WO2011135756A1 - Monitoring sensor for vehicle - Google Patents

Monitoring sensor for vehicle Download PDF

Info

Publication number
WO2011135756A1
WO2011135756A1 PCT/JP2010/073384 JP2010073384W WO2011135756A1 WO 2011135756 A1 WO2011135756 A1 WO 2011135756A1 JP 2010073384 W JP2010073384 W JP 2010073384W WO 2011135756 A1 WO2011135756 A1 WO 2011135756A1
Authority
WO
WIPO (PCT)
Prior art keywords
monitoring sensor
laser light
actuator
light source
target area
Prior art date
Application number
PCT/JP2010/073384
Other languages
French (fr)
Japanese (ja)
Inventor
信雄 岩月
陽一郎 後藤
良昭 前納
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2011135756A1 publication Critical patent/WO2011135756A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles

Definitions

  • the present invention relates to a vehicle monitoring sensor, and is particularly suitable for use in a vehicle monitoring sensor mounted on a vehicle such as an electric bicycle.
  • an optical measuring device mounted on a vehicle is known (for example, Patent Document 1).
  • the intensity of the laser beam is controlled to be weak or strong according to the determination result, the laser beam is irradiated and vehicle information such as distance is measured.
  • Bicycles are usually not equipped with rearview mirrors, so incidents and accidents from the rear are likely to occur. Such an incident or accident can be avoided by mounting a rear monitoring sensor on the bicycle for monitoring the rear situation. In this case, it is also possible to use the optical measuring device described in the above prior art.
  • the presence / absence of the measurement target is determined based on the reflected light and the vehicle speed, and it is not determined whether the measurement target is approaching.
  • a stopped guardrail or a vehicle traveling in the opposite lane is also included in the measurement target.
  • such an inaccessible object has a low possibility of causing an incident or the like, if the situation is monitored including these, it is difficult to appropriately determine the possibility of the incident or the like.
  • the occurrence rate of incidents etc. is considered to be low. In such a case, if an alarm or the like is performed each time the measurement target is recognized, the alarm or the like occurs frequently, and the result is that the user's attention is reduced. It will be. If this happens, warnings in a truly dangerous situation may not be neglected, and the incident may not be prevented appropriately.
  • the present invention has been made to solve such a problem, and an object thereof is to provide a vehicle monitoring sensor capable of appropriately preventing an incident or an accident.
  • a vehicle monitoring sensor includes a laser light source that emits laser light, an actuator that scans the laser light in a target area, a photodetector that receives the laser light reflected in the target area, and a light
  • a measurement unit that measures the presence or absence of an object in the target region and a distance to the object based on an output from the detector, an alarm unit that performs alarm output, a control unit that controls the laser light source, the actuator, and the alarm unit; Is provided.
  • the control unit acquires the appearance frequency of the approaching object based on the measurement result by the measurement unit, and operates the alarm unit when the appearance frequency is less than the threshold value.
  • a stop object such as a guardrail or a vehicle traveling in the opposite lane is not an alarm target. Therefore, an alarm about an object with a low possibility of causing an incident or an accident can be prevented. Furthermore, since an alarm is issued when an object approaches in a situation where there are few objects in the surroundings, frequent alarms can be avoided, and an alarm is issued when there is a high possibility that an event or the like will occur. Therefore, it is possible to effectively prompt the user to take action to avoid an incident or the like.
  • the bicycle rear monitoring sensor (hereinafter referred to as “rear monitoring sensor”) 10 will be described with reference to the drawings.
  • rear monitoring sensor for bicycles is also described as “rear monitoring sensor”.
  • FIG. 1 is a plan view showing an appearance of a bicycle 100 to which a rear monitoring sensor 10 according to the present embodiment is attached.
  • the bicycle 100 includes a rear monitoring sensor 10 that monitors the rear of the vehicle body 60, a headlamp 20 that illuminates the front of the vehicle body 60, a motor 30 that runs the vehicle body 60, and a battery unit 40 that supplies electric power to these.
  • the vehicle body 60 is formed of a frame 61, a handle 62, a pedal 63, a saddle 64, wheels 65, and the like.
  • the headlamp 20 is provided in the front part of the vehicle body 60 and faces forward.
  • a light source such as an LED is used.
  • the motor 30 is provided in the vicinity of a pedal crankshaft (not shown).
  • the driving force of the motor 30 is transmitted to the pedal crankshaft by the transmission mechanism.
  • the pedal crankshaft is connected to the pedal 63 and a sprocket (not shown).
  • the pedal crankshaft applies a force to step on the pedal 63 and an auxiliary force input from the motor 30 to the sprocket.
  • the sprocket transmits these forces to the wheel 65 or the like and rotates the wheel 65 to advance the vehicle body 60.
  • FIG. 2 is a block diagram showing the configuration of the electrical equipment system mounted on the bicycle 100. As shown in FIG.
  • the control circuit 50 controls the electrical equipment system according to the program stored in the internal memory.
  • the control circuit 50 is arranged in a circuit unit installed at a predetermined position of the bicycle 100.
  • the headlamp 20, the motor 30, and the battery unit 40, the lighting switch 21, the illuminance sensor 22, and the crank torque sensor 31 are connected to the control circuit 50 via signal lines.
  • the control circuit 50 lights the headlamp 20 based on signals from the lighting switch 21 and the illuminance sensor 22.
  • the lighting switch 21 is provided on the handle 62 and the like, and is turned on and off by a user operation.
  • the lighting switch 21 can be set to an automatic lighting mode (AUTO).
  • the illuminance sensor 22 measures illuminance and detects ambient brightness.
  • the crank torque sensor 31 is provided on the pedal crankshaft and detects torque applied from the pedal 63 to the pedal crankshaft.
  • the control circuit 50 controls the motor 30 based on the detection signal from the crank torque sensor 31.
  • the battery unit 40 includes a battery 41 and a battery management controller (hereinafter referred to as “BMC”) 42.
  • the BMC 42 supplies the power of the battery 41 to the block designated by the control circuit 50. Further, the BMC 42 acquires the capacity of the power remaining in the battery 41 and displays the remaining capacity. The remaining capacity is displayed on a panel (not shown) attached to the handle 62 or the like. In accordance with the remaining capacity, the BMC 42 changes the amount of power supplied to the motor 30 or receives an instruction from the user or the control circuit 50, and determines whether the remaining power is supplied to either the motor 30 or the rear monitoring sensor 10. Or select.
  • the rear monitoring sensor 10 includes an emission block 11, a light receiving block 12, an alarm unit 13, and a rear monitoring sensor management controller (hereinafter referred to as “monitoring sensor MC”).
  • the emission block 11 emits laser light toward the target area.
  • the light receiving block 12 receives the laser light reflected from the target area.
  • the alarm unit 13 outputs an alarm by voice or light.
  • the monitoring sensor MC receives each control signal from the control circuit 50 and controls each part in the rear monitoring sensor 10.
  • the control circuit 50 when the lighting switch 21 is turned on or off, the signal is output to the control circuit 50.
  • the illuminance sensor 22 measures the illuminance and outputs the measurement result to the control circuit 50.
  • the control circuit 50 causes the BMC 42 to supply power to the headlamp 20 and turns on the headlamp 20.
  • the control circuit 50 stops the BMC 42 from supplying power to the headlamp 20 and turns off the headlamp 20.
  • the control circuit 50 compares the illuminance input from the illuminance sensor 22 with the threshold value.
  • the control circuit 50 When the illuminance falls below the threshold value, the control circuit 50 causes the BMC 42 to supply power to the headlamp 20 and turn on the headlamp 20. On the contrary, when the illuminance becomes larger than the threshold value, the control circuit 50 stops the power supply to the headlamp 20 in the BMC 42 and turns off the headlamp 20.
  • the control circuit 50 acquires the torque from the crank torque sensor 31 and calculates an assisting force corresponding to the torque. Then, the control circuit 50 controls the BMC 42 so that the electric power corresponding to the calculated auxiliary force is supplied to the motor 30, operates the motor 30, and applies the auxiliary force from the motor 30 to the pedal crankshaft.
  • the rear monitoring sensor 10 is turned ON / OFF by an ON / OFF switch (not shown).
  • the control circuit 50 provides the monitoring sensor MC14 with a signal for determining day and night, a signal indicating whether the bicycle 100 is running, and the like.
  • an ON / OFF signal of the lighting switch 21 and a detection signal from the illuminance sensor 22 are used as a signal for determining day and night.
  • the lighting switch 21 When the lighting switch 21 is turned on, it is determined that it is night, and when the lighting switch 21 is turned off, it is determined that it is daytime. Further, when the lighting switch 21 is set to the automatic lighting mode (AUTO), it is determined that it is night when the illuminance of the illuminance sensor 22 is less than or equal to the threshold value, and It is determined that
  • a detection signal from the crank torque sensor 31 is used as a signal indicating whether the bicycle 100 is running. If the torque is detected by the detection signal from the crank torque sensor 31, or if the torque value is equal to or greater than a predetermined value, it is determined that the bicycle 100 is running.
  • FIG. 3 is a block diagram showing the configuration of the rear monitoring sensor 10.
  • the emission block 11 includes an emission optical system 11a that emits laser light, an actuator 11b that scans the laser light in the target area, and a servo optical system 11c that detects the scanning position of the laser light in the target area.
  • the light receiving block 12 includes a photodetector 12a and a condensing optical system 12b that condenses the laser light reflected in the target area onto the photodetector 12b.
  • the alarm unit 13 includes a headlight 13a and a speaker 13b.
  • the rear lamp 13 a is attached to the rear portion of the vehicle body 60 and faces the rear of the vehicle body 60.
  • the rear lamp 13a is equipped with a light source such as an LED, and the rear lamp 13a emits light (visible light) backward.
  • the speaker 13b is attached to the handle 62 and outputs sound.
  • the monitoring sensor MC14 controls each part in the rear monitoring sensor 10 according to a program stored in the internal memory.
  • the monitoring sensor MC14 is connected to the control circuit 50, the emission block 11, the light receiving block 12, and the alarm unit 13 shown in FIG.
  • the monitoring sensor MC14 functions as a measurement unit that measures the presence / absence of the target object 101 in the target region and the distance to the target object 101 based on the output from the photodetector 12a, the laser light source 111, the actuator 11b, and the alarm unit 13.
  • the function of the control part which controls etc. and the function of the day / night judgment part which judges day and night are included.
  • FIG. 4 is a diagram showing the configuration of the emission optical system 11a and the actuator 11b.
  • the emission optical system 11a includes a laser light source 111, beam shaping lenses 112 and 113, and a mirror 114.
  • a laser light source 111 is disposed on the upper surface of the base 200 through a substrate, and further, lenses 112 and 113 for beam shaping and an actuator 114 are disposed.
  • the mirror 114 is disposed on the actuator 11b. Laser light emitted from the laser light source 111 passes through the beam shaping lenses 112 and 113 and enters the mirror 114 obliquely in the horizontal direction.
  • the actuator 11b has two rotation axes M1 and M2, and the mirror 114 is rotated in the horizontal direction and the vertical direction by the rotation axes M1 and M2. Thus, the mirror 114 is rotated within the predetermined angle range, so that the laser beam reflected by the mirror 114 is oscillated in the horizontal direction and the vertical direction. Thereby, the laser beam scans the target area.
  • the actuator is provided with a coil and a magnet, and the mirror 114 is driven by an electromagnetic force generated when a current is applied to the coil.
  • the details of the configuration of the actuator 11b are described in, for example, Japanese Patent Application No. 2009-272843 filed earlier by the applicant, and the description is incorporated herein.
  • the actuator described in JP 2008-281339 A can also be used.
  • FIG. 5 is a diagram showing the configuration of the servo optical system 11c.
  • FIG. 5A is a partial plan view when the base 200 is viewed from the back side.
  • walls 201 and 202 are formed on the periphery of the back side of the base 200, and the center side of the walls 201 and 202 is a flat surface 203 that is one step lower than the walls 201 and 202.
  • a circuit board 301 on which a semiconductor laser 303 is mounted is mounted on the wall 201.
  • a circuit board 302 on which a PSD 308 is mounted is mounted in the vicinity of the wall 202.
  • a condensing lens 304, an aperture 305, and an ND (neutral density) filter 306 are attached to a flat surface 203 on the back side of the base 200 by a fixture 307. Further, an opening 203a is formed in the flat surface 203, and the transmission plate 300 attached to the lower part of the rotation shaft M1 of the actuator 11b projects through the opening 203a to the back side of the base 200.
  • the transmission plate 300 is made of a light transmissive parallel plate.
  • the laser light (servo light) emitted from the semiconductor laser 303 is transmitted through the condenser lens 304, and then the beam diameter is reduced by the aperture 305 and further reduced by the ND filter 306. Thereafter, the servo light enters the transmission plate 300 and is refracted by the transmission plate 300. Thereafter, the servo light transmitted through the transmission plate 300 is received by the PSD 308, and a position detection signal corresponding to the light receiving position is output from the PSD 308.
  • FIG. 5B is a diagram schematically showing the relationship between the rotation position of the transmission plate 300 and the optical path of the servo light.
  • Servo light is refracted by the transmission plate 300 arranged to be inclined with respect to the laser optical axis and received by the PSD 308.
  • the transmission plate 300 is rotated from the position of the solid line as indicated by the broken line arrow, the optical path of the servo light is changed from the solid line to the dotted line in the figure, and the light receiving position of the servo light on the PSD 308 is changed.
  • the rotation position of the transmission plate 300 can be detected from the light receiving position of the servo light detected by the PSD 308.
  • the rotation position of the transmission plate 300 corresponds to the rotation position of the mirror 114b and corresponds to the scanning position of the laser beam in the target area. Therefore, the scanning position of the laser beam in the target area can be detected based on the signal from the PSD 308.
  • the rear monitoring sensor 10 switches the laser light scanning range to two stages.
  • FIG. 6 shows a horizontal range A1H of the first target area A1 and a horizontal range A2H of the second target area A2.
  • the first target area A1 is set to the aiming position P1 with a distance K1 (for example, 30 m) from the rear monitoring sensor 10, and the second target area A2 has a distance K2 (for example, 10 m) from the rear monitoring sensor 10. Is set at the aiming position P2.
  • FIG. 7A shows the vertical range A1V of the first target area A1.
  • FIG. 7B shows a range A2V in the vertical direction of the second target area A2.
  • one rectangular cell schematically shows the size and shape of the laser beam in each target region.
  • the horizontal scanning angle ⁇ 2H of the second target area A2 is set wider than the horizontal scanning angle ⁇ 1H of the first target area A1.
  • the laser beam scans the first target area A1 and the second target area A2 in three steps in the horizontal direction.
  • the vertical swing angles of the uppermost scanning line (1) and the central scanning line (2) and the vertical swing angles of the central scanning line (2) and the lowermost scanning line (3) are shown in FIG. As shown, both are ⁇ v.
  • the horizontal scanning ranges of the first target area A1 and the second target area A2 are both D. Further, the vertical scanning ranges of the first target area A1 and the second target area A2 are a range A1V and a range A2V, respectively. Since the first target area A1 is farther from the rear monitoring sensor 10 than the second target area A2, the laser light in the first target area A1 is wider than the laser light in the second target area A2. Therefore, as shown in FIGS. 7A and 7B, the vertical and horizontal widths H1 and L1 of the laser light in the first target area A1 are larger than the vertical and horizontal widths H2 and L2 of the laser light in the second target area A1. Will be several steps larger.
  • the monitoring sensor MC14 detects the scanning position of the laser light in the first target area A1 based on the signal from the PSD 308, while the laser light is in the scanning line (a) of FIG.
  • the actuator 11b is controlled so as to sequentially scan 1), (2), and (3).
  • the monitoring sensor MC14 causes the laser light source 111 to emit light at a timing at which the scanning position corresponds to each square in FIG. Thereby, each laser beam emitted at a predetermined interval is irradiated onto the first target area A1 without being substantially overlapped and spaced apart in the horizontal direction and the vertical direction.
  • the scanning of the lowermost scanning line (3) is completed, the scanning returns to the uppermost stage and the same scanning is repeated.
  • the monitoring sensor MC14 detects the scanning position of the laser light in the second target area A2 based on the signal from the PSD 308, while the laser light is shown in FIG.
  • the actuator 11b is controlled so that the scanning lines (1), (2), and (3) are scanned in order.
  • the monitoring sensor MC14 causes the laser light source 111 to emit light at a timing at which the scanning position corresponds to each square in FIG. Thereby, each laser beam emitted at a predetermined interval is irradiated to the second target area A2 without being substantially overlapped and spaced apart in the horizontal direction and the vertical direction.
  • the scanning of the lowermost scanning line (3) is completed, the scanning returns to the uppermost stage and the same scanning is repeated.
  • the laser light is irradiated to each of the target areas A1 and A2 with a light emission interval.
  • the target object 101 such as the car 101a or the motorcycle 101b exists in each target area A1, A2
  • the irradiated laser light is reflected by the target object 101, and the reflected laser light returns to the rear monitoring sensor 10.
  • the photodetector 12a receives the reflected light and outputs a received light signal to the monitoring sensor MC14.
  • the monitoring sensor MC14 determines the presence of the object 101 based on the light reception signal.
  • the monitoring sensor MC14 determines that there is an object that can be the target object 101 at the position irradiated with the laser light at that time. Further, the monitoring sensor MC14 calculates the distance to this object from the time difference from the laser beam emission timing to the light reception timing.
  • the monitoring sensor MC14 acquires the continuous number of received light signals when the object is scanned with the laser beam in the horizontal direction. Since the size of the laser beam increases as the distance from the rear monitoring sensor 10 increases, the relationship between the number of consecutive received light signals and the width of the object changes according to the distance from the rear monitoring sensor 10.
  • the monitoring sensor MC14 calculates the distance to the object and counts the continuous number of received light signals. Then, the distance and the continuous number are compared with the width table of the object to determine whether the detected object is an object such as an automobile or a motorcycle.
  • FIGS. 8A and 8B are diagrams illustrating an object width table. As shown in the figure, the distance to the object is associated with the number of consecutive received light signals at the distance in the width table. This width table is stored in a memory in the monitoring sensor MC14. In the width table, the number of consecutive received light signals for a specific target object 101 such as a car 101a or a motorcycle 101b having a risk of an incident or the like is described in association with the distance to the target object.
  • the monitoring sensor MC14 determines whether the distance to the object and the continuous number of received light signals for the object match any combination of the distance and the continuous number in the target object width table. And if it matches, the said object will be recognized as a target object, and if not matched, the said object will not be recognized as a target object. In the matching determination, if the difference between the counted continuous number and the continuous number in the width table corresponding to the distance is within a preset allowable value, it is determined that matching is performed.
  • FIGS 9 to 11 show flowcharts in which the rear monitoring sensor 10 monitors the object 101 and issues an alarm by the alarm unit 13.
  • the monitoring sensor MC14 determines whether the bicycle 100 is running. This determination is performed using the detection signal from the crank torque sensor 31 input from the control circuit 50 as described above. If the bicycle 100 is not traveling (S2: NO), the monitoring sensor MC14 stops the operation of the laser light source 111 and the actuator 11b until the bicycle 100 is traveling (S2: YES).
  • the monitoring sensor MC14 determines whether the current time is the night time zone (S4). For example, as described above, the monitoring sensor MC14 determines whether the current time is in the night time zone based on whether the lighting switch 21 is on / off or whether the illuminance of the illuminance sensor 22 is equal to or less than a threshold value. (S4). Specifically, when the lighting switch 21 is turned on or when the lighting switch 21 is set to the automatic lighting mode (AUTO) and the illuminance of the illuminance sensor 22 is equal to or less than the threshold, the current time is the night time. It is determined to be a belt. When the lighting switch 21 is turned off or the lighting switch 21 is set to the automatic lighting mode (AUTO) and the illuminance of the illuminance sensor 22 is larger than the threshold, the current time zone is the daytime zone. It is determined.
  • AUTO automatic lighting mode
  • the monitoring sensor MC14 sets the operation frequency of the laser light source 111 and the actuator 11b so that the night time zone is higher than the day time zone. For example, if the current time zone is a night time zone (S4: YES), monitoring sensor MC14 determines that the set value for determining the laser beam scanning stop period is n (for example, 1 minute) in step S6. . Further, when the current time zone is the daytime zone (S4: NO), the rear monitoring sensor 10 determines the predetermined value as d (for example, 2 minutes) longer than n in step S8. Then, the predetermined value n or the predetermined value d is recorded in the memory in the monitoring sensor MC14 as a value representing the operation frequency of the laser light source 111 or the like.
  • the monitoring sensor MC14 When the running state of the bicycle 100 is detected and a predetermined value is set for day and night, the monitoring sensor MC14 next controls the BMC 42 so that electric power is supplied to the actuator 11b, and operates the actuator 11b (step S10). .
  • the monitoring sensor MC14 checks whether the mirror 114 of the actuator 11b is disposed at the initial position. Here, if the mirror 114 is not in the initial position, the monitoring sensor MC14 adjusts the position of the mirror 114 by moving the two rotation axes of the actuator 11b in step S14. On the other hand, if the mirror 114 is in the initial position, the process proceeds to S16.
  • step S16 the monitoring sensor MC14 causes the BMC 42 to start supplying power to the laser light source 111, and starts scanning with the laser light. At the same time, measurement of the operating time of the laser light source 111 is started. At this time, the monitoring sensor MC14 sets the scanning region to the first target region A1, and scans the laser light in the horizontal direction and the vertical direction as described above.
  • the monitoring sensor MC14 determines whether or not 20 seconds have elapsed from the start of the operation of the laser light source 111 as shown in FIG. 10 (step S18). If 20 seconds have elapsed since the start of the operation (S18: NO), the rear monitoring sensor 10 ends the power supply to the laser light source 111 in step S20 of FIG. 9, and further, the mirror 114 of the actuator 11b is initialized. After returning to the position, the power supply to the actuator 11b is terminated (S22). Thus, the mirror 114 is held at the initial position until the next scanning is started (S24: YES).
  • the monitoring sensor MC14 reads the predetermined value d or the predetermined value n obtained in the previous step S6 or S8 from the internal memory, and compares the elapsed time from the stop of the laser light source 111 with the predetermined value d or the predetermined value n. (S24). When the elapsed time exceeds the predetermined value (S24: YES), the monitoring sensor MC14 returns to step S2 to determine whether the bicycle 100 is running in order to monitor the rear of the bicycle 100 again.
  • the predetermined value n is set shorter than the predetermined value d, the standby time is shorter in the night time zone than in the day time zone, and the frequency of rearward monitoring is increased.
  • step S18 of FIG. 10 if 20 seconds have not elapsed since the laser light source 111 was turned on (S18: YES), the presence or absence of the object 101 is monitored based on the reflected light of the laser beam ( S26).
  • the horizontal scanning angle ⁇ 1H is set small and the scanning width D in the first target area A1 is narrow, the detection range of the object 101 is limited to a narrow range.
  • the angle ⁇ ⁇ b> 1 ⁇ / b> H is set so that the scanning width D at the aiming position P ⁇ b> 1 is about the width of the traveling lane of the bicycle 100.
  • the rear monitoring sensor 10 mainly monitors the object 101 that runs in the travel lane of the bicycle 100.
  • step S26 the monitoring sensor MC14 monitors the light reception signal of the reflected light input from the photodetector 12a (FIG. 3). When there is no light reception signal, the monitoring sensor MC14 determines that the object 101 does not exist in the first target area A1 (S26: NO), and the object is turned on until the lighting time of the laser light source 111 reaches 20 seconds (S18). The appearance of 101 is monitored (S26). *
  • the monitoring sensor MC14 first measures the distance to the object, assuming that there is an object in the first target area A1, in step S26. Then, the number of consecutive received light signals when the object is scanned in the horizontal direction by the laser beam is counted.
  • the monitoring sensor MC14 compares the acquired distance and the continuous number of received light signals with the width table of the object illustrated in FIG. 8 and matches the acquired distance and the continuous number of received light signals as described above. If the combination to be performed is in the width table, it is recognized that the object is a target (S26: YES). The recognized distance to the object and the number of consecutive received light signals are held in the internal memory of the monitoring sensor MC14.
  • the width of the object 101 such as the car 101a or the motorcycle 101b having a risk of an incident or the like is described as the continuous number of received light signals, and the width is narrower than these. Paul and people are not registered in the width table. Therefore, even if a pole or a person exists in the first target area, they are not recognized as the object 101. Further, the laser beam is scanned three times in the vertical direction in one scan of the target area, but the presence of the object 101 is recognized when the number of consecutive received light signals matches the width table even at one time. . In addition, when a plurality of objects are simultaneously included in the scanning range of the first target area, the plurality of objects are recognized.
  • the object 101 is recognized in the same manner as described above by the subsequent scanning of the laser beam.
  • the monitoring sensor MC14 identifies this object and the object 101 recognized in step S26 by using the width of the object 101 (the number of consecutive received light signals).
  • the recognized object 101 is detected. Among them, the one whose width (the number of consecutive received light signals) matches the width of the object 101 recognized in step S26 (the number of consecutive received light signals) or is a slight difference within a predetermined allowable range is extracted. (S103). Then, from the extracted objects 101, those in the vicinity of the position of the object 101 recognized in step S26 are extracted (S104), and the object 101 thus extracted is recognized in step S26. And identified as the same object 101 (S105). At this time, the distance to the identified object 101 and the number of consecutive received light signals are held in the internal memory of the monitoring sensor MC14.
  • step S102 If the object 101 cannot be recognized in step S102 (S102: NO), or if the object 101 cannot be extracted in steps S103 and 104 (S103: NO, S104: NO), NG (unidentifiable) is assumed. Determined.
  • the monitoring sensor MC14 determines that the object 101 is approaching (S204), and if the difference ⁇ d is 0 or less (S203: NO), the target It is determined that the object 101 is not approaching (S205).
  • the determination shown in FIG. 12B is performed for all the identified objects 101. In this way, it is determined in step S28 whether all the objects 101 recognized in step S26 of FIG. 10 are approaching.
  • the monitoring sensor MC14 advances the process to step S20 in FIG. Since the object 101 that is stopped or retracted is less likely to cause an incident or the like and does not need to be monitored, the monitoring sensor MC14 stops the laser light source 111 and the actuator 11b in steps S20 to S24 as described above. The elapsed time from the stop is compared with a predetermined value.
  • the monitoring sensor MC14 determines whether the number of objects 101 approaching the bicycle 100 is two or more ( S30). When the number of approaching objects 101 is two or more (step S30: YES), the monitoring sensor MC14 has many approaching objects 101 in a direction perpendicular to the traveling direction of the bicycle 100, and there is a danger such as an incident. As described above, the processing from step S20 to S24 is performed to stop the operations of the laser light source 111 and the actuator 11b, as described above.
  • step 30 when the number of approaching objects 101 is less than 2, that is, when the number of approaching objects 101 is one (S30: NO), the monitoring sensor MC14 identifies this object 101 as the first object 101. (Step S32). At the same time, the monitoring sensor MC14 determines the elapsed time (specific time) from the start of scanning in step S16 of FIG. 9 until the first object 101 is specified, and the distance and width of the first object 101 (light reception signal). Is stored in the internal memory. Subsequently, in step S34, the monitoring sensor MC14 increases the horizontal scanning angle from the angle ⁇ 1H of the first target area A1 in FIG. 6 to the angle ⁇ 2H of the second target area A2.
  • the monitoring sensor MC14 determines whether the elapsed time from the start of scanning exceeds 10 seconds (step S36). Then, when 10 seconds have elapsed from the start of scanning and the first object 101 is detected for the first time (S36: YES), the monitoring sensor MC14 operates the alarm unit 13 (S38).
  • the approaching object 101 is not recognized at all for 10 seconds after the monitoring by the rear monitoring sensor 10 is started, and then the approaching object 101 suddenly appears in the first target area.
  • the monitoring sensor MC14 activates the alarm unit 13 in step S38.
  • the monitoring sensor MC14 lights or blinks the headlight 13a, urges attention to the approaching object 101 (first object), and the object 101 (first object) to be noted approaches.
  • a sound that indicates that the approaching object 101 is present is output from the speaker 13b.
  • the threshold time in step S36 may be other than 10 seconds.
  • step S36 determines whether the degree of congestion at the rear. If the determination in step S36 is NO, the monitoring sensor MC14 cannot determine the degree of congestion at the rear, so the process proceeds to step S40 in FIG. 11 without issuing an alarm.
  • step S40 as in step S18 of FIG. 10, the monitoring sensor MC14 determines whether or not 20 seconds have elapsed since the start of scanning. If 20 seconds have elapsed, the monitoring sensor MC14 stops the laser light source 111 and the actuator 11b by the processing of steps S20 to S24 in FIG. 9, and measures the elapsed time thereafter.
  • the monitoring sensor MC14 tracks the first object 101.
  • the scanning range is expanded to the second target area A2 in step S34. As shown in FIGS. 6 and 7, the expanded scanning range is the first unenlarged range. The scanning range for one target area A1 is included. Therefore, the first object 101 is also included in the enlarged scanning range, and the first object 101 can be recognized.
  • the monitoring sensor MC14 recognizes the target object 101 included in the enlarged scanning range, and identifies the first target object 101 from the position, distance, and width (number of consecutive received light signals) of the recognized target object 101. Then, the remaining object 101 excluding the identified first object 101 from the recognized object 101 is recognized as another object in step S42 of FIG.
  • the object exists in a wide range in the direction horizontal to the traveling direction of the bicycle 100. 101 is examined. Therefore, the narrow motorcycle 101b traveling on the edge of the road is recognized in step S26. However, when the motorcycle 101b advances and approaches the bicycle 100, the motorcycle 101b deviates from the first target area A1. However, if the second target area A2 is irradiated with the laser beam by expanding the scanning angle, such a motorcycle 101b is also monitored, and further tracking is possible.
  • Other objects 101 recognized in step S42 usually include the following two objects 101.
  • One is the object 101 that is newly discovered in the widened range due to the widening of the scanning angle in step S34.
  • the other is that the first object 101 is not recognized as the first object 101 because it runs behind the first object 101 and is hidden behind the first object 101, but the first object 101 is a bicycle.
  • the object 101 is recognized for the first time without being shaded by the first object 101 by approaching 100 or the like.
  • the monitoring sensor MC14 determines whether or not the other object 101 is approaching in the same manner as in step S28 (S44). If a plurality of other objects 101 are recognized in step S42, the determination in step S44 is performed for all other objects. If all the objects 101 are not approaching (S44: NO), the monitoring sensor MC14 returns the process to step S18, and searches for the first object 101 again. In this case, the scanning range is reset to the first target area.
  • step 44 determines whether the number of other objects 101 approaching is two or more (S46). ). And when the number of the other objects 101 which approach is two or more, monitoring sensor MC14 performs the process of step S20 to S24.
  • the monitoring sensor MC14 specifies this approaching target object 101 as the second target object 101 (step S48), and the second target object 101 starts from the start of scanning. Acquire the elapsed time (specific time) until it is specified. Then, the monitoring sensor MC14 reads from the internal memory the elapsed time (specific time) until the first object 101 is specified, and the difference between the specific time of the first object 101 and the specific time of the second object 101 is read. Is calculated.
  • This time difference that is, the time from when the first object 101 is specified in the scan of the first target area A1 to when the new second object 101 is specified in the scan of the second target area A2, is a predetermined time ( Here, it is determined whether it is longer than 6 seconds.
  • monitoring sensor MC14 operates alarm part 13. For example, the rear monitoring sensor 10 turns on the headlight 13a or outputs a warning sound from the speaker 13b.
  • the monitoring sensor MC14 stops the operation of the laser light source 111 and the actuator 11b in steps S20 to S24 without operating the alarm unit 13.
  • the appearance frequency of the approaching object 101 is low (S30: NO, S36: YES in FIG. 10, S46: NO, S50: NO in FIG. 11)
  • the object 101 and An alarm is issued to the user of the bicycle 100. Therefore, when there is a high possibility that an incident or the like will really occur, a warning is accurately given, and a response to avoid the incident or the like can be effectively promoted.
  • the approaching object 101 is set as a monitoring target (S28 in FIG. 10 and S44 in FIG. 11), and the object 101 that stops or retreats from the bicycle 100 is monitored. Removed. Since the object 101 that is not approaching is unlikely to cause an incident or the like, unnecessary alarms can be avoided by removing them from the monitoring target. Therefore, an alarm is given only to the target object 101 having a high incidence of incidents, and the incidents can be effectively prevented.
  • the scanning frequency of the laser light is increased in the night time zone than in the day time zone (S4, S6, S8 in FIG. 9). For this reason, since the rear is intensively monitored at night when an incident or the like is likely to occur compared to noon, the effect of preventing the incident or the like can be enhanced. On the other hand, in the daytime when the incidence of incidents is low, the scanning frequency is reduced, so that wasteful power consumption can be suppressed.
  • the operation of the rear monitoring sensor 10 is stopped while the bicycle 100 is unlikely to cause an incident or the like (S2 in FIG. 9). For this reason, useless power consumption can be further reduced.
  • the time from when the target object 101 is detected in the first target area A1 until the next new target object 101 is detected in the second target area is less than a predetermined time. (S50 in FIG. 11: YES), no alarm is given.
  • the interval between the object 101 detected first and the object 101 detected next is narrow, and the object 101 is congested in the traveling direction of the bicycle 100.
  • the alarm unit 13 is not operated, so that unnecessary alarms are suppressed.
  • the operations of the laser light source 111 and the actuator 11b are stopped, wasteful power consumption can be suppressed.
  • the alarm is not controlled unless YES is determined in step S36.
  • NO is determined in step S36.
  • an alarm may be issued.
  • the content of the alarm may be changed depending on whether it is determined as YES in step S36 or NO.
  • the output may be increased in alertness, such as increasing the output sound.
  • the object is identified by the continuous number of the received light signals.
  • the object is further added to the combination of the distance of the width table and the continuous number.
  • identification may be performed depending on whether the information matches.
  • the lighting switch 21 and the illuminance sensor 22 are connected to the headlamp 20 via the control circuit 50, but these can be directly connected to the headlamp 20.
  • the rear monitoring sensor 10 receives the lighting signal of the headlamp 20 from the control circuit 50 and determines day and night.
  • crank torque sensor 31 and the alarm unit 13 can be changed in addition to the above embodiment.
  • rearward monitoring is performed.
  • a sensor similar to the rearward monitoring sensor 10 may be installed on the bicycle 100 facing forward to perform forward monitoring.
  • the example in which the rear monitoring sensor is attached to the bicycle has been described.
  • it goes without saying that it may be attached to a vehicle other than the bicycle.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Traffic Control Systems (AREA)

Abstract

Disclosed is a rear monitoring sensor (10) that is for an automobile (100) and wherein objects (101) that have the risk of causing an incident or accident can be accurately detected and effectively warned of. The rear monitoring sensor (10) recognizes objects (101) that approach the automobile (100) from the rear. Also, the rear monitoring sensor (10) determines whether or not recognized objects (101) are approaching, and determines the number of approaching objects (101). The rear monitoring sensor (10) determines the possibility of an incident or the like in response to the number of approaching objects (101), and outputs a warning if there is the danger of an incident or the like.

Description

車両用監視センサVehicle monitoring sensor
 本発明は、車両用監視センサに関し、特に、電動自転車等の車両に搭載される車両用監視センサに用いて好適なものである。 The present invention relates to a vehicle monitoring sensor, and is particularly suitable for use in a vehicle monitoring sensor mounted on a vehicle such as an electric bicycle.
 従来、車両に搭載される光学測定装置が知られている(たとえば、特許文献1)。かかる光学測定装置では、照射したレーザ光の反射光または自車の車速などにより、自車の近傍に測定対象があるか否かが判定される。判定結果により、レーザ光の強さが弱または強に制御されてから、レーザ光が照射され、距離などの車両情報が測定される。  Conventionally, an optical measuring device mounted on a vehicle is known (for example, Patent Document 1). In such an optical measurement device, it is determined whether or not there is a measurement object in the vicinity of the own vehicle based on the reflected light of the irradiated laser beam or the speed of the own vehicle. After the intensity of the laser beam is controlled to be weak or strong according to the determination result, the laser beam is irradiated and vehicle information such as distance is measured. *
特開2005-274530号公報JP 2005-274530 A
 自転車には、通常、バックミラーが装備されていないため、後方からの事件や事故が起こり易い。かかる事件や事故は、後方の状況を監視する後方監視センサを自転車に搭載することで回避できる。この場合、上記従来技術に記載の光学測定装置を用いることも可能である。 Bicycles are usually not equipped with rearview mirrors, so incidents and accidents from the rear are likely to occur. Such an incident or accident can be avoided by mounting a rear monitoring sensor on the bicycle for monitoring the rear situation. In this case, it is also possible to use the optical measuring device described in the above prior art.
 しかし、上記構成の光学測定装置では、反射光や車速により測定対象の有無が判断されるのみで、測定対象が接近しているか否かの判断はなされない。この場合、停止しているガードレールや反対車線を走行している車両なども測定対象に含まれてしまう。しかし、このような接近しない対象は、事件などを起こす可能性が低いため、これらを含めて状況監視を行うと、事件などの可能性が適切に判断され難くなる。 However, in the optical measuring apparatus having the above-described configuration, the presence / absence of the measurement target is determined based on the reflected light and the vehicle speed, and it is not determined whether the measurement target is approaching. In this case, a stopped guardrail or a vehicle traveling in the opposite lane is also included in the measurement target. However, since such an inaccessible object has a low possibility of causing an incident or the like, if the situation is monitored including these, it is difficult to appropriately determine the possibility of the incident or the like.
 また、測定対象が近くに多く存在する場合には、事件などの発生割合が低くなると考えられる。このような場合に、測定対象が認識される度に警報等が行われると、警報等が頻発し、却ってユーザの注意力を削ぐ結果となって、事件などの可能性判断において信頼性が損なわれてしまう。こうなると、真に危険な状況下での警報等が軽視され兼ねず、事件などが適切に予防され得ない惧れがある。 Also, if there are many measurement objects nearby, the occurrence rate of incidents etc. is considered to be low. In such a case, if an alarm or the like is performed each time the measurement target is recognized, the alarm or the like occurs frequently, and the result is that the user's attention is reduced. It will be. If this happens, warnings in a truly dangerous situation may not be neglected, and the incident may not be prevented appropriately.
 本発明は、かかる課題を解消するために為されたものであり、事件や事故を適切に予防し得る車両用監視センサを提供することを目的とする。 The present invention has been made to solve such a problem, and an object thereof is to provide a vehicle monitoring sensor capable of appropriately preventing an incident or an accident.
 本発明の主たる態様に係る車両用監視センサは、レーザ光を出射するレーザ光源と、レーザ光を目標領域において走査させるアクチュエータと、目標領域において反射されたレーザ光を受光する光検出器と、光検出器からの出力に基づいて目標領域における対象物の有無および対象物までの距離を測定する測定部と、警報出力を行う警報部と、レーザ光源、アクチュエータおよび警報部を制御する制御部と、を備える。ここで、制御部は、測定部による測定結果に基づき、接近する対象物の出現頻度を取得し、前記出現頻度が閾値未満であるときに、警報部を動作させる。 A vehicle monitoring sensor according to a main aspect of the present invention includes a laser light source that emits laser light, an actuator that scans the laser light in a target area, a photodetector that receives the laser light reflected in the target area, and a light A measurement unit that measures the presence or absence of an object in the target region and a distance to the object based on an output from the detector, an alarm unit that performs alarm output, a control unit that controls the laser light source, the actuator, and the alarm unit; Is provided. Here, the control unit acquires the appearance frequency of the approaching object based on the measurement result by the measurement unit, and operates the alarm unit when the appearance frequency is less than the threshold value.
 本態様に係る車両用監視センサによれば、接近する物体について警報が行われるため、ガードレールなどの停止物や反対車線を走行する車両は警報対象とならない。よって、事件や事故を発生させる恐れが低い物体についての警報が防止され得る。さらに、周囲に対象物が少ない状況下で対象物が接近するときに警報が行われるため、警報の頻発を回避できるとともに、真に事件などが発生する恐れが高い場合に警報が行われる。よって、ユーザに、事件などを回避するための対応を効果的に促すことができる。 According to the vehicle monitoring sensor according to this aspect, since an alarm is issued for an approaching object, a stop object such as a guardrail or a vehicle traveling in the opposite lane is not an alarm target. Therefore, an alarm about an object with a low possibility of causing an incident or an accident can be prevented. Furthermore, since an alarm is issued when an object approaches in a situation where there are few objects in the surroundings, frequent alarms can be avoided, and an alarm is issued when there is a high possibility that an event or the like will occur. Therefore, it is possible to effectively prompt the user to take action to avoid an incident or the like.
 以上のとおり、本発明によれば、事件や事故を適切に予防し得る車両用監視センサを提供することができる。 As described above, according to the present invention, it is possible to provide a vehicle monitoring sensor that can appropriately prevent incidents and accidents.
 本発明の効果ないし意義は、以下に示す実施の形態の説明により更に明らかとなろう。ただし、以下に示す実施の形態は、あくまでも、本発明を実施化する際の一つの例示であって、本発明は、以下の実施の形態に記載されたものに何ら制限されるものではない。 The effect or significance of the present invention will become more apparent from the following description of embodiments. However, the embodiment described below is merely an example when the present invention is implemented, and the present invention is not limited to what is described in the following embodiment.
実施の形態に係る自転車の外観を示す平面図である。It is a top view which shows the external appearance of the bicycle which concerns on embodiment. 実施の形態に係る自転車用後方監視センサおよび自転車に装着された機器を示すブロック図である。It is a block diagram which shows the apparatus with which the rear monitoring sensor for bicycles concerning an embodiment and a bicycle were mounted | worn. 実施の形態に係る自転車用後方監視センサを示すブロック図である。It is a block diagram which shows the rear monitoring sensor for bicycles concerning embodiment. 実施の形態に係る自転車用後方監視センサの出射光学系を示す図である。It is a figure which shows the output optical system of the back monitoring sensor for bicycles concerning embodiment. 実施の形態に係る自転車用後方監視センサのサーボ光学系を示す図である。It is a figure which shows the servo optical system of the rear monitoring sensor for bicycles concerning embodiment. 実施の形態に係るレーザ光の照射範囲を説明する模式図である。It is a schematic diagram explaining the irradiation range of the laser beam which concerns on embodiment. 実施の形態に係るレーザ光の照射範囲を説明する模式図である。It is a schematic diagram explaining the irradiation range of the laser beam which concerns on embodiment. 実施の形態に係る対象物の幅テーブルの例示図ある。It is an illustration figure of the width table of the target object concerning an embodiment. 実施の形態に係る自転車用後方監視センサのフローチャートである。It is a flowchart of the rear monitoring sensor for bicycles concerning an embodiment. 実施の形態に係る自転車用後方監視センサのフローチャートである。It is a flowchart of the rear monitoring sensor for bicycles concerning an embodiment. 実施の形態に係る自転車用後方監視センサのフローチャートである。It is a flowchart of the rear monitoring sensor for bicycles concerning an embodiment. 実施の形態に係る対象物の同定処理と対象物の接近判別処理に係るフローチャートである。It is a flowchart which concerns on the identification process of the target object which concerns on embodiment, and the approach discrimination | determination process of a target object.
 図を参照して、本実施の形態に係る自転車用後方監視センサ(以下。「後方監視センサ」と言う。)10について説明する。なお、図面においても、自転車用後方監視センサが「後方監視センサ」と記載される。  The bicycle rear monitoring sensor (hereinafter referred to as “rear monitoring sensor”) 10 according to the present embodiment will be described with reference to the drawings. In the drawings, the rear monitoring sensor for bicycles is also described as “rear monitoring sensor”.
 図1は、本実施の形態に係る後方監視センサ10が装着された自転車100の外観を示す平面図である。 FIG. 1 is a plan view showing an appearance of a bicycle 100 to which a rear monitoring sensor 10 according to the present embodiment is attached.
 自転車100は、車体60の後方を監視する後方監視センサ10と、車体60の前方を照らす前照灯20と、車体60を走行させるモータ30と、これらに電力を供給するバッテリユニット40とを備える。車体60は、フレーム61、ハンドル62、ペダル63、サドル64および車輪65などで形成される。 The bicycle 100 includes a rear monitoring sensor 10 that monitors the rear of the vehicle body 60, a headlamp 20 that illuminates the front of the vehicle body 60, a motor 30 that runs the vehicle body 60, and a battery unit 40 that supplies electric power to these. . The vehicle body 60 is formed of a frame 61, a handle 62, a pedal 63, a saddle 64, wheels 65, and the like.
 前照灯20は、車体60の前部分に設けられ、前方を向く。前照灯20には、LEDなどの光源が用いられる。 The headlamp 20 is provided in the front part of the vehicle body 60 and faces forward. For the headlamp 20, a light source such as an LED is used.
 モータ30は、ペダルクランク軸(図示せず)の近傍に設けられる。モータ30の駆動力が伝達機構によってペダルクランク軸に伝達される。ペダルクランク軸は、ペダル63およびスプロケット(図示せず)などに接続される。ペダルクランク軸は、ペダル63を踏む力、およびモータ30から入力される補助力をスプロケットに作用させる。スプロケットは、これらの力を車輪65などに伝達し、車輪65を回転させることで、車体60を前進させる。 The motor 30 is provided in the vicinity of a pedal crankshaft (not shown). The driving force of the motor 30 is transmitted to the pedal crankshaft by the transmission mechanism. The pedal crankshaft is connected to the pedal 63 and a sprocket (not shown). The pedal crankshaft applies a force to step on the pedal 63 and an auxiliary force input from the motor 30 to the sprocket. The sprocket transmits these forces to the wheel 65 or the like and rotates the wheel 65 to advance the vehicle body 60.
 図2は、自転車100に装着された電気機器系の構成を示すブロック図である。 FIG. 2 is a block diagram showing the configuration of the electrical equipment system mounted on the bicycle 100. As shown in FIG.
 制御回路50は、内部メモリに格納されたプログラムに従って、電気機器系を制御する。制御回路50は、自転車100の所定の位置に設置された回路ユニットに配される。制御回路50には、上記後方監視センサ10、前照灯20、モータ30およびバッテリユニット40の他、点灯スイッチ21、照度センサ22およびクランクトルクセンサ31が、信号線を介して、接続される。 The control circuit 50 controls the electrical equipment system according to the program stored in the internal memory. The control circuit 50 is arranged in a circuit unit installed at a predetermined position of the bicycle 100. In addition to the rear monitoring sensor 10, the headlamp 20, the motor 30, and the battery unit 40, the lighting switch 21, the illuminance sensor 22, and the crank torque sensor 31 are connected to the control circuit 50 via signal lines.
 制御回路50は、点灯スイッチ21および照度センサ22からの信号に基づいて、前照灯20を点灯させる。点灯スイッチ21は、ハンドル62などに設けられ、ユーザの操作によりオンおよびオフされる。また、点灯スイッチ21は、自動点灯モード(AUTO)に設定可能である。照度センサ22は、照度を測定し、周囲の明るさを検出する。 The control circuit 50 lights the headlamp 20 based on signals from the lighting switch 21 and the illuminance sensor 22. The lighting switch 21 is provided on the handle 62 and the like, and is turned on and off by a user operation. The lighting switch 21 can be set to an automatic lighting mode (AUTO). The illuminance sensor 22 measures illuminance and detects ambient brightness.
 クランクトルクセンサ31は、ペダルクランク軸に設けられ、ペダル63からペダルクランク軸にかかるトルクを検出する。制御回路50は、クランクトルクセンサ31からの検出信号に基づいて、モータ30を制御する。 The crank torque sensor 31 is provided on the pedal crankshaft and detects torque applied from the pedal 63 to the pedal crankshaft. The control circuit 50 controls the motor 30 based on the detection signal from the crank torque sensor 31.
 バッテリユニット40は、電池41およびバッテリマネジメントコントローラ(以下、「BMC」と言う。)42を備える。BMC42は、制御回路50から指示されたブロックに電池41の電力を与える。また、BMC42は、電池41に残る電力の容量を取得し、残容量を表示する。残容量は、ハンドル62などに装着されたパネル(図示せず)に表示される。この残容量に応じて、BMC42は、モータ30に供給する電力量を変化させたり、ユーザまたは制御回路50からの指示を得て、残る電力の供給先をモータ30または後方監視センサ10のいずれかを選択したりする。 The battery unit 40 includes a battery 41 and a battery management controller (hereinafter referred to as “BMC”) 42. The BMC 42 supplies the power of the battery 41 to the block designated by the control circuit 50. Further, the BMC 42 acquires the capacity of the power remaining in the battery 41 and displays the remaining capacity. The remaining capacity is displayed on a panel (not shown) attached to the handle 62 or the like. In accordance with the remaining capacity, the BMC 42 changes the amount of power supplied to the motor 30 or receives an instruction from the user or the control circuit 50, and determines whether the remaining power is supplied to either the motor 30 or the rear monitoring sensor 10. Or select.
 後方監視センサ10は、出射ブロック11と、受光ブロック12と、警報部13と、後方監視センサマネジメントコントローラ(以下、「監視センサMC」という)を備える。 The rear monitoring sensor 10 includes an emission block 11, a light receiving block 12, an alarm unit 13, and a rear monitoring sensor management controller (hereinafter referred to as “monitoring sensor MC”).
 出射ブロック11は、目標領域に向けてレーザ光を出射する。受光ブロック12は、目標領域から反射されたレーザ光を受光する。警報部13は、音声や光等による警報出力を行う。監視センサMCは、制御回路50からの制御信号を受けて、後方監視センサ10内の各部を制御する。 The emission block 11 emits laser light toward the target area. The light receiving block 12 receives the laser light reflected from the target area. The alarm unit 13 outputs an alarm by voice or light. The monitoring sensor MC receives each control signal from the control circuit 50 and controls each part in the rear monitoring sensor 10.
 図2の構成において、点灯スイッチ21がオンまたはオフされると、その信号が制御回路50へ出力される。また、照度センサ22は、照度を測定し、その測定結果を制御回路50へ出力する。制御回路50は、点灯スイッチ21がオンされると、BMC42に前照灯20への電力供給を行わせるとともに、前照灯20を点灯させる。また、制御回路50は、点灯スイッチ21がオフされると、BMC42に前照灯20への電力供給を停止させ、前照灯20を消灯させる。さらに、制御回路50は、点灯スイッチ21が自動点灯モード(AUTO)に設定されると、照度センサ22から入力された照度と閾値とを比較する。そして、照度が閾値以下になると、制御回路50は、BMC42に前照灯20への電力供給を行わせるとともに、前照灯20を点灯させる。反対に、照度が閾値より大きくなると、制御回路50は、BMC42に前照灯20への電力供給を停止させ、前照灯20を消灯させる。 2, when the lighting switch 21 is turned on or off, the signal is output to the control circuit 50. The illuminance sensor 22 measures the illuminance and outputs the measurement result to the control circuit 50. When the lighting switch 21 is turned on, the control circuit 50 causes the BMC 42 to supply power to the headlamp 20 and turns on the headlamp 20. Further, when the lighting switch 21 is turned off, the control circuit 50 stops the BMC 42 from supplying power to the headlamp 20 and turns off the headlamp 20. Furthermore, when the lighting switch 21 is set to the automatic lighting mode (AUTO), the control circuit 50 compares the illuminance input from the illuminance sensor 22 with the threshold value. When the illuminance falls below the threshold value, the control circuit 50 causes the BMC 42 to supply power to the headlamp 20 and turn on the headlamp 20. On the contrary, when the illuminance becomes larger than the threshold value, the control circuit 50 stops the power supply to the headlamp 20 in the BMC 42 and turns off the headlamp 20.
 パワーアシストモードにおいて、制御回路50は、クランクトルクセンサ31からのトルクを取得し、トルクに応じた補助力を算出する。そして、制御回路50は、算出した補助力に応じた電力がモータ30へ供給されるようBMC42を制御し、モータ30を動作させて、モータ30からの補助力をペダルクランク軸に付与する。 In the power assist mode, the control circuit 50 acquires the torque from the crank torque sensor 31 and calculates an assisting force corresponding to the torque. Then, the control circuit 50 controls the BMC 42 so that the electric power corresponding to the calculated auxiliary force is supplied to the motor 30, operates the motor 30, and applies the auxiliary force from the motor 30 to the pedal crankshaft.
 後方監視センサ10は、図示しないON/OFFスイッチによりON/OFFされる。後方監視センサ10がON状態にあるとき、制御回路50は、昼夜を判定するための信号、および自転車100が走行中であるかを示す信号などを監視センサMC14に与える。 The rear monitoring sensor 10 is turned ON / OFF by an ON / OFF switch (not shown). When the rear monitoring sensor 10 is in the ON state, the control circuit 50 provides the monitoring sensor MC14 with a signal for determining day and night, a signal indicating whether the bicycle 100 is running, and the like.
 ここで、昼夜を判定するための信号として、点灯スイッチ21のオン/オフ信号、および照度センサ22からの検出信号が用いられる。点灯スイッチ21がオンされると、夜であると判定され、点灯スイッチ21がオフされると、昼であると判定される。また、点灯スイッチ21が自動点灯モード(AUTO)に設定された場合、照度センサ22の照度が閾値以下であるときに、夜であると判定され、照度センサ22の照度が閾値より大きくなると、昼であると判定される。 Here, an ON / OFF signal of the lighting switch 21 and a detection signal from the illuminance sensor 22 are used as a signal for determining day and night. When the lighting switch 21 is turned on, it is determined that it is night, and when the lighting switch 21 is turned off, it is determined that it is daytime. Further, when the lighting switch 21 is set to the automatic lighting mode (AUTO), it is determined that it is night when the illuminance of the illuminance sensor 22 is less than or equal to the threshold value, and It is determined that
 また、自転車100が走行中であるかを示す信号として、クランクトルクセンサ31からの検出信号が用いられる。クランクトルクセンサ31からの検出信号によりトルクが検出され、あるいは、そのトルク値が所定値以上であれば、自転車100が走行中であると判定される。 Further, a detection signal from the crank torque sensor 31 is used as a signal indicating whether the bicycle 100 is running. If the torque is detected by the detection signal from the crank torque sensor 31, or if the torque value is equal to or greater than a predetermined value, it is determined that the bicycle 100 is running.
 図3は、後方監視センサ10の構成を示すブロック図である。 FIG. 3 is a block diagram showing the configuration of the rear monitoring sensor 10.
 出射ブロック11は、レーザ光を出射する出射光学系11aと、レーザ光を目標領域において走査させるアクチュエータ11bと、目標領域におけるレーザ光の走査位置を検出するためのサーボ光学系11cとを備える。また、受光ブロック12は、光検出器12aと、目標領域において反射されたレーザ光を光検出器12bに集光する集光光学系12bとを備えている。 The emission block 11 includes an emission optical system 11a that emits laser light, an actuator 11b that scans the laser light in the target area, and a servo optical system 11c that detects the scanning position of the laser light in the target area. The light receiving block 12 includes a photodetector 12a and a condensing optical system 12b that condenses the laser light reflected in the target area onto the photodetector 12b.
 警報部13は、後照灯13aおよびスピーカ13bを有する。後照灯13aは、図1を参照して、車体60の後部に取り付けられ、車体60の後方を向く。後照灯13aにはLEDなどの光源が装備され、後照灯13aは後方へ光(可視光)を照射する。また、スピーカ13bは、ハンドル62に装着され、音声を出力する。 The alarm unit 13 includes a headlight 13a and a speaker 13b. Referring to FIG. 1, the rear lamp 13 a is attached to the rear portion of the vehicle body 60 and faces the rear of the vehicle body 60. The rear lamp 13a is equipped with a light source such as an LED, and the rear lamp 13a emits light (visible light) backward. The speaker 13b is attached to the handle 62 and outputs sound.
 監視センサMC14は、内部メモリに格納されたプログラムに従って、後方監視センサ10内の各部を制御する。監視センサMC14は、図2に示す制御回路50と、出射ブロック11、受光ブロック12および警報部13に接続される。監視センサMC14は、光検出器12aからの出力に基づいて目標領域における対象物101の有無および当該対象物101までの距離を測定する測定部の機能と、レーザ光源111、アクチュエータ11bおよび警報部13などを制御する制御部の機能と、昼夜を判定する昼夜判定部の機能を有する。 The monitoring sensor MC14 controls each part in the rear monitoring sensor 10 according to a program stored in the internal memory. The monitoring sensor MC14 is connected to the control circuit 50, the emission block 11, the light receiving block 12, and the alarm unit 13 shown in FIG. The monitoring sensor MC14 functions as a measurement unit that measures the presence / absence of the target object 101 in the target region and the distance to the target object 101 based on the output from the photodetector 12a, the laser light source 111, the actuator 11b, and the alarm unit 13. The function of the control part which controls etc. and the function of the day / night judgment part which judges day and night are included.
 図4は、出射光学系11aおよびアクチュエータ11bの構成を示す図である。 FIG. 4 is a diagram showing the configuration of the emission optical system 11a and the actuator 11b.
 出射光学系11aは、レーザ光源111と、ビーム整形用レンズ112、113と、ミラー114を備える。ベース200の上面に、基板を介してレーザ光源111が配置され、さらに、ビーム整形用のレンズ112、113およびアクチュエータ114が配置される。ミラー114は、アクチュエータ11bに配置される。レーザ光源111から出射されたレーザ光は、ビーム整形用レンズ112、113を透過して、水平方向斜めからミラー114に入射する。 The emission optical system 11a includes a laser light source 111, beam shaping lenses 112 and 113, and a mirror 114. A laser light source 111 is disposed on the upper surface of the base 200 through a substrate, and further, lenses 112 and 113 for beam shaping and an actuator 114 are disposed. The mirror 114 is disposed on the actuator 11b. Laser light emitted from the laser light source 111 passes through the beam shaping lenses 112 and 113 and enters the mirror 114 obliquely in the horizontal direction.
 アクチュエータ11bは、2つの回転軸M1、M2を有し、これら回転軸M1、M2でミラー114を水平方向および鉛直方向に回転させる。こうしてミラー114が定められた角度範囲で回転することにより、ミラー114にて反射されたレーザ光が、水平方向および鉛直方向に振られる。これにより、レーザ光が目標領域を走査する。なお、アクチュエータには、コイルと磁石が配され、コイルに電流を印加したときに生じる電磁力によりミラー114が駆動される。 The actuator 11b has two rotation axes M1 and M2, and the mirror 114 is rotated in the horizontal direction and the vertical direction by the rotation axes M1 and M2. Thus, the mirror 114 is rotated within the predetermined angle range, so that the laser beam reflected by the mirror 114 is oscillated in the horizontal direction and the vertical direction. Thereby, the laser beam scans the target area. The actuator is provided with a coil and a magnet, and the mirror 114 is driven by an electromagnetic force generated when a current is applied to the coil.
 なお、アクチュエータ11bの構成の詳細は、たとえば、出願人が先に出願した特願2009-272843号に記載されており、その記載がここに取り込まれる。この他、特開2008-281339号公報に記載のアクチュエータを用いることもできる。 The details of the configuration of the actuator 11b are described in, for example, Japanese Patent Application No. 2009-272843 filed earlier by the applicant, and the description is incorporated herein. In addition, the actuator described in JP 2008-281339 A can also be used.
 図5は、サーボ光学系11cの構成を示す図である。図5(a)は、ベース200を裏面側から見たときの一部平面図である。 FIG. 5 is a diagram showing the configuration of the servo optical system 11c. FIG. 5A is a partial plan view when the base 200 is viewed from the back side.
 図示の如く、ベース200の裏側周縁には、壁201、202が形成されており、壁201、202よりも中央側は、壁201、202よりも一段低い平面203となっている。壁201には、半導体レーザ303が装着された回路基板301が装着されている。他方、壁202の近傍には、PSD308が装着された回路基板302が装着されている。 As shown in the figure, walls 201 and 202 are formed on the periphery of the back side of the base 200, and the center side of the walls 201 and 202 is a flat surface 203 that is one step lower than the walls 201 and 202. A circuit board 301 on which a semiconductor laser 303 is mounted is mounted on the wall 201. On the other hand, a circuit board 302 on which a PSD 308 is mounted is mounted in the vicinity of the wall 202.
 ベース200裏側の平面203には、取り付け具307によって集光レンズ304と、アパーチャ305と、ND(ニュートラルデンシティ)フィルタ306が装着されている。さらに、この平面203には開口203aが形成されており、この開口203aを介して、アクチュエータ11bの回転軸M1の下部に装着された透過板300がベース200の裏側に突出している。透過板300は、光透過性の平行平板からなっている。 A condensing lens 304, an aperture 305, and an ND (neutral density) filter 306 are attached to a flat surface 203 on the back side of the base 200 by a fixture 307. Further, an opening 203a is formed in the flat surface 203, and the transmission plate 300 attached to the lower part of the rotation shaft M1 of the actuator 11b projects through the opening 203a to the back side of the base 200. The transmission plate 300 is made of a light transmissive parallel plate.
 半導体レーザ303から出射されたレーザ光(サーボ光)は、集光レンズ304を透過した後、アパーチャ305によってビーム径が絞られ、さらにNDフィルタ306によって減光される。その後、サーボ光は、透過板300に入射され、透過板300によって屈折作用を受ける。しかる後、透過板300を透過したサーボ光は、PSD308によって受光され、PSD308から、受光位置に応じた位置検出信号が出力される。 The laser light (servo light) emitted from the semiconductor laser 303 is transmitted through the condenser lens 304, and then the beam diameter is reduced by the aperture 305 and further reduced by the ND filter 306. Thereafter, the servo light enters the transmission plate 300 and is refracted by the transmission plate 300. Thereafter, the servo light transmitted through the transmission plate 300 is received by the PSD 308, and a position detection signal corresponding to the light receiving position is output from the PSD 308.
 図5(b)は、透過板300の回動位置とサーボ光の光路との関係を模式的に示す図である。 FIG. 5B is a diagram schematically showing the relationship between the rotation position of the transmission plate 300 and the optical path of the servo light.
 サーボ光は、レーザ光軸に対し傾いて配置された透過板300によって屈折され、PSD308に受光される。ここで、透過板300が実線の位置から破線矢印のように回動すると、サーボ光の光路が図中の実線から点線のように変化し、PSD308上におけるサーボ光の受光位置が変化する。これにより、PSD308にて検出されるサーボ光の受光位置によって、透過板300の回動位置を検出することができる。透過板300の回動位置は、ミラー114bの回転位置に対応し、目標領域におけるレーザ光の走査位置に対応する。よって、PSD308からの信号をもとに目標領域におけるレーザ光の走査位置を検出することができる。 Servo light is refracted by the transmission plate 300 arranged to be inclined with respect to the laser optical axis and received by the PSD 308. Here, when the transmission plate 300 is rotated from the position of the solid line as indicated by the broken line arrow, the optical path of the servo light is changed from the solid line to the dotted line in the figure, and the light receiving position of the servo light on the PSD 308 is changed. Thereby, the rotation position of the transmission plate 300 can be detected from the light receiving position of the servo light detected by the PSD 308. The rotation position of the transmission plate 300 corresponds to the rotation position of the mirror 114b and corresponds to the scanning position of the laser beam in the target area. Therefore, the scanning position of the laser beam in the target area can be detected based on the signal from the PSD 308.
 次に、後方監視センサ10の動作について説明する。後方監視動作時、後方監視センサ10は、レーザ光の走査範囲が2段階に切り替えられる。 Next, the operation of the rear monitoring sensor 10 will be described. During the rear monitoring operation, the rear monitoring sensor 10 switches the laser light scanning range to two stages.
 図6は、第1目標領域A1の水平方向の範囲A1H、および、第2目標領域A2の水平方向の範囲A2Hを表わす。第1目標領域A1は、後方監視センサ10からの距離がK1(たとえば、30m)の照準位置P1に設定され、第2目標領域A2は、後方監視センサ10からの距離がK2(たとえば、10m)の照準位置P2に設定される。 FIG. 6 shows a horizontal range A1H of the first target area A1 and a horizontal range A2H of the second target area A2. The first target area A1 is set to the aiming position P1 with a distance K1 (for example, 30 m) from the rear monitoring sensor 10, and the second target area A2 has a distance K2 (for example, 10 m) from the rear monitoring sensor 10. Is set at the aiming position P2.
 図7(a)は、第1目標領域A1の鉛直方向の範囲A1Vを表わす。図7(b)は、第2目標領域A2の鉛直方向の範囲A2Vを表わす。図7(a)、(b)において、長方形の一つのマスは、各目標領域におけるレーザ光のサイズと形状を模式的に示している。レーザ光の走査位置が各マスに対応すると、図4のレーザ光源111からレーザ光が出射され、そのマスの形状およびサイズのレーザ光が各目標領域に照射される。 FIG. 7A shows the vertical range A1V of the first target area A1. FIG. 7B shows a range A2V in the vertical direction of the second target area A2. In FIGS. 7A and 7B, one rectangular cell schematically shows the size and shape of the laser beam in each target region. When the scanning position of the laser beam corresponds to each cell, the laser beam is emitted from the laser light source 111 in FIG. 4 and the target region is irradiated with the laser beam having the shape and size of the cell.
 なお、図6に示すように、第2目標領域A2の水平方向の走査角度θ2Hは、第1目標領域A1の水平方向の走査角度θ1Hより広く設定される。また、図7(a)、(b)に破線矢印で示すように、レーザ光は、第1目標領域A1および第2目標領域A2を、それぞれ、水平方向に3段走査する。最上段の走査ライン(1)と中央の走査ライン(2)の鉛直方向の振り角と、中央の走査ライン(2)と最下段の走査ライン(3)の鉛直方向の振り角は、図1に示すように、ともにθvである。 As shown in FIG. 6, the horizontal scanning angle θ2H of the second target area A2 is set wider than the horizontal scanning angle θ1H of the first target area A1. Further, as indicated by broken line arrows in FIGS. 7A and 7B, the laser beam scans the first target area A1 and the second target area A2 in three steps in the horizontal direction. The vertical swing angles of the uppermost scanning line (1) and the central scanning line (2) and the vertical swing angles of the central scanning line (2) and the lowermost scanning line (3) are shown in FIG. As shown, both are θv.
 図6および図7に示すように、第1目標領域A1と第2目標領域A2の水平方向の走査範囲は、ともにDである。また、第1目標領域A1と第2目標領域A2の鉛直方向の走査範囲は、それぞれ、範囲A1Vおよび範囲A2Vである。第1目標領域A1は第2目標領域A2よりも後方監視センサ10から離れているため、第1目標領域A1におけるレーザ光は、第2目標領域A2におけるレーザ光よりも広がる。このため、図7(a)、(b)に示すように、第1目標領域A1におけるレーザ光の縦横の幅H1、L1は、第2目標領域A1におけるレーザ光の縦横の幅H2、L2よりも数段大きくなる。 As shown in FIGS. 6 and 7, the horizontal scanning ranges of the first target area A1 and the second target area A2 are both D. Further, the vertical scanning ranges of the first target area A1 and the second target area A2 are a range A1V and a range A2V, respectively. Since the first target area A1 is farther from the rear monitoring sensor 10 than the second target area A2, the laser light in the first target area A1 is wider than the laser light in the second target area A2. Therefore, as shown in FIGS. 7A and 7B, the vertical and horizontal widths H1 and L1 of the laser light in the first target area A1 are larger than the vertical and horizontal widths H2 and L2 of the laser light in the second target area A1. Will be several steps larger.
 第1目標領域A1の走査時において、監視センサMC14は、PSD308からの信号を基に第1目標領域A1におけるレーザ光の走査位置を検出しながら、レーザ光が図7(a)の走査ライン(1)、(2)、(3)を順に走査するように、アクチュエータ11bを制御する。そして、監視センサMC14は、走査位置が図7(a)の各マスに対応するタイミングで、レーザ光源111を発光させる。これにより、所定間隔で出射された各レーザ光は、水平方向および鉛直方向に略重ならずかつ間隔を空けずに、第1目標領域A1に照射される。なお、最下段の走査ライン(3)の走査が終わると、最上段に戻って、同様の走査が繰り返される。 During the scanning of the first target area A1, the monitoring sensor MC14 detects the scanning position of the laser light in the first target area A1 based on the signal from the PSD 308, while the laser light is in the scanning line (a) of FIG. The actuator 11b is controlled so as to sequentially scan 1), (2), and (3). Then, the monitoring sensor MC14 causes the laser light source 111 to emit light at a timing at which the scanning position corresponds to each square in FIG. Thereby, each laser beam emitted at a predetermined interval is irradiated onto the first target area A1 without being substantially overlapped and spaced apart in the horizontal direction and the vertical direction. When the scanning of the lowermost scanning line (3) is completed, the scanning returns to the uppermost stage and the same scanning is repeated.
 同様に、第2目標領域A2の走査時において、監視センサMC14は、PSD308からの信号を基に第2目標領域A2におけるレーザ光の走査位置を検出しながら、レーザ光が図7(b)の走査ライン(1)、(2)、(3)を順に走査するように、アクチュエータ11bを制御する。そして、監視センサMC14は、走査位置が図7(b)の各マスに対応するタイミングで、レーザ光源111を発光させる。これにより、所定間隔で出射された各レーザ光は、水平方向および鉛直方向に略重ならずかつ間隔を空けずに、第2目標領域A2に照射される。なお、最下段の走査ライン(3)の走査が終わると、最上段に戻って、同様の走査が繰り返される。 Similarly, during the scanning of the second target area A2, the monitoring sensor MC14 detects the scanning position of the laser light in the second target area A2 based on the signal from the PSD 308, while the laser light is shown in FIG. The actuator 11b is controlled so that the scanning lines (1), (2), and (3) are scanned in order. Then, the monitoring sensor MC14 causes the laser light source 111 to emit light at a timing at which the scanning position corresponds to each square in FIG. Thereby, each laser beam emitted at a predetermined interval is irradiated to the second target area A2 without being substantially overlapped and spaced apart in the horizontal direction and the vertical direction. When the scanning of the lowermost scanning line (3) is completed, the scanning returns to the uppermost stage and the same scanning is repeated.
 このように、発光間隔を開けながらレーザ光が各目標領域A1、A2に照射される。各目標領域A1、A2に車101aやバイク101bなどの対象物101が存在すると、照射されたレーザ光は対象物101で反射され、反射されたレーザ光は後方監視センサ10へ戻る。ここで、光検出器12aは、反射光を受けて、受光信号を監視センサMC14に出力する。監視センサMC14は、受光信号により、対象物101の存在を判定する。 Thus, the laser light is irradiated to each of the target areas A1 and A2 with a light emission interval. When the target object 101 such as the car 101a or the motorcycle 101b exists in each target area A1, A2, the irradiated laser light is reflected by the target object 101, and the reflected laser light returns to the rear monitoring sensor 10. Here, the photodetector 12a receives the reflected light and outputs a received light signal to the monitoring sensor MC14. The monitoring sensor MC14 determines the presence of the object 101 based on the light reception signal.
 具体的には、監視センサMC14は、受光信号が入力されると、そのときレーザ光が照射された位置に、対象物101となり得る物体が存在すると判断する。また、監視センサMC14は、レーザ光の出射タイミングから受光タイミングまでの時間差から、この物体までの距離を算出する。 Specifically, when the light reception signal is input, the monitoring sensor MC14 determines that there is an object that can be the target object 101 at the position irradiated with the laser light at that time. Further, the monitoring sensor MC14 calculates the distance to this object from the time difference from the laser beam emission timing to the light reception timing.
 さらに、監視センサMC14は、物体までの距離に加えて、物体をレーザ光が水平方向に走査したときの受光信号の連続数を取得する。レーザ光の大きさは、後方監視センサ10から離れるほど、大きくなるため、受光信号の連続数と物体の幅との関係は、後方監視センサ10からの距離に応じて変化する。 Furthermore, in addition to the distance to the object, the monitoring sensor MC14 acquires the continuous number of received light signals when the object is scanned with the laser beam in the horizontal direction. Since the size of the laser beam increases as the distance from the rear monitoring sensor 10 increases, the relationship between the number of consecutive received light signals and the width of the object changes according to the distance from the rear monitoring sensor 10.
 たとえば、図7(a)、(b)に示すレーザ光のサイズ(マスのサイズ)が、H1=638.4mm、L1=114.7mm、H2=219.5mm、L2=44.9mmの場合、車の幅:170cmに相当する受光信号の連続数は、後方監視センサ10からの距離が30mの照準位置P1(第1目標領域A1)において“15”であるのに対し、後方監視センサ10からの距離が10mの照準位置P2(第2目標領域A2)では“38”になる。 For example, when the laser beam size (mass size) shown in FIGS. 7A and 7B is H1 = 638.4 mm, L1 = 14.7 mm, H2 = 219.5 mm, and L2 = 44.9 mm, The continuous number of received light signals corresponding to the width of the car: 170 cm is “15” at the aiming position P1 (first target area A1) at a distance of 30 m from the rear monitoring sensor 10, whereas from the rear monitoring sensor 10 At the aiming position P2 (second target area A2) with a distance of 10 m, it becomes “38”.
 監視センサMC14は、物体までの距離を算出するとともに、受光信号の連続数を計数する。そして、これら距離および連続数と、対象物の幅テーブルとを比較して、検出した物体が、自動車やバイク等の対象物であるかを判定する。 The monitoring sensor MC14 calculates the distance to the object and counts the continuous number of received light signals. Then, the distance and the continuous number are compared with the width table of the object to determine whether the detected object is an object such as an automobile or a motorcycle.
 図8(a)、(b)は、対象物の幅テーブルを例示する図である。図示のように、幅テーブルには、対象物までの距離とその距離における受光信号の連続数とが対応付けられている。この幅テーブルは、監視センサMC14内のメモリに格納されている。幅テーブルには、事件などの危険性がある車101aやバイク101bなどの特定の対象物101についての受光信号の連続数が、対象物までの距離に関連付けて記述されている。 FIGS. 8A and 8B are diagrams illustrating an object width table. As shown in the figure, the distance to the object is associated with the number of consecutive received light signals at the distance in the width table. This width table is stored in a memory in the monitoring sensor MC14. In the width table, the number of consecutive received light signals for a specific target object 101 such as a car 101a or a motorcycle 101b having a risk of an incident or the like is described in association with the distance to the target object.
 監視センサMC14は、物体までの距離と当該物体に対する受光信号の連続数とが、対象物の幅テーブル中の距離と連続数の組み合わせの何れかにマッチングするかを判定する。そして、マッチングすれば、当該物体を対象物として認識し、マッチングしなければ、当該物体を対象物として認識しない。なお、マッチングの判定では、計数した連続数と、その距離に対応する幅テーブル中の連続数との差が、予め設定した許容値以内であれば、マッチングすると判定される。 The monitoring sensor MC14 determines whether the distance to the object and the continuous number of received light signals for the object match any combination of the distance and the continuous number in the target object width table. And if it matches, the said object will be recognized as a target object, and if not matched, the said object will not be recognized as a target object. In the matching determination, if the difference between the counted continuous number and the continuous number in the width table corresponding to the distance is within a preset allowable value, it is determined that matching is performed.
 図9から図11は、後方監視センサ10が、対象物101を監視し、警報部13で警報するフローチャートを表わす。 9 to 11 show flowcharts in which the rear monitoring sensor 10 monitors the object 101 and issues an alarm by the alarm unit 13.
 図9に示すように、まず、監視センサMC14は、自転車100が走行中であるかを判定する。この判定は、上記のように、制御回路50から入力されるクランクトルクセンサ31からの検出信号を用いて行われる。自転車100が走行中でなければ(S2:NO)、監視センサMC14は、自転車100が走行中となるまで(S2:YES)、レーザ光源111とアクチュエータ11bの動作を停止させる。 As shown in FIG. 9, first, the monitoring sensor MC14 determines whether the bicycle 100 is running. This determination is performed using the detection signal from the crank torque sensor 31 input from the control circuit 50 as described above. If the bicycle 100 is not traveling (S2: NO), the monitoring sensor MC14 stops the operation of the laser light source 111 and the actuator 11b until the bicycle 100 is traveling (S2: YES).
 一方、自転車100が走行中であると(S2:YES)、監視センサMC14は、現在の時間が夜の時間帯であるかを判定する(S4)。たとえば、監視センサMC14は、上記のように、点灯スイッチ21のオン/オフ、または、照度センサ22の照度が閾値以下であるかに基づき、現在の時間が夜の時間帯であるかを判定する(S4)。具体的には、点灯スイッチ21がオンされ、または、点灯スイッチ21が自動点灯モード(AUTO)に設定され、且つ、照度センサ22の照度が閾値以下である場合に、現在の時間が夜の時間帯であると判定される。また、点灯スイッチ21のオフ、または、点灯スイッチ21が自動点灯モード(AUTO)に設定され、且つ、照度センサ22の照度が閾値より大きい場合には、現在の時間帯が昼の時間帯であると判定される。 On the other hand, if the bicycle 100 is running (S2: YES), the monitoring sensor MC14 determines whether the current time is the night time zone (S4). For example, as described above, the monitoring sensor MC14 determines whether the current time is in the night time zone based on whether the lighting switch 21 is on / off or whether the illuminance of the illuminance sensor 22 is equal to or less than a threshold value. (S4). Specifically, when the lighting switch 21 is turned on or when the lighting switch 21 is set to the automatic lighting mode (AUTO) and the illuminance of the illuminance sensor 22 is equal to or less than the threshold, the current time is the night time. It is determined to be a belt. When the lighting switch 21 is turned off or the lighting switch 21 is set to the automatic lighting mode (AUTO) and the illuminance of the illuminance sensor 22 is larger than the threshold, the current time zone is the daytime zone. It is determined.
 監視センサMC14は、レーザ光源111とアクチュエータ11bの動作頻度を、昼の時間帯より夜の時間帯の方が高くなるように設定する。たとえば、監視センサMC14は、現在の時間帯が夜の時間帯であると(S4:YES)、ステップS6において、レーザ光の走査停止期間を決める設定値を、n(たとえば、1分)と定める。また、後方監視センサ10は、現在の時間帯が昼の時間帯であると(S4:NO)、ステップS8において、上記所定値を、nより長いd(たとえば、2分)と定める。そして、所定値nまたは所定値dがレーザ光源111などの動作頻度を表わす値として監視センサMC14内のメモリに記録される。 The monitoring sensor MC14 sets the operation frequency of the laser light source 111 and the actuator 11b so that the night time zone is higher than the day time zone. For example, if the current time zone is a night time zone (S4: YES), monitoring sensor MC14 determines that the set value for determining the laser beam scanning stop period is n (for example, 1 minute) in step S6. . Further, when the current time zone is the daytime zone (S4: NO), the rear monitoring sensor 10 determines the predetermined value as d (for example, 2 minutes) longer than n in step S8. Then, the predetermined value n or the predetermined value d is recorded in the memory in the monitoring sensor MC14 as a value representing the operation frequency of the laser light source 111 or the like.
 自転車100の走行状態が検出され、昼夜の所定値が設定されると、次に、監視センサMC14は、アクチュエータ11bに電力が供給されるようBMC42を制御し、アクチュエータ11bを動作させる(ステップS10)。監視センサMC14は、アクチュエータ11bのミラー114が初期位置に配置されているかを、ステップS12で確認する。ここで、ミラー114が初期位置になければ、監視センサMC14は、ステップS14において、アクチュエータ11bの2つの回転軸を動かし、ミラー114の位置を調整する。一方、ミラー114が初期位置にあれば、S16に進む。 When the running state of the bicycle 100 is detected and a predetermined value is set for day and night, the monitoring sensor MC14 next controls the BMC 42 so that electric power is supplied to the actuator 11b, and operates the actuator 11b (step S10). . In step S12, the monitoring sensor MC14 checks whether the mirror 114 of the actuator 11b is disposed at the initial position. Here, if the mirror 114 is not in the initial position, the monitoring sensor MC14 adjusts the position of the mirror 114 by moving the two rotation axes of the actuator 11b in step S14. On the other hand, if the mirror 114 is in the initial position, the process proceeds to S16.
 しかる後、監視センサMC14は、ステップS16において、レーザ光源111への電力供給をBMC42に開始させ、レーザ光の走査を開始させる。同時に、レーザ光源111の動作時間の計測を開始する。このとき、監視センサMC14は、走査領域を第1目標領域A1に設定して、上記のように、レーザ光を水平方向および鉛直方向に走査させる。 Thereafter, in step S16, the monitoring sensor MC14 causes the BMC 42 to start supplying power to the laser light source 111, and starts scanning with the laser light. At the same time, measurement of the operating time of the laser light source 111 is started. At this time, the monitoring sensor MC14 sets the scanning region to the first target region A1, and scans the laser light in the horizontal direction and the vertical direction as described above.
 こうして、レーザ光の走査を開始した後、監視センサMC14は、図10に示すように、レーザ光源111の動作開始から20秒が経ったか否かを判定する(ステップS18)。動作開始から20秒が経過していれば(S18:NO)、後方監視センサ10は、図9のステップS20で、レーザ光源111への電力供給を終了し、さらに、アクチュエータ11bのミラー114を初期位置に戻してから、アクチュエータ11bへの電力供給を終了させる(S22)。こうして、次の走査が開始されるまで(S24:YES)、ミラー114は初期位置に保持される。 Thus, after starting the scanning of the laser beam, the monitoring sensor MC14 determines whether or not 20 seconds have elapsed from the start of the operation of the laser light source 111 as shown in FIG. 10 (step S18). If 20 seconds have elapsed since the start of the operation (S18: NO), the rear monitoring sensor 10 ends the power supply to the laser light source 111 in step S20 of FIG. 9, and further, the mirror 114 of the actuator 11b is initialized. After returning to the position, the power supply to the actuator 11b is terminated (S22). Thus, the mirror 114 is held at the initial position until the next scanning is started (S24: YES).
 続いて、監視センサMC14は、先のステップS6またはS8で求めた所定値dまたは所定値nを内部メモリから読み出し、レーザ光源111の停止からの経過時間と所定値dまたは所定値nとを比較する(S24)。経過時間が所定値を超えると(S24:YES)、監視センサMC14は、自転車100の後方を再び監視するために、ステップS2に戻って、自転車100が走行中であるかを判定する。ここで、所定値nが所定値dより短く設定されていることにより、夜の時間帯では、昼の時間帯よりも、待機時間が短くなり、後方監視の頻度は多くなる。 Subsequently, the monitoring sensor MC14 reads the predetermined value d or the predetermined value n obtained in the previous step S6 or S8 from the internal memory, and compares the elapsed time from the stop of the laser light source 111 with the predetermined value d or the predetermined value n. (S24). When the elapsed time exceeds the predetermined value (S24: YES), the monitoring sensor MC14 returns to step S2 to determine whether the bicycle 100 is running in order to monitor the rear of the bicycle 100 again. Here, since the predetermined value n is set shorter than the predetermined value d, the standby time is shorter in the night time zone than in the day time zone, and the frequency of rearward monitoring is increased.
 これに対し、図10のステップS18において、レーザ光源111が点灯されてから20秒が経過していなければ(S18:YES)、レーザ光の反射光に基づき対象物101の有無が監視される(S26)。ここでは、図6に示すように、水平方向の走査角度θ1Hが小さく設定され、第1目標領域A1における走査幅Dが狭いため、対象物101の検出範囲は、狭い範囲に制限される。たとえば、照準位置P1における走査幅Dが自転車100の走行車線の幅程度となるように角度θ1Hが設定される。この場合、自転車100が道の真ん中を走行していると、後方監視センサ10から照準位置P1までの第1目標領域A1は、自転車100の走行車線内にあり、対向車線には含まれない。よって、後方監視センサ10は、主に、自転車100の走行車線を走る対象物101を監視する。 On the other hand, in step S18 of FIG. 10, if 20 seconds have not elapsed since the laser light source 111 was turned on (S18: YES), the presence or absence of the object 101 is monitored based on the reflected light of the laser beam ( S26). Here, as shown in FIG. 6, since the horizontal scanning angle θ1H is set small and the scanning width D in the first target area A1 is narrow, the detection range of the object 101 is limited to a narrow range. For example, the angle θ <b> 1 </ b> H is set so that the scanning width D at the aiming position P <b> 1 is about the width of the traveling lane of the bicycle 100. In this case, when the bicycle 100 is traveling in the middle of the road, the first target area A1 from the rear monitoring sensor 10 to the aiming position P1 is in the travel lane of the bicycle 100 and is not included in the oncoming lane. Therefore, the rear monitoring sensor 10 mainly monitors the object 101 that runs in the travel lane of the bicycle 100.
 ステップS26において、監視センサMC14は、光検出器12a(図3)から入力される反射光の受光信号を監視する。受光信号がない場合、監視センサMC14は、第1目標領域A1に対象物101が存在しないと判定し(S26:NO)、レーザ光源111の点灯時間が20秒になるまで(S18)、対象物101の出現を監視する(S26)。  In step S26, the monitoring sensor MC14 monitors the light reception signal of the reflected light input from the photodetector 12a (FIG. 3). When there is no light reception signal, the monitoring sensor MC14 determines that the object 101 does not exist in the first target area A1 (S26: NO), and the object is turned on until the lighting time of the laser light source 111 reaches 20 seconds (S18). The appearance of 101 is monitored (S26). *
 一方、監視センサMC14は、光検出器12aから反射光の受光信号が入力されると、ステップS26において、まず、第1目標領域A1に物体があるとして、その物体までの距離を測定し、さらに、この物体をレーザ光が水平方向に走査したときの受光信号の連続数を計数する。 On the other hand, when the received light signal of the reflected light is input from the photodetector 12a, the monitoring sensor MC14 first measures the distance to the object, assuming that there is an object in the first target area A1, in step S26. Then, the number of consecutive received light signals when the object is scanned in the horizontal direction by the laser beam is counted.
 続いて、監視センサMC14は、取得した距離および受光信号の連続数と、図8に例示する対象物の幅テーブルとを対比し、上記のように、取得した距離および受光信号の連続数にマッチングする組み合わせが幅テーブル中にあれば、当該物体が対象物であると認識する(S26:YES)。認識された対象物までの距離と受光信号の連続数は、監視センサMC14の内部メモリに保持される。 Subsequently, the monitoring sensor MC14 compares the acquired distance and the continuous number of received light signals with the width table of the object illustrated in FIG. 8 and matches the acquired distance and the continuous number of received light signals as described above. If the combination to be performed is in the width table, it is recognized that the object is a target (S26: YES). The recognized distance to the object and the number of consecutive received light signals are held in the internal memory of the monitoring sensor MC14.
 上記のように、対象物の幅テーブルには、事件などの危険性がある車101aやバイク101bなどの対象物101の幅が、受光信号の連続数として記述されており、これらより幅が狭いポールや人などは、幅テーブルに登録されていない。よって、ポールや人等が第1目標領域に存在しても、これらは対象物101として認識されない。また、レーザ光は1回の目標領域の走査において、鉛直方向に3度走査されるが、そのうちの1度でも受光信号の連続数が幅テーブルにマッチングすると、対象物101の存在が認識される。なお、第1目標領域の走査範囲に同時に複数の対象物が含まれる場合には、複数の対象物が認識される。 As described above, in the object width table, the width of the object 101 such as the car 101a or the motorcycle 101b having a risk of an incident or the like is described as the continuous number of received light signals, and the width is narrower than these. Paul and people are not registered in the width table. Therefore, even if a pole or a person exists in the first target area, they are not recognized as the object 101. Further, the laser beam is scanned three times in the vertical direction in one scan of the target area, but the presence of the object 101 is recognized when the number of consecutive received light signals matches the width table even at one time. . In addition, when a plurality of objects are simultaneously included in the scanning range of the first target area, the plurality of objects are recognized.
 こうして対象物が認識されると(S26:YES)、第1目標領域に対する走査が継続され、ステップS26で認識された対象物101が自転車100に接近してきているかが判定される(S28)。この判定は、以下のように行われる。 Thus, when the object is recognized (S26: YES), the scanning with respect to the first target area is continued, and it is determined whether the object 101 recognized in step S26 is approaching the bicycle 100 (S28). This determination is performed as follows.
 レーザ光の次回以降の走査により、上記と同様にして、対象物101が認識される。監視センサMC14は、この対象物101の幅(受光信号の連続数)でもって、この対象物と、ステップS26で認識した対象物101とを同定する。 The object 101 is recognized in the same manner as described above by the subsequent scanning of the laser beam. The monitoring sensor MC14 identifies this object and the object 101 recognized in step S26 by using the width of the object 101 (the number of consecutive received light signals).
 具体的には、図12(a)に示すように、第1目標領域が走査され(S101)、この走査で対象物101が認識されると(S102:YES)、認識された対象物101の中から、その幅(受光信号の連続数)がステップS26で認識された対象物101の幅(受光信号の連続数)に一致し、あるいは、所定の許容範囲内の微差であるものが抽出される(S103)。そして、抽出された対象物101の中から、ステップS26で認識された対象物101の位置の近傍にあるものが抽出され(S104)、これにより抽出された対象物101が、ステップS26で認識された対象物101と同一であると同定される(S105)。このとき、同定された対象物101までの距離と受光信号の連続数は、監視センサMC14の内部メモリに保持される。 Specifically, as shown in FIG. 12A, when the first target area is scanned (S101) and the object 101 is recognized by this scanning (S102: YES), the recognized object 101 is detected. Among them, the one whose width (the number of consecutive received light signals) matches the width of the object 101 recognized in step S26 (the number of consecutive received light signals) or is a slight difference within a predetermined allowable range is extracted. (S103). Then, from the extracted objects 101, those in the vicinity of the position of the object 101 recognized in step S26 are extracted (S104), and the object 101 thus extracted is recognized in step S26. And identified as the same object 101 (S105). At this time, the distance to the identified object 101 and the number of consecutive received light signals are held in the internal memory of the monitoring sensor MC14.
 ステップS102にて対象物101を認識できない場合(S102:NO)、あるいは、ステップS103、104にて対象物101を抽出できない場合(S103:NO、S104:NO)には、NG(同定不可)と判定される。 If the object 101 cannot be recognized in step S102 (S102: NO), or if the object 101 cannot be extracted in steps S103 and 104 (S103: NO, S104: NO), NG (unidentifiable) is assumed. Determined.
 同図(a)のルーチンは、所定回数、繰り返される。その間に、対象物101を同定できず、全て、NG(同定不可)(S106)となった場合には、図10のステップS28の判定はNOとされる。 The routine of (a) in the figure is repeated a predetermined number of times. In the meantime, if the objects 101 cannot be identified and all are NG (unidentifiable) (S106), the determination in step S28 in FIG. 10 is NO.
 こうして対象物101が同定されると、監視センサMC14は、図12(b)に示すように、図10のステップS26で認識された対象物101までの距離daと、図12(a)の処理にて同定された対象物101までの距離dbを内部メモリから取得し(S201)、これら距離の差分Δdを、Δd=da―dbの演算により求める(S202)。そして、監視センサMC14は、差分Δdが0より大きければ(S203:YES)、対象物101が接近していると判定し(S204)、差分Δdが0以下であれば(S203:NO)、対象物101が接近していないと判定する(S205)。 When the object 101 is identified in this way, the monitoring sensor MC14, as shown in FIG. 12 (b), the distance da to the object 101 recognized in step S26 of FIG. 10 and the processing of FIG. 12 (a). Is obtained from the internal memory (S201), and a difference Δd between these distances is obtained by calculating Δd = da−db (S202). If the difference Δd is greater than 0 (S203: YES), the monitoring sensor MC14 determines that the object 101 is approaching (S204), and if the difference Δd is 0 or less (S203: NO), the target It is determined that the object 101 is not approaching (S205).
 図12(b)の判定は、同定された全ての対象物101について行われる。こうして、図10のステップS26にて認識された全ての対象物101について、ステップS28において、接近しているかが判定される。 The determination shown in FIG. 12B is performed for all the identified objects 101. In this way, it is determined in step S28 whether all the objects 101 recognized in step S26 of FIG. 10 are approaching.
 図10のステップS26にて認識された全ての対象物101が接近していない場合(S28:NO)、監視センサMC14は、処理を図9のステップS20に進める。停止または後退する対象物101は、事件などを発生させる可能性が低く、監視する必要がないので、前述と同様、監視センサMC14は、ステップS20からS24により、レーザ光源111およびアクチュエータ11bを停止し、停止からの経過時間と所定値とを比較する。 When all the objects 101 recognized in step S26 in FIG. 10 are not approaching (S28: NO), the monitoring sensor MC14 advances the process to step S20 in FIG. Since the object 101 that is stopped or retracted is less likely to cause an incident or the like and does not need to be monitored, the monitoring sensor MC14 stops the laser light source 111 and the actuator 11b in steps S20 to S24 as described above. The elapsed time from the stop is compared with a predetermined value.
 一方、認識された対象物101の中で1つだけでも接近していれば(S28:YES)、監視センサMC14は、自転車100に接近する対象物101の数が2つ以上かを判定する(S30)。接近する対象物101の数が2つ以上のとき(ステップS30:YES)、監視センサMC14は、自転車100の進行方向に対して垂直な方向に接近対象物101が多数存在し、事件などの危険性が低い状況であるとして、前述と同様、ステップS20からS24の処理を行い、レーザ光源111とアクチュエータ11bの動作を停止させる、
 ステップ30において、接近する対象物101が2より少ない、すなわち、接近する対象物101が1つである場合(S30:NO)、監視センサMC14は、この対象物101を第1対象物101と特定する(ステップS32)。同時に、監視センサMC14は、図9のステップS16にて走査を開始してから第1対象物101を特定するまでの経過時間(特定時間)と、第1対象物101の距離および幅(受光信号の連続数)を内部メモリに記憶する。続いて、監視センサMC14は、ステップS34で、水平方向の走査角度を、図6の第1目標領域A1の角度θ1Hから、第2目標領域A2の角度θ2Hへ広げる。
On the other hand, if only one of the recognized objects 101 is approaching (S28: YES), the monitoring sensor MC14 determines whether the number of objects 101 approaching the bicycle 100 is two or more ( S30). When the number of approaching objects 101 is two or more (step S30: YES), the monitoring sensor MC14 has many approaching objects 101 in a direction perpendicular to the traveling direction of the bicycle 100, and there is a danger such as an incident. As described above, the processing from step S20 to S24 is performed to stop the operations of the laser light source 111 and the actuator 11b, as described above.
In step 30, when the number of approaching objects 101 is less than 2, that is, when the number of approaching objects 101 is one (S30: NO), the monitoring sensor MC14 identifies this object 101 as the first object 101. (Step S32). At the same time, the monitoring sensor MC14 determines the elapsed time (specific time) from the start of scanning in step S16 of FIG. 9 until the first object 101 is specified, and the distance and width of the first object 101 (light reception signal). Is stored in the internal memory. Subsequently, in step S34, the monitoring sensor MC14 increases the horizontal scanning angle from the angle θ1H of the first target area A1 in FIG. 6 to the angle θ2H of the second target area A2.
 次に、監視センサMC14は、走査開始からの経過時間が10秒を超えているかを判定する(ステップS36)。そして、走査開始から10秒が経過した後に、第1対象物101を始めて検出した場合(S36:YES)、監視センサMC14は、警報部13を動作させる(S38)。 Next, the monitoring sensor MC14 determines whether the elapsed time from the start of scanning exceeds 10 seconds (step S36). Then, when 10 seconds have elapsed from the start of scanning and the first object 101 is detected for the first time (S36: YES), the monitoring sensor MC14 operates the alarm unit 13 (S38).
 この場合、後方監視センサ10により監視が開始してから10秒の間、接近する対象物101が一切認識されず、その後、突然に、接近する対象物101が第1目標領域に現れている。このような状況下では、事件などが起こる危険性があるため、監視センサMC14は、ステップS38で、警報部13を動作させる。 In this case, the approaching object 101 is not recognized at all for 10 seconds after the monitoring by the rear monitoring sensor 10 is started, and then the approaching object 101 suddenly appears in the first target area. Under such circumstances, since there is a risk of an incident or the like, the monitoring sensor MC14 activates the alarm unit 13 in step S38.
 たとえば、監視センサMC14は、後照灯13aを点灯または点滅し、接近する対象物101(第1対象物)に注意を促し、また、注意すべき対象物101(第1対象物)が迫っていることを告げる音声をスピーカ13bから出力し、ユーザに接近対象物101の存在を知らせる。なお、ステップS36において閾値となる時間は10秒以外でも良い。 For example, the monitoring sensor MC14 lights or blinks the headlight 13a, urges attention to the approaching object 101 (first object), and the object 101 (first object) to be noted approaches. A sound that indicates that the approaching object 101 is present is output from the speaker 13b. Note that the threshold time in step S36 may be other than 10 seconds.
 ステップS36の判定がNOである場合、監視センサMC14は、後方の混雑具合を判定できないため、警報を行わずに、処理を図11のステップS40に進める。 If the determination in step S36 is NO, the monitoring sensor MC14 cannot determine the degree of congestion at the rear, so the process proceeds to step S40 in FIG. 11 without issuing an alarm.
 ステップS40では、図10のステップS18と同様に、監視センサMC14は、走査を開始してから20秒が経ったか否かを判定する。20秒が経過していれば、監視センサMC14は、図9のステップS20からS24の処理により、レーザ光源111、アクチュエータ11bを停止し、その後の経過時間を測定する。 In step S40, as in step S18 of FIG. 10, the monitoring sensor MC14 determines whether or not 20 seconds have elapsed since the start of scanning. If 20 seconds have elapsed, the monitoring sensor MC14 stops the laser light source 111 and the actuator 11b by the processing of steps S20 to S24 in FIG. 9, and measures the elapsed time thereafter.
 一方、レーザ光源111の動作開始から20秒が経過していなければ(S40:YES)、レーザ光の走査が継続され、上記第1対象物以外の他の対象物が認識されたかが判定される(S42)。この判定は、以下のようにして行われる。 On the other hand, if 20 seconds have not elapsed since the start of the operation of the laser light source 111 (S40: YES), the scanning of the laser light is continued, and it is determined whether other objects other than the first object have been recognized ( S42). This determination is performed as follows.
 図10のステップS32にて第1対象物101が特定されると、監視センサMC14は、第1対象物101を追跡する。第1対象物101が特定された後、ステップS34において、走査範囲が第2目標領域A2に拡大されるが、図6および図7に示すように、拡大後の走査範囲は、拡大前の第1目標領域A1に対する走査範囲を含んでいる。よって、拡大後の走査範囲にも、第1対象物101が含まれ、第1対象物101は認識可能である。 When the first object 101 is specified in step S32 of FIG. 10, the monitoring sensor MC14 tracks the first object 101. After the first object 101 is specified, the scanning range is expanded to the second target area A2 in step S34. As shown in FIGS. 6 and 7, the expanded scanning range is the first unenlarged range. The scanning range for one target area A1 is included. Therefore, the first object 101 is also included in the enlarged scanning range, and the first object 101 can be recognized.
 監視センサMC14は、拡大後の走査範囲に含まれる対象物101を認識し、認識した対象物101の位置、距離、幅(受光信号の連続数)から、第1対象物101を同定する。そして、認識した対象物101から、同定した第1対象物101を除いた残りの対象物101を、図11のステップS42において、他の対象物として認識する。 The monitoring sensor MC14 recognizes the target object 101 included in the enlarged scanning range, and identifies the first target object 101 from the position, distance, and width (number of consecutive received light signals) of the recognized target object 101. Then, the remaining object 101 excluding the identified first object 101 from the recognized object 101 is recognized as another object in step S42 of FIG.
 図6に示すように、第2目標領域A2の水平角度θ2Hは、第1目標領域A1の水平角度θ1Hに比べて大きいため、自転車100の進行方向に水平な方向に広い範囲に存在する対象物101が調べられる。よって、道の端を走行している幅の狭いバイク101bなどはステップS26で認識されるが、このバイク101bが進行して自転車100に接近すると、第1目標領域A1から外れてしまう。しかし、走査角度拡大により第2目標領域A2にレーザ光が照射されれば、このようなバイク101bも監視対象となり、さらなる追跡が可能となる。 As shown in FIG. 6, since the horizontal angle θ2H of the second target area A2 is larger than the horizontal angle θ1H of the first target area A1, the object exists in a wide range in the direction horizontal to the traveling direction of the bicycle 100. 101 is examined. Therefore, the narrow motorcycle 101b traveling on the edge of the road is recognized in step S26. However, when the motorcycle 101b advances and approaches the bicycle 100, the motorcycle 101b deviates from the first target area A1. However, if the second target area A2 is irradiated with the laser beam by expanding the scanning angle, such a motorcycle 101b is also monitored, and further tracking is possible.
 ステップS42において認識された他の対象物101は、通常、以下の2つの対象物101を含む。1つは、ステップS34にて走査角度が広げられたことにより、広げられた範囲で新たに発見された対象物101である。もう1つは、第1対象物101と縦に並んで走行することで第1対象物101の陰に隠れて1つ目の対象物101として認識されなかったが、第1対象物101が自転車100に接近するなどして、第1対象物101の陰にならずに初めて認識された対象物101である。 Other objects 101 recognized in step S42 usually include the following two objects 101. One is the object 101 that is newly discovered in the widened range due to the widening of the scanning angle in step S34. The other is that the first object 101 is not recognized as the first object 101 because it runs behind the first object 101 and is hidden behind the first object 101, but the first object 101 is a bicycle. The object 101 is recognized for the first time without being shaded by the first object 101 by approaching 100 or the like.
 こうして他の対象物が認識されると(S42:YES)、監視センサMC14は、当該他の対象物101が接近しているか否かを、ステップS28と同様にして、判定する(S44)。ステップS42において、他の対象物101が複数認識されている場合、全ての他の対象物について、ステップS44の判定が行われる。全ての対象物101が接近していなければ(S44:NO)、監視センサMC14は、ステップS18に処理を戻し、再び、1つ目の対象物101を探索する。この場合、走査範囲は、第1目標領域に再設定される。 When another object is thus recognized (S42: YES), the monitoring sensor MC14 determines whether or not the other object 101 is approaching in the same manner as in step S28 (S44). If a plurality of other objects 101 are recognized in step S42, the determination in step S44 is performed for all other objects. If all the objects 101 are not approaching (S44: NO), the monitoring sensor MC14 returns the process to step S18, and searches for the first object 101 again. In this case, the scanning range is reset to the first target area.
 ステップ44において、少なくとも1つの他の対象物101が接近していれば(S44:YES)、監視センサMC14は、接近する他の対象物101の数が2つ以上であるかを判定する(S46)。そして、接近する他の対象物101の数が2つ以上のとき、監視センサMC14は、ステップS20からS24の処理を行う。 If at least one other object 101 is approaching in step 44 (S44: YES), the monitoring sensor MC14 determines whether the number of other objects 101 approaching is two or more (S46). ). And when the number of the other objects 101 which approach is two or more, monitoring sensor MC14 performs the process of step S20 to S24.
 接近する他の対象物101が1つの場合(S46:NO)、監視センサMC14は、この接近対象物101を第2対象物101と特定し(ステップS48)、走査開始から第2対象物101が特定されるまでの経過時間(特定時間)を取得する。そして、監視センサMC14は、第1対象物101が特定されるまでの経過時間(特定時間)を内部メモリから読み出し、第1対象物101の特定時間と第2対象物101の特定時間との差を算出する。この時間差、つまり第1目標領域A1の走査において第1対象物101が特定されてから第2目標領域A2の走査で新たな第2対象物101が特定されるまでの時間が、所定の時間(ここでは、6秒)より大きいか否かが判定される。 When there is one other target object 101 approaching (S46: NO), the monitoring sensor MC14 specifies this approaching target object 101 as the second target object 101 (step S48), and the second target object 101 starts from the start of scanning. Acquire the elapsed time (specific time) until it is specified. Then, the monitoring sensor MC14 reads from the internal memory the elapsed time (specific time) until the first object 101 is specified, and the difference between the specific time of the first object 101 and the specific time of the second object 101 is read. Is calculated. This time difference, that is, the time from when the first object 101 is specified in the scan of the first target area A1 to when the new second object 101 is specified in the scan of the second target area A2, is a predetermined time ( Here, it is determined whether it is longer than 6 seconds.
 たとえば、時速20kmで自転車100が走行中に、時速40kmの第1対象物101が後方から接近してきた場合、6秒間の間に第1対象物101は33m自転車100に接近する。第1目標領域A1の照準位置P1が自転車100から30mの位置である場合、第1対象物101が33m接近すると、第1対象物101は自転車100を追い越すことになる。よって、第2対象物101の検出が、第1対象物101の検出から6秒より長く経過している場合、第1対象物101が自転車100を追い越してから第2対象物101を検出していることになり、第1対象物101と第2対象物101との間隔が離れており、自転車100の進行方向において対象物101の数が少ないと判定される。このように周囲に対象物101が少ないと、事件などの発生確率が高いため、監視センサMC14は、警報部13を動作させる。たとえば、後方監視センサ10は、後照灯13aを点灯させたり、スピーカ13bから警告音を出力したりする。 For example, when the bicycle 100 is traveling at a speed of 20 km / h and the first object 101 at a speed of 40 km / h approaches from behind, the first object 101 approaches the 33 m / bicycle 100 in 6 seconds. When the aiming position P1 of the first target area A1 is 30 m from the bicycle 100, the first object 101 will pass the bicycle 100 when the first object 101 approaches 33 m. Therefore, when the detection of the second object 101 has passed for more than 6 seconds from the detection of the first object 101, the second object 101 is detected after the first object 101 has passed the bicycle 100. Therefore, it is determined that the distance between the first object 101 and the second object 101 is large, and the number of the objects 101 is small in the traveling direction of the bicycle 100. Thus, when there are few objects 101 around, since the occurrence probability of an incident etc. is high, monitoring sensor MC14 operates alarm part 13. For example, the rear monitoring sensor 10 turns on the headlight 13a or outputs a warning sound from the speaker 13b.
 一方、第1対象物101の検出時間と第2対象物101の検出時間との差が6秒未満のとき、第1対象物101と第2対象物101との間隔が短く、自転車100の進行方向において対象物101が多いと判定され、監視センサMC14は、警報部13を動作させずに、ステップS20からS24においてレーザ光源111とアクチュエータ11bの動作を停止させる、
 以上、本実施の形態によれば、接近する対象物101の出現頻度が低いときに(図10のS30:NO、S36:YES、図11のS46:NO、S50:NO)、対象物101や自転車100のユーザに警報がおこなわれる。よって、真に事件などが発生する恐れが高い場合に的確に警報が行われ、事件などを回避するための対応を効果的に促すことができる。
On the other hand, when the difference between the detection time of the first target object 101 and the detection time of the second target object 101 is less than 6 seconds, the interval between the first target object 101 and the second target object 101 is short and the bicycle 100 advances. It is determined that there are many objects 101 in the direction, and the monitoring sensor MC14 stops the operation of the laser light source 111 and the actuator 11b in steps S20 to S24 without operating the alarm unit 13.
As described above, according to the present embodiment, when the appearance frequency of the approaching object 101 is low (S30: NO, S36: YES in FIG. 10, S46: NO, S50: NO in FIG. 11), the object 101 and An alarm is issued to the user of the bicycle 100. Therefore, when there is a high possibility that an incident or the like will really occur, a warning is accurately given, and a response to avoid the incident or the like can be effectively promoted.
 また、本実施の形態によれば、接近する対象物101が監視対象とされ(図10のS28、図11のS44)、停止したり、自転車100から後退したりする対象物101は監視対象から外される。このような接近しない対象物101は事件などを起こす可能性が低いので、これらが監視対象から外されることで、不要な警報を回避することができる。よって、事件などの発生割合が高い対象物101のみに対して警報が行われ、事件などが効果的に予防され得る。 Further, according to the present embodiment, the approaching object 101 is set as a monitoring target (S28 in FIG. 10 and S44 in FIG. 11), and the object 101 that stops or retreats from the bicycle 100 is monitored. Removed. Since the object 101 that is not approaching is unlikely to cause an incident or the like, unnecessary alarms can be avoided by removing them from the monitoring target. Therefore, an alarm is given only to the target object 101 having a high incidence of incidents, and the incidents can be effectively prevented.
 さらに、周囲に対象物101が多い場合には、事件などに合う危険性が低いとして、レーザ光源111およびアクチュエータ11bの動作が停止される(図10のS30:YES、図11のS46:YES、S50:YES)。このため、消費電力を効果的に削減することができる。このように無駄な電力消費を抑制することで、パワーアシストなどに電力を有効に利用でき、自転車100の走行距離を延ばすことができる。また、後方監視センサ10にも電力が利用され、後方監視が可能な時間が延長される。 Furthermore, when there are many objects 101 around, the operation of the laser light source 111 and the actuator 11b is stopped on the assumption that the risk suitable for the incident is low (S30: YES in FIG. 10, S46: YES in FIG. 11). S50: YES). For this reason, power consumption can be reduced effectively. By suppressing wasteful power consumption in this way, power can be used effectively for power assist and the travel distance of the bicycle 100 can be extended. Moreover, electric power is also used for the rear monitoring sensor 10, and the time during which the rear monitoring can be performed is extended.
 また、本実施の形態によれば、昼の時間帯より夜の時間帯の方が、レーザ光の走査頻度が高められる(図9のS4、S6、S8)。このため、昼に比べて、事件などが起こり易い夜に、後方が重点的に監視されるため、事件などを予防する効果を高めることができる。一方、事件などの発生割合が低い昼には、走査頻度が低下されるので、無駄な電力消費が抑制され得る。 Further, according to the present embodiment, the scanning frequency of the laser light is increased in the night time zone than in the day time zone (S4, S6, S8 in FIG. 9). For this reason, since the rear is intensively monitored at night when an incident or the like is likely to occur compared to noon, the effect of preventing the incident or the like can be enhanced. On the other hand, in the daytime when the incidence of incidents is low, the scanning frequency is reduced, so that wasteful power consumption can be suppressed.
 また、本実施の形態によれば、事件などが起こり難い自転車100の停止中には、後方監視センサ10の動作が止められる(図9のS2)。このため、無駄な消費電力の削減がさらに図られ得る。 In addition, according to the present embodiment, the operation of the rear monitoring sensor 10 is stopped while the bicycle 100 is unlikely to cause an incident or the like (S2 in FIG. 9). For this reason, useless power consumption can be further reduced.
 さらに、レーザ光の走査開始から所定時間が経過した後に、突然接近対象物101が現れた場合に(図10のS36:YES)、警報が発せられるため、事件などが効果的に防がれ得る。 Furthermore, since an alarm is issued when the approaching object 101 suddenly appears after a predetermined time has elapsed from the start of scanning of the laser beam (S36: YES in FIG. 10), an incident or the like can be effectively prevented. .
 また、本実施の形態によれば、第1目標領域A1において対象物101が検出されてから次に第2目標領域に新たな対象物101が検出されるまでの時間が所定の時間未満のとき(図11のS50:YES)、警報が行われない。このような場合、先に検出された対象物101と次に検出された対象物101との間隔が狭く、自転車100の進行方向において対象物101が混雑している。このような状況は、事件などが起こり難いだけでなく、事件などの可能性が高い対象物101以外も検出してしまう。よって、このような状況では、警報部13が動作されないことで、不要な警報が抑制される。また、レーザ光源111とアクチュエータ11bの動作が停止されることで、無駄な電力の消費が抑えられる。 Further, according to the present embodiment, when the time from when the target object 101 is detected in the first target area A1 until the next new target object 101 is detected in the second target area is less than a predetermined time. (S50 in FIG. 11: YES), no alarm is given. In such a case, the interval between the object 101 detected first and the object 101 detected next is narrow, and the object 101 is congested in the traveling direction of the bicycle 100. Such a situation not only makes it difficult for an incident to occur, but also detects objects other than the object 101 that is highly likely to be an incident. Therefore, in such a situation, the alarm unit 13 is not operated, so that unnecessary alarms are suppressed. In addition, since the operations of the laser light source 111 and the actuator 11b are stopped, wasteful power consumption can be suppressed.
 以上、本発明の実施の形態について説明したが、本発明は、上記実施の形態によって何ら制限されるものではなく、また、本発明の実施の形態も、上記以外に種々の変更が可能である。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications other than those described above can be made to the embodiments of the present invention. .
 たとえば、上記実施の形態では、図10のステップS30でNOと判定されても、ステップS36でYESと判定されなければ警報が行われないよう制御されたが、ステップS36でNOと判定されたときも、警報が行われるようにしても良い。この場合、ステップS36でYESと判定されたときとNOと判定されたときとで、警報の内容を変えても良い。たとえば、ステップS36でYESと判定されたときは、突然、対象物が出現し事件等に合う危険性が高いため、出力音を高めるなど、警戒度を高めた出力としても良い。 For example, in the above embodiment, even if NO is determined in step S30 in FIG. 10, the alarm is not controlled unless YES is determined in step S36. However, when NO is determined in step S36. Alternatively, an alarm may be issued. In this case, the content of the alarm may be changed depending on whether it is determined as YES in step S36 or NO. For example, when it is determined as YES in step S36, since there is a high risk that the target object suddenly appears and suits the incident or the like, the output may be increased in alertness, such as increasing the output sound.
 また、上記実施の形態では、受光信号の連続数によって対象物が同定されたが、図8(a)、(b)に示すように、幅テーブルの距離と連続数の組み合わせにさらに対象物を特定するための情報(同図中の“対象物”の欄の情報)が対応付けられている場合には、この情報が一致するかによって同定を行うようにしても良い。 In the above embodiment, the object is identified by the continuous number of the received light signals. However, as shown in FIGS. 8A and 8B, the object is further added to the combination of the distance of the width table and the continuous number. When information for identification (information in the column “object” in the figure) is associated, identification may be performed depending on whether the information matches.
 また、上記実施の形態では、点灯スイッチ21および照度センサ22が制御回路50を介して前照灯20に接続されるが、これらが直接前照灯20に接続され得る。この場合、後方監視センサ10は前照灯20の点灯信号を制御回路50から受けて、昼夜を判定する。 In the above-described embodiment, the lighting switch 21 and the illuminance sensor 22 are connected to the headlamp 20 via the control circuit 50, but these can be directly connected to the headlamp 20. In this case, the rear monitoring sensor 10 receives the lighting signal of the headlamp 20 from the control circuit 50 and determines day and night.
 また、クランクトルクセンサ31や警報部13なども、上記実施の形態以外に変更可能である。 Further, the crank torque sensor 31 and the alarm unit 13 can be changed in addition to the above embodiment.
 なお、上記実施の形態では、後方の監視が行われたが、上記後方監視センサ10と同様のセンサを前方に向けて自転車100に設置し、前方の監視を行うようにしても良い。また、上記の実施の形態では、後方監視センサを自転車に取り付けた例について説明したが、自転車以外の車両に取り付けても良いことは言うまでもない。 In the embodiment described above, rearward monitoring is performed. However, a sensor similar to the rearward monitoring sensor 10 may be installed on the bicycle 100 facing forward to perform forward monitoring. In the above-described embodiment, the example in which the rear monitoring sensor is attached to the bicycle has been described. However, it goes without saying that it may be attached to a vehicle other than the bicycle.
 この他、本発明の実施の形態は、特許請求の範囲に示された技術的思想の範囲内において、適宜、種々の変更が可能である。 In addition, the embodiment of the present invention can be variously modified as appropriate within the scope of the technical idea shown in the claims.
 100 … 自転車
 10 … 後方監視センサ
 11 … レーザ光源
 11b … アクチュエータ
 12a … 光検出器
 13 … 警報部
 13a … 後照灯
 13b … スピーカ
 14 … 監視センサMC(測定部、制御部、昼夜判定部)
DESCRIPTION OF SYMBOLS 100 ... Bicycle 10 ... Backward monitoring sensor 11 ... Laser light source 11b ... Actuator 12a ... Photo detector 13 ... Alarm part 13a ... Backlight 13b ... Speaker 14 ... Monitoring sensor MC (measurement part, control part, day / night judgment part)

Claims (7)

  1.  レーザ光を出射するレーザ光源と、
     前記レーザ光を目標領域において走査させるアクチュエータと、
     前記目標領域において反射された前記レーザ光を受光する光検出器と、
     前記光検出器からの出力に基づいて前記目標領域における対象物の有無および当該対象物までの距離を測定する測定部と、
     警報出力を行う警報部と、
     前記レーザ光源、前記アクチュエータおよび前記警報部を制御する制御部と、を備え、
     前記制御部は、前記測定部による測定結果に基づき、接近する対象物の出現頻度を取得し、前記出現頻度が閾値未満であるときに、前記警報部を動作させる、ことを特徴とする車両用監視センサ。
    A laser light source for emitting laser light;
    An actuator for scanning the laser beam in a target area;
    A photodetector for receiving the laser beam reflected in the target area;
    A measurement unit that measures the presence and absence of an object in the target region and a distance to the object based on an output from the photodetector;
    An alarm unit for performing alarm output;
    A control unit that controls the laser light source, the actuator, and the alarm unit,
    The control unit acquires an appearance frequency of an approaching object based on a measurement result by the measurement unit, and operates the alarm unit when the appearance frequency is less than a threshold value. Monitoring sensor.
  2.  請求項1に記載の車両用監視センサにおいて、
     前記制御部は、前記測定部による測定結果に基づき、接近する対象物の数を取得し、前記対象物の数が閾値以上のとき、前記レーザ光源と前記アクチュエータの動作を停止させる、ことを特徴とする車両用監視センサ。
    The vehicle monitoring sensor according to claim 1,
    The control unit acquires the number of approaching objects based on a measurement result by the measurement unit, and stops the operation of the laser light source and the actuator when the number of the objects is equal to or greater than a threshold value. Monitoring sensor.
  3.  請求項1または2に記載の車両用監視センサにおいて、
     前記制御部は、前記測定部による測定結果に基づき、接近する対象物の出現頻度を監視し、前記出現頻度が閾値未満であるとき、前記レーザ光源と前記アクチュエータの動作を停止させる、ことを特徴とする車両用監視センサ。
    The vehicle monitoring sensor according to claim 1 or 2,
    The control unit monitors the appearance frequency of an approaching object based on a measurement result by the measurement unit, and stops the operation of the laser light source and the actuator when the appearance frequency is less than a threshold value. A vehicle monitoring sensor.
  4.  請求項1ないし3の何れか一項に記載の車両用監視センサにおいて、
     昼夜を判定する昼夜判定部を更に備え、
     前記制御部は、前記昼夜判定部による判定結果に基づき、前記レーザ光源と前記アクチュエータの動作頻度を、昼の時間帯より夜の時間帯が高くなるように設定する、ことを特徴とする車両用監視センサ。
    The vehicle monitoring sensor according to any one of claims 1 to 3,
    It is further equipped with a day / night judgment unit that judges day and night,
    The control unit sets the operation frequency of the laser light source and the actuator based on the determination result by the day / night determination unit so that the night time zone is higher than the day time zone. Monitoring sensor.
  5.  請求項1ないし4の何れか一項に記載の車両用監視センサにおいて、
     前記制御部は、自転車が走行中であることを示す信号に基づき、前記自転車が走行中でないと判別すると、前記レーザ光源と前記アクチュエータの動作を停止させる、ことを特徴とする車両用監視センサ。
    In the monitoring sensor for vehicles according to any one of claims 1 to 4,
    When the control unit determines that the bicycle is not running based on a signal indicating that the bicycle is running, the control unit stops the operation of the laser light source and the actuator.
  6.  請求項1ないし5の何れか一項に記載の車両用監視センサにおいて、
     前記制御部は、前記レーザ光源と前記アクチュエータの動作開始から所定時間が経過した後に、接近する対象物を始めて検出すると、前記警報部を動作させる、ことを特徴とする車両用監視センサ。
    The vehicle monitoring sensor according to any one of claims 1 to 5,
    The vehicle monitoring sensor, wherein the control unit operates the alarm unit when detecting an approaching object for the first time after a predetermined time has elapsed from the start of operation of the laser light source and the actuator.
  7.  請求項1ないし6の何れか一項に記載の車両用監視センサにおいて、
     前記制御部は、目標領域において前記対象物が検出されてから次に目標領域に新たな対象物が検出されるまでの時間が所定の時間未満のとき、前記レーザ光源と前記アクチュエータの動作を停止させる、ことを特徴とする車両用監視センサ。
    The vehicle monitoring sensor according to any one of claims 1 to 6,
    The control unit stops the operation of the laser light source and the actuator when the time from when the target object is detected in the target area until the next target object is detected in the target area is less than a predetermined time. The vehicle monitoring sensor characterized by the above-mentioned.
PCT/JP2010/073384 2010-04-27 2010-12-24 Monitoring sensor for vehicle WO2011135756A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010102603A JP2013145117A (en) 2010-04-27 2010-04-27 Monitoring sensor for bicycle
JP2010-102603 2010-04-27

Publications (1)

Publication Number Publication Date
WO2011135756A1 true WO2011135756A1 (en) 2011-11-03

Family

ID=44861085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073384 WO2011135756A1 (en) 2010-04-27 2010-12-24 Monitoring sensor for vehicle

Country Status (2)

Country Link
JP (1) JP2013145117A (en)
WO (1) WO2011135756A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180019901A (en) * 2016-08-17 2018-02-27 조선대학교산학협력단 Safe driving system for bicycle using smart device based on IoT
US10913507B2 (en) 2017-10-24 2021-02-09 Shimano Inc. Controller, human-powered vehicle system, and control method
JP6916099B2 (en) * 2017-11-21 2021-08-11 株式会社シマノ Controls, human-powered vehicle systems, and control methods
JP2019217978A (en) * 2018-06-21 2019-12-26 学校法人日本大学 Bicycle traveling state recording device, bicycle traveling state recording method, and program

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10186032A (en) * 1996-12-20 1998-07-14 Toyota Motor Corp Periphery monitoring device for vehicle
JP2000344033A (en) * 1999-06-02 2000-12-12 Mitsubishi Electric Corp Warning device at time of change in lane for vehicle
JP2001084486A (en) * 1999-09-16 2001-03-30 Omron Corp Traffic signal control system
JP2003104148A (en) * 2001-09-27 2003-04-09 Mazda Motor Corp Control device of vehicle
JP2005249623A (en) * 2004-03-05 2005-09-15 Hitachi Ltd Vehicle-mounted radar system and control method for the same
JP2008152391A (en) * 2006-12-14 2008-07-03 Toyota Motor Corp Vehicular proximity monitor
JP2008197740A (en) * 2007-02-08 2008-08-28 Toyota Motor Corp Collision prevention safety device for vehicle, collision prevention safety system and collision prevention safety information center
JP2009258204A (en) * 2008-04-14 2009-11-05 Yamaha Motor Co Ltd Optical scanner and transport device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10186032A (en) * 1996-12-20 1998-07-14 Toyota Motor Corp Periphery monitoring device for vehicle
JP2000344033A (en) * 1999-06-02 2000-12-12 Mitsubishi Electric Corp Warning device at time of change in lane for vehicle
JP2001084486A (en) * 1999-09-16 2001-03-30 Omron Corp Traffic signal control system
JP2003104148A (en) * 2001-09-27 2003-04-09 Mazda Motor Corp Control device of vehicle
JP2005249623A (en) * 2004-03-05 2005-09-15 Hitachi Ltd Vehicle-mounted radar system and control method for the same
JP2008152391A (en) * 2006-12-14 2008-07-03 Toyota Motor Corp Vehicular proximity monitor
JP2008197740A (en) * 2007-02-08 2008-08-28 Toyota Motor Corp Collision prevention safety device for vehicle, collision prevention safety system and collision prevention safety information center
JP2009258204A (en) * 2008-04-14 2009-11-05 Yamaha Motor Co Ltd Optical scanner and transport device

Also Published As

Publication number Publication date
JP2013145117A (en) 2013-07-25

Similar Documents

Publication Publication Date Title
KR101794022B1 (en) Method for controlling a headlight assembly for a vehicle and headlight assembly therefor
US10752167B2 (en) Warning signal controlling device for blind zones when vehicles making a lane change
KR100845951B1 (en) Collision avoidance system for detecting the blind spot of vehicle
JP2006252264A (en) Obstacle informing device
TW201317146A (en) Blind spot detection system and blind spot detection method thereof
JP2008529182A (en) System and method for monitoring the surroundings of an automobile
WO2011135756A1 (en) Monitoring sensor for vehicle
WO2021022853A1 (en) Vehicle tail lamp self-adaptive control system and method, and vehicle
KR20160092959A (en) Method of preventing traffic accidents in crossroad for signal violation and overspeed, and system of the same
JP2005271756A (en) Alarm device for vehicle
JP4556533B2 (en) Pedestrian notification device for vehicle and pedestrian notification method
JP2008189148A (en) Traveling state detection device
JP2014106200A (en) Surrounding monitoring apparatus and parking support device
JP2008230333A (en) Driving assisting device of vehicle
JPH10170653A (en) Distance measuring device
TWI478832B (en) System and method for detecting unsighted location during driving a vehicle
JPH08153300A (en) Obstacle detecting device
JP4221166B2 (en) Inter-vehicle distance alarm device and method
JPH10250510A (en) Distance alarming device for vehicle
JP4665624B2 (en) Vehicle rear side obstacle warning system
JP2007001436A (en) Rear side obstacle alarm system of vehicle
JP2001118197A (en) Informing device for driving operation in vehicle travel guide device
JP2007001437A (en) Rear side obstacle alarm system of vehicle
KR20160062357A (en) System and method for sensing high beam of rear vehicle
US20220406176A1 (en) Traffic Support Systems and Methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10850766

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10850766

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP