (en)
KR (1) KR101819769B1 (en)
CN (1) CN102947754B (en)
TW (1) TWI549990B (en)
WO (1) WO2011136371A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146890A1 (en) * 2012-03-29 2013-10-03 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
KR20140114749A (en) * 2013-03-19 2014-09-29 제이에스알 가부시끼가이샤 Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display device, polymer and compound
CN104245843A (en) * 2012-01-26 2014-12-24 日产化学工业株式会社 Method for preparing polyimide varnish, and liquid crystal aligning agent
CN104292184A (en) * 2013-07-18 2015-01-21 达兴材料股份有限公司 Phenylenediamine compound, polymer, composition for alignment film, and liquid crystal display module
JP2018538563A (en) * 2016-05-13 2018-12-27 エルジー・ケム・リミテッド Liquid crystal aligning agent composition, method for producing liquid crystal aligning film, liquid crystal aligning film and liquid crystal display element using the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109369613B (en) * 2018-12-04 2020-07-31 中节能万润股份有限公司 Diamine compound for preparing liquid crystal aligning agent and application thereof
KR102202484B1 (en) * 2019-04-23 2021-01-13 피아이첨단소재 주식회사 Polyimide film, flexible metal foil clad laminate comprising the same and manufacturing method of polyimide film
CN110734771B (en) 2019-09-27 2022-12-20 江苏三月科技股份有限公司 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005105892A1 (en) * 2004-04-28 2005-11-10 Nissan Chemical Industries, Ltd. Liquid-crystal aligning agent, liquid-crystal alignment film comprising the same, and liquid-crystal element
WO2008078796A1 (en) * 2006-12-27 2008-07-03 Nissan Chemical Industries, Ltd. Liquid crystal aligning agent, liquid crystal alignment film using the same, and liquid crystal display element

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4171543B2 (en) 1998-09-03 2008-10-22 日産化学工業株式会社 Polyimide precursor, polyimide, and alignment treatment agent for liquid crystal cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005105892A1 (en) * 2004-04-28 2005-11-10 Nissan Chemical Industries, Ltd. Liquid-crystal aligning agent, liquid-crystal alignment film comprising the same, and liquid-crystal element
WO2008078796A1 (en) * 2006-12-27 2008-07-03 Nissan Chemical Industries, Ltd. Liquid crystal aligning agent, liquid crystal alignment film using the same, and liquid crystal display element

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104245843A (en) * 2012-01-26 2014-12-24 日产化学工业株式会社 Method for preparing polyimide varnish, and liquid crystal aligning agent
CN104380188A (en) * 2012-03-29 2015-02-25 日产化学工业株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
KR20140141689A (en) * 2012-03-29 2014-12-10 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2013146890A1 (en) * 2012-03-29 2013-10-03 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JPWO2013146890A1 (en) * 2012-03-29 2015-12-14 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
CN104380188B (en) * 2012-03-29 2017-05-31 日产化学工业株式会社 Aligning agent for liquid crystal, liquid crystal orientation film and liquid crystal display cells
TWI600683B (en) * 2012-03-29 2017-10-01 日產化學工業股份有限公司 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
KR102009543B1 (en) * 2012-03-29 2019-08-09 닛산 가가쿠 가부시키가이샤 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP2014206720A (en) * 2013-03-19 2014-10-30 Jsr株式会社 Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display device, polymer and compound
KR20140114749A (en) * 2013-03-19 2014-09-29 제이에스알 가부시끼가이샤 Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display device, polymer and compound
KR102078613B1 (en) * 2013-03-19 2020-02-18 제이에스알 가부시끼가이샤 Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display device, polymer and compound
CN104292184A (en) * 2013-07-18 2015-01-21 达兴材料股份有限公司 Phenylenediamine compound, polymer, composition for alignment film, and liquid crystal display module
JP2018538563A (en) * 2016-05-13 2018-12-27 エルジー・ケム・リミテッド Liquid crystal aligning agent composition, method for producing liquid crystal aligning film, liquid crystal aligning film and liquid crystal display element using the same
US11347110B2 (en) 2016-05-13 2022-05-31 Lg Chem, Ltd Composition for liquid crystal alignment agent, manufacturing method of liquid crystal alignment film, liquid crystal alignment film using the same and liquid crystal display device

Also Published As

Publication number Publication date
CN102947754A (en) 2013-02-27
TWI549990B (en) 2016-09-21
KR101819769B1 (en) 2018-01-17
KR20130059354A (en) 2013-06-05
TW201300438A (en) 2013-01-01
CN102947754B (en) 2016-06-01
JPWO2011136371A1 (en) 2013-07-22
JP5900328B2 (en) 2016-04-06

Similar Documents

Publication Publication Date Title
JP6070958B2 (en) Novel diamine, polymer, liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display device using the same
JP5900328B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element using the same
JP5578075B2 (en) Liquid crystal alignment treatment agent and liquid crystal display element using the same
JP7027890B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JP6083388B2 (en) Method for producing liquid crystal aligning agent
JP5633714B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2014104015A1 (en) Novel diamine, polymer, liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using same
WO2016125870A1 (en) Liquid crystal orienting agent, liquid crystal display element, and method for producing liquid crystal display element
WO2012029763A1 (en) Diamine, polyimide precursor, polyimide, liquid-crystal alignment material, liquid-crystal alignment film, and liquid-crystal display element
KR101708962B1 (en) Liquid crystal aligning agent and liquid crystal display element using same
JP7081488B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
WO2011129414A1 (en) Liquid crystal aligning agent, liquid crystal alignment film produced using same, and liquid crystal display element
JPWO2014024893A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2013081064A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element using same
TWI756256B (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element using the same
JP5434927B2 (en) Liquid crystal alignment treatment agent and liquid crystal display element using the same
WO2013146890A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2014030587A1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
WO2014092170A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2014024892A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP6056754B2 (en) Liquid crystal alignment treatment agent and liquid crystal display element using the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180031943.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11775152

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012512926

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127030847

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11775152

Country of ref document: EP

Kind code of ref document: A1