WO2011135709A1 - Catalyst for hydrogen production - Google Patents

Catalyst for hydrogen production Download PDF

Info

Publication number
WO2011135709A1
WO2011135709A1 PCT/JP2010/057653 JP2010057653W WO2011135709A1 WO 2011135709 A1 WO2011135709 A1 WO 2011135709A1 JP 2010057653 W JP2010057653 W JP 2010057653W WO 2011135709 A1 WO2011135709 A1 WO 2011135709A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
catalyst
water
reaction vessel
alkali
Prior art date
Application number
PCT/JP2010/057653
Other languages
French (fr)
Japanese (ja)
Inventor
忠彦 水野
Original Assignee
エナジー・イノベーション・ワールド・リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エナジー・イノベーション・ワールド・リミテッド filed Critical エナジー・イノベーション・ワールド・リミテッド
Priority to JP2010519688A priority Critical patent/JP4659923B1/en
Priority to PCT/JP2010/057653 priority patent/WO2011135709A1/en
Publication of WO2011135709A1 publication Critical patent/WO2011135709A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6522Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/892Nickel and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8946Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali or alkaline earth metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a hydrogen generation catalyst.
  • a catalyst for decomposing water to generate hydrogen a catalyst for generating hydrogen using an oxidation-reduction reaction of iron is known.
  • the conventional hydrogen generation catalyst include, for example, iron or its oxide, Rh, Ir, Ru, Pd, Pt, Os, Ti, Zr, V, Nb, Cr, Mo, Al, Ga, Mg, Sc, The thing which added one metal selected from the group which consists of Ni and Cu is proposed (refer patent document 1).
  • the conventional hydrogen generation catalyst generates hydrogen by reducing water when iron is oxidized.
  • one metal selected from the group consisting of Rh, Ir, Ru, Pd, Pt, Os, Ti, Zr, V, Nb, Cr, Mo, Al, Ga, Mg, Sc, Ni, Cu is It is thought to act as a cocatalyst.
  • the conventional hydrogen generation catalyst can be regenerated by separately reducing iron oxide generated as a result of water reduction to iron.
  • An object of the present invention is to provide a hydrogen generation catalyst capable of solving such disadvantages and generating hydrogen by decomposing water continuously for a long time with a small amount of catalyst.
  • the hydrogen generation catalyst of the present invention is a hydrogen generator that generates hydrogen by decomposing water by contacting it with water at a temperature of 300 ° C. or higher in a non-oxidizing atmosphere.
  • the catalyst for hydrogen generation of the present invention generates hydrogen by decomposing water by contact with water in a non-oxygen atmosphere reaction vessel. This is because when hydrogen is generated in an oxygen atmosphere, the generated hydrogen reacts with oxygen and is lost.
  • the hydrogen generation catalyst of the present invention must be brought into contact with water at a temperature of 300 ° C. or higher in the reaction vessel. At a temperature lower than 300 ° C., the activity of decomposing water cannot be imparted to the pair of metals.
  • the temperature at which the hydrogen generation catalyst of the present invention is brought into contact with water is more advantageous as it is higher if it is 300 ° C or higher.
  • a normal reaction vessel made of stainless steel or the like is corroded at a temperature exceeding 650 ° C. unless measures such as providing a coating layer made of platinum are taken. Therefore, practically, the temperature is preferably in the range of 300 to 650 ° C.
  • the hydrogen generation catalyst of the present invention is a combination of Ni and one metal selected from the group consisting of Pt, Pd, and Cr, or a pair of metals selected from a combination of Cr and Pd together with an alkali. By doing so, the activity of decomposing water on the surface of the metal can be maintained. As a result, the hydrogen generation catalyst of the present invention can generate hydrogen by decomposing water over a long period of time with a small amount of catalyst.
  • the alkali becomes an aqueous solution by contact with water, so that the activity of the metal surface can be maintained without hindering the contact between the metal surface and water.
  • the alkali is a substance that exhibits alkalinity when it becomes an aqueous solution, and any substance can be used as long as it can maintain the activity of decomposing water on the surface of the metal. It may be.
  • the alkali for example, one compound selected from the group consisting of LiOH, KOH, and NaOH can be used. However, KOH or NaOH is preferably used, and NaOH is more preferably used from the viewpoint of cost. be able to.
  • the pair of metals includes 1 to 10 parts by weight of the other metal with respect to 1 part by weight of any one of the metals. If the other metal is less than 1 part by weight relative to 1 part by weight of any one of the metals, sufficient catalytic activity may not be obtained, and if it exceeds 10 parts by weight, no further effect will be obtained.
  • the pair of metals and the alkali may be in any form as long as they coexist, for example, the powder of the pair of metals is sintered. It can be set as the form with which the said alkali was filled in the hole of the porous body.
  • the specific surface area of the metal can be increased. At this time, since the alkali is filled in the pores of the porous body, the activity of the surface of the metal forming the porous body can be maintained.
  • the hydrogen generation catalyst of the present invention comprises the porous body
  • the step of mixing the pair of metals and then dissolving them to obtain a metal mixture the step of pulverizing the metal mixture to obtain a powder
  • a production method comprising a step of molding a powder to obtain a molded body, a step of sintering the molded body to obtain a porous body, and a step of impregnating the pores of the porous body with alkali. can do.
  • the molded body can be molded, for example, by filling the powder in a predetermined shape container and pressurizing it.
  • the sintered compact can be sintered at a temperature in the range of 1200 to 1500 ° C., for example.
  • the impregnation with the alkali is preferably performed by placing the alkali on the porous body and heating to a temperature equal to or higher than the melting point of the alkali. If it does in this way, the said alkali which was heated and heated to the temperature more than melting
  • a hydrogen generating catalyst comprising an alkali capable of maintaining the surface activity of the metal, and contacting the hydrogen generating catalyst with water at a temperature of 300 ° C. or higher in a non-oxidizing atmosphere. In this way, water is decomposed to generate hydrogen.
  • the method for producing hydrogen of the present invention comprises a reaction vessel containing the hydrogen production catalyst of the present invention, a heating means for heating the inside of the reaction vessel to a temperature of 300 ° C. or higher, and a non-oxidizing atmosphere in the reaction vessel. Atmosphere adjusting means, water supply means for supplying water into the reaction vessel and bringing the hydrogen generation catalyst into contact with water, and a mixed gas containing hydrogen generated by the decomposition of the water is taken out from the reaction vessel
  • the present invention can be implemented by a hydrogen production apparatus comprising a mixed gas extraction means and a hydrogen separation means for separating and extracting hydrogen from the mixed gas extracted by the mixed gas extraction means.
  • the inside of the reaction vessel is heated to a temperature of 300 ° C. or higher by the heating means, and a non-oxidizing atmosphere is set by the atmosphere adjusting means. Then, by supplying water into the reaction vessel by the water supply means at a temperature of 300 ° C. or higher in a non-oxidizing atmosphere and bringing the hydrogen generating catalyst into contact with water, the water is decomposed to generate hydrogen. Can be made.
  • the hydrogen produced by the decomposition of the water is taken out by the mixed gas take-out means as a mixed gas with water vapor or the like. Therefore, only hydrogen can be taken out by separating hydrogen from the mixed gas by the hydrogen separation means.
  • the hydrogen generating catalyst of the present embodiment generates hydrogen by decomposing water by contact with water at a temperature of 300 ° C. or higher, preferably 300 to 650 ° C. in a non-oxidizing atmosphere.
  • the non-oxidizing atmosphere may be an inert atmosphere such as argon or nitrogen or a reducing atmosphere such as hydrogen as long as it does not contain oxygen.
  • the non-oxidizing atmosphere may be obtained by reducing the pressure in the reaction vessel to a pressure in the range of 3 to 10 mmHg.
  • the hydrogen generation catalyst of the present embodiment is a combination of Ni and one metal selected from the group consisting of Pt, Pd and Cr, or a pair of metal powders selected from a combination of Cr and Pd.
  • the porous body formed by bonding and an alkali that can be filled in the pores of the porous body and maintain the surface activity of the metal.
  • the pair of metals is four kinds of combinations of Ni—Pt, Ni—Pd, Ni—Cr, and Cr—Pd.
  • the alkali When the surface activity of the pair of metals is maintained by the alkali, hydrogen can be generated by decomposing water by contact with water for a long time in a small amount.
  • NaOH is used as the alkali.
  • the alkali may be any one as long as the activity of the surface of the pair of metals can be maintained.
  • the other metal is weighed so as to be 1 to 10 parts by weight and mixed.
  • Each of the pair of metals can be used in the form of a powder made of metal particles having a particle diameter of about several millimeters, for example.
  • the melting may be performed simply by heating or arc melting.
  • a vacuum arc melting furnace is used, and melting is performed by DC arc discharge of 300 A under an argon gas atmosphere at a pressure of 1 ⁇ 10 ⁇ 2 Pa.
  • a disk-shaped (button-shaped) metal mixture is formed by the dissolution.
  • the disk-shaped metal mixture is pulverized to form a metal mixture powder having a particle size in the range of 10 to 25 ⁇ m, for example.
  • the powder of the metal mixture is filled in a container having a predetermined shape, and is molded by applying a pressure of 2 to 10 t, for example, to form a molded body having a predetermined shape.
  • the said molded object can be made into a disk shape, for example.
  • the molded body is sintered to form a porous body made of the metal mixture.
  • the sintering is performed, for example, by using a vacuum electric furnace and holding at a temperature in the range of 1200 to 1500 ° C. for 24 hours.
  • the alkali can be filled, for example, by arranging the porous body 200 in the reaction vessel 100 shown in FIG.
  • the reaction vessel 100 is a bottomed cylindrical body made of stainless steel, and includes an openable / closable lid 101 at an upper opening.
  • the outer surface side of the reaction vessel 100 is covered with a heater 102, and the heater 102 is electrically connected to a temperature regulator 103 provided outside.
  • the porous body 200 is arranged several cm above the bottom inner surface 100 a of the reaction vessel 100, and the alkali 104 is placed on the porous body 200.
  • the amount of the alkali 104 is, for example, 1 to 5 parts by weight with respect to 1 part by weight of the porous body 200.
  • the opening of the reaction vessel 100 is closed with the lid 101, and the inside of the reaction vessel 100 is heated to a temperature in the range of 300 to 650 ° C. with the heater 102.
  • the alkali 104 is melted and liquid alkali 104 is impregnated into the pores of the porous body 200, thereby filling the pores.
  • a hydrogen production apparatus 1 includes a reaction vessel 2 having a bottomed cylindrical body.
  • the reaction vessel 2 is provided with a hydrogen generation catalyst 3 therein, and is provided with an openable / closable lid 4 at an upper opening.
  • the side is covered with a heater 5.
  • the heater 5 is electrically connected to a temperature regulator 6 provided outside.
  • a distilled water supply pipe 7 for supplying water vapor to the inside of the reaction vessel 2 is connected to the lid 4 via a valve 8.
  • the distilled water supply pipe 7 has one end opening inside the reaction vessel 2 and the other end connected to the distilled water conduit 9.
  • the distilled water conduit 9 is connected to a distilled water tank 10 and includes a pump 11 that supplies distilled water stored in the distilled water tank 10 to the distilled water supply pipe 7 on the way.
  • the lid 4 is connected to a sampling tube 12 that collects the gas inside the reaction vessel 2 as a sample via a valve 13, and a mass spectrometer 14 is connected to the end of the sampling tube 12. .
  • a gas extraction pipe 15 for taking out the gas inside the reaction vessel 2 is connected to the lid 4 via a valve 16.
  • the end of the gas extraction pipe 15 is connected to a gas conduit 18 via a gas flow rate measuring device 17, and the gas conduit 18 is connected to a hydrogen separator 20 via a valve 19.
  • the hydrogen separator 20 includes a hydrogen separation membrane 21 inside, an exhaust pipe 22 is connected to the primary side of the hydrogen separation membrane 21 via a valve 23, and a hydrogen side is connected to the secondary side of the hydrogen separation membrane 21.
  • An extraction pipe 24 is connected via a valve 25.
  • a suction unit (not shown) is connected to the end of the exhaust pipe 22 so that the inside of the reaction vessel 2 can be depressurized.
  • the hydrogen take-out pipe 24 is provided with a backfire prevention device 26 in the pipe between the hydrogen separator 20 and the valve 25 as shown in FIG.
  • a hydrogen generation catalyst 3 is disposed inside the reaction vessel 2.
  • the reaction vessel 100 shown in FIG. By using the reaction vessel 100 shown in FIG. 1 as the reaction vessel 2 shown in FIG. 2A, the hydrogen generation catalyst 3 prepared by filling the pores of the porous body 200 with the alkali 104 is used as it is. Can be used for generation.
  • the reaction vessel 2 is closed with the lid 4, the valves 8, 13, 25 are closed, and the valves 16, 19, 23 are opened, and an aspirator (not shown) connected to the end of the exhaust pipe 22.
  • the pressure inside the reaction vessel 2 is reduced to a pressure in the range of 3 to 10 mmHg.
  • the heater 5 is controlled by the temperature regulator 6 to heat the inside of the reaction vessel 2 to a temperature in the range of 300 to 650 ° C. The temperature rises to
  • the pump 11 is then operated with the valve 8 opened, and the distilled water stored in the distilled water tank 10 is converted into the distilled water conduit. 9 and the distilled water supply pipe 7 are supplied into the reaction vessel 2. If it does in this way, since the inside of the reaction container 2 is heated up to the temperature of the said range, the supplied distilled water will immediately vaporize and become water vapor
  • FIG. 1 the pump 11 is then operated with the valve 8 opened, and the distilled water stored in the distilled water tank 10 is converted into the distilled water conduit. 9 and the distilled water supply pipe 7 are supplied into the reaction vessel 2. If it does in this way, since the inside of the reaction container 2 is heated up to the temperature of the said range, the supplied distilled water will immediately vaporize and become water vapor
  • the steam is directly pyrolyzed on the surface of the pair of metals forming the hydrogen generation catalyst 3 to generate hydrogen.
  • the alkali acts to maintain the surface activity of the pair of metals. Since the alkali forms an aqueous solution with the water vapor, the alkali does not hinder the contact between the surface of the pair of metals and the water vapor (water).
  • the hydrogen and oxygen generated inside the reaction vessel 2 form a mixed gas together with unreacted water vapor, and are guided to the hydrogen separator 20 through the gas extraction pipe 15 and the gas conduit 18. Then, a high concentration of hydrogen is separated by the hydrogen separation membrane 21 disposed inside the hydrogen separator 20, and the separated hydrogen can be taken out from the hydrogen extraction conduit 24.
  • the powder is put into a stainless steel circular container and molded using a molding machine (manufactured by ASONE Co., Ltd., trade name: High Pressure Jack J-15) by applying a pressure of 10 tons from above and below.
  • a molded body was formed.
  • a vacuum electric furnace (trade name: ADP-21, manufactured by Yamato Kagaku Co., Ltd.), holding it at a temperature of 1200 ° C. for 24 hours under a pressure of 0.4 kPa, and sintering it, A disk-shaped porous body was formed.
  • the porous body 200 obtained in this example was placed inside the reaction vessel 100 shown in FIG. 1, and 40 g of solid NaOH as an alkali was placed on the porous body 200.
  • the opening of the reaction vessel 100 was closed with a lid 101, and the inside of the reaction vessel 100 was heated to a temperature of 450 ° C. with a heater 102. Further, the inside of the reaction vessel 100 was heated to a temperature of 750 ° C. and held at the temperature for 24 hours, and then the heating was stopped, and then allowed to cool to room temperature over 24 hours.
  • molten NaOH was impregnated into the pores of the porous body 200 to obtain a hydrogen generation catalyst filled in the pores.
  • the hydrogen generation catalyst 3 obtained in this example was placed in the reaction vessel 2 of the hydrogen production apparatus 1 shown in FIG.
  • the opening of the reaction vessel 2 is closed with the lid 4, the valves 8, 13, 25 are closed, and the other valves are opened, with a suction device (not shown) connected to the end of the exhaust pipe 22.
  • the inside of the reaction vessel 2 was evacuated and reduced to a pressure of 3 to 10 mmHg to make a non-oxidizing atmosphere, and then the valve 16 was closed.
  • the inside of the reaction vessel 2 was heated by the heater 5 and the temperature was raised to 570 ° C.
  • the valves 8, 16, 19, 23, and 25 are opened, the pump 11 is operated, and the distilled water stored in the distilled water tank 10 is supplied to the reaction vessel via the distilled water conduit 9 and the distilled water supply pipe 7. 2 was fed inside.
  • the supplied distilled water was immediately vaporized to become water vapor, and the water vapor was filled inside the reaction vessel 2, and generation of gas was started inside the reaction vessel 2.
  • the gas generation amount measured by the gas flow rate measuring device 17 is shown in FIG.
  • the valve 13 is opened and the gas inside the reaction vessel 2 is collected through the sampling tube 12, and the Canon Anelva Stock Mass spectrometry was performed using a company-made mass spectrometer (trade name: MSQ 400). The result is shown in FIG.
  • the pair of metals is a combination of Cr and Ni.
  • the pair of metals may be a combination of Ni and Pt or Pd. And a combination of Pd may be used.
  • the hydrogen generation rate per area (ml / cm 2 / sec) is shown in Table 1.
  • the present Example demonstrates the case where NaOH is used as an alkali
  • the said alkali may be other alkalis, such as LiOH and KOH.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

Disclosed is a catalyst for hydrogen production, a small amount of which is capable of decomposing water and thereby producing hydrogen continuously for a long time. Specifically disclosed is a catalyst for hydrogen production, which produces hydrogen by coming into contact with water in a non-oxidizing atmosphere at a temperature of 300˚C or more and decomposing the water. The catalyst for hydrogen production comprises a pair of metals that are selected from among combinations of Ni and one metal selected from the group consisting of Pt, Pd and Cr and a combination of Cr and Pd, and an alkali that is capable of maintaining the surface activity of the metals. The catalyst (3) for hydrogen production is arranged in a reaction container (2), and the catalyst (3) for hydrogen production is brought into contact with water in a non-oxidizing atmosphere at a temperature within the range of 300-650˚C, thereby decomposing the water and producing hydrogen.

Description

水素生成用触媒Catalyst for hydrogen generation
 本発明は、水素生成用触媒に関するものである。 The present invention relates to a hydrogen generation catalyst.
 現在、水素の用途は、ガス発電装置、水素ガス自動車、燃料電池、化学反応装置等に急速に拡大し、需要も大幅に伸びている。 Currently, the use of hydrogen is rapidly expanding to gas power generation equipment, hydrogen gas automobiles, fuel cells, chemical reaction equipment, etc., and demand is also growing significantly.
 従来、水を分解して水素を生成する触媒として、鉄の酸化還元反応を利用する水素生成用触媒が知られている。前記従来の水素生成用触媒として、例えば、鉄またはその酸化物に、Rh,Ir,Ru,Pd,Pt,Os,Ti,Zr,V,Nb,Cr,Mo,Al,Ga,Mg,Sc,Ni,Cuからなる群から選択される1つの金属を添加したものが提案されている(特許文献1参照)。 Conventionally, as a catalyst for decomposing water to generate hydrogen, a catalyst for generating hydrogen using an oxidation-reduction reaction of iron is known. Examples of the conventional hydrogen generation catalyst include, for example, iron or its oxide, Rh, Ir, Ru, Pd, Pt, Os, Ti, Zr, V, Nb, Cr, Mo, Al, Ga, Mg, Sc, The thing which added one metal selected from the group which consists of Ni and Cu is proposed (refer patent document 1).
 前記従来の水素生成用触媒は、鉄が酸化されることにより、水を還元して水素を生成するものである。ここで、Rh,Ir,Ru,Pd,Pt,Os,Ti,Zr,V,Nb,Cr,Mo,Al,Ga,Mg,Sc,Ni,Cuからなる群から選択される1つの金属は、助触媒として作用するものと考えられる。前記従来の水素生成用触媒は、水の還元の結果として生成した酸化鉄を別途還元して鉄とすることにより、再生させることができる。 The conventional hydrogen generation catalyst generates hydrogen by reducing water when iron is oxidized. Here, one metal selected from the group consisting of Rh, Ir, Ru, Pd, Pt, Os, Ti, Zr, V, Nb, Cr, Mo, Al, Ga, Mg, Sc, Ni, Cu is It is thought to act as a cocatalyst. The conventional hydrogen generation catalyst can be regenerated by separately reducing iron oxide generated as a result of water reduction to iron.
国際公表公報WO2004/002881号International Publication WO2004 / 002881
 しかしながら、前記従来の水素生成用触媒では、鉄が酸化されて酸化鉄になることにより触媒活性が失われるため、長時間に亘り連続して水素を生成させるには、大量の触媒を必要とするという不都合がある。 However, in the conventional hydrogen generation catalyst, the catalytic activity is lost when iron is oxidized to iron oxide, so a large amount of catalyst is required to continuously generate hydrogen over a long period of time. There is an inconvenience.
 本発明は、かかる不都合を解消して、少量の触媒で長時間に亘り連続して、水を分解して水素を発生することができる水素生成用触媒を提供することを目的とする。 An object of the present invention is to provide a hydrogen generation catalyst capable of solving such disadvantages and generating hydrogen by decomposing water continuously for a long time with a small amount of catalyst.
 かかる目的を達成するために、本発明の水素生成用触媒は、反応容器中、非酸化雰囲気下、300℃以上の温度で、水と接触することにより水を分解して水素を生成する水素生成用触媒であって、Niと、Pt,Pd,Crからなる群から選択される1つの金属との組み合わせ又は、CrとPdとの組み合わせから選択される一対の金属と、該金属の表面活性を維持することができるアルカリとを備えることを特徴とする。 In order to achieve this object, the hydrogen generation catalyst of the present invention is a hydrogen generator that generates hydrogen by decomposing water by contacting it with water at a temperature of 300 ° C. or higher in a non-oxidizing atmosphere. A catalyst for use in which Ni is combined with one metal selected from the group consisting of Pt, Pd, and Cr, or a pair of metals selected from a combination of Cr and Pd, and the surface activity of the metal. And an alkali that can be maintained.
 本発明の水素生成用触媒は、非酸素雰囲気とした反応容器中で水と接触することにより、水を分解して水素を生成する。これは、酸素雰囲気下で水素を生成させた場合、生成した水素が酸素と反応して失われてしまうためである。 The catalyst for hydrogen generation of the present invention generates hydrogen by decomposing water by contact with water in a non-oxygen atmosphere reaction vessel. This is because when hydrogen is generated in an oxygen atmosphere, the generated hydrogen reacts with oxygen and is lost.
 また、本発明の水素生成用触媒は、前記反応容器中、300℃以上の温度で、水と接触させることが必要である。300℃未満の温度では、前記一対の金属に水を分解する活性を付与することができない。本発明の水素生成用触媒を水と接触させる際の温度は、300℃以上であれば高温であるほど有利である。しかし、ステンレス等からなる通常の反応容器は、白金からなる被覆層を設ける等の対策を施さない限り、650℃を超える温度で腐食されてしまう。そこで、実用的には、300~650℃の範囲の温度とすることが好ましい。 Also, the hydrogen generation catalyst of the present invention must be brought into contact with water at a temperature of 300 ° C. or higher in the reaction vessel. At a temperature lower than 300 ° C., the activity of decomposing water cannot be imparted to the pair of metals. The temperature at which the hydrogen generation catalyst of the present invention is brought into contact with water is more advantageous as it is higher if it is 300 ° C or higher. However, a normal reaction vessel made of stainless steel or the like is corroded at a temperature exceeding 650 ° C. unless measures such as providing a coating layer made of platinum are taken. Therefore, practically, the temperature is preferably in the range of 300 to 650 ° C.
 本発明の水素生成用触媒は、Niと、Pt,Pd,Crからなる群から選択される1つの金属との組み合わせ又は、CrとPdとの組み合わせから選択される一対の金属を、アルカリと併存させることにより、該金属の表面において水を分解する活性を維持することができる。この結果、本発明の水素生成用触媒によれば、少量の触媒で長時間に亘り、水を分解して水素を発生することができる。 The hydrogen generation catalyst of the present invention is a combination of Ni and one metal selected from the group consisting of Pt, Pd, and Cr, or a pair of metals selected from a combination of Cr and Pd together with an alkali. By doing so, the activity of decomposing water on the surface of the metal can be maintained. As a result, the hydrogen generation catalyst of the present invention can generate hydrogen by decomposing water over a long period of time with a small amount of catalyst.
 尚、このとき、前記アルカリは水と接触することにより水溶液となるので、前記金属の表面と水との接触を妨げることなく、該金属の表面の活性を維持することができる。 At this time, the alkali becomes an aqueous solution by contact with water, so that the activity of the metal surface can be maintained without hindering the contact between the metal surface and water.
 本発明の水素生成用触媒において、前記アルカリは水溶液となったときにアルカリ性を示す物質であり、前記金属の表面において水を分解する活性を維持することができるものであれば、どのようなものであってもよい。前記アルカリとして、例えば、LiOH、KOH、NaOHからなる群から選択される1つの化合物を用いることができるが、価格の面から、好ましくはKOH又はNaOHを用いることができ、さらに好ましくはNaOHを用いることができる。 In the hydrogen generation catalyst of the present invention, the alkali is a substance that exhibits alkalinity when it becomes an aqueous solution, and any substance can be used as long as it can maintain the activity of decomposing water on the surface of the metal. It may be. As the alkali, for example, one compound selected from the group consisting of LiOH, KOH, and NaOH can be used. However, KOH or NaOH is preferably used, and NaOH is more preferably used from the viewpoint of cost. be able to.
 本発明の水素生成用触媒において、前記一対の金属は、いずれか一方の金属1重量部に対し、他方の金属を1~10重量部の範囲で含むことが好ましい。いずれか一方の金属1重量部に対し、他方の金属が1重量部未満では十分な触媒活性が得られないことがあり、10重量部を超えてもそれ以上の効果は得られない。 In the hydrogen generation catalyst of the present invention, it is preferable that the pair of metals includes 1 to 10 parts by weight of the other metal with respect to 1 part by weight of any one of the metals. If the other metal is less than 1 part by weight relative to 1 part by weight of any one of the metals, sufficient catalytic activity may not be obtained, and if it exceeds 10 parts by weight, no further effect will be obtained.
 また、本発明の水素生成用触媒において、前記一対の金属と前記アルカリとは併存していればどのような形態であってもよいが、例えば、前記一対の金属の粉末を焼結してなる多孔質体の孔部に前記アルカリが充填されている形態とすることができる。本発明の水素生成用触媒は、前記多孔質とすることにより、前記金属の比表面積を増大させることができる。このとき、前記アルカリは前記多孔質体の孔部に充填されていることにより、該多孔質を形成している前記金属の表面の活性を維持することができる。 In the hydrogen generation catalyst of the present invention, the pair of metals and the alkali may be in any form as long as they coexist, for example, the powder of the pair of metals is sintered. It can be set as the form with which the said alkali was filled in the hole of the porous body. By making the catalyst for hydrogen generation of the present invention porous, the specific surface area of the metal can be increased. At this time, since the alkali is filled in the pores of the porous body, the activity of the surface of the metal forming the porous body can be maintained.
 本発明の水素生成用触媒は、前記多孔質体からなる場合、前記一対の金属を混合した後、溶解して金属混合物を得る工程と、該金属混合物を粉砕して粉末を得る工程と、該粉末を成形して成形体を得る工程と、該成形体を焼結して多孔質体を得る工程と、該多孔質体の孔部にアルカリを含浸させる工程とを含む製造方法により有利に製造することができる。 When the hydrogen generation catalyst of the present invention comprises the porous body, the step of mixing the pair of metals and then dissolving them to obtain a metal mixture, the step of pulverizing the metal mixture to obtain a powder, Produced advantageously by a production method comprising a step of molding a powder to obtain a molded body, a step of sintering the molded body to obtain a porous body, and a step of impregnating the pores of the porous body with alkali. can do.
 前記製造方法において、前記成形体は、例えば、前記粉末を所定形状の容器に充填し、加圧することにより成形することができる。また、前記成形体の焼結は、例えば、1200~1500℃の範囲の温度で行うことができる。 In the manufacturing method, the molded body can be molded, for example, by filling the powder in a predetermined shape container and pressurizing it. The sintered compact can be sintered at a temperature in the range of 1200 to 1500 ° C., for example.
 また、前記製造方法において、前記アルカリの含浸は、前記多孔質体上にアルカリを載置し、該アルカリの融点以上の温度に加熱することにより行うことが好ましい。このようにすると、融点以上の温度に加熱されて溶融した前記アルカリが前記多孔質体の孔部に含浸する。 In the production method, the impregnation with the alkali is preferably performed by placing the alkali on the porous body and heating to a temperature equal to or higher than the melting point of the alkali. If it does in this way, the said alkali which was heated and heated to the temperature more than melting | fusing point will impregnate the hole of the said porous body.
 また、本発明の水素の製造方法は、反応容器中に、Niと、Pt,Pd,Crからなる群から選択される1つの金属との組み合わせ又は、CrとPdとの組み合わせから選択される一対の金属と、該金属の表面活性を維持することができるアルカリとを備える水素生成用触媒を配設し、非酸化雰囲気下、300℃以上の温度で、該水素生成用触媒を水と接触させることにより水を分解して水素を生成することを特徴とする。 In the method for producing hydrogen according to the present invention, a pair of Ni selected from a combination of Ni and one metal selected from the group consisting of Pt, Pd, and Cr or a combination of Cr and Pd in the reaction vessel. And a hydrogen generating catalyst comprising an alkali capable of maintaining the surface activity of the metal, and contacting the hydrogen generating catalyst with water at a temperature of 300 ° C. or higher in a non-oxidizing atmosphere. In this way, water is decomposed to generate hydrogen.
 本発明の水素の製造方法は、本発明の水素生成用触媒を収容する反応容器と、該反応容器の内部を300℃以上の温度に加熱する加熱手段と、該反応容器内を非酸化雰囲気とする雰囲気調整手段と、該反応容器内に水を供給して該水素生成用触媒を水と接触させる水供給手段と、該水の分解により生成した水素を含有する混合気体を該反応容器から取り出す混合気体取出手段と、該混合気体取出手段により取出された混合気体から水素を分離して取り出す水素分離手段とを備えることを特徴とする水素製造装置により実施することができる。 The method for producing hydrogen of the present invention comprises a reaction vessel containing the hydrogen production catalyst of the present invention, a heating means for heating the inside of the reaction vessel to a temperature of 300 ° C. or higher, and a non-oxidizing atmosphere in the reaction vessel. Atmosphere adjusting means, water supply means for supplying water into the reaction vessel and bringing the hydrogen generation catalyst into contact with water, and a mixed gas containing hydrogen generated by the decomposition of the water is taken out from the reaction vessel The present invention can be implemented by a hydrogen production apparatus comprising a mixed gas extraction means and a hydrogen separation means for separating and extracting hydrogen from the mixed gas extracted by the mixed gas extraction means.
 本発明の水素製造装置では、前記反応容器内を前記加熱手段により300℃以上の温度に加熱すると共に、前記雰囲気調整手段により非酸化雰囲気とする。そして、非酸化雰囲気下、300℃以上の温度で、前記水供給手段により前記反応容器内に水を供給して前記水素生成用触媒を水と接触させることにより、水を分解して水素を生成させることができる。 In the hydrogen production apparatus of the present invention, the inside of the reaction vessel is heated to a temperature of 300 ° C. or higher by the heating means, and a non-oxidizing atmosphere is set by the atmosphere adjusting means. Then, by supplying water into the reaction vessel by the water supply means at a temperature of 300 ° C. or higher in a non-oxidizing atmosphere and bringing the hydrogen generating catalyst into contact with water, the water is decomposed to generate hydrogen. Can be made.
 このとき、前記水の分解により生成した水素は、水蒸気等との混合気体として、前記混合気体取出手段により取出される。そこで、前記水素分離手段により、前記混合気体から水素を分離することにより、水素のみを取り出すことができる。 At this time, the hydrogen produced by the decomposition of the water is taken out by the mixed gas take-out means as a mixed gas with water vapor or the like. Therefore, only hydrogen can be taken out by separating hydrogen from the mixed gas by the hydrogen separation means.
本発明の水素生成用触媒の製造に用いる反応容器の一構成例を示す説明的断面図。Explanatory sectional drawing which shows one structural example of the reaction container used for manufacture of the catalyst for hydrogen production of this invention. 本発明の水素生成用触媒を用いる水素製造装置の一構成例を示す説明的断面図。BRIEF DESCRIPTION OF THE DRAWINGS Explanatory sectional drawing which shows one structural example of the hydrogen production apparatus using the catalyst for hydrogen production of this invention. 本発明の水素生成用触媒を用いる水素生成の一実施例における水素発生量の経時変化を示すグラフ。The graph which shows the time-dependent change of the hydrogen generation amount in one Example of hydrogen production using the catalyst for hydrogen production of this invention. 図3に示す実施例において反応開始から4000秒経過後の生成気体の質量分析結果を示すグラフ。The graph which shows the mass spectrometry result of the production | generation gas after progress for 4000 second from the reaction start in the Example shown in FIG.
 次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明する。 Next, embodiments of the present invention will be described in more detail with reference to the accompanying drawings.
 本実施形態の水素生成用触媒は、非酸化雰囲気下、300℃以上、好ましくは300~650℃の範囲の温度で、水と接触することにより水を分解して水素を生成する。前記非酸化雰囲気は、酸素を含まない雰囲気であれば、アルゴン、窒素等の不活性雰囲気であってもよく、水素等の還元雰囲気であってもよい。また、反応容器内を3~10mmHgの範囲の圧力に減圧して、前記非酸化雰囲気としてもよい。 The hydrogen generating catalyst of the present embodiment generates hydrogen by decomposing water by contact with water at a temperature of 300 ° C. or higher, preferably 300 to 650 ° C. in a non-oxidizing atmosphere. The non-oxidizing atmosphere may be an inert atmosphere such as argon or nitrogen or a reducing atmosphere such as hydrogen as long as it does not contain oxygen. Alternatively, the non-oxidizing atmosphere may be obtained by reducing the pressure in the reaction vessel to a pressure in the range of 3 to 10 mmHg.
 本実施形態の水素生成用触媒は、Niと、Pt,Pd,Crからなる群から選択される1つの金属との組み合わせ又は、CrとPdとの組み合わせから選択される一対の金属の粉末を焼結してなる多孔質体と、該多孔質体の孔部に充填されて、該金属の表面活性を維持することができるアルカリとからなる。前記一対の金属は、具体的には、Ni-Pt、Ni-Pd、Ni-Cr、Cr-Pdの4種の組み合わせである。 The hydrogen generation catalyst of the present embodiment is a combination of Ni and one metal selected from the group consisting of Pt, Pd and Cr, or a pair of metal powders selected from a combination of Cr and Pd. The porous body formed by bonding and an alkali that can be filled in the pores of the porous body and maintain the surface activity of the metal. Specifically, the pair of metals is four kinds of combinations of Ni—Pt, Ni—Pd, Ni—Cr, and Cr—Pd.
 前記一対の金属は、前記アルカリにより表面の活性が維持されることにより、少量で長時間に亘り、水と接触することにより水を分解して水素を生成することができる。本実施形態では、前記アルカリとしてNaOHを用いる。但し、前記アルカリは、前記一対の金属の表面の活性を維持できるものであれば、どのようなものであってもよい。 When the surface activity of the pair of metals is maintained by the alkali, hydrogen can be generated by decomposing water by contact with water for a long time in a small amount. In the present embodiment, NaOH is used as the alkali. However, the alkali may be any one as long as the activity of the surface of the pair of metals can be maintained.
 次に、本実施形態の水素生成用触媒の製造方法について説明する。 Next, a method for producing the hydrogen generation catalyst of this embodiment will be described.
 まず、前記一対の金属のいずれか一方の金属1重量部に対し、他方の金属が1~10重量部となるように秤量し、混合する。前記一対の金属は、いずれも、例えば粒子径が数mm程度の金属粒子からなる粉末の形態で用いることができる。 First, with respect to 1 part by weight of one of the pair of metals, the other metal is weighed so as to be 1 to 10 parts by weight and mixed. Each of the pair of metals can be used in the form of a powder made of metal particles having a particle diameter of about several millimeters, for example.
 次に、前記一対の金属の混合物を溶解する。前記溶解は、単に加熱することにより行ってもよく、アーク溶解により行ってもよい。前記アーク溶解を行う場合は、例えば、真空アーク溶解炉を用い、アルゴンガス雰囲気下、1×10-2Paの圧力で、300Aの直流アーク放電により溶解する。前記溶解により、例えば、円盤状(ボタン状)の金属混合物を形成する。 Next, the mixture of the pair of metals is dissolved. The melting may be performed simply by heating or arc melting. In the case of performing the arc melting, for example, a vacuum arc melting furnace is used, and melting is performed by DC arc discharge of 300 A under an argon gas atmosphere at a pressure of 1 × 10 −2 Pa. For example, a disk-shaped (button-shaped) metal mixture is formed by the dissolution.
 次に、前記円盤状の金属混合物を粉砕し、例えば10~25μmの範囲の粒子径を備える金属混合物の粉末を形成する。 Next, the disk-shaped metal mixture is pulverized to form a metal mixture powder having a particle size in the range of 10 to 25 μm, for example.
 次に、前記金属混合物の粉末を所定形状の容器に充填し、例えば2~10tの圧力を加えることにより成形し、所定形状を備える成形体を形成する。前記成形体は、例えば円盤状とすることができる。 Next, the powder of the metal mixture is filled in a container having a predetermined shape, and is molded by applying a pressure of 2 to 10 t, for example, to form a molded body having a predetermined shape. The said molded object can be made into a disk shape, for example.
 次に、前記成形体を焼結することにより、前記金属混合物からなる多孔質体を形成する。前記焼結は、例えば、真空電気炉を用い、1200~1500℃の範囲の温度に24時間保持することにより行う。 Next, the molded body is sintered to form a porous body made of the metal mixture. The sintering is performed, for example, by using a vacuum electric furnace and holding at a temperature in the range of 1200 to 1500 ° C. for 24 hours.
 次に、前記多孔質体の孔部に前記アルカリとしてNaOHを充填する。前記アルカリの充填は、例えば、図1に示す反応容器100に前記多孔質体200を配置することにより行うことができる。反応容器100は、ステンレス鋼製の有底筒状体であり、上部の開口部に開閉自在の蓋101を備えている。反応容器100の外面側は、ヒーター102により被覆されており、ヒーター102は外部に設けられた温度調整器103に電気的に接続されている。 Next, NaOH as the alkali is filled in the pores of the porous body. The alkali can be filled, for example, by arranging the porous body 200 in the reaction vessel 100 shown in FIG. The reaction vessel 100 is a bottomed cylindrical body made of stainless steel, and includes an openable / closable lid 101 at an upper opening. The outer surface side of the reaction vessel 100 is covered with a heater 102, and the heater 102 is electrically connected to a temperature regulator 103 provided outside.
 前記アルカリの充填に当たっては、反応容器100の底部内面100aから数cm上方に多孔質体200を配置し、多孔質体200上に前記アルカリ104を載置する。アルカリ104の量は、例えば、1重量部の多孔質体200に対して、1~5重量部とする。 In filling the alkali, the porous body 200 is arranged several cm above the bottom inner surface 100 a of the reaction vessel 100, and the alkali 104 is placed on the porous body 200. The amount of the alkali 104 is, for example, 1 to 5 parts by weight with respect to 1 part by weight of the porous body 200.
 次に、反応容器100の開口部を蓋101により閉蓋し、ヒーター102により反応容器100内を300~650℃の範囲の温度に加熱する。このようにすると、前記アルカリ104が溶融し、液状となったアルカリ104が多孔質体200の孔部に含浸することにより、該孔部に充填される。 Next, the opening of the reaction vessel 100 is closed with the lid 101, and the inside of the reaction vessel 100 is heated to a temperature in the range of 300 to 650 ° C. with the heater 102. By doing so, the alkali 104 is melted and liquid alkali 104 is impregnated into the pores of the porous body 200, thereby filling the pores.
 この結果、前記一対の金属の混合物からなる多孔質体200の孔部にアルカリ104が充填された水素生成用触媒を得ることができる。 As a result, it is possible to obtain a hydrogen generation catalyst in which the pores of the porous body 200 made of the pair of metal mixtures are filled with the alkali 104.
 次に、本実施形態の水素生成用触媒による水素製造方法及び該水素製造方法に用いる水素製造装置について説明する。 Next, a hydrogen production method using the hydrogen production catalyst of the present embodiment and a hydrogen production apparatus used in the hydrogen production method will be described.
 本実施形態の水素製造方法は、図2(a)に示す水素製造装置1を用いて水素の生成を行う。水素製造装置1は有底筒状体からなる反応容器2を備え、反応容器2は内部に水素生成用触媒3が配設されると共に、上部の開口部に開閉自在の蓋4を備え、外面側がヒーター5により被覆されている。ヒーター5は外部に設けられた温度調整器6に電気的に接続されている。 The hydrogen production method of the present embodiment generates hydrogen using the hydrogen production apparatus 1 shown in FIG. A hydrogen production apparatus 1 includes a reaction vessel 2 having a bottomed cylindrical body. The reaction vessel 2 is provided with a hydrogen generation catalyst 3 therein, and is provided with an openable / closable lid 4 at an upper opening. The side is covered with a heater 5. The heater 5 is electrically connected to a temperature regulator 6 provided outside.
 蓋4には、反応容器2の内部に水蒸気を供給する蒸留水供給管7がバルブ8を介して接続されている。蒸留水供給管7は、一方の端部が反応容器2の内部に開口すると共に、他方の端部が蒸留水導管9に接続されている。蒸留水導管9は蒸留水タンク10に接続されると共に、途中に蒸留水タンク10に貯留されている蒸留水を蒸留水供給管7に供給するポンプ11を備えている。 A distilled water supply pipe 7 for supplying water vapor to the inside of the reaction vessel 2 is connected to the lid 4 via a valve 8. The distilled water supply pipe 7 has one end opening inside the reaction vessel 2 and the other end connected to the distilled water conduit 9. The distilled water conduit 9 is connected to a distilled water tank 10 and includes a pump 11 that supplies distilled water stored in the distilled water tank 10 to the distilled water supply pipe 7 on the way.
 また、蓋4には、反応容器2の内部の気体を試料として採取するサンプリング管12がバルブ13を介して接続されており、サンプリング管12の端部には質量分析装置14が接続されている。 The lid 4 is connected to a sampling tube 12 that collects the gas inside the reaction vessel 2 as a sample via a valve 13, and a mass spectrometer 14 is connected to the end of the sampling tube 12. .
 さらに、蓋4には、反応容器2の内部の気体を取り出す気体取出管15がバルブ16を介して接続されている。気体取出管15の端部は、ガス流量測定器17を介して気体導管18に接続されており、気体導管18はバルブ19を介して水素分離器20に接続されている。 Furthermore, a gas extraction pipe 15 for taking out the gas inside the reaction vessel 2 is connected to the lid 4 via a valve 16. The end of the gas extraction pipe 15 is connected to a gas conduit 18 via a gas flow rate measuring device 17, and the gas conduit 18 is connected to a hydrogen separator 20 via a valve 19.
 水素分離器20は内部に水素分離膜21を備えており、水素分離膜21の一次側には排気管22がバルブ23を介して接続されており、水素分離膜21の二次側には水素取出管24がバルブ25を介して接続されている。排気管22の端部には図示しない吸引器が接続されており、反応容器2の内部を減圧できるようになっている。また、水素取出管24には、A部を拡大して図2(b)に示すように、水素分離器20とバルブ25との間の管内に逆火防止装置26が配設されている。 The hydrogen separator 20 includes a hydrogen separation membrane 21 inside, an exhaust pipe 22 is connected to the primary side of the hydrogen separation membrane 21 via a valve 23, and a hydrogen side is connected to the secondary side of the hydrogen separation membrane 21. An extraction pipe 24 is connected via a valve 25. A suction unit (not shown) is connected to the end of the exhaust pipe 22 so that the inside of the reaction vessel 2 can be depressurized. Further, as shown in FIG. 2B, the hydrogen take-out pipe 24 is provided with a backfire prevention device 26 in the pipe between the hydrogen separator 20 and the valve 25 as shown in FIG.
 水素製造装置1で水素の生成を行う際には、まず、反応容器2の内部に水素生成用触媒3を配設する。このとき、反応容器2として、図1に示す反応容器100を用いてもよい。図1に示す反応容器100を図2(a)に示す反応容器2として用いることにより、多孔質体200の孔部にアルカリ104が充填することにより調製された水素生成用触媒3をそのまま水素の生成に用いることができる。 When generating hydrogen in the hydrogen production apparatus 1, first, a hydrogen generation catalyst 3 is disposed inside the reaction vessel 2. At this time, the reaction vessel 100 shown in FIG. By using the reaction vessel 100 shown in FIG. 1 as the reaction vessel 2 shown in FIG. 2A, the hydrogen generation catalyst 3 prepared by filling the pores of the porous body 200 with the alkali 104 is used as it is. Can be used for generation.
 次に、蓋4により反応容器2を閉蓋すると共に、バルブ8,13,25を閉じ、バルブ16,19,23を開いた状態で、排気管22の端部に接続される図示しない吸引器により反応容器2の内部を3~10mmHgの範囲の圧力に減圧する。次に、バルブ8,13,16,19,23,25を閉じた状態で、温度調整器6によりヒーター5を制御して、反応容器2の内部を加熱し、300~650℃の範囲の温度に昇温する。 Next, the reaction vessel 2 is closed with the lid 4, the valves 8, 13, 25 are closed, and the valves 16, 19, 23 are opened, and an aspirator (not shown) connected to the end of the exhaust pipe 22. The pressure inside the reaction vessel 2 is reduced to a pressure in the range of 3 to 10 mmHg. Next, with the valves 8, 13, 16, 19, 23, and 25 closed, the heater 5 is controlled by the temperature regulator 6 to heat the inside of the reaction vessel 2 to a temperature in the range of 300 to 650 ° C. The temperature rises to
 反応容器2の内部が前記範囲の温度に昇温されたならば、次に、バルブ8を開いた状態でポンプ11を作動し、蒸留水タンク10に貯留されている蒸留水を、蒸留水導管9及び蒸留水供給管7を介して反応容器2の内部に供給する。このようにすると、反応容器2の内部は前記範囲の温度に昇温されているので、供給された蒸留水は直ちに気化して水蒸気となり、水蒸気が反応容器2の内部に充満する。 If the temperature inside the reaction vessel 2 is raised to a temperature within the above range, the pump 11 is then operated with the valve 8 opened, and the distilled water stored in the distilled water tank 10 is converted into the distilled water conduit. 9 and the distilled water supply pipe 7 are supplied into the reaction vessel 2. If it does in this way, since the inside of the reaction container 2 is heated up to the temperature of the said range, the supplied distilled water will immediately vaporize and become water vapor | steam, and water vapor will fill the inside of the reaction container 2. FIG.
 すると、水素生成用触媒3を形成する前記一対の金属の表面で、前記水蒸気が直接熱分解され、水素を発生する。このとき、前記アルカリは前記一対の金属の表面の活性を維持するように作用する。前記アルカリは、前記水蒸気により水溶液を形成するので、前記一対の金属の表面と水蒸気(水)との接触を妨げることがない。 Then, the steam is directly pyrolyzed on the surface of the pair of metals forming the hydrogen generation catalyst 3 to generate hydrogen. At this time, the alkali acts to maintain the surface activity of the pair of metals. Since the alkali forms an aqueous solution with the water vapor, the alkali does not hinder the contact between the surface of the pair of metals and the water vapor (water).
 反応容器2の内部で発生した水素及び酸素は未反応の水蒸気と共に混合ガスを形成し、気体取出管15及び気体導管18を介して水素分離器20に案内される。そして、水素分離器20の内部に配設された水素分離膜21により高濃度の水素が分離され、分離された水素を水素取出導管24から取り出すことができる。 The hydrogen and oxygen generated inside the reaction vessel 2 form a mixed gas together with unreacted water vapor, and are guided to the hydrogen separator 20 through the gas extraction pipe 15 and the gas conduit 18. Then, a high concentration of hydrogen is separated by the hydrogen separation membrane 21 disposed inside the hydrogen separator 20, and the separated hydrogen can be taken out from the hydrogen extraction conduit 24.
 次に、本発明の実施例を示す。 Next, examples of the present invention will be described.
 本実施例では、まず、Cr5gに対して、Ni10gを秤量して混合した。得られた混合物を、小型真空アーク溶解炉(大亜真空株式会社製、商品名:ACM-C01)内の水冷銅坩堝内に投入し、アルゴンガス雰囲気下、1×10-2Paの圧力で、300Aの直流アーク放電により溶解し、円盤状の金属混合物を形成した。前記金属混合物を、粉砕機(日陶科学株式会社製、商品名:ANM1000)を用いて粉砕し、10~25μmの範囲の粒子径を備える金属混合物の粉末を形成した。 In this example, first, 10 g of Ni was weighed and mixed with 5 g of Cr. The obtained mixture was put into a water-cooled copper crucible in a small vacuum arc melting furnace (manufactured by Daia Vacuum Co., Ltd., trade name: ACM-C01), and under an argon gas atmosphere at a pressure of 1 × 10 −2 Pa. , 300 A DC arc discharge to form a disk-like metal mixture. The metal mixture was pulverized using a pulverizer (trade name: ANM1000, manufactured by Nippon Ceramic Science Co., Ltd.) to form a metal mixture powder having a particle size in the range of 10 to 25 μm.
 次に、前記粉末をステンレス製の円形容器に入れ、成型器(アズワン株式会社製、商品名:ハイプレッシャージャッキJ-15)を用いて、上下から10tの圧力を加えて成形し、円盤状の成形体を形成した。形成した成形体を、真空電気炉(ヤマト科学株式会社製、商品名:ADP-21)に収容し、0.4kPaの圧力下、1200℃の温度に24時間保持して焼結することにより、円盤状の多孔質体を形成した。 Next, the powder is put into a stainless steel circular container and molded using a molding machine (manufactured by ASONE Co., Ltd., trade name: High Pressure Jack J-15) by applying a pressure of 10 tons from above and below. A molded body was formed. By forming the formed body in a vacuum electric furnace (trade name: ADP-21, manufactured by Yamato Kagaku Co., Ltd.), holding it at a temperature of 1200 ° C. for 24 hours under a pressure of 0.4 kPa, and sintering it, A disk-shaped porous body was formed.
 次に、図1に示す反応容器100の内部に本実施例で得られた多孔質体200を配置し、多孔質体200上に、アルカリとして固体のNaOH40gを載置した。次に、反応容器100の開口部を蓋101により閉蓋し、ヒーター102により反応容器100内を450℃の温度に加熱した。さらに、反応容器100内を750℃の温度に加熱し、該温度に24時間保持した後、加熱を停止し、その後24時間かけて室温まで放冷した。この結果、溶融したNaOHが多孔質体200の孔部に含浸し、該孔部に充填された水素生成用触媒を得た。 Next, the porous body 200 obtained in this example was placed inside the reaction vessel 100 shown in FIG. 1, and 40 g of solid NaOH as an alkali was placed on the porous body 200. Next, the opening of the reaction vessel 100 was closed with a lid 101, and the inside of the reaction vessel 100 was heated to a temperature of 450 ° C. with a heater 102. Further, the inside of the reaction vessel 100 was heated to a temperature of 750 ° C. and held at the temperature for 24 hours, and then the heating was stopped, and then allowed to cool to room temperature over 24 hours. As a result, molten NaOH was impregnated into the pores of the porous body 200 to obtain a hydrogen generation catalyst filled in the pores.
 次に、図2に示す水素製造装置1の反応容器2内に、本実施例で得られた水素生成用触媒3を配置した。次に、反応容器2の開口部を蓋4により閉蓋し、バルブ8,13,25を閉じ、他のバルブを開いた状態で、排気管22の端部に接続された図示しない吸引器により、反応容器2内を排気し、3~10mmHgの圧力まで減圧して非酸化雰囲気とした後、バルブ16を閉じた。次に、ヒーター5により反応容器2内を加熱し、570℃の温度に昇温した。 Next, the hydrogen generation catalyst 3 obtained in this example was placed in the reaction vessel 2 of the hydrogen production apparatus 1 shown in FIG. Next, the opening of the reaction vessel 2 is closed with the lid 4, the valves 8, 13, 25 are closed, and the other valves are opened, with a suction device (not shown) connected to the end of the exhaust pipe 22. The inside of the reaction vessel 2 was evacuated and reduced to a pressure of 3 to 10 mmHg to make a non-oxidizing atmosphere, and then the valve 16 was closed. Next, the inside of the reaction vessel 2 was heated by the heater 5 and the temperature was raised to 570 ° C.
 次に、バルブ8,16,19,23,25を開き、ポンプ11を作動し、蒸留水タンク10に貯留されている蒸留水を、蒸留水導管9及び蒸留水供給管7を介して反応容器2の内部に供給した。この結果、供給された蒸留水は直ちに気化して水蒸気となり、水蒸気が反応容器2の内部に充満すると共に、反応容器2の内部で気体の生成が開始された。 Next, the valves 8, 16, 19, 23, and 25 are opened, the pump 11 is operated, and the distilled water stored in the distilled water tank 10 is supplied to the reaction vessel via the distilled water conduit 9 and the distilled water supply pipe 7. 2 was fed inside. As a result, the supplied distilled water was immediately vaporized to become water vapor, and the water vapor was filled inside the reaction vessel 2, and generation of gas was started inside the reaction vessel 2.
 このとき、ガス流量測定器17により測定された気体の発生量を図3に示す。また、反応開始から3600秒を経過した時点で、バルブ13を開きサンプリング管12を介して、反応容器2の内部の気体を採取し、北海道大学エネルギー・マテリアル融合領域研究センターにて、キャノンアネルバ株式会社製質量分析装置(商品名:MSQ 400)を用いて質量分析を行った。その結果を図4に示す。 At this time, the gas generation amount measured by the gas flow rate measuring device 17 is shown in FIG. In addition, when 3600 seconds have elapsed from the start of the reaction, the valve 13 is opened and the gas inside the reaction vessel 2 is collected through the sampling tube 12, and the Canon Anelva Stock Mass spectrometry was performed using a company-made mass spectrometer (trade name: MSQ 400). The result is shown in FIG.
 図4から、反応容器2の内部で生成された気体の約99質量%が水素であることが明らかである。また、図3から、反応容器2の内部では、反応開始から15万秒(約42時間)以上に亘って連続して、水素生成用触媒3の単位面積当たり0.12ml/cm/秒の水素発生速度で水素が生成していることが明らかである。 From FIG. 4, it is clear that about 99 mass% of the gas produced | generated inside the reaction container 2 is hydrogen. Further, from FIG. 3, in the inside of the reaction vessel 2, 0.12 ml / cm 2 / sec per unit area of the hydrogen generating catalyst 3 continuously over 150,000 seconds (about 42 hours) from the start of the reaction. It is clear that hydrogen is generated at the hydrogen generation rate.
 尚、本実施例では、前記一対の金属がCrとNiとの組み合わせである場合について説明しているが、前記一対の金属は、Niと、Pt又はPdとの組み合わせであってもよく、CrとPdとの組み合わせであってもよい。 In this embodiment, the case where the pair of metals is a combination of Cr and Ni is described. However, the pair of metals may be a combination of Ni and Pt or Pd. And a combination of Pd may be used.
 次に、前記一対の金属として、Niと、Pt又はPdとの組み合わせ又はCrとPdとの組み合わせを用い、アルカリとしてNaOHを用いた場合について、500℃の温度下における水素生成用触媒3の単位面積当たりの水素発生速度(ml/cm/秒)を表1に示す。 Next, a unit of hydrogen generating catalyst 3 at a temperature of 500 ° C. when a combination of Ni and Pt or Pd or a combination of Cr and Pd is used as the pair of metals and NaOH is used as the alkali. The hydrogen generation rate per area (ml / cm 2 / sec) is shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から、前記一対の金属として、Niと、Pt又はPdとの組み合わせ又はCrとPdとの組み合わせを用いた場合にも、NiとCrとの組み合わせと同様に水素を発生させることができることが明らかである。 From Table 1, even when a combination of Ni and Pt or Pd or a combination of Cr and Pd is used as the pair of metals, hydrogen can be generated in the same manner as the combination of Ni and Cr. it is obvious.
 尚、本実施例では、アルカリとしてNaOHを用いる場合について説明しているが、前記アルカリは、LiOH、KOH等の他のアルカリであってもよい。 In addition, although the present Example demonstrates the case where NaOH is used as an alkali, the said alkali may be other alkalis, such as LiOH and KOH.
 1…水素製造装置、 2…反応容器、 3…水素生成用触媒、 5…ヒーター、 10…蒸留水タンク、 14…質量分析装置、 20…水素分離器。 DESCRIPTION OF SYMBOLS 1 ... Hydrogen production apparatus, 2 ... Reaction container, 3 ... Catalyst for hydrogen production, 5 ... Heater, 10 ... Distilled water tank, 14 ... Mass spectrometer, 20 ... Hydrogen separator.

Claims (12)

  1.  反応容器中、非酸化雰囲気下、300℃以上の温度で、水と接触することにより水を分解して水素を生成する水素生成用触媒であって、
     Niと、Pt,Pd,Crからなる群から選択される1つの金属との組み合わせ又は、CrとPdとの組み合わせから選択される一対の金属と、
     該金属の表面活性を維持することができるアルカリとを備えることを特徴とする水素生成用触媒。
    A hydrogen generation catalyst that decomposes water by contacting water at a temperature of 300 ° C. or higher in a non-oxidizing atmosphere in a reaction vessel to generate hydrogen,
    A combination of Ni and one metal selected from the group consisting of Pt, Pd, Cr, or a pair of metals selected from a combination of Cr and Pd;
    A catalyst for hydrogen generation comprising an alkali capable of maintaining the surface activity of the metal.
  2.  請求項1記載の水素生成用触媒において、反応容器中、非酸化雰囲気下、300~650℃の範囲の温度で、水と接触することにより水を分解して水素を生成することを特徴とする水素生成用触媒。 2. The hydrogen generation catalyst according to claim 1, wherein hydrogen is decomposed to produce hydrogen by contacting with water at a temperature in a range of 300 to 650 ° C. in a non-oxidizing atmosphere in a reaction vessel. Catalyst for hydrogen generation.
  3.  請求項1または請求項2記載の水素生成用触媒において、前記アルカリは、LiOH、NaOH、KOHからなる群から選択される1つの化合物であることを特徴とする水素生成用触媒。 3. The hydrogen generation catalyst according to claim 1, wherein the alkali is one compound selected from the group consisting of LiOH, NaOH and KOH.
  4.  請求項1乃至請求項3のいずれか1項記載の水素生成用触媒において、前記一対の金属は、いずれか一方の金属1重量部に対し、他方の金属を1~10重量部の範囲で含むことを特徴とする水素生成用触媒。 4. The hydrogen generation catalyst according to claim 1, wherein the pair of metals includes 1 to 10 parts by weight of the other metal with respect to 1 part by weight of any one of the metals. A hydrogen generation catalyst characterized by the above.
  5.  請求項1乃至請求項4のいずれか1項記載の水素生成用触媒において、前記一対の金属の粉末を焼結してなる多孔質体からなり、前記アルカリは該多孔質体の孔部に充填されされていることを特徴とする水素生成用触媒。 5. The hydrogen generation catalyst according to claim 1, comprising a porous body obtained by sintering the pair of metal powders, wherein the alkali is filled in pores of the porous body. The catalyst for hydrogen production characterized by being made.
  6.  Niと、Pt,Pd,Crからなる群から選択される1つの金属との組み合わせ又は、CrとPdとの組み合わせから選択される一対の金属を混合した後、溶解して金属混合物を得る工程と、該金属混合物を粉砕して粉末を得る工程と、該粉末を成形して成形体を得る工程と、該成形体を焼結して多孔質体を得る工程と、該多孔質体の孔部にアルカリを含浸させる工程とを含むことを特徴とする水素生成用触媒の製造方法。 A step of mixing a combination of Ni and one metal selected from the group consisting of Pt, Pd, and Cr, or a pair of metals selected from a combination of Cr and Pd, and then dissolving them to obtain a metal mixture; Pulverizing the metal mixture to obtain a powder, forming the powder to obtain a molded body, sintering the molded body to obtain a porous body, and pores of the porous body And a step of impregnating the substrate with an alkali.
  7.  請求項6記載の水素生成用触媒の製造方法において、前記一対の金属は、いずれか一方の金属1重量部に対し、他方の金属を1~10重量部の範囲で混合することを特徴とする水素生成用触媒の製造方法。 7. The method for producing a hydrogen generation catalyst according to claim 6, wherein the pair of metals is mixed in an amount of 1 to 10 parts by weight of the other metal with respect to 1 part by weight of any one of the metals. A method for producing a hydrogen production catalyst.
  8.  請求項6または請求項7記載の水素生成用触媒の製造方法において、前記成形体は、前記粉末を所定形状の容器に充填し、加圧することにより成形することを特徴とする水素生成用触媒の製造方法。 The method for producing a hydrogen generation catalyst according to claim 6 or 7, wherein the molded body is formed by filling the powder in a predetermined shape container and pressurizing the molded body. Production method.
  9.  請求項6乃至請求項8のいずれか1項記載の水素生成用触媒の製造方法において、前記成形体の焼結は、1200~1500℃の範囲の温度で行うことを特徴とする水素生成用触媒の製造方法。 9. The method for producing a hydrogen generation catalyst according to claim 6, wherein the compact is sintered at a temperature in the range of 1200 to 1500 ° C. Manufacturing method.
  10.  請求項6乃至請求項9のいずれか1項記載の水素生成用触媒の製造方法において、前記アルカリの含浸は、前記多孔質体上にアルカリを載置し、該アルカリの融点以上の温度に加熱することにより行うことを特徴とする水素生成用触媒の製造方法。 10. The method for producing a hydrogen generation catalyst according to claim 6, wherein the alkali impregnation includes placing an alkali on the porous body and heating to a temperature equal to or higher than a melting point of the alkali. A process for producing a hydrogen generation catalyst, characterized in that
  11.  反応容器中に、Niと、Pt,Pd,Crからなる群から選択される1つの金属との組み合わせ又は、CrとPdとの組み合わせから選択される一対の金属と、該金属の表面活性を維持することができるアルカリとを備える水素生成用触媒を配設し、非酸化雰囲気下、300℃以上の温度で、該水素生成用触媒を水と接触させることにより水を分解して水素を生成することを特徴とする水素製造方法。 In the reaction vessel, a combination of Ni and one metal selected from the group consisting of Pt, Pd, and Cr, or a pair of metals selected from a combination of Cr and Pd, and maintaining the surface activity of the metal A hydrogen generating catalyst comprising an alkali capable of being produced and decomposing water by contacting the hydrogen generating catalyst with water at a temperature of 300 ° C. or higher in a non-oxidizing atmosphere to generate hydrogen. A method for producing hydrogen.
  12.  Niと、Pt,Pd,Crからなる群から選択される1つの金属との組み合わせ又は、CrとPdとの組み合わせから選択される一対の金属と、該金属の表面活性を維持することができるアルカリとを備える水素生成用触媒を収容する反応容器と、該反応容器の内部を加熱する加熱手段と、該反応容器内を非酸化雰囲気とする雰囲気調整手段と、該反応容器内に水を供給して該水素生成用触媒を水と接触させる水供給手段と、該水の分解により生成した水素を含有する混合気体を該反応容器から取り出す混合気体取出手段と、該混合気体取出手段により取出された混合気体から水素を分離して取り出す水素分離手段とを備えることを特徴とする水素製造装置。 A combination of Ni and one metal selected from the group consisting of Pt, Pd, and Cr, or a pair of metals selected from a combination of Cr and Pd, and an alkali capable of maintaining the surface activity of the metal A reaction vessel containing a hydrogen production catalyst, a heating means for heating the inside of the reaction vessel, an atmosphere adjusting means for making the inside of the reaction vessel a non-oxidizing atmosphere, and supplying water into the reaction vessel Water supply means for bringing the hydrogen generation catalyst into contact with water, a mixed gas extraction means for extracting a mixed gas containing hydrogen generated by the decomposition of the water from the reaction vessel, and the mixed gas extraction means. And a hydrogen separation means for separating and taking out hydrogen from the mixed gas.
PCT/JP2010/057653 2010-04-30 2010-04-30 Catalyst for hydrogen production WO2011135709A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010519688A JP4659923B1 (en) 2010-04-30 2010-04-30 Catalyst for hydrogen generation
PCT/JP2010/057653 WO2011135709A1 (en) 2010-04-30 2010-04-30 Catalyst for hydrogen production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/057653 WO2011135709A1 (en) 2010-04-30 2010-04-30 Catalyst for hydrogen production

Publications (1)

Publication Number Publication Date
WO2011135709A1 true WO2011135709A1 (en) 2011-11-03

Family

ID=43952803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057653 WO2011135709A1 (en) 2010-04-30 2010-04-30 Catalyst for hydrogen production

Country Status (2)

Country Link
JP (1) JP4659923B1 (en)
WO (1) WO2011135709A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014047082A (en) * 2012-08-29 2014-03-17 Ti:Kk Higher alkali metal-transition metal oxide
JP2015532195A (en) * 2012-09-27 2015-11-09 ホワイチャオ・チェン Catalyst for steam cracking, method for producing the same, and method for burning hydrogen gas obtained by steam cracking
JP2016094343A (en) * 2016-02-24 2016-05-26 株式会社Ti Hydrogen generation method and hydrogen generator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013112576A (en) * 2011-11-30 2013-06-10 Yasuo Ishikawa Method and apparatus for generating hydrogen

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855302A (en) * 1981-09-24 1983-04-01 Buren Master Kk Water decomposing substance and decomposing method for water
WO2004002881A1 (en) * 2002-06-26 2004-01-08 Uchiya Thermostat Co.,Ltd. Method for producing hydrogen and apparatus for supplying hydrogen
JP2007314402A (en) * 2006-05-29 2007-12-06 Honda Motor Co Ltd Manufacturing method of hydrogen and manufacturing apparatus of hydrogen

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5567265B2 (en) * 2008-12-05 2014-08-06 株式会社Ti Catalyst for hydrogen generation
WO2010084790A1 (en) * 2009-01-20 2010-07-29 Ishikawa Yasuo Catalyst for hydrogen generation, method for generating hydrogen, and hydrogen generator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855302A (en) * 1981-09-24 1983-04-01 Buren Master Kk Water decomposing substance and decomposing method for water
WO2004002881A1 (en) * 2002-06-26 2004-01-08 Uchiya Thermostat Co.,Ltd. Method for producing hydrogen and apparatus for supplying hydrogen
JP2007314402A (en) * 2006-05-29 2007-12-06 Honda Motor Co Ltd Manufacturing method of hydrogen and manufacturing apparatus of hydrogen

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014047082A (en) * 2012-08-29 2014-03-17 Ti:Kk Higher alkali metal-transition metal oxide
JP2015532195A (en) * 2012-09-27 2015-11-09 ホワイチャオ・チェン Catalyst for steam cracking, method for producing the same, and method for burning hydrogen gas obtained by steam cracking
JP2016094343A (en) * 2016-02-24 2016-05-26 株式会社Ti Hydrogen generation method and hydrogen generator

Also Published As

Publication number Publication date
JP4659923B1 (en) 2011-03-30
JPWO2011135709A1 (en) 2013-07-18

Similar Documents

Publication Publication Date Title
Wang et al. Heterostructured inter‐doped ruthenium–cobalt oxide hollow nanosheet arrays for highly efficient overall water splitting
Yu et al. Self‐Supporting Porous CoP‐Based Films with Phase‐Separation Structure for Ultrastable Overall Water Electrolysis at Large Current Density
Liu et al. Metal–organic‐framework‐derived Co2P nanoparticle/multi‐doped porous carbon as a trifunctional electrocatalyst
Zou et al. Single‐atom catalysts derived from metal–organic frameworks for electrochemical applications
Zhu et al. N, P co‐coordinated manganese atoms in mesoporous carbon for electrochemical oxygen reduction
Hu et al. PtCo@ NCs with short heteroatom active site distance for enhanced catalytic properties
Zhao et al. Pd‐Ru alloy nanocages with a face‐centered cubic structure and their enhanced activity toward the oxidation of ethylene glycol and glycerol
CN103774149B (en) A kind of preparation method of high-strength nanoporous nickel film
JP4659923B1 (en) Catalyst for hydrogen generation
Yang et al. Mesoporous Co–B–N–H nanowires: superior catalysts for decomposition of hydrous hydrazine to generate hydrogen
CN110476286B (en) Carbon material for catalyst carrier of polymer electrolyte fuel cell and method for producing same
Lu et al. Versatile electrocatalytic processes realized by Ni, Co and Fe alloyed core coordinated carbon shells
Liu et al. Improved dehydrogenation performance of LiBH 4 by confinement into porous TiO 2 micro-tubes
Herrmann et al. Electrocatalysts for oxygen reduction prepared by plasma treatment of carbon-supported cobalt tetramethoxyphenylporphyrin
JP7013485B2 (en) Magnesium hydride production equipment and magnesium hydride production method
Yao et al. Porous carbon supported Pd as catalysts for boosting formic acid dehydrogenation
Aneeshkumar et al. Electrochemically dealloyed nanoporous Fe 40 Ni 20 Co 20 P 15 C 5 metallic glass for efficient and stable electrocatalytic hydrogen and oxygen generation
US20090196782A1 (en) Porous liquid absorbing-and-holding member, process for production thereof, and alcohol absorbing-and-holding member
JP2008043927A (en) Method of manufacturing hydrogen storage material
CN102438939B (en) Hydrogen-generating material and manufacture method, method for preparing hydrogen and hydrogen producing apparatus
Mo et al. Noncrystalline NiPB nanotubes for hydrogenation of p-chloronitrobenzene
JP4853810B2 (en) Hydrogen storage material and method for producing the same
JP2005154232A (en) Hydrogen storage material and hydrogen producing method
JP5818244B2 (en) Metal catalyst structure and method for producing the same
JP6067061B2 (en) Hydrogen generator and power generation equipment

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2010519688

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10850724

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10850724

Country of ref document: EP

Kind code of ref document: A1