WO2011136211A1 - Operation device - Google Patents

Operation device Download PDF

Info

Publication number
WO2011136211A1
WO2011136211A1 PCT/JP2011/060147 JP2011060147W WO2011136211A1 WO 2011136211 A1 WO2011136211 A1 WO 2011136211A1 JP 2011060147 W JP2011060147 W JP 2011060147W WO 2011136211 A1 WO2011136211 A1 WO 2011136211A1
Authority
WO
WIPO (PCT)
Prior art keywords
concave mirror
user
real image
monitor
unit
Prior art date
Application number
PCT/JP2011/060147
Other languages
French (fr)
Japanese (ja)
Inventor
優介 鈴木
省吾 福島
伸裕 見市
眞人 鈴木
武之 酒井
健一郎 野坂
Original Assignee
パナソニック電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック電工株式会社 filed Critical パナソニック電工株式会社
Publication of WO2011136211A1 publication Critical patent/WO2011136211A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/0304Detection arrangements using opto-electronic means

Definitions

  • the present invention relates to an operation device that presents information used for operating a predetermined device to a user and receives an operation input from the user.
  • an operation device used for a user to operate a device for example, a device having an operation unit on the surface of the device main body such as a button type or a touch panel type for operation input by the user is known. (See Japanese Patent Application Publication No. 2009-260828).
  • the conventional operating device determines the operation content with respect to an apparatus, when a user directly inputs and operates an operation part.
  • the user needs to touch the operation unit in the conventional operation device, for example, the user is separated from the operation device, or the operation unit is provided between the user and the operation device.
  • the operation unit is provided between the user and the operation device.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide an operation device capable of presenting information used for operating a predetermined device to a user at a position closer to the user than the installation location. Is to provide.
  • the operating device of the present invention is an operating device that presents information used for operating a predetermined device to a user and receives an operation input from the user, and makes the information visible from the outside.
  • a display unit having a concave mirror provided so that an optical distance to the display medium is longer than a focal length, and using the concave mirror to form a real image of the information display medium in a space; and the user A detection unit that detects an operation input to the real image, and a determination unit that determines an operation content for the device in accordance with the operation input detected by the detection unit.
  • the operation apparatus further includes a distance adjusting unit that changes the optical distance between the information display medium and the concave mirror within a range longer than the focal length of the concave mirror.
  • the operating device includes an instruction unit that gives an instruction to change the position of the real image, and the distance adjustment unit sets the optical distance between the information display medium and the concave mirror in accordance with an instruction from the instruction unit. It is preferable to change.
  • the operation device includes a visual function measuring unit that measures a visual function state of the user, and the distance adjusting unit is configured to perform the information display medium and the concave mirror according to the visual function state measured by the visual function measuring unit. It is preferable to change the optical distance between them.
  • the display unit includes a beam splitter that is provided obliquely to the optical axis of the concave mirror and includes a split surface that divides the light into reflected light and transmitted light, and the beam splitter converts the reflected light into the reflected light. It is preferable that a real image of the information display medium is formed and presented to the user by reflecting the light to the concave mirror side and transmitting the light reflected by the concave mirror.
  • the operation device includes a monitor having a display surface on which the information display medium is displayed and projecting the information display medium displayed on the display surface, and the beam splitter is emitted from the monitor on the split surface.
  • the reflected light is divided into the reflected light and the transmitted light, and the reflected light projected onto the center point of the mirror surface of the concave mirror is inclined toward the monitor side with respect to the normal line at the center point.
  • a beam splitter and the concave mirror are arranged, and the display surface of the monitor is formed in a non-planar shape.
  • the display surface of the monitor is formed to be convex toward the side opposite to the beam splitter.
  • the operation device includes a monitor having a display surface on which the information display medium is displayed and projecting the information display medium displayed on the display surface, and the beam splitter is emitted from the monitor on the split surface.
  • the reflected light is divided into the reflected light and the transmitted light, and the reflected light projected onto the center point of the mirror surface of the concave mirror is inclined toward the monitor side with respect to the normal line at the center point. It is preferable that a beam splitter and the concave mirror are disposed, and the splitting surface of the beam splitter is formed to be non-planar.
  • the split surface of the beam splitter is formed to be convex toward the side opposite to the concave mirror.
  • the mirror surface of the concave mirror is formed as an aspherical surface.
  • the beam splitter is preferably a half mirror.
  • the real image of the information display medium can be formed so as to float in the space between the installation location of the operating device and the user, the information used for operating a predetermined device can be It can be presented to the user at a position closer to the user than the place. Thereby, in this invention, a user can perform operation input near.
  • FIG. 1 is a configuration diagram of an operating device according to Embodiment 1.
  • FIG. It is a figure which shows the operation screen of the operating device which concerns on the same as the above. It is the schematic explaining the 1st usage example of the operating device which concerns on the same as the above. It is the schematic explaining the 2nd usage example of the operating device which concerns on the same as the above. It is the schematic explaining the 3rd usage example of the operating device which concerns on the same as the above.
  • FIG. 6 is a configuration diagram of an operating device according to a second embodiment. It is a block diagram of the operating device which concerns on Embodiment 3.
  • FIG. FIG. 6 is a schematic diagram of an operating device according to a fourth embodiment.
  • FIG. 10 is a schematic diagram of an operating device according to a fifth embodiment. It is a figure explaining the design parameter of the operating device which concerns on the same as the above.
  • (a) shows a real image distortion grid when the viewing distance is 400 mm
  • (b) shows a real image distortion grid when the viewing distance is 410 mm.
  • FIG. 10 is a schematic diagram of an operating device according to a fifth embodiment. It is a figure explaining the design parameter of the operating device which concerns on the same as the above.
  • (a) shows a real image distortion grid when the viewing distance is 400 mm
  • (b) shows a real image distortion grid when the viewing distance is 410 mm. It is the schematic explaining the principle of a concave mirror.
  • FIG. 1 It is a figure which shows the positional relationship of the operation screen at the time of using a concave mirror and a real image. It is the schematic of the operating device of a comparative example.
  • (a) is a diagram showing a real image distortion grid when the viewing distance is 400 mm
  • (b) is a diagram showing a real image distortion grid when the viewing distance is 410 mm.
  • the operating device presents information used for operating a predetermined device to the user and accepts an operation input from the user.
  • the operating device of the present embodiment includes a monitor 1, a concave mirror 2, a half mirror 3, a detection unit 4, a determination unit 5, and a distance adjustment unit 6, and a predetermined device 9. It is connected to the.
  • the monitor 1 is configured to display an operation screen A as shown in FIG.
  • the monitor 1 is small, and a small flat panel display such as a liquid crystal display or an organic electro-luminescence display is used so that display contents can be easily controlled. Control for displaying the operation screen A is performed on the monitor 1 by, for example, a computer (not shown).
  • the monitor 1 displays an operation screen according to the optical distance a (see FIG. 14) between the operation screen A and the concave mirror 2 in order to present a later-described real image B to the user P with a certain brightness. It is possible to change the brightness of A.
  • the monitor 1 can also change the brightness of the operation screen A according to the preference of the user P.
  • the operation screen A is a screen used for the user P to operate the device 9.
  • a plurality of buttons Bt1 to Bt3 for receiving an operation input from the user P to the device 9 (hereinafter referred to as “device operation input”) are displayed.
  • buttons Bt4 and Bt5 for receiving an operation input for changing the position of a real image B (to be described later) from the user P (hereinafter referred to as “position change operation input”) are displayed. That is, the operation screen A has information necessary for the user P to operate the device 9 so as to be visible from the outside.
  • the operation screen A corresponds to an information display medium.
  • the concave mirror 2 shown in FIG. 1 is provided so that the optical distance a (see FIG. 14) between the operation screen A and the concave mirror 2 is longer than the focal length f (see FIG. 14) of the concave mirror 2.
  • the user P is located in front of the concave mirror 2 on the optical axis Lx.
  • the concave mirror 2 forms the real image B of the operation screen so as to float in the space between the concave mirror 2 and the user P, and presents the real image B of the operation screen to the user P.
  • the concave mirror 2 corresponds to a display unit, and the real image B of the operation screen corresponds to a real image of the information display medium.
  • FIGS. F in FIG. 14 is the focal position of the concave mirror 2.
  • a real image (inverted real image) B of the operation screen is formed in front of the concave mirror 2.
  • the optical distance b between the real image B of the operation screen and the concave mirror 2 is obtained by using the optical distance a between the operation screen A and the concave mirror 2 and the focal length f of the concave mirror 2.
  • B 1 B 2 of the real image B operation screen A is the size of the operation screen A
  • B 1 B 2 A 1 A 2 ⁇
  • FIG. 15 shows a value (b / f) in which the optical distance b is normalized by the focal length f with respect to a value (a / f) in which the optical distance a is normalized by the focal length f.
  • the half mirror 3 shown in FIG. 1 is provided obliquely to the optical axis Lx of the concave mirror 2 at an angle of 45 degrees.
  • the half mirror 3 reflects the light emitted from the operation screen A of the monitor 1 on the concave mirror 2 side in the direction of the optical axis Lx of the concave mirror 2, and transmits the light reflected by the concave mirror 2, thereby allowing the real image B of the operation screen to be transmitted. Is presented to the user P.
  • the monitor 1 presents the real image B of the operation screen to the user P without blocking the user's line of sight. Can do.
  • the half mirror 3 corresponds to the display unit together with the concave mirror 2.
  • the half mirror 3 operates on the space in front of the concave mirror 2 by reflecting the light from the operation screen A toward the concave mirror 2 and transmitting the light reflected by the concave mirror 2.
  • the light of the screen A can be imaged to form a real image B of the operation screen. Since the real image B of the operation screen is highly directional and the viewing angle at which the real image B of the operation screen can be viewed is narrow, the user P can only view the real image B of the operation screen from a narrow range near the optical axis Lx of the concave mirror 2. It can be visually recognized.
  • the detection unit 4 includes an imaging unit 41 and a processing unit 42.
  • the detection unit 4 corresponds to a detection unit and an instruction unit.
  • the imaging unit 41 is, for example, a CCD (Charge Coupled Device) camera or the like, and captures a space between the operation device and the user P where the real image B of the operation screen is formed at predetermined time intervals. Accordingly, when the user P performs an operation input while viewing the real image B on the operation screen, the imaging unit 41 can capture an operation related to the operation input of the user P.
  • CCD Charge Coupled Device
  • the processing unit 42 includes, for example, a computer microprocessor (MPU: Micro Processing Unit) as a main component, and detects within a range corresponding to each button Bt1 to Bt5 (see FIG. 2) on the captured image obtained by the imaging unit 41. It has a function to set an area. In other words, the range of the buttons Bt1 to Bt5 is presented to the user P by a graphic on the real image B of the operation screen, and the range corresponding to the graphic of the buttons Bt1 to Bt5 on the captured image obtained by capturing the real image B of the operation screen.
  • the detection area is set to.
  • the detection area includes an area corresponding to device operation input and an area corresponding to position change operation input.
  • the processing unit 42 acquires a captured image obtained by the imaging unit 41 every predetermined time.
  • the processing unit 42 calculates a pixel value difference for each pixel in the detection region between the acquired captured image and the captured image in the initial state (the state where there is no operation input), and the difference value of each pixel in the detection region. Find the sum of
  • the processing unit 42 compares the sum of difference values with a threshold value. When the sum of the difference values is larger than the threshold value, the processing unit 42 determines that there is an operation input corresponding to the detection area. When the sum of the difference values is equal to or smaller than the threshold value, the processing unit 42 determines that there is no operation input corresponding to the detection area. The processing unit 42 performs such determination for each detection region.
  • the processing unit 42 detects a device operation input when it is determined that there is a device operation input, and detects a position change operation input when it is determined that there is a position change operation input. Will do.
  • Information on the device operation input detected by the processing unit 42 is output from the processing unit 42 to the determination unit 5.
  • Information on the position change operation input detected by the processing unit 42 is output from the processing unit 42 to the distance adjustment unit 6.
  • the determination unit 5 includes a storage unit 51, a processing unit 52, and an output unit 53.
  • the storage unit 51 stores in advance a correspondence relationship between the device operation input of the user P and the operation content on the device 9.
  • the processing unit 52 uses, for example, a microprocessor of a computer as a main component, and acquires and determines the operation content corresponding to the device operation input detected by the detection unit 4 from the storage unit 51.
  • the processing unit 52 controls the output unit 53 to output information on the determined operation content to the device 9.
  • the distance adjusting unit 6 includes a holding plate 61, a linear guide 62, a feed screw 63, a pulley 64, a pulley belt 65, a motor 66, a control unit 67, and a storage unit 68, and moves the monitor 1. It is the drive device comprised so that it might make.
  • the monitor 1 is held on the holding plate 61.
  • the linear guide 62 supports the holding plate 61.
  • the motor 66 is an electronic motor serving as a drive source for the distance adjusting unit 6.
  • the pulley 64 and the pulley belt 65 transmit the rotational driving force of the motor 66 to the feed screw 63.
  • the control unit 67 uses, for example, a computer microprocessor as a main component, and controls the motor 66 in accordance with information input from the detection unit 4. As described above, the distance adjusting unit 6 realizes the movement of the monitor 1 in the vertical direction (the arrow direction in FIG. 1) by converting the rotational driving force generated by the motor 66 into a linear motion by the feed screw 63.
  • the computer used for the control unit 67 may be a general-purpose computer such as a personal computer or a dedicated computer.
  • the distance adjustment unit 6 can move the monitor 1 up and down according to the position change operation input information.
  • the optical distance a see FIG. 14
  • the optical distance b between the real image B of the operation screen and the concave mirror 2 ( Changes).
  • the moving range of the monitor 1 is limited to a range in which the optical distance a between the operation screen A and the concave mirror 2 is longer than the focal length f of the concave mirror 2.
  • the distance adjustment unit 6 moves the monitor 1 below the current state so that the operation screen A and the concave mirror 2 Is shortened.
  • the optical distance b between the real image B on the operation screen and the concave mirror 2 becomes longer, and the real image B on the operation screen is presented closer to the user P side than before.
  • the distance adjustment unit 6 moves the monitor 1 above the current state to increase the optical distance a. Thereby, the optical distance b becomes shorter, and the real image B of the operation screen is presented farther from the user P than before.
  • the concave mirror 2 forms a real image B of the operation screen so as to float in the space and presents it to the user P. Thereafter, the user P sees the real image B on the operation screen and inputs an operation in the manner of touching the touch panel.
  • the processing unit 42 detects a device operation input of the user P from the captured image of the imaging unit 41.
  • the processing unit 52 acquires the operation content corresponding to the device operation input detected by the detection unit 4 from the storage unit 51 and determines it. Information on the determined operation content is output from the output unit 53 to the device 9.
  • the processing unit 42 of the detection unit 4 detects a position change operation input from the captured image of the imaging unit 41
  • the processing unit 42 outputs information on the position change operation input to the distance adjustment unit 6.
  • the control unit 67 of the distance adjustment unit 6 moves the monitor 1 according to the information of the position change operation input from the detection unit 4. Thereby, the user P can adjust the position of the real image B on the operation screen to a position suitable for his / her visual function state.
  • a usage example of the operation device according to the present embodiment will be described.
  • a bathroom operation device such as a hot water operation device for a shower
  • the operating device is installed embedded in a wall W of a bathroom (shower room).
  • a real image B of the screen can be formed.
  • the user P can understand the information on the operation screen A by seeing the real image B of the operation screen even when the visibility is low by removing the glasses or contact lenses.
  • a kitchen operating device will be described as a second usage example.
  • a work space and a high temperature part are required near the cook (user P).
  • the cook can input an operation without directly touching the operation device.
  • the operation information is, for example, the temperature of the stove.
  • a cooking recipe may be displayed on the real image B of the operation screen.
  • the operation device of the present embodiment is used for, for example, a bank ATM or an automatic lock door authentication device
  • the operation device displays highly confidential information, and an operation input such as a password input is performed.
  • the user P can operate near the installation position of the operating device, and the directivity of the real image B of the operation screen is high. It is possible to prevent the input content from being easily viewed.
  • the real image B of the operation screen can be formed so as to float in the space between the installation location of the operation device and the user P, so that the predetermined device 9 is operated. Therefore, information used for the purpose can be displayed at a position closer to the user P than the installation location. Thereby, in the operating device of this embodiment, the user P can input operation nearby.
  • the directivity of the real image B on the operation screen can be increased, so that the viewing angle at which the real image B on the operation screen can be viewed can be limited.
  • the distance adjustment unit 6 changes the optical distance a between the operation screen A and the concave mirror 2 within a range longer than the focal length f of the concave mirror 2, thereby Since the real image B can be easily moved, the position of the real image B on the operation screen can be changed for each user P.
  • the distance adjustment unit 6 changes the optical distance a between the operation screen A and the concave mirror 2 in accordance with the position change operation input detected by the detection unit 4, whereby the operation screen The position of the real image B can be changed according to the preference of the user P.
  • the operation screen A when the half mirror 3 obliquely crosses the optical axis Lx of the concave mirror 2, the operation screen A itself is obstructive when the user P visually recognizes the real image B of the operation screen. Can be prevented.
  • the operation device of this embodiment can input operation without the user P touching the operation screen A directly, it is difficult for the user P to touch the operation screen A directly, or unsanitary. Even if it is, it is possible to input an operation without touching the operation screen A.
  • the operating device does not necessarily have a function of changing the optical distance a according to the position change operation input of the user P. That is, the position of the real image B on the operation screen may be fixed.
  • the operation device of the present modification can also be formed so that the real image B of the operation screen floats in the space between the installation location of the operation device and the user P.
  • the information used for operating the device 9 can be displayed at a position closer to the user P than the installation location, and as a result, the user P can perform operation input nearby.
  • the directivity of the real image B on the operation screen can be increased, the viewing angle at which the real image B on the operation screen can be viewed can be limited, and the information that the operation screen A has can be used only by the user P. Can be presented. The same applies to the following second and third embodiments.
  • the operating device may use a flat object such as paper instead of the operation screen A as an information display medium used for operating the device 9, or a three-dimensional object. May be used.
  • the planar object and the three-dimensional object can be moved by being directly or indirectly attached to the holding plate 61 of the distance adjusting unit 6. Even when a planar object or a three-dimensional object is used as the information display medium, the operation device transfers the real image of the information display medium (planar object, three-dimensional object) to the space between the installation position of the operation device and the user P.
  • the information used for operating the predetermined device 9 can be presented to the user P at a position closer to the user P than the installation location, and as a result, the user P can be operated and input nearby.
  • the directivity of the real image of the information display medium can be increased, the viewing angle at which the real image of the information display medium can be viewed can be limited, and the information that the information display medium has can be limited to the user P only. Can be presented. The same applies to the following second and third embodiments.
  • a method of moving only the monitor 1 (operation screen A), a method of moving only the concave mirror 2, and both the monitor 1 and the concave mirror 2 are used.
  • the operation device according to the present embodiment employs a method in which only the monitor 1 is moved using the distance adjustment unit 6.
  • the operating device includes a concave mirror driving unit that moves the concave mirror 2 in the direction of the optical axis Lx of the concave mirror 2 instead of the distance adjusting unit 6 or together with the distance adjusting unit 6. Also good.
  • the operating device of this modification can move the real image B of the operating screen by moving the concave mirror 2.
  • the position of the eye of the user P with respect to the concave mirror 2 is limited to a certain range. For this reason, when the concave mirror 2 is moved, the position of the eye of the user P also needs to be moved. Accordingly, among the above three methods, the method of moving only the monitor 1 is the best and practical. That is, the distance adjusting unit 6 of this embodiment is superior to the concave mirror driving unit in that it is not necessary to move the position of the eye of the user P, and is realistic. The same applies to the following second and third embodiments.
  • the monitor 1 may be provided separately from the operating device. According to the operation device of this modification, the same effect can be obtained by performing the same operation as the operation device of the present embodiment using the commercially available monitor 1. The same applies to the following second and third embodiments.
  • the operation device according to the second embodiment has a function of changing the optical distance a between the operation screen A and the concave mirror 2 according to the visual function state of the user P. (See FIG. 1).
  • the operating device of the present embodiment will be described with reference to FIG.
  • symbol is attached
  • the operating device of this embodiment includes a visual function measuring unit 7 as shown in FIG.
  • the visual function measuring unit 7 is an infrared optometer (autorefractometer), for example, and measures the visual function state of the user P.
  • Visual functions include a focus adjustment function (visual acuity), pupil response, and convergence.
  • the focus adjustment function refers to a function that always forms an image on the retina by changing the refractive power of the lens according to the distance between the lens and the target.
  • Pupil reaction refers to adjusting the pupil in response to a stimulus such as a change in the amount of light. Convergence means that when looking at a nearby visual target, the eye muscles are placed on the inner side (nose side) so that the nearby line of sight is in focus.
  • Information on the visual function state measured by the visual function measuring unit 7 is output to the distance adjusting unit 6.
  • the storage unit 68 of the distance adjusting unit 6 of the present embodiment stores in advance the correspondence between the optical distance a between the operation screen A and the concave mirror 2 and the visual function state of the user P.
  • the control unit 67 of the present embodiment acquires the value of the optical distance a corresponding to the information from the storage unit 68. Thereafter, the control unit 67 moves the monitor 1 so that the actual optical distance a becomes a value acquired from the storage unit 68. As a result, the optical distance a between the operation screen A and the concave mirror 2 changes according to the visual function state measured by the visual function measuring unit 7.
  • the operation of the operating device will be described.
  • the concave mirror 2 forms a real image B of the operation screen so as to float in the space and presents it to the user P.
  • the visual function measuring unit 7 measures the visual function state of the user P.
  • Information on the visual function state measured by the visual function measuring unit 7 is output from the visual function measuring unit 7 to the distance adjusting unit 6.
  • the control unit 67 of the distance adjustment unit 6 acquires the value of the optical distance a corresponding to the information input from the visual function measurement unit 7 from the storage unit 68.
  • the control unit 67 moves the monitor 1 so that the actual optical distance a becomes a value acquired from the storage unit 68.
  • the processing unit 42 detects a device operation input of the user P from the captured image of the imaging unit 41. Thereafter, the processing unit 52 of the determination unit 5 acquires the operation content corresponding to the device operation input detected by the detection unit 4 from the storage unit 51 and determines it. Information on the determined operation content is output from the output unit 53 to the device 9.
  • the usage example of the operation device of the present embodiment is the same as the first to third usage examples of the first embodiment.
  • the operation device is used in a bathroom or kitchen, or used in a bank ATM or a building auto-lock door. be able to.
  • the distance adjusting unit 6 changes the optical distance a between the operation screen A and the concave mirror 2 according to the visual function state measured by the visual function measuring unit 7.
  • the real image B of the operation screen can be moved to a position suitable for the visual function state of the person P.
  • the operating device does not necessarily have a function of changing the optical distance a according to the position change operation input. That is, the operating device of this modification changes the optical distance a between the operation screen A and the concave mirror 2 only in accordance with the visual function state measured by the visual function measuring unit 7. Even in the operation device according to this modification, the distance adjustment unit 6 changes the optical distance a between the operation screen A and the concave mirror 2 according to the visual function state measured by the visual function measurement unit 7. The position of the real image B on the operation screen can be moved to a position suitable for the visual function state of P.
  • the operating device according to the third embodiment is different from the operating device according to the second embodiment (see FIG. 6) in that the operating device according to the third embodiment includes a translucent member 8 provided at a position where the real image B of the operation screen is formed. .
  • the operating device of this embodiment will be described with reference to FIG.
  • symbol is attached
  • the translucent member 8 is a member in which, for example, transparent plastic or glass is formed in a plate shape, and the normal direction is set along the optical axis Lx of the concave mirror 2. That is, the translucent member 8 is installed so that the operation screen A overlaps the plane of the translucent member 8. The translucent member 8 moves to the moved position when the position of the real image B on the operation screen changes.
  • the usage example of the operating device of the present embodiment is the same as that of the second embodiment, and the operating device can be used for a bathroom or kitchen, a bank ATM, a building auto-lock door, or the like.
  • the translucent member 8 is provided at a position where the real image B of the operation screen is formed, so that the real image B of the operation screen is formed to float in the space. Since the user P can easily recognize the position of the real image B on the operation screen, the operability of the user P can be improved.
  • the operating device according to the fourth embodiment is different from the operating device according to the first embodiment (broken line in FIG. 8) in that the half mirror 3a is raised as shown in FIG.
  • symbol is attached
  • the display surface 11 for displaying the operation screen A is not so as to reduce distortion of the real image B of the operation screen imaged by the concave mirror 2a as compared with the case where the display surface is a flat surface. It is formed in a plane (curved surface). Specifically, the display surface 11 of the monitor 1a is formed in a spherical surface that is convex toward the side opposite to the half mirror 3a. The display surface 11 may be a non-planar surface other than the spherical surface as described above as long as the distortion of the real image B on the operation screen can be reduced.
  • the concave mirror 2a and the half mirror 3a of this embodiment are arranged as shown in FIG. That is, the concave mirror 2a and the half mirror 3a so that the reflected light 33 projected onto the center point 22 of the mirror surface 21 of the concave mirror 2a is inclined to the monitor 1a side (upper side in FIG. 8) with respect to the normal line 23 at the center point 22. Is arranged. In other words, the reflected light 33 is inclined counterclockwise with respect to the normal 23 around the Y axis in FIG.
  • the split surface 31 of the half mirror 3a rises in a direction (left side in FIG. 8) facing the mirror surface 21 of the concave mirror 2a as compared to the half mirror 3.
  • the half mirror 3a is arranged as described above with respect to the concave mirror 2a, and the angle ⁇ 1 formed by the split surface 31 and the optical axis of the monitor 1a at the point 32 of the split surface 31 is 45 ° with respect to the monitor 1a. It is arranged to be less than.
  • a point 32 on the dividing surface 31 is a point at which the reflected light 33 projected onto the center point 22 of the mirror surface 21 of the concave mirror 2a is generated.
  • another beam splitter having a plane dividing surface may be used.
  • the mirror surface 21 of the concave mirror 2a of this embodiment is formed in an elliptical surface (aspherical surface) so as to reduce distortion of the real image B on the operation screen from the spherical surface. That is, the concave mirror 2a of the present embodiment is an elliptical mirror (aspherical mirror) shaped so as to reduce the distortion of the real image B on the operation screen as compared with a spherical mirror.
  • the mirror surface 21 of the concave mirror 2a is not necessarily an elliptical surface as described above, but may be an aspherical surface that reduces distortion of the real image B on the operation screen rather than a spherical surface.
  • the monitor 1a is arranged so that the height L1 from the lowest position of the concave mirror 2a is movable between 182 mm and 185 mm, and the length of the concave mirror 2a in the Y-axis direction is set.
  • the length L2 is 160 mm
  • the length L3 in the Z-axis direction is 120 mm.
  • the distance L4 between the concave mirror 2a (center point 22) and the half mirror 3a (point 32) is 50 mm
  • the distance L5 between the concave mirror 2a (center point 22) and the observation point 8 is 800 mm.
  • said height L1, length L2, L3, and distance L4, L5 are examples, and are not limited to said value, It sets suitably according to a use.
  • the real image (solid line in FIG. 10) in the operating device of the present embodiment is compared with the case where the display surface 911 of the monitor 91 is a flat surface as shown in FIG. 16 (see the solid line in FIG. 17). , Distortion is reduced.
  • the half mirror 93 shown in FIG. 16 rises in a direction (left side in FIG. 16) facing the mirror surface 921 (21) of the concave mirror 92 (2a) as compared to the half mirror 3.
  • the half mirror 93 divides the light emitted from the monitor 91 into reflected light and transmitted light by a flat dividing surface 931.
  • FIG. 10 the real image in FIG. 10 in the operating device of the present embodiment is compared with the case where the display surface 911 of the monitor 91 is a flat surface as shown in FIG. 16 (see the solid line in FIG. 17). , Distortion is reduced.
  • the half mirror 93 shown in FIG. 16 rises in a direction (left side in FIG. 16) facing the mirror surface 921 (21) of the
  • FIG. 10 shows that the radius of curvature of the display surface 11 of the monitor 1a is 50 mm and the conic constant k is ⁇ 5.0, the radius of curvature of the mirror surface 21 of the concave mirror 2a is 250 mm, and the conic constant k.
  • the distortion grating of the real image in the case where is ⁇ 0.3 is shown.
  • FIG. 10A shows a case where the viewing distance L6 is 400 mm
  • FIG. 10B shows a case where the viewing distance L6 is 410 mm.
  • the curvature radii and the conic constant k of the monitor 1a and the concave mirror 2a are not limited to the above values, and are appropriately set according to the application.
  • the broken lines in FIGS. 10 and 17 indicate the distortion grid displayed on the display surface 11.
  • the half mirror 3a is arranged so that the reflected light 33 projected onto the center point 22 of the mirror surface 21 of the concave mirror 2a is inclined to the monitor 1a side with respect to the normal line 23, the display surface 11 of the monitor 1a.
  • the distortion of the real image B on the operation screen can be reduced compared to the case of the monitor 91 having a flat display surface 911.
  • the concave mirror 2a and the half mirror 3a are such that the reflected light 33 projected onto the center point 22 of the mirror surface 21 of the concave mirror 2a is inclined to the monitor 1a side with respect to the normal 23.
  • the display surface 11 of the monitor 1a is formed in a non-planar shape.
  • the display surface 11 of the monitor 1a is formed in a convex shape on the side opposite to the half mirror 3a, so that distortion of the visual target can be reduced more easily.
  • the distortion of the target can be more easily reduced because the mirror surface 21 of the concave mirror 2a is aspherical.
  • the optical distance between the display surface 11 and the concave mirror 2a can be changed by the distance adjusting unit 6 within a range longer than the focal length of the concave mirror 2a.
  • the operating device according to the fifth embodiment is different from the operating device according to the first embodiment (broken line in FIG. 11) in that the half mirror 3b is raised as shown in FIG.
  • symbol is attached
  • the split surface 31 of the half mirror 3b is formed to be non-planar (curved surface) so as to reduce distortion of the real image B of the operation screen imaged by the concave mirror 2b as compared with the case where the split surface is a flat surface.
  • the split surface 31 of the half mirror 3b is formed in a spherical surface that is convex to the opposite side to the concave mirror 2b.
  • the dividing surface 31 may be a non-planar surface other than the spherical surface as described above as long as the distortion of the real image B on the operation screen can be reduced.
  • the concave mirror 2b and the half mirror 3b of this embodiment are arranged as shown in FIG. That is, the concave mirror 2b and the half mirror 3b so that the reflected light 23 projected onto the center point 22 of the mirror surface 21 of the concave mirror 2b is inclined to the monitor 1 side (upper side in FIG. 11) with respect to the normal line 23 at the center point 22. Is arranged. In other words, the reflected light 33 is inclined counterclockwise with respect to the normal line 23 around the Y axis in FIG.
  • the split surface 31 of the half mirror 3b rises in a direction (left side in FIG. 11) facing the mirror surface 21 of the concave mirror 2b as compared to the half mirror 3.
  • the half mirror 3b is arranged as described above with respect to the concave mirror 2b, and the angle ⁇ 2 formed by the tangent 34 of the dividing surface 31 and the optical axis of the monitor 1 at the point 32 of the dividing surface 31 with respect to the monitor 1. Is arranged to be less than 45 °.
  • a point 32 on the dividing surface 31 is a point at which the reflected light 33 projected onto the center point 22 of the mirror surface 21 of the concave mirror 2b is generated.
  • another beam splitter having a split surface having the above shape may be used.
  • the mirror surface 21 of the concave mirror 2b of this embodiment is formed in an elliptical surface (aspherical surface) so as to reduce distortion of the real image B on the operation screen from the spherical surface. That is, the concave mirror 2b of the present embodiment is an elliptical mirror (aspherical mirror) shaped so as to reduce distortion of the real image B on the operation screen as compared with the case of a spherical mirror.
  • the mirror surface 21 of the concave mirror 2b does not necessarily have to be an elliptical surface as described above, and may be an aspherical surface that reduces distortion of the real image B on the operation screen rather than a spherical surface.
  • the monitor 1 is arranged so that the height L1 of the concave mirror 2b from the lowest position is movable between 182 mm and 185 mm, and the length of the concave mirror 2b in the Y-axis direction is set.
  • the length L2 is 160 mm
  • the length L3 in the Z-axis direction is 120 mm.
  • the distance L4 between the concave mirror 2b (center point 22) and the half mirror 3b (point 22) is 50 mm
  • the distance L5 between the concave mirror 2b (center point 22) and the observation point 8 is 800 mm.
  • said height L1, length L2, L3, and distance L4, L5 are examples, and are not limited to said value, It sets suitably according to a use.
  • FIG. 13 the real image (solid line in FIG. 13) in the operating device of the present embodiment is compared with the case where the dividing surface 931 of the half mirror 93 as shown in FIG. 16 is a plane (see the solid line in FIG. 17).
  • FIG. 12 shows, as an example of this embodiment, the radius of curvature of the split surface 31 of the half mirror 3b is 5000 mm, the conic constant k is ⁇ 50.0, the radius of curvature of the mirror surface 21 of the concave mirror 2b is 250 mm, and the conic constant.
  • the distortion grating of the real image when k is ⁇ 0.78 is shown.
  • FIG. 13A shows a case where the viewing distance L6 is 400 mm
  • FIGS. 13 and 17 show a case where the viewing distance L6 is 410 mm.
  • the curvature radii and the conic constant k of the monitor 1 and the concave mirror 2b are not limited to the above values, and are appropriately set according to the application.
  • the broken lines in FIGS. 13 and 17 indicate the distortion grid displayed on the display surface 11.
  • the split surface of the half mirror 3b By making 31 a non-planar surface (spherical surface), the distortion of the real image B on the operation screen can be reduced as compared with the case of the half mirror 93 in which the dividing surface 931 is a flat surface.
  • the concave mirror 2b and the half mirror 3b are arranged such that the reflected light 33 projected onto the center point 22 of the mirror surface 21 of the concave mirror 2b is inclined to the monitor 1 side with respect to the normal 23.
  • the dividing surface 31 of the half mirror 3b is formed to be non-planar.
  • the division surface 31 of the half mirror 3b is formed in a convex shape on the opposite side to the concave mirror 2b, so that distortion of the visual target can be reduced more easily.
  • the distortion of the target can be reduced more easily.
  • the distance adjusting unit 6 can change the optical distance between the image formed by the half mirror 3b and the concave mirror 2b within a range longer than the focal length of the concave mirror 2b.
  • the detection unit 4 of each embodiment may detect three-dimensional coordinates in the real space of the operation position by the user P's finger using outputs of two position detection sensors (not shown). For example, when a camera is used as the position detection sensor, the detection unit 4 recognizes the fingertip portion of the user P in the image for each of two images captured by each camera, and obtains the coordinates of the fingertip portion in the image. .
  • the detecting unit 4 that has obtained the coordinates in the image obtains a coordinate range in the real space corresponding to the obtained coordinates in accordance with the camera arrangement and lens characteristics, and the overlapping position of the coordinate ranges in the real space obtained for the two images. Is a three-dimensional coordinate in the real space of the operation position by the finger of the user P.

Abstract

The disclosed operation device presents information that is used to operate designated equipment (9) to a user (P) and also receives operating input from the user (P). The operation device is equipped with a concave mirror (2), a detection unit (4) and a determination unit (5). The concave mirror (2) is provided in such a manner that the optical distance between the concave mirror (2) and an operating screen (information display medium) (A), which has information that can be viewed from the outside, is greater than the focal distance of the concave mirror (2). The concave mirror (2) is formed so that a real image (B) of the operating screen (real image of the information display medium) floats in space. The detection unit (4) detects operating input from the user (P) to the real image (B) of the operating screen. The determination unit (5) determines the operating content for the equipment (9), according to the operation input detected by the detection unit (4). Thus, the information used to operate the designated equipment (9) is presented to the user (P) at a position closer to the user than the installation site.

Description

操作装置Operating device
 本発明は、所定の機器を操作するために用いられる情報を使用者に呈示するとともに使用者からの操作入力を受け付ける操作装置に関する。 The present invention relates to an operation device that presents information used for operating a predetermined device to a user and receives an operation input from the user.
 従来から、使用者が機器を操作するために用いられる操作装置として、例えばボタン式やタッチパネル式など使用者が操作入力するための操作部を装置本体の表面に備える装置が知られている(例えば日本国特許出願公開特開2009-260828号公報参照)。従来の操作装置は、使用者が操作部に直接触れて操作入力することによって、機器に対する操作内容を決定する。 2. Description of the Related Art Conventionally, as an operation device used for a user to operate a device, for example, a device having an operation unit on the surface of the device main body such as a button type or a touch panel type for operation input by the user is known. (See Japanese Patent Application Publication No. 2009-260828). The conventional operating device determines the operation content with respect to an apparatus, when a user directly inputs and operates an operation part.
 しかしながら、従来の操作装置では、使用者が操作部に触れる必要があるため、例えば、使用者と操作装置との間が離れていたり、使用者と操作装置との間に操作部を設けるのに適した場所がなかったりした場合、使用者にとって使い勝手が悪いという問題があった。つまり、従来の操作装置では、操作装置の設置場所が限定されていた。 However, since the user needs to touch the operation unit in the conventional operation device, for example, the user is separated from the operation device, or the operation unit is provided between the user and the operation device. When there was no suitable place, there was a problem that the user was not easy to use. That is, in the conventional operating device, the installation location of the operating device is limited.
 本発明は上記の点に鑑みて為され、本発明の目的は、所定の機器を操作するために用いられる情報を設置場所よりも使用者に近い位置で使用者に呈示することができる操作装置を提供することにある。 The present invention has been made in view of the above points, and an object of the present invention is to provide an operation device capable of presenting information used for operating a predetermined device to a user at a position closer to the user than the installation location. Is to provide.
 本発明の操作装置は、所定の機器を操作するために用いられる情報を使用者に呈示するとともに前記使用者からの操作入力を受け付ける操作装置であって、前記情報を外部から視認可能にする情報表示媒体との間の光学距離が焦点距離より長くなるように設けられた凹面鏡を有し、前記凹面鏡を用いて前記情報表示媒体の実像を空間に浮かぶように形成する表示部と、前記使用者から前記実像への操作入力を検出する検出部と、前記検出部で検出された前記操作入力に応じて前記機器に対する操作内容を決定する決定部とを備えることを特徴とする。 The operating device of the present invention is an operating device that presents information used for operating a predetermined device to a user and receives an operation input from the user, and makes the information visible from the outside. A display unit having a concave mirror provided so that an optical distance to the display medium is longer than a focal length, and using the concave mirror to form a real image of the information display medium in a space; and the user A detection unit that detects an operation input to the real image, and a determination unit that determines an operation content for the device in accordance with the operation input detected by the detection unit.
 この操作装置において、前記情報表示媒体と前記凹面鏡との間の前記光学距離を前記凹面鏡の前記焦点距離より長い範囲内で変化させる距離調整部を備えることが好ましい。 In this operation device, it is preferable that the operation apparatus further includes a distance adjusting unit that changes the optical distance between the information display medium and the concave mirror within a range longer than the focal length of the concave mirror.
 この操作装置において、前記実像の位置を変更するための指示を行う指示部を備え、前記距離調整部は、前記指示部の指示に従って、前記情報表示媒体と前記凹面鏡との間の前記光学距離を変化させることが好ましい。 The operating device includes an instruction unit that gives an instruction to change the position of the real image, and the distance adjustment unit sets the optical distance between the information display medium and the concave mirror in accordance with an instruction from the instruction unit. It is preferable to change.
 この操作装置において、前記使用者の視機能状態を計測する視機能計測部を備え、前記距離調整部は、前記視機能計測部で計測された前記視機能状態に従って、前記情報表示媒体と前記凹面鏡との間の前記光学距離を変化させることが好ましい。 The operation device includes a visual function measuring unit that measures a visual function state of the user, and the distance adjusting unit is configured to perform the information display medium and the concave mirror according to the visual function state measured by the visual function measuring unit. It is preferable to change the optical distance between them.
 この操作装置において、前記実像が形成された位置に設けられた透光性部材を備えることが好ましい。 In this operating device, it is preferable to provide a translucent member provided at a position where the real image is formed.
 この操作装置において、前記表示部は、前記凹面鏡の光軸に斜交して設けられ反射光と透過光とに分割する分割面を含むビームスプリッタを有し、前記ビームスプリッタが前記反射光を前記凹面鏡側に反射させるとともに前記凹面鏡で反射した光を透過させることによって、前記情報表示媒体の実像を形成して前記使用者に呈示することが好ましい。 In this operation device, the display unit includes a beam splitter that is provided obliquely to the optical axis of the concave mirror and includes a split surface that divides the light into reflected light and transmitted light, and the beam splitter converts the reflected light into the reflected light. It is preferable that a real image of the information display medium is formed and presented to the user by reflecting the light to the concave mirror side and transmitting the light reflected by the concave mirror.
 この操作装置において、前記情報表示媒体が表示される表示面を有し当該表示面に表示される前記情報表示媒体を投射するモニタを備え、前記ビームスプリッタは、前記分割面において、前記モニタから発せられた光を前記反射光と前記透過光とに分割し、前記凹面鏡の鏡面の中心点に投影される前記反射光が当該中心点における法線に対して前記モニタ側に傾斜するように、前記ビームスプリッタおよび前記凹面鏡が配置され、前記モニタの前記表示面は非平面に形成されていることが好ましい。 The operation device includes a monitor having a display surface on which the information display medium is displayed and projecting the information display medium displayed on the display surface, and the beam splitter is emitted from the monitor on the split surface. The reflected light is divided into the reflected light and the transmitted light, and the reflected light projected onto the center point of the mirror surface of the concave mirror is inclined toward the monitor side with respect to the normal line at the center point. Preferably, a beam splitter and the concave mirror are arranged, and the display surface of the monitor is formed in a non-planar shape.
 この操作装置において、前記モニタの前記表示面は、前記ビームスプリッタと反対側へ凸状になるように形成されていることが好ましい。 In this operation device, it is preferable that the display surface of the monitor is formed to be convex toward the side opposite to the beam splitter.
 この操作装置において、前記情報表示媒体が表示される表示面を有し当該表示面に表示される前記情報表示媒体を投射するモニタを備え、前記ビームスプリッタは、前記分割面において、前記モニタから発せられた光を前記反射光と前記透過光とに分割し、前記凹面鏡の鏡面の中心点に投影される前記反射光が当該中心点における法線に対して前記モニタ側に傾斜するように、前記ビームスプリッタおよび前記凹面鏡が配置され、前記ビームスプリッタの前記分割面は非平面に形成されていることが好ましい。 The operation device includes a monitor having a display surface on which the information display medium is displayed and projecting the information display medium displayed on the display surface, and the beam splitter is emitted from the monitor on the split surface. The reflected light is divided into the reflected light and the transmitted light, and the reflected light projected onto the center point of the mirror surface of the concave mirror is inclined toward the monitor side with respect to the normal line at the center point. It is preferable that a beam splitter and the concave mirror are disposed, and the splitting surface of the beam splitter is formed to be non-planar.
 この操作装置において、前記ビームスプリッタの前記分割面は、前記凹面鏡と反対側へ凸状になるように形成されていることが好ましい。 In this operation device, it is preferable that the split surface of the beam splitter is formed to be convex toward the side opposite to the concave mirror.
 この操作装置において、前記凹面鏡の前記鏡面は非球面に形成されていることが好ましい。 In this operating device, it is preferable that the mirror surface of the concave mirror is formed as an aspherical surface.
 この操作装置において、前記ビームスプリッタは、ハーフミラーであることが好ましい。 In this operating device, the beam splitter is preferably a half mirror.
 本発明によれば、情報表示媒体の実像を操作装置の設置場所と使用者との間の空間に浮かぶように形成することができるので、所定の機器を操作するために用いられる情報を上記設置場所よりも使用者に近い位置で使用者に呈示することができる。これにより、本発明では、使用者が近くで操作入力することができる。 According to the present invention, since the real image of the information display medium can be formed so as to float in the space between the installation location of the operating device and the user, the information used for operating a predetermined device can be It can be presented to the user at a position closer to the user than the place. Thereby, in this invention, a user can perform operation input near.
実施形態1に係る操作装置の構成図である。1 is a configuration diagram of an operating device according to Embodiment 1. FIG. 同上に係る操作装置の操作画面を示す図である。It is a figure which shows the operation screen of the operating device which concerns on the same as the above. 同上に係る操作装置の第1の使用例を説明する概略図である。It is the schematic explaining the 1st usage example of the operating device which concerns on the same as the above. 同上に係る操作装置の第2の使用例を説明する概略図である。It is the schematic explaining the 2nd usage example of the operating device which concerns on the same as the above. 同上に係る操作装置の第3の使用例を説明する概略図である。It is the schematic explaining the 3rd usage example of the operating device which concerns on the same as the above. 実施形態2に係る操作装置の構成図である。FIG. 6 is a configuration diagram of an operating device according to a second embodiment. 実施形態3に係る操作装置の構成図である。It is a block diagram of the operating device which concerns on Embodiment 3. FIG. 実施形態4に係る操作装置の概略図である。FIG. 6 is a schematic diagram of an operating device according to a fourth embodiment. 同上に係る操作装置の設計パラメータを説明する図である。It is a figure explaining the design parameter of the operating device which concerns on the same as the above. 同上に係る操作装置において、(a)は視距離が400mmである場合の実像のディストーション格子を示す図、(b)は視距離が410mmである場合の実像のディストーション格子を示す図である。In the operating device according to the above, (a) shows a real image distortion grid when the viewing distance is 400 mm, and (b) shows a real image distortion grid when the viewing distance is 410 mm. 実施形態5に係る操作装置の概略図である。FIG. 10 is a schematic diagram of an operating device according to a fifth embodiment. 同上に係る操作装置の設計パラメータを説明する図である。It is a figure explaining the design parameter of the operating device which concerns on the same as the above. 同上に係る操作装置において、(a)は視距離が400mmである場合の実像のディストーション格子を示す図、(b)は視距離が410mmである場合の実像のディストーション格子を示す図である。In the operating device according to the above, (a) shows a real image distortion grid when the viewing distance is 400 mm, and (b) shows a real image distortion grid when the viewing distance is 410 mm. 凹面鏡の原理を説明する概略図である。It is the schematic explaining the principle of a concave mirror. 凹面鏡を用いた場合の操作画面と実像との位置関係を示す図である。It is a figure which shows the positional relationship of the operation screen at the time of using a concave mirror and a real image. 比較例の操作装置の概略図である。It is the schematic of the operating device of a comparative example. 比較例の操作装置において、(a)は視距離400mmである場合の実像のディストーション格子を示す図、(b)は視距離が410mmである場合の実像のディストーション格子を示す図である。In the operation device of the comparative example, (a) is a diagram showing a real image distortion grid when the viewing distance is 400 mm, and (b) is a diagram showing a real image distortion grid when the viewing distance is 410 mm.
 (実施形態1)
 実施形態1に係る操作装置は、所定の機器を操作するために用いられる情報を使用者に呈示するとともに、使用者からの操作入力を受け付ける。図1に示すように、本実施形態の操作装置は、モニタ1と、凹面鏡2と、ハーフミラー3と、検出部4と、決定部5と、距離調整部6とを備え、所定の機器9に接続されている。
(Embodiment 1)
The operating device according to the first embodiment presents information used for operating a predetermined device to the user and accepts an operation input from the user. As shown in FIG. 1, the operating device of the present embodiment includes a monitor 1, a concave mirror 2, a half mirror 3, a detection unit 4, a determination unit 5, and a distance adjustment unit 6, and a predetermined device 9. It is connected to the.
 モニタ1は、図2に示すような操作画面Aを表示するように構成されている。モニタ1は、小型で、かつ、表示内容を容易に制御できるよう、例えば液晶ディスプレイや有機エレクトロルミネッセンス(Organic Electro-Luminescence)ディスプレイなどの小型のフラットパネルディスプレイが用いられている。操作画面Aを表示するための制御は、例えばコンピュータ(図示せず)によってモニタ1に行われる。なお、モニタ1は、後述の実像Bを使用者Pに対して一定の明るさで呈示するために、操作画面Aと凹面鏡2との間の光学距離a(図14参照)に応じて操作画面Aの明るさを変化させることが可能である。また、モニタ1は、使用者Pの好みに応じて操作画面Aの明るさを変化させることも可能である。 The monitor 1 is configured to display an operation screen A as shown in FIG. The monitor 1 is small, and a small flat panel display such as a liquid crystal display or an organic electro-luminescence display is used so that display contents can be easily controlled. Control for displaying the operation screen A is performed on the monitor 1 by, for example, a computer (not shown). Note that the monitor 1 displays an operation screen according to the optical distance a (see FIG. 14) between the operation screen A and the concave mirror 2 in order to present a later-described real image B to the user P with a certain brightness. It is possible to change the brightness of A. The monitor 1 can also change the brightness of the operation screen A according to the preference of the user P.
 操作画面Aは、使用者Pが機器9を操作するために用いられる画面である。操作画面A上には、使用者Pからの機器9に対する操作入力(以下「機器操作入力」という)を受け付けるための複数のボタンBt1~Bt3が表示されている。また、操作画面A上には、使用者Pから後述の実像Bの位置を変更するための操作入力(以下「位置変更操作入力」という)を受け付けるボタンBt4,Bt5が表示されている。つまり、操作画面Aは、使用者Pが機器9を操作するために必要な情報を外部から視認可能に有していることになる。操作画面Aは、情報表示媒体に相当する。 The operation screen A is a screen used for the user P to operate the device 9. On the operation screen A, a plurality of buttons Bt1 to Bt3 for receiving an operation input from the user P to the device 9 (hereinafter referred to as “device operation input”) are displayed. On the operation screen A, buttons Bt4 and Bt5 for receiving an operation input for changing the position of a real image B (to be described later) from the user P (hereinafter referred to as “position change operation input”) are displayed. That is, the operation screen A has information necessary for the user P to operate the device 9 so as to be visible from the outside. The operation screen A corresponds to an information display medium.
 図1に示す凹面鏡2は、操作画面Aと凹面鏡2との間の光学距離a(図14参照)が凹面鏡2の焦点距離f(図14参照)より長くなるように設けられている。使用者Pは、凹面鏡2の光軸Lx上の前方に位置する。凹面鏡2は、操作画面の実像Bを凹面鏡2と使用者Pとの間の空間に浮かぶように形成して、操作画面の実像Bを使用者Pに呈示する。凹面鏡2は、表示部に相当し、操作画面の実像Bは、情報表示媒体の実像に相当する。 The concave mirror 2 shown in FIG. 1 is provided so that the optical distance a (see FIG. 14) between the operation screen A and the concave mirror 2 is longer than the focal length f (see FIG. 14) of the concave mirror 2. The user P is located in front of the concave mirror 2 on the optical axis Lx. The concave mirror 2 forms the real image B of the operation screen so as to float in the space between the concave mirror 2 and the user P, and presents the real image B of the operation screen to the user P. The concave mirror 2 corresponds to a display unit, and the real image B of the operation screen corresponds to a real image of the information display medium.
 凹面鏡2を用いた場合の実像表示の原理について図14,15を用いて説明する。図14のFは、凹面鏡2の焦点位置である。操作画面Aが焦点位置Fより凹面鏡2とは反対側(図14の右側)にあるとき、凹面鏡2の前方に操作画面の実像(倒立実像)Bが形成される。操作画面の実像Bと凹面鏡2との間の光学距離bは、操作画面Aと凹面鏡2との間の光学距離aと、凹面鏡2の焦点距離fとを用いて、
b=a×f/(a-f) (1)
と表わされる。また、操作画面Aの実像Bの大きさB12は、操作画面Aの大きさをA12とすると、
12=A12×|f|/|a-f| (2)
となる。
The principle of real image display when the concave mirror 2 is used will be described with reference to FIGS. F in FIG. 14 is the focal position of the concave mirror 2. When the operation screen A is on the side opposite to the concave mirror 2 (right side in FIG. 14) from the focal position F, a real image (inverted real image) B of the operation screen is formed in front of the concave mirror 2. The optical distance b between the real image B of the operation screen and the concave mirror 2 is obtained by using the optical distance a between the operation screen A and the concave mirror 2 and the focal length f of the concave mirror 2.
b = a × f / (af) (1)
It is expressed as The size B 1 B 2 of the real image B operation screen A is the size of the operation screen A When A 1 A 2,
B 1 B 2 = A 1 A 2 × | f | / | af | (2)
It becomes.
 図15は、光学距離aを焦点距離fで規格化した値(a/f)に対する光学距離bを焦点距離fで規格化した値(b/f)を示している。図15より、値(a/f)が1≦(a/f)≦2の範囲で変化した場合、値(b/f)は(b/f)≧2の範囲で変化する。例えば凹面鏡2の曲率半径Rが300mmである場合、焦点距離f(=R/2)は150mmとなる。したがって、光学距離aが150mm≦a≦300mmの範囲で変化することができる場合、光学距離bはb≧300mmの範囲で変化することができる。 FIG. 15 shows a value (b / f) in which the optical distance b is normalized by the focal length f with respect to a value (a / f) in which the optical distance a is normalized by the focal length f. From FIG. 15, when the value (a / f) changes in the range of 1 ≦ (a / f) ≦ 2, the value (b / f) changes in the range of (b / f) ≧ 2. For example, when the radius of curvature R of the concave mirror 2 is 300 mm, the focal length f (= R / 2) is 150 mm. Therefore, when the optical distance a can be changed in the range of 150 mm ≦ a ≦ 300 mm, the optical distance b can be changed in the range of b ≧ 300 mm.
 図1に示すハーフミラー3は、凹面鏡2の光軸Lxに45度の角度で斜交して設けられている。ハーフミラー3は、モニタ1の操作画面Aから発せられた光を凹面鏡2側で凹面鏡2の光軸Lxの方向に反射させ、凹面鏡2で反射した光を透過させることによって、操作画面の実像Bを使用者Pに呈示する。これにより、使用者Pと凹面鏡2との間にモニタ1が設けられた構造とは異なり、モニタ1が使用者Pの視線を遮ることなく、操作画面の実像Bを使用者Pに呈示することができる。ハーフミラー3は、凹面鏡2とともに表示部に相当する。 The half mirror 3 shown in FIG. 1 is provided obliquely to the optical axis Lx of the concave mirror 2 at an angle of 45 degrees. The half mirror 3 reflects the light emitted from the operation screen A of the monitor 1 on the concave mirror 2 side in the direction of the optical axis Lx of the concave mirror 2, and transmits the light reflected by the concave mirror 2, thereby allowing the real image B of the operation screen to be transmitted. Is presented to the user P. Thus, unlike the structure in which the monitor 1 is provided between the user P and the concave mirror 2, the monitor 1 presents the real image B of the operation screen to the user P without blocking the user's line of sight. Can do. The half mirror 3 corresponds to the display unit together with the concave mirror 2.
 上記より、本実施形態の操作装置は、ハーフミラー3が操作画面Aからの光を凹面鏡2側に反射させるとともに凹面鏡2で反射した光を透過させることによって、凹面鏡2の前方の空間上に操作画面Aの光を結像させ、操作画面の実像Bを形成することができる。操作画面の実像Bは指向性が強く、操作画面の実像Bを視認することができる視野角が狭いため、使用者Pは凹面鏡2の光軸Lx付近の狭い範囲からのみ操作画面の実像Bを視認することができる。 As described above, in the operating device of the present embodiment, the half mirror 3 operates on the space in front of the concave mirror 2 by reflecting the light from the operation screen A toward the concave mirror 2 and transmitting the light reflected by the concave mirror 2. The light of the screen A can be imaged to form a real image B of the operation screen. Since the real image B of the operation screen is highly directional and the viewing angle at which the real image B of the operation screen can be viewed is narrow, the user P can only view the real image B of the operation screen from a narrow range near the optical axis Lx of the concave mirror 2. It can be visually recognized.
 検出部4は、撮像部41と、処理部42とを備えている。検出部4は、検出部および指示部に相当する。 The detection unit 4 includes an imaging unit 41 and a processing unit 42. The detection unit 4 corresponds to a detection unit and an instruction unit.
 撮像部41は、例えばCCD(Charge Coupled Device)カメラなどであり、操作装置と使用者Pとの間であって操作画面の実像Bが形成される空間を所定時間ごとに撮像する。これにより、使用者Pが操作画面の実像Bを見て操作入力したときに、撮像部41は、使用者Pの操作入力に関する動作を撮像することができる。 The imaging unit 41 is, for example, a CCD (Charge Coupled Device) camera or the like, and captures a space between the operation device and the user P where the real image B of the operation screen is formed at predetermined time intervals. Accordingly, when the user P performs an operation input while viewing the real image B on the operation screen, the imaging unit 41 can capture an operation related to the operation input of the user P.
 処理部42は、例えばコンピュータのマイクロプロセッサ(MPU:Micro Processing Unit)を主構成要素とし、撮像部41で得られた撮像画像上で各ボタンBt1~Bt5(図2参照)に対応する範囲に検出領域を設定する機能を有している。つまり、操作画面の実像B上では各ボタンBt1~Bt5の範囲が図像により使用者Pに呈示され、操作画面の実像Bが撮像された撮像画像上では各ボタンBt1~Bt5の図像に対応する範囲に検出領域が設定されることになる。検出領域としては、機器操作入力に対応する領域と、位置変更操作入力に対応する領域とがある。 The processing unit 42 includes, for example, a computer microprocessor (MPU: Micro Processing Unit) as a main component, and detects within a range corresponding to each button Bt1 to Bt5 (see FIG. 2) on the captured image obtained by the imaging unit 41. It has a function to set an area. In other words, the range of the buttons Bt1 to Bt5 is presented to the user P by a graphic on the real image B of the operation screen, and the range corresponding to the graphic of the buttons Bt1 to Bt5 on the captured image obtained by capturing the real image B of the operation screen. The detection area is set to. The detection area includes an area corresponding to device operation input and an area corresponding to position change operation input.
 処理部42は、所定時間ごとに撮像部41で得られた撮像画像を取得する。処理部42は、取得した撮像画像と初期状態(操作入力がない状態)の撮像画像との間で、検出領域内の画素ごとに画素値の差分をとり、検出領域内の各画素の差分値の合計を求める。処理部42は、差分値の合計と閾値とを比較する。差分値の合計が閾値より大きい場合、処理部42は、検出領域に対応する操作入力があったと判定する。差分値の合計が閾値以下である場合、処理部42は、検出領域に対応する操作入力はなかったと判定する。処理部42は、このような判定を検出領域ごとに行う。 The processing unit 42 acquires a captured image obtained by the imaging unit 41 every predetermined time. The processing unit 42 calculates a pixel value difference for each pixel in the detection region between the acquired captured image and the captured image in the initial state (the state where there is no operation input), and the difference value of each pixel in the detection region. Find the sum of The processing unit 42 compares the sum of difference values with a threshold value. When the sum of the difference values is larger than the threshold value, the processing unit 42 determines that there is an operation input corresponding to the detection area. When the sum of the difference values is equal to or smaller than the threshold value, the processing unit 42 determines that there is no operation input corresponding to the detection area. The processing unit 42 performs such determination for each detection region.
 上記より、処理部42は、検出領域ごとに、機器操作入力があったと判定した場合に機器操作入力を検出することになり、位置変更操作入力があったと判定した場合に位置変更操作入力を検出することになる。 From the above, for each detection area, the processing unit 42 detects a device operation input when it is determined that there is a device operation input, and detects a position change operation input when it is determined that there is a position change operation input. Will do.
 処理部42で検出された機器操作入力の情報は、処理部42から決定部5に出力される。処理部42で検出された位置変更操作入力の情報は、処理部42から距離調整部6に出力される。 Information on the device operation input detected by the processing unit 42 is output from the processing unit 42 to the determination unit 5. Information on the position change operation input detected by the processing unit 42 is output from the processing unit 42 to the distance adjustment unit 6.
 決定部5は、記憶部51と、処理部52と、出力部53とを備えている。記憶部51は、使用者Pの機器操作入力と機器9に対する操作内容との対応関係を予め記憶している。 The determination unit 5 includes a storage unit 51, a processing unit 52, and an output unit 53. The storage unit 51 stores in advance a correspondence relationship between the device operation input of the user P and the operation content on the device 9.
 処理部52は、例えばコンピュータのマイクロプロセッサを主構成要素とし、検出部4で検出された機器操作入力に対応する操作内容を記憶部51から取得して決定する。処理部52は、決定した操作内容の情報を機器9に出力するように出力部53を制御する。 The processing unit 52 uses, for example, a microprocessor of a computer as a main component, and acquires and determines the operation content corresponding to the device operation input detected by the detection unit 4 from the storage unit 51. The processing unit 52 controls the output unit 53 to output information on the determined operation content to the device 9.
 距離調整部6は、保持板61と、リニアガイド62と、送りねじ63と、プーリ64と、プーリベルト65と、モータ66と、制御部67と、記憶部68とを備え、モニタ1を移動させるように構成された駆動装置である。 The distance adjusting unit 6 includes a holding plate 61, a linear guide 62, a feed screw 63, a pulley 64, a pulley belt 65, a motor 66, a control unit 67, and a storage unit 68, and moves the monitor 1. It is the drive device comprised so that it might make.
 保持板61には、モニタ1が保持されている。リニアガイド62は、保持板61を支持している。モータ66は、距離調整部6の駆動源となる電子モータである。プーリ64およびプーリベルト65は、モータ66の回転駆動力を送りねじ63に伝達する。制御部67は、例えばコンピュータのマイクロプロセッサを主構成要素とし、検出部4から入力された情報に従ってモータ66を制御する。上記より、距離調整部6は、モータ66により発生する回転駆動力を送りねじ63により直線運動に変換することによって、モニタ1の上下方向(図1の矢印方向)の移動を実現する。なお、制御部67に用いられるコンピュータは、パーソナルコンピュータなどの汎用コンピュータであってもよいし、専用のコンピュータであってもよい。 The monitor 1 is held on the holding plate 61. The linear guide 62 supports the holding plate 61. The motor 66 is an electronic motor serving as a drive source for the distance adjusting unit 6. The pulley 64 and the pulley belt 65 transmit the rotational driving force of the motor 66 to the feed screw 63. The control unit 67 uses, for example, a computer microprocessor as a main component, and controls the motor 66 in accordance with information input from the detection unit 4. As described above, the distance adjusting unit 6 realizes the movement of the monitor 1 in the vertical direction (the arrow direction in FIG. 1) by converting the rotational driving force generated by the motor 66 into a linear motion by the feed screw 63. Note that the computer used for the control unit 67 may be a general-purpose computer such as a personal computer or a dedicated computer.
 上記より、距離調整部6は、位置変更操作入力の情報が検出部4から入力されると、位置変更操作入力の情報に従ってモニタ1を上下に移動させることができる。モニタ1が上下に移動すると、モニタ1上の操作画面Aと凹面鏡2との間の光学距離a(図14参照)が変化し、操作画面の実像Bと凹面鏡2との間の光学距離b(図14参照)が変化する。ただし、モニタ1の移動範囲は、操作画面Aと凹面鏡2との間の光学距離aが凹面鏡2の焦点距離fより長くなる範囲内に限定される。 As described above, when the position change operation input information is input from the detection unit 4, the distance adjustment unit 6 can move the monitor 1 up and down according to the position change operation input information. When the monitor 1 moves up and down, the optical distance a (see FIG. 14) between the operation screen A on the monitor 1 and the concave mirror 2 changes, and the optical distance b between the real image B of the operation screen and the concave mirror 2 ( Changes). However, the moving range of the monitor 1 is limited to a range in which the optical distance a between the operation screen A and the concave mirror 2 is longer than the focal length f of the concave mirror 2.
 具体的には、操作画面の実像Bを使用者P側に近づけるための位置変更操作入力である場合、距離調整部6はモニタ1を現状よりも下に移動させて操作画面Aと凹面鏡2との間の光学距離aを短くする。これにより、操作画面の実像Bと凹面鏡2との間の光学距離bは長くなり、操作画面の実像Bはこれまでよりも使用者P側に近づいて呈示される。反対に、操作画面の実像Bを使用者Pから遠ざけるための位置変更操作入力である場合、距離調整部6はモニタ1を現状よりも上に移動させて光学距離aを長くする。これにより、光学距離bは短くなり、操作画面の実像Bはこれまでよりも使用者Pから遠ざかって呈示される。 Specifically, in the case of a position change operation input for bringing the real image B of the operation screen closer to the user P side, the distance adjustment unit 6 moves the monitor 1 below the current state so that the operation screen A and the concave mirror 2 Is shortened. As a result, the optical distance b between the real image B on the operation screen and the concave mirror 2 becomes longer, and the real image B on the operation screen is presented closer to the user P side than before. On the other hand, in the case of a position change operation input for moving the real image B of the operation screen away from the user P, the distance adjustment unit 6 moves the monitor 1 above the current state to increase the optical distance a. Thereby, the optical distance b becomes shorter, and the real image B of the operation screen is presented farther from the user P than before.
 次に、本実施形態に係る操作装置の動作について説明する。まず、モニタ1が操作画面Aを表示すると、凹面鏡2は、操作画面の実像Bを空間に浮かぶように形成して使用者Pに呈示する。その後、使用者Pは、操作画面の実像Bを見て、タッチパネルに触れる要領で操作入力する。検出部4では、処理部42が、撮像部41の撮像画像から使用者Pの機器操作入力を検出する。決定部5では、処理部52が、検出部4で検出された機器操作入力に対応する操作内容を記憶部51から取得して決定する。決定された操作内容の情報は、出力部53から機器9に出力される。 Next, the operation of the operating device according to this embodiment will be described. First, when the monitor 1 displays the operation screen A, the concave mirror 2 forms a real image B of the operation screen so as to float in the space and presents it to the user P. Thereafter, the user P sees the real image B on the operation screen and inputs an operation in the manner of touching the touch panel. In the detection unit 4, the processing unit 42 detects a device operation input of the user P from the captured image of the imaging unit 41. In the determination unit 5, the processing unit 52 acquires the operation content corresponding to the device operation input detected by the detection unit 4 from the storage unit 51 and determines it. Information on the determined operation content is output from the output unit 53 to the device 9.
 また、検出部4の処理部42は、撮像部41の撮像画像から位置変更操作入力を検出した場合、位置変更操作入力の情報を距離調整部6に出力する。距離調整部6の制御部67は、検出部4からの位置変更操作入力の情報に従ってモニタ1を移動する。これにより、使用者Pは、操作画面の実像Bの位置を自己の視機能状態に適した位置に自分で調整することができる。 In addition, when the processing unit 42 of the detection unit 4 detects a position change operation input from the captured image of the imaging unit 41, the processing unit 42 outputs information on the position change operation input to the distance adjustment unit 6. The control unit 67 of the distance adjustment unit 6 moves the monitor 1 according to the information of the position change operation input from the detection unit 4. Thereby, the user P can adjust the position of the real image B on the operation screen to a position suitable for his / her visual function state.
 次に、本実施形態に係る操作装置の使用例について説明する。まず、第1の使用例として、本実施形態の操作装置を浴室やシャワールームに用いた場合について図3を用いて説明する。つまり、第1の使用例として、例えばシャワーの温水操作装置などの浴室用操作装置について説明する。操作装置は、浴室(シャワールーム)の壁Wに埋め込まれて設置されている。第1の使用例によれば、使用者Pの前をシャワーSからの水が通って、使用者Pの近くに操作装置が設置されていなくても、操作装置の設置場所よりも近くに操作画面の実像Bを形成することができる。これにより、使用者Pは、眼鏡やコンタクトレンズを外して視認性が低い場合であっても、操作画面の実像Bを見ることによって、操作画面Aの情報を理解することができる。 Next, a usage example of the operation device according to the present embodiment will be described. First, as a first usage example, a case where the operation device of the present embodiment is used in a bathroom or a shower room will be described with reference to FIG. That is, as a first usage example, a bathroom operation device such as a hot water operation device for a shower will be described. The operating device is installed embedded in a wall W of a bathroom (shower room). According to the first use example, even if the operation device is not installed near the user P when water from the shower S passes through the user P, the operation is performed closer to the installation location of the operation device. A real image B of the screen can be formed. Thereby, the user P can understand the information on the operation screen A by seeing the real image B of the operation screen even when the visibility is low by removing the glasses or contact lenses.
 続いて、第2の使用例として、本実施形態の操作装置をキッチンに用いた場合について図4を用いて説明する。つまり、第2の使用例としてキッチン用操作装置について説明する。キッチンには、調理者(使用者P)の付近に作業スペースと高温部とが必要である。また、調理者が調理中に操作装置に直接触れることは、衛生的によくない。しかしながら、本実施形態の操作装置によれば、調理者は操作装置に直接触れることなく、操作入力することができる。なお、操作情報は、例えばコンロの温度などである。なお、操作画面の実像Bには、料理のレシピが表示されていてもよい。 Subsequently, as a second usage example, a case where the operation device of the present embodiment is used in a kitchen will be described with reference to FIG. That is, a kitchen operating device will be described as a second usage example. In the kitchen, a work space and a high temperature part are required near the cook (user P). Also, it is not hygienic for the cook to touch the operating device directly during cooking. However, according to the operation device of the present embodiment, the cook can input an operation without directly touching the operation device. The operation information is, for example, the temperature of the stove. A cooking recipe may be displayed on the real image B of the operation screen.
 続いて、第3の使用例として、本実施形態の操作装置を例えば銀行のATMやオートロックドアの認証装置などに用いた場合について図5を用いて説明する。操作装置は、機密性の高い情報を表示し、パスワード入力などの操作入力が行われる。第3の使用例によれば、使用者Pは、操作装置の設置位置よりも近くで操作することができるとともに、操作画面の実像Bの指向性が高いため、他人が操作画面Aの情報および入力内容を容易に視認することができないようにすることができる。 Subsequently, as a third usage example, a case where the operation device of the present embodiment is used for, for example, a bank ATM or an automatic lock door authentication device will be described with reference to FIG. The operation device displays highly confidential information, and an operation input such as a password input is performed. According to the third usage example, the user P can operate near the installation position of the operating device, and the directivity of the real image B of the operation screen is high. It is possible to prevent the input content from being easily viewed.
 以上、本実施形態の操作装置によれば、操作画面の実像Bを操作装置の設置場所と使用者Pとの間の空間に浮かぶように形成することができるので、所定の機器9を操作するために用いられる情報を上記設置場所よりも使用者Pに近い位置に表示することができる。これにより、本実施形態の操作装置では、使用者Pが近くで操作入力することができる。 As described above, according to the operation device of the present embodiment, the real image B of the operation screen can be formed so as to float in the space between the installation location of the operation device and the user P, so that the predetermined device 9 is operated. Therefore, information used for the purpose can be displayed at a position closer to the user P than the installation location. Thereby, in the operating device of this embodiment, the user P can input operation nearby.
 本実施形態の操作装置によれば、操作画面の実像Bの指向性を高くすることができるので、操作画面の実像Bを視認することができる視野角を制限することができ、操作画面Aが有する情報を使用者Pのみに呈示することができる。 According to the operation device of the present embodiment, the directivity of the real image B on the operation screen can be increased, so that the viewing angle at which the real image B on the operation screen can be viewed can be limited. The information it has can be presented only to the user P.
 また、本実施形態の操作装置によれば、距離調整部6が操作画面Aと凹面鏡2との間の光学距離aを凹面鏡2の焦点距離fより長い範囲内で変化させることによって、操作画面の実像Bを容易に移動させることができるので、操作画面の実像Bの位置を使用者Pごとに変えることができる。 Further, according to the operation device of the present embodiment, the distance adjustment unit 6 changes the optical distance a between the operation screen A and the concave mirror 2 within a range longer than the focal length f of the concave mirror 2, thereby Since the real image B can be easily moved, the position of the real image B on the operation screen can be changed for each user P.
 さらに、本実施形態の操作装置によれば、検出部4で検出された位置変更操作入力に従って距離調整部6が操作画面Aと凹面鏡2との間の光学距離aを変化させることによって、操作画面の実像Bの位置を使用者Pの好みに応じて変更することができる。 Furthermore, according to the operation device of the present embodiment, the distance adjustment unit 6 changes the optical distance a between the operation screen A and the concave mirror 2 in accordance with the position change operation input detected by the detection unit 4, whereby the operation screen The position of the real image B can be changed according to the preference of the user P.
 また、本実施形態の操作装置によれば、ハーフミラー3が凹面鏡2の光軸Lxに斜交することによって、使用者Pが操作画面の実像Bを視認する際に、操作画面Aそのものが邪魔になるのを防止することができる。 Further, according to the operation device of the present embodiment, when the half mirror 3 obliquely crosses the optical axis Lx of the concave mirror 2, the operation screen A itself is obstructive when the user P visually recognizes the real image B of the operation screen. Can be prevented.
 さらに、本実施形態の操作装置は、使用者Pが操作画面Aに直接触れることなく操作入力することができるので、使用者Pは、操作画面Aに直接触れることが困難であったり、不衛生であったりする場合であっても、操作画面Aに触れずに操作入力することができる。 Furthermore, since the operation device of this embodiment can input operation without the user P touching the operation screen A directly, it is difficult for the user P to touch the operation screen A directly, or unsanitary. Even if it is, it is possible to input an operation without touching the operation screen A.
 なお、本実施形態の変形例として、操作装置は、使用者Pの位置変更操作入力に従って光学距離aを変更する機能を必ずしも有していなくてよい。つまり、操作画面の実像Bの位置が固定されていてもよい。本変形例の操作装置も、本実施形態の操作装置と同様に、操作画面の実像Bを操作装置の設置場所と使用者Pとの間の空間に浮かぶように形成することができるので、所定の機器9を操作するために用いられる情報を上記設置場所よりも使用者Pに近い位置に表示することができ、その結果、使用者Pが近くで操作入力することができる。また、操作画面の実像Bの指向性を高くすることができるので、操作画面の実像Bを視認することができる視野角を制限することができ、操作画面Aが有する情報を使用者Pのみに呈示することができる。以下の実施形態2,3においても同様である。 As a modification of the present embodiment, the operating device does not necessarily have a function of changing the optical distance a according to the position change operation input of the user P. That is, the position of the real image B on the operation screen may be fixed. Similarly to the operation device of the present embodiment, the operation device of the present modification can also be formed so that the real image B of the operation screen floats in the space between the installation location of the operation device and the user P. The information used for operating the device 9 can be displayed at a position closer to the user P than the installation location, and as a result, the user P can perform operation input nearby. In addition, since the directivity of the real image B on the operation screen can be increased, the viewing angle at which the real image B on the operation screen can be viewed can be limited, and the information that the operation screen A has can be used only by the user P. Can be presented. The same applies to the following second and third embodiments.
 また、本実施形態の変形例として、操作装置は、機器9を操作するために用いられる情報表示媒体として、操作画面Aに代えて、例えば紙などの平面物を用いてもよいし、立体物を用いてもよい。平面物および立体物は、距離調整部6の保持板61に直接または間接的に取り付けられることによって、移動可能となる。情報表示媒体として平面物または立体物を用いた場合であっても、操作装置は、情報表示媒体(平面物、立体物)の実像を操作装置の設置場所と使用者Pとの間の空間に浮かぶように形成することができるので、所定の機器9を操作するために用いられる情報を上記設置場所よりも使用者Pに近い位置で使用者Pに呈示することができ、その結果、使用者Pが近くで操作入力することができる。また、情報表示媒体の実像の指向性を高くすることができるので、情報表示媒体の実像を視認することができる視野角を制限することができ、情報表示媒体が有する情報を使用者Pのみに呈示することができる。以下の実施形態2,3においても同様である。 As a modification of the present embodiment, the operating device may use a flat object such as paper instead of the operation screen A as an information display medium used for operating the device 9, or a three-dimensional object. May be used. The planar object and the three-dimensional object can be moved by being directly or indirectly attached to the holding plate 61 of the distance adjusting unit 6. Even when a planar object or a three-dimensional object is used as the information display medium, the operation device transfers the real image of the information display medium (planar object, three-dimensional object) to the space between the installation position of the operation device and the user P. Since it can be formed so as to float, the information used for operating the predetermined device 9 can be presented to the user P at a position closer to the user P than the installation location, and as a result, the user P can be operated and input nearby. In addition, since the directivity of the real image of the information display medium can be increased, the viewing angle at which the real image of the information display medium can be viewed can be limited, and the information that the information display medium has can be limited to the user P only. Can be presented. The same applies to the following second and third embodiments.
 さらに、操作画面Aと凹面鏡2との間の光学距離aを変えるためには、モニタ1(操作画面A)のみを移動する方式、凹面鏡2のみを移動する方式、モニタ1と凹面鏡2の両方を移動する方式の3方式がある。本実施形態の操作装置は、距離調整部6を用いてモニタ1のみを移動させる方式を採用している。しかし、本実施形態の変形例として、操作装置は、距離調整部6に代えて、あるいは距離調整部6とともに、凹面鏡2の光軸Lxの方向に凹面鏡2を移動させる凹面鏡駆動部を備えていてもよい。本変形例の操作装置は、凹面鏡2を移動させることによって、操作画面の実像Bを移動させることができる。ただし、使用者Pが実像Bを正しく観測するためには、凹面鏡2に対する使用者Pの眼の位置は、ある範囲内に限定される。このため、凹面鏡2を移動させる場合、使用者Pの眼の位置も移動する必要がある。したがって、上記3方式のうちでは、モニタ1のみを移動する方式が最も優れており、現実的である。つまり、使用者Pの眼の位置を移動させる必要がない点で、本実施形態の距離調整部6のほうが凹面鏡駆動部より優れており、現実的である。以下の実施形態2,3においても同様である。 Furthermore, in order to change the optical distance a between the operation screen A and the concave mirror 2, a method of moving only the monitor 1 (operation screen A), a method of moving only the concave mirror 2, and both the monitor 1 and the concave mirror 2 are used. There are three methods of moving. The operation device according to the present embodiment employs a method in which only the monitor 1 is moved using the distance adjustment unit 6. However, as a modification of the present embodiment, the operating device includes a concave mirror driving unit that moves the concave mirror 2 in the direction of the optical axis Lx of the concave mirror 2 instead of the distance adjusting unit 6 or together with the distance adjusting unit 6. Also good. The operating device of this modification can move the real image B of the operating screen by moving the concave mirror 2. However, in order for the user P to correctly observe the real image B, the position of the eye of the user P with respect to the concave mirror 2 is limited to a certain range. For this reason, when the concave mirror 2 is moved, the position of the eye of the user P also needs to be moved. Accordingly, among the above three methods, the method of moving only the monitor 1 is the best and practical. That is, the distance adjusting unit 6 of this embodiment is superior to the concave mirror driving unit in that it is not necessary to move the position of the eye of the user P, and is realistic. The same applies to the following second and third embodiments.
 また、本実施形態の変形例として、モニタ1は操作装置と別体に設けられていてもよい。本変形例の操作装置によれば、市販のモニタ1を用いて本実施形態の操作装置と同様の動作をして同様の効果を得ることができる。以下の実施形態2,3においても同様である。 As a modification of the present embodiment, the monitor 1 may be provided separately from the operating device. According to the operation device of this modification, the same effect can be obtained by performing the same operation as the operation device of the present embodiment using the commercially available monitor 1. The same applies to the following second and third embodiments.
 (実施形態2)
 実施形態2に係る操作装置は、使用者Pの視機能状態に従って操作画面Aと凹面鏡2との間の光学距離aを変化させる機能を有している点で、実施形態1に係る操作装置(図1参照)と相違する。以下、本実施形態の操作装置について図6を用いて説明する。なお、実施形態1の操作装置と同様の構成要素については、同一の符号を付して説明を省略する。
(Embodiment 2)
The operation device according to the second embodiment has a function of changing the optical distance a between the operation screen A and the concave mirror 2 according to the visual function state of the user P. (See FIG. 1). Hereinafter, the operating device of the present embodiment will be described with reference to FIG. In addition, about the component similar to the operating device of Embodiment 1, the same code | symbol is attached | subjected and description is abbreviate | omitted.
 本実施形態の操作装置は、図6に示すように視機能計測部7を備えている。視機能計測部7は、例えば赤外線オプトメータ(オートレフラクトメータ)などであり、使用者Pの視機能状態を計測する。視機能としては、焦点調節機能(視力)や瞳孔反応、輻輳などがある。焦点調節機能とは、水晶体と視標との間の距離に応じて水晶体の屈折力を変化させることで、常に網膜上で像を結像させる機能をいう。瞳孔反応とは、光量変化などの刺激に応じて瞳孔を調節することをいう。輻輳とは、近くの視標を見るときに、近くの焦点が合うような視線に、眼の筋肉を内側(鼻側)によせることをいう。視機能計測部7で計測された視機能状態の情報は、距離調整部6に出力される。 The operating device of this embodiment includes a visual function measuring unit 7 as shown in FIG. The visual function measuring unit 7 is an infrared optometer (autorefractometer), for example, and measures the visual function state of the user P. Visual functions include a focus adjustment function (visual acuity), pupil response, and convergence. The focus adjustment function refers to a function that always forms an image on the retina by changing the refractive power of the lens according to the distance between the lens and the target. Pupil reaction refers to adjusting the pupil in response to a stimulus such as a change in the amount of light. Convergence means that when looking at a nearby visual target, the eye muscles are placed on the inner side (nose side) so that the nearby line of sight is in focus. Information on the visual function state measured by the visual function measuring unit 7 is output to the distance adjusting unit 6.
 本実施形態の距離調整部6の記憶部68は、操作画面Aと凹面鏡2との間の光学距離aと使用者Pの視機能状態との対応関係を予め記憶している。 The storage unit 68 of the distance adjusting unit 6 of the present embodiment stores in advance the correspondence between the optical distance a between the operation screen A and the concave mirror 2 and the visual function state of the user P.
 本実施形態の制御部67は、視機能計測部7から視機能状態の情報が入力されると、上記情報に対応する光学距離aの値を記憶部68から取得する。その後、制御部67は、実際の光学距離aが記憶部68から取得した値になるようにモニタ1を移動させる。その結果、操作画面Aと凹面鏡2との間の光学距離aは、視機能計測部7で計測された視機能状態に従って変化する。 When the information on the visual function state is input from the visual function measuring unit 7, the control unit 67 of the present embodiment acquires the value of the optical distance a corresponding to the information from the storage unit 68. Thereafter, the control unit 67 moves the monitor 1 so that the actual optical distance a becomes a value acquired from the storage unit 68. As a result, the optical distance a between the operation screen A and the concave mirror 2 changes according to the visual function state measured by the visual function measuring unit 7.
 次に、本実施形態に係る操作装置の動作について説明する。まず、モニタ1で操作画面Aが表示されると、凹面鏡2は、操作画面の実像Bを空間に浮かぶように形成して使用者Pに呈示する。その後、視機能計測部7が使用者Pの視機能状態を計測する。視機能計測部7で計測された視機能状態の情報は、視機能計測部7から距離調整部6に出力される。距離調整部6の制御部67は、視機能計測部7から入力された情報に対応する光学距離aの値を記憶部68から取得する。その後、制御部67は、実際の光学距離aが記憶部68から取得した値になるように、モニタ1を移動させる。 Next, the operation of the operating device according to this embodiment will be described. First, when the operation screen A is displayed on the monitor 1, the concave mirror 2 forms a real image B of the operation screen so as to float in the space and presents it to the user P. Thereafter, the visual function measuring unit 7 measures the visual function state of the user P. Information on the visual function state measured by the visual function measuring unit 7 is output from the visual function measuring unit 7 to the distance adjusting unit 6. The control unit 67 of the distance adjustment unit 6 acquires the value of the optical distance a corresponding to the information input from the visual function measurement unit 7 from the storage unit 68. Thereafter, the control unit 67 moves the monitor 1 so that the actual optical distance a becomes a value acquired from the storage unit 68.
 その後、使用者Pは、操作画面の実像Bを見て操作入力する。検出部4では、処理部42が、撮像部41の撮像画像から使用者Pの機器操作入力を検出する。その後、決定部5の処理部52は、検出部4で検出された機器操作入力に対応する操作内容を記憶部51から取得して決定する。決定された操作内容の情報は、出力部53から機器9に出力される。 After that, the user P performs operation input while viewing the real image B on the operation screen. In the detection unit 4, the processing unit 42 detects a device operation input of the user P from the captured image of the imaging unit 41. Thereafter, the processing unit 52 of the determination unit 5 acquires the operation content corresponding to the device operation input detected by the detection unit 4 from the storage unit 51 and determines it. Information on the determined operation content is output from the output unit 53 to the device 9.
 本実施形態の操作装置の使用例は実施形態1の第1~3の使用例と同様であり、操作装置を浴室やキッチンに用いたり、銀行のATMや建物のオートロックドアなどに用いたりすることができる。 The usage example of the operation device of the present embodiment is the same as the first to third usage examples of the first embodiment. The operation device is used in a bathroom or kitchen, or used in a bank ATM or a building auto-lock door. be able to.
 以上、本実施形態の操作装置によれば、視機能計測部7で計測された視機能状態に従って距離調整部6が操作画面Aと凹面鏡2との間の光学距離aを変化させることによって、使用者Pの視機能状態に適した位置に操作画面の実像Bを移動することができる。 As described above, according to the operating device of the present embodiment, the distance adjusting unit 6 changes the optical distance a between the operation screen A and the concave mirror 2 according to the visual function state measured by the visual function measuring unit 7. The real image B of the operation screen can be moved to a position suitable for the visual function state of the person P.
 なお、本実施形態の変形例として、操作装置は、位置変更操作入力に従って光学距離aを変更する機能を必ずしも有していなくてよい。つまり、本変形例の操作装置は、視機能計測部7で計測された視機能状態に従ってのみ、操作画面Aと凹面鏡2との間の光学距離aを変化させる。本変形例の操作装置であっても、視機能計測部7で計測された視機能状態に従って距離調整部6が操作画面Aと凹面鏡2との間の光学距離aを変化させることによって、使用者Pの視機能状態に適した位置に操作画面の実像Bの位置を移動することができる。 As a modification of the present embodiment, the operating device does not necessarily have a function of changing the optical distance a according to the position change operation input. That is, the operating device of this modification changes the optical distance a between the operation screen A and the concave mirror 2 only in accordance with the visual function state measured by the visual function measuring unit 7. Even in the operation device according to this modification, the distance adjustment unit 6 changes the optical distance a between the operation screen A and the concave mirror 2 according to the visual function state measured by the visual function measurement unit 7. The position of the real image B on the operation screen can be moved to a position suitable for the visual function state of P.
 (実施形態3)
 実施形態3に係る操作装置は、操作画面の実像Bが形成された位置に設けられた透光性部材8を備えている点で、実施形態2に係る操作装置(図6参照)と相違する。以下、本実施形態の操作装置について図7を用いて説明する。なお、実施形態2の操作装置と同様の構成要素については、同一の符号を付して説明を省略する。
(Embodiment 3)
The operating device according to the third embodiment is different from the operating device according to the second embodiment (see FIG. 6) in that the operating device according to the third embodiment includes a translucent member 8 provided at a position where the real image B of the operation screen is formed. . Hereinafter, the operating device of this embodiment will be described with reference to FIG. In addition, about the component similar to the operating device of Embodiment 2, the same code | symbol is attached | subjected and description is abbreviate | omitted.
 透光性部材8は、例えば透明プラスチックやガラスなどが板状に形成された部材であり、法線方向が凹面鏡2の光軸Lxに沿って設置されている。つまり、透光性部材8の平面に操作画面Aが重なるように、透光性部材8は設置されている。透光性部材8は、操作画面の実像Bの位置が変わると、移動後の位置に移動する。 The translucent member 8 is a member in which, for example, transparent plastic or glass is formed in a plate shape, and the normal direction is set along the optical axis Lx of the concave mirror 2. That is, the translucent member 8 is installed so that the operation screen A overlaps the plane of the translucent member 8. The translucent member 8 moves to the moved position when the position of the real image B on the operation screen changes.
 本実施形態の操作装置の使用例は実施形態2と同様であり、操作装置を浴室やキッチンに用いたり、銀行のATMや建物のオートロックドアなどに用いたりすることができる。 The usage example of the operating device of the present embodiment is the same as that of the second embodiment, and the operating device can be used for a bathroom or kitchen, a bank ATM, a building auto-lock door, or the like.
 以上、本実施形態の操作装置によれば、操作画面の実像Bが形成された位置に透光性部材8が設けられることによって、操作画面の実像Bが空間に浮かぶように形成されていても、操作画面の実像Bの位置を使用者Pが認識しやすくなるので、使用者Pの操作性を向上させることができる。 As described above, according to the operation device of the present embodiment, the translucent member 8 is provided at a position where the real image B of the operation screen is formed, so that the real image B of the operation screen is formed to float in the space. Since the user P can easily recognize the position of the real image B on the operation screen, the operability of the user P can be improved.
 (実施形態4)
 実施形態4に係る操作装置は、図8に示すようにハーフミラー3aが立ち上がっている点で、実施形態1に係る操作装置(図8の破線)と相違する。なお、実施形態1の操作装置と同様の構成要素については、同一の符号を付して説明を省略する。
(Embodiment 4)
The operating device according to the fourth embodiment is different from the operating device according to the first embodiment (broken line in FIG. 8) in that the half mirror 3a is raised as shown in FIG. In addition, about the component similar to the operating device of Embodiment 1, the same code | symbol is attached | subjected and description is abbreviate | omitted.
 本実施形態のモニタ1aにおいて、操作画面Aを表示する表示面11は、表示面が平面である場合に比べて、凹面鏡2aにより結像される操作画面の実像Bの歪みを低減させるように非平面(曲面)に形成されている。具体的には、モニタ1aの表示面11は、ハーフミラー3aと反対側へ凸状になる球面に形成されている。なお、表示面11は、操作画面の実像Bの歪みを低減させることができれば上記のような球面以外の非平面であってもよい。 In the monitor 1a of the present embodiment, the display surface 11 for displaying the operation screen A is not so as to reduce distortion of the real image B of the operation screen imaged by the concave mirror 2a as compared with the case where the display surface is a flat surface. It is formed in a plane (curved surface). Specifically, the display surface 11 of the monitor 1a is formed in a spherical surface that is convex toward the side opposite to the half mirror 3a. The display surface 11 may be a non-planar surface other than the spherical surface as described above as long as the distortion of the real image B on the operation screen can be reduced.
 本実施形態の凹面鏡2aおよびハーフミラー3aは、図8に示すように配置されている。つまり、凹面鏡2aの鏡面21の中心点22に投影される反射光33が中心点22における法線23に対してモニタ1a側(図8の上側)に傾斜するように、凹面鏡2aおよびハーフミラー3aが配置されている。換言すると、反射光33は、図8のY軸周りにおいて法線23に対して反時計方向に傾斜している。ハーフミラー3aの分割面31は、ハーフミラー3に比べて凹面鏡2aの鏡面21に向かい合う方向(図8の左側)に立ち上がっている。 The concave mirror 2a and the half mirror 3a of this embodiment are arranged as shown in FIG. That is, the concave mirror 2a and the half mirror 3a so that the reflected light 33 projected onto the center point 22 of the mirror surface 21 of the concave mirror 2a is inclined to the monitor 1a side (upper side in FIG. 8) with respect to the normal line 23 at the center point 22. Is arranged. In other words, the reflected light 33 is inclined counterclockwise with respect to the normal 23 around the Y axis in FIG. The split surface 31 of the half mirror 3a rises in a direction (left side in FIG. 8) facing the mirror surface 21 of the concave mirror 2a as compared to the half mirror 3.
 ハーフミラー3aは、凹面鏡2aに対して上述したように配置されているとともに、モニタ1aに対して、分割面31の点32において分割面31とモニタ1aの光軸とでなす角θ1が45°未満になるように配置されている。分割面31上の点32は、凹面鏡2aの鏡面21の中心点22に投影される反射光33が生成される点である。なお、ハーフミラー3aの代わりに、平面の分割面を有する他のビームスプリッタを用いてもよい。 The half mirror 3a is arranged as described above with respect to the concave mirror 2a, and the angle θ1 formed by the split surface 31 and the optical axis of the monitor 1a at the point 32 of the split surface 31 is 45 ° with respect to the monitor 1a. It is arranged to be less than. A point 32 on the dividing surface 31 is a point at which the reflected light 33 projected onto the center point 22 of the mirror surface 21 of the concave mirror 2a is generated. Instead of the half mirror 3a, another beam splitter having a plane dividing surface may be used.
 本実施形態の凹面鏡2aの鏡面21は、球面より操作画面の実像Bの歪みを低減させるように楕円面(非球面)に形成されている。つまり、本実施形態の凹面鏡2aは、球面鏡の場合より操作画面の実像Bの歪みを低減させるような形状の楕円面鏡(非球面鏡)である。なお、凹面鏡2aの鏡面21は必ずしも上記のような楕円面でなくてもよく、球面より操作画面の実像Bの歪みを低減させる非球面であればよい。 The mirror surface 21 of the concave mirror 2a of this embodiment is formed in an elliptical surface (aspherical surface) so as to reduce distortion of the real image B on the operation screen from the spherical surface. That is, the concave mirror 2a of the present embodiment is an elliptical mirror (aspherical mirror) shaped so as to reduce the distortion of the real image B on the operation screen as compared with a spherical mirror. The mirror surface 21 of the concave mirror 2a is not necessarily an elliptical surface as described above, but may be an aspherical surface that reduces distortion of the real image B on the operation screen rather than a spherical surface.
 本実施形態の操作装置では、図9に示すように、凹面鏡2aの最下位置からの高さL1が182mm~185mmの間を移動可能にモニタ1aが配置され、凹面鏡2aのY軸方向の長さL2が160mm、Z軸方向の長さL3が120mmである。X軸方向において、凹面鏡2a(中心点22)とハーフミラー3a(点32)との間の距離L4は50mmであり、凹面鏡2a(中心点22)と観測点8との間の距離L5は800mmである。なお、上記の高さL1、長さL2,L3および距離L4,L5は一例であり、上記の値に限定されず、用途に応じて適宜設定される。 In the operating device of the present embodiment, as shown in FIG. 9, the monitor 1a is arranged so that the height L1 from the lowest position of the concave mirror 2a is movable between 182 mm and 185 mm, and the length of the concave mirror 2a in the Y-axis direction is set. The length L2 is 160 mm, and the length L3 in the Z-axis direction is 120 mm. In the X-axis direction, the distance L4 between the concave mirror 2a (center point 22) and the half mirror 3a (point 32) is 50 mm, and the distance L5 between the concave mirror 2a (center point 22) and the observation point 8 is 800 mm. It is. In addition, said height L1, length L2, L3, and distance L4, L5 are examples, and are not limited to said value, It sets suitably according to a use.
 図10に示すように、本実施形態の操作装置における実像(図10の実線)は、図16に示すようなモニタ91の表示面911が平面である場合(図17の実線参照)に比べて、歪みが軽減する。図16に示すハーフミラー93は、ハーフミラー3に比べて凹面鏡92(2a)の鏡面921(21)に向かい合う方向(図16の左側)に立ち上がっている。ハーフミラー93は、モニタ91から発せられた光を平面の分割面931で反射光と透過光とに分割する。なお、図10は、本実施形態の一例として、モニタ1aの表示面11の曲率半径が50mm、コーニック定数kが-5.0であり、凹面鏡2aの鏡面21の曲率半径が250mm、コーニック定数kが-0.3である場合の実像のディストーション格子を示している。図10(a)は視距離L6が400mmの場合であり、図10(b)は視距離L6が410mmの場合である。モニタ1aおよび凹面鏡2aの曲率半径およびコーニック定数kは上記の値に限定されず、用途に応じて適宜設定される。図10および図17の破線は、表示面11に表示されるディストーション格子を示す。 As shown in FIG. 10, the real image (solid line in FIG. 10) in the operating device of the present embodiment is compared with the case where the display surface 911 of the monitor 91 is a flat surface as shown in FIG. 16 (see the solid line in FIG. 17). , Distortion is reduced. The half mirror 93 shown in FIG. 16 rises in a direction (left side in FIG. 16) facing the mirror surface 921 (21) of the concave mirror 92 (2a) as compared to the half mirror 3. The half mirror 93 divides the light emitted from the monitor 91 into reflected light and transmitted light by a flat dividing surface 931. As an example of this embodiment, FIG. 10 shows that the radius of curvature of the display surface 11 of the monitor 1a is 50 mm and the conic constant k is −5.0, the radius of curvature of the mirror surface 21 of the concave mirror 2a is 250 mm, and the conic constant k. The distortion grating of the real image in the case where is −0.3 is shown. FIG. 10A shows a case where the viewing distance L6 is 400 mm, and FIG. 10B shows a case where the viewing distance L6 is 410 mm. The curvature radii and the conic constant k of the monitor 1a and the concave mirror 2a are not limited to the above values, and are appropriately set according to the application. The broken lines in FIGS. 10 and 17 indicate the distortion grid displayed on the display surface 11.
 上記より、凹面鏡2aの鏡面21の中心点22に投影される反射光33が法線23に対してモニタ1a側に傾斜するようにハーフミラー3aが配置された場合に、モニタ1aの表示面11を非平面(球面)にすることにより、表示面911が平面であるモニタ91の場合に比べて操作画面の実像Bの歪みを低減させることができる。 From the above, when the half mirror 3a is arranged so that the reflected light 33 projected onto the center point 22 of the mirror surface 21 of the concave mirror 2a is inclined to the monitor 1a side with respect to the normal line 23, the display surface 11 of the monitor 1a. By making the surface non-planar (spherical), the distortion of the real image B on the operation screen can be reduced compared to the case of the monitor 91 having a flat display surface 911.
 以上の説明より、本実施形態の操作装置は、凹面鏡2aの鏡面21の中心点22に投影される反射光33が法線23に対してモニタ1a側に傾斜するように凹面鏡2aおよびハーフミラー3aが配置され、モニタ1aの表示面11が非平面に形成されている。これにより、本実施形態の操作装置では、操作画面の実像Bの歪みを増加させることなく、装置の幅W1を薄くすることができる。つまり、本実施形態の操作装置は、使用者Pに対して視標の歪みを気にさせることなく操作画面Aより近方の実像Bを視標として呈示しつつ、実施形態1の操作装置(図8の破線)の幅W2に比べて、装置の幅W1を薄くすることができる。 From the above description, in the operating device of the present embodiment, the concave mirror 2a and the half mirror 3a are such that the reflected light 33 projected onto the center point 22 of the mirror surface 21 of the concave mirror 2a is inclined to the monitor 1a side with respect to the normal 23. And the display surface 11 of the monitor 1a is formed in a non-planar shape. Thereby, in the operating device of this embodiment, the width W1 of the device can be reduced without increasing the distortion of the real image B on the operating screen. That is, the operating device according to the first embodiment presents the real image B closer to the operation screen A as a visual target without causing the user P to worry about distortion of the visual target. The width W1 of the device can be made thinner than the width W2 of the broken line in FIG.
 特に、本実施形態の操作装置では、モニタ1aの表示面11がハーフミラー3aと反対側へ凸状に形成されていることによって、視標の歪みをより簡単に低減させることができる。 Particularly, in the operating device of the present embodiment, the display surface 11 of the monitor 1a is formed in a convex shape on the side opposite to the half mirror 3a, so that distortion of the visual target can be reduced more easily.
 さらに、本実施形態の操作装置では、凹面鏡2aの鏡面21が非球面であることによって、視標の歪みをより簡単に低減させることができる。 Furthermore, in the operating device of the present embodiment, the distortion of the target can be more easily reduced because the mirror surface 21 of the concave mirror 2a is aspherical.
 なお、本実施形態においても、距離調整部6によって、表示面11と凹面鏡2aとの間の光学距離を凹面鏡2aの焦点距離より長い範囲内で変化させることができる。 In this embodiment as well, the optical distance between the display surface 11 and the concave mirror 2a can be changed by the distance adjusting unit 6 within a range longer than the focal length of the concave mirror 2a.
 (実施形態5)
 実施形態5に係る操作装置は、図11に示すようにハーフミラー3bが立ち上がっている点で、実施形態1に係る操作装置(図11の破線)と相違する。なお、実施形態1の操作装置と同様の構成要素については、同一の符号を付して説明を省略する。
(Embodiment 5)
The operating device according to the fifth embodiment is different from the operating device according to the first embodiment (broken line in FIG. 11) in that the half mirror 3b is raised as shown in FIG. In addition, about the component similar to the operating device of Embodiment 1, the same code | symbol is attached | subjected and description is abbreviate | omitted.
 本実施形態のハーフミラー3bの分割面31は、分割面が平面である場合に比べて、凹面鏡2bにより結像される操作画面の実像Bの歪みを低減させるように非平面(曲面)に形成されている。具体的には、ハーフミラー3bの分割面31は、凹面鏡2bと反対側へ凸状になる球面に形成されている。なお、分割面31は、操作画面の実像Bの歪みを低減させることができれば上記のような球面以外の非平面であってもよい。 The split surface 31 of the half mirror 3b according to the present embodiment is formed to be non-planar (curved surface) so as to reduce distortion of the real image B of the operation screen imaged by the concave mirror 2b as compared with the case where the split surface is a flat surface. Has been. Specifically, the split surface 31 of the half mirror 3b is formed in a spherical surface that is convex to the opposite side to the concave mirror 2b. The dividing surface 31 may be a non-planar surface other than the spherical surface as described above as long as the distortion of the real image B on the operation screen can be reduced.
 本実施形態の凹面鏡2bおよびハーフミラー3bは、図11に示すように配置されている。つまり、凹面鏡2bの鏡面21の中心点22に投影される反射光23が中心点22における法線23に対してモニタ1側(図11の上側)に傾斜するように、凹面鏡2bおよびハーフミラー3bが配置されている。換言すると、反射光33は、図11のY軸周りにおいて法線23に対して反時計方向に傾斜している。ハーフミラー3bの分割面31は、ハーフミラー3に比べて凹面鏡2bの鏡面21に向かい合う方向(図11の左側)に立ち上がっている。 The concave mirror 2b and the half mirror 3b of this embodiment are arranged as shown in FIG. That is, the concave mirror 2b and the half mirror 3b so that the reflected light 23 projected onto the center point 22 of the mirror surface 21 of the concave mirror 2b is inclined to the monitor 1 side (upper side in FIG. 11) with respect to the normal line 23 at the center point 22. Is arranged. In other words, the reflected light 33 is inclined counterclockwise with respect to the normal line 23 around the Y axis in FIG. The split surface 31 of the half mirror 3b rises in a direction (left side in FIG. 11) facing the mirror surface 21 of the concave mirror 2b as compared to the half mirror 3.
 ハーフミラー3bは、凹面鏡2bに対して上述したように配置されているとともに、モニタ1に対して、分割面31の点32において分割面31の接線34とモニタ1の光軸とでなす角θ2が45°未満になるように配置されている。分割面31上の点32は、凹面鏡2bの鏡面21の中心点22に投影される反射光33が生成される点である。なお、ハーフミラー3bの代わりに、上記のような形状の分割面を有する他のビームスプリッタを用いてもよい。 The half mirror 3b is arranged as described above with respect to the concave mirror 2b, and the angle θ2 formed by the tangent 34 of the dividing surface 31 and the optical axis of the monitor 1 at the point 32 of the dividing surface 31 with respect to the monitor 1. Is arranged to be less than 45 °. A point 32 on the dividing surface 31 is a point at which the reflected light 33 projected onto the center point 22 of the mirror surface 21 of the concave mirror 2b is generated. Instead of the half mirror 3b, another beam splitter having a split surface having the above shape may be used.
 本実施形態の凹面鏡2bの鏡面21は、球面より操作画面の実像Bの歪みを低減させるように楕円面(非球面)に形成されている。つまり、本実施形態の凹面鏡2bは、球面鏡の場合より操作画面の実像Bの歪みを低減させるような形状の楕円面鏡(非球面鏡)である。なお、凹面鏡2bの鏡面21は必ずしも上記のような楕円面でなくてもよく、球面より操作画面の実像Bの歪みを低減させる非球面であればよい。 The mirror surface 21 of the concave mirror 2b of this embodiment is formed in an elliptical surface (aspherical surface) so as to reduce distortion of the real image B on the operation screen from the spherical surface. That is, the concave mirror 2b of the present embodiment is an elliptical mirror (aspherical mirror) shaped so as to reduce distortion of the real image B on the operation screen as compared with the case of a spherical mirror. The mirror surface 21 of the concave mirror 2b does not necessarily have to be an elliptical surface as described above, and may be an aspherical surface that reduces distortion of the real image B on the operation screen rather than a spherical surface.
 本実施形態の操作装置では、図12に示すように、凹面鏡2bの最下位置からの高さL1が182mm~185mmの間を移動可能にモニタ1が配置され、凹面鏡2bのY軸方向の長さL2が160mm、Z軸方向の長さL3が120mmである。X軸方向において、凹面鏡2b(中心点22)とハーフミラー3b(点22)との間の距離L4は50mmであり、凹面鏡2b(中心点22)と観測点8との間の距離L5は800mmである。なお、上記の高さL1、長さL2,L3および距離L4,L5は一例であり、上記の値に限定されず、用途に応じて適宜設定される。 In the operating device of the present embodiment, as shown in FIG. 12, the monitor 1 is arranged so that the height L1 of the concave mirror 2b from the lowest position is movable between 182 mm and 185 mm, and the length of the concave mirror 2b in the Y-axis direction is set. The length L2 is 160 mm, and the length L3 in the Z-axis direction is 120 mm. In the X-axis direction, the distance L4 between the concave mirror 2b (center point 22) and the half mirror 3b (point 22) is 50 mm, and the distance L5 between the concave mirror 2b (center point 22) and the observation point 8 is 800 mm. It is. In addition, said height L1, length L2, L3, and distance L4, L5 are examples, and are not limited to said value, It sets suitably according to a use.
 図13に示すように、本実施形態の操作装置における実像(図13の実線)は、図16に示すようなハーフミラー93の分割面931が平面である場合(図17の実線参照)に比べて、歪みが軽減する。なお、図12は、本実施形態の一例として、ハーフミラー3bの分割面31の曲率半径が5000mm、コーニック定数kが-50.0であり、凹面鏡2bの鏡面21の曲率半径が250mm、コーニック定数kが-0.78である場合の実像のディストーション格子を示している。図13(a)は視距離L6が400mmの場合であり、図13(b)は視距離L6が410mmの場合である。モニタ1および凹面鏡2bの曲率半径およびコーニック定数kは上記の値に限定されず、用途に応じて適宜設定される。図13および図17の破線は、表示面11に表示されるディストーション格子を示す。 As shown in FIG. 13, the real image (solid line in FIG. 13) in the operating device of the present embodiment is compared with the case where the dividing surface 931 of the half mirror 93 as shown in FIG. 16 is a plane (see the solid line in FIG. 17). This reduces distortion. FIG. 12 shows, as an example of this embodiment, the radius of curvature of the split surface 31 of the half mirror 3b is 5000 mm, the conic constant k is −50.0, the radius of curvature of the mirror surface 21 of the concave mirror 2b is 250 mm, and the conic constant. The distortion grating of the real image when k is −0.78 is shown. FIG. 13A shows a case where the viewing distance L6 is 400 mm, and FIG. 13B shows a case where the viewing distance L6 is 410 mm. The curvature radii and the conic constant k of the monitor 1 and the concave mirror 2b are not limited to the above values, and are appropriately set according to the application. The broken lines in FIGS. 13 and 17 indicate the distortion grid displayed on the display surface 11.
 上記より、凹面鏡2bの鏡面21の中心点22に投影される反射光33が法線23に対してモニタ1側に傾斜するようにハーフミラー3bが配置された場合に、ハーフミラー3bの分割面31を非平面(球面)にすることにより、分割面931が平面であるハーフミラー93の場合に比べて操作画面の実像Bの歪みを低減させることができる。 From the above, when the half mirror 3b is arranged so that the reflected light 33 projected onto the center point 22 of the mirror surface 21 of the concave mirror 2b is inclined to the monitor 1 side with respect to the normal line 23, the split surface of the half mirror 3b By making 31 a non-planar surface (spherical surface), the distortion of the real image B on the operation screen can be reduced as compared with the case of the half mirror 93 in which the dividing surface 931 is a flat surface.
 以上の説明より、本実施形態の操作装置は、凹面鏡2bの鏡面21の中心点22に投影される反射光33が法線23に対してモニタ1側に傾斜するように凹面鏡2bおよびハーフミラー3bが配置され、ハーフミラー3bの分割面31が非平面に形成されている。これにより、本実施形態の操作装置では、操作画面の実像Bの歪みを増加させることなく、装置の幅W1を薄くすることができる。つまり、本実施形態の操作装置は、使用者Pに対して視標の歪みを気にさせることなく操作画面Aより近方の実像Bを視標として呈示しつつ、実施形態1の操作装置(図11の破線)の幅W2に比べて、装置の幅W1を薄くすることができる。 From the above description, in the operating device of the present embodiment, the concave mirror 2b and the half mirror 3b are arranged such that the reflected light 33 projected onto the center point 22 of the mirror surface 21 of the concave mirror 2b is inclined to the monitor 1 side with respect to the normal 23. Are arranged, and the dividing surface 31 of the half mirror 3b is formed to be non-planar. Thereby, in the operating device of this embodiment, the width W1 of the device can be reduced without increasing the distortion of the real image B on the operating screen. That is, the operating device according to the first embodiment presents the real image B closer to the operation screen A as a visual target without causing the user P to worry about distortion of the visual target. Compared with the width W2 of the broken line in FIG. 11, the width W1 of the device can be reduced.
 特に、本実施形態の操作装置では、ハーフミラー3bの分割面31が凹面鏡2bと反対側へ凸状に形成されていることによって、視標の歪みをより簡単に低減させることができる。 In particular, in the operating device of the present embodiment, the division surface 31 of the half mirror 3b is formed in a convex shape on the opposite side to the concave mirror 2b, so that distortion of the visual target can be reduced more easily.
 さらに、本実施形態の操作装置では、凹面鏡2bの鏡面21が非球面であることによって、視標の歪みをより簡単に低減させることができる。 Furthermore, in the operating device according to the present embodiment, since the mirror surface 21 of the concave mirror 2b is aspherical, the distortion of the target can be reduced more easily.
 なお、本実施形態においても、距離調整部6によって、ハーフミラー3bで結像される像と凹面鏡2bとの間の光学距離を凹面鏡2bの焦点距離より長い範囲内で変化させることができる。 In this embodiment as well, the distance adjusting unit 6 can change the optical distance between the image formed by the half mirror 3b and the concave mirror 2b within a range longer than the focal length of the concave mirror 2b.
 各実施形態の検出部4は、2つの位置検出センサ(図示せず)の出力を用いて、使用者Pの指による操作位置の実空間上に3次元座標を検出してもよい。例えば位置検出センサとしてカメラを用いる場合、検出部4は、各カメラが撮像した2つの画像のそれぞれについて、画像中における使用者Pの指先部分を画像認識し、指先部分の画像中の座標を求める。画像中の座標を求めた検出部4は、求めた座標に対応する実空間上の座標範囲をカメラの配置やレンズ特性に従って求め、2つの画像について求めた実空間上の座標範囲の重複する位置を、使用者Pの指による操作位置の実空間上の3次元座標とする。 The detection unit 4 of each embodiment may detect three-dimensional coordinates in the real space of the operation position by the user P's finger using outputs of two position detection sensors (not shown). For example, when a camera is used as the position detection sensor, the detection unit 4 recognizes the fingertip portion of the user P in the image for each of two images captured by each camera, and obtains the coordinates of the fingertip portion in the image. . The detecting unit 4 that has obtained the coordinates in the image obtains a coordinate range in the real space corresponding to the obtained coordinates in accordance with the camera arrangement and lens characteristics, and the overlapping position of the coordinate ranges in the real space obtained for the two images. Is a three-dimensional coordinate in the real space of the operation position by the finger of the user P.

Claims (12)

  1.  所定の機器を操作するために用いられる情報を使用者に呈示するとともに前記使用者からの操作入力を受け付ける操作装置であって、
     前記情報を外部から視認可能にする情報表示媒体との間の光学距離が焦点距離より長くなるように設けられた凹面鏡を有し、前記凹面鏡を用いて前記情報表示媒体の実像を空間に浮かぶように形成する表示部と、
     前記使用者から前記実像への操作入力を検出する検出部と、
     前記検出部で検出された前記操作入力に応じて前記機器に対する操作内容を決定する決定部と
     を備えることを特徴とする操作装置。
    An operation device that presents information used for operating a predetermined device to a user and receives an operation input from the user,
    A concave mirror provided so that an optical distance to the information display medium that enables the information to be visually recognized from outside is longer than a focal length, and a real image of the information display medium is floated in space using the concave mirror A display part to be formed on,
    A detection unit for detecting an operation input from the user to the real image;
    An operating device, comprising: a determining unit that determines an operation content for the device according to the operation input detected by the detecting unit.
  2.  前記情報表示媒体と前記凹面鏡との間の前記光学距離を前記凹面鏡の前記焦点距離より長い範囲内で変化させる距離調整部を備えることを特徴とする請求項1記載の操作装置。 The operation device according to claim 1, further comprising a distance adjusting unit that changes the optical distance between the information display medium and the concave mirror within a range longer than the focal length of the concave mirror.
  3.  前記実像の位置を変更するための指示を行う指示部を備え、
     前記距離調整部は、前記指示部の指示に従って、前記情報表示媒体と前記凹面鏡との間の前記光学距離を変化させる
     ことを特徴とする請求項2記載の操作装置。
    An instruction unit for giving an instruction to change the position of the real image;
    The operating device according to claim 2, wherein the distance adjustment unit changes the optical distance between the information display medium and the concave mirror in accordance with an instruction from the instruction unit.
  4.  前記使用者の視機能状態を計測する視機能計測部を備え、
     前記距離調整部は、前記視機能計測部で計測された前記視機能状態に従って、前記情報表示媒体と前記凹面鏡との間の前記光学距離を変化させる
     ことを特徴とする請求項2記載の操作装置。
    A visual function measuring unit for measuring the visual function state of the user;
    The operating device according to claim 2, wherein the distance adjustment unit changes the optical distance between the information display medium and the concave mirror according to the visual function state measured by the visual function measurement unit. .
  5.  前記実像が形成された位置に設けられた透光性部材を備えることを特徴とする請求項1記載の操作装置。 The operating device according to claim 1, further comprising a translucent member provided at a position where the real image is formed.
  6.  前記表示部は、前記凹面鏡の光軸に斜交して設けられ反射光と透過光とに分割する分割面を含むビームスプリッタを有し、前記ビームスプリッタが前記反射光を前記凹面鏡側に反射させるとともに前記凹面鏡で反射した光を透過させることによって、前記情報表示媒体の実像を形成して前記使用者に呈示することを特徴とする請求項1記載の操作装置。 The display unit includes a beam splitter that is provided obliquely with respect to the optical axis of the concave mirror and includes a split surface that divides the light into reflected light and transmitted light, and the beam splitter reflects the reflected light toward the concave mirror. The operating device according to claim 1, wherein a real image of the information display medium is formed and presented to the user by transmitting the light reflected by the concave mirror.
  7.  前記情報表示媒体が表示される表示面を有し当該表示面に表示される前記情報表示媒体を投射するモニタを備え、
     前記ビームスプリッタは、前記分割面において、前記モニタから発せられた光を前記反射光と前記透過光とに分割し、
     前記凹面鏡の鏡面の中心点に投影される前記反射光が当該中心点における法線に対して前記モニタ側に傾斜するように、前記ビームスプリッタおよび前記凹面鏡が配置され、
     前記モニタの前記表示面は非平面に形成されている
     ことを特徴とする請求項6記載の操作装置。
    A monitor having a display surface on which the information display medium is displayed and projecting the information display medium displayed on the display surface;
    The beam splitter divides the light emitted from the monitor into the reflected light and the transmitted light on the dividing plane,
    The beam splitter and the concave mirror are arranged so that the reflected light projected onto the central point of the mirror surface of the concave mirror is inclined toward the monitor with respect to the normal line at the central point,
    The operation device according to claim 6, wherein the display surface of the monitor is non-planar.
  8.  前記モニタの前記表示面は、前記ビームスプリッタと反対側へ凸状になるように形成されていることを特徴とする請求項7記載の操作装置。 The operation device according to claim 7, wherein the display surface of the monitor is formed to be convex toward the opposite side of the beam splitter.
  9.  前記情報表示媒体が表示される表示面を有し当該表示面に表示される前記情報表示媒体を投射するモニタを備え、
     前記ビームスプリッタは、前記分割面において、前記モニタから発せられた光を前記反射光と前記透過光とに分割し、
     前記凹面鏡の鏡面の中心点に投影される前記反射光が当該中心点における法線に対して前記モニタ側に傾斜するように、前記ビームスプリッタおよび前記凹面鏡が配置され、
     前記ビームスプリッタの前記分割面は非平面に形成されている
     ことを特徴とする請求項6記載の操作装置。
    A monitor having a display surface on which the information display medium is displayed and projecting the information display medium displayed on the display surface;
    The beam splitter divides the light emitted from the monitor into the reflected light and the transmitted light on the dividing plane,
    The beam splitter and the concave mirror are arranged so that the reflected light projected onto the central point of the mirror surface of the concave mirror is inclined toward the monitor with respect to the normal line at the central point,
    The operating device according to claim 6, wherein the split surface of the beam splitter is formed in a non-planar surface.
  10.  前記ビームスプリッタの前記分割面は、前記凹面鏡と反対側へ凸状になるように形成されていることを特徴とする請求項9記載の操作装置。 10. The operating device according to claim 9, wherein the split surface of the beam splitter is formed to be convex toward the opposite side of the concave mirror.
  11.  前記凹面鏡の前記鏡面は非球面に形成されていることを特徴とする請求項7~10のいずれか1項に記載の操作装置。 The operating device according to any one of claims 7 to 10, wherein the mirror surface of the concave mirror is formed as an aspherical surface.
  12.  前記ビームスプリッタは、ハーフミラーであることを特徴とする請求項6記載の操作装置。 The operating device according to claim 6, wherein the beam splitter is a half mirror.
PCT/JP2011/060147 2010-04-27 2011-04-26 Operation device WO2011136211A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-102481 2010-04-27
JP2010102481A JP2013148936A (en) 2010-04-27 2010-04-27 Operation device

Publications (1)

Publication Number Publication Date
WO2011136211A1 true WO2011136211A1 (en) 2011-11-03

Family

ID=44861509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060147 WO2011136211A1 (en) 2010-04-27 2011-04-26 Operation device

Country Status (3)

Country Link
JP (1) JP2013148936A (en)
TW (1) TW201205354A (en)
WO (1) WO2011136211A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6394135B2 (en) * 2014-07-11 2018-09-26 船井電機株式会社 Image display device
JP6829996B2 (en) * 2017-01-13 2021-02-17 リンナイ株式会社 Heating device
JP6826892B2 (en) * 2017-01-13 2021-02-10 リンナイ株式会社 Heating device
JP6826891B2 (en) * 2017-01-13 2021-02-10 リンナイ株式会社 Heating device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003067108A (en) * 2001-08-23 2003-03-07 Hitachi Ltd Information display device and operation recognition method for the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003067108A (en) * 2001-08-23 2003-03-07 Hitachi Ltd Information display device and operation recognition method for the same

Also Published As

Publication number Publication date
TW201205354A (en) 2012-02-01
JP2013148936A (en) 2013-08-01

Similar Documents

Publication Publication Date Title
WO2018003861A1 (en) Display device and control device
US10860139B2 (en) Detection device, electronic apparatus, detection method and program
US8730164B2 (en) Gesture recognition apparatus and method of gesture recognition
JP5420793B1 (en) Head-mounted display with adjustable image viewing distance
EP3051345B1 (en) Video projection device
KR101684956B1 (en) Measuring device that can be operated without contact and control method for such a measuring device
WO2011136213A1 (en) Display device
KR20140059213A (en) Head mounted display with iris scan profiling
WO2005043218A1 (en) Image display device
WO2005063114A1 (en) Sight-line detection method and device, and three- dimensional view-point measurement device
TW201636796A (en) Control device, electronic instrument, control method, and program
JP2016051315A (en) Line-of-sight detection apparatus
JP2010055266A (en) Apparatus, method and program for setting position designated in three-dimensional display
JP4500992B2 (en) 3D viewpoint measuring device
US20160170482A1 (en) Display apparatus, and control method for display apparatus
JP2016006447A (en) Image display device
WO2011136211A1 (en) Operation device
KR20160047305A (en) Smart glasses with displayer/camera and space touch input/ correction thereof
US8876291B2 (en) Control apparatus, ophthalmologic apparatus, system, control method, and program
KR101739768B1 (en) Gaze tracking system at a distance using stereo camera and narrow angle camera
JP2014228805A (en) Image display device and image display method
CN103713387A (en) Electronic device and acquisition method
JP5371051B2 (en) Gaze measurement apparatus, method, and program
TW201643646A (en) Detection device and program
KR101492832B1 (en) Method for controlling display screen and display apparatus thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11774992

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11774992

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP