WO2011134401A1 - 小区失效的处理方法及其设备 - Google Patents

小区失效的处理方法及其设备 Download PDF

Info

Publication number
WO2011134401A1
WO2011134401A1 PCT/CN2011/073380 CN2011073380W WO2011134401A1 WO 2011134401 A1 WO2011134401 A1 WO 2011134401A1 CN 2011073380 W CN2011073380 W CN 2011073380W WO 2011134401 A1 WO2011134401 A1 WO 2011134401A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
base station
energy
information
failure
Prior art date
Application number
PCT/CN2011/073380
Other languages
English (en)
French (fr)
Inventor
邹兰
张凯
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP11774392.2A priority Critical patent/EP2544485B1/en
Priority to ES11774392.2T priority patent/ES2525089T3/es
Priority to JP2013506474A priority patent/JP5547848B2/ja
Publication of WO2011134401A1 publication Critical patent/WO2011134401A1/zh
Priority to US13/661,494 priority patent/US9301250B2/en
Priority to US15/044,535 priority patent/US10271231B2/en
Priority to US16/358,838 priority patent/US10659979B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • H04W52/0206Power saving arrangements in the radio access network or backbone network of wireless communication networks in access points, e.g. base stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • a base station in a self-organizing network may have an automatic power saving function and classify the cell into a cell in an energy-saving state and a cell in a non-energy-saving normal state.
  • the base station automatically or partially subordinates the base station according to a preset automatic energy saving policy, for example, combining the current and expected network service usage conditions, and the like, by automatically turning off part or all of the functions of the base station, or reducing the transmitting power of the base station.
  • a preset automatic energy saving policy for example, combining the current and expected network service usage conditions, and the like.
  • the normal cell of the base station is converted into an energy-saving state, which not only loses the user's service quality, but also reduces the power consumption of the base station.
  • the outage of a cell is a network error scenario.
  • the automatic failure function of the cell failure can quickly detect the cell failure when the cell failure occurs, and automatically process the cell failure accordingly.
  • the embodiment of the invention provides a method and a device for processing a cell failure.
  • the method provided by the embodiment of the present invention includes: the first base station receives an energy-saving activation message sent by the second base station when a cell failure occurs in the second cell, where the energy-saving activation message is used to disable the energy-saving function, where the second cell belongs to the The second base station; the first base station converts the first cell from the energy-saving state to the normal state according to the energy-saving activation message, where the first cell belongs to the first base station, and the second cell is assumed by the first cell And the first base station is configured to keep the third cell in a normal state according to the energy-saving activation message until the cell failure of the second cell is resolved, where the third cell belongs to the first base station, where the third cell
  • the second cell is a cell that undertakes coverage replacement for the third cell.
  • a method provided by an embodiment of the present invention includes: a method for processing a cell failure, where the method includes: receiving, by a first base station, a notification message sent by a second base station, indicating that a cell failure occurs in a second cell, where the second cell Subsequent to the second base station; the first base station converts the first cell from the energy-saving state to the normal state according to the notification message, where the first cell belongs to the first base station, and the second cell is the first The cell bears the coverage of the replaced cell; or the first base station keeps the third cell in a normal state according to the notification message until the cell failure of the second cell is resolved, wherein the third cell belongs to the first base station, The second cell is a cell that assumes coverage replacement for the third cell.
  • the method provided by the embodiment of the present invention includes: when the integrated reference point management device finds that the second cell has a cell failure, the integrated reference point management device causes the first base station to convert the first cell from the energy saving state to the normal state through the network management northbound interface.
  • the first cell belongs to the first base station, and the second cell is a cell that replaces the coverage for the first cell; or, when the integrated reference point management device finds that the second cell has a cell failure, the integrated reference
  • the point management device maintains the third cell in the normal state through the network management northbound interface until the cell failure of the second cell is resolved.
  • the third cell belongs to the first base station, and the second cell is assumed by the third cell. Cover the alternate cell.
  • the base station includes: the sending module is configured to receive a notification that a cell failure occurs in the second cell; and the processing module is configured to convert the first cell from a power saving state to a normal state, where the first cell slave In the base station, the second cell is a cell that covers the coverage replacement for the first cell; or the processing module is configured to keep the third cell in a normal state until the second cell failure has been resolved, where the third cell is subordinate to The base station, the second cell is a cell that covers coverage replacement for the third cell.
  • the device provided by the embodiment of the present invention includes: the receiving module is configured to determine that a cell failure occurs in the second cell;
  • the processing module is configured to notify the first base station to convert the first cell from the energy-saving state to the normal state by using the north-facing interface of the network management, where the first cell belongs to the first base station, and the second cell is responsible for coverage replacement for the first cell. Or the processing module is configured to notify the first base station to keep the third cell in a normal state through the network management northbound interface until the cell failure of the second cell is resolved, where the third cell belongs to the first base station.
  • the second cell is a cell that covers coverage replacement for the third cell.
  • FIG. 1(a) is a schematic diagram of a distributed architecture provided by an embodiment of the present invention
  • FIG. 1(b) is a schematic diagram of a centralized architecture provided by another embodiment of the present invention.
  • FIG. 2 is a flowchart of a method for cell failure processing according to another embodiment of the present invention.
  • FIG. 3 is a flowchart of a method for cell failure processing according to another embodiment of the present invention.
  • FIG. 4 is a flowchart of a method for cell failure processing according to another embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a base station according to another embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a device according to another embodiment of the present invention.
  • the embodiments of the present invention will be clearly and completely described in conjunction with the drawings in the embodiments of the present invention. It is obvious that the described embodiments are only a part of the embodiments of the present invention, instead of All embodiments. All other embodiments obtained by those skilled in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
  • cell A is subordinate to base station 1 (eNB1)
  • cell B is subordinate to base station 2 (eNB2)
  • eNB1 base station 1
  • eNB2 base station 2
  • ⁇ P cell B is a cell that can provide coverage for cell A
  • cell B can be simply referred to as cell A.
  • the cell A when the automatic energy saving function of the eNB1 that is associated with the cell A is enabled, according to the policy setting of the energy saving function, the cell A is in the energy saving state (ie, enters the energy saving state) at a certain time, and the cell B can be taken over to complete the coverage of the cell A. network of.
  • cell A is subordinate to base station 1 (eNB1)
  • cell B is subordinate to base station 2 (eNB2).
  • the eNB1 and the eNB2 are managed by the same integrated reference point management device (IRP Manager).
  • the network management system may refer to an IRP Manager, or may be a multi-device collection including an IRP Manager.
  • the eNB1 is located inside the integrated reference point proxy (IRP Agent1), and can communicate with the network management northbound (itf_N) interface between the IRP agent and the network management system.
  • the eNB2 and the IRP Agent2 are two independent devices, and the eNB2 and the network in the IRPAgent2.
  • the Element Manager communicates to communicate between the eNB2 and the network management system through the itf_N interface between the IRP Agent 2 and the network management system.
  • the eNB and the IRP agent in the embodiments of the present invention are independent devices does not affect the implementation of the embodiments, and details of the communication between the eNB and the network management system by the IRP agent are not described in detail in the embodiments of the present invention, but
  • the eNB located inside the IRP Agent communicates with the IRP Manager and the IRP passes the external
  • the situation in which the device IRP Agent communicates with the IRP Manager is collectively referred to as the eNB communicating with the network management system through the itf-N interface.
  • An embodiment of the present invention provides a method for processing cell failure in a distributed architecture.
  • FIG. 1(a) it is assumed that when cell A is in a power-saving state, cell B assumes network coverage of cell A.
  • cell B fails, cell A changes from the energy-saving state to the normal state, so that cell A recovers to cover the original coverage, thereby reducing the impact of cell failure on the network coverage of the replacement cell.
  • the cell A does not re-enter the energy saving according to the preset automatic energy saving policy.
  • cell B fails when cell A is in the normal state, cell A will not enter the energy-saving state according to the original energy-saving policy before the cell failure problem of cell B is resolved (that is, the cell failure ends). Therefore, it is possible to avoid a network coverage vulnerability or to constantly change the ping-pong effect of the receiver of the cell network coverage.
  • FIG. 1(a) Taking the distributed architecture provided in FIG. 1(a) as an example, another embodiment of the present invention provides a method for processing a cell failure. As shown in FIG. 2, the following steps are included.
  • the eNB2 sends a first notification message to the eNB1.
  • the eNB2 sends a first notification message to all neighboring eNBs, and the eNB1 is one of the neighboring eNBs of the eNB2, and the first notification message can be received.
  • eNB2 may acquire information about cell B to determine which cell or cells can use cell B as a substitute cell, and then eNB2 sends a first notification message to the cell.
  • the first notification message may include a cell identifier and a cell failure indication information, where the cell failure indication is used to indicate whether a cell corresponding to the cell identifier in the first notification message fails.
  • the cell identifier in the first notification message is a cell identifier of the cell B, and the cell failure indication indicates that the cell has a cell failure.
  • the eNB2 may also send the delayed start time information in the first notification message or other message.
  • the delay start time information includes waiting time information
  • the waiting time information indicates the waiting time of the eNB1 to receive the information to the state transition process of starting the cell A. If the duration of the waiting time information is T, the eNB1 receives the delay. After the start time information, the waiting time is 1 ⁇ If the cell failure of the cell B is not resolved, the state transition process for the cell A is started, and the energy saving state of the cell A is converted to the normal state.
  • the delayed start time information includes start time information indicating the time when the eNB1 starts the state transition process of the cell A, and assumes that the start time information corresponds to the time ⁇ I eNB1 does not know the cell B at time t. If the cell failure has been resolved, the state transition process for cell A is started, and the energy-saving state of cell A is converted to a normal state.
  • the foregoing processing mode is applicable to the case where the cell A does not require high network coverage, for example, the cell A is a non-critical cell. when After the cell failure occurs, the cell B may try to recover itself. If the cell failure is resolved within a certain period of time, the cell A does not need to be changed, and the network coverage of the cell A is not affected. If the problem of cell failure is not solved within a certain period of time, the eNB1 converts the cell A from the energy-saving state to the normal state, and restores the original coverage.
  • the eNB1 receives the first notification message, and determines whether the cell that uses cell B as the substitute cell is in an energy-saving state. If there is the above-mentioned cell in the energy-saving state, S240 is performed; if there is the above-mentioned cell not in the energy-saving state, S250 is performed.
  • eNB2 may send a first notification message to all neighboring eNBs, and eNB1 may learn that cell B has a cell failure according to the first notification message, and then acquire related information of each cell belonging to eNB1 to determine whether there is a cell that can use cell B as The substitute cell, for example, obtains related information of the cell A to determine whether the cell B is a substitute cell of the cell A, and whether the cell is currently in an energy-saving state.
  • the eNB1 converts the cell with the cell B as the substitute cell and the energy-saving state, and the converted cell state is a normal state.
  • eNB1 converts cell A from a power-saving state to a normal state, thereby avoiding a cell that assumes network coverage due to cell A itself being in an energy-saving state.
  • a cell failure has caused a loophole in network coverage.
  • the eNB1 receives the delayed start time information sent by the eNB2, for example, the first notification message received by the eNB1 includes the delayed start time information
  • the eNB1 starts the state transition process for the cell B after waiting for the delayed start time.
  • the state of cell A is converted to the normal state. If the eNB1 waits for the delay start time and knows that the cell B has solved the problem of the cell failure, the eNB1 does not need to change the state of the cell A due to the cell failure of the cell B.
  • the eNB1 may convert the states of all or some of the cells to the normal state.
  • the eNB1 before the eNB1 does not know that the cell B of the cell B is invalid, the cell A is not allowed to re-enter the energy saving according to the preset automatic energy saving policy, that is, the eNB1 will keep the cell A at least in the non-energy-saving normal state until the cell B is determined. The cell failure ends, thus avoiding loopholes in network coverage.
  • the eNB1 keeps the cell B as a substitute cell and the cell in a normal state in a normal state.
  • cell B is a substitute cell of cell C, that is, it can bear the network coverage of cell C.
  • cell C fails in cell B, cell C is not in the energy-saving state, and eNB1 saves the received cell failure finger.
  • the cell identifier is displayed, and before the cell failure of the cell B ends, the cell C does not enter the energy saving according to the preset automatic energy saving policy, that is, the eNB1 can keep the cell C in the normal state until the cell failure of the cell B is determined to be ended.
  • the eNB1 considers the priority of the cell failure indication to be higher than the priority of the preset automatic energy saving policy.
  • the other automatic energy saving strategies are no longer considered. , keep cell C in the normal state.
  • the eNB1 clears the held cell failure indication, and checks whether the cell A needs to be converted into the energy-saving state according to the preset automatic energy-saving policy.
  • the foregoing processing mode avoids the occurrence of a cell failure when the cell B that can bear the network coverage of the cell C fails, and the network C enters the energy saving to cause a loophole in the network coverage, or the network coverage of the cell C continuously changes between the cell C and the cell B. Ping Pong effect.
  • another embodiment of the present invention further provides a method for processing a cell failure. As shown in FIG. 3, the following steps are included.
  • the eNB1 sends a second notification message to all eNBs that are neighboring the cell A neighboring cell, and the eNB2 can receive the second notification message.
  • the eNB1 may obtain related information of the cell A to determine which cell or cells may serve as the substitute cell of the cell A, and then the eNB2 sends a second notification message to the cell.
  • the second notification message may include a cell identifier and a cell energy saving indication information, where the cell energy saving indication information is used to indicate whether the cell corresponding to the cell identifier in the second notification message enters energy saving. For example, when cell A enters power saving, the second notification message includes a cell identifier of cell A, and the cell energy saving indication information indicates that the cell has been converted into a power saving state.
  • the eNB1 when the cell A is ready to enter the power saving, the eNB1 sends the second notification message, and the cell A enters the energy saving immediately after the second notification message is sent by the eNB1 or waits for a period of time to enter the energy saving. In the process of waiting for a period of time, the eNB1 may Complete the processing related to the energy saving of cell A.
  • S520 and eNB2 to which cell B belongs receive the second notification message, and cause cell B to bear the network coverage of cell A.
  • the eNB2 may determine in this step whether the cell belonging to the eNB2 includes a cell that can serve as a substitute cell of the cell A.
  • the eNB2 detects that cell failure occurs in the cell B.
  • the eNB2 sends the energy-saving activation to the eNB1 to which the cell A that can use the cell B as the substitute cell belongs.
  • a message which is used to inform the eNB1 to convert cel l A to a normal state.
  • eNB2 may save cel l A in a power-saving state before detecting a cell failure in cel l B, it may be determined that the cell needs to be cel l A.
  • the eNB2 may obtain the related information of the cel B B to determine which cell or cells can use cel l B as the substitute cell, and then the eNB2 sends the energy saving activation message to the cell, or the eNB2 sends the energy saving to the cell in the energy saving state. Activate the message.
  • the energy saving activation message is a cell activation request (CELL ACTIVATION REQUEST) message including a cell identifier (Served Cel ls To Activate) and a reason for activation (Reason For Activation) of the cell to be activated.
  • CELL ACTIVATION REQUEST cell activation request
  • the Served Cel ls To Activate information is the cell identifier of the cel l A
  • the Reason For Activation information is the cell failure cause value. (C0), that is, the cause value indicates that the reason for activating the cell is that a cell failure occurs.
  • the Reason For Activation may be an enumerated type, for example, in addition to including a cell failure cause value, and may include a load balancing cause value (LB), indicating that the reason for activating the energy-saving cell is load balancing, that is, eNB2 determines
  • LB load balancing cause value
  • the energy saving activation message may be sent to the base station to which the cell belongs, and the energy saving activation message includes the cell identifier and the load balancing cause value of the cell.
  • the eNB2 may also send, in the energy-saving activation message, delayed start time information, which is used to indicate the waiting time of the eNB1 to receive the information to the state transition process of starting the cell A.
  • delayed start time information which is used to indicate the waiting time of the eNB1 to receive the information to the state transition process of starting the cell A.
  • S550 The eNB1 receives the energy-saving activation message, so that cel l A is converted from the energy-saving state to the normal state.
  • the eNB1 determines, according to the activation reason in the second notification message, whether the cell corresponding to the cell identifier of the cell to be activated is in a power-saving state, and if so, converts the state of the cel l A to a normal state, thereby avoiding the occurrence of the cel l A itself.
  • the problem of network coverage is caused by the failure of the cell in the cell that covers the network coverage.
  • the eNB1 If the energy-saving activation message received by the eNB1 includes the delayed start time information, the eNB1 starts the state transition process for the cel l B after waiting for the delayed start time, so that the state of the cel l A is converted to the normal state. If the eNB1 waits for the delay start time and knows that the cel l B has solved the problem of the cell failure, the eNB1 does not need to change the state of the cel l A due to the cell failure caused by the cel l B.
  • cel l A is kept in a normal state.
  • the eNB2 may notify the eNB of the cell failure of the cel B B, and the eNB that receives the notification determines which processing is performed for which cells. eNB2 can also determine the needle Which kind of processing is performed on which cells, and then the eNB to which the above-mentioned cell belongs is notified to perform activation processing.
  • the energy-saving activation message causes the eNB1 to wake up the energy-saving cell A, so that the state of the cell A is converted to the normal state.
  • the coordinated processing of the automatic energy saving function in the network and the scenario in which the cell failure occurs can be implemented.
  • the base station in various embodiments of the present invention can determine the alternative relationship between cells by querying an internal database or other external device having a database function.
  • the external device with the database function includes the network management system (IRP Manager), and the base station can send a query message including the cell identifier of the cell to be queried to the network management system through the itf-N interface, and then receive the query result provided by the network management system.
  • IRP Manager the network management system
  • the base station can send a query message including the cell identifier of the cell to be queried to the network management system through the itf-N interface, and then receive the query result provided by the network management system.
  • the alternative relationship between the cells For the network management system, it is not necessary to pass the interface message, and the replacement relationship between the cells can be determined according to the internal data.
  • the network management system manages the base station more conveniently, can make the information obtained by different base stations consistent, and supports the operator to configure and update the cell replacement relationship in the network management system.
  • the base station does not need to pass the interface cell, and can determine the replacement relationship between the cells, thereby reducing the occupation of the air interface resources, and supporting the operator to directly configure or update the base station. Community replacement relationship.
  • another embodiment of the present invention provides a method for a base station to learn an alternative relationship between cells.
  • an alternative relationship between cells refers to a case where a cell to be queried can be used as a substitute cell of another cell. The following assumes that the cell to be queried is described as ce 11 B.
  • the base station in this embodiment receives the neighbor relationship information related to the energy saving of the cell B, that is, the neighbor relationship information ESCompensatedCellRelation of the cell B, where the information includes the cell information of the cell that the cell B can serve as the substitute cell (esCompensatedCell) ).
  • the esCompensatedCell is the cell identity information of the cell A
  • the base station determines that the cell B can serve as a substitute cell of the cell A.
  • the ESCompensatedCellRelation information queried by the base station includes cell identification information of multiple cells, the base station determines that cell B can serve as a substitute cell of the foregoing cells.
  • the base station in this embodiment receives the neighbor relationship information related to the cell B, that is, the neighbor relationship information EUtranRelation of the cell B.
  • the information about the neighboring cell of the cell B can be used to indicate the adjacent cell relationship between the cell corresponding to the adjacent cell information and the cell B, and is also used to indicate that the cell B is a substitute cell of the cell corresponding to the adjacent cell information. For example, if the adjacent cell information includes the cell identifier of the cell A, the base station determines that the cell B can serve as a substitute cell of the cell A. If the base station queries that the adjacent cell information includes cell identification information of multiple cells, the base station determines that cell B can serve as a substitute cell for the cells.
  • the base station in this embodiment receives the cell attribute information related to the cell B, that is, the cell of the cell B.
  • the attribute information EUtranGenericCell, the EUtranGenericCell information includes a compensated cell list information (compensatedCellList).
  • the compensatedCellList information indicates which cells the cell B can serve as an alternative cell. For example, if the compensatedCellList information includes cell information of cell A (such as cell identity information), the base station determines that cell B can be used as a substitute cell of cell A. If the base station queries that the compensatedCellList information related to the cell B includes cell information (such as cell identity information) of multiple cells, the base station determines that the cell B can serve as a substitute cell of the cells.
  • Another embodiment of the present invention provides a method for a base station to learn an alternative relationship between cells. This embodiment is different from the embodiment in which the base station learns the alternative relationship between cells.
  • the alternative relationship between cells refers to other cells. It can be used as an alternative cell to the cell to be queried. The following assumes that the cell to be queried is cell A.
  • the base station in this embodiment receives the neighbor relationship information related to the energy saving of the cell A, that is, the neighbor relationship information ESCompensatingCellRelation of the cell A, where the ESCompensatingCellRelation information includes the cell information of the cell that can serve as the substitute cell of the cell A (esCompensatingCell). For example, if the esCompensatingCell is the cell identity information of the cell B, the base station determines that the cell B can serve as a substitute cell of the cell A. If the ESCompensatingCellRelation information queried by the base station includes the cell identity information of the multiple cells, the base station determines that the cells may be used as the substitute cells of the cell A.
  • the neighbor relationship information ESCompensatingCellRelation of the cell A receives the neighbor relationship information related to the energy saving of the cell A, that is, the neighbor relationship information ESCompensatingCellRelation of the cell A, where the ESCompensatingCellRelation information includes the cell information of the cell that can serve as
  • the base station in this embodiment receives the neighbor relationship information related to the cell A, that is, the neighbor relationship information EURANRelation of the cell A, where the EUtranRelation information includes the neighbor cell information of the cell A.
  • adjacentCell (adjacentCell), indicating that the cell corresponding to the adjacent cell information has a neighbor relationship with the cell A, and is also used to indicate that the cell corresponding to the adjacent cell information can serve as a substitute cell of the cell A. For example, if the adjacent cell information includes cell identification information of cell B, the base station determines that cell A is a substitute cell of cell B. If the base station queries that the adjacent cell information of the cell A includes the cell identity information of the multiple cells, the base station determines that the cells may be used as the substitute cells of the cell A.
  • the base station in this embodiment receives the cell attribute information related to the cell A, that is, the cell attribute information EUtranGenericCell of the cell A, and the information includes the compensated cell list information (compensatingCellList).
  • the compensatingCellList information indicates which cells can be used as a replacement cell for cell A. For example, if the compensatingCellList information includes the cell information of the cell B (such as cell identification information), the base station determines that the cell B can serve as a substitute cell of the cell A. If the base station queries that the compensatingCellList information includes cell information (e.g., cell identity information) of a plurality of cells, the base station determines that the cells may be used as a substitute cell of cell A.
  • cell information e.g., cell identity information
  • the base station that queries the alternative relationship may Querying the information of the cell that belongs to the self, and querying the information of the other cell according to the information of the other cell, and determining whether there is an alternative relationship between the two cells, which is provided by the foregoing embodiment.
  • the method can be flexibly combined into the cell failure processing method provided by other embodiments of the present invention.
  • Another embodiment of the present invention provides a method for a base station to determine whether a cell is allowed to perform power saving, which will be described in detail below.
  • the eNB1 in this embodiment receives the neighbor relationship information (EUtranRelation) related to the cell A, where the EUtranRelation information includes the energy-saving compensation cell information (isEScompensateCell) of the cell A, and is used to indicate whether the cell A is allowed to save energy.
  • EUtranRelation the neighbor relationship information
  • isEScompensateCell the energy-saving compensation cell information
  • the eNB1 can determine whether the cell A enters the energy saving condition according to the preset automatic energy saving policy. If yes, the eNB1 can convert the cell A from the normal state to the energy saving state. , so that cell A enters energy saving.
  • the eNB1 in this embodiment receives the cell attribute information (EUtranGenericCell) related to the cell A, where the EUtranGenericCell information includes the energy-saving identification information (isESAllowed) of the cell A, and is used to indicate whether the cell A is allowed to save energy. For example, if the isESAllowed information received by the eNB1 indicates that the energy saving of the cell A is allowed, the eNB1 may determine whether the cell A enters the energy saving condition according to the preset automatic energy saving policy. If yes, the eNB1 may convert the cell A from the normal state to the normal state. Energy-saving state, so that cell A enters energy saving.
  • the information that the base station receives that indicates that a cell can save energy may be sent by the network management system, that is, whether information indicating that a cell can be energy-saving is received may be regarded as a configuration related to energy saving defined by the network management system.
  • the network management system does not necessarily configure all the cells as energy-saving cells. Therefore, the network management system distinguishes between cells that can be used for energy conservation and those that cannot be used for energy conservation.
  • the base station provided by the other embodiments of the present invention can learn the alternative relationship between the cells, and the base station can determine the alternate cell of the cell that is allowed to save energy, and can also determine which cell or cells are not allowed to be used as the energy-saving cell. Community.
  • This embodiment can be combined with the processing method of cell failure provided by other embodiments of the present invention.
  • the base station may further perform the step after the cell enters the energy saving in another embodiment of the present invention, for example, S510.
  • Another embodiment of the present invention provides a method for a base station to learn whether a cell in which a cell failure has ended a cell failure, where the base station initiates an inquiry to a base station to which the cell in which the cell has failed is determined, and determines the cell according to the received feedback message.
  • the foregoing query may be implemented by periodically sending a message for querying, or by sending a message for query at a preset time, or by using a message in an existing communication process. Includes query fields to implement.
  • This embodiment can be flexibly combined into the processing method of cell failure provided by other embodiments of the present invention. For example, how the eNB1 knows the end of the cell failure of the cell B that belongs to the eNB2, and the eNB1 can periodically send an Query message to the eNB2, where the query message is used to query whether the cell failure status of the cell B ends.
  • the eNB2 detects that the cell B is no longer a cell failure, that is, the cell B has recovered the cell
  • the eNB2 sends a feedback message, where the feedback message is used to indicate that the cell B of the cell B has expired. If the eNB2 detects that the cell B is still a cell failure, the eNB2 may not notify the eNB1 of the cell failure of the cell B, or may not send a feedback message.
  • Another embodiment of the present invention further provides a method for a base station to learn whether a cell in which a cell failure has ended a cell failure, wherein the base station does not actively perform an inquiry, but waits for a cell failure sent by a base station to which the cell to which the cell failure occurs is sent.
  • the notification of the end that is, when the notification is not received, the base station regards the cell in which the cell failure occurs as the cell that does not resolve the cell failure problem.
  • This embodiment can also be flexibly combined into the processing method of the cell failure provided by the other embodiments of the present invention, and details are not described herein again.
  • another embodiment of the present invention further provides a method for processing cell failure, which implements unified management of a base station by a network management system to implement coordination between base station energy saving and cell failure processing.
  • the network management system can be used to determine the cell failure of the second cell by receiving the notification of the eNB2.
  • the network management system in this embodiment can also determine the cell failure of the second cell by using the information saved by the network management system. No longer detailed. As shown in FIG. 4, this embodiment may include the following steps.
  • the eNB2 detects that cell failure occurs in the cell B.
  • the eNB2 notifies the network management system of the cell failure of the cell B.
  • the eNB2 sends a third notification message to the network management system.
  • the third notification message includes a cell identifier of the cell B of the cell in which the cell fails, and cell failure indication information, where the cell failure indication information indicates that the cell failure has occurred.
  • S830 The network management system receives the third notification message, and determines whether the cell that uses cell B as the substitute cell is in a power-saving state. If there is the above-mentioned cell in the energy-saving state, S840 is performed; if there is the above-mentioned cell that is not in the energy-saving state, S850 is executed.
  • the network management system can determine the replacement relationship between the cells that are saved by itself, and the status information of the cell.
  • the cell cel l B corresponding to the cell identifier in the third notification message is determined to be in a power-saving state.
  • the network management system in this step may determine that there are multiple cells that have an alternative relationship with cel l B and are in an energy-saving state, or a plurality of cells that have an alternative relationship with cel l B and are in a normal state, then the network management system may simultaneously or S840 or S850 is performed correspondingly for these cells one by one.
  • S840 The network management system wakes up the cel l B as a substitute cell and is in a power-saving state.
  • cel l B can bear the network coverage of cel l A.
  • cel l A When cel l B has a cell failure, cel l A is in a power-saving state.
  • the network management system determines that the cell failure occurs in the cel l B, the network management system wakes up cel l A, which can avoid the problem that the network coverage vulnerability occurs due to the cell failure of the cell that covers the network coverage due to the cel l A itself being in the energy-saving state.
  • the network management system may send the power saving disable information (DisableES) to the base station by using a separate message to wake up the corresponding cell and keep the cell in a normal state.
  • the base station can determine that all cells subordinate to the base station need to be processed by default by receiving the message. If the message also carries an object identifier that prohibits the power saving function, such as a cell identifier or a base station identifier, the base station can determine which cells need to be processed by receiving the message.
  • the message may also have the meaning that the cell is invalid in other cells, so that the base station receiving the message knows the reason for the energy-saving disable.
  • the network management system sends a message containing the energy-saving disable information DisableES to the eNB1 through the itf-N interface.
  • the energy saving and disabling information includes the cell identifier of the cell cel A A that prohibits the energy saving function
  • the eNB1 learns that the cel l A is converted to the normal state, and at least keeps the cel l A in the normal state until the cell cel l B that knows that the cell failure has occurred Solve the problem of cell failure.
  • the power-saving disabling information includes the base station identity, the eNB1 may learn that at least the cell cel l B that has been kept in the normal state from all the cells belonging to the eNB1 until the cell failure is known has solved the cell failure problem.
  • the eNB1 When the eNB1 receives the message including the energy-saving disable information DisableES, if only some cells in the cell belonging to the eNB1 are in the power-saving state, the eNB1 first changes the state of the cell to the normal state, and then keeps the cell subordinate to the eNB1 in the normal state. Until the cell cel l B, which is aware of the cell failure, has solved the cell failure problem, thereby avoiding loopholes in the network coverage.
  • the network management system can also carry the energy saving and disabling information by using the wakeup message.
  • the network management system sends a wake-up message to the eNB1 through the itf-N interface, where the wake-up message includes a power-saving disable information DisableES.
  • the power-saving disable information includes a cell identifier or base station identification information that prohibits the energy-saving function.
  • the wakeup message also includes reason information for prohibiting the power saving function. If the network management system sends the cell identity of the cel l A and the cell failure cause value to the eNB1, the eNB1 learns that the state of the cel l A needs to be changed to positive due to the cell failure of other cells.
  • the network management system sends the base station identifier of the eNB1 to which the cell A belongs and the cell failure cause value to the eNB1, the eNB1 learns that at least the state of all the cells belonging to the eNB1 is kept in a normal state until the knowledge occurs due to the cell failure of other cells. The cell that has failed in the cell has solved the problem of cell failure.
  • the eNB1 When the eNB1 receives the awake message, if only a part of the cells belonging to the eNB1 are in the power-saving state, the eNB1 first changes the state of the cell to the normal state, and then keeps the cell subordinate to the eNB1 in a normal state until the cell failure is known.
  • the cell cell B has solved the cell failure problem, thereby avoiding loopholes in network coverage.
  • the waking message further includes configuration parameter information, that is, the network management system notifies the eNB1 of the configuration parameters related to the cell A, so that the eNB1 completes the modification of the configuration parameter related to the cell A, so that the cell A can be implemented after being awakened. Better coverage. If the wakeup message does not include the configuration parameter information, the cell A may use the original configuration parameter information or receive a configuration parameter modification command including the new configuration parameter of the cell A.
  • the S850 and the network management system notify the cell B of the failure of the cell B to the cell that uses the cell B as the substitute cell and is in the normal state.
  • cell B can bear the network coverage of cell C, and cell C is not in the energy-saving state when cell failure occurs in cell B.
  • the network management system notifies cell eNB of cell B to the eNB1 to which cell C belongs, and eNB1 is in cell B.
  • the cell C does not enter the energy saving according to the preset automatic energy saving policy, that is, the eNB1 can keep the cell C in the normal state of non-energy saving until the cell end of the cell B is determined to be invalid, thereby avoiding network coverage vulnerability.
  • the network coverage of cell C continuously changes the ping-pong effect of the receiver between cell C and cell B.
  • the processing mode of the eNB1 is similar to the processing mode of the S250 in other embodiments of the present invention, and details are not described herein again.
  • the network management system can adopt the processing manner of sending the energy saving and disabling information in the foregoing S840.
  • the energy saving and disabling information includes the cell identifier of the cell C, so that the eNB1 needs to keep the cell C in the normal state due to the cell failure in other cells until The cell failure of the cell B has been resolved and will not be described in detail here.
  • the method for the base station according to the other embodiments of the present invention to learn whether the cell in which the cell failure has ended the cell failure may be combined into the embodiment, or the network management system sends an inquiry message to the eNB2 and receives the feedback message, or the network management system receives the eNB2.
  • the notification is sent, so that the cell B that has failed the cell has resolved the cell failure problem, and then the network management system notifies the eNB1 to enable the eNB1 to know the cell end of the cell B in time, and to prevent the cell A from entering the energy saving.
  • Another embodiment of the present invention further provides a cell energy saving enabling method, which is applicable to network management system activation.
  • the various scenarios of the energy-saving function of the cell in the normal state include the method for processing the cell failure in the centralized architecture provided by the other embodiments of the present invention.
  • eNB1 disables the cell energy saving of cell A even if cell A remains in the normal state.
  • the eNB1 receives the energy saving enable information, it can resume using the automatic energy saving policy to determine whether the cell A can enter the energy saving, so that the cell A has the opportunity to re-enter the energy saving.
  • the network management system can send the energy-saving enable information (EnableES) to the base station through a separate message to enable the energy-saving function of the corresponding cell.
  • EnableES energy-saving enable information
  • the base station can determine that all cells subordinate to the base station need to be processed by default by receiving the message. If the message carries an object identifier that enables the power saving function, such as a cell identifier or a base station identifier, the base station can determine which cells need to be processed by receiving the message.
  • the message may also have the reason that the message is sent because the other cell has resolved the cell failure problem, so that the base station receiving the message knows the reason why the energy saving is enabled.
  • the network management system sends a message including the energy saving enable information EnableES to the eNB1 through the itf-N interface.
  • the energy-saving enablement information includes the cell identifier of the cell A of the cell that enables the energy-saving function
  • the eNB1 learns that the cell A does not need to be maintained in the normal state. If the automatic energy-saving policy is met, the cell A can enter the energy-saving state. If the power saving enable information includes the base station identity of the eNB1, the eNB1 can know that all cells belonging to the eNB1 do not need to remain in the normal state.
  • the network management system can also carry the energy-saving enable information by using a wake-up message.
  • the network management system sends a wake-up message to the eNB1 through the itf-N interface, where the wake-up message includes the energy-saving enable information EnableES, and the power-saving enable information includes the cell identifier or the base station identification information for enabling the power-saving function.
  • the wake-up message also includes information on why the power-saving feature is enabled. If the network management system sends the cell ID of the cell A and the cause value of the cell failure to the eNB1, the eNB1 learns that it is not necessary to continue to keep the cell A in the normal state due to cell failure in other cells.
  • the eNB1 learns that it is not necessary to continue to maintain the normal state of all the cells belonging to the eNB1 due to cell failure in other cells. .
  • the base station to which the cell in the normal state belongs can restore the energy-saving function of the cell in time, so that the cell has the opportunity to enter the energy-saving as soon as possible, and reduce the power consumption of the base station.
  • Another embodiment of the present invention provides a processing method related to a cell configuration parameter, which may be combined with a method for processing a cell failure applicable to a centralized architecture provided by other embodiments of the present invention.
  • the cell B can bear the network coverage of the cell A.
  • the cell fails in the cel l B, and the network management system implements the wake-up cel l A by sending a wake-up message to the eNB1 to which the cell A belongs.
  • the eNB1 receives a configuration parameter modification command, where the configuration parameter is modified.
  • the change command includes the configuration parameters related to cel l A and the reason for the modification of the configuration parameters.
  • the reason for the modification may be a cause value indicating a cell failure, or a cause value different from a modification caused by a cause of non-cell failure.
  • the modification reason of the configuration parameter distinguishes at least two types of identifiers, because other cells (such as Cel l B) When a cell failure occurs and the configuration parameters are modified, one of the identifiers is uniformly used, which is different from the case where the configuration parameters are modified for other reasons.
  • the eNB1 also saves the modified configuration parameters and identifies the modification reason of the configuration parameters accordingly.
  • the configuration parameter related to the cel l A modified by the cel l B cell failure may be restored to the original configuration parameter when the modification is not performed, and
  • the fast recovery of the configuration parameters related to the cell reduces the impact of the cell (such as cell A) due to cell failure of other cells (such as cel l B ).
  • another embodiment of the present invention provides a base station eNB1, where the base station includes a sending module 1100 and a processing module 1200.
  • the sending module 1100 is configured to receive a notification that the second cell has a cell failure
  • the processing module 1200 is configured to convert the first cell from the energy saving state to the normal state, where the first cell belongs to the eNB1, and the second cell is the first
  • the cell bears the coverage of the replaced cell, and optionally, keeps the first cell in a normal state.
  • the processing module 1200 is configured to maintain the third cell in a normal state until the second cell failure has been resolved.
  • the third cell belongs to the eNB1, and the second cell is the cell that covers the coverage for the third cell.
  • the sending module 1100 is specifically configured to receive a cell identifier of the second cell and a cell failure indication information indicating that the cell in the second cell fails.
  • the sending module 1100 is specifically configured to receive a power saving activation message, where the energy saving activation message includes a cell identifier and activation cause information of the second cell, where the activation reason information includes a cell failure cause value.
  • the second cell is subordinate to the second base station, and the energy saving activation message is sent by the second base station.
  • the base station further includes a receiving module 1300, configured to receive delayed start time information, where the delayed start time information includes waiting time information.
  • the processing module 1200 is further configured to start a state transition process of the first cell when the receiving module 1300 receives the delayed start time information and arrive at the waiting time.
  • the base station further includes a receiving module 1300, configured to receive delayed start time information, where the delayed start time information includes start time information.
  • the processing module 1200 is further configured to start a state transition process of the first cell when the receiving module 1300 arrives at the start time.
  • the processing module 1200 is further configured to determine that the second cell is a cell that covers coverage replacement for the first cell.
  • the receiving module 1300 is specifically configured to: after the processing module 1200 determines that the second cell is a cell that covers the replacement for the first cell, receive a notification that the second cell has a cell failure.
  • the processing module 1200 is specifically configured to: after the receiving module 1300 receives the notification that the second cell has a cell failure, determine that the second cell is a cell that replaces the coverage for the first cell.
  • the sending module 1100 is further configured to: before the receiving module 1300 receives the notification that the second cell has a cell failure, and after the processing module 1200 determines that the second cell is the cell that covers the coverage for the first cell, send the first cell.
  • the cell identifier and the cell energy saving indication information indicates that the first cell enters the energy saving.
  • the processing module 1200 is specifically configured to determine, according to the identifier of the second cell that is received by the receiving module 1100, that the second cell is a cell that replaces the coverage for the first cell.
  • the receiving module 1100 receives the neighbor cell relationship information ESCompensatingCel lRelation, or the energy-saving compensation cell information EUtranRelation, or the cell attribute information EUtranGenericCel l, where the neighbor relationship information or the energy-saving compensation cell information or the cell attribute information carries the second Identification information of the cell.
  • the sending module 1100 is further configured to send the cell identifier of the first cell, for example, to the IRP Manager, before the receiving module 1100 receives the identifier of the second cell.
  • the receiving module 1100 is further configured to receive a configuration parameter modification command, where the configuration parameter of the first cell and the modification reason of the configuration parameter are included, where the modification reason is a cell failure cause value, or a modification caused by a cause of the non-cell failure.
  • the reason value is distinguished.
  • the receiving module 1100 is further configured to receive a notification that the cell of the second cell is terminated
  • the processing module 1200 is further configured to: keep the first cell in a normal state or convert the first cell from a normal state according to the automatic energy saving policy. For energy saving status.
  • the base station provided in this embodiment can avoid the occurrence of a loophole in the network coverage due to the cell failure of the second cell that is covered by the network coverage due to the first cell itself being in the energy-saving state.
  • FIG. 6 shows another embodiment of the present invention, where the device includes a receiving module 3100 and a processing module.
  • the receiving module 3100 is configured to determine that a cell failure occurs in the second cell, for example, receiving a cell identifier of the second cell and a cell failure indication information indicating that the cell is inactive in the second cell, where the processing module 3200 is configured to notify the first base station by using the network management northbound interface. Converting the first cell from the energy-saving state to the normal state, where the first cell belongs to the eNB1, and the second cell is the cell that covers the replacement for the first cell, and optionally, the first cell is kept in the normal state.
  • the cell failure indication information is sent by the second base station to which the second cell belongs.
  • the processing module 3200 is configured to send, by using the network management northbound interface, reason information for prohibiting the energy saving function to the first base station, and the reason information of the energy saving function is the cell failure cause value.
  • the processing module 3200 is further configured to send, by using the network management northbound interface, an object identifier that prohibits the energy saving function to the first base station, for example, the object identifier of the energy saving function is prohibited.
  • the processing module 3200 is specifically configured to receive a wakeup message, where the wakeup message includes a reason information for prohibiting the power saving function or an identifier for prohibiting the power saving function, where the wakeup message further includes configuration parameter information of the first cell.
  • the processing module 3200 is further configured to send a configuration parameter modification command to the first base station, where the configuration parameter modification command includes a configuration parameter of the first cell and a modification reason of the configuration parameter, for example, the modification cause is a cell failure cause value, or The cause value that is different from the modification caused by the cause of the non-cell failure.
  • the processing module 3200 is further configured to: before the receiving module 3100 receives the cell identifier of the second cell and the cell failure indication information indicating that the second cell has a cell failure, send, to the first base station, indication information related to the first cell.
  • the indication information is used to indicate that the first cell is allowed to save energy.
  • the indication information is the energy-saving compensation cell information isEScompensateCel l in the neighbor relationship information EUtranRelation, or the energy-saving identification information isESAl lowed in the cell attribute information EUtranGenericCel l of the first cell.
  • the receiving module 3100 is further configured to receive a notification that the cell failure is complete
  • the processing module 3200 is further configured to send, by using the network management northbound interface, reason information for enabling the energy saving function to the first base station, for example, enabling the energy saving function.
  • the cause information is the cell failure resolved cause value.
  • the processing module 3200 is further configured to send, by using the network management northbound interface, the object identifier that enables the energy saving function to the first base station, for example, the object identifier of the energy saving function is the cell identifier of the first cell or the base station of the first base station. logo.
  • the device provided by this embodiment may be an IRP Manager.
  • the device provided by the present invention may avoid a network coverage failure caused by a cell failure of a second cell that is covered by the network coverage due to the first cell itself being in an energy-saving state.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

小区失效的处理方法及其设备 本申请要求于 2010年 4月 30日提交中国专利局、 申请号为 201010169453. 9、发明 名称为 "小区失效的处理方法及其设备"的中国专利申请的优先权, 其全部内容通过引 用结合在本申请中。 技术领域 本发明涉及移动通信领域, 特别是涉及小区失效的处理方法及其设备。 发明背景 自组织网络中的基站可能具有自动节能功能,并将小区区分为处于节能态的小区和 处于非节能的正常态的小区。 具体的, 基站根据预设的自动节能策略, 例如结合当前和 预期网络的业务使用情况等因素, 自动通过关闭基站的部分或全部功能, 或者降低基站 的发射功率, 从而使部分或全部从属于该基站的正常态的小区转换为节能态, 既不损失 用户服务质量, 又可以降低基站的耗电量。
小区的失效(Outage )是一种网络出错场景。在自组织网络中, 小区失效的自动处 理功能可以在小区失效发生时, 快速地检测到小区失效, 并自动对小区失效进行相应处 理。
现有技术中,自组织网络中的基站自动节能功能与小区失效的自动处理功能可能存 在冲突。 发明内容
本发明实施例提供一种小区失效的处理方法和设备。
本发明一个实施例提供的方法包括:第一基站接收第二基站在第二小区发生小区失 效时发送的节能激活消息, 所述节能激活消息用于禁止节能功能, 其中, 第二小区从属 于所述第二基站; 所述第一基站根据节能激活消息将第一小区由节能状态转换为正常 态, 其中, 第一小区从属于所述第一基站, 所述第二小区是为第一小区承担覆盖替代的 小区; 或者, 所述第一基站根据节能激活消息保持第三小区处于正常态直到获知第二小 区的小区失效已解决, 其中, 第三小区从属于所述第一基站, 所述第二小区是为第三小 区承担覆盖替代的小区。 本发明一个实施例提供的方法包括:一种小区失效的处理方法,其特征在于,包括: 第一基站接收第二基站发送的用于指示第二小区发生小区失效的通知消息,其中第二小 区从属于所述第二基站; 所述第一基站根据通知消息将第一小区由节能状态转换为正常 态, 其中, 第一小区从属于所述第一基站, 所述第二小区是为第一小区承担覆盖替代的 小区; 或者, 所述第一基站根据通知消息保持第三小区处于正常态直到获知第二小区的 小区失效已解决, 其中, 第三小区从属于所述第一基站, 所述第二小区是为第三小区承 担覆盖替代的小区。
本发明一个实施例提供的方法包括:集成参考点管理设备发现第二小区发生小区失 效时,所述集成参考点管理设备通过网管北向接口使第一基站将第一小区由节能状态转 换为正常态, 其中, 第一小区从属于所述第一基站, 所述第二小区是为第一小区承担覆 盖替代的小区; 或者, 集成参考点管理设备发现第二小区发生小区失效时, 所述集成参 考点管理设备通过网管北向接口将第三小区保持在正常态直到获知第二小区的小区失 效已解决, 其中, 第三小区从属于所述第一基站, 所述第二小区是为第三小区承担覆盖 替代的小区。
本发明一个实施例提供的基站包括:所述发送模块用于接收第二小区发生小区失效 的通知; 所述处理模块用于将第一小区由节能状态转换为正常态, 其中, 第一小区从属 于所述基站, 第二小区是为第一小区承担覆盖替代的小区; 或者, 所述处理模块用于将 第三小区保持在正常态直到第二小区失效已解决, 其中, 第三小区从属于所述基站, 第 二小区是为第三小区承担覆盖替代的小区。
本发明一个实施例提供的设备包括: 所述接收模块用于确定第二小区发生小区失 效;
所述处理模块用于通过网管北向接口通知第一基站将第一小区由节能状态转换为 正常, 其中, 第一小区从属于所述第一基站, 第二小区是为第一小区承担覆盖替代的小 区态; 或者, 所述处理模块用于通过网管北向接口通知第一基站将第三小区保持在正常 态直到获知第二小区的小区失效已解决, 其中, 第三小区从属于所述第一基站, 第二小 区是为第三小区承担覆盖替代的小区。
应用本发明实施例提供的方法或设备, 可以避免出现由于第一小区本身处于节能 态, 而承担其网络覆盖的第二小区发生小区失效而导致网络覆盖出现漏洞。 附图简要说明 图 1 (a)为本发明的一个实施例提供的分布式架构示意图;
图 1 (b)为本发明的另一个实施例提供的集中式架构示意图;
图 2为本发明的另一个实施例提供的小区失效处理的方法流程图;
图 3为本发明的另一个实施例提供的小区失效处理的方法流程图;
图 4为本发明的另一个实施例提供的小区失效处理的方法流程图;
图 5为本发明的另一个实施例提供的基站示意图;
图 6为本发明的另一个实施例提供的设备示意图。 实施本发明的方式 下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整 地描述, 显然, 所描述的实施例仅是本发明的一部分实施例, 而不是全部的实施例。 基 于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有 其他实施例, 都属于本发明保护的范围。
如图 1 (a)所示,本发明实施例中的自组织网络采用分布式实现架构时,小区 A( cell A) 从属于基站 1 ( eNBl ), 小区 B ( cell B) 从属于基站 2 ( eNB2), eNBl与 eNB2之间 为 X2接口。 其中, 在 cell A为节能态时, 可以由 cell B承担 cell A的网络覆盖, 艮 P: cell B是可以为 cell A提供覆盖替代的小区, cell B可简称为 cell A的替代小区。 也就是说, 当 cell A从属的 eNBl自动节能功能开启时, 根据节能功能的策略设置, 在 某一时刻开始让 cell A处于节能态(即进入节能),可以由 cell B来接管完成覆盖 cell A的网络。
如图 1 (b)所示, 本发明实施例中的自组织网络采用集中式架构时, 小区 A ( cell A) 从属于基站 1 ( eNBl ), 小区 B ( cell B) 从属于基站 2 (eNB2), 并且 eNBl和 eNB2被同 一个集成参考点管理设备 (IRP Manager) 管理, 在本发明其他实施例中网管系统可以 指 IRP Manager, 也可以是包括 IRP Manager的多设备合集。 其中, eNBl位于集成参考 点代理(IRP Agentl )的内部, 可以通过 IRP Agent与网管系统之间的网管北向(itf_N) 接口通信, eNB2和 IRP Agent2为两个独立设备, eNB2与 IRP Agent2中的网元管理者 (Element Manager)通信,从而通过 IRP Agent2与网管系统之间的 itf_N接口实现 eNB2 与网管系统的通信。 此外, 本发明各实施例中的 eNB与 IRP Agent是否为独立设备不影 响各实施例的实现, 本发明各实施例中不再详细说明 eNB通过 IRP Agent与网管系统进 行通信的细节, 而是将位于 IRP Agent内部的 eNB与 IRP Manager通信和 IRP通过外部 设备 IRP Agent与 IRP Manager通信的情况统称为 eNB通过 itf-N接口与网管系统进行 通信。
本发明的一个实施例提供一种分布式架构下的小区失效的处理方法, 以图 1(a)为 例, 假设在 cell A为节能态时, 由 cell B承担 cell A的网络覆盖。 当 cell B发生小 区失效时, cell A从节能态转换为正常态, 从而使 cell A恢复承担原来的覆盖, 从而 降低替代小区发生小区失效对网络覆盖的影响。 进一步的, 在 cell B的小区失效问题 被解决之前, cell A不会按照预设的自动节能策略重新进入节能。 此外, 如果当 cell A 为正常态时, cell B发生小区失效, 则在 cell B的小区失效问题被解决 (即小区失效 结束)之前, cell A不会按照原来节能的策略设置进入节能态。 因此, 可以避免网络覆 盖出现漏洞, 或者不断变换小区网络覆盖的接管者的乒乓效应。
以图 1(a)提供的分布式架构为例,本发明的另一个实施例提供一种小区失效的处理 方法, 如图 2所示, 包括如下步骤。
S210、 eNB2检测到 cell B发生小区失效。
S220、 eNB2向 eNBl发送第一通知消息。
例如, eNB2向所有相邻 eNB发送第一通知消息, eNBl为 eNB2的相邻 eNB之一, 可 以接收到该第一通知消息。
又如, eNB2可以获取 cell B的相关信息以确定哪个或哪些小区可以将 cell B作为 替代小区, 然后 eNB2向上述小区发送第一通知消息。
其中, 该第一通知消息可以包括小区标识和小区失效指示信息, 该小区失效指示用 于指示该第一通知消息中的小区标识对应的小区是否发生失效。 例如, 该第一通知消息 中的小区标识为 cell B的小区标识, 小区失效指示表明该小区发生小区失效。
可选的, eNB2还可以在该第一通知消息或者其他消息中发送延迟启动时间信息。例 如, 延迟启动时间信息包括等待时长信息, 等待时长信息指示 eNBl在收到该信息到启 动 cell A的状态转换过程的等待时长, 假设等待时长信息对应的时长为 T, 则 eNBl在 收到该延迟启动时间信息之后, 等待时长1\ 如果未获知 cell B的小区失效已解决, 则 开始对 cell A的状态转换过程, 使 cell A的节能态转换为正常态。 又如, 延迟启动时 间信息包括开始时间信息, 该开始时间信息指示 eNBl在启动 cell A的状态转换过程的 时间, 假设该开始时间信息对应时刻^ 贝 Ij eNBl在 t时刻时仍未获知 cell B的小区失 效已解决, 则开始对 cell A的状态转换过程, 使 cell A的节能态转换为正常态。 上述 处理方式适用于在 cell A对网络覆盖要求不高的情况, 例如 cell A为非重要小区。 当 cell B在发生小区失效之后, 可能先尝试自行恢复, 如果在一段时间内解决了小区失效 的问题, 则无需使 cell A改变状态, 并且对 cell A的网络覆盖影响不大。 如果一段时 间内没有解决小区失效的问题, eNBl再将 cell A由节能态转换为正常态, 恢复承担原 来的覆盖。
S230、 eNBl接收该第一通知消息, 并确定将 cell B作为替代小区的小区是否处于 节能态。如果存在处于节能态的上述小区, 执行 S240; 如果存在未处于节能态的上述小 区, 执行 S250。
例如, eNB2可能向所有相邻 eNB发送第一通知消息, eNBl可以根据第一通知消息 获知 cell B发生小区失效, 然后获取从属于 eNBl的各小区的相关信息以确定是否存在 小区可以将 cell B作为替代小区, 例如获取 cell A的相关信息以确定 cell B是否为 cell A的替代小区, 并且目前上述小区是否处于节能态。
S240、 eNBl转换将 cell B作为替代小区、 并且处于节能态的小区的状态, 转换后 的小区状态为正常态。
例如, cell A处于节能态, 由 cell B承担 cell A的网络覆盖, 则 eNBl将 cell A 由节能态转换为正常态, 从而避免出现由于 cell A本身处于节能态, 而承担其网络覆 盖的小区发生小区失效而导致网络覆盖出现漏洞。
可选的, 如果 eNBl接收到了 eNB2发送的延迟启动时间信息, 例如在 S230中 eNBl 接收的第一通知消息包括延迟启动时间信息, 则 eNBl在等待延迟启动时间后, 启动对 cell B的状态转换过程, 使 cell A的状态转换为正常态。 如果 eNBl在等待延迟启动时 间时, 获知 cell B已解决小区失效的问题, 则 eNBl无需因 cell B曾经发生小区失效 而转换 cell A的状态。
如果在 S230中,确定存在多个处于节能态、且由 cell B承担其网络覆盖的小区中, 则 eNBl可以将全部这些小区或者其中部分小区的状态转换为正常态。
进一步的, 在 eNBl没有获知 cell B的小区失效结束之前, 不会让 cell A按照预 设的自动节能策略重新进入节能, 即 eNBl会至少将 cell A保持在非节能的正常态直到 确定 cell B的小区失效结束, 从而避免网络覆盖出现漏洞。
S250、 在 cell B的小区失效结束之前, eNBl使将 cell B作为替代小区、 并且处于 正常态的小区保持在正常态。
本步骤中, 假设 cell B是 cell C的替代小区, 即可以承担 cell C的网络覆盖。 在 cell B发生小区失效时, cell C并未处于节能态, 则 eNBl保存接收到的小区失效指 示和小区标识, 并在 cell B的小区失效结束之前, 使 cell C不会按照预设的自动节能 策略进入节能, 即 eNBl可以至少将 cell C保持在正常态直到确定 cell B的小区失效 结束。上述处理方式中, eNBl将小区失效指示的优先级视为高于预设的自动节能策略的 优先级, 例如存在 cell B 的小区标识与和相应的小区失效指示时, 不再考虑其他自动 节能策略, 一直保持 cell C处于正常态。 当获知 cell B的小区失效结束时, eNBl清除 保持的小区失效指示, 并根据预设的自动节能策略考察是否需将 cell A转换为节能态。 上述处理方式避免了出现可以承担 cell C的网络覆盖的 cell B发生小区失效时, cell C进入节能而造成网络覆盖出现漏洞, 或者 cell C的网络覆盖在 cell C和 cell B之间 不断变换接管者的乒乓效应。
以图 1(a)提供的分布式架构为例,本发明另一个实施例还提供一种小区失效的处理 方法, 如图 3所示, 包括如下步骤。
S510、 当 cell A进入节能或准备进入节能时, cell A所从属的 eNBl向 cell A的 相邻小区 cell B所从属的 eNB2发送第二通知消息。
例如, eNBl 向所有与 cell A相邻小区所从属的 eNB发送第二通知消息, 则 eNB2 可以接收到该第二通知消息。
又如, eNBl 可以获取 cell A 的相关信息以确定哪个或哪些小区可以作为 cell A 的替代小区, 然后 eNB2向上述小区发送第二通知消息。
其中, 该第二通知消息可以包括小区标识和小区节能指示信息, 该小区节能指示信 息用于指示该第二通知消息中的小区标识对应的小区是否进入节能。 例如, cell A进入 节能时, 该第二通知消息包括 cell A的小区标识, 小区节能指示信息指示该小区已转 换为节能态。
本步骤中, cell A在准备进入节能时, eNBl发送第二通知消息, 则 cell A在 eNBl 发送第二通知消息之后立即进入节能或者等待一段时间后进入节能,在等待一段时间过 程中, eNBl可以完成与 cell A进入节能相关的处理。
S520、 cell B所从属的 eNB2接收到第二通知消息, 并使 cell B承担 cell A的网 络覆盖。
由于 eNBl可能向所有与 cell A相邻小区所从属的 eNB发送第二通知消息,所 eNB2 可以在本步骤中确定从属于 eNB2的小区是否包括可以作为 cell A的替代小区的小区。
S530、 eNB2检测到 cell B发生小区失效。
S540、 eNB2向可以将 cell B作为替代小区的 cell A所从属的 eNBl发送节能激活 消息, 该消息用于通知 eNBl将 cel l A转换为正常态。
例如, 如果 eNB2在检测到 cel l B发生小区失效之前, 已保存了 cel l A处于节能 态, 则可以确定需要唤醒小区为 cel l A。
又如, eNB2可以获取 cel l B的相关信息以确定哪个或哪些小区可以将 cel l B作为 替代小区, 然后 eNB2向上述小区发送节能激活消息, 或者, eNB2向正处于节能态的上 述小区发送节能激活消息。
可选的,该节能激活消息为包括待激活小区的小区标识(Served Cel ls To Activate ) 和激活原因(Reason For Activation)信息的小区激活请求(CELL ACTIVATION REQUEST) 消息。 例如, 当 eNB2根据 cel l B的相关信息确定由于 cel l B发生小区失效而需要激 活 cel l A 时, Served Cel ls To Activate 信息为 cel l A 的小区标识, Reason For Activation信息为小区失效原因值 (C0), 即该原因值表明激活该小区的原因为发生小 区失效。 可选的, Reason For Activation可以为枚举型, 例如, 除了包括小区失效原 因值之外, 还可以包括负载均衡原因值 (LB), 用于表明激活节能小区的原因为负载均 衡, 即 eNB2确定由负载均衡原因而激活某小区时, 可以发送节能激活消息给该小区所 从属的基站, 该节能激活消息包括该小区的小区标识和负载均衡原因值。
可选的, eNB2还可以在该节能激活消息中发送延迟启动时间信息, 用于指示 eNBl 在收到该信息到启动 cell A的状态转换过程的等待时长。
S550、 eNBl接收节能激活消息, 使 cel l A由节能态转换为正常态。
例如, eNBl根据第二通知消息中的激活原因确定待激活小区的小区标识对应的小区 是否处于节能态, 如果是, 将 cel l A的状态转换为正常态, 从而避免出现由于 cel l A 本身处于节能态, 而承担其网络覆盖的小区发生小区失效而导致网络覆盖出现漏洞的问 题。
如果 eNBl接收的节能激活消息包括延迟启动时间信息, 则 eNBl在等待延迟启动时 间后, 启动对 cel l B的状态转换过程, 使 cel l A的状态转换为正常态。 如果 eNBl在 等待延迟启动时间时, 获知 cel l B已解决小区失效的问题, 则 eNBl无需因 cel l B曾 经发生小区失效而转换 cel l A的状态。
进一步的, 在 eNBl没有获知 cel l B的小区失效结束之前, 保持 cel l A处于正常 态。
上述实施例中, 当 cel l B发生小区失效之后, eNB2可以将 cel l B发生小区失效通 知给其他 eNB, 接收到通知的 eNB确定针对哪些小区进行哪种处理。 eNB2也可以确定针 对哪些小区进行哪种处理, 然后通知上述小区所从属的 eNB进行激活处理, 例如通过节 能激活消息使 eNBl将节能态的 cell A唤醒, 使得 cell A的状态转换为正常态。当 eNBl 与 eNB2 中的一个基站可以确定进行小区失效处理的对象是哪些小区时, 即可实现网络 中的自动节能功能与发生小区失效的场景的协调处理。
本发明各实施例中的基站可以通过查询内部数据库或者其他具有数据库功能的外 部设备来确定小区之间的替代关系。 有数据库功能的外部设备包括网管系统 (IRP Manager), 则对于基站来说, 可以通过 itf-N接口发送包括待查询小区的小区标识的查 询消息给网管系统, 再接收网管系统提供的查询结果, 从而确定小区之间的替代关系。 对于网管系统来说,不需要通过接口消息,根据内部数据即可确定小区之间的替代关系。 这种情况下, 网管系统对基站的管理更加便捷, 能够使不同基站获得的信息一致, 并且 支持运营商对网管系统中的小区替代关系进行配置和更新。如果基站的内部数据库保存 小区之间的替代关系, 则基站不需要通过接口小区, 就可以确定小区之间的替代关系, 从而减少对空口资源的占用, 并且支持运营商直接配置或更新基站中的小区替代关系。
例如, 本发明另一个实施例提供了基站获知小区之间替代关系的方法, 该实施例中 小区之间的替代关系是指待查询的小区可以作为其他小区的替代小区的情况。 以下假设 待查询的小区为 ce 11 B进行说明。
可选的, 本实施例中的基站接收与 cell B的节能相关的邻区关系信息, 即 cell B 的邻区关系信息 ESCompensatedCellRelation, 该信息包括 cell B可以作为其替代小区 的小区的小区信息 (esCompensatedCell)。 例如, 该 esCompensatedCell 为 cell A的 小区标识信息, 则基站确定 cell B可以作为 cell A的替代小区。 如果基站查询到的 ESCompensatedCellRelation 信息包括多个小区的小区标识信息, 则基站确定 cell B 可以作为上述这些小区的替代小区。
可选的, 本实施例中的基站接收与 cell B相关的邻区关系信息, 即 cell B的邻区 关系信息 EUtranRelation。 该 EUtranRelation信息可以包括 cell B的相邻小区信息 (adjacentCell), 表示 adjacentcell信息对应的小区与 cell B之间存在相邻关系, 还用于表示 cell B为 adjacentcell信息对应的小区的替代小区。 例如, adjacentcell 信息包括 cell A的小区标识, 则基站确定 cell B可以作为 cell A的替代小区。 如果 基站查询到 adjacentcell信息包括多个小区的小区标识信息, 则基站确定 cell B可以 作为上述这些小区的替代小区。
可选的, 本实施例中的基站接收与 cell B相关的小区属性信息, 即 cell B的小区 属性信息 EUtranGenericCell, 该 EUtranGenericCell 信息包括补偿小区列表信息 (compensatedCellList)。 该 compensatedCellList信息表示 cell B可以作为哪些小 区的替代小区。 例如, compensatedCellList信息包括 cell A的小区信息 (如小区标识 信息), 则基站确定 cell B可以作为 cell A的替代小区。 如果基站查询到与 cell B相 关的 compensatedCellList信息包括多个小区的小区信息 (如小区标识信息), 则基站 确定 cell B可以作为上述这些小区的替代小区。
本发明另一个实施例提供一种基站获知小区之间替代关系的方法,本实施例与上述 基站获知小区之间替代关系的实施例不同,本实施例中小区之间的替代关系是指其他小 区可以作为待查询小区的替代小区的情况。 以下假设待查询的小区为 cell A进行说明。
可选的, 本实施例中的基站接收与 cell A的节能相关的邻区关系信息, 即 cell A 的邻区关系信息 ESCompensatingCellRelation, 该 ESCompensatingCellRelation信息 包括可以作为 cell A的替代小区的小区的小区信息 (esCompensatingCell)。 例如, 该 esCompensatingCell 为 cell B的小区标识信息, 则基站确定 cell B可以作为 cell A 的替代小区。 如果基站查询到的 ESCompensatingCellRelation信息包括多个小区的小 区标识信息, 则基站确定上述这些小区均可以作为 cell A的替代小区。
可选的, 本实施例中的基站接收与 cell A相关的邻区关系信息, 即 cell A的邻区 关系信息 EUtranRelation, 该 EUtranRelation 信息包括 cell A 的相邻小区信息
(adjacentCell), 表示 adjacentcell信息对应的小区与 cell A之间存在相邻关系, 还用于表示 adjacentcell 信息对应的小区可以作为 cell A 的替代小区。 例如, adjacentcell信息包括 cell B的小区标识信息, 则基站确定 cell A为 cell B的替代 小区。 如果基站查询到 cell A的 adjacentcell信息包括多个小区的小区标识信息, 则 基站确定上述这些小区均可以作为 cell A的替代小区。
可选的, 本实施例中的基站接收与 cell A相关的小区属性信息, 即 cell A的小区 属性信息 EUtranGenericCell,该信息包括补偿小区列表信息(compensatingCellList)。 该 compensatingCellList 信息表示哪些小区可以作为 cell A 的替代小区。 例如, compensatingCellList信息包括 cell B 的小区信息 (如小区标识信息), 则基站确定 cell B可以作为 cell A的替代小区。 如果基站查询到 compensatingCellList信息包括 多个小区的小区信息 (如小区标识信息), 则基站确定上述这些小区均可以作为 cell A 的替代小区。
上述提供基站获知小区之间替代关系的方法的实施例中, 查询替代关系的基站可以 根据从属于自身的小区的标识查询到从属于自身的小区的信息, 也可以根据其他小区的 信息查询到该其他小区的信息, 并确定两个小区之间是否具有替代关系, 上述实施例提 供的方法可以灵活的结合至本发明其他实施例提供的小区失效处理方法中。
本发明另一个实施例提供了基站确定小区是否被允许做节能的方法, 以下做详细说 明。
可选的,本实施例中的 eNBl接收与 cell A相关的邻区关系信息(EUtranRelation), 该 EUtranRelation信息包括 cell A的节能补偿小区信息 ( isEScompensateCell ), 用 于指示 cell A是否被允许做节能。 例如, eNBl接收的 isEScompensateCell信息指示 cell A被允许做节能, 则 eNBl可以根据预设的自动节能策略判断是否满足 cell A进入 节能的条件, 如果是, eNBl可以将 cell A由正常态转换为节能态, 从而使 cell A进入 节能。
可选的, 本实施例中的 eNBl 接收与 cell A 相关的小区属性信息 (EUtranGenericCell), 该 EUtranGenericCell信息包括 cell A的允许节能标识信息 (isESAllowed), 用于指示 cell A是否被允许做节能。例如, eNBl接收的 isESAllowed 信息指示 cell A做节能是被允许的, 则 eNBl可以根据预设的自动节能策略判断是否满 足 cell A进入节能的条件, 如果是, eNBl可以将 cell A由正常态转换为节能态, 从而 使 cell A进入节能。
本实施例中, 基站接收到的指示某小区可以做节能的信息可能由网管系统发送, 即 是否接收到指示某小区可以做节能的信息可以视为网管系统制定的与节能相关的配置。 也就是说, 网管系统制定的初始配置或更新的配置中, 不一定将所有的小区都配置为可 以做节能的小区, 因此, 网管系统区分可以做节能的小区和不可以做节能的小区, 再根 据区分的结果发送指示某小区是否被允许做节能的信息给基站, 从而实现网管系统对基 站的便捷管理, 使得基站获知哪些小区可以在基站判断满足自动节能策略时使其进入节 能, 降低该基站的耗电量。
此外, 通过本发明其他实施例提供的基站获知小区之间替代关系的方法, 基站可以 确定被允许做节能的小区的替代小区, 也可以确定不被允许做节能的小区作为哪个或哪 些小区的替代小区。
该实施例可以与本发明其他实施例提供的小区失效的处理方法相结合。 例如, 基站 在确定某小区可以做节能, 并使该小区进入节能后, 基站还可以执行本发明其他实施例 中该小区进入节能后的步骤, 例如 S510。 本发明另一个实施例提供一种基站获知发生小区失效的小区是否已结束小区失效 的方法, 其中, 基站向发生小区失效的小区所从属的基站发起查询, 并根据收到的反馈 消息确定该小区的小区失效是否结束, 上述查询可以通过周期性发送用于查询的消息来 实现, 也可以通过在预设的时刻发送用于查询的消息来实现, 还可以通过在现有通信过 程中的消息中包括查询字段来实现。
该实施例可以灵活的结合至本发明其他实施例提供的小区失效的处理方法中。 以 eNBl如何获知从属于 eNB2的 cell B的小区失效结束为例, eNBl可以周期性发送查询 消息给 eNB2,该查询消息用于查询 cell B的小区失效状态是否结束。 eNB2在检测到 cell B已不再是小区失效, 即 cell B已恢复小区有效时, 发送反馈消息, 该反馈消息用于指 示 cell B的小区失效结束。如果 eNB2检测到 cell B仍为小区失效,则 eNB2可以将 cell B的小区失效未结束通知给 eNBl, 也可以不发送反馈消息。
本发明另一个实施例还提供一种基站获知发生小区失效的小区是否已结束小区失 效的方法, 其中, 基站不主动进行查询, 而是等待发生小区失效的小区所从属的基站发 送的关于小区失效结束的通知, 即在没有接收到该通知时, 基站将发生小区失效的小区 视作未解决小区失效问题的小区。该实施例也可以灵活的结合至本发明其他实施例提供 的小区失效的处理方法中, 此处不再赘述。
以图 1 (b)提供的集中式架构为例,本发明另一个实施例还提供一种小区失效的处理 方法, 该方法通过网管系统对基站的统一管理, 实现基站节能与小区失效处理的协调。 本实施例中说明了网管系统通过接收 eNB2 的通知从而获知第二小区发生小区失效的可 选情况,本实施例中的网管系统还可以通过自身保存的信息判断出第二小区发生小区失 效, 下文不再详述。 如图 4所示, 本实施例可以包括如下步骤。
S810、 eNB2检测到 cell B发生小区失效。
S820、 eNB2将 cell B发生小区失效通知给网管系统。
例如, eNB2发送第三通知消息给网管系统。其中, 该第三通知消息包括发生小区失 效的小区 cell B的小区标识和小区失效指示信息, 其中, 小区失效指示信息指示小区 失效已发生。
S830、 网管系统接收该第三通知消息, 并确定将 cell B作为替代小区的小区是否 处于节能态。如果存在处于节能态的上述小区, 执行 S840; 如果存在未处于节能态的上 述小区, 执行 S850。
其中, 网管系统可以根据自身保存的小区之间的替代关系, 以及小区的状态信息确 定将该第三通知消息中的小区标识对应的小区 cel l B作为替代小区的小区是否处于节 能态。
本步骤中的网管系统可能确定存在多个与 cel l B有替代关系、 且处于节能态的小 区, 或者多个与 cel l B有替代关系、 且处于正常态的小区, 则网管系统可以同时或逐 一针对这些小区相应执行 S840或 S850。
S840、 网管系统唤醒将 cel l B作为替代小区、 并且处于节能态的小区。
例如, cel l B可以承担 cel l A的网络覆盖, 当 cel l B发生小区失效时, cel l A 正处于节能态。 当网管系统确定 cel l B发生小区失效时, 网管系统唤醒 cel l A, 可以 避免出现由于 cel l A本身处于节能态, 而承担其网络覆盖的小区发生小区失效而导致 网络覆盖漏洞的问题。
可选的, 网管系统可以通过单独的消息将节能禁用信息 (DisableES )发送给基站, 以唤醒相应小区并使该小区保持正常态。 例如, 一个消息本身具有禁用某小区的节能功 能的含义, 则基站通过接收该消息可以确定默认需要对从属于本基站的所有小区进行处 理。 如果该消息还携带禁止节能功能的对象标识, 例如小区标识或基站标识, 则基站通 过接收该消息就可以确定需要对哪些小区进行如何的处理。该消息还可以具有发送原因 是其他小区发生小区失效的含义, 从而使得接收该消息的基站获知节能禁用的原因。 例 如, 网管系统通过 itf-N接口向 eNBl发送包含节能禁用信息 DisableES的消息。 如果 该节能禁用信息包括禁止节能功能的小区 cel l A的小区标识, eNBl获知将 cel l A转换 为正常态, 并至少将 cel l A保持在正常态直到获知发生小区失效的小区 cel l B已解决 小区失效问题。 如果节能禁用信息包括基站标识, 则 eNBl可以获知至少将从属于 eNBl 的所有小区保持在正常态直到获知发生小区失效的小区 cel l B 已解决小区失效问题。 eNBl接收到该包含节能禁用信息 DisableES的消息时, 如果从属于 eNBl的小区中仅部 分小区正处于节能态, eNBl先将上述小区的状态转变为正常态, 然后保持从属于 eNBl 的小区处于正常态直到获知发生小区失效的小区 cel l B 已解决小区失效问题, 从而避 免网络覆盖出现漏洞。
可选的, 网管系统还可以通过唤醒消息来携带节能禁用信息。 例如, 网管系统通过 itf-N接口向 eNBl发送唤醒消息, 该唤醒消息包括节能禁用信息 DisableES, 可选的, 该节能禁用信息包括禁止节能功能的小区标识或基站标识信息。 此外, 该唤醒消息还包 括禁止节能功能的原因信息。 如果网管系统将 cel l A的小区标识以及小区失效原因值 发送给 eNBl, 则 eNBl获知由于其他小区发生小区失效而需要将 cel l A的状态转变为正 常态, 并至少将 cell A保持在正常态直到获知发生小区失效的小区已解决小区失效问 题, 从而避免网络覆盖出现漏洞。 如果网管系统将 cell A所从属的 eNBl的基站标识以 及小区失效原因值发送给 eNBl, 则 eNBl获知由于其他小区发生小区失效而需要至少将 从属于 eNBl 的所有小区的状态保持在正常态直到获知发生小区失效的小区已解决小区 失效问题。 eNBl接收到该唤醒消息时, 如果从属于 eNBl的小区中仅部分小区正处于节 能态, eNBl先将上述小区的状态转变为正常态, 然后保持从属于 eNBl的小区处于正常 态直到获知发生小区失效的小区 cell B 已解决小区失效问题, 从而避免网络覆盖出现 漏洞。
可选的, 上述唤醒消息还包括配置参数信息, 即网管系统通知 eNBl与 cell A相关 的配置参数, 使 eNBl完成对与 cell A相关的配置参数的修改, 从而 cell A在被唤醒 之后, 可以实现更好的覆盖。 如果该唤醒消息没有包括配置参数信息, 则 cell A可以 采用原来的配置参数信息, 或者接收包括 cell A的新配置参数的配置参数修改命令。
S850、 网管系统将 cell B发生小区失效通知给将 cell B作为替代小区、 并且处于 正常态的小区。
假设 cell B可以承担 cell C的网络覆盖, 而在 cell B发生小区失效时, cell C 并未处于节能态,则网管系统将 cell B发生小区失效通知给 cell C所从属的 eNBl, eNBl 在 cell B的小区失效结束之前, 使 cell C不会按照预设的自动节能策略进入节能, 即 eNBl可以至少将 cell C保持在非节能的正常态直到确定 cell B的小区失效结束, 从而 避免网络覆盖出现漏洞, 或者 cell C的网络覆盖在 cell C和 cell B之间不断变换接 管者的乒乓效应。其中, eNBl的处理方式类似于本发明其他实施例中 S250的处理方式, 此处不再赘述。
本步骤中, 网管系统可以采用上述 S840 中发送节能禁用信息的处理方式, 例如节 能禁用信息包括 cell C的小区标识, 使得 eNBl获知由于其他小区发生小区失效而需要 至少将 cell C保持在正常态直到获知 cell B的小区失效已解决, 此处不再详述。
本发明其他实施例提供的基站获知发生小区失效的小区是否已结束小区失效的方 法也可以结合至本实施例中, 或者由网管系统向 eNB2发送查询消息并接收反馈消息, 或者由网管系统接收 eNB2发送的通知, 从而获知发生小区失效的小区 cell B已解决小 区失效问题, 然后由网管系统通知 eNBl 以使 eNBl及时获知 cell B的小区失效结束, 并解除阻止 cell A进入节能。
本发明另一个实施例还提供一种小区节能启用方法, 该实施例适用于网管系统启用 处于正常态的小区的节能功能的各种场景,包括结合在本发明其他实施例提供的集中式 架构下的小区失效的处理方法中。 例如, 在 S840或 S850中, eNBl将 cell A的小区节 能禁用, 即使 cell A保持在正常态。 接下来, 如果 eNBl接收到节能启用信息, 则可以 恢复利用自动节能策略对 cell A能否进入节能进行判断, 使 cell A有机会重新进入节 能。
可选的, 网管系统可以通过单独的消息将节能启用信息 (EnableES) 发送给基站, 以启用相应小区的节能功能。 例如, 一个消息本身具有启用某小区的节能功能的含义, 则基站通过接收该消息可以确定默认需要对从属于本基站的所有小区进行处理。如果该 消息携带启用节能功能的对象标识, 例如小区标识或基站标识, 则基站通过接收该消息 就可以确定需要对哪些小区进行如何的处理。该消息还可以具有该消息的发送原因是其 他小区已解决小区失效问题的含义, 从而使得接收该消息的基站获知节能启用的原因。 例如, 网管系统通过 itf-N接口向 eNBl发送包含节能启用信息 EnableES的消息。 如果 该节能启用信息包括启用节能功能的小区 cell A的小区标识, eNBl获知无需将 cell A 保持在正常态, 如果满足自动节能策略, cell A可以进入节能态。 如果节能启用信息包 括 eNBl的基站标识, 则 eNBl可以获知从属于 eNBl的所有小区都无需保持在正常态。
可选的, 网管系统还可以通过去唤醒消息来携带节能启用信息。 例如, 网管系统通 过 itf-N接口向 eNBl发送去唤醒消息, 该去唤醒消息包括节能启用信息 EnableES, 该 节能启用信息包括启用节能功能的小区标识或基站标识信息。 此外, 该去唤醒消息还包 括启用节能功能的原因信息。 如果网管系统将 cell A的小区标识以及小区失效已解决 的原因值发送给 eNBl, 则 eNBl获知无需继续因其他小区发生小区失效而将 cell A保持 在正常态。 如果网管系统将 cell A所从属的 eNBl的基站标识以及小区失效已解决的原 因值发送给 eNBl,则 eNBl获知无需继续因其他小区发生小区失效而将从属于 eNBl的所 有小区的状态保持在正常态。
本实施例可以使处于正常态的小区所从属的基站及时恢复该小区的节能功能, 从而 使该小区有机会尽快进入节能, 降低该基站的耗电量。
本发明的另一个实施例提供了一种与小区配置参数相关的处理方法, 该方法可以结 合至本发明其他实施例提供的适用于集中式架构的小区失效的处理方法。
本实施例中, cell B可以承担 cell A的网络覆盖, 当 cell A处于节能态时, cel l B发生小区失效, 网管系统通过向 cell A所从属的 eNBl发送唤醒消息来实现唤醒 cel l A。 当该唤醒消息不包括配置参数信息时, eNBl接收配置参数修改命令, 该配置参数修 改命令包括与 cel l A相关的配置参数以及该配置参数的修改原因。 其中, 修改原因可 以为表示小区失效的原因值, 也可以是与非小区失效的原因引起的修改相区别的原因 值, 例如, 配置参数的修改原因区分出至少两种标识, 因其他小区 (如 cel l B)发生小 区失效而修改配置参数的情况统一采用其中一种标识, 从而与因其他原因修改配置参数 的情况相区别。 eNBl还保存被修改掉的配置参数,并且相应标识该配置参数的修改原因。 这样, 当 eNBl获知发生小区失效的小区已结束小区失效时, 可以将因 cel l B发生小区 失效而修改掉的与 cel l A相关的配置参数恢复为未做修改时的原始配置参数, 实现与 小区相关的配置参数的快速恢复, 降低该小区 (如 cell A) 因其他小区 (如 cel l B ) 发生小区失效而受到的影响。
如图 6所示, 本发明另一实施例提供一种基站 eNBl, 该基站包括发送模块 1100和 处理模块 1200。 其中, 发送模块 1100用于接收第二小区发生小区失效的通知, 处理模 块 1200用于将第一小区由节能状态转换为正常态, 其中, 第一小区从属于 eNBl, 第二 小区是为第一小区承担覆盖替代的小区, 可选的, 将第一小区保持在正常态。 或者, 处 理模块 1200用于将第三小区保持在正常态直到第二小区失效已解决。 其中, 第三小区 从属于 eNBl, 第二小区是为第三小区承担覆盖替代的小区。
可选的, 发送模块 1100具体用于接收第二小区的小区标识和指示第二小区发生小 区失效的小区失效指示信息。 可选的, 发送模块 1100具体用于接收节能激活消息, 所 述节能激活消息包括第二小区的小区标识和激活原因信息,所述激活原因信息包括小区 失效原因值。 例如, 第二小区从属于第二基站, 节能激活消息由第二基站发送。
可选的, 该基站还包括接收模块 1300, 用于接收延迟启动时间信息, 该延迟启动 时间信息包括等待时长信息。处理模块 1200还用于在接收模块 1300收到延迟启动时间 信息后, 到达等待时长时, 启动第一小区的状态转换过程。
可选的, 该基站还包括接收模块 1300, 用于接收延迟启动时间信息, 该延迟启动 时间信息包括开始时间信息。处理模块 1200还用于在接收模块 1300在到达开始时间时, 启动第一小区的状态转换过程。
可选的, 处理模块 1200还用于确定第二小区是为第一小区承担覆盖替代的小区。 可选的, 接收模块 1300具体用于在处理模块 1200确定第二小区是为第一小区承 担覆盖替代的小区之后, 接收第二小区发生小区失效的通知。 可选的, 处理模块 1200 具体用于在接收模块 1300接收第二小区发生小区失效的通知之后, 确定第二小区是为 第一小区承担覆盖替代的小区。 可选的, 发送模块 1100还用于在接收模块 1300接收第二小区发生小区失效的通 知之前, 且在处理模块 1200确定第二小区是为第一小区承担覆盖替代的小区之后, 发 送第一小区的小区标识和小区节能指示信息, 该小区节能指示信息指示第一小区进入节 能。
可选的, 处理模块 1200具体用于根据接收模块 1100接收的第二小区的标识确定 第二小区是为第一小区承担覆盖替代的小区。 例如, 接收模块 1100通过接收第一小区 的邻区关系信息 ESCompensatingCel lRelation, 或节能补偿小区信息 EUtranRelation, 或小区属性信息 EUtranGenericCel l中, 上述邻区关系信息或节能补偿小区信息或小区 属性信息携带第二小区的标识信息。
可选的, 发送模块 1100还用于在接收模块 1100接收第二小区的标识之前, 发送 第一小区的小区标识, 例如发送给 IRP Manager。
可选的, 接收模块 1100还用于接收配置参数修改命令, 其中包括第一小区的配置 参数和配置参数的修改原因, 该修改原因为小区失效原因值, 或者与非小区失效的原因 引起的修改相区别的原因值。
可选的, 接收模块 1100还用于接收关于所述第二小区的小区失效结束的通知, 处 理模块 1200还用于根据自动节能策略保持第一小区处于正常态或者将第一小区由正常 态转换为节能状态。
本实施例提供的基站可以避免出现由于第一小区本身处于节能态, 而承担其网络覆 盖的第二小区发生小区失效而导致网络覆盖出现漏洞。
如图 6 本发明另一实施例提供一种设备, 该设备包括接收模块 3100 和处理模块
3200。 该接收模块 3100用于确定第二小区发生小区失效, 例如接收第二小区的小区标 识和指示第二小区发生小区失效的小区失效指示信息, 该处理模块 3200用于通过网管 北向接口通知第一基站将第一小区由节能状态转换为正常态, 其中, 第一小区从属于 eNBl ,第二小区是为第一小区承担覆盖替代的小区,可选的,将第一小区保持在正常态。 或者用于通过网管北向接口通知第一基站将第三小区保持在正常态直到获知第二小区 的小区失效已解决, 其中, 第三小区从属于第一基站, 第二小区是为第三小区承担覆盖 替代的小区。 可选的, 小区失效指示信息由第二小区从属于的第二基站发送。
可选的, 处理模块 3200用于通过网管北向接口向第一基站发送禁止节能功能的原 因信息, 禁止节能功能的原因信息为小区失效原因值。 处理模块 3200还用于通过网管 北向接口向第一基站发送禁止节能功能的对象标识, 例如, 禁止节能功能的对象标识为 第一小区的小区标识或第一基站的基站标识。
可选的, 处理模块 3200具体用于接收唤醒消息, 该唤醒消息包括禁止节能功能的 原因信息或者禁止节能功能的标识, 所述唤醒消息还包括第一小区的配置参数信息。
可选的, 处理模块 3200还用于发送配置参数修改命令给第一基站, 该配置参数修 改命令包括第一小区的配置参数和配置参数的修改原因, 例如, 修改原因为小区失效原 因值, 或者与非小区失效的原因引起的修改相区别的原因值。
可选的, 处理模块 3200还用于在该接收模块 3100接收第二小区的小区标识和指示 第二小区发生小区失效的小区失效指示信息之前, 向第一基站发送与第一小区相关的指 示信息, 该指示信息用于指示第一小区被允许做节能。 例如, 指示信息为邻区关系信息 EUtranRelation中的节能补偿小区信息 isEScompensateCel l , 或者第一小区的小区属 性信息 EUtranGenericCel l中的允许节能标识信息 isESAl lowed。
可选的, 接收模块 3100还用于接收关于第二小区的小区失效结束的通知, 处理模 块 3200还用于通过网管北向接口向第一基站发送启用节能功能的原因信息, 例如, 启 用节能功能的原因信息为小区失效已解决原因值。
可选的, 处理模块 3200还用于通过网管北向接口向所述第一基站发送启用节能功 能的对象标识, 例如, 该启用节能功能的对象标识为第一小区的小区标识或第一基站的 基站标识。
本实施例提供的设备可以是 IRP Manager 本发明提供的设备可以避免出现由于第 一小区本身处于节能态, 而承担其网络覆盖的第二小区发生小区失效而导致网络覆盖出 现漏洞。
应用上述实施例提供的设备的更多可选方法可以参照本发明其他实施例提供的方 法, 此处不再赘述。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤是可以通 过程序来指令相关的硬件来完成, 所述的程序可以存储于一计算机可读取存储介质中, 所述的存储介质, 如: R0M/RAM、 磁碟、 光盘等。
以上仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说, 在不脱离本发明原理的前提下, 还可以作出若干改进和润饰, 这些改进和润饰也应视为 本发明的保护范围。

Claims

权利要求
1、 一种小区失效的处理方法, 其特征在于, 包括:
第一基站接收第二基站在第二小区发生小区失效时发送的节能激活消息,所述节能 激活消息用于禁止节能功能, 其中, 第二小区从属于所述第二基站;
所述第一基站根据节能激活消息将第一小区由节能状态转换为正常态,其中,第一 小区从属于所述第一基站, 所述第二小区是为第一小区承担覆盖替代的小区; 或者, 所述第一基站根据节能激活消息保持第三小区处于正常态直到获知第二小区的小 区失效已解决, 其中, 第三小区从属于所述第一基站, 所述第二小区是为第三小区承担 覆盖替代的小区。
2、 如权利要求 1所述的方法, 其特征在于, 所述节能激活消息包括以下任一项或 其组合:
第一小区的小区标识、第三小区的小区标识、 第一基站的基站标识、 或者激活原因 信息, 所述激活原因信息包括小区失效原因值。
3、 如权利要求 1或 2所述的方法, 其特征在于, 所述第一基站根据节能激活消息 将第一小区由节能状态转换为正常态之后, 还包括:
所述第一基站将第一小区保持在正常态直到获知第二小区的小区失效已解决。
4、 如权利要求 1至 3任一项所述的方法, 其特征在于, 所述节能激活消息包括延 迟启动时间信息;
如果所述延迟启动时间信息包括等待时长信息,第一基站在收到延迟启动时间信息 到启动第一小区的状态转换过程之间的时长为等待时长; 或者, 如果所述延迟启动时间 信息包括开始时间信息, 第一基站在到达所述开始时间信息指示的时间时, 启动第一小 区的状态转换过程。
5、 如权利要求 1至 4任一项所述的方法, 其特征在于, 所述第一基站接收第二基 站在第二小区发生小区失效时发送的节能激活消息之前, 还包括:
第二基站通过网管北向接口接收用于表示第二小区是为第一小区提供覆盖替代的 小区的信息, 并发送节能激活消息给第一基站;
其中,所述用于表示第二小区是为第一小区提供覆盖替代的小区的信息包括: 第二 小区的邻区关系信息携带的第一小区的标识信息, 或者第二小区的节能补偿小区信息携 带的第一小区的标识信息, 或者第二小区的小区属性信息携带的第一小区的标识信息。
6、 一种小区失效的处理方法, 其特征在于, 包括: 第一基站接收第二基站发送的用于指示第二小区发生小区失效的通知消息,其中第 二小区从属于所述第二基站;
所述第一基站根据通知消息将第一小区由节能状态转换为正常态,其中,第一小区 从属于所述第一基站, 所述第二小区是为第一小区承担覆盖替代的小区; 或者,
所述第一基站根据通知消息保持第三小区处于正常态直到获知第二小区的小区失 效已解决, 其中, 第三小区从属于所述第一基站, 所述第二小区是为第三小区承担覆盖 替代的小区。
7、 如权利要求 6所述的方法, 其特征在于, 所述通知消息包括:
第二小区的小区标识和 /或指示第二小区发生小区失效的小区失效指示信息。
8、 如权利要求 6或 7所述的方法, 其特征在于, 所述通知消息包括延迟启动时间 自 .
I Ή、;
如果所述延迟启动时间信息包括等待时长信息,第一基站在收到延迟启动时间信息 到启动第一小区的状态转换过程之间的时长为等待时长; 或者, 如果所述延迟启动时间 信息包括开始时间信息, 第一基站在到达所述时间信息指示的时间时, 启动第一小区的 状态转换过程。
9、 如权利要求 6至 8任一项所述的方法, 其特征在于, 所述第一基站根据节能激 活消息将第一小区由节能状态转换为正常态之后, 还包括:
所述第一基站将第一小区保持在正常态直到获知第二小区的小区失效已解决。
10、 如权利要求 6至 9任一项所述的方法, 其特征在于, 所述第一基站根据通知消 息将第一小区由节能状态转换为正常态包括:
第一基站通过网管北向接口接收用于表示第二小区是为第一小区提供覆盖替代的 小区的信息, 并将第一小区由节能状态转换为正常态;
其中,所述用于表示第二小区是为第一小区提供覆盖替代的小区的信息包括: 第一 小区的邻区关系信息包含的第二小区的标识信息, 或者第一小区的节能补偿小区信息包 含的第二小区的标识, 或者第一小区的小区属性信息包含的第二小区的标识。
11、 一种小区失效的处理方法, 其特征在于, 包括:
集成参考点管理设备发现第二小区发生小区失效时,所述集成参考点管理设备通过 网管北向接口使第一基站将第一小区由节能状态转换为正常态, 其中, 第一小区从属于 所述第一基站, 所述第二小区是为第一小区承担覆盖替代的小区; 或者,
集成参考点管理设备发现第二小区发生小区失效时,所述集成参考点管理设备通过 网管北向接口将第三小区保持在正常态直到获知第二小区的小区失效已解决, 其中, 第 三小区从属于所述第一基站, 所述第二小区是为第三小区承担覆盖替代的小区。
12、 如权利要求 11所述的方法, 其特征在于, 所述集成参考点管理设备发现第二 小区发生小区失效包括:
集成参考点管理设备接收第二基站发送的第二小区的小区标识和指示第二小区发 生小区失效的小区失效指示信息, 其中, 所述第二小区从属于所述第二基站。
13、 如权利要求 11或 12所述的方法, 其特征在于, 所述集成参考点管理设备通过 网管北向接口使第一基站将第一小区由节能状态转换为正常态包括:
所述集成参考点管理设备通过网管北向接口向所述第一基站发送禁止节能功能的 原因信息, 所述禁止节能功能的原因信息为小区失效原因值。
14、 如权利要求 13所述的方法, 其特征在于, 还包括:
所述集成参考点管理设备通过网管北向接口向所述第一基站发送禁止节能功能的 对象标识或者配置参数信息,所述禁止节能功能的对象标识为第一小区的小区标识或第 一基站的基站标识。
15、 如权利要求 11或 12所述的方法, 其特征在于, 还包括:
所述集成参考点管理设备发送配置参数修改命令给第一基站,所述配置参数修改命 令包括第一小区的配置参数和所述配置参数的修改原因,所述修改原因为小区失效原因 值, 或者与非小区失效的原因引起的修改相区别的原因值。
16、 如权利要求 12所述的方法, 其特征在于, 集成参考点管理设备接收第二基站 发送的第二小区的小区标识和指示第二小区发生小区失效的小区失效指示信息之前,还 包括:
所述集成参考点管理设备通过网管北向接口向第一基站发送用于指示第一小区被 允许做节能的指示信息; 其中, 所述指示信息在第一小区的邻区关系信息中携带的节能 补偿小区信息; 或者, 所述指示信息为在第一小区的小区属性信息中携带的允许节能标 识信息。
17、 如权利要求 11或 12所述的方法, 其特征在于, 还包括:
所述集成参考点管理设备获知第二小区的小区失效结束时,通过网管北向接口向所 述第一基站发送启用节能功能的原因信息,所述启用节能功能的原因信息为小区失效已 解决原因值。
18、 如权利要求 17所述的方法, 其特征在于, 还包括: 所述集成参考点管理设备通过网管北向接口向所述第一基站发送启用节能功能的 标识, 所述启用节能功能的标识为第一小区的小区标识或第一基站的基站标识。
19、 一种基站, 其特征在于, 包括: 发送模块和处理模块; 其中,
所述发送模块用于接收第二小区发生小区失效的通知;
所述处理模块用于将第一小区由节能状态转换为正常态,其中,第一小区从属于所 述基站, 第二小区是为第一小区承担覆盖替代的小区; 或者, 所述处理模块用于将第三 小区保持在正常态直到第二小区失效已解决, 其中, 第三小区从属于所述基站, 第二小 区是为第三小区承担覆盖替代的小区。
20、 一种设备, 其特征在于, 包括: 接收模块和处理模块; 其中,
所述接收模块用于确定第二小区发生小区失效;
所述处理模块用于通过网管北向接口通知第一基站将第一小区由节能状态转换为 正常, 其中, 第一小区从属于所述第一基站, 第二小区是为第一小区承担覆盖替代的小 区态; 或者, 所述处理模块用于通过网管北向接口通知第一基站将第三小区保持在正常 态直到获知第二小区的小区失效已解决, 其中, 第三小区从属于所述第一基站, 第二小 区是为第三小区承担覆盖替代的小区。
PCT/CN2011/073380 2010-04-30 2011-04-27 小区失效的处理方法及其设备 WO2011134401A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP11774392.2A EP2544485B1 (en) 2010-04-30 2011-04-27 Method for processing cell outage and device thereof
ES11774392.2T ES2525089T3 (es) 2010-04-30 2011-04-27 Método para el procesamiento de una indisponibilidad operativa de célula y dispositivo asociado
JP2013506474A JP5547848B2 (ja) 2010-04-30 2011-04-27 セル機能停止に対処する方法および装置
US13/661,494 US9301250B2 (en) 2010-04-30 2012-10-26 Method and device for handling cell outage
US15/044,535 US10271231B2 (en) 2010-04-30 2016-02-16 Method and device for handling cell outage
US16/358,838 US10659979B2 (en) 2010-04-30 2019-03-20 Method and device for handling cell outage

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010169453.9A CN102238595B (zh) 2010-04-30 2010-04-30 小区失效的处理方法及其设备
CN201010169453.9 2010-04-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/661,494 Continuation US9301250B2 (en) 2010-04-30 2012-10-26 Method and device for handling cell outage

Publications (1)

Publication Number Publication Date
WO2011134401A1 true WO2011134401A1 (zh) 2011-11-03

Family

ID=44860875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/073380 WO2011134401A1 (zh) 2010-04-30 2011-04-27 小区失效的处理方法及其设备

Country Status (7)

Country Link
US (3) US9301250B2 (zh)
EP (3) EP2782389B1 (zh)
JP (3) JP5547848B2 (zh)
CN (2) CN102238595B (zh)
ES (1) ES2525089T3 (zh)
PT (1) PT2725840E (zh)
WO (1) WO2011134401A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013139610A1 (en) * 2012-03-23 2013-09-26 Nokia Siemens Networks Oy Mode control in wireless communications
JP2015501615A (ja) * 2011-11-04 2015-01-15 インテル コーポレイション 処理システム及び処理方法
JP2015507892A (ja) * 2012-01-20 2015-03-12 ▲ホア▼▲ウェイ▼技術有限公司 ネットワーク要素状態を処理するための方法および装置
JP2015510379A (ja) * 2012-03-16 2015-04-02 インテル コーポレイション 無線ネットワーク内における自己最適化機能を協調的に実行するための方法および装置
JP2015512593A (ja) * 2012-04-28 2015-04-27 ▲ホア▼▲ウェイ▼技術有限公司 リソースオペレーション方法および装置
JP2015530015A (ja) * 2012-07-31 2015-10-08 アルカテル−ルーセント ルーティング・プロキシからの基地局のオン/オフ・ステータスの動的管理
JP2015530851A (ja) * 2012-11-01 2015-10-15 インテル コーポレイション セルラシステムにおけるセル停止補償のシステム及び方法
JP2016512400A (ja) * 2013-03-01 2016-04-25 インテル アイピー コーポレーション 自己組織化ネットワークのキャパシティ及びカバレージ最適化の調整
JP2016178640A (ja) * 2011-11-04 2016-10-06 インテル コーポレイション 自己組織化ネットワークのための装置及び方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103037443B (zh) * 2011-09-30 2016-01-13 华为技术有限公司 协调小区失效补偿和容量覆盖优化的方法及装置
CN102438287B (zh) * 2011-11-22 2014-07-30 新邮通信设备有限公司 一种关断小区的方法
CN103428877B (zh) * 2012-05-16 2018-06-22 中兴通讯股份有限公司 自组织网络功能冲突协调方法及装置
CN103581969A (zh) * 2012-07-18 2014-02-12 中兴通讯股份有限公司 基于自动邻区关系的小区功率调整方法及装置、基站
US9681347B2 (en) * 2013-03-10 2017-06-13 Lg Electronics Inc. Method and apparatus for determining energy-saving compensation cell in small cell-based wireless access system
CN104469821A (zh) * 2013-09-25 2015-03-25 中兴通讯股份有限公司 基站状态管理方法、设备及系统
CN104969625B (zh) * 2013-09-25 2019-08-27 华为技术有限公司 用于小区节能补偿的方法和基站
CN104519506B (zh) * 2013-09-27 2020-02-07 北京三星通信技术研究有限公司 自优化的方法及设备
US9426665B2 (en) 2013-11-22 2016-08-23 At&T Intellectual Property I, L.P. Method and apparatus for quantifying the customer impact of cell tower outages
WO2015089774A1 (en) * 2013-12-18 2015-06-25 Nokia Solutions And Networks Oy Method and apparatus
US10085211B2 (en) * 2014-09-02 2018-09-25 Apple Inc. Communication of processor state information
EP3041283B1 (en) 2014-12-30 2019-05-29 Comptel Corporation Prediction of failures in cellular radio access networks and scheduling of preemptive maintenance
JP6453659B2 (ja) * 2015-01-23 2019-01-16 Kddi株式会社 制御装置、制御方法、及び制御プログラム
CN106304159A (zh) * 2015-05-30 2017-01-04 闫超丽 一种基站电路故障环路器及故障处理方法
CN108289030B (zh) * 2017-01-09 2020-04-17 中国移动通信有限公司研究院 一种基站故障识别处理方法及装置
CN114423054B (zh) * 2018-02-13 2023-05-26 中兴通讯股份有限公司 一种小区处理方法、装置及介质
JP6916446B2 (ja) * 2018-09-13 2021-08-11 日本電信電話株式会社 基地局管理方法、基地局管理装置及びプログラム
US20220272550A1 (en) * 2021-02-19 2022-08-25 Rakuten Mobile, Inc. Computer device, method, and non-transitory computer readable medium
US20230164593A1 (en) * 2021-11-22 2023-05-25 T-Mobile Usa, Inc. Methods and systems for determining a wireless service outage

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1726730A (zh) * 2002-12-17 2006-01-25 摩托罗拉公司 通信系统及其空闲状态支持方法
CN101232713A (zh) * 2007-09-20 2008-07-30 华为技术有限公司 一种实现边界区域硬切换的方法和装置
CN101594635A (zh) * 2009-06-24 2009-12-02 上海华为技术有限公司 业务失效小区的补偿方法、装置和系统
WO2009155480A1 (en) * 2008-06-19 2009-12-23 Interdigital Patent Holdings, Inc. Optimized serving dual cell change

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006101442A (ja) * 2004-09-30 2006-04-13 Nec Corp 移動通信システム、基地局制御装置、無線基地局装置
CN100461924C (zh) 2005-11-01 2009-02-11 华为技术有限公司 一种NodeB小区级故障的定位分析方法
CN1984424A (zh) * 2006-04-16 2007-06-20 华为技术有限公司 移动通信网络中的双网备份的方法和系统
JP2008109423A (ja) * 2006-10-26 2008-05-08 Fujitsu Ltd 無線基地局装置及びその省電力制御方法
US7933211B2 (en) * 2006-12-19 2011-04-26 Nokia Corporation Method and system for providing prioritized failure announcements
CN100584063C (zh) * 2007-06-22 2010-01-20 清华大学 一种应用于gsm基站的节能方法
CN101146309B (zh) 2007-10-19 2011-04-20 华为技术有限公司 一种通信系统中的小区资源故障处理方法及装置
EP2220884B1 (en) * 2007-12-17 2019-08-14 Telefonaktiebolaget LM Ericsson (publ) Method and apparatus for mitigating cell outage
EP2139278B1 (en) * 2008-05-28 2012-03-14 Alcatel Lucent Method of detecting an outage of a radio cell
WO2010086028A1 (en) * 2009-02-02 2010-08-05 Nokia Siemens Networks Oy Communicating a network event
US8095143B2 (en) * 2009-02-13 2012-01-10 Telefonaktiebolaget L M Ericsson Random access channel (RACH) reconfiguration for temporarily extended cell coverage
CN101562851B (zh) * 2009-06-02 2011-05-04 中国科学技术大学 基于移动模式的多预备小区rlf快速恢复方法及系统
CN102461067B (zh) * 2009-06-24 2015-02-25 瑞典爱立信有限公司 供通信网络的网络管理中使用的方法和系统
CN102045819B (zh) * 2009-10-19 2014-12-24 华为技术有限公司 一种基站节能管理方法、基站节能方法及装置和系统
KR101629966B1 (ko) * 2010-01-13 2016-06-21 삼성전자주식회사 통신 시스템에서 에너지 절약 기능을 지원하는 방법 및 장치
US9413763B2 (en) * 2011-02-14 2016-08-09 Nokia Solutions And Networks Oy Coordination between self-organizing networks
US9253699B2 (en) * 2013-01-29 2016-02-02 Lg Electronics Inc. Method and apparatus for controlling and supporting a dynamic cell on/off in wireless access system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1726730A (zh) * 2002-12-17 2006-01-25 摩托罗拉公司 通信系统及其空闲状态支持方法
CN101232713A (zh) * 2007-09-20 2008-07-30 华为技术有限公司 一种实现边界区域硬切换的方法和装置
WO2009155480A1 (en) * 2008-06-19 2009-12-23 Interdigital Patent Holdings, Inc. Optimized serving dual cell change
CN101594635A (zh) * 2009-06-24 2009-12-02 上海华为技术有限公司 业务失效小区的补偿方法、装置和系统

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10158519B2 (en) 2011-11-04 2018-12-18 Intel Corporation Coordination of self-optimization operations in a self organizing network
JP2016178640A (ja) * 2011-11-04 2016-10-06 インテル コーポレイション 自己組織化ネットワークのための装置及び方法
JP2015501615A (ja) * 2011-11-04 2015-01-15 インテル コーポレイション 処理システム及び処理方法
JP2018110402A (ja) * 2011-11-04 2018-07-12 インテル コーポレイション 自己組織化ネットワークのための装置及びコンピュータ・プログラム
JP2015507892A (ja) * 2012-01-20 2015-03-12 ▲ホア▼▲ウェイ▼技術有限公司 ネットワーク要素状態を処理するための方法および装置
US10432488B2 (en) 2012-01-20 2019-10-01 Huawei Technologies Co., Ltd. Method and apparatus for processing network element state
JP2015510379A (ja) * 2012-03-16 2015-04-02 インテル コーポレイション 無線ネットワーク内における自己最適化機能を協調的に実行するための方法および装置
KR101892890B1 (ko) 2012-03-16 2018-08-28 인텔 코포레이션 무선 네트워크에서 자기-최적화 기능들의 조정을 위한 방법 및 장치
KR101792638B1 (ko) * 2012-03-16 2017-11-02 인텔 코포레이션 무선 네트워크에서 자기-최적화 기능들의 조정을 위한 방법 및 장치
KR20170122853A (ko) * 2012-03-16 2017-11-06 인텔 코포레이션 무선 네트워크에서 자기-최적화 기능들의 조정을 위한 방법 및 장치
US9516628B2 (en) 2012-03-16 2016-12-06 Intel Corporation Method and apparatus for coordination of self-optimization functions in a wireless network
US9526091B2 (en) 2012-03-16 2016-12-20 Intel Corporation Method and apparatus for coordination of self-optimization functions in a wireless network
WO2013139610A1 (en) * 2012-03-23 2013-09-26 Nokia Siemens Networks Oy Mode control in wireless communications
US20130250908A1 (en) * 2012-03-23 2013-09-26 Nokia Siemens Networks Oy Base station power savings and control thereof
JP2015512593A (ja) * 2012-04-28 2015-04-27 ▲ホア▼▲ウェイ▼技術有限公司 リソースオペレーション方法および装置
US9215691B2 (en) 2012-04-28 2015-12-15 Huawei Technologies Co., Ltd Resource operation method and apparatus
US9877211B2 (en) 2012-07-31 2018-01-23 Alcatel Lucent Dynamic management of an on/off status of a base station from a routing proxy
JP2015530015A (ja) * 2012-07-31 2015-10-08 アルカテル−ルーセント ルーティング・プロキシからの基地局のオン/オフ・ステータスの動的管理
EP2915357A4 (en) * 2012-11-01 2016-08-31 Joey Chou SYSTEM AND METHOD FOR COMPENSATION OF CELL FAILURE IN CELLULAR SYSTEMS
US9838932B2 (en) 2012-11-01 2017-12-05 Intel Corporation PCI partition and allocation for cellular network
US9930596B2 (en) 2012-11-01 2018-03-27 Intel Corporation Method and apparatus for controlling small data transmission on the uplink
JP2015530851A (ja) * 2012-11-01 2015-10-15 インテル コーポレイション セルラシステムにおけるセル停止補償のシステム及び方法
JP2016512400A (ja) * 2013-03-01 2016-04-25 インテル アイピー コーポレーション 自己組織化ネットワークのキャパシティ及びカバレージ最適化の調整

Also Published As

Publication number Publication date
US10271231B2 (en) 2019-04-23
EP2544485A1 (en) 2013-01-09
JP5547848B2 (ja) 2014-07-16
JP2015159620A (ja) 2015-09-03
CN103338473B (zh) 2016-04-06
US10659979B2 (en) 2020-05-19
JP2014168299A (ja) 2014-09-11
EP2725840B1 (en) 2015-09-30
EP2544485B1 (en) 2014-09-10
EP2782389B1 (en) 2017-12-20
US9301250B2 (en) 2016-03-29
EP2782389A3 (en) 2014-10-08
CN102238595B (zh) 2014-02-26
US20160165464A1 (en) 2016-06-09
US20190223031A1 (en) 2019-07-18
CN102238595A (zh) 2011-11-09
PT2725840E (pt) 2016-01-14
EP2782389A2 (en) 2014-09-24
US20130053024A1 (en) 2013-02-28
JP5974139B2 (ja) 2016-08-23
EP2544485A4 (en) 2013-06-19
ES2525089T3 (es) 2014-12-17
JP2013526192A (ja) 2013-06-20
CN103338473A (zh) 2013-10-02
EP2725840A1 (en) 2014-04-30
JP5763244B2 (ja) 2015-08-12

Similar Documents

Publication Publication Date Title
WO2011134401A1 (zh) 小区失效的处理方法及其设备
CN110557781B (zh) 网络连接的控制方法、终端及存储介质
JP5656271B2 (ja) ネットワーク管理システムにおいてエネルギー節約を管理するための方法、デバイス、およびシステム
US20130182615A1 (en) Energy-saving management method and system for wireless sensor network, and remote management server
WO2012092876A1 (zh) 一种覆盖区域补偿、恢复的方法及装置
WO2016058335A1 (zh) 信号传输的控制方法及装置、电子设备
WO2010121554A1 (zh) 小区休眠/唤醒的方法、载波功率的控制方法及装置
WO2012019547A1 (zh) 一种节能小区的控制处理方法及基站
KR101670534B1 (ko) 액세스 포인트에서의 전력 절감 방법
WO2011009415A1 (zh) 系统间基站的节能控制方法与装置
JP2014150529A (ja) 基地局及びドーマント制御方法
WO2012019491A1 (zh) 控制家庭基站节能的方法、系统、家庭基站和网元
EP2582186B1 (en) Method and system for waking up node b cell
WO2014161400A1 (zh) 一种搜网的处理方法及终端
WO2015109669A1 (zh) 一种终端优化网络资源的方法、装置及存储介质
JP5598652B2 (ja) 無線通信基地局
CN103888986B (zh) 小区失效的处理方法及其设备
WO2012009863A1 (zh) 一种节能小区的选择方法和基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11774392

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011774392

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013506474

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE