WO2011134396A1 - 一种下行数据接收处理的方法、系统和装置 - Google Patents

一种下行数据接收处理的方法、系统和装置 Download PDF

Info

Publication number
WO2011134396A1
WO2011134396A1 PCT/CN2011/073357 CN2011073357W WO2011134396A1 WO 2011134396 A1 WO2011134396 A1 WO 2011134396A1 CN 2011073357 W CN2011073357 W CN 2011073357W WO 2011134396 A1 WO2011134396 A1 WO 2011134396A1
Authority
WO
WIPO (PCT)
Prior art keywords
timer
discontinuous reception
drx
downlink
downlink data
Prior art date
Application number
PCT/CN2011/073357
Other languages
English (en)
French (fr)
Inventor
谌丽
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Publication of WO2011134396A1 publication Critical patent/WO2011134396A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/188Time-out mechanisms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to wireless communication technologies, and in particular, to a method, system and apparatus for downlink data reception processing. Background technique
  • the nodes include:
  • Donor-eNB an eNB (Evolved Base Station) having a radio connection with a Relay-Node (RN), abbreviated as DeNB;
  • RN Relay-Node
  • Relay-Node an entity existing between the DeNB and the UE, abbreviated as RN;
  • Relay-UE a user terminal (UE) that performs data interaction with the RN, abbreviated as R-UE;
  • Macro UE A UE that performs data interaction with the DeNB directly.
  • the interface includes:
  • Un interface an interface between the RN and the DeNB
  • Uu interface Interface between the UE and the RN.
  • Wireless links include:
  • Backhaul link the backhaul link, the link corresponding to the Un interface
  • Access link the access link, the link corresponding to the Uu interface
  • Direct link A direct link, a link between a DeNB and a macro UE for data transmission.
  • Downlink transmission after the RN is introduced the data sent to the UE under the RN needs to be downlinked by the DeNB.
  • the link is sent to the RN, and then sent by the RN to the UE via the downlink access link.
  • Uplink transmission after the RN is introduced The uplink data of the UE under the RN is first sent by the UE to the RN via the uplink access link, and then sent by the RN to the DeNB via the backhaul link.
  • the current method for handling interference problems is that the RN does not transmit data to the terminal when receiving data from the base station, that is, creates idle time (gaps) during the downlink transmission time of the access link. Gaps can be created within a Multicast Broadcast Single Frequency Network (MBSFN) sub-frame. Within these gaps, the user terminal (including the R8 user terminal) does not expect to receive any data sent by the RN.
  • the MBSFN subframe dedicated to the downlink data transmission of the backhaul link can carry the Relay Physical Downlink Control Channel (R-PDCCH) and the Relay Physical Downlink Share Channel (the Relay Physical Downlink Share Channel) that the DeNB sends to the RN. R-PDSCH).
  • R-PDCCH Relay Physical Downlink Control Channel
  • R-PDSCH Relay Physical Downlink Share Channel
  • the discontinuous reception means that the user terminal receives the downlink scheduling command and the downlink data discontinuously.
  • the user terminal can be in a sleep state to save power. purpose.
  • Each DRX cycle begins with a short continuous reception state, called on duration, whose duration is determined by the on Duration Timer.
  • the on duration is defined as: the number of consecutive downlink subframes from the beginning of the DRX cycle.
  • the terminal needs to monitor the hysical downlink control channel (PDCCH) to check whether there is any resource allocation for the terminal. . If the terminal receives the downlink scheduling command and the downlink data during the on duration, the other timers are started to perform the subsequent scheduling process. However, if the terminal does not receive the downlink scheduling command and the downlink data during the on duration, the terminal will enter the sleep state until the next state.
  • the onDurationTimer when the onDurationTimer is started, the downlink scheduling signaling and downlink data can be re-received.
  • the periodic configuration of DRX is shown in Figure 1B.
  • the user terminal may also start the following timer to instruct the terminal to further receive the downlink scheduling command on the PDCCH and the downlink data on the Physical Downlink Shared Channel (PD SCH ). :
  • DRX inactivity timer ( drx-InactivityTimer ): When receiving PDCCH scheduling new data Startup, the terminal always monitors the PDCCH during startup; the termination condition is that the timer expires or the media access control layer (Media Access Control) MAC layer signaling is received.
  • Media Access Control Media Access Control
  • HARQ Round Trip Time Timer For downlink transmission.
  • the fixed length is the retransmission time interval.
  • the frequency division duplex (FDD) system is fixed to 8 ms. During this period, it is not required to be monitored unless it is covered by other timers.
  • DRX retransmission timer ( drx-RetransmissionTimer ): For downlink transmission. After the HARQ RTT Timer expires, the terminal keeps listening to the PDCCH during startup; the termination condition is that the timer expires or the expected retransmission schedule is received.
  • the data transmission and scheduling are performed on the configured downlink backhaul subframe between the DeNB and the RN. Therefore, the current configuration mode may cause the RN to have no backhaul subframes within the configured timer length, and it is impossible to receive scheduling signaling. And the downlink data; if the timer length is configured to be long, although the RN can obtain the opportunity to receive the scheduling signaling and the downlink data, the number of downlink backhaul subframes experienced by the RNs with different DRX starting points in the same timer length configuration is Different, it will increase the scheduling complexity and the power consumption of the RN.
  • the embodiment of the invention provides a method and a device for processing downlink data, which is used to solve the problem that the RN device consumes power in the LTE-A system in the prior art.
  • a method for receiving downlink data receiving processing according to an embodiment of the present invention includes:
  • the RN receives the discontinuous reception timer value;
  • the RN monitors the scheduling command and receives downlink data in consecutive N downlink backhaul link subframes after starting the discontinuous reception timer;
  • N is equal to the value of the discontinuous reception timer.
  • An apparatus for performing downlink data receiving processing includes: a receiving module, configured to receive a discontinuous reception timer value;
  • a processing module configured to monitor a scheduling command and receive downlink data in consecutive N downlink backhaul link subframes after starting a discontinuous reception timer;
  • N is equal to the value of the discontinuous reception timer.
  • the RN includes the downlink data receiving processing device.
  • the RN monitors the scheduling command and receives downlink data in consecutive N downlink backhaul link subframes after starting the discontinuous reception timer; where N is equal to the received discontinuous reception timer value. Since downlink data reception processing is performed according to the number of downlink backhaul subframes, the requirements of the LTE-A system can be satisfied, and the power consumption of the RN is reduced.
  • the embodiment of the present invention further provides a method, a system, and a device for configuring a timer parameter, which are used to solve the problem that the DeNB configuration complexity is increased in the LTE-A system and the previous timer duration is used in the prior art. .
  • a method for configuring a timer parameter includes: determining, by a base station, a number of downlink backhaul link subframes corresponding to a discontinuous reception timer;
  • the base station sends the determined number of the downlink backhaul link subframes as a discontinuous reception timer value to the RN;
  • N is equal to the value of the discontinuous reception timer.
  • An embodiment of the present invention provides a system for downlink data receiving processing, where the system includes: a base station, configured to determine a number of downlink backhaul link subframes corresponding to a discontinuous reception timer, and the determined downlink backhaul link subframe The number is sent as a discontinuous reception timer value;
  • the RN is configured to monitor a scheduling command and receive downlink data in consecutive N downlink backhaul link subframes after starting the discontinuous reception timer.
  • An apparatus for configuring a timer parameter includes: a determining module, configured to determine a number of downlink backhaul link subframes corresponding to a discontinuous reception timer; and a sending module, configured to determine the downlink The number of backhaul link subframes is sent to the RN as a discontinuous reception timer value;
  • N is equal to the value of the discontinuous reception timer.
  • the embodiment of the invention provides a base station, and the base station includes the device for configuring the timer parameter.
  • the base station configures the discontinuous reception timer value for the RN according to the number of downlink backhaul link subframes, thereby satisfying the requirements of the LTE-A system and reducing the complexity of the DeNB configuration.
  • 1A is a schematic structural diagram of an LTE-A system in the prior art
  • 1B is a schematic diagram of a DRX cycle in the prior art
  • FIG. 2 is a schematic structural diagram of a system for receiving downlink data according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of an RN according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of a first method for receiving downlink data according to an embodiment of the present invention
  • FIG. 6 is a schematic flowchart of a method for configuring a timer length according to an embodiment of the present invention
  • FIG. 7B is a schematic diagram of configuration and startup of a drx-inactivityTimer according to an embodiment of the present invention
  • FIG. 7C is a schematic diagram of configuration and startup of a HARQ RTT Timer and a drx-RetransmissionTimer according to an embodiment of the present invention.
  • the RN monitors the scheduling command and receives downlink data in consecutive N downlink backhaul link subframes after starting the discontinuous reception timer; where N is equal to the received discontinuous reception timer value. Since the downlink data receiving process is performed according to the number of downlink backhaul subframes, the requirements of the LTE-A system can be satisfied, and the complexity of the DeNB configuration and the RN power consumption are reduced.
  • the embodiments of the present invention may be applied to the LTE-A system, and may also be applied to other systems including the RN.
  • the base station in the embodiment of the present invention may be a macro base station, an evolved base station, a home base station, or the like.
  • the system for downlink data receiving processing includes:
  • the base station 10 is configured to determine a number of downlink backhaul link subframes (ie, R-PDCCH subframes) corresponding to the discontinuous reception timer, and determine the number of the determined downlink backhaul link subframes as a discontinuous reception timer value, and Send a discontinuous reception timer value.
  • a number of downlink backhaul link subframes ie, R-PDCCH subframes
  • the RN 20 is configured to receive the discontinuous reception timer value from the base station 10, and listen to the scheduling command and receive downlink data in consecutive N downlink backhaul link subframes after starting the discontinuous reception timer; where N is equal to discontinuous reception Timer value. N is an integer not less than one.
  • the downlink backhaul link subframe is a configured downlink subframe used for communication between the RN and the Evolved Universal Terrestrial Radio Access Network (E-UTRAN).
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • Case 1 The discontinuous reception timer is onDurationTimer.
  • the RN20 starts the onDurationTimer from the beginning of each DRX cycle and listens to the scheduling command and receives the downlink data in consecutive N downlink backhaul link subframes after the onDurationTimer is started.
  • the base station 10 may determine, according to the service and data transmission of the RN, the number of downlink backhaul link subframes corresponding to the onDurationTimer, that is, at least the downlink scheduling link subframe that needs to monitor the scheduling command and receive the downlink data in each DRX cycle.
  • the quantity, and the determined quantity as the onDurationTimer value, is sent to the RN20 through the configuration command. For example, when the service data arrival periodicity is obvious and the data volume is small, fewer downlink backhaul link subframes may be configured, such as two; when the service data arrives irregularly and may arrive in a long period of time, configuration More downlink backhaul link subframes.
  • the embodiment of the present invention is not limited to the manner of determining the number of downlink backhaul link subframes corresponding to the onDurationTimer, and the manner in which the number of downlink backhaul link subframes corresponding to the onDurationTimer can be determined is applicable to the embodiment of the present invention. .
  • the RN 20 receives the onDurationTimer value and starts the onDurationTimer at the beginning of each DRX cycle.
  • the function of onDurationTimer is counting, that is, there is a downlink backhaul link subframe, counting a number, and accumulating until the accumulated value is equal to the onDurationTimer value, stopping counting, and then entering the sleep state until the next DRX cycle; if the downlink backhaul chain If the MAC command of the forced abort is received in the sub-frame, the onDurationTimer is stopped; if the scheduling command is received in the downlink backhaul link subframe or the downlink data is received, other timers are started.
  • the RN20 starts the drx-InactivityTimer after receiving the new data transmission scheduling command, and monitors the scheduling command and receives the downlink data in consecutive N downlink backhaul link subframes after the drx-InactivityTimer is started.
  • the base station 10 may determine the number of downlink backhaul link subframes corresponding to the drx-InactivityTimer according to the service and data transmission of the RN (for example, according to the continuous arrival characteristics of the data, it may be predicted how long after the RN20 receives the new schedule. The new transmission arrives, and the number of downlink backhaul link subframes is determined according to the predicted result, and the determined number is used as the drx-InactivityTimer value, and is sent to the RN20 through the configuration command.
  • the service data always arrives in a centralized manner, that is, after receiving a new transmission, the subsequent transmission arrives immediately, and a shorter drx-InactivityTimer can be configured; if the service data is irregular, that is, after receiving a new transmission for a long period of time There may be subsequent data arrivals, and a longer drx-InactivityTimer can be configured.
  • the embodiment of the present invention is not limited to the manner of determining the number of downlink backhaul link subframes corresponding to the drx-InactivityTimer, and the other can determine the corresponding corresponding to the drx-InactivityTimer.
  • the manner of the number of downlink backhaul link subframes is applicable to the embodiment of the present invention.
  • the RN20 receives the drx-InactivityTimer value and starts the drx-Inactivity Timer after receiving the new data transmission scheduling command.
  • the function of drx-InactivityTimer is to count, that is, there is a downlink backhaul link subframe, record a number, and accumulate, until the accumulated value is equal to the drx-InactivityTimer value, stop counting, or the value of the load port is equal to drx-InactivityTimer The count is stopped when the value is received before the forced termination of the MAC layer signaling.
  • the RN20 starts the drx-RetransmissionTimer after the HARQ RTT Timer times out, and listens to the scheduling command and receives the downlink data in consecutive N downlink backhaul link subframes after the drx-RetransmissionTimer is started.
  • the base station 10 may determine the number of downlink backhaul link subframes corresponding to the drx-RetransmissionTimer according to the current system load, and send the determined number to the RN20 by using the configuration command as the drx-RetransmissionTimer value.
  • the base station can immediately schedule retransmission, and the drx-RetransmissionTimer can be configured with a smaller value.
  • the base station may not be able to schedule retransmission immediately, and the drx-RetransmissionTimer can be set to a larger value. .
  • the embodiment of the present invention is not limited to the manner of determining the number of downlink backhaul link subframes corresponding to the drx-RetransmissionTimer, and the manners of determining the number of downlink backhaul link subframes corresponding to the drx-RetransmissionTimer are applicable. Embodiments of the invention.
  • the RN20 receives the drx-RetransmissionTimer value.
  • the function of starting the drx-RetransmissionTimer with drx-RetransmissionTimer is counting, that is, there is a downlink backhaul link subframe, counting a number, and accumulating until accumulating The count is stopped when the value is equal to the drx-RetransmissionTimer value, or stops when the retransmitted data is received before the value of the load port equals the value of drx-RetransmissionTimer.
  • the RN after receiving the downlink data, the RN starts the HARQ RTT Timer.
  • the length of the HARQ RTT Timer is equal to the time point at which the RN receives the downlink data and is affirmed.
  • the duration of receiving and processing ACK/NACK feedback by the base station is related to different physical layer configurations, and is regulated by the protocol.
  • the duration of the base station receiving and processing feedback is 4 ms
  • the length of the HARQ RTT Timer is equal to the duration between the time point of downlink transmission of the base station and the time point of the RN feedback + 4 ms.
  • the above three timers may all be counted by using the method of the embodiment of the present invention, or may be counted by using the method of the embodiment of the present invention, and other timers are counted according to the prior art, which is specific.
  • the timing of which method can be used can be determined as needed.
  • the apparatus for downlink data receiving processing in the embodiment of the present invention includes: a receiving module 200 and a processing module 210.
  • the receiving module 200 is configured to receive a discontinuous reception timer value.
  • the processing module 210 is configured to listen to the scheduling command and receive downlink data in consecutive N downlink backhaul link subframes after starting the discontinuous reception timer, where N is equal to the discontinuous reception timer value.
  • the processing module 210 starts the onDurationTimer from the beginning of each DRX cycle;
  • the processing module 210 starts the drx-Inactivity Timer after receiving the new data transmission scheduling command;
  • the processing module 210 starts the non-continuous reception retransmission timer drx-RetransmissionTimer after the HARQ RTT Timer timeout.
  • the processing module 210 starts the HARQ RTT Timer after receiving the downlink data.
  • the length of the HARQ RTT Timer is equal to the length of time between the time when the RN receives the downlink data and the time when the ACK/NACK is fed back, plus the duration of time that the base station receives and processes the ACK/NACK feedback.
  • An embodiment of the present invention further provides an RN that includes the foregoing apparatus for receiving downlink data.
  • the apparatus for configuring timer parameters in the embodiment of the present invention includes: a determining module 100 and a sending module 110.
  • the determining module 100 is configured to determine the number of downlink backhaul link subframes corresponding to the discontinuous reception timer.
  • the sending module 110 is configured to use the number of downlink backhaul link subframes determined by the determining module 100 as a discontinuous reception timer value, and send the discontinuous reception timer value to the RN, to indicate that the RN starts the discontinuous reception timer.
  • the scheduling command is received and the downlink data is received; where N is equal to the discontinuous reception timer value.
  • An embodiment of the present invention further provides a base station that includes the foregoing apparatus for configuring a timer parameter.
  • a method for downlink data receiving processing includes the following steps:
  • Step 501 The RN receives the discontinuous reception timer value.
  • Step 502 The RN monitors the scheduling command and receives downlink data in consecutive N downlink backhaul link subframes after starting the discontinuous reception timer, where N is equal to the discontinuous reception timer value.
  • step 501 the method further includes:
  • Step 500 The base station determines the number of downlink backhaul link subframes corresponding to the discontinuous reception timer, uses the determined number of downlink backhaul link subframes as a discontinuous reception timer value, and sends the discontinuous reception timer value to Relay RN.
  • the discontinuous reception timer of the embodiment of the present invention includes but is not limited to one of the following timers: onDurationTimer drx-Inactivity Timer and drx-RetransmissionTimercum
  • onDurationTimer drx-Inactivity Timer and drx-RetransmissionTimercum
  • the following descriptions are performed according to different timers.
  • Case 1 The discontinuous reception timer is onDurationTimer.
  • step 502 the RN starts the onDurationTimer from the beginning of each DRX cycle, and monitors the scheduling command and receives the downlink data in consecutive N downlink backhaul link subframes after the onDurationTimer is started.
  • the base station may determine, according to the service and data transmission of the user equipment, the number of downlink backhaul link subframes corresponding to the onDurationTimer, that is, at least in each DRX cycle.
  • the number of downlink backhaul link subframes to be monitored by the scheduling command and the downlink data is received, and the determined number is used as the onDurationTimer value, and is sent to the RN through the configuration command.
  • downlink backhaul link subframes can be configured, such as two; when the service arrives irregularly and may arrive in a long period of time, the configuration is more The downlink backhaul link subframe.
  • the embodiment of the present invention is not limited to the manner of determining the number of downlink backhaul link subframes corresponding to the onDurationTimer, and the manner in which the number of downlink backhaul link subframes corresponding to the onDurationTimer can be determined is applicable to the embodiment of the present invention. .
  • the RN starts the onDurationTimer at the beginning of each DRX cycle.
  • the function of onDurationTimer is to count, that is, there is a downlink backhaul link subframe, record a number, and accumulate until the accumulated value is equal to the onDurationTimer value, stop counting, and then enter the sleep state until the next DRX cycle; if the downlink backhaul chain If the MAC command of the forced abort is received in the sub-frame, the onDurationTimer is stopped; if the scheduling command is received in the downlink backhaul link subframe or the downlink data is received, other timers are started.
  • step 502 the RN starts the drx-inactivity timer after receiving the new data transmission scheduling command, and monitors the scheduling command and receives the downlink data in consecutive N downlink backhaul link subframes after the drx-inactivity timer is started.
  • the base station may determine the number of downlink backhaul link subframes corresponding to the drx-InactivityTimer according to the service and data transmission of the user terminal (for example, according to the continuous arrival characteristics of the data, predict how long the RN receives after the new scheduling There may be new transmissions arriving in time, and according to the pre- The result of the measurement determines the number of downlink backhaul link subframes, and the determined number is used as the drx-InactivityTimer value, and is sent to the RN20 through the configuration command.
  • the service data always arrives in a centralized manner, that is, after receiving a new transmission, the subsequent transmission arrives immediately, and a shorter drx-InactivityTimer can be configured; if the service data is irregular, that is, after receiving a new transmission for a long period of time There may be subsequent data arrivals, and a longer drx-InactivityTimer can be configured.
  • the embodiment of the present invention is not limited to the manner of determining the number of downlink backhaul link subframes corresponding to the drx-InactivityTimer, and the manner of determining the number of downlink backhaul link subframes corresponding to the drx-InactivityTimer is applicable. Embodiments of the invention.
  • the RN receives the drx-InactivityTimer value, and starts the drx-InactivityTimer after receiving the new data transmission scheduling command.
  • the function of drx-InactivityTimer is to count, that is, there is a downlink backhaul link subframe, record a number, and accumulate, until the accumulated value is equal to the drx-InactivityTimer value, stop counting, or the value of the load port is equal to drx-InactivityTimer The count is stopped when the value is received before the forced termination of the MAC layer signaling.
  • the DRX cycle is 20ms, the onDurationTimer value is equal to 2, and the drx-InactivityTimer value is equal to 2 as an example. As shown in Figure 7B, it is assumed that a new transmission scheduling command is received in the downlink backhaul link subframe.
  • Subframe 1 is accumulated to 2, equal to the drx-InactivityTimer value, then the drx-InactivityTimer is turned off.
  • step 502 the RN starts the drx-RetransmissionTimer after the HARQ RTT Timer timeout, and monitors the scheduling command and receives the downlink data in consecutive N downlink backhaul link subframes after the drx-RetransmissionTimer is started.
  • the base station may determine, according to the current load, the number of downlink backhaul link subframes corresponding to the drx-RetransmissionTimer (such as base station load comparison).
  • Light can guarantee to schedule retransmission in a short time, the number of determined downlink backhaul link subframes can be relatively small; base station load is relatively heavy, can not guarantee to schedule retransmission in a short time, then determine the downlink backhaul link
  • the number of frames can be relatively large), and the determined number is used as the drx-RetransmissionTimer value, which is sent to the RN through the configuration command.
  • the base station can immediately schedule retransmission, and the drx-RetransmissionTimer can be configured with a smaller value.
  • the base station may not be able to schedule retransmission immediately, and the drx-RetransmissionTimer can be set to a larger value. .
  • the embodiment of the present invention is not limited to the manner of determining the number of downlink backhaul link subframes corresponding to the drx-RetransmissionTimer, and the manners of determining the number of downlink backhaul link subframes corresponding to the drx-RetransmissionTimer are applicable. Embodiments of the invention.
  • the RN receives the drx-RetransmissionTimer value, and after the HARQ RTT Timer times out, starts the drx-RetransmissionTimer initiated drx-RetransmissionTimer function is counting, that is, there is a downlink backhaul link subframe, and a number is recorded, and Accumulate, stop counting until the value of the load port is equal to the value of drx-RetransmissionTimer, or stop counting when the required retransmission data is received before the value of the load port is equal to the value of drx-RetransmissionTimer.
  • the RN after receiving the downlink data, the RN starts the HARQ RTT Timer.
  • the length of the HARQ RTT Timer is equal to the length of time between the time when the RN receives the downlink data and the time when the ACK/NACK is fed back, plus the duration of time that the base station receives and processes the ACK/NACK feedback.
  • the duration of the base station receiving and processing feedback is 4 ms
  • the length of the HARQ RTT Timer is equal to the duration between the time point of downlink transmission of the base station and the time point of the RN feedback + 4 ms.
  • the onDurationTimer value is equal to 2
  • the drx-RetransmissionTimer value is equal to 2 as an example.
  • 4 ⁇ does not receive downlink data retransmission when the drx-RetransmissionTimer times out.
  • the base station receives NACK feedback, it will send downlink data retransmission before the drx-RetransmissionTimer times out.
  • the RN stops the drx-RetransmissionTimer and receives the HARQ RTT Timer while receiving the downlink data retransmission.
  • all the above three timers can use the embodiment of the present invention.
  • the method counts which may also be partially counted, are counted by the method of the embodiment of the present invention, and other timers are counted according to the prior art, and which timing is used to determine which manner the count can be determined as needed.
  • the method for configuring a timer parameter includes the following steps: Step 601: A base station determines a number of downlink backhaul link subframes corresponding to a discontinuous reception timer. Step 602: The base station determines the number of the determined downlink backhaul link subframes as a discontinuous reception timer value, and sends the discontinuous reception timer value to the RN to indicate the consecutive N consecutive RNs after starting the discontinuous reception timer. In the downlink backhaul link subframe, the scheduling command is received and the downlink data is received; where N is equal to the discontinuous reception timer value.
  • Step 601 and step 602 are the same as step 500 of FIG. 5, and details are not described herein again. It can be seen from the above embodiment that the RN receives the discontinuous reception timer value in the embodiment of the present invention; the RN monitors the scheduling command and the receiving downlink in consecutive N downlink backhaul link subframes after starting the discontinuous reception timer. Data; where N is equal to the discontinuous reception timer value.
  • downlink data reception processing is performed according to the number of downlink backhaul subframes, the requirements of the LTE-A system can be satisfied, and the complexity of the DeNB configuration and the power consumption of the RN are reduced.
  • the RN has not sent feedback on the downlink data, and the DeNB cannot schedule the RN. If the RN wakes up prematurely, the RN is added. During the power consumption, and within the DRX retransmission timer duration, the DeNB cannot perform downlink scheduling and retransmission. When the retransmission is really needed, the RN enters the sleep state instead, causing a transmission error.
  • the length of the HARQ RTT Timer in the embodiment of the present invention is equal to the duration between the time point of the downlink transmission and the time point of the feedback plus the base station receiving and processing the feedback Long, you can avoid the situation that the data cannot be transmitted correctly due to the unreasonable setting of the timer duration.
  • the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware.
  • the invention can be embodied in the form of one or more computer program products embodied on a computer-usable storage medium (including but not limited to disk storage, CD-ROM, optical storage, etc.) in which computer usable program code is embodied.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一种下行数据接收处理的方法、 系统和装置 本申请要求在 2010年 04月 29日 提交中 国专利局、 申请号为 201010163029.3、 发明名称为"一种下行数据接收处理的方法、 系统和装置" 的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及无线通信技术, 特别涉及一种下行数据接收处理的方法、 系 统和装置。 背景技术
长期演进升级 ( Long Term Evolution- Advanced, LTE-A ) 系统引入中继 ( Relay )节点后, 定义了以下节点、 接口和链路, 如图 1A所示, 其中: 节点包括:
Donor-eNB: 与中继设备 ( Relay-Node, RN )有无线连接的 eNB (演进 基站), 简写为 DeNB;
Relay-Node: 存在于 DeNB与 UE之间的实体, 简写为 RN;
Relay-UE: 与 RN进行数据交互的用户终端 ( UE ), 简写为 R-UE;
宏 UE: 直接与 DeNB进行数据交互的 UE。
接口包括:
Un接口: RN和 DeNB之间的接口;
Uu接口: UE和 RN之间的接口。
无线链路包括:
Backhaul link: 回程链路, 与 Un接口对应的链路;
Access link: 接入链路, 与 Uu接口对应的链路;
Direct link: 直射链路, DeNB与宏 UE进行数据传输的链路。
引入 RN后的下行传输:发往 RN下的 UE的数据需要由 DeNB经下行回 程链路发送到 RN, 再由 RN经下行接入链路发送到 UE。
引入 RN后的上行传输: RN下的 UE的上行数据先由 UE经上行接入链 路发送到 RN , 再由 RN经回程链路发送到 DeNB。
目前处理干扰问题的方法是 RN在从基站接收数据时不向终端发送数据, 即在接入链路的下行传输时间内创造空闲时间 (gaps )。 可以在多播广播单频 网络( Multicast Broadcast Single Frequency Network, MBSFN )子帧内创造 gaps。 在这些 gaps内, 用户终端 (包括 R8 用户终端) 不会期望接收任何 RN发送 的数据。 专用于回程链路下行数据传输的 MBSFN子帧可以承载 DeNB向 RN 发送的中继物理下行控制信道(Relay Physical Downlink Control Channel, R-PDCCH )和中继物理下行共享信道( Relay Physical Downlink Share Channel, R-PDSCH )。
非连续接收(Discontinuous Reception, DRX )指用户终端非连续接收下 行调度命令和下行数据, 在不需要接收下行调度命令和下行数据的时候, 用 户终端可以处于休眠(sleep )状态, 以达到省电的目的。
DRX周期性配置: 每个 DRX周期开始时先进入一个短暂的连续接收状 态, 称为监听时段(on duration ), 其持续时间由监听时段定时器( on Duration Timer ) 决定。 on duration的定义是: 从 DRX周期起点开始的连续的下行子 帧的个数, 在此期间终端需监听物理下行控制信道 ( hysical downlink control channel , PDCCH ), 以查看是否有针对本终端的资源分配。 如果终端在 on duration期间接收到下行调度命令和下行数据, 将启动其他定时器开展后续调 度过程,但如果终端在 on duration期间没有接收到下行调度命令和下行数据, 将会进入休眠状态, 直到下一个 DRX周期, onDurationTimer启动时才能重新 接收下行调度信令和下行数据。 DRX的周期性配置如图 1B所示。
用户终端在接收下行调度命令和下行数据期间, 还可能启动以下定时器, 以指示终端进一步接收 PDCCH上的下行调度命令和物理下行链路共享信道 ( Physical Downlink Shared Channel , PD SCH )上的下行数据:
DRX非激活定时器( drx-InactivityTimer ): 收到调度新数据的 PDCCH时 启动, 启动期间终端一直监听 PDCCH; 终止条件是该定时器超时或收到强制 终止的媒体接入控制层 ( Media Access Control ) MAC层信令;
混合自动重复请求往返时间定时器 (HARQ Round Trip Time Timer, HARQ RTT Timer ): 针对下行传输。 收到调度下行数据的 PDCCH时启动, 固 定长度为重传时间间隔, 例如对频分双工 ( Frequency division duplex; FDD ) 系统固定为 8ms, 在此期间除非被其他定时器覆盖, 否则不需监听 PDCCH;
DRX重传定时器( drx-RetransmissionTimer ): 针对下行传输。 HARQ RTT Timer超时后启动, 启动期间终端一直监听 PDCCH; 终止条件是该定时器超 时或收到期待的重传调度。
按照现有的 DRX参数设计方法, 回程链路上非连续接收定时器配置存在 很多不确定因素, 会增加 DeNB配置复杂度, 增加 RN耗电量, 甚至导致数 据不能正确传输。
由于 DeNB和 RN之间是在配置的下行 backhaul子帧上进行数据传输和 调度, 使得目前的配置方式有可能导致 RN在配置的定时器长度内根本没有 backhaul子帧存在, 不可能接收调度信令和下行数据; 如果将定时器长度配置 得很长, 虽然 RN可以得到接收调度信令和下行数据的机会,但由于相同定时 器长度配置下不同 DRX起点的 RN经历的下行 backhaul子帧个数是不同的, 会增加调度复杂度和 RN的耗电量。
综上所述,如果在 LTE-A系统中, 沿用以前的定时器时长,会增加 DeNB 配置复杂度和 RN耗电量, 以及导致数据不能正确传输。 发明内容
本发明实施例提供一种下行数据接收处理的方法和装置, 用以解决现有 技术中存在的在 LTE-A系统中, 沿用以前的定时器时长, 会增加 RN设备耗 电量的问题。
本发明实施例提供的一种下行数据接收处理的方法, 该方法包括:
RN接收非连续接收定时器数值; 所述 RN在启动非连续接收定时器后的连续 N个下行回程链路子帧内, 监听调度命令和接收下行数据;
其中, N等于非连续接收定时器数值。
本发明实施例提供的一种下行数据接收处理的装置, 该装置包括: 接收模块, 用于接收非连续接收定时器数值;
处理模块, 用于在启动非连续接收定时器后的连续 N个下行回程链路子 帧内, 监听调度命令和接收下行数据;
其中, N等于非连续接收定时器数值。
本发明实施例提供的一种 RN,该 RN包括所述下行数据接收处理的装置。 本发明实施例中 , RN在启动非连续接收定时器后的连续 N个下行回程链 路子帧内, 监听调度命令和接收下行数据; 其中 N等于接收到的非连续接收 定时器数值。 由于根据下行 backhaul子帧的数量, 进行下行数据接收处理, 从而可以满足 LTE-A系统的要求, 降低了 RN耗电量。
本发明实施例还提供一种定时器参数配置的方法、 系统和装置, 用以解 决现有技术中存在的在 LTE-A系统中,沿用以前的定时器时长,会增加 DeNB 配置复杂度的问题。
本发明实施例提供的一种定时器参数配置的方法, 该方法包括: 基站确定非连续接收定时器对应的下行回程链路子帧的数量;
所述基站将确定的所述下行回程链路子帧的数量作为非连续接收定时器 数值发送给 RN;
其中, N等于非连续接收定时器数值。
本发明实施例提供一种下行数据接收处理的系统, 该系统包括: 基站, 用于确定非连续接收定时器对应的下行回程链路子帧的数量, 将 确定的所述下行回程链路子帧的数量作为非连续接收定时器数值进行发送;
RN, 用于在启动非连续接收定时器后的连续 N个下行回程链路子帧内, 监听调度命令和接收下行数据;
其中, N等于非连续接收定时器数值。 本发明实施例提供的定时器参数配置的装置, 该装置包括: 确定模块, 用于确定非连续接收定时器对应的下行回程链路子帧的数量; 发送模块, 用于将确定的所述下行回程链路子帧的数量作为非连续接收 定时器数值发送给 RN;
其中, N等于非连续接收定时器数值。
本发明实施例提供一种基站, 该基站包括所述定时器参数配置的装置。 本发明实施例中, 基站根据下行回程链路子帧的数量为 RN配置非连续接 收定时器数值,从而可以满足 LTE-A系统的要求, 降低了 DeNB配置的复杂度。 附图说明
图 1A为现有技术中 LTE-A系统的结构示意图;
图 1B为现有技术中 DRX周期示意图;
图 2为本发明实施例提供的下行数据接收处理的系统结构示意图; 图 3为本发明实施例提供的 RN的结构示意图;
图 4为本发明实施例提供的基站的结构示意图;
图 5为本发明实施例提供的第一种下行数据接收处理的方法流程示意图; 图 6为本发明实施例提供的定时器长度配置的方法流程示意图; 图 7A为本发明实施例提供的 on Duration Timer的配置和启动示意图; 图 7B为本发明实施例提供的 drx-InactivityTimer的配置和启动示意图; 图 7C 为 本 发 明 实 施 例 提 供 的 HARQ RTT Timer 和 drx-RetransmissionTimer的配置和启动示意图。 具体实施方式
本发明实施例 RN在启动非连续接收定时器后的连续 N个下行回程链路 子帧内, 监听调度命令和接收下行数据; 其中 N等于接收到的非连续接收定 时器数值。 由于根据下行 backhaul子帧的数量, 进行下行数据接收处理, 从 而可以满足 LTE-A系统的要求, 降低了 DeNB配置的复杂度和 RN耗电量。 其中, 本发明实施例可以应用在 LTE-A系统中, 也可以应用在其他含有 RN的系统中。
本发明实施例的基站可以是宏基站, 演进基站、 家庭基站等。
下面结合说明书附图对本发明实施例作进一步详细描述。
如图 2所示, 本发明实施例提供的下行数据接收处理的系统包括: 基站
10和 RN20。
基站 10 , 用于确定非连续接收定时器对应的下行回程链路子帧 (即 R-PDCCH子帧)的数量, 将确定的下行回程链路子帧的数量作为非连续接收 定时器数值, 并发送非连续接收定时器数值。
RN20,用于接收来自基站 10的非连续接收定时器数值,在启动非连续接 收定时器后的连续 N个下行回程链路子帧内,监听调度命令和接收下行数据; 其中 N等于非连续接收定时器数值。 N为不小于 1的整数。 下行回程链路子 帧 是指 配 置 的 用 于 RN 与 演 进通 用 陆 地无 线接入 网 络 ( Evolved Universal Terrestrial Radio Access Network, E-UTRAN )之间通信的 下行子帧。
本发明实施例中的非连续接收定时器包括但不限于下列定时器中的一 种:
onDurationTimer drx-Inactivity Timer和 drx-RetransmissionTimer„
下面按照不同定时器进行说明。
情况一、 非连续接收定时器是 onDurationTimer。
RN20 从每个 DRX 周期的起点开始启动 onDurationTimer, 并在启动 onDurationTimer后的连续 N个下行回程链路子帧内, 监听调度命令和接收下 行数据。
具体的, 基站 10可以根据 RN的业务和数据传输, 确定 onDurationTimer 对应的下行回程链路子帧的数量, 即每个 DRX周期内至少需要监听调度命令 和接收下行数据的下行回程链路子帧的数量, 并将确定的数量作为 onDurationTimer数值, 通过配置命令发送给 RN20。 比如, 业务数据到达周期性特点明显、 数据量不大时, 可配置较少的下 行回程链路子帧, 如 2个; 业务数据到达不规律、 在较长一段时间内都可能 到达时, 配置较多的下行回程链路子帧。
需要说明的是, 本发明实施例不局限于上述确定 onDurationTimer对应的 下行回程链路子帧的数量的方式, 其他能够确定 onDurationTimer对应的下行 回程链路子帧的数量的方式都适用本发明实施例。
相应的, RN20接收 onDurationTimer数值, 在每个 DRX周期开始时启动 onDurationTimer。 onDurationTimer 的功能是计数, 即有一个下行回程链路子 帧, 记一个数, 并进行累加, 直到累加的数值等于 onDurationTimer数值, 停 止计数, 然后进入休眠状态, 直到下一个 DRX周期; 如果下行回程链路子帧 内收到强制中止的 MAC命令, 则停止 onDurationTimer; 如果下行回程链路 子帧内监听到调度命令或接收到下行数据, 启动其他定时器。
情况二、 非连续接收定时器是 drx-InactivityTimer。
RN20 在收到新数据传输调度命令后启动 drx-InactivityTimer, 并在启动 drx-InactivityTimer后的连续 N个下行回程链路子帧内, 监听调度命令和接收 下行数据。
具体的,基站 10可以根据 RN的业务和数据传输,确定 drx-InactivityTimer 对应的下行回程链路子帧的数量(比如根据数据连续到达特性, 预测 RN20 接收到新调度之后的多长时间内可能有新传输到达, 并根据预测的结果确定 下行回程链路子帧的数量), 并将确定的数量作为 drx-InactivityTimer数值, 通过配置命令发送给 RN20。
比如, 如果业务数据总是集中到达, 即收到一个新传输后, 后续传输立 刻到达, 可以配置较短的 drx-InactivityTimer; 如果业务数据不规律, 即收到 一个新传输后在较长一段时间内都可能有后续数据到达, 可以配置较长的 drx-InactivityTimer„
需要说明的是, 本发明实施例不局限于上述确定 drx-InactivityTimer对应 的下行回程链路子帧的数量的方式, 其他能够确定 drx-InactivityTimer对应的 下行回程链路子帧的数量的方式都适用本发明实施例。
相应的, RN20接收 drx-InactivityTimer数值, 在收到新数据传输调度命 令后, 启动 drx-Inactivity Timer。 drx-InactivityTimer的功能是计数, 即有一个 下行回程链路子帧, 记一个数, 并进行累加, 直到累加的数值等于 drx-InactivityTimer数值时停止计数 , 或在累力口的数值等于 drx-InactivityTimer 数值之前收到强制终止的 MAC层信令时停止计数。
情况三、 非连续接收定时器是 drx-RetransmissionTimer。
RN20在 HARQ RTT Timer超时后启动 drx-RetransmissionTimer, 并在启 动 drx-RetransmissionTimer后的连续 N个下行回程链路子帧内, 监听调度命 令和接收下行数据。
具体的, 基站 10可以根据当前系统负荷, 确定 drx-RetransmissionTimer 对应 的 下行回程链路子 帧 的数量 , 并将确 定的数量作为 drx-RetransmissionTimer数值, 通过配置命令发送给 RN20。
比如, 当系统负荷较轻时,基站能立刻调度重传, drx-RetransmissionTimer 可配置较小值; 当系统负荷较轻时, 基站可能不能立刻调度重传, drx-RetransmissionTimer可西己置较大值。
需要说明的是, 本发明实施例不局限于上述确定 drx-RetransmissionTimer 对应 的 下行回程链路子 帧 的数量的 方 式 , 其他 能够确 定 drx-RetransmissionTimer对应的下行回程链路子帧的数量的方式都适用本发明 实施例。
相应的, RN20接收 drx-RetransmissionTimer数值, 在 HARQ RTT Timer 超时后, 启动 drx-RetransmissionTimer„ drx-RetransmissionTimer的功能是计 数, 即有一个下行回程链路子帧, 记一个数, 并进行累加, 直到累加的数值 等于 drx-RetransmissionTimer 数值时停止计数, 或在累力口的数值等于 drx-RetransmissionTimer数值之前收到需要的重传数据时停止计数。
在具体实施过程中, RN在收到下行数据后 , 会启动 HARQ RTT Timer。 较佳的, HARQ RTT Timer的长度等于 RN收到下行数据的时间点和进行肯定 应答(ACK ) /否定应答(NACK )反馈的时间点之间的时长, 加上基站接收 和处理该 ACK/ NACK反馈的时长。 基站接收和处理 ACK/ NACK反馈的时 长与不同的物理层配置相关, 由协议进行相关规定。
比如在 LTE-A系统中 ,基站接收和处理反馈的时长是 4ms,则 HARQ RTT Timer 的长度等于基站下行传输的时间点和 RN反馈的时间点之间的时长 + 4ms。
在具体实施过程中, 上述三个定时器可以全都釆用本发明实施例的方法 计数, 也可以有部分记数釆用本发明实施例的方法计数, 其他定时器按照现 有技术计数, 具体哪个定时釆用哪种方式计数可以根据需要确定。
如图 3 所示, 本发明实施例的下行数据接收处理的装置包括: 接收模块 200和处理模块 210。
接收模块 200, 用于接收非连续接收定时器数值。
处理模块 210, 用于在启动非连续接收定时器后的连续 N个下行回程链 路子帧内, 监听调度命令和接收下行数据; 其中, N等于非连续接收定时器 数值。
如果非连续接收定时器是 onDurationTimer,处理模块 210从每个 DRX周 期的起点开始启动 onDurationTimer;
如果非连续接收定时器是 drx-InactivityTimer, 处理模块 210在收到新数 据传输调度命令后启动 drx-Inactivity Timer;
如果非连续接收定时器是 drx-RetransmissionTimer , 处理模块 210 在 HARQ RTT Timer 超 时 后 启 动 非 连 续 接 收 重 传 定 时 器 drx-RetransmissionTimer。
其中, 处理模块 210在收到下行数据后, 启动 HARQ RTT Timer。
较佳的 , HARQ RTT Timer的长度等于 RN收到下行数据的时间点和进行 ACK/NACK反馈的时间点之间的时长, 加上基站接收和处理该 ACK/ NACK 反馈的时长。
本发明实施例还提供一种包含上述下行数据接收处理的装置的 RN。 如图 4所示, 本发明实施例的定时器参数配置的装置包括: 确定模块 100 和发送模块 110。
确定模块 100 ,用于确定非连续接收定时器对应的下行回程链路子帧的数 量。
发送模块 110 ,用于将确定模块 100确定的下行回程链路子帧的数量作为 非连续接收定时器数值, 并将非连续接收定时器数值发送给 RN, 以指示 RN 在启动非连续接收定时器后的连续 N个下行回程链路子帧内, 监听调度命令 和接收下行数据; 其中, N等于非连续接收定时器数值。
本发明实施例还提供一种包含上述定时器参数配置的装置的基站。
如图 5 所示, 本发明实施例提供的一种下行数据接收处理的方法包括下 列步骤:
步骤 501、 RN接收非连续接收定时器数值。
步骤 502、 RN在启动非连续接收定时器后的连续 N个下行回程链路子帧 内, 监听调度命令和接收下行数据, 其中 N等于非连续接收定时器数值。
其中, 步骤 501之前还可以进一步包括:
步骤 500、 基站确定非连续接收定时器对应的下行回程链路子帧的数量, 将确定的下行回程链路子帧的数量作为非连续接收定时器数值, 并将非连续 接收定时器数值发送给中继 RN。
本发明实施例的非连续接收定时器包括但不限于下列定时器中的一种: onDurationTimer drx-Inactivity Timer和 drx-RetransmissionTimer„ 下面按照不同定时器进行说明。
情况一、 非连续接收定时器是 onDurationTimer。
步骤 502中, RN从每个 DRX周期的起点开始启动 onDurationTimer, 并 在启动 onDurationTimer后的连续 N个下行回程链路子帧内,监听调度命令和 接收下行数据。
具体的, 步骤 500 中, 基站可以根据用户终端的业务和数据传输, 确定 onDurationTimer对应的下行回程链路子帧的数量,即每个 DRX周期内至少需 要监听调度命令和接收下行数据的下行回程链路子帧的数量, 并将确定的数 量作为 onDurationTimer数值, 通过配置命令发送给 RN。
比如, 业务到达周期性特点明显、 数据量不大时, 可配置较少的下行回 程链路子帧, 如 2个; 业务到达不规律、 在较长一段时间内都可能到达时, 配置较多的下行回程链路子帧。
需要说明的是, 本发明实施例不局限于上述确定 onDurationTimer对应的 下行回程链路子帧的数量的方式, 其他能够确定 onDurationTimer对应的下行 回程链路子帧的数量的方式都适用本发明实施例。
相应的,步骤 502中, RN在每个 DRX周期开始时启动 onDurationTimer。 onDurationTimer的功能是计数, 即有一个下行回程链路子帧, 记一个数, 并 进行累加, 直到累加的数值等于 onDurationTimer数值, 停止计数, 然后进入 休眠状态, 直到下一个 DRX周期; 如果下行回程链路子帧内收到强制中止的 MAC命令, 则停止 onDurationTimer; 如果下行回程链路子帧内监听到调度命 令或接收到下行数据, 启动其他定时器。
以 DRX周期为 20ms, onDurationTimer数值等于 2为例。 如图 7A所示, 假设 RN在下行回程链路子帧中没有监听到调度命令, 但接收到下行数据。
在 DRX周期 1开始后启动 onDurationTimer, 在子帧 1时记录 1 , 在子帧 2时累力口为 2 , 等于 onDurationTimer数值, 则关闭 onDurationTimer; 在 DRX 周期 2开始后启动 onDurationTimer,在子帧 6时记录 1 ,在子帧 7时累加为 2, 等于 onDurationTimer数值, 则关闭 onDurationTimer„
情况二、 非连续接收定时器是 drx-InactivityTimer。
步骤 502中, RN在收到新数据传输调度命令后启动 drx-Inactivity Timer, 并在启动 drx-Inactivity Timer后的连续 N个下行回程链路子帧内,监听调度命 令和接收下行数据。
具体的, 步骤 500 中, 基站可以根据用户终端的业务和数据传输, 确定 drx-InactivityTimer对应的下行回程链路子帧的数量(比如根据数据连续到达 特性,预测 RN接收到新调度之后的多长时间内可能有新传输到达,并根据预 测的结果确定下行回程链路子帧的数量), 并将确定的数量作为 drx-InactivityTimer数值, 通过配置命令发送给 RN20。
比如, 如果业务数据总是集中到达, 即收到一个新传输后, 后续传输立 刻到达, 可以配置较短的 drx-InactivityTimer; 如果业务数据不规律, 即收到 一个新传输后在较长一段时间内都可能有后续数据到达, 可以配置较长的 drx-InactivityTimer。
需要说明的是, 本发明实施例不局限于上述确定 drx-InactivityTimer对应 的下行回程链路子帧的数量的方式, 其他能够确定 drx-InactivityTimer对应的 下行回程链路子帧的数量的方式都适用本发明实施例。
相应的, 步骤 502中, RN接收 drx-InactivityTimer数值, 在收到新数据 传输调度命令后, 启动 drx-InactivityTimer。 drx-InactivityTimer的功能是计数, 即有一个下行回程链路子帧, 记一个数, 并进行累加, 直到累加的数值等于 drx-InactivityTimer数值时停止计数 , 或在累力口的数值等于 drx-InactivityTimer 数值之前收到强制终止的 MAC层信令时停止计数。
以 DRX周期 20ms, onDurationTimer数值等于 2 , drx-InactivityTimer数 值等于 2为例。 如图 7B所示, 假设在下行回程链路子帧中收到新的传输调度 命令。
在 DRX周期 1开始后启动 onDurationTimer, 在子帧 1时记录 1 , 由于在 子帧 1 中收到新的传输调度命令, 则关闭 onDurationTimer , 启动 drx-InactivityTimer, 在子帧 2 时记录 1 , 在下一个子帧 1 时累加为 2, 等于 drx-InactivityTimer数值 , 则关闭 drx-InactivityTimer„
情况三、 非连续接收定时器是 drx-RetransmissionTimer。
步 骤 502 中 , RN 在 HARQ RTT Timer 超 时 后 启 动 drx-RetransmissionTimer , 并在启动 drx-RetransmissionTimer后的连续 N个下 行回程链路子帧内, 监听调度命令和接收下行数据。
具体的 , 步骤 500 中 , 基站可以根据 当 前 负 荷 , 确 定 drx-RetransmissionTimer对应的下行回程链路子帧的数量(比如基站负荷比较 轻, 能保证在短时间内调度重传, 则确定的下行回程链路子帧的数量可以比 较小; 基站负荷比较重, 不能保证在短时间内调度重传, 则确定的下行回程 链路子帧的数量可以比较大), 并将确定的数量作为 drx-RetransmissionTimer 数值, 通过配置命令发送给 RN。
比如, 当系统负荷较轻时,基站能立刻调度重传, drx-RetransmissionTimer 可配置较小值; 当系统负荷较轻时, 基站可能不能立刻调度重传, drx-RetransmissionTimer可西己置较大值。
需要说明的是, 本发明实施例不局限于上述确定 drx-RetransmissionTimer 对应 的 下行回程链路子 帧 的数量的 方 式 , 其他 能够确 定 drx-RetransmissionTimer对应的下行回程链路子帧的数量的方式都适用本发明 实施例。
相应的, 步骤 502中, RN接收 drx-RetransmissionTimer数值, 在 HARQ RTT Timer超时后, 启动 drx-RetransmissionTimer„ drx-RetransmissionTimer的 功能是计数, 即有一个下行回程链路子帧, 记一个数, 并进行累加, 直到累 力口的数值等于 drx-RetransmissionTimer数值时停止计数,或在累力口的数值等于 drx-RetransmissionTimer数值之前收到需要的重传数据时停止计数。
在具体实施过程中, RN在收到下行数据后 , 会启动 HARQ RTT Timer。 较佳的, HARQ RTT Timer 的长度等于 RN 收到下行数据的时间点和进行 ACK/NACK反馈的时间点之间的时长, 加上基站接收和处理该 ACK/ NACK 反馈的时长。
比如在 LTE-A系统中 ,基站接收和处理反馈的时长是 4ms,则 HARQ RTT Timer 的长度等于基站下行传输的时间点和 RN反馈的时间点之间的时长 + 4ms。
以 DRX 周 期 为 20ms , onDurationTimer 数 值 等 于 2 , drx-RetransmissionTimer 数值等于 2 为例。 口图 7C 所示, 4叚设在 drx-RetransmissionTimer超时时没有收到下行数据重传。 实际操作中基站如果 收到 NACK反馈, 会在 drx-RetransmissionTimer超时前发送下行数据重传, RN在接收到下行数据重传的同时停止 drx-RetransmissionTimer, 启动 HARQ RTT Timer。
在 DRX周期 1开始后启动 onDurationTimer, 在子帧 1时记录 1 , 由于在 子帧 1收到下行数据,所以在子帧 1启动 HARQ RTT Timer„ HARQ RTT Timer 超时后, 启动 drx-RetransmissionTimer, 在子帧 1时记录 1 , 在下一个子帧 2 时累力口为 2, 等于 drx-RetransmissionTimer数值, 则关闭 drx-Inactivity Timer„ 在具体实施过程中, 上述三个定时器可以全都釆用本发明实施例的方法 计数, 也可以有部分记数釆用本发明实施例的方法计数, 其他定时器按照现 有技术计数, 具体哪个定时釆用哪种方式计数可以根据需要确定。
如图 6所示, 本发明实施例提供的定时器参数配置的方法包括下列步骤: 步骤 601、 基站确定非连续接收定时器对应的下行回程链路子帧的数量。 步骤 602、基站将确定的下行回程链路子帧的数量作为非连续接收定时器 数值, 并将非连续接收定时器数值发送给 RN, 以指示 RN在启动非连续接收 定时器后的连续 N个下行回程链路子帧内, 监听调度命令和接收下行数据; 其中, N等于非连续接收定时器数值。
其中, 步骤 601和步骤 602与图 5的步骤 500相同, 在此不再赘述。 从上述实施例中可以看出:本发明实施例中 RN接收非连续接收定时器数 值; RN在启动非连续接收定时器后的连续 N个下行回程链路子帧内,监听调 度命令和接收下行数据; 其中, N等于非连续接收定时器数值。
由于根据下行 backhaul子帧的数量, 进行下行数据接收处理, 从而可以 满足 LTE-A系统的要求, 降低了 DeNB配置的复杂度和 RN耗电量。
进一步的 , 如果 LTE-A系统中 HARQ RTT Timer仍是 8ms , 有可能出现 如下情况: RN还没有发送对下行数据的反馈, DeNB不可能调度该 RN, 此 时如果 RN过早醒来会增加 RN的耗电量,并且 DRX重传定时器时长范围内 , DeNB还不能进行下行调度和重传,在真正需要重传的时候 RN反而进入休眠 状态, 导致传输错误。 如果本发明实施例的 HARQ RTT Timer的长度等于下 行传输的时间点和反馈的时间点之间的时长加上基站接收和处理反馈的时 长, 可以避免由于定时器时长设置不合理导致数据不能正确传输的情况。 本领域内的技术人员应明白, 本发明的实施例可提供为方法、 系统、 或 计算机程序产品。 因此, 本发明可釆用完全硬件实施例、 完全软件实施例、 或结合软件和硬件方面的实施例的形式。 而且, 本发明可釆用在一个或多个 其中包含有计算机可用程序代码的计算机可用存储介质 (包括但不限于磁盘 存储器、 CD-ROM、 光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、 设备(系统)、 和计算机程序产 品的流程图和 /或方框图来描述的。 应理解可由计算机程序指令实现流程图 和 /或方框图中的每一流程和 /或方框、 以及流程图和 /或方框图中的流程 和 /或方框的结合。 可提供这些计算机程序指令到通用计算机、 专用计算机、 嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器, 使得通 过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流 程图一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的 装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设 备以特定方式工作的计算机可读存储器中, 使得存储在该计算机可读存储器 中的指令产生包括指令装置的制造品, 该指令装置实现在流程图一个流程或 多个流程和 /或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上, 使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的 处理, 从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图 一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的步 骤。
尽管已描述了本发明的优选实施例, 但本领域内的技术人员一旦得知了 基本创造性概念, 则可对这些实施例作出另外的变更和修改。 所以, 所附权 利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。 发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要 求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权 利 要 求
1、 一种下行数据接收处理的方法, 其特征在于, 该方法包括: 中继设备 RN接收非连续接收定时器数值;
所述 RN在启动非连续接收定时器后的连续 N个下行回程链路子帧内, 监听调度命令和接收下行数据;
其中, N等于非连续接收定时器数值。
2、 如权利要求 1所述的方法, 其特征在于, 所述非连续接收定时器是监 听时段定时器 onDurationTimer;
所述 RN启动非连续接收定时器包括:
所述 RN从每个 DRX周期的起点开始启动 onDurationTimer。
3、 如权利要求 1所述的方法, 其特征在于, 所述非连续接收定时器是非 连续接收非激活定时器 drx-Inactivity Timer;
所述 RN启动非连续接收定时器包括:
所述 RN在收到新数据传输调度命令后启动 drx-InactivityTimer。
4、 如权利要求 1所述的方法, 其特征在于, 所述非连续接收定时器是非 连续接 4丈重传定时器 drx-Retransmi ssionTimer;
所述 RN启动非连续接收定时器包括:
所述 RN在混合自动重复请求往返时间定时器 HARQ RTT Timer超时后 启动 drx-RetransmissionTimer„
5、 如权利要求 4所述的方法, 其特征在于, 所述 RN接收非连续接收定 时器数值之后 , 启动 drx-RetransmissionTimer之前还包括:
所述 RN在收到下行数据后 , 启动 HARQ RTT Timer;
其中 , HARQ RTT Timer的长度等于 RN收到下行数据的时间点和进行肯 定应答 ACK/否定应答 NACK反馈的时间点之间的时长, 加上基站接收和处 理该 ACK/ NACK反馈的时长。
6、 一种定时器参数配置的方法, 其特征在于, 该方法包括: 基站确定非连续接收定时器对应的下行回程链路子帧的数量; 所述基站将确定的所述下行回程链路子帧的数量作为非连续接收定时器 数值发送给中继设备 RN。
7、 一种下行数据接收处理的系统, 其特征在于, 该系统包括:
基站, 用于确定非连续接收定时器对应的下行回程链路子帧的数量, 将 确定的所述下行回程链路子帧的数量作为非连续接收定时器数值进行发送; 中继设备 RN,用于在启动非连续接收定时器后的连续 N个下行回程链路 子帧内, 监听调度命令和接收下行数据;
其中, N等于非连续接收定时器数值。
8、 如权利要求 7所述的系统, 其特征在于, 所述 RN具体用于: 在所述非连续接收定时器是监听时段定时器 onDurationTimer时, 从每个 DRX周期的起点开始启动 onDurationTimer。
9、 如权利要求 7所述的系统, 其特征在于, 所述 RN具体用于: 在所述非连续接收定时器是非连续接收非激活定时器 drx-InactivityTimer 时, 在收到新数据传输调度命令后启动 drx-InactivityTimer。
10、 如权利要求 7所述的系统, 其特征在于, 所述 RN具体用于: 在 所述非 连续接收定 时 器是非 连续 接收重传 定 时 器 drx-RetransmissionTimer时,在混合自动重复请求往返时间定时器 HARQ RTT Timer超时后启动 drx-RetransmissionTimer„
11、 如权利要求 10所述的系统, 其特征在于, 所述 RN还用于: 在收到下行数据后, 启动 HARQ RTT Timer;
其中 , HARQ RTT Timer的长度等于 RN收到下行数据的时间点和进行肯 定应答 ACK/否定应答 NACK反馈的时间点之间的时长, 加上基站接收和处 理该 ACK/ NACK反馈的时长。
12、 一种下行数据接收处理的装置, 其特征在于, 该装置包括: 接收模块, 用于接收非连续接收定时器数值;
处理模块, 用于在启动非连续接收定时器后的连续 N个下行回程链路子 帧内, 监听调度命令和接收下行数据;
其中, Ν等于非连续接收定时器数值。
13、 如权利要求 12所述的装置, 其特征在于, 所述处理模块具体用于: 在所述非连续接收定时器是监听时段定时器 onDurationTimer时, 从每个
DRX周期的起点开始启动 onDurationTimer。
14、 如权利要求 12所述的装置, 其特征在于, 所述处理模块具体用于: 在所述非连续接收定时器是非连续接收非激活定时器 drx-InactivityTimer 时, 在收到新数据传输调度命令后启动 drx-InactivityTimer。
15、 如权利要求 12所述的装置, 其特征在于, 所述处理模块具体用于: 在 所述非 连续接收定 时 器是非 连续 接收重传 定 时 器 drx-RetransmissionTimer时,在混合自动重复请求往返时间定时器 HARQ RTT Timer超时后启动 drx-RetransmissionTimer„
16、 如权利要求 15所述的装置, 其特征在于, 所述处理模块还用于: 在收到下行数据后, 启动 HARQ RTT Timer;
其中 , HARQ RTT Timer的长度等于 RN收到下行数据的时间点和进行肯 定应答 ACK/否定应答 NACK反馈的时间点之间的时长, 加上基站接收和处 理该 ACK/ NACK反馈的时长。
17、 一种定时器参数配置的装置, 其特征在于, 该装置包括:
确定模块, 用于确定非连续接收定时器对应的下行回程链路子帧的数量; 发送模块, 用于将确定的所述下行回程链路子帧的数量作为非连续接收 定时器数值发送给中继设备 RN;
其中, N等于非连续接收定时器数值。
18、 一种中继设备, 其特征在于, 该中继设备包括权利要求 12-16中任一 所述的下行数据接收处理的装置。
19、 一种基站, 其特征在于, 该基站包括权利要求 17所述的定时器参数 配置的装置。
PCT/CN2011/073357 2010-04-29 2011-04-27 一种下行数据接收处理的方法、系统和装置 WO2011134396A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010101630293A CN102082626B (zh) 2010-04-29 2010-04-29 一种下行数据接收处理的方法、系统和装置
CN201010163029.3 2010-04-29

Publications (1)

Publication Number Publication Date
WO2011134396A1 true WO2011134396A1 (zh) 2011-11-03

Family

ID=44088389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/073357 WO2011134396A1 (zh) 2010-04-29 2011-04-27 一种下行数据接收处理的方法、系统和装置

Country Status (2)

Country Link
CN (1) CN102082626B (zh)
WO (1) WO2011134396A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014161176A1 (en) * 2013-04-03 2014-10-09 Broadcom Corporation Handling downlink semi-persistent scheduling retransmission in wireless networks
CN112616182A (zh) * 2020-12-11 2021-04-06 几维通信技术(深圳)有限公司 基于通信模块的基站同步方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101712302B1 (ko) * 2013-02-05 2017-03-03 애플 인크. 접속 모드 불연속 수신의 소비전력 감소
EP3280085B1 (en) * 2016-08-05 2020-09-23 HTC Corporation Device for handling a hybrid automatic repeat request round-trip time timer in a discontinuous reception
CN108024320A (zh) * 2016-11-04 2018-05-11 华为技术有限公司 传输信息的方法、网络设备和终端设备
JP7165732B2 (ja) * 2017-11-22 2022-11-04 鴻穎創新有限公司 複数の帯域幅部分間の間欠受信動作
CN109982416B (zh) * 2017-12-27 2022-04-12 珠海市魅族科技有限公司 一种数据接收及发送的方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101170726A (zh) * 2006-10-24 2008-04-30 中兴通讯股份有限公司 用于实现用户设备不连续接收的方法
US20080219214A1 (en) * 2007-03-09 2008-09-11 Motorola, Inc. Wireless wide-area communication network multihop relay station management
CN101558625A (zh) * 2006-12-12 2009-10-14 高通股份有限公司 用于通信装置的呼叫者识别定制和远程管理的系统和方法
CN101690347A (zh) * 2008-07-07 2010-03-31 联发科技股份有限公司 在宽带无线通信系统中建立休眠模式操作的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101488839B (zh) * 2008-01-15 2012-11-28 中兴通讯股份有限公司 用户设备进入/退出不连续接收状态的控制方法
CN101567770B (zh) * 2008-04-25 2013-06-05 中兴通讯股份有限公司 不连续接收非活动定时器配置方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101170726A (zh) * 2006-10-24 2008-04-30 中兴通讯股份有限公司 用于实现用户设备不连续接收的方法
CN101558625A (zh) * 2006-12-12 2009-10-14 高通股份有限公司 用于通信装置的呼叫者识别定制和远程管理的系统和方法
US20080219214A1 (en) * 2007-03-09 2008-09-11 Motorola, Inc. Wireless wide-area communication network multihop relay station management
CN101690347A (zh) * 2008-07-07 2010-03-31 联发科技股份有限公司 在宽带无线通信系统中建立休眠模式操作的方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014161176A1 (en) * 2013-04-03 2014-10-09 Broadcom Corporation Handling downlink semi-persistent scheduling retransmission in wireless networks
CN112616182A (zh) * 2020-12-11 2021-04-06 几维通信技术(深圳)有限公司 基于通信模块的基站同步方法
CN112616182B (zh) * 2020-12-11 2022-03-22 几维通信技术(深圳)有限公司 基于通信模块的基站同步方法

Also Published As

Publication number Publication date
CN102082626B (zh) 2013-08-14
CN102082626A (zh) 2011-06-01

Similar Documents

Publication Publication Date Title
KR102043219B1 (ko) 접속 모드 drx 동작들을 제어하기 위한 방법
CN102932882B (zh) 一种非连续接收方法及系统
CN102625432B (zh) 一种非连续接收的方法和装置
WO2019192342A1 (zh) 非连续接收的通信方法、装置、通信设备和通信系统
US8374617B2 (en) Method and apparatus for improving DRX functionality
US9462546B2 (en) Mobile station, base station, wireless communication system, and wireless communication method
CN104540166B (zh) 在无线通信系统中控制物理下行链路信道的监视操作的方法
WO2011134396A1 (zh) 一种下行数据接收处理的方法、系统和装置
US8427989B2 (en) Method for improving discontinuous reception for a wireless communication system and related communication device
US20120257559A1 (en) Battery consumption control method of user equipment in mobile communication system
CN118199816A (zh) 处理drx错过的harq机会、多个harq机会或两者
CN101547078B (zh) 非连续接收数据方法、设备及非连续调度数据系统
WO2010078831A1 (zh) 移动通信终端接收下行数据的控制方法和移动通信终端
WO2011079814A1 (zh) 一种基于竞争资源的配置方法和装置
JP5724036B2 (ja) Drxモードで端末が上りリンク同期を維持する処理方法及び装置
CN105722195A (zh) 一种非连续接收的方法和装置
JP6587846B2 (ja) ユーザ装置、及び間欠受信制御方法
WO2010060261A1 (zh) 移动通信终端接收下行数据的控制方法和移动通信终端
US20240015838A1 (en) DRX Operation for D2D Communication
WO2021068141A1 (zh) 非连续接收的方法、终端设备及存储介质
JP2022017197A (ja) 無線通信システムにおいて設定された上りリンクグラントのバンドルのためのdrxタイマを取り扱うための方法および装置
WO2010054535A1 (zh) 移动通信终端接收下行数据的控制方法和移动通信终端
US20240064855A1 (en) Sidelink Discontinuous Reception at a User Equipment
WO2010048848A1 (zh) 数据处理方法及系统
CN103974390B (zh) Drx模式的启动方法、用户设备、基站及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11774387

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 07/01/2013)

122 Ep: pct application non-entry in european phase

Ref document number: 11774387

Country of ref document: EP

Kind code of ref document: A1