WO2011134360A1 - 多载波系统的测量配置方法及其装置 - Google Patents

多载波系统的测量配置方法及其装置 Download PDF

Info

Publication number
WO2011134360A1
WO2011134360A1 PCT/CN2011/072955 CN2011072955W WO2011134360A1 WO 2011134360 A1 WO2011134360 A1 WO 2011134360A1 CN 2011072955 W CN2011072955 W CN 2011072955W WO 2011134360 A1 WO2011134360 A1 WO 2011134360A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement configuration
frequency point
measurement
carrier frequency
secondary carrier
Prior art date
Application number
PCT/CN2011/072955
Other languages
English (en)
French (fr)
Inventor
梁靖
李海涛
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Priority to EP11774351.8A priority Critical patent/EP2566218B1/en
Priority to US13/695,430 priority patent/US8953643B2/en
Publication of WO2011134360A1 publication Critical patent/WO2011134360A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0094Definition of hand-off measurement parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a measurement configuration method and apparatus for a multi-carrier system. Background technique
  • CA Carrier Aggregation
  • the UE User Equipment
  • the UE can work on multiple carriers at the same time.
  • the UE works on a single carrier. If the UE performs inter-frequency handover or inter-frequency reconstruction, the UE needs to exchange the measurement configurations of the source cell and the target cell after the handover or the re-establishment is successful.
  • the prior art involved may include:
  • LTE-A LTE Advanced
  • the peak rate of the system is greatly improved compared to LTE, and it is required to achieve downlink 1 Gbps and uplink 500 Mbps. If only one carrier with a maximum bandwidth of 20 MHz is used, the peak rate requirement cannot be achieved. Therefore, the LTE-A system needs to expand the bandwidth that the terminal can use, thereby introducing a carrier aggregation technology, which is to aggregate multiple consecutive or discontinuous carriers under the same eNB (base station) while serving the UE to provide The required rate. These aggregated carriers are also called component carriers (CC). Each cell can be a member carrier, and cells (member carriers) under different eNBs cannot be aggregated.
  • CC component carriers
  • each carrier does not exceed 20 MHz at the maximum.
  • the LTE-A CA technology is shown in Figure 2.
  • the LTE-A base station has four carriers that can be aggregated. The base station can perform data transmission with the UE on four carriers at the same time to improve system throughput.
  • the base station sends measurement configuration information to the UE through RRC (Radio Resource Control) signaling, and the UE performs measurement according to the content of the measurement configuration information (same frequency, different frequency, different technology), and then the measurement result is 4 ⁇ to the network.
  • RRC Radio Resource Control
  • the measurement configuration of the network uses the RRC connection reconfiguration process, and the organization structure of the measurement configuration information: 3 ⁇ 4 port:
  • each configured measurement object is a single frequency point and has a separate measurement object identifier (ID).
  • Report configuration According to the trigger type, it is divided into event trigger report and periodic trigger report. Each report configuration has a separate ID.
  • the report type of the event trigger type is assigned to the threshold of an event and the duration of the trigger condition (Time to Trigger ).
  • the report configuration of the periodic trigger type is assigned to the purpose of the periodic trigger (for example, reporting CGI).
  • Event A2 Serving becomes worse than threshold, channel quality is less than the threshold
  • Event A3 (Neighbour becomes offset better than serving, the channel quality of the neighboring cell is better than the channel quality of the serving cell);
  • Event A4 (Neighbour becomes better than threshold, the quality of the adjacent cell channel is greater than the threshold);
  • Event A5 Serving becomes worse than threshold 1 and neighbour becomes better than threshold 2, the serving cell channel quality is less than the threshold 1 , and the neighboring cell channel quality is greater than the threshold 2 ).
  • measurement ID (measurement ID): a separate ID, you can connect one at the same time Measure the object with the configuration on it. If the threshold for opening the measurement is reached, the UE will determine whether to perform the measurement according to the presence or absence of the measurement identifier.
  • d other parameters: It may also include other parameters such as measurement configuration, measurement opening threshold and speed status parameters.
  • the primary component carrier (PCC) and the secondary component carrier (the secondary component carrier) are introduced.
  • the UE has only one primary carrier (divided into uplink and downlink), and the others are secondary carriers.
  • the primary carrier and the secondary carrier are generally referred to as frequency points, the serving cell on the primary carrier is called Pcdl, and the serving cell on the secondary carrier is called Scdl.
  • the primary carrier has the following characteristics:
  • the uplink primary carrier is used to transmit physical layer uplink control information (ACK/NACK, CQI, D-SR, etc.);
  • the downlink primary carrier cannot be deactivated
  • the UE triggers the RRC connection reestablishment process; (when the secondary carrier fails to generate a radio link, the RRC connection reestablishment process is not triggered)
  • NAS Non-Access Stratum
  • the carrier that the UE initially establishes is a PCC
  • other subsequent configurations and activated carriers are SCCs. Since the primary carrier is bound with many features (for example, only the uplink primary carrier transmits the physical layer uplink control information), the UE must have a primary carrier in the CA working state. All the carriers (including the PCC and the SCC) configured for the UE are called a set of configured carriers of the UE, and the base station can activate/deactivate the carriers in the configured carrier set by using a MAC CE (MAC Control Element).
  • the activated carrier can send and receive data.
  • the network can configure A1 and A2 events for it (as shown in Figure 4, cell 1 is Pcell, cell 2 is Scdl, and frequency fl is PCC). , the frequency point f2 is SCC, and the network configures A1 and A2 events for cell 1 and cell 2);
  • the network can configure the same-frequency A3 event for the frequency point where the UE is located.
  • the serving cell of the A3 event is configured to give the UE the CC at the frequency ( Pcell or Scdl), the neighboring cell may be any other cell at the frequency point (as shown in FIG. 4, the network configures the same frequency A3 event measurement for the f2 frequency point, and the serving cell is the cell 2);
  • the network can configure the A3 event (A3-PCC) of the Pcell as the Pcell, that is, the serving cell of the A3-PCC is the current UE.
  • the Pcell, the neighboring cell can be any other frequency point or any cell on the PCC (as shown in Figure 4, for the unconfigured frequency point f3, the network configuration A3-PCC measurement, the serving cell is the cell 1, and the target cell is the frequency point f3
  • the cell includes cell 3 and cell 6.
  • the network configures A3-PCC measurement, the serving cell is cell 1, and the target cell is a cell at frequency f2, including cell 2).
  • the prior art can only perform the measurement configuration exchange for a single carrier.
  • For a multi-carrier system after the UE works in the CA state, after the inter-frequency handover or the inter-frequency retransmission is successfully performed, how to exchange the multi-carrier of the UE is not solved. Program. Summary of the invention
  • the embodiments of the present invention provide a measurement and configuration method for a multi-carrier system and a device thereof, which are used to implement measurement exchange and configuration of a terminal in a CA working state in a multi-carrier system when an inter-frequency RRC connection reconstruction or an inter-frequency handover occurs.
  • the measurement configuration method of the multi-carrier system includes: when the inter-frequency handover or the successful completion of the inter-frequency RRC connection re-establishment, the terminal determines the measurement Whether the target primary carrier frequency point exists in the configuration, and when the target primary carrier frequency point exists in the determined measurement configuration, the measurement configuration related to the source primary carrier frequency point is exchanged with the measurement configuration related to the target primary carrier frequency point;
  • the measurement configuration related to the secondary carrier frequency point is deleted or reserved, or the measurement configuration related to the source secondary carrier frequency point is exchanged with the measurement configuration related to the target secondary carrier frequency point.
  • a determining module configured to determine whether a target primary carrier frequency point exists in the terminal device measurement configuration when the inter-frequency handover or the inter-frequency RRC connection re-establishment is successfully completed;
  • a primary carrier measurement configuration module configured to exchange, when the determining module determines that the target primary carrier frequency point exists in the measurement configuration, the measurement configuration related to the source primary carrier frequency point and the measurement configuration related to the target primary carrier frequency;
  • the secondary carrier measurement configuration module is configured to delete or retain the measurement configuration related to the secondary carrier frequency point, or exchange the measurement configuration related to the source secondary carrier frequency point and the measurement configuration related to the target secondary carrier frequency point.
  • the terminal determines whether there is a target main carrier frequency point in the measurement configuration, and further determines that there is a target main carrier frequency point in the measurement configuration.
  • the measurement configuration related to the source primary carrier frequency point is exchanged with the measurement configuration related to the target primary carrier frequency point, and the measurement configuration related to the secondary carrier frequency point other than the target primary carrier frequency point is processed correspondingly, thereby solving the carrier
  • the measurement switching and configuration problem occurs when the terminal in the aggregation working state successfully performs the inter-frequency RRC connection reestablishment and the inter-frequency handover, and the air interface signaling is saved, thereby reducing the implementation complexity.
  • FIG. 1 is a schematic diagram of carrier distribution of an LTE cell in the prior art
  • FIG. 2 is a schematic diagram of a CA technology of LTE-A in the prior art
  • FIG. 3 is a schematic diagram of a RRC connection re-establishment process in an LTE system in the prior art
  • FIG. 4 is a schematic diagram of a network scenario according to Embodiment 1 of the present invention
  • FIG. 5 is a schematic diagram of a multi-carrier measurement configuration before and after exchanging in the first embodiment of the present invention
  • FIG. 6 is a schematic diagram of a multi-carrier measurement configuration after reconfiguration in the first embodiment of the present invention
  • FIG. 7 is a schematic diagram of a multi-carrier measurement configuration before and after exchanging according to Embodiment 4 of the present invention
  • FIG. 9 is a schematic structural diagram of a terminal device according to an embodiment of the present invention.
  • the embodiment of the present invention provides a measurement configuration scheme for a multi-carrier system, which is applicable to an RRC connection reconstruction scenario and a handover scenario.
  • the UE can exchange the measurement configuration related to the source PCC frequency point and the measurement configuration related to the inter-frequency target PCC frequency point, and can delete the measurement configuration related to the original SCC frequency point, and save other measurement configurations, thereby realizing more The measurement configuration in which the UE works in the CA state in the carrier system.
  • the overall process of the measurement configuration of the multi-carrier system may include: when inter-frequency handover or successful completion of the inter-frequency RRC connection re-establishment, the terminal determines whether the target main carrier frequency point exists in the measurement configuration, and determines When the target primary carrier frequency point exists in the measurement configuration, the measurement configuration related to the source primary carrier frequency point is exchanged with the measurement configuration related to the target primary carrier frequency point, and is related to the secondary carrier frequency point other than the target primary carrier frequency point.
  • the measurement configuration is deleted or reserved, or the measurement configuration related to the source secondary carrier frequency point is exchanged with the measurement configuration related to the target secondary carrier frequency point.
  • the embodiment of the present invention is applicable to an RRC connection re-establishment scenario (inter-frequency) and a handover scenario (inter-frequency), and an RRC connection re-establishment scenario (inter-frequency), and can be specifically classified into a general reconstruction scenario, a multi-carrier reconstruction scenario, and a fast reconstruction scenario. among them:
  • the general reconstruction scenario can be as shown in Figure 3.
  • LTE-A a multi-carrier reconstruction process is also mentioned, the process of which is the same as the reconstruction of LTE.
  • the RRC connection re-establishment process can recover SRB1 (Signing Radio Bearer 1) on multiple carriers (instead of LTE).
  • the SRB1 is only recovered on a single carrier.
  • the UE recovers the SRB1 on the multi-carrier after receiving the RRC connection reestablishment message;
  • a fast reconstruction process is also mentioned. The triggering reason of the fast reconstruction process is the same as the general reconstruction. The difference is that the former first selects a cell in the UE configuration carrier set.
  • the cell is selected in addition to the configured carrier set. If the appropriate cell is selected in the configured carrier set, the re-establishment process is initiated. If the re-establishment is successful, the SMB2 and the DRB (Data Radio Bearer) are directly restored after the UE sends the RRC connection reestablishment complete message to the network. If a cell is selected in addition to the set of carrier sets, the subsequent procedure is the same as the general reconstruction (may be single carrier or multi-carrier). The fast reconstruction process can use either single carrier or multi-carrier recovery SRB1.
  • the measurement configuration manner provided by the embodiment of the present invention may include: Solution 1: For a general reconstruction scenario in an RRC connection re-establishment scenario (inter-frequency): the UE can complete the RRC connection reestablishment only in one target cell, and successfully complete the reconstruction.
  • UF performs the following processing, including:
  • the UE determines whether there is a target frequency point after the reconstruction in the measurement configuration (that is, the frequency point at which the reconstructed cell is located, and may also be considered as the target PCC); if yes, the UE sets the measurement configuration corresponding to the source PCC and the frequency at which the target reconstructed cell is located (
  • the corresponding measurement configuration of the target PCC frequency point is exchanged, specifically, for each relevant measurement ID (such as the measurement ID connected to the source PCC frequency point or the target PCC frequency point in the measurement ID list): If the measurement ID is connected If the measurement object is the target PCC frequency point, the measurement ID is connected to the source PCC frequency point; if the measurement object connected to the measurement ID is the source PCC frequency point, the measurement ID is connected to the target PCC frequency point. If there is no reconstructed target PCC frequency point (ie, not a measurement object) in the measurement configuration of the UE, the UE deletes all measurement IDs connected to the source PCC frequency point;
  • the UE may also perform the following processing:
  • the UE may perform measurement parameter reconfiguration according to the configuration, and then may perform measurement according to the reconfigured measurement configuration;
  • the reconfiguration message does not carry the measurement configuration, and the UE directly uses the measurement configuration after the above operation, and then the measurement can be performed according to the measurement configuration.
  • a specific message may also be defined to instruct the terminal to perform reconfiguration of the measurement parameters, where the measurement configuration information that needs to be reconfigured is carried.
  • the above processing of the measurement configuration does not have strict timing requirements.
  • the operation of deleting the measurement ID related to the periodic measurement by the UE may occur before the UE determines whether there is a target frequency after the reconstruction in the measurement configuration and before the operation according to the determination result. , or before other SCC-related measurement ID operations other than deleting the target PCC frequency.
  • the UE initiates an RRC connection reestablishment process in a target cell, and the re-establishment process can restore the SRB1 on multiple carriers.
  • the UE performs the following processing:
  • the UE determines whether there is a target frequency point (which may also be considered as a target PCC frequency point) of the cell initiating the RRC connection re-establishment process in the measurement configuration. If yes, the UE configures the measurement corresponding to the source PCC frequency point and initiates the RRC connection reestablishment.
  • a target frequency point which may also be considered as a target PCC frequency point
  • the measurement configuration corresponding to the target PCC frequency point of the cell is exchanged, specifically, for each relevant measurement ID (such as the measurement ID connected to the source PCC frequency point or the target PCC frequency point in the measurement ID list): If the measurement ID is connected The measurement object is the target PCC frequency point, and the measurement ID is connected to the source PCC frequency point; if the measurement object of the measurement ID connection is the source PCC frequency point, the measurement ID is connected to the target PCC frequency point. If the target PCC frequency point (ie, not the measurement object) where the cell initiating the RRC connection reestablishment procedure is located does not exist in the measurement configuration of the UE, the UE deletes all measurement IDs connected to the source PCC frequency point;
  • the UE may also perform the following processing:
  • the UE performs the measurement parameter reconfiguration according to the configuration, and then the measurement may be performed according to the reconfigured measurement configuration; if the reconfiguration message does not carry the measurement configuration, the UE directly uses the above operation.
  • the measurement configuration can then be measured in accordance with the measurement configuration.
  • a specific message may also be defined to instruct the terminal to perform reconfiguration of the measurement parameters, where the measurement configuration information that needs to be reconfigured is carried.
  • the above processing of the measurement configuration does not have strict timing requirements.
  • the operation of deleting the measurement ID related to the periodic measurement by the UE may occur before the UE determines whether there is a target frequency after the reconstruction in the measurement configuration and before the operation according to the determination result. , or before other SCC-related measurement ID operations other than deleting the target PCC frequency.
  • the terminal may use the re-designated PCC as the target PCC to perform measurement.
  • the switching process is configured, that is, the foregoing measurement configuration switching process of the solution is performed between the source PCC and the new PCC specified by the eNB, and the specific rules are the same as the measurement configuration exchange process described above.
  • Solution 3 Fast reconstruction scenario in the RRC connection reconstruction scenario (inter-frequency)
  • the UE initiates an RRC connection reestablishment process in a target cell, and the reestablishment process can recover SRB1, SRB2, and DRBs on multiple carriers.
  • the process of measuring configuration switching and other measurement configuration is the same as the corresponding process in the multi-carrier reconstruction scenario of the foregoing solution 2; If the cell is selected outside the carrier set and the single-carrier RRC connection re-establishment process is successfully completed, the measurement configuration switching and other measurement configuration processing procedures are the same as the corresponding processes in the general reconstruction scenario of the first scheme; if the UE succeeds in configuring the carrier set After the multi-carrier RRC connection re-establishment process is completed, the measurement configuration exchange and other processes are the same as the measurement configuration exchange process in the multi-carrier reconstruction scenario of the second solution.
  • Another alternative is: For the fast re-establishment process, if the UE selects a suitable cell within the configured carrier set and completes the RRC connection re-establishment procedure on the configured carrier set, the UE only exchanges the source PCC frequency point and the target PCC frequency.
  • Point measurement configuration save all other measurement configurations (including measurement configuration of source SCC frequency); if UE is in If the appropriate carrier is selected and the single-carrier RRC connection re-establishment process is successfully completed, the measurement configuration exchange process is the same as the measurement configuration exchange process in the above general reconstruction scenario; if the UE successfully completes the multi-carrier outside the configured carrier set In the RRC connection re-establishment process, the measurement configuration exchange process is the same as the measurement configuration exchange process in the multi-carrier reconstruction scenario described above.
  • the UE has multi-carrier handover (the UE uses multi-carrier before handover and/or the UE uses multi-carrier after handover, which can be called multi-carrier handover), and the PCC after handover is different from that before handover, it is considered that the UE has multi-carrier Inter-frequency switching.
  • Measurement of multi-carrier inter-frequency switching The configuration process is as follows:
  • the UE determines whether there is a target PCC frequency point of the handover in the measurement configuration, and if so, exchanges the measurement configuration corresponding to the source PCC with the measurement configuration corresponding to the target PCC, specifically, for each relevant measurement ID (such as the measurement ID)
  • the UE may also perform the following processing:
  • the UE may perform the measurement parameter reconfiguration according to the configuration after completing the measurement configuration exchange and other processing, and thereafter, according to the reconfiguration measurement.
  • the configuration performs measurement; if the handover command (RRC Connection Reconfiguration Message) does not carry the measurement configuration, the UE may directly use the measurement configuration after the above operation, and thereafter the measurement may be performed according to the measurement configuration.
  • the measurement configuration exchange needs to be performed according to the above rules in this solution. Specifically, if the eNB re-designates a new PCC in the RRC connection reconfiguration message, the measurement configuration switching process is performed between the source PCC and the new PCC specified by the eNB, and the specific rule is the same as the foregoing measurement configuration exchange process in the solution.
  • the network scenario of this embodiment is shown in FIG. 4.
  • the UE currently works under the base station 1, and aggregates the cell 1, the cell 2, and the cell 3.
  • the frequency fl where the cell 1 is located is PCC, and the cell 1 is Pcdl, cell 2, and cell. 3
  • the frequencies f2 and f3 are both SCC, and both cells are Scdl.
  • the cell 5 is a neighboring cell on fl
  • the cell 6 is a neighboring cell on f2
  • the cell 7 is a neighboring cell on f3
  • the cell 4 and the cell 8 are neighboring cells on f4.
  • the first reconfiguration message after the RRC connection reestablishment process can be configured for the UE Multi-carrier, for example, adding cell 5 and cell 7 to the set of configured carriers of the UE, and configuring the UE to use the CA in cell 5, cell 6 and cell 7.
  • the UE performs measurement reconfiguration according to the configuration, as shown in FIG.
  • Embodiment 2 The multi-carrier inter-frequency reconstruction scenario in the second solution
  • the network scenario and the UE configuration in this embodiment are the same as those in the first embodiment.
  • the difference is that the UE uses multi-carrier inter-frequency re-establishment. It is assumed that the UE still selects the cell 6 to initiate the re-establishment. At this time, the frequency f2 of the default cell 6 is reconstructed.
  • the measurement parameter reconfiguration can be performed by the UE according to the new measurement parameter configuration.
  • the reconfigured measurement configuration can be as shown in FIG. 6; after the reconfiguration is completed, the UE can perform measurement according to the measurement configuration. If the base station does not initiate the reconfiguration process, the UE can directly perform measurements according to the measurement configuration saved after the reconstruction.
  • Embodiment 3 The fast inter-frequency reconstruction scenario in the third solution
  • the network scenario and the UE configuration in this embodiment are the same as those in the first embodiment, if the UE selects the configuration. If the inter-frequency cell in the set of carriers initiates a fast re-establishment (such as cell 2, cell 6 on f2, or cell 3, cell 7 on f3), the measurement configuration exchange process is the same as that in the second embodiment; if the UE selects the configuration carrier set For the external inter-frequency cell (such as cell 4 or cell 8 on the frequency point f4), the measurement configuration exchange process is the same as that in the first embodiment.
  • a fast re-establishment such as cell 2, cell 6 on f2, or cell 3, cell 7 on f3
  • the measurement configuration exchange process is the same as that in the second embodiment
  • the UE selects the configuration carrier set For the external inter-frequency cell such as cell 4 or cell 8 on the frequency point f4
  • the UE selects the inter-frequency cell in the configured carrier set to initiate a fast re-establishment process (such as cell 2 on f2, which is the reconstructed PCC), and the reconstructed multi-carrier is still the currently configured carrier set (frequency point fl) Cell 1, cell 2 of f2 and cell 3 of f3)
  • a processing SCC frequency f3 related measurement.
  • Embodiment 4 The inter-frequency switching scenario in the fourth solution
  • the network scenario of the present implementation is the same as that of the first embodiment. 4:
  • the UE After receiving the handover command, the UE receives the handover command. Before using the measurement configuration in the switch command, perform the measurement configuration exchange operation of the source PCC ( fl ) and the target PCC ( f2 ).
  • the embodiment of the present invention preferably uses one of the following rules for processing:
  • Rule 1 If the number of SCCs before and after the handover is equal, it can be in the order of the frequency of the source SCC (such as the carrier number from high to low or low to high, the frequency is high to low or low to high, or dedicated signaling) Specify an order), and the SCC order appearing in the switching command is exchanged (either in the order of list entries or in the order of carrier numbers, or in other specified order);
  • the frequency of the source SCC such as the carrier number from high to low or low to high, the frequency is high to low or low to high, or dedicated signaling
  • Rule 3 If the number of SCCs before the handover is smaller than the number of SCCs after the handover, only the SCCs after the handover (the sorting method is the same as that described in Rule 1) and the same number of SCCs before the handover can be used. Perform measurement configuration exchange.
  • Embodiment 5 Changing the scene for PCC
  • the network scenario and the UE configuration in this embodiment are the same as those in the fourth embodiment. If the network uses the general reconfiguration process to change the PCC of the UE from fl to f2 (such as cell 1 to cell 2), the measurement configuration exchange process is the same as that in the fourth embodiment.
  • an embodiment of the present invention further provides a terminal device.
  • the terminal device may include: a determining module 91, a primary carrier measurement configuration module 92, and a secondary carrier measurement configuration module 93, where:
  • a determining module 91 configured to perform an inter-frequency handover or a successful completion of the inter-frequency RRC connection reestablishment, Determining whether there is a target primary carrier frequency point in the terminal device measurement configuration;
  • the primary carrier measurement configuration module 92 is configured to exchange, when the determining module 91 determines that the target primary carrier frequency point exists in the measurement configuration, the measurement configuration related to the source primary carrier frequency point and the measurement configuration related to the target primary carrier frequency point; The module may connect the measurement identifier connected to the target primary carrier frequency point to the source primary carrier frequency point, and connect the measurement identifier connected to the source primary carrier frequency point to the target primary carrier frequency point;
  • the secondary carrier measurement configuration module 92 is configured to delete or retain a secondary carrier frequency point related measurement configuration other than the target primary carrier frequency point, or to measure the source secondary carrier frequency related measurement configuration and the target secondary carrier frequency related measurement configuration. Exchange.
  • the primary carrier measurement configuration module 91 is further configured to: when the determining module 91 determines that the target primary carrier frequency point does not exist in the measurement configuration of the terminal, delete all measurement identifiers connected to the source primary carrier frequency point, and the measurement The connection relationship between the source host carrier frequency and the reported configuration identifier is identified.
  • the foregoing terminal device may further include an update module 94, where the module may be configured to perform measurement configuration exchange processing and target information according to measurement configuration information in an RRC connection reconfiguration message sent by the network side after the inter-frequency RRC connection reestablishment
  • the measurement configuration obtained by processing the measurement configuration related to the secondary carrier frequency point is updated; or, when the inter-frequency handover is performed, according to the measurement configuration information in the handover command sent by the network side, the measurement configuration exchange processing is performed and The obtained measurement configuration after the secondary carrier frequency point related measurement configuration is processed is updated.
  • the main-carrier measurement configuration module 92 is further configured to: when the multi-carrier re-establishment process is received, the multi-carrier RRC connection re-establishment message received by the terminal carries the network-designated main The carrier information is exchanged when the primary carrier frequency is different from the frequency at which the cell initiating the RRC connection reestablishment is located, and the measurement configuration related to the source primary carrier frequency is exchanged with the measurement configuration related to the designated primary carrier frequency.
  • the secondary carrier measurement configuration module 93 may re-establish the inter-frequency RRC connection to the fast re-establishment, and the terminal selects the target cell in the configured carrier set, and completes the RRC connection reestablishment on the configured carrier set, and the terminal retains the secondary carrier. Frequency related measurement configuration.
  • the secondary carrier measurement configuration module 93 may connect the measurement identifier connected to the target secondary carrier frequency point to the source secondary carrier frequency point, and connect the measurement identifier connected to the source secondary carrier frequency point to the inter-frequency handover. Target secondary carrier frequency.
  • the secondary carrier measurement configuration module 93 may be specifically configured to: if the number of the source secondary carrier and the target secondary carrier are equal, according to the setting order of the source secondary carrier frequency point, and the order of the secondary carrier appearing in the handover command, The frequency-related measurement configuration of the corresponding source secondary carrier and the target secondary carrier is exchanged; or, if the number of the source secondary carrier and the target secondary carrier are not equal, only the target secondary carrier is matched with the source secondary carrier according to the set order The same number of secondary carriers are used for measurement configuration exchange.
  • the primary carrier measurement configuration module 92 may be further configured to save other settings in the original measurement configuration in the terminal after exchanging the measurement configuration related to the primary carrier frequency point; or, the secondary carrier
  • the measurement configuration module 93 is further configured to save other configuration information in the original measurement configuration in the terminal after processing the measurement configuration related to the secondary carrier frequency point.
  • the present invention provides a measurement configuration method for a multi-carrier system, which solves the problem of measurement exchange and configuration of the UE in the active state of the inter-frequency RRC connection reconstruction and the inter-frequency handover, and saves the air interface. Signaling, reducing implementation complexity.
  • modules in the apparatus in the embodiments may be distributed in the apparatus of the embodiment according to the description of the embodiments, or the corresponding changes may be located in one or more apparatuses different from the embodiment.
  • the modules of the above embodiments can be combined into one
  • the module can also be further split into multiple submodules.
  • modules in the apparatus in the embodiments may be distributed in the apparatus of the embodiment according to the description of the embodiments, or may be correspondingly changed in one or more apparatuses different from the embodiment.
  • the modules of the above embodiments may be combined into one module, or may be further split into a plurality of sub-modules.

Abstract

一种多载波系统的测量配置方法及其装置。本发明方法包括:在异频切换或成功完成异频RRC连接重建时,终端确定其测量配置中是否存在目标主载波频点,并在确定测量配置中存在目标主载波频点时,将源主载波频点相关的测量配置和目标主载波频点相关的测量配置进行交换;以及,删除或保留辅载波频点相关的测量配置,或者将源辅载波频点相关的测量配置和目标辅载波频点相关的测量配置进行交换。采用本发明,解决了载波聚合工作状态下的终端在成功发生异频RRC连接重建及异频切换时的测量交换和配置问题,并节省了空口信令,降低了实现复杂度。

Description

多载波系统的测量配置方法及其装置 本申请要求以下中国专利申请的优先权:
于 2010年 4月 30曰提交中国专利局,申请号为 201010164663.9, 发明名称为"多载波系统的测量配置方法及其装置"的中国专利申请。 技术领域
本发明涉及无线通信领域,尤其涉及一种多载波系统的测量配置 方法及其装置。 背景技术
LTE-A系统引入了载波聚合技术( Carrier Aggregation, CA ), UE ( User Equipment,用户设备)可以同时工作在多个载波上。而在 LTE 系统中, UE工作在单载波上, 如果 UE发生异频切换或者异频重建, UE需要在切换或重建成功之后, 将源小区和目标小区的测量配置进 行交换。
其中, 涉及的现有技术可包括:
( 1 ) 多载波系统
在 LTE及以前的无线通信系统中, 一个小区中只有一个载波, 在 LTE系统中最大带宽为 20MHz, 如图 1所示。
在 LTE Advanced ( LTE-A ) 系统中, 系统的峰值速率比 LTE有 巨大的提高, 要求达到下行 lGbps, 上行 500Mbps。 如果只使用一个 最大带宽为 20MHz的载波是无法达到峰值速率要求的。因此, LTE-A 系统需要扩展终端可以使用的带宽, 由此引入了载波聚合技术, 即将 同一个 eNB (基站)下的多个连续或不连续的载波聚合在一起, 同时 为 UE服务, 以提供所需的速率。 这些聚合在一起的载波又称为成员 载波( component carrier , 筒称 CC )。 每个小区都可以是一个成员载 波, 不同 eNB下的小区(成员载波)不能聚合。 为了保证 LTE的 UE 能在每一个聚合的载波下工作, 每一个载波最大不超过 20MHz。 LTE-A的 CA技术如图 2所示, 其中, LTE-A的基站下有 4个可以聚 合的载波, 基站可以同时在 4个载波上和 UE进行数据传输, 以提高 系统吞吐量。
( 2 ) LTE的测量机制
LTE系统中, 基站通过 RRC ( Radio Resource Control, 无线资源 控制 )信令向 UE发送测量配置信息, UE根据测量配置信息的内容 进行测量(同频、 异频、 异技术), 然后将测量结果上 4艮给网络。
网络进行测量配置使用的是 RRC连接重配过程, 测量配置信息 的组织结构: ¾口下:
a、 测量对象(measurement object ): 以频点为基本单位, 每个被 配置的测量对象为一个单独频点, 拥有单独的测量对象标识(ID )。
b、 上报配置( report configuration ): 按照触发类型分为事件触发 上报和周期触发上报, 每个上报配置拥有单独的 ID。 事件触发类型 的上报配置会配给某一个事件的门限值和满足触发条件的持续时间 ( Time to Trigger ), 周期性触发类型的上报配置会配给周期性触发的 目的 (例如, 上报 CGI )。
目前 LTE系统内的同频 /异频测量事件一共有五个, 包括: Event Al ( Serving becomes better than threshold,月良务小区信道质 量大于门限);
Event A2 ( Serving becomes worse than threshold,月良务小区信道质 量小于门限);
Event A3 ( Neighbour becomes offset better than serving , 邻小区信 道质量优于服务小区信道质量);
Event A4 ( Neighbour becomes better than threshold, 邻小区信道 质量大于门限);
Event A5 ( Serving becomes worse than threshold 1 and neighbour becomes better than threshold2, 服务小区信道质量小于门限 1 , 同时 邻小区信道质量大于门限 2 )。
c、 测量标识(measurement ID ): 单独的 ID, 可以同时连接一个 测量对象与上 配置。 如果达到了开启测量的门限, UE会^ f艮据测量 标识的有无判断是否进行该种测量。
d、 其他参数: 还可能包括测量量配置, 测量开启门限以及速度 状态参数等其他参数。
测量上报有三种触发方式: 事件触发上报、 周期上报、 事件触发 周期上报。 这三种方式根据上报配置中各种参数的组合进行区分。
( 3 )主载波和辅载波
CA技术中引入了主载波 ( Primary Component Carrier, PCC )和 库前载波(Secondary Component Carrier, SCO 的相无念, UE只有一个 主载波(分为上行和下行), 其他的均为辅载波。 对于测量来说, 主 载波和辅载波一般指频点, 主载波上的服务小区称为 Pcdl, 辅载波 上的服务小区称为 Scdl。 主载波有以下特性:
1、上行主载波用于传输物理层上行控制信息( ACK/NACK、 CQI 和 D-SR等);
2、 下行主载波不能被去激活;
3、 当下行主载波发生无线链路失败时, UE触发 RRC连接重建 过程; (辅载波发生无线链路失败时, 不会触发 RRC连接重建过程)
4、 下行主载波的系统信息获取和更新与 LTE过程一样;
5、 NAS ( Non- Access Stratum, 非接入层)信息通过下行主载波 获得。
一般来说, UE初始建立连接的载波是 PCC, 其他后续配置和激 活的载波都是 SCC。 由于主载波上绑定了很多特性(如只在上行主载 波传输物理层上行控制信息), 因此, UE在 CA工作状态下, 必须有 主载波。 所有配置给 UE的载波(包括 PCC和 SCC )称为 UE的配 置载波集合, 基站可以通过 MAC CE ( MAC Control Element, MAC 控制单元)对配置载波集合内的载波进行激活 /去激活操作, 只有被 激活的载波才能进行数据收发。
( 4 ) LTE-A载波聚合系统中的测量
目前关于载波聚合系统的测量, 有一些基本方案: 对于每一个为 UE配置(包含激活的和未激活的) 的 CC, 网络 都可以为其配置 A1和 A2事件(如图 4所示, 小区 1为 Pcell, 小区 2为 Scdl, 频点 fl为 PCC, 频点 f2为 SCC, 网络为小区 1和小区 2 配置 A1和 A2事件);
对于每一个为 UE配置(包含激活的和未激活的 ) 的 CC, 网络 可以为其所在的频点配置同频 A3事件, 该 A3事件的服务小区为配 置给 UE在该频点上的 CC ( Pcell或 Scdl ) , 邻小区可以是该频点上 的其他任一个小区 (如图 4, 网络为 f2频点配置同频 A3事件测量, 服务小区为小区 2 );
针对每一个 UE可以测量的频点(包括配置给 UE或者未配置的 ), 网络可以为其配置月良务小区为 Pcell的 A3事件( A3-PCC ) ,即 A3-PCC 的服务小区为 UE当前的 Pcell, 邻小区可以是其他频点或者 PCC上 的任一个小区 (如图 4, 对于未配置的频点 f3, 网络配置 A3-PCC测 量, 服务小区为小区 1 , 目标小区为频点 f3 上的小区, 包括小区 3 和小区 6; 对于已配置的频点 f2, 网络配置 A3-PCC测量, 服务小区 为小区 1 , 目标小区为频点 f2上的小区, 包括小区 2 )。
发明人在实现本发明的过程中, 发现现有技术至少存在以下缺 陷:
现有技术只能针对单载波进行测量配置的交换, 对于多载波系 统, 当 UE工作在 CA状态下,成功发生异频切换或者异频重建之后, 如何对 UE的多载波进行交换, 还没有解决方案。 发明内容
本发明实施例提供了一种多载波系统的测量配置方法及其装置, 用以实现多载波系统中 CA工作状态下的终端在发生异频 RRC连接 重建或异频切换时的测量交换和配置。
本发明实施例提供的多载波系统的测量配置方法, 包括: 在异频切换或成功完成异频 RRC连接重建时, 终端确定其测量 配置中是否存在目标主载波频点,并在确定测量配置中存在目标主载 波频点时,将源主载波频点相关的测量配置和目标主载波频点相关的 测量配置进行交换; 以及
删除或保留辅载波频点相关的测量配置,或者将源辅载波频点相 关的测量配置和目标辅载波频点相关的测量配置进行交换。
本发明实施例提供的终端设备, 包括:
确定模块, 用于在异频切换或成功完成异频 RRC连接重建时, 确定所述终端设备测量配置中是否存在目标主载波频点;
主载波测量配置模块,用于在所述确定模块确定测量配置中存在 目标主载波频点时,将源主载波频点相关的测量配置和目标主载波频 点相关的测量配置进行交换;
辅载波测量配置模块,用于删除或保留辅载波频点相关的测量配 置,或者将源辅载波频点相关的测量配置和目标辅载波频点相关的测 量配置进行交换。
本发明的上述实施例, 针对异频切换或成功完成异频 RRC连接 重建的场景, 通过终端判断其测量配置中是否存在目标主载波频点, 进而在确定测量配置中存在目标主载波频点时,将源主载波频点相关 的测量配置和目标主载波频点相关的测量配置进行交换,以及对目标 主载波频点之外的辅载波频点相关的测量配置进行相应处理,从而解 决了载波聚合工作状态下的终端在成功发生异频 RRC连接重建及异 频切换时的测量交换和配置问题, 并节省了空口信令, 降低了实现复 杂度。 附图说明
图 1 为现有技术中 LTE小区的载波分布示意图;
图 2为现有技术中 LTE-A的 CA技术示意图;
图 3为现有技术中的 LTE系统 RRC连接重建流程示意图; 图 4为本发明实施例一的网络场景示意图;
图 5为本发明实施例一中多载波测量配置交换前后的示意图; 图 6为本发明实施例一中重配置后的多载波测量配置示意图; 图 7为本发明实施例四中多载波测量配置交换前后的示意图; 图 8为本发明实施例四中重配置后的多载波测量配置示意图; 图 9为本发明实施例提供的终端设备的结构示意图。 具体实施方式
针对现有技术存在的问题,本发明实施例提出了一种多载波系统 的测量配置方案, 该方案适用于 RRC连接重建场景和切换场景。 该 方案中, UE可将源 PCC频点相关的测量配置与异频目标 PCC频点 相关的测量配置进行交换, 并可删除原 SCC频点相关的测量配置, 保存其他测量配置, 从而实现了多载波系统中 UE工作在 CA状态下 的测量配置。
本发明实施例所提供的多载波系统的测量配置的总体流程可包 括: 在异频切换或成功完成异频 RRC连接重建时, 终端确定其测量 配置中是否存在目标主载波频点,并在确定测量配置中存在目标主载 波频点时,将源主载波频点相关的测量配置和目标主载波频点相关的 测量配置进行交换,并针对目标主载波频点之外的辅载波频点相关的 测量配置进行删除或保留,或将源辅载波频点相关的测量配置和目标 辅载波频点相关的测量配置进行交换。
本发明实施例适应于 RRC连接重建场景(异频)和切换场景(异 频), RRC 连接重建场景(异频), 又可具体分为一般重建场景、 多 载波重建场景和快速重建场景。 其中:
一般重建场景可如图 3所示;
LTE-A中, 也提到了一种多载波重建过程, 其流程与 LTE的重 建相同, 唯一不同的地方是 RRC连接重建过程可以在多个载波上恢 复 SRB1 ( Signaling Radio Bearer 1 ) (而不是 LTE的只在单载波恢复 SRB1 )。 例如, 通过在 RRC连接重建消息中增加多载波的配置信息, 从而使 UE在收到 RRC连接重建消息之后, 在多载波上恢复 SRB1; LTE-A中, 也提到过一种快速重建过程, 快速重建过程的触发原 因和一般重建相同。 区别在于前者首先在 UE配置载波集合内选择小 区, 如果配置载波集合内没有合适的小区, 则在配置载波集合之外选 择小区。如果在配置载波集合内选择了合适的小区,就发起重建过程, 如果重建成功, 当 UE向网络发送 RRC连接重建完成消息后, 直接 恢复 SRB2和 DRB ( Data Radio Bearer, 数据无线承载)。 如果在配置 载波集合之外选择小区, 则后续流程与一般重建相同(可能是单载波 也可能是多载波)。 快速重建过程可以使用单载波也可以使用多载波 恢复 SRB1。
针对以上各场景, 本发明实施例提供的测量配置方式可包括: 方案一、 针对 RRC连接重建场景 (异频) 中的一般重建场景: UE只能在一个目标小区完成 RRC连接重建, 成功完成重建时, UF进行以下处理, 包括:
UE判断测量配置中是否存在重建后的目标频点 (即重建小区所 在的频点, 也可以认为是目标 PCC ); 如果存在, 则 UE将源 PCC对 应的测量配置和目标重建小区所在频点 (目标 PCC频点)对应的测 量配置进行交换, 具体的, 对于每一个相关的测量 ID (如测量 ID列 表中与源 PCC频点或目标 PCC频点连接的测量 ID ): 如果该测量 ID 连接的测量对象为目标 PCC频点, 则将该测量 ID连接到源 PCC频 点; 如果该测量 ID连接的测量对象为源 PCC频点, 则将该测量 ID 连接到目标 PCC频点。 如果 UE的测量配置中不存在重建后的目标 PCC频点(即不是测量对象), 则 UE删除与源 PCC频点连接的所有 测量 ID;
进一步的, UE还可进行以下处理:
删除 SCC (即目标 PCC频点之外的其他 SCC, 以下同)相关的 测量 ID;
对于周期性测量相关的测量 ID, 直接删除, 停止测量相关的定 时器, 释放测量 gap;
保存除以上操作之外的其他测量配置信息。 进一步的, 当 RRC连接重建过程之后的第一条 RRC连接重配消 息中携带有测量配置时, UE可按照该配置进行测量参数重配, 此后 可按照重配后的测量配置进行测量;如果该重配消息没有携带测量配 置, 则 UE直接使用经过以上操作之后的测量配置, 此后可按照该测 量配置进行测量。 当然, 也可定义特定消息来指示终端进行测量参数 的重配, 其中携带有需要重配的测量配置信息。
以上对测量配置的处理没有严格的时序要求, 例如, UE删除周 期性测量相关的测量 ID的操作可发生在 UE判断测量配置中是否存 在重建后的目标频点及根据判断结果进行处理的操作之前,或者发生 在删除目标 PCC频点之外的其他 SCC相关的测量 ID操作之前。
方案二、 针对 RRC连接重建场景 (异频) 中的多载波重建场景
UE在一个目标小区发起 RRC连接重建过程,重建过程可以在多 个载波上恢复 SRB1 , 多载波重建成功完成时, UE进行如下处理:
UE判断测量配置中是否存在发起 RRC连接重建过程的小区所 在的目标频点 (也可以认为是目标 PCC频点 ), 如果存在, 则 UE将 源 PCC频点对应的测量配置和发起 RRC连接重建的小区所在目标 PCC频点对应的测量配置进行交换,具体的,对于每一个相关的测量 ID(如测量 ID列表中与源 PCC频点或目标 PCC频点连接的测量 ID ): 如果该测量 ID连接的测量对象为目标 PCC频点, 则将该测量 ID连 接到源 PCC频点; 如果该测量 ID连接的测量对象为源 PCC频点, 则将该测量 ID连接到目标 PCC频点。 如果 UE的测量配置中不存在 发起 RRC连接重建过程的小区所在的目标 PCC频点(即不是测量对 象 ), 则 UE删除与源 PCC频点连接的所有测量 ID;
进一步的, UE还可进行以下处理:
删除目标 PCC频点之外的其他 SCC频点相关的测量 ID;
保存除以上操作之外的其他测量配置信息;
对于周期性测量相关的测量 ID, 直接删除, 停止测量相关的定 时器, 释放测量 gap;
进一步的, 当 RRC连接重建过程之后的第一条 RRC连接重配消 息中携带有测量配置时, 则 UE按照该配置进行测量参数重配, 此后 可按照重配后的测量配置进行测量;如果该重配消息没有携带测量配 置, 则 UE直接使用经过以上操作之后的测量配置, 此后可按照该测 量配置进行测量。 当然, 也可定义特定消息来指示终端进行测量参数 的重配, 其中携带有需要重配的测量配置信息。
以上对测量配置的处理没有严格的时序要求, 例如, UE删除周 期性测量相关的测量 ID的操作可发生在 UE判断测量配置中是否存 在重建后的目标频点及根据判断结果进行处理的操作之前,或者发生 在删除目标 PCC频点之外的其他 SCC相关的测量 ID操作之前。
上述流程中, 如果 eNB在多载波 RRC连接重建消息中重新指定 了新的 PCC (不是发起 RRC连接重建过程的小区所在的频点 ),则终 端可将该重新指定的 PCC作为目标 PCC以执行测量配置交换过程, 即本方案的上述测量配置交换过程在源 PCC和 eNB指定的新 PCC之 间进行, 具体规则同上述的测量配置交换过程。
方案三、 针对 RRC连接重建场景 (异频) 中的快速重建场景
UE在一个目标小区发起 RRC连接重建过程,重建过程可以在多 个载波上恢复 SRB1、 SRB2和 DRBs。
如果 UE在配置载波集合内选择了合适的小区,并成功完成 RRC 连接重建过程,则测量配置交换及其他测量配置处理过程与上述方案 二的多载波重建场景中的相应过程相同; 如果 UE在配置载波集合之 外选择小区, 并成功完成单载波 RRC连接重建过程, 则测量配置交 换及其他测量配置处理过程与上述方案一的一般重建场景中的相应 过程相同; 如果 UE在配置载波集合之外成功完成多载波 RRC连接 重建过程,则测量配置交换及其他过程与上述方案二的多载波重建场 景中的测量配置交换过程相同。
另一种替代方案是: 对于快速重建过程, 如果 UE是在配置载波 集合内选择了合适的小区, 并且在配置载波集合上完成 RRC连接重 建过程, 则 UE仅交换源 PCC频点和目标 PCC频点的测量配置, 保 存其他所有测量配置(包括源 SCC频点的测量配置); 如果 UE是在 配置载波集合外选择了合适的小区, 并且成功完成单载波 RRC连接 重建过程,则测量配置交换过程与上述一般重建场景中的测量配置交 换过程相同; 如果 UE在配置载波集合之外成功完成多载波 RRC连 接重建过程,则测量配置交换过程与上述多载波重建场景中的测量配 置交换过程相同。
方案四、 针对切换场景(异频)
如果 UE发生了多载波切换(切换前 UE使用多载波和 /或切换后 UE使用多载波, 均可以称为多载波切换), 且切换后的 PCC与切换 前不同, 则认为 UE发生了多载波异频切换。 多载波异频切换的测量 配置过程如下:
UE判断其测量配置中是否存在切换的目标 PCC频点,如果存在, 则将源 PCC对应的测量配置和目标 PCC对应的测量配置进行交换, 具体的, 对于每一个相关的测量 ID (如测量 ID列表中与源 PCC频 点或目标 PCC频点连接的测量 ID ): 如果该测量 ID连接的测量对象 为目标 PCC频点, 则将该测量 ID连接到源 PCC频点; 如果该测量 ID连接的测量对象为源 PCC频点, 则将该测量 ID连接到目标 PCC 频点。 如果 UE的测量配置中不存在切换的目标 PCC频点 (即不是 测量对象 ), 则 UE删除与源 PCC频点连接的所有测量 ID;
进一步的, UE还可以进行如下处理:
删除目标 PCC频点之外的其他 SCC频点相关的测量 ID;
保存除以上操作之外的其他测量配置信息;
对于周期性测量相关的测量 ID, 直接删除, 停止测量相关的定 时器, 释放测量 gap;
进一步的, 当切换命令 ( RRC 连接重配消息) 中携带有测量配 置时, UE可在完成上述测量配置交换以及其他处理后按照该配置进 行测量参数重配, 此后可按照该重配后的测量配置进行测量; 如果切 换命令 ( RRC连接重配消息 )没有携带测量配置, 则 UE可直接使用 经过以上操作之后的测量配置, 此后可按照该测量配置进行测量。
进一步的, 当使用一般的 RRC连接重配过程进行 PCC更改操作 时, 则 PCC更改前后, 也需要按照本方案中的上述规则进行测量配 置交换。 具体的, 如果 eNB在 RRC连接重配消息中重新指定了新的 PCC ,则测量配置交换过程在源 PCC和 eNB指定的新 PCC之间进行, 具体规则同本方案中的上述测量配置交换过程。
下面将结合本发明中的附图和实际场景的实施例,对本发明中的 技术方案进行清楚、 完整的描述, 显然, 所描述的实施例是本发明的 一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领 域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他 实施例, 都属于本发明保护的范围。
实施例一、 针对方案一中的一般异频重建场景
本实施例的网络场景如图 4所示, UE当前工作在基站 1下, 聚 合了小区 1、 小区 2和小区 3 , 其中小区 1所在的频率 fl为 PCC, 小 区 1为 Pcdl, 小区 2和小区 3所在的频率 f2和 f3均为 SCC , 这两个 小区均为 Scdl。 小区 5为 fl上的邻小区, 小区 6为 f2上的邻小区, 小区 7为 f3上的邻小区, 小区 4和小区 8为 f4上的邻小区。
UE当前的测量配置中有四个测量对象: fl、 f2、 f3和 f4, 四个 测量 id: id=l连接了 fl、 A1事件, id=2连接了 f2、 A2事件, id=3 连接了 f3、 同频 A3事件, id=4连接了 f4、 A4事件, 如图 5中 "交 换前" 所示。
当 UE发生某些异常情况, 触发了 RRC连接重建过程时, UE重 新选择小区发起一般的重建过程。 本实施例中以 UE选择小区 6发起 一般的重建过程为例描述, 则 UE在小区 6重建成功之后, 需要将频 率 fl和频率 f2对应的测量配置进行交换, 即将 id=l连接 f2、 A1事 件, 将 id=2连接 fl、 A2事件, 并且, 由于 f3是目标 PCC频点(f2 ) 之外的其他 SCC, 因此根据前述处理规则删除 f3相关的测量 id (即 id=3及该 id的关联关系 ), 保存其他测量配置, 即保存测量对象 f3 和 f4、 上报配置同频 A3和 A4、 测量 id=4 (及其关联关系)。 如图 5 中 "交换后" 所示。
通过 RRC连接重建过程之后的第一条重配消息可以为 UE配置 多载波, 例如, 将小区 5和小区 7加入 UE的配置载波集合, 配置 UE在小区 5、 小区 6和小区 7使用 CA。 如果该连接重配消息携带有 测量配置(例如, 增加 id=5, 并将其与 f3和同频 A3事件关联), 则 UE按照该配置进行测量重配, 具体可如图 6所示, 在上述测量配置 处理后的基础上增加 id=5并与 f3、 A3连接; 如果该消息没有携带测 量配置,则 UE直接使用经过以上操作之后的测量配置, 即 id=l连接 f2、 A1事件, id=2连接 fl、 A2事件, id=4连接 f4、 A4事件(图 5 中 "交换后" 的配置), 之后 UE按照测量配置进行测量。
实施例二、 针对方案二中的多载波异频重建场景
本实施例的网络场景和 UE配置同实施例一, 不同之处在于: UE 采用多载波异频重建, 假设 UE仍然选择了小区 6发起重建, 此时默 认小区 6所在的频点 f2为重建后的 PCC, 且在小区 5、 小区 6和小 区 7完成多载波重建, 则 UE在完成重建之后, 仅对小区 1所在的 fl 和小区 6所在的 f2进行测量配置交换,删除 f3相关的测量 id( id=3 ), 保存其他测量配置, 具体过程与实施例一类似, 如图 5所示。
在完成重建之后, 基站可通过发送 RRC连接重配过程向 UE发 送新的测量参数配置, 如同实施例一中所述, 增加测量 id=5, 并与 f3 和同频 A3事件关联; 相应的, UE可根据该新的测量参数配置进行 测量参数重配, 如同实施例一的后续操作, 重配置后的测量配置可如 图 6所示; 重配完成后, UE可按照测量配置进行测量。 如果基站没 有发起重配过程, UE可直接按照重建后保存的测量配置进行测量。
如果 UE在小区 6发起了多载波重建, 但是基站在重建过程中配 置了新的 PCC (例如, 小区 7所在的频点 f3 ) , 则 UE的测量配置交 换操作在基站配置的新的 PCC ( f3 )和原 PCC ( fl )之间进行, 删除 f2相关的测量 id ( id=2 ), 保存其他测量配置, 具体过程与实施例一 类似。 如果基站没有发起上述重配过程, 则 UE可按照实施例一类似 过程完成, 不再重复说明。
实施例三、 针对方案三中的快速异频重建场景
本实施例的网络场景和 UE配置同实施例一, 如果 UE选择了配 置载波集合内的异频小区发起快速重建(如 f2上的小区 2、 小区 6, 或者 f3上的小区 3、 小区 7 ), 则测量配置交换过程同实施例二; 如 果 UE选择了配置载波集合外的异频小区(如频点 f4上的小区 4或小 区 8 ), 则测量配置交换过程同实施例一。
进一步的, 如果 UE选择了配置载波集合内的异频小区发起快速 重建过程(如 f2上的小区 2, 为重建后的 PCC ), 且重建后的多载波 仍为当前配置载波集合(频点 fl的小区 1、 f2的小区 2和 f3的小区 3 ), 在进行原 PCC频点 ( fl )和新 PCC频点 ( f2 )测量交换的情况 下, 还有一种处理 SCC (频点 f3 )相关测量配置的方法, 即保存 SCC 相关配置(保存测量 id=3及其关联关系)。其他测量配置也同样保存。 如果后续有重配过程, 则与实施例一处理相同, 如果后续没有重配过 程, 则直接使用重建后保存的测量配置进行测量。
实施例四、 针对方案四中的异频切换场景
本实施的网络场景同实施例一, 4叚设 UE当前的测量配置中有 4 个测量对象: fl、 f2、 f3和 f4, 四个测量 id: id=l连接 fl、 同频 A3 事件, id=2连接 f2、 A3-PCC事件, id=3连接 f3、 A2事件, id=4连 接 f4、 A4事件, 如图 10中 "交换前" 所示。
如果 UE发生多载波异频切换, 从小区 1、 小区 2和小区 3 , 切 换到小区 5、 小区 6和小区 7 , 其中目标 PCC ( Pcdl )为 f2 (小区 6 ), UE在收到切换命令后, 使用切换命令中的测量配置之前, 先进行源 PCC ( fl )和目标 PCC ( f2 ) 的测量配置交换操作。 UE需要将频率 fl和频率 f2对应的测量配置进行交换, 即将 id=l连接 f2、 同频 A3 事件, 将 id=2连接 fl、 A3-PCC事件, 并删除 f3相关的测量 id (及 该 id的关联关系 ), 即 id=3 , 保存其他测量配置, 即测量对象 f3和 f4、 上报配置同频 A3和 A4、 测量 id=4 (及其关联关系)。 如图 7中 "交换后" 所示。
进一步的,如果基站后续通过切换命令指示 UE进行测量重配置, 且切换命令中包含测量配置(例如, 增加 id=5 , 并将其与 f3和 A2 事件关联), 则 UE在进行完上述操作之后, 按照该配置进行测量参 数重配(如图 8所示); 如果切换命令中没有携带测量配置, 则 UE 直接使用经过以上操作之后的测量配置, 即 id=l 连接 f2、 同频 A3 事件, id=2连接 fl、 A3-PCC事件, id=4连接 f4、 A4事件(图 7中 "交换后" 的配置)。 之后 UE按照测量配置进行测量。
在切换过程中, 除了以上提到的 SCC配置删除的方案之外, 还 有另外一种 SCC配置交换的方案,即将源 SCC和目标 SCC的测量配 置进行交换, 而不是删除。 考虑到 SCC的测量配置交换过程与 PCC 的类似, 此处不再描述。
由于 SCC在切换前后个数不一定相等, 则交换存在一定的复杂 度, 本发明实施例优选使用以下规则之一进行处理:
规则一: 如果切换前后的 SCC个数相等, 则可以按照源 SCC的 频点次序(如载波编号由高到低或由低到高, 频率由高到低或由低到 高, 或者专用信令指定一个次序), 以及切换命令中出现的 SCC次序 进行交换 (可以按照列表条目次序或者载波编号次序, 或者其他指定 的次序 );
规则二: 如果切换前的 SCC个数大于切换后的 SCC个数, 则可 只将切换后的 SCC与切换前的排序靠前(排序方法同规则一中所述) 的同等个数的 SCC进行测量配置交换;
规则三: 如果切换前的 SCC个数小于切换后的 SCC个数, 则可 只将切换后的排序靠前(排序方法同规则一中所述) 的 SCC与切换 前的的同等个数的 SCC进行测量配置交换。
实施例五、 针对 PCC更改场景
本实施例的网络场景及 UE配置同实施例四, 假设网络使用一般 的重配过程将 UE的 PCC从 fl更改到 f2 (如小区 1到小区 2 ), 则测 量配置交换过程同实施例四。
基于相同的技术构思, 本发明实施例还提供了一种终端设备。 如图 9所示, 该终端设备可包括: 确定模块 91、 主载波测量配 置模块 92、 辅载波测量配置模块 93, 其中:
确定模块 91 ,用于在异频切换或成功完成异频 RRC连接重建时, 确定所述终端设备测量配置中是否存在目标主载波频点;
主载波测量配置模块 92, 用于在确定模块 91确定测量配置中存 在目标主载波频点时,将源主载波频点相关的测量配置和目标主载波 频点相关的测量配置进行交换; 具体的, 该模块可将与目标主载波频 点连接的测量标识连接到源主载波频点,将与源主载波频点连接的测 量标识连接到目标主载波频点;
辅载波测量配置模块 92, 用于删除或保留目标主载波频点之外 的辅载波频点相关的测量配置,或者将源辅载波频点相关的测量配置 和目标辅载波频点相关的测量配置进行交换。
上述终端设备中, 主载波测量配置模块 91还用于: 在确定模块 91 确定终端的测量配置中不存在目标主载波频点时, 删除与源主载 波频点连接的所有测量标识,以及该测量标识与该源主载波频点和上 报配置标识的连接关系。
上述终端设备中, 还可包括更新模块 94, 该模块可用于在异频 RRC连接重建之后, 根据网络侧发送的 RRC连接重配消息中的测量 配置信息,对进行了测量配置交换处理和针对所述辅载波频点相关的 测量配置进行处理后所得到的测量配置进行更新; 或者, 在异频切换 时, 根据网络侧发送的切换命令中的测量配置信息, 对进行了测量配 置交换处理和针对所述辅载波频点相关的测量配置进行处理后的所 得到的测量配置进行更新。
在异频 RRC连接重建为多载波重建的情况下, 主载波测量配置 模块 92还可用于,在多载波重建过程中,当终端接收到的多载波 RRC 连接重建消息中携带有网络侧指定的主载波的信息,且该主载波频点 与发起 RRC连接重建的小区所在的频点不同时, 将源主载波频点相 关的测量配置和该指定的主载波频点相关的测量配置进行交换。
上述终端设备中,辅载波测量配置模块 93可在异频 RRC连接重 建为快速重建, 且终端在配置载波集合内选择了目标小区, 并在配置 载波集合上完成 RRC连接重建, 则终端保留辅载波频点相关的测量 配置。 上述终端设备中, 辅载波测量配置模块 93可在异频切换时, 将 与目标辅载波频点连接的测量标识连接到源辅载波频点,将与源辅载 波频点连接的测量标识连接到目标辅载波频点。
上述终端设备中, 辅载波测量配置模块 93可具体用于: 如果源 辅载波和目标辅载波数量相等, 则根据源辅载波频点的设定顺序, 以 及切换命令中出现的辅载波的次序,对相应的源辅载波和目标辅载波 的频点相关的测量配置进行交换; 或者, 如果源辅载波和目标辅载波 数量不等, 则根据设定顺序, 只将目标辅载波与源辅载波对应的同等 个数的辅载波进行测量配置交换。
上述终端设备中, 主载波测量配置模块 92和可进一步用于, 在 对所述主载波频点相关的测量配置进行交换后,保存所述终端中原有 测量配置中的其他设置; 或者, 辅载波测量配置模块 93进一步用于, 在对所述辅载波频点相关的测量配置进行处理之后,保存所述终端中 原有测量配置中的其他配置信息。
综上所述, 本发明提出了一种多载波系统的测量配置方法, 解决 了 CA工作状态下的 UE在成功发生异频 RRC连接重建及异频切换 时的测量交换和配置问题, 节省了空口信令, 降低了实现复杂度。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解 到本发明可借助软件加必需的通用硬件平台的方式来实现, 当然也可 以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解, 软件产品的形式体现出来, 该计算机软件产品存储在一个存储介质 中, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服 务器, 或者网络设备等)执行本发明各个实施例所述的方法。
本领域技术人员可以理解附图只是一个优选实施例的示意图,附 图中的模块或流程并不一定是实施本发明所必须的。
本领域技术人员可以理解实施例中的装置中的模块可以按照实 施例描述进行分布于实施例的装置中,也可以进行相应变化位于不同 于本实施例的一个或多个装置中。上述实施例的模块可以合并为一个 模块, 也可以进一步拆分成多个子模块。
上述本发明实施例序号仅仅为了描述, 不代表实施例的优劣。 以上公开的仅为本发明的几个具体实施例, 但是, 本发明并非局 限于此,任何本领域的技术人员能思之的变化都应落入本发明的保护 范围。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解 到本发明可借助软件加必需的通用硬件平台的方式来实现, 当然也可 以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解, 软件产品的形式体现出来, 该计算机软件产品存储在一个存储介质 中, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服 务器, 或者网络设备等)执行本发明各个实施例所述的方法。
本领域技术人员可以理解附图只是一个优选实施例的示意图,附 图中的模块或流程并不一定是实施本发明所必须的。
本领域技术人员可以理解实施例中的装置中的模块可以按照实 施例描述进行分布于实施例的装置中,也可以进行相应变化位于不同 于本实施例的一个或多个装置中。上述实施例的模块可以合并为一个 模块, 也可以进一步拆分成多个子模块。
上述本发明实施例序号仅仅为了描述, 不代表实施例的优劣。 以上公开的仅为本发明的几个具体实施例, 但是, 本发明并非局 限于此,任何本领域的技术人员能思之的变化都应落入本发明的保护 范围。

Claims

权利要求
1、 一种多载波系统的测量配置方法, 其特征在于, 包括: 在异频切换或成功完成异频 RRC连接重建时, 终端确定其测量 配置中是否存在目标主载波频点,并在确定测量配置中存在目标主载 波频点时,将源主载波频点相关的测量配置和目标主载波频点相关的 测量配置进行交换; 以及
删除或保留辅载波频点相关的测量配置,或者将源辅载波频点相 关的测量配置和目标辅载波频点相关的测量配置进行交换。
2、 如权利要求 1所述的方法, 其特征在于, 将源主载波频点相 关的测量配置和目标主载波频点相关的测量配置进行交换, 具体为: 将与目标主载波频点连接的测量标识连接到源主载波频点,将与 源主载波频点连接的测量标识连接到目标主载波频点。
3、 如权利要求 1所述的方法, 其特征在于, 删除辅载波频点相 关的测量配置, 具体为:
删除所述辅载波频点连接的测量标识,以及该测量标识与所述辅 载波频点和上报配置标识的连接关系。
4、 如权利要求 1所述的方法, 其特征在于, 还包括: 终端在确 定终端的测量配置中不存在目标主载波频点时,删除与源主载波频点 连接的所有测量标识,以及该测量标识与该源主载波频点和上报配置 标识的连接关系。
5、 如权利要求 1所述的方法, 其特征在于, 在异频 RRC连接重 建之后, 还包括: 所述终端根据网络侧发送的 RRC连接重配消息中 的测量配置信息,对进行了测量配置交换处理和针对所述辅载波频点 相关的测量配置进行处理后所得到的测量配置进行更新;
或者, 在异频切换时, 还包括: 所述终端根据网络侧发送的切换 命令中的测量配置信息,对进行了测量配置交换处理和针对所述辅载 波频点相关的测量配置进行处理后的所得到的测量配置进行更新。
6、 如权利要求 1至 5任一项所述的方法, 其特征在于, 所述异 频 RRC连接重建包括多载波重建;
在多载波重建过程中, 当终端接收到的多载波 RRC连接重建消 息中携带有网络侧指定的主载波的信息,且该主载波频点与发起 RRC 连接重建的小区所在的频点不同时, 还包括: 终端将源主载波频点相 关的测量配置和该指定的主载波频点相关的测量配置进行交换。
7、 如权利要求 6所述的方法, 其特征在于, 将源主载波频点相 关的测量配置和所述指定的主载波频点相关的测量配置进行交换,具 体为:
将与该指定的主载波频点连接的测量标识连接到源主载波频点, 将与源主载波频点连接的测量标识连接到该指定的主载波频点。
8、 如权利要求 1至 5任一项所述的方法, 其特征在于, 所述异 频 RRC连接重建为快速重建, 且终端在配置载波集合内选择了目标 小区, 并在配置载波集合上完成 RRC连接重建, 则终端保留辅载波 频点相关的测量配置。
9、 如权利要求 1所述的方法, 其特征在于, 将源辅载波频点相 关的测量配置和目标辅载波频点相关的测量配置进行交换, 具体为: 在异频切换时,所述终端将与目标辅载波频点连接的测量标识连 接到源辅载波频点,将与源辅载波频点连接的测量标识连接到目标辅 载波频点。
10、 如权利要求 1所述的方法, 其特征在于, 将源辅载波频点相 关的测量配置和目标辅载波频点相关的测量配置进行交换, 包括: 如果源辅载波和目标辅载波数量相等,则根据源辅载波频点的设 定顺序, 以及切换命令中出现的辅载波的次序, 对相应的源辅载波和 目标辅载波的频点相关的测量配置进行交换;
如果源辅载波和目标辅载波数量不等, 则根据设定顺序, 只将目 标辅载波与源辅载波对应的同等个数的辅载波进行测量配置交换。
11、 如权利要求 1-5、 7、 9、 10之一所述的方法, 其特征在于, 在对所述主载波频点相关的测量配置进行交换以及对所述辅载波频 点相关的测量配置进行处理之后, 还包括: 保存所述终端中原有测量 配置中的其他配置信息。
12、 一种终端设备, 其特征在于, 包括:
确定模块, 用于在异频切换或成功完成异频 RRC连接重建时, 确定所述终端设备测量配置中是否存在目标主载波频点;
主载波测量配置模块,用于在所述确定模块确定测量配置中存在 目标主载波频点时,将源主载波频点相关的测量配置和目标主载波频 点相关的测量配置进行交换;
辅载波测量配置模块,用于删除或保留辅载波频点相关的测量配 置,或者将源辅载波频点相关的测量配置和目标辅载波频点相关的测 量配置进行交换。
13、 如权利要求 12所述的终端设备, 其特征在于, 所述主载波 测量配置模块, 具体用于: 将与目标主载波频点连接的测量标识连接 到源主载波频点,将与源主载波频点连接的测量标识连接到目标主载 波频点。
14、 如权利要求 12所述的终端设备, 其特征在于, 所述主载波 测量配置模块, 还用于: 在所述确定模块确定终端的测量配置中不存 在目标主载波频点时, 删除与源主载波频点连接的所有测量标识, 以 及该测量标识与该源主载波频点和上报配置标识的连接关系。
15、 如权利要求 12所述的终端设备, 其特征在于, 还包括: 更新模块, 用于在异频 RRC连接重建之后, 根据网络侧发送的
RRC 连接重配消息中的测量配置信息, 对进行了测量配置交换处理 和针对所述辅载波频点相关的测量配置进行处理后所得到的测量配 置进行更新; 或者, 在异频切换时, 根据网络侧发送的切换命令中的 测量配置信息,对进行了测量配置交换处理和针对所述辅载波频点相 关的测量配置进行处理后的所得到的测量配置进行更新。
16、 如权利要求 12至 15任一项所述的终端设备, 其特征在于, 所述异频 RRC连接重建包括多载波重建;
所述主载波测量配置模块还用于, 在多载波重建过程中, 当终 端接收到的多载波 RRC连接重建消息中携带有网络侧指定的主载波 的信息, 且该主载波频点与发起 RRC连接重建的小区所在的频点不 同时,将源主载波频点相关的测量配置和该指定的主载波频点相关的 测量配置进行交换。
17、 如权利要求 12至 15任一项所述的终端设备, 其特征在于, 所述辅载波测量配置模块具体用于, 在异频 RRC连接重建为快速重 建, 且终端在配置载波集合内选择了目标小区, 并在配置载波集合上 完成 RRC连接重建, 则终端保留辅载波频点相关的测量配置。
18、 如权利要求 12所述的终端设备, 其特征在于, 所述辅载波 测量配置模块具体用于, 在异频切换时, 将与目标辅载波频点连接的 测量标识连接到源辅载波频点,将与源辅载波频点连接的测量标识连 接到目标辅载波频点。
19、 如权利要求 12所述的终端设备, 其特征在于, 所述辅载波 测量配置模块具体用于, 如果源辅载波和目标辅载波数量相等, 则根 据源辅载波频点的设定顺序, 以及切换命令中出现的辅载波的次序, 对相应的源辅载波和目标辅载波的频点相关的测量配置进行交换;或 者, 如果源辅载波和目标辅载波数量不等, 则根据设定顺序, 只将目 标辅载波与源辅载波对应的同等个数的辅载波进行测量配置交换。
20、 如权利要求 12-15、 18、 19任一项所述的终端设备, 其特征 在于, 所述主载波测量配置模块进一步用于, 在对所述主载波频点相 关的测量配置进行交换后,保存所述终端中原有测量配置中的其他配 置信息;
或者, 所述辅载波测量配置模块进一步用于, 在对所述辅载波频 点相关的测量配置进行处理之后,保存所述终端中原有测量配置中的 配置信息。
PCT/CN2011/072955 2010-04-30 2011-04-18 多载波系统的测量配置方法及其装置 WO2011134360A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11774351.8A EP2566218B1 (en) 2010-04-30 2011-04-18 Measurement configuration method for multi-carrier system and equipment thereof
US13/695,430 US8953643B2 (en) 2010-04-30 2011-04-18 Measurement configuration method of multi-carrier system and equipment thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010164663.9 2010-04-30
CN2010101646639A CN102083097B (zh) 2010-04-30 2010-04-30 多载波系统的测量配置方法及其装置

Publications (1)

Publication Number Publication Date
WO2011134360A1 true WO2011134360A1 (zh) 2011-11-03

Family

ID=44088808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/072955 WO2011134360A1 (zh) 2010-04-30 2011-04-18 多载波系统的测量配置方法及其装置

Country Status (4)

Country Link
US (1) US8953643B2 (zh)
EP (1) EP2566218B1 (zh)
CN (1) CN102083097B (zh)
WO (1) WO2011134360A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014015474A1 (en) * 2012-07-24 2014-01-30 Empire Technology Development Llc Cell switching strategy for an lte-advanced system based on carrier aggregation technology
CN109982352A (zh) * 2017-12-28 2019-07-05 中国移动通信集团设计院有限公司 Tdd-lte网络中的异频切换方法及装置
US11477796B2 (en) * 2019-02-13 2022-10-18 Apple Inc. Radio resource management for network assisted new radio V2X sidelink resource allocation
US11825501B2 (en) 2019-02-13 2023-11-21 Apple Inc. Radio resource management for network assisted new radio V2X sidelink resource allocation

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4989746B2 (ja) * 2010-04-30 2012-08-01 株式会社エヌ・ティ・ティ・ドコモ 移動通信方法及び移動局
WO2011155748A2 (ko) * 2010-06-07 2011-12-15 엘지전자 주식회사 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치
US8965415B2 (en) 2011-07-15 2015-02-24 Qualcomm Incorporated Short packet data service
US8660078B2 (en) * 2012-02-07 2014-02-25 Qualcomm Incorporated Data radio bearer (DRB) enhancements for small data transmissions apparatus, systems, and methods
WO2014011091A1 (en) * 2012-07-10 2014-01-16 Telefonaktiebolaget Lm Ericsson (Publ) Methods, user equipment and base station for supporting update of neighbour cell relations in a cellular communications network
JP6312992B2 (ja) * 2013-06-27 2018-04-18 株式会社Nttドコモ 移動局
WO2015135136A1 (zh) * 2014-03-11 2015-09-17 富士通株式会社 测量识别符的更新方法、装置和系统
CN106160976B (zh) * 2015-04-09 2019-10-18 上海诺基亚贝尔股份有限公司 用于配置具有pucch资源的辅助小区的方法
CN106160977B (zh) * 2015-04-09 2019-08-16 上海诺基亚贝尔股份有限公司 用于支持调度请求传输的方法
KR102386570B1 (ko) * 2015-09-10 2022-04-13 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 채널 측정 및 측정 결과 리포팅 방법 및 장치
CN108738043B (zh) * 2017-04-25 2023-05-23 中兴通讯股份有限公司 一种用户设备切换方法、装置及系统
CN109245870B (zh) * 2017-06-16 2021-12-28 华为技术有限公司 处理无线链路失败方法、终端设备和基站
WO2019018987A1 (zh) * 2017-07-24 2019-01-31 Oppo广东移动通信有限公司 处理无线链路失败的方法、终端设备和网络设备
CN109587741B (zh) * 2017-09-28 2020-08-28 中国移动通信有限公司研究院 一种测量频点的指示方法、频点测量方法、基站及终端
CN110278574B (zh) * 2018-03-16 2021-06-04 维沃移动通信有限公司 测量方法、测量配置方法、终端及网络设备
CN111385841B (zh) * 2018-12-29 2022-08-12 大唐移动通信设备有限公司 辅节点的测量方法、测量配置方法、终端及网络设备
WO2020221363A1 (en) * 2019-05-02 2020-11-05 FG Innovation Company Limited Methods and apparatuses for conditional handover in wireless communication system
CN113543192B (zh) * 2020-04-20 2023-08-22 华为技术有限公司 一种测量配置方法及装置
CN114697983A (zh) * 2020-12-28 2022-07-01 中兴通讯股份有限公司 异频异系统测量的控制方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101588629A (zh) * 2009-06-16 2009-11-25 中兴通讯股份有限公司 一种载波聚合系统中同步下行分量载波的确定方法和装置
CN101616425A (zh) * 2008-06-23 2009-12-30 华为技术有限公司 多频点系统中获得配对小区信息的方法及装置
CN101674586A (zh) * 2009-10-13 2010-03-17 中兴通讯股份有限公司 一种载波聚合中的测量处理方法及系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6628630B1 (en) * 1997-04-15 2003-09-30 Matsushita Electric Industrial Co., Ltd. Spread spectrum communication method
US7212821B2 (en) * 2003-12-05 2007-05-01 Qualcomm Incorporated Methods and apparatus for performing handoffs in a multi-carrier wireless communications system
CN100461957C (zh) * 2006-01-11 2009-02-11 中兴通讯股份有限公司 多载频时分同步码分多址系统中的测量控制方法
US8036702B2 (en) * 2007-05-14 2011-10-11 Intel Corporation Method and apparatus for multicarrier communication in wireless systems
US8054802B2 (en) * 2007-10-29 2011-11-08 Alcatel Lucent Hand-off trigger at access technology borders
US8126403B2 (en) * 2008-04-23 2012-02-28 Telefonaktiebolaget Lm Ericsson (Publ) Estimating and limiting inter-cell interference
US8676208B2 (en) * 2008-06-11 2014-03-18 Mediatek Inc. Scanning and handover operation in multi-carrier wireless communications systems
KR101020859B1 (ko) * 2008-08-19 2011-03-09 광주과학기술원 무선센서 네트워크에서의 노드간 거리 검출 방법 및 그 시스템
US8331322B2 (en) * 2009-01-22 2012-12-11 Htc Corporation Method of handling radio bearer resumption, wireless communication device and wireless communication system thereof
US8385832B2 (en) * 2009-03-13 2013-02-26 Telefonaktiebolaget Lm Ericsson (Publ) Inter-cell interference control in an uplink multi-carrier radio communications system
KR20110011517A (ko) * 2009-07-28 2011-02-08 엘지전자 주식회사 다중반송파 지원 광대역 무선 통신 시스템에서의 반송파 관리 절차 수행 방법 및 장치
GB2479534B (en) * 2010-04-12 2014-11-12 Samsung Electronics Co Ltd Handover with carrier aggregation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101616425A (zh) * 2008-06-23 2009-12-30 华为技术有限公司 多频点系统中获得配对小区信息的方法及装置
CN101588629A (zh) * 2009-06-16 2009-11-25 中兴通讯股份有限公司 一种载波聚合系统中同步下行分量载波的确定方法和装置
CN101674586A (zh) * 2009-10-13 2010-03-17 中兴通讯股份有限公司 一种载波聚合中的测量处理方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2566218A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014015474A1 (en) * 2012-07-24 2014-01-30 Empire Technology Development Llc Cell switching strategy for an lte-advanced system based on carrier aggregation technology
US9282498B2 (en) 2012-07-24 2016-03-08 Empire Technology Development Llc Cell switching strategy for an LTE-advanced system based on carrier aggregation technology
CN109982352A (zh) * 2017-12-28 2019-07-05 中国移动通信集团设计院有限公司 Tdd-lte网络中的异频切换方法及装置
CN109982352B (zh) * 2017-12-28 2022-04-15 中国移动通信集团设计院有限公司 Tdd-lte网络中的异频切换方法及装置
US11477796B2 (en) * 2019-02-13 2022-10-18 Apple Inc. Radio resource management for network assisted new radio V2X sidelink resource allocation
US11825501B2 (en) 2019-02-13 2023-11-21 Apple Inc. Radio resource management for network assisted new radio V2X sidelink resource allocation

Also Published As

Publication number Publication date
CN102083097B (zh) 2013-11-06
EP2566218A4 (en) 2014-01-15
US8953643B2 (en) 2015-02-10
EP2566218A1 (en) 2013-03-06
EP2566218B1 (en) 2017-04-05
US20130100841A1 (en) 2013-04-25
CN102083097A (zh) 2011-06-01

Similar Documents

Publication Publication Date Title
WO2011134360A1 (zh) 多载波系统的测量配置方法及其装置
EP2884798B1 (en) Method, system and device for cell management
EP2480025B1 (en) Method, device and system for reconfiguring aggregated cell
KR101925764B1 (ko) 무선 시스템에서의 다중 스케줄러들을 이용한 동작
JP5826245B2 (ja) ハンドオーバ時における無線リソース設定方法及び設定装置
US20130259003A1 (en) Apparatus and method for performing wireless connection re-establishment in a multiple component carrier system
WO2012058999A1 (zh) 一种切换时辅小区配置的处理方法及其装置
WO2011018042A1 (zh) 一种判决无线链路失败的方法和装置
WO2011157091A1 (zh) 多载波系统的测量配置和上报方法及设备
WO2010017753A1 (zh) Lte rrc连接重建立请求方法、原因值设置方法及终端
WO2013102446A1 (zh) 传输数据的方法及设备
EP3429271B1 (en) Data transmission method and user equipment for rrc re-establishment based on a set of core serving cells
WO2011026360A1 (zh) 一种无线资源控制连接重配置失败的处理方法及系统
KR102301836B1 (ko) 이동 통신 시스템에서 SCell의 동적 제어 방법 및 장치
KR102025420B1 (ko) 이중연결 방식을 이용하는 무선통신 시스템에서 불연속 수신을 위한 파라미터 구성 방법 및 장치
CN113396607A (zh) 用于在无线通信系统中执行切换的方法和设备
WO2011120445A1 (zh) 一种多载波系统的连接重建方法和设备
WO2011153887A1 (zh) 切换信息的传递方法、系统及设备
WO2017166293A9 (zh) 移动性管理的方法、装置和系统
WO2011050564A1 (zh) 一种发送系统信息的方法、系统和设备
WO2014000687A1 (zh) 一种接入点切换过程中传输数据的方法、系统和设备
KR20140137277A (ko) 무선자원 재설정/재구성 방법 및 그 장치
WO2014012454A1 (zh) 一种承载切换的方法、系统和设备
WO2013139004A1 (zh) 一种建立演进分组系统承载的方法及基站
EP4002919A1 (en) Method and device for performing handover in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11774351

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011774351

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011774351

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13695430

Country of ref document: US