WO2011134832A2 - Composition - Google Patents

Composition Download PDF

Info

Publication number
WO2011134832A2
WO2011134832A2 PCT/EP2011/056162 EP2011056162W WO2011134832A2 WO 2011134832 A2 WO2011134832 A2 WO 2011134832A2 EP 2011056162 W EP2011056162 W EP 2011056162W WO 2011134832 A2 WO2011134832 A2 WO 2011134832A2
Authority
WO
WIPO (PCT)
Prior art keywords
gel network
carbons
composition according
cationic
composition
Prior art date
Application number
PCT/EP2011/056162
Other languages
English (en)
French (fr)
Other versions
WO2011134832A3 (en
Inventor
Andrew Malcolm Murray
Thuy-Anh Pham
Original Assignee
Unilever Plc
Unilever N.V.
Hindustan Unilever Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unilever Plc, Unilever N.V., Hindustan Unilever Limited filed Critical Unilever Plc
Priority to EP11714583A priority Critical patent/EP2563318A2/en
Priority to BR112012027261A priority patent/BR112012027261A2/pt
Priority to CN2011800217268A priority patent/CN102869334A/zh
Priority to JP2013506584A priority patent/JP2013525393A/ja
Priority to EA201291134A priority patent/EA201291134A1/ru
Priority to MX2012012688A priority patent/MX2012012688A/es
Publication of WO2011134832A2 publication Critical patent/WO2011134832A2/en
Publication of WO2011134832A3 publication Critical patent/WO2011134832A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • A61K8/737Galactomannans, e.g. guar; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/042Gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/34Alcohols
    • A61K8/342Alcohols having more than seven atoms in an unbroken chain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/37Esters of carboxylic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/42Amides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/02Preparations for cleaning the hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/12Preparations containing hair conditioners

Definitions

  • the present invention relates to a composition comprising an oil.
  • a composition comprising an oil.
  • Improvements are particularly sought with regard to product stability, especially at raised temperatures.
  • the present invention has the further advantage that a polymeric suspending agent is not required, thus reducing the cost of the formulation.
  • Co-pending patent application number EP09163568 describes a conditioning shampoo composition comprising from 1 -26% wt. cleansing phase, a conditioning gel network with an oil dispersed therein, a polymeric suspending agent and a cationic deposition polymer.
  • the present invention provides a conditioning shampoo composition
  • a conditioning shampoo composition comprising:
  • a conditioning gel network comprising a fatty material
  • conditioning gel network has no overall charge or is anionic; iii) an oil; and
  • cationic deposition polymer and the anionic surfactant of the gel network contain alkyl groups with within 4 carbons of each other.
  • composition has a viscosity of 2000 to 7000 cPs measures at 30°C.
  • the conditioning gel network comprises:
  • the cationic surfactant provides improved robustness of the fatty material/anionic surfactant gel network leading to improved conditioning benefit from a composition also comprising a non-cationic cleansing phase.
  • the difference in carbon chain length between the anionic surfactant in the cleansing phase and the anionic surfactant in the conditioning gel significantly improve stability of the conditioning gel network and maintain its integrity in the shampoo composition.
  • the anionic and cationic surfactants in the gel network contain within 4, preferably 2 carbons and most preferably the same number of carbons. More preferably, they comprise a single alkyl group of within 4, more preferably within 2 and most preferably are the same length. This assists in maintaining stability of the gel network.
  • the carbons in the gel network cationic surfactant are present in a single alkyl group. More preferably the gel network cationic surfactant has from 16-30 carbons.
  • the cationic surfactants have the formula N + (R 1 )(R 2 )(R 3 )(R 4 ), wherein R 1 , R 2 , R 3 and R 4 are independently (C16 to C30) alkyl or benzyl.
  • R 1 , R 2 , R 3 and R 4 are independently (C16 to C30) alkyl and the other R 1 , R 2 , R 3 and R 4 group or groups are (C1 -C6) alkyl or benzyl.
  • the alkyl groups may comprise one or more ester (-OCO- or -COO-) and/or ether (-O-) linkages within the alkyl chain.
  • Alkyl groups may optionally be substituted with one or more hydroxyl groups.
  • Alkyl groups may be straight chain or branched and, for alkyl groups having 3 or more carbon atoms, cyclic.
  • the alkyl groups may be saturated or may contain one or more carbon-carbon double bonds (e.g., oleyl).
  • Alkyl groups are optionally ethoxylated on the alkyl chain with one or more ethyleneoxy groups.
  • Suitable cationic surfactants for use in conditioner compositions according to the invention include cetyltrimethylammonium chloride, behenyltrimethylammonium chloride, cetylpyridinium chloride, tetramethylammonium chloride,
  • cationic surfactants include those materials having the CTFA designations Quaternium-5, Quaternium-31 and
  • a particularly useful cationic surfactant for use in conditioners according to the invention is cetyltrimethylammonium chloride, available commercially, for example as GENAMIN CTAC, ex Hoechst Celanese.
  • Another particularly useful cationic surfactant for use in conditioners according to the invention is
  • behenyltrimethylammonium chloride available commercially, for example as GENAMIN KDMP, ex Clariant.
  • R 1 is a hydrocarbyl chain having 10 or more carbon atoms
  • R 2 and R 3 are independently selected from hydrocarbyl chains of from 1 to
  • n is an integer from 1 to about 10;
  • hydrocarbyl chain means an alkyl or alkenyl chain.
  • Preferred amidoamine compounds are those corresponding to formula (I) in which R 1 is a hydrocarbyl residue having from about 1 1 to about 24 carbon atoms, R 2 and R 3 are each independently hydrocarbyl residues, preferably alkyl groups, having from 1 to about 4 carbon atoms, and m is an integer from 1 to about 4.
  • R 2 and R 3 are methyl or ethyl groups.
  • m is 2 or 3, i.e. an ethylene or propylene group.
  • Preferred amidoamines useful herein include stearamido-propyldimethylamine, stearamidopropyldiethylamine, stearamidoethyldiethylamine,
  • arachidamidopropyldiethylamine arachid-amidoethyldiethylamine
  • arachidamidoethyldimethylamine and mixtures thereof.
  • amidoamines useful herein are N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N
  • amidoamines useful herein include:
  • stearamidopropyldimethylamine with tradenames LEXAMINE S-13 available from Inolex (Philadelphia Pennsylvania, USA) and AMIDOAMINE MSP available from Nikko (Tokyo, Japan), stearamidoethyldiethylamine with a tradename
  • AMIDOAMINE S available from Nikko, behenamidopropyldimethylamine with a tradename INCROMINE BB available from Croda (North Humberside, England), and various amidoamines with tradenames SCHERCODINE series available from Scher (Clifton New Jersey, USA).
  • Acid (ii) may be any organic or mineral acid which is capable of protonating the amidoamine in the hair treatment composition.
  • Suitable acids useful herein include hydrochloric acid, acetic acid, tartaric acid, fumaric acid, lactic acid, malic acid, succinic acid, and mixtures thereof.
  • the acid is selected from the group consisting of acetic acid, tartaric acid, hydrochloric acid, fumaric acid, and mixtures thereof.
  • the primary role of the acid is to protonate the amidoamine in the hair treatment composition thus forming a tertiary amine salt (TAS) in situ in the hair treatment composition.
  • TAS tertiary amine salt
  • the TAS in effect is a non-permanent quaternary ammonium or pseudo-quaternary ammonium cationic surfactant.
  • the acid is included in a sufficient amount to protonate all the amidoamine present, i.e. at a level which is at least equimolar to the amount of amidoamine present in the composition.
  • the level of cationic surfactant will generally range from 0.01 to 10%, more preferably 0.02 to 7.5%, most preferably 0.05 to 5% by total weight of cationic surfactant based on the total weight of the composition.
  • the anionic surfactant of the gel network comprises an alkyl chain with from 16-30 carbons, preferably from 16-22 carbons.
  • the anionic surfactant is a sulphate or sulphonate, more preferably sulphate, most preferably sodium cetylstearyl sulphate.
  • the carbons in the gel network anionic surfactant are present in a single alkyl group.
  • the gel network comprises an anionic surfactant for achieving an overall anionic charge to the gel network or no overall charge to the gel network.
  • the ratio of anionic surfactant (b) within the gel network to cationic surfactant (c) within the gel network has a ratio is from 6:1 to 20:1 most preferably 9:1 to 13:1 .
  • the gel network comprises an anionic surfactant for achieving an overall anionic charge to the gel network or no overall charge to the gel network.
  • the gel network anionic surfactant is present at from 0.1 to 5 % by weight of the total composition and more preferably from 0.5 to 2.0% wt.
  • the fatty material is selected from fatty acids, fatty amides, fatty alcohols, fatty esters and mixtures thereof.
  • Fatty alcohols are highly preferred.
  • the fatty material comprises a fatty group having from 14 to 30 carbon atoms, more preferably 16 to 22.
  • suitable fatty alcohols include cetyl alcohol, stearyl alcohol and mixtures thereof.
  • An example of a suitable fatty ester is glyceryl monostearate.
  • the level of fatty material in compositions of the invention is conveniently from 0.01 to 10%, preferably from 0.1 to 5% by weight of the total composition.
  • the ratio between fatty alcohol (a)within the gel network and anionic surfactant(b) within the gel network is from 0.1 :1 to 100:1 , preferably from 1 .2:1 to 50:1 , more preferably from 1 .5:1 to 10:1 and most preferably around 2:1 .
  • the anionic and fatty materials of the gel network contain alkyl groups with within 4, preferably 2 carbons and most preferably the same number of carbons. More preferably, they comprise a single alkyl group of within 4, more preferably within 2 and most preferably are the same length. This assists in maintaining stability of the gel network.
  • Hydrophobic Cationic Deposition Polymer preferably Hydrophobic Cationic Deposition Polymer
  • composition according to the invention comprises a hydrophobically modified cationic deposition polymer.
  • the hydrophobically modified cationic deposition polymer has a carbon chain having from 14 to 30 carbons. It is preferred if the carbon chain is a single alkyl chain, more preferably unbranched.
  • Suitable hydrophobic cationic deposition aid polymers may be homopolymers which are cationically substituted or may be formed from two or more types of monomers.
  • the weight average (M w ) molecular weight of the polymers will generally be froml ,000 to 6 million Daltons, more preferably from 100, 000 to 2 million daltons.
  • the polymers will have cationic nitrogen containing groups such as quaternary ammonium or protonated amino groups, or a mixture thereof.
  • the cationic nitrogen-containing group will generally be present as a substituent on a fraction of the total monomer units of the cationic polymer. Thus when the polymer is not a homopolymer it can contain spacer non-cationic monomer units. Such polymers are described in the CTFA Cosmetic Ingredient Directory, 3rd edition.
  • the ratio of the cationic to non-cationic monomer units is selected to give polymers having a cationic charge density in the required range, which is generally from 0.1 to 5 meq/gm, more preferably from 0.2 to 3.0 meq/gm.
  • the cationic charge density of the polymer is suitably determined via the Kjeldahl method as described in the US Pharmacopoeia under chemical tests for nitrogen determination.
  • the cationic amines can be primary, secondary or tertiary amines, depending upon the particular species and the pH of the composition. In general secondary and tertiary amines, especially tertiary, are preferred.
  • Amine substituted vinyl monomers and amines can be polymerised in the amine form and then converted to ammonium by quaternization.
  • the hydrophobic modified cationic polymers can comprise mixtures of monomer units derived from amine- and/or quaternary ammonium-substituted monomer and/or compatible spacer monomers.
  • the hydrophobically cationic deposition polymer for use in the present invention can be obtained from hydrophobically modifying deposition polymers from the group consisting of guar, locust bean, tara gum, honey locust, cassia, fenugreek and flame tree.
  • Others useful polymers could include xanthan gum, gellan gum, welan gum, rhamsan gum, konjac, mannan, gum Arabic, soy polysaccharide, xylofructose gums, polyglucose (starch) and tamarind gum.
  • the hydrophobically modified cationic deposition polymer and the anionic surfactant of the gel network contain alkyl groups with within 4, preferably 2 carbons and most preferably the same number of carbons. More preferably, they comprise a single alkyl group of within 4, more preferably within 2 and most preferably are the same length. This assists in maintaining stability of the gel network and reduces the need for a suspending agent
  • hydrophobically modified cationic deposition polymer and the fatty material of the gel network contain alkyl groups with within 4, preferably 2 carbons and most preferably the same number of carbons. More preferably, they comprise a single alkyl group of within 4, more preferably within 2 and most preferably are the same length. This assists in maintaining stability of the gel network and reduces the need for a suspending agent.
  • Cationic polymer will generally be present in a shampoo composition of the invention at levels of from 0.01 to 5%, preferably from 0.05 to 2%, more preferably from 0.07 to 1 .2% by total weight of cationic polymer based on the total weight of the composition.
  • the oil may be any oil commonly used in personal care products for example polyolefin oils, ester oils, triglyceride oils, hydrocarbon oils and mixtures thereof.
  • the oil is a light oil.
  • Preferred oils include those selected from:
  • Oils having viscosities from 0.1 to 500 centipoises measures at 30C.
  • Oils with viscosity above 500 centipoises 500-500000 cps which contains up to 20% of a lower viscosity fraction (less than 500cps).
  • the oil may be dispersed within the gel network or as part of the cleansing phase.
  • the oil is a polyalphaolefin oil.
  • silicone oils these materials may enhance the conditioning benefits found with compositions of the invention.
  • Suitable polyalphaolefin oils include those derived from 1 -alkalene monomers having from 6 to 16 carbons, preferably from 6 to 12 carbons.
  • Non limiting examples of materials include 1 -hexene, 1 -octene, 1 -decene, 1 -dodecene, 1 -tetradecene, 1 - hexadecene, branched isomers such as 4-methyl-1 -pentene and mixtures thereof.
  • Preferred polyalphaloefins include polydecenes with tradename Puresyn 6 having a number average molecular weight of about 500, Puresyn 100 having a molecular weight of about 3000 and Puresyn 300 having a molecular weight of about 6000 commercially available from Mobil.
  • the polyalphaolefin oil is present at from 0.05 to 10%, particularly from 0.2 to 5%, and especially from 0.5 to 3% by weight of the total composition.
  • Suitable triglyceride oils include fats and oils including natural fats and oils such as jojoba, soybean, sunflower seed oil, rice bran, avocado, almond, olive, sesame, castor, coconut, coconut palm oil, sunflower oil, mink oils; cacao fat; beef tallow, lard; hardened oils obtained by hydrogenating the aforementioned oils; and synthetic mono, di- and triglycerides such as myristic acid glyceride and 2- ethylhexanoic acid glyceride.
  • natural fats and oils such as jojoba, soybean, sunflower seed oil, rice bran, avocado, almond, olive, sesame, castor, coconut, coconut palm oil, sunflower oil, mink oils; cacao fat; beef tallow, lard; hardened oils obtained by hydrogenating the aforementioned oils; and synthetic mono, di- and triglycerides such as myristic acid glyceride and 2- ethylhexanoic acid glyceride.
  • the triglyceride oil is present at from 0.05 to 10%, particularly from 0.2 to 5%, and especially from 0.5 to 3% by weight of the composition.
  • Suitable hydrocarbon oils have at least 12 carbon atoms, and include paraffin oil, polyolefin oil, mineral oil, saturated and unsaturated dodecane, saturated and unsaturated tridecane, saturated and unsaturated tetradecane, saturated and unsaturated pentadecane, saturated and unsaturated hexadecane, and mixtures thereof. Branched-chain isomers of these compounds, as well as of higher chain length hydrocarbons, can also be used. Also suitable are polymeric hydrocarbons of C2-6 alkenyl monomers, such as polyisobutylene.
  • the hydrocarbon oil is present at from 0.05 to 10%, particularly from 0.2 to 5%, and especially from 0.5 to 3% by weight of the composition.
  • Suitable ester oils have at least 10 carbon atoms, and include esters with
  • ester oils are formula R'COOR in which R' and R independently denote alkyl or alkenyl radicals and the sum of carbon atoms in R' and R is at least 10, preferably at least 20.
  • Di- and trialkyl and alkenyl esters of carboxylic acids can also be used.
  • the ester oil is present at from 0.05 to 10%, particularly from 0.2 to 5%, and especially from 0.5 to 3% by weight of the total composition.
  • the composition comprises a cleansing anionic surfactant which comprises an alkyl group with from 10 to 14 carbons.
  • compositions of the invention comprise a cleansing phase, preferably at a level from1 -26% wt. of the total composition.
  • the cleansing phase comprises a cleansing surfactant.
  • the cleansing phase anionic surfactant has from 8 to 14 carbons, more preferably from 10 to 12 and most preferably 12 carbons. More preferably, these carbons are present in a single alkyl group.
  • Preferred anionic cleansing surfactants include alkali metal alkyl sulphates, more preferably the alkyl ether sulphates.
  • Particularly preferred anionic cleansing surfactants include sodium lauryl ether sulphate.
  • the level of cleansing surfactant is from 5 to 26% by weight of the total composition.
  • the aqueous shampoo composition of the invention can further comprises a suspending agent, however it is preferable if the composition comprises less than 0.1 wt% of suspending agent, preferably no suspending agent.
  • the hair care compositions of the invention are aqueous, i.e. they have water or an aqueous solution or a lyotropic liquid crystalline phase as their major component.
  • the composition will comprise from 10 to 98%, preferably from 30 to 95% water by weight based on the total weight of the composition.
  • composition according to the invention preferably comprises a silicone.
  • silicone conditioning agents are silicone emulsions such as those formed from silicones such as polydiorganosiloxanes, in particular polydimethylsiloxanes which have the CTFA designation dimethicone,
  • the emulsion droplets may typically have a Sauter mean droplet diameter (D 3 2 ) in the composition of the invention ranging from 0.01 to 20 micrometer, more preferably from 0.2 to 10 micrometer.
  • a suitable method for measuring the Sauter mean droplet diameter (D 32 ) is by laser light scattering using an instrument such as a Malvern Mastersizer.
  • Suitable silicone emulsions for use in compositions of the invention are available from suppliers of silicones such as Dow Corning and GE Silicones. The use of such pre-formed silicone emulsions is preferred for ease of processing and control of silicone particle size.
  • Such pre-formed silicone emulsions will typically additionally comprise a suitable emulsifier such as an anionic or nonionic emulsifier, or mixture thereof, and may be prepared by a chemical emulsification process such as emulsion polymerisation, or by mechanical emulsification using a high shear mixer.
  • Pre-formed silicone emulsions having a Sauter mean droplet diameter (D 3 2 ) of less than 0.15 micrometers are generally termed
  • Suitable pre-formed silicone emulsions include emulsions DC2-1766, DC2-1784, DC-1785, DC-1786, DC-1788 and microemulsions DC2-1865 and DC2- 1870, all available from Dow Corning.
  • DC7051 is a preferred silicone.
  • emulsions/microemulsions of dimethiconol are also suitable.
  • amodimethicone emulsions such as DC2-8177 and DC939 (from Dow Corning) and SME253 (from GE Silicones).
  • silicone emulsions in which certain types of surface active block copolymers of a high molecular weight have been blended with the silicone emulsion droplets, as described for example in WO03/094874.
  • the silicone emulsion droplets are preferably formed from polydiorganosiloxanes such as those described above.
  • One preferred form of the surface active block copolymer is according to the following formula:
  • silicone emulsions will generally be present in a composition of the invention at levels of from 0.05 to 15%, preferably from 0.5 to 12% by total weight of silicone based on the total weight of the composition.
  • the silicone is preferably present at from 0.5 to 15% wt., more preferably 1 to 12% by weight.
  • a composition of the invention may contain further ingredients as described below to enhance performance and/or consumer acceptability.
  • the composition can include co-surfactants, to help impart aesthetic, physical or cleansing properties to the composition.
  • a co-surfactant is a nonionic surfactant, which can be included in an amount ranging from 0.5 to 10%, preferably from 0.7 to 6% by weight based on the total weight of the composition.
  • representative nonionic surfactants that can be included in shampoo compositions of the invention include condensation products of aliphatic (Cs - Cis) primary or secondary linear or branched chain alcohols or phenols with alkylene oxides, usually ethylene oxide and generally having from 6 to 30 ethylene oxide groups.
  • nonionic surfactants include mono- or di-alkyl alkanolamides. Examples include coco mono- or di-ethanolamide and coco mono- isopropanolamide. A particularly preferred nonionic surfactant is coco mono- ethanolamide.
  • nonionic surfactants which can be included in shampoo compositions of the invention are the alkyl polyglycosides (APGs).
  • APG is one which comprises an alkyl group connected (optionally via a bridging group) to a block of one or more glycosyl groups.
  • Preferred APGs are defined by the following formula: wherein R is a branched or straight chain alkyl group which may be saturated or unsaturated and G is a saccharide group.
  • R may represent a mean alkyl chain length of from about C 5 to about C20.
  • R represents a mean alkyl chain length of from about Cs to about C12. Most preferably the value of R lies between about 9.5 and about 10.5.
  • G may be selected from C 5 or C6 monosaccharide residues, and is preferably a glucoside. G may be selected from the group comprising glucose, xylose, lactose, fructose, mannose and derivatives thereof. Preferably G is glucose.
  • the degree of polymerisation, n may have a value of from about 1 to about 10 or more.
  • the value of n lies from about 1 .1 to about 2.
  • Most preferably the value of n lies from about 1 .3 to about 1 .5.
  • Suitable alkyl polyglycosides for use in the invention are commercially available and include for example those materials identified as: Oramix NS10 ex Seppic; Plantaren 1200 and Plantaren 2000 ex Henkel.
  • compositions of the invention include the C10-C18 N-alkyl (Ci-Ce) polyhydroxy fatty acid amides, such as the C12-C18 N-methyl glucamides, as described for example in WO 92 06154 and US 5 194 639, and the N-alkoxy polyhydroxy fatty acid amides, such as C10-C18 N- (3-methoxypropyl) glucamide.
  • C10-C18 N-alkyl (Ci-Ce) polyhydroxy fatty acid amides such as the C12-C18 N-methyl glucamides, as described for example in WO 92 06154 and US 5 194 639
  • N-alkoxy polyhydroxy fatty acid amides such as C10-C18 N- (3-methoxypropyl) glucamide.
  • a preferred example of a co-surfactant is an amphoteric or zwitterionic surfactant, which can be included in an amount ranging from 0.5 to about 10%, preferably from 1 to 6% by weight based on the total weight of the total composition.
  • amphoteric or zwitterionic surfactants include alkyl amine oxides, alkyl betaines, alkyl amidopropyl betaines, alkyl sulphobetaines (sultaines), alkyl glycinates, alkyl carboxyglycinates, alkyl amphoacetates, alkyl amphopropionates, alkylamphoglycinates, alkyl amidopropyl hydroxysultaines, acyl taurates and acyl glutamates, wherein the alkyl and acyl groups have from 8 to 19 carbon atoms.
  • Typical amphoteric and zwitterionic surfactants for use in shampoos of the invention include lauryl amine oxide, cocodimethyl sulphopropyl betaine, lauryl betaine, cocamidopropyl betaine and sodium cocoamphoacetate.
  • a particularly preferred amphoteric or zwitterionic surfactant is cocamidopropyl betaine.
  • amphoteric or zwitterionic surfactants may also be suitable.
  • Preferred mixtures are those of cocamidopropyl betaine with further amphoteric or zwitterionic surfactants as described above.
  • a preferred further amphoteric or zwitterionic surfactant is sodium cocoamphoacetate.
  • a composition of the invention may contain other ingredients for enhancing performance and/or consumer acceptability.
  • Such ingredients include fragrance, dyes and pigments, pH adjusting agents, pearlescers or opacifiers, viscosity modifiers, and preservatives or antimicrobials.
  • Each of these ingredients will be present in an amount effective to accomplish its purpose.
  • these optional ingredients are included individually at a level of up to 5% by weight of the total composition.
  • Cetostearyl Alcohol 100 1 .0 1 .0 1 .0 1 .0 1 .0 1 .0

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Emergency Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Dermatology (AREA)
  • Cosmetics (AREA)
  • Detergent Compositions (AREA)
PCT/EP2011/056162 2010-04-30 2011-04-18 Composition WO2011134832A2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP11714583A EP2563318A2 (en) 2010-04-30 2011-04-18 Composition
BR112012027261A BR112012027261A2 (pt) 2010-04-30 2011-04-18 composição de shampoo condicionador
CN2011800217268A CN102869334A (zh) 2010-04-30 2011-04-18 组合物
JP2013506584A JP2013525393A (ja) 2010-04-30 2011-04-18 組成物
EA201291134A EA201291134A1 (ru) 2010-04-30 2011-04-18 Композиция
MX2012012688A MX2012012688A (es) 2010-04-30 2011-04-18 Composicion.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP10161636 2010-04-30
EP10161636.5 2010-04-30

Publications (2)

Publication Number Publication Date
WO2011134832A2 true WO2011134832A2 (en) 2011-11-03
WO2011134832A3 WO2011134832A3 (en) 2012-10-18

Family

ID=42830081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/056162 WO2011134832A2 (en) 2010-04-30 2011-04-18 Composition

Country Status (9)

Country Link
EP (1) EP2563318A2 (pt)
JP (1) JP2013525393A (pt)
CN (1) CN102869334A (pt)
AR (1) AR081186A1 (pt)
BR (1) BR112012027261A2 (pt)
EA (1) EA201291134A1 (pt)
MX (1) MX2012012688A (pt)
TW (1) TW201204398A (pt)
WO (1) WO2011134832A2 (pt)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2995527A1 (fr) * 2012-09-18 2014-03-21 Oreal Composition cosmetique comprenant un tensioactif anionique, un alcool gras solide, un polymere amphotere ou cationique, un tensioactif non io-nique et un sel hydrosoluble
FR2995529A1 (fr) * 2012-09-18 2014-03-21 Oreal Ensemble cosmetique, procede de traitement cosmetique et dispositif de conditionnement
WO2014044660A1 (en) * 2012-09-18 2014-03-27 L'oreal Cosmetic assembly and cosmetic composition comprising an anionic surfactant, a solid fatty alcohol and a cationic polymer, cosmetic treatment process and conditioning device
WO2018005453A1 (en) * 2016-06-27 2018-01-04 The Procter & Gamble Company Shampoo composition containing a gel network
US10584129B2 (en) 2013-06-04 2020-03-10 Janssen Pharmaceuticals Nv Substituted 6,7-dihydropyrazolo[1,5-a]pyrazines as negative allosteric modulators of mGluR2 receptors
US10912719B2 (en) 2014-10-20 2021-02-09 The Procter And Gamble Company Personal care composition and method of making
US10945935B2 (en) 2016-06-27 2021-03-16 The Procter And Gamble Company Shampoo composition containing a gel network
WO2021255047A1 (en) * 2020-06-19 2021-12-23 Unilever Ip Holdings B.V. Hair conditioning composition for improved deposition
US11497691B2 (en) 2018-12-14 2022-11-15 The Procter & Gamble Company Shampoo composition comprising sheet-like microcapsules
US11628126B2 (en) 2018-06-05 2023-04-18 The Procter & Gamble Company Clear cleansing composition
US11633072B2 (en) 2021-02-12 2023-04-25 The Procter & Gamble Company Multi-phase shampoo composition with an aesthetic design
US11896689B2 (en) 2019-06-28 2024-02-13 The Procter & Gamble Company Method of making a clear personal care comprising microcapsules
US11932448B2 (en) 2020-02-14 2024-03-19 The Procter & Gamble Company Bottle adapted for storing a liquid composition with an aesthetic design suspended therein

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992006154A1 (en) 1990-09-28 1992-04-16 The Procter & Gamble Company Polyhydroxy fatty acid amide surfactants to enhance enzyme performance
US5194639A (en) 1990-09-28 1993-03-16 The Procter & Gamble Company Preparation of polyhydroxy fatty acid amides in the presence of solvents
WO2003094874A1 (en) 2002-05-10 2003-11-20 Unilever Plc Conditioning shampoo composition

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1003464A1 (en) * 1997-07-09 2000-05-31 The Procter & Gamble Company Hair care composition comprising hydrophobically modified cationic cellulose
US8349301B2 (en) * 2002-06-04 2013-01-08 The Procter & Gamble Company Shampoo containing a gel network
US8349302B2 (en) * 2002-06-04 2013-01-08 The Procter & Gamble Company Shampoo containing a gel network and a non-guar galactomannan polymer derivative
JP5767476B2 (ja) * 2008-03-14 2015-08-19 ユニリーバー・ナームローゼ・ベンノートシヤープ コンディショニングシャンプー組成物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992006154A1 (en) 1990-09-28 1992-04-16 The Procter & Gamble Company Polyhydroxy fatty acid amide surfactants to enhance enzyme performance
US5194639A (en) 1990-09-28 1993-03-16 The Procter & Gamble Company Preparation of polyhydroxy fatty acid amides in the presence of solvents
WO2003094874A1 (en) 2002-05-10 2003-11-20 Unilever Plc Conditioning shampoo composition

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2995529A1 (fr) * 2012-09-18 2014-03-21 Oreal Ensemble cosmetique, procede de traitement cosmetique et dispositif de conditionnement
WO2014044660A1 (en) * 2012-09-18 2014-03-27 L'oreal Cosmetic assembly and cosmetic composition comprising an anionic surfactant, a solid fatty alcohol and a cationic polymer, cosmetic treatment process and conditioning device
FR2995527A1 (fr) * 2012-09-18 2014-03-21 Oreal Composition cosmetique comprenant un tensioactif anionique, un alcool gras solide, un polymere amphotere ou cationique, un tensioactif non io-nique et un sel hydrosoluble
US10584129B2 (en) 2013-06-04 2020-03-10 Janssen Pharmaceuticals Nv Substituted 6,7-dihydropyrazolo[1,5-a]pyrazines as negative allosteric modulators of mGluR2 receptors
US10912719B2 (en) 2014-10-20 2021-02-09 The Procter And Gamble Company Personal care composition and method of making
WO2018005453A1 (en) * 2016-06-27 2018-01-04 The Procter & Gamble Company Shampoo composition containing a gel network
CN109310586A (zh) * 2016-06-27 2019-02-05 宝洁公司 包含凝胶网络的洗发剂组合物
US10945935B2 (en) 2016-06-27 2021-03-16 The Procter And Gamble Company Shampoo composition containing a gel network
US11628126B2 (en) 2018-06-05 2023-04-18 The Procter & Gamble Company Clear cleansing composition
US11497691B2 (en) 2018-12-14 2022-11-15 The Procter & Gamble Company Shampoo composition comprising sheet-like microcapsules
US11896689B2 (en) 2019-06-28 2024-02-13 The Procter & Gamble Company Method of making a clear personal care comprising microcapsules
US11932448B2 (en) 2020-02-14 2024-03-19 The Procter & Gamble Company Bottle adapted for storing a liquid composition with an aesthetic design suspended therein
WO2021255047A1 (en) * 2020-06-19 2021-12-23 Unilever Ip Holdings B.V. Hair conditioning composition for improved deposition
US11633072B2 (en) 2021-02-12 2023-04-25 The Procter & Gamble Company Multi-phase shampoo composition with an aesthetic design

Also Published As

Publication number Publication date
EA201291134A1 (ru) 2013-04-30
CN102869334A (zh) 2013-01-09
BR112012027261A2 (pt) 2017-07-18
AR081186A1 (es) 2012-07-04
MX2012012688A (es) 2013-02-26
EP2563318A2 (en) 2013-03-06
TW201204398A (en) 2012-02-01
JP2013525393A (ja) 2013-06-20
WO2011134832A3 (en) 2012-10-18

Similar Documents

Publication Publication Date Title
US8940285B2 (en) Shampoo composition containing a conditioning gel network
AU2010264972B2 (en) Antidandruff shampoo based on a gel network
WO2011134832A2 (en) Composition
AU2009312928B2 (en) Conditioning shampoo composition comprising an aqueous conditioning- gel
EP2190405B2 (en) Hair treatment compositions
US20110243870A1 (en) Conditioning shampoo comprising an aqeuous conditioning gel phase in the form of vesicles
EP2531169B1 (en) Shampoo containing a gel network
WO2010149425A2 (en) Concentrated shampoo
WO2012119825A2 (en) Composition
US20130022567A1 (en) Hair care composition comprising alkyl-modified siloxane
US20130039875A1 (en) Shampoo containing a dendritic macromolecule and a gel network
WO2010149423A2 (en) Composition
WO2012119824A2 (en) Composition

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180021726.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11714583

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 12012502074

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 2429/MUMNP/2012

Country of ref document: IN

Ref document number: 2011714583

Country of ref document: EP

ENP Entry into the national phase in:

Ref document number: 2013506584

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase in:

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201005648

Country of ref document: TH

Ref document number: MX/A/2012/012688

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 201291134

Country of ref document: EA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012027261

Country of ref document: BR

ENP Entry into the national phase in:

Ref document number: 112012027261

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20121024