WO2011132907A2 - Disk-type module for both electric generation and electromotion using anode magnetization point - Google Patents

Disk-type module for both electric generation and electromotion using anode magnetization point Download PDF

Info

Publication number
WO2011132907A2
WO2011132907A2 PCT/KR2011/002779 KR2011002779W WO2011132907A2 WO 2011132907 A2 WO2011132907 A2 WO 2011132907A2 KR 2011002779 W KR2011002779 W KR 2011002779W WO 2011132907 A2 WO2011132907 A2 WO 2011132907A2
Authority
WO
WIPO (PCT)
Prior art keywords
disk
magnets
divided
induction
power generation
Prior art date
Application number
PCT/KR2011/002779
Other languages
French (fr)
Korean (ko)
Other versions
WO2011132907A3 (en
Inventor
장석호
Original Assignee
주식회사런에너지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사런에너지 filed Critical 주식회사런에너지
Publication of WO2011132907A2 publication Critical patent/WO2011132907A2/en
Publication of WO2011132907A3 publication Critical patent/WO2011132907A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/26Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with rotating armatures and stationary magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K23/00DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors
    • H02K23/54Disc armature motors or generators

Definitions

  • the present invention relates to a module for generating power or electric power by using a positive electrode contact point of a permanent magnet, and more specifically, to form a disk of rotation and non-rotation on the axis of rotation, and the induction coil in the spaced disk And a split magnet is disposed radially, wherein the split magnet is formed so that the anodic bonding point of one or more overlapping permanent magnets is directed toward the induction coil, and thus the induction coil due to the anodic bonding point having the maximum amount of magnetic force. Efficient power generation from the or by applying an alternating power from the induction coil to enable high-efficiency transmission due to the attraction and repulsive force with the divided magnet.
  • a generator is a device that converts mechanical energy into electrical energy. When a cylindrical magnetic body is rotated by rotating power from hydraulic, wave, or steam or diesel engines, it is located near the magnetic body. It is a device that generates electric current by inducing charge in a coil wound on an iron core. That is, in the general power generation apparatus, when a rotor made of a magnetic material rotates inside a stator core in a state in which a coil is wound, electricity is generated and flows in the coil of the stator.
  • Power generators that can be easily seen around us include generators for bicycle lights, and generators for cars are the same principle.
  • the only difference from the bicycle generator is that the permanent magnet is built into the coil of the bicycle, but the electromagnetic generator is wound with an electromagnet (rotor coil) rather than a permanent magnet. Since the magnetic material having a heavy weight should be rotated, there is a problem in that excessive maneuverability or rotational force is required.
  • the core core for inductive activation of the conventional method is attracted to each other and the rotational magnetic material in the center, excessive rotational kinetic force is required to exceed the attraction force, so the energy consumption is extremely high.
  • the attraction force acts as a rotational resistance of the magnetic body, resulting in unnecessary consumption of the rotational power for rotating the magnetic body.
  • the conventional cylindrical magnetic material and the core core has only a four-pole induction due to the limitation of space, so the high-speed rotation is required to produce the required electricity has a problem of extremely low economic efficiency.
  • the magnetic material is forcibly rotated by using the rotational force of a separate drive motor, and the electricity produced from the power generation device is to be converted and used through a transformer, the electricity lost from the drive motor and the power generation device.
  • power generation systems of this type are typically known to have an energy efficiency of about 35%, making them extremely inefficient and uneconomical.
  • an electric motor is a device that converts electrical energy into mechanical energy by using a force received by a current-carrying conductor in a magnetic field and generally refers to a motor. According to the type of power, it is classified into DC motor and AC motor. AC motor is divided into three phase AC and single phase AC. Today, three phase AC motor is mainly used. A device that converts electrical energy into mechanical work by using the force that electric currents receive in a magnetic field. Most electric motors produce rotational power, but also produce linear motion.
  • the motor started to be made when Faraday discovered electromagnetic induction in 1831. Early motors were made to swing the moving part without rotating by using the attraction force and repulsive force of the permanent magnet. In the 1830s, today's DC motor types were first created using armatures and DC-excited electromagnets, but with low output and only a research stage. Later, when Ferraris and Tesla discovered a rotating magnetic field created by alternating current, each independently invented a two-phase alternating current motor. Three-phase AC motors have become the mainstream of today's AC motors since Dobrowalski, Germany, first made a three-phase three-phase AC motor in 1889.
  • both the DC motor and the AC motor operate on the same principle.
  • electromagnetic force (Lorentz force) is generated in a direction perpendicular to the direction of the magnetic field.
  • a magnet is placed inside the motor to create a magnetic field, and when a current flows through the wire connected to the shaft, an electromagnetic force is generated, which is rotated by Fleming's left-hand law to generate power.
  • the electromagnetic force acting on the conductor is proportional to the strength of the magnetic field, the strength of the current and the length of the conductor.
  • the most common electric motor according to this principle is a universal basic configuration in which a rotor of permanent magnets or electromagnets is built in a stator of permanent magnets or electromagnets.
  • the rotor made of electromagnet receives electric power through the contact point, so that continuous rotational motion occurs through attraction and repulsive force by electromagneticization.
  • such a general electric motor is substantially cylindrical and has a permanent magnet or an electromagnet as a component of the rotating core, and in the process of alternately rotating the attractive force and repulsive force of each pole, the mobility or rotational endurance is reduced due to the weight or magnetic attraction of the rotating central shaft.
  • the alternating function of 6 polarity or less is that the efficiency is extremely limited due to the limitation of manpower and repulsive force.
  • the initial starting force is excellent, whereas when the load is generated on the rotating side by the power supply method as described above, when the speed is lowered, the DC resistance is lowered, and heat is suddenly generated due to a sudden increase in supply power demand.
  • the problem is a combination. As a result, power consumption of the main power and the rotational power versus the power consumption of the device to be added due to the above problems are not overcome.
  • the generator or the motor in the form of a disk has been devised.
  • a disk-type power generator or motor has a magnet body having different polarities sequentially connected to the disk, such as in Japanese Patent Laid-Open Publication No. 14-153036, to correspond to both sides of a rotating plate in which the induction coil is dividedly arranged.
  • the rotating plate having the induction coil is rotated, the magnetic force is induced from the magnet body into the induction coil to generate power.
  • Korean Patent No. 0683472 discloses a coil wound around a non-magnetic plastic coil frame to be fixedly attached to a coil support plate, and a rotating shaft having a flat plate attached with magnets is fixed left and right close to the coil support plate.
  • the coil support plate to which the coil bundle is coupled is fixed by the support plate fixing member, and the magnet support plate to which the magnets are attached is rotated by the rotating shaft so that the coil is wound on the magnetic plate which is magnetic.
  • a disk rotary generator characterized in that the power is obtained with less power than a typical generator.
  • the induction coils 101 and 101 ′ are radially disposed on the coil plate 100, which is a non-rotating body, and the rotating shaft 110 is disposed on both sides of the coil plate 100.
  • the magnetic plates 120 and 120 ' which are rotated together with each other are disposed to be spaced apart from each other, and the magnetic bodies 121 and 121' corresponding to each other are separately disposed on the magnetic plates 120 and 120 ', respectively.
  • the opposing magnet bodies 121 and 121 ' are configured to have different polarities so that mutual attraction forces act.
  • the existing generator using a single pole magnetization point uses an assembly portion for the single pole magnetization points of the magnet bodies arranged opposite to each other.
  • the inductive force of the magnetic force acting on the coil body is remarkably low.
  • the magnet bodies are symmetrically configured from both sides of the coil body. At the same time, the efficiency of power production is greatly reduced.
  • the present invention improves the above-described problems, and the radially spaced divided magnet body formed by overlapping at least two permanent magnets is radially spaced on the first disc, and the divided disc is divided on the second disc spaced apart from the first disc.
  • the first disk or the second disk is selectively fixed to the rotating shaft, and the divided magnet body is fixedly disposed so that the anodic bonding point faces the induction coil. Due to the rotational action between the first disk and the second disk, the magnetic force of the split magnetic body is induced to the induction coil and power is produced, or alternating power is supplied to the induction coil to reduce the attraction force and repulsion between the split magnetic body.
  • the present invention for achieving the object as described above, radially spaced apart divided magnets in the first non-magnetic disk, radially spaced induction coils connected in series to the non-magnetic second disk, One of the selected disk of the first disk or the second disk is configured to be coupled to a separate rotation shaft so that the selected one disk can be rotated with the rotation shaft,
  • the divided magnets are formed by overlapping and joining permanent magnets of at least two rectangular hexahedrons to each other, and the divided magnets formed by these permanent magnets are configured so that the anodic bonding point faces the induction coil.
  • the induction coil is disposed at the portion where the strongest magnetic force is induced by the magnet having it, a structure in which the coils are symmetrical on both sides or up and down as in the prior art is unnecessary, and even if only a divided magnet is disposed to one side with respect to the induction coil, As it has power generation or transmission efficiency, it can reduce production and manufacturing costs as well as reduce the thickness or width of the entire module, making it possible to produce a slimmer and more compact form.
  • the combined power generation module of the present invention can be used as a generator capable of producing electric power from the rotating power acting on the rotating shaft, or can be applied to the electric motor to rotate the rotary shaft with high efficiency by supplying alternating power directly to the induction coil. Its utilization is very high.
  • 1 is a schematic configuration diagram of a general disk type generator
  • FIG. 3 is an overall configuration diagram of a combined power generation module according to the present invention
  • 5a to 5c is a comparison of the magnetic field lines of the electric power generation combined use module of the present invention and the existing generator
  • Figure 5a is a magnetic field distribution diagram between the split magnet body and the induction coil of the magnet body by the anodic bonding point in the present invention
  • Figure 5b is a magnetic force line distribution diagram of a conventional generator consisting of a magnet body of a single pole magnetization point
  • Figure 5c is a magnetic field distribution diagram of a conventional generator of a bi-directional magnetic body
  • FIG. 7 is a detailed view of the magnetic force forming unit according to the arrangement of the divided magnet body of the combined power generation module according to the present invention
  • FIG. 9 is a perspective view showing another embodiment of the combined power generation module according to the present invention.
  • FIG. 10 is an overall front view according to FIG.
  • Figure 2 is an exploded perspective view of a combined power generation module according to the present invention
  • Figure 3 is an overall configuration diagram of a combined power generation module according to the present invention
  • Figure 4 is a divided magnet arrangement of the combined power generation module according to the present invention.
  • the combined electric power module comprises a first disk 10 made of a nonmagnetic material such as a synthetic resin, a second disk 20 made of a nonmagnetic material, and a separate rotating shaft 30.
  • the split magnet body 11 (11 ') is arranged to be spaced apart from each other radially from the central portion in the first disk 10, the induction having a flat shape in the form of a horizontal winding on the second disk (20).
  • the coils 21 and 21 ' are radially divided from the center portion.
  • the divided magnets 11 and 11 ' are formed by stacking at least two permanent magnets of rectangular hexahedron, and the induction coils 21 and 21 having an anodic bonding point in which both the N pole and the S pole are compatible. ') To face.
  • the induction coils 21 and 21 ' are connected in series from the second disk 20 to generate electric power by inducing magnetic force from the divided magnets 11 and 11'. .
  • the rotating shaft 30 is coupled to one of the first disk 10 or the second disk 20 can be rotated together with the selected disk, for example, a divided magnet 11 ( If the first disk 10 having the 11 ') is fixed to the rotating shaft 30, the second disk 20 should be fixed. On the contrary, the second disk 20 is connected to the rotating shaft 30. If it is in a fixed state, the first disk 10 should be in a fixed state.
  • the one disk selected from the first disk 10 and the second disk 20 is fixed to the rotating shaft 30 to be rotated together with the rotating shaft 30 and the other disk is the rotating shaft 30 ) So that it can be rotated in the opposite direction to the disk that is rotated with each other to double the rotational momentum of each other.
  • the disk that can be rotated together with the rotating shaft 30 is ideally the first disk 10 having a divided magnet (11, 11 '), the light guide coil (21) (21')
  • the first disk 10 having the divided magnetic bodies 11 and 11 ′ which is a weight body rather than the second disk 20, may be rotated, thereby increasing efficiency.
  • the divided magnets (11, 11 ') is formed by overlapping at least two or more permanent magnets
  • These divided magnets (11) (11 ') can obtain a high power generation and transmission efficiency due to the anode magnetization point where a strong magnetic force is induced as the anode magnetizer points toward the induction coil (21) (21') will be.
  • the divided magnets 11 and 11 ' are formed by joining a plurality of permanent magnets in order to maximize the magnetic force induced from the anodic bonding point.
  • the anodic contact points of each permanent magnet are bonded to each other, so that the two anodic contact points are shaped like one strong anodic contact point (the amount absorbed from the bonding of the permanent magnet is charged from the atmosphere.
  • a strong magnetic force is induced by the force of attracting magnetic force from different polarities of neighboring permanent magnets.
  • the anodic bonding point of the divided magnets 11 and 11 'facing the induction coil is not a permanent magnet of a single object, but a permanent magnet in which at least two permanent magnets are joined.
  • the desired efficiency can be expected, and when the permanent magnets having three or more divided objects are joined to each other to form the divided magnets 11 and 11 ', the divided permanent magnets are formed.
  • the amount of induced magnetic force increases in proportion to the number of magnets.
  • the above-mentioned division within the allowable range of the radial division arrangement in the disk which is rotated or non-rotated as described above.
  • the magnet bodies 11 and 11 ' may be applied by bonding a plurality of permanent magnets to each other.
  • FIG. 6 is a sequential process diagram of an alternating current generation state by the combined electric power generation module of the present invention, in the state in which the divided magnet bodies 11, 11 'and the induction coil 21, 21' correspond to each other as shown in the figure.
  • the divided magnets 11, 11 'or the induction coils 21 and 21' start to rotate (the drawing indicates that the induction coil is rotated, the induction coil 21 above).
  • the N pole is induced from the anodic bonding point of the divided magnets 11 and 11' and the magnetic force of the S pole is induced due to the generation of mutual suction force. Since the magnets are in a superimposed state, the induced magnetic force is increased by about 2 times compared to the case of one permanent magnet.
  • the magnetism is directed toward or opposite, so that the electrode is formed in the induction coils 21 and 21 'of the rotating state through a positive sign by the N pole and a negative sign by the S pole, Electrically, B is positive rather than A, and D is positive rather than C. As a result, all charges form a phase in which the positive signs and the negative signs are opposed to each other, and the cycles are repeated, indicating that alternating current can be generated.
  • the combined power generation module of the present invention is an induction coil It is obvious that the original anodic bonding point Mp by the width of (21) and (21 ') and the matching magnets 11 and 11' is formed in the same number as the division magnets 11 and 11 '. 2 times the power generated by one rotation of the disk due to the spontaneous magnetization point Sp generated by another group of virtual magnets generated in the aggregate range of the magnetic force lines between the divided magnets 11 and 11 '.
  • induction coils 21 and 21 ' are disposed at the portion where the transmission efficiency is generated and the strongest magnetic force is induced by the divided magnets 11 and 11' having the anodic bonding point. Or, the structure of the up and down symmetrical state is unnecessary, and the induction coils 21 and 21 ' Even if the split magnets 11 and 11 'are arranged on only one side, they will have higher efficiency, resulting in a reduction in production and manufacturing costs as well as a reduction in the thickness or width of the overall module, resulting in a slimmer and more compact power generation module. Will be able to complete.
  • the population of the induction coils 21 and 21 ' is not the same as the population of the divided magnets 11 and 11', and the population of the divided magnets 11 and 11 'is determined.
  • the maximum efficiency can be obtained.
  • the anodic bonding point due to the magnet group of the original divided magnets 11 and 11' is obtained.
  • the induction coils 21 and 21 ' which are doubled due to the splicing point of spliced by the group of virtual magnets generated between the Mp and the magnets, are maximized due to the induction action of superior magnetic force. will be.
  • the divided magnets 21 and 21 ' when the number of the induction coils 21 and 21 'is twice the number of the divided magnets 11 and 11', the divided magnets acting on the induction coils 21 and 21 '. Since the polarities of the magnet group and the virtual magnet group by the sieves 11 and 11 'are different from each other, the winding directions of the induction coils 21 and 21' are sequentially reversed to obtain the same phase power. You will need to serialize them. Accordingly, the divided magnet and the induction coil of the present invention can be realized even if the 1: 1 structure does not necessarily occur.
  • the arrangement of the conventional magnet body of the form as shown in (b) is that the bonding state between the magnet body (101, 101 ') is made, the shape as shown in (c) is a magnet body 101 (radially arranged ( Since the center portion of the 101 'is joined, the phase shift of the induction coil is necessary to obtain power by matching the numbers of the magnet bodies 101 and 101'.
  • the grounding of the induction coil needs to be different, and the induction force of the magnetic force is directly proportional to the density crossover force and the crossover speed of the magnetic field, so in the case of (b) and (c) above,
  • the radius of motion of the G point to be displayed is wider, so that the efficiency is only 1/2 of the present invention. That is, in the case of the present invention arranged in 8 divisions, 16 times G points are formed in one rotation, whereas only 8 times G points are formed in (b) and (c), as well as having a remarkable efficiency difference when preparing for the same rotation speed.
  • the divided magnets 11 and 11 ′ of the present invention use the bipolar magnetization point having the strongest magnetic force, so that the dividing magnets 11 and 11 ′ have an efficiency that is not comparable with the conventional case of using the monopolar magnetization point.
  • the existing power generation or transmission apparatus using a single pole magnetization point has a wide cross-sectional area due to the single pole magnetization point, and thus the attraction force is very large, but the concentration of magnetic force is relatively low and the divergence force is weak. Induction of magnetic force is significantly low. Therefore, in order to overcome the deterioration of the induction force of the magnetic force as described above, both sides of the coil body are symmetrically configured, but when the power is applied (loaded), the coil body turns into an electromagnet and generates rotational resistance, and at the same time, The power production efficiency will be greatly reduced.
  • the electric power generation combined use module of the present invention another magnet group is generated between the width of the induction coil and the matched divided magnets 11 and 11 'and the divided magnets 11 and 11'.
  • twice the efficiency is generated in one revolution, and the induction coils 21 and 21 'are disposed close to the anode bonding point where the strongest magnetic force is induced by the divided magnets 11 and 11'.
  • a structure in which the coils are symmetrical on both sides or up and down is unnecessary, and even if only the divided magnets 11 and 11 'are disposed on one side with respect to the induction coils 21 and 21', the coil has higher efficiency.
  • the thickness or width of the overall module is greatly reduced, so that a more slim and compact combined power module can be completed.
  • the third disk 40 must rotate simultaneously with or maintain a fixed state with the first disk 10 having the divided magnets 11 and 11 '.
  • Stable and efficient induction of the induction coils 21 and 21 'of the second disk 20 located between the disks 40 can be made by electric or magnetic force and repulsion.
  • Such a power generation combined electric module of the present invention is connected to the axle or windmill that can use hydraulic power, wave power or wind power to the rotary shaft as described above, so that the rotary shaft 30 is driven from external forces caused by these natural or artificial external forces.
  • the first disk 10 having the divided magnets 11 and 11 'dividedly disposed on the rotation shaft 30 is fixed to the second shaft according to the rotation of the first disk 10. 20 can be used as a power generation device to produce alternating current from the induction coil (21) (21 ').
  • the combined power generation module of the present invention is very reasonable because it can be selectively applied to the power generation device or the power transmission device as well as having a high energy efficiency as well as a more simplified configuration.

Abstract

The present invention relates to a module for achieving electric generation or electromotion using an anode magnetization point of a permanent magnet. More specifically, divided magnet bodies each of which is made of at least two permanent magnets overlapped on one another are radially spaced from each other on a first disk, induction coils which correspond to or are twice as many as the divided magnet bodies are dividedly disposed on a second disk distanced from the first disk, and the first disk or the second disk is selectively connected to and fixed on a rotation axis, wherein the divided magnet bodies are fixedly disposed such that the anode magnetization point thereof faces the induction coils. Accordingly, the divided magnet bodies net-matched with the area of the induction coils, and another magnet group created between the divided magnet bodies generate two times as much efficiency than the prior art during one rotation; since the induction coil is disposed at a portion to which the strongest magnetic power is induced by the magnet having an anode magnetization point, a structure of forming symmetrical states at both side of a coil or the upper and lower sides thereof, which is required in the prior art, is unnecessary; and since a high electric generation or electromotion efficiency is provided although divided magnet bodies are disposed only at one side with respect to the induction coils, the manufacturing and production costs are reduced, and also the thickness or area of an entire module is remarkably reduced, which enables production in a slimmer and more compact shape. In addition, the module for both electric generation and electromotion according to the present invention can be used as an electric power generator capable of generating electric power from rotation power which acts on a rotation axis, or can be applied to an electric motor in which alternating power is directly supplied to an induction coil to rotate the rotation axis with high efficiency.

Description

양극착자점을 이용한 디스크형 발전 겸용 전동모듈Disc-driven combined electric module using anode magnetization point
본 발명은 영구자석의 양극착자점을 이용하여 발전 또는 전동이 이루어지도록 한 모듈에 관한 것으로, 더욱 상세하게는 회전축 상에 회전과 비회전의 디스크를 서로 이격 형성하고, 상기 이격된 디스크에는 유도코일과 분할자석체를 방사상으로 배치하되, 상기 분할자석체는 영구자석을 적어도 2개 이상 겹쳐 이루어진 것의 양극착자점이 유도코일을 향하도록 형성함에 따라, 자력의 유기량이 최대인 양극착자점으로 인해 유도코일로부터 효율적인 발전이 이루어지도록 하거나 유도코일로부터 교번전력을 인가시켜 상기 분할자석체와의 인력 및 척력으로 인해 고효율의 전동이 이루어질 수 있도록 한 것이다.The present invention relates to a module for generating power or electric power by using a positive electrode contact point of a permanent magnet, and more specifically, to form a disk of rotation and non-rotation on the axis of rotation, and the induction coil in the spaced disk And a split magnet is disposed radially, wherein the split magnet is formed so that the anodic bonding point of one or more overlapping permanent magnets is directed toward the induction coil, and thus the induction coil due to the anodic bonding point having the maximum amount of magnetic force. Efficient power generation from the or by applying an alternating power from the induction coil to enable high-efficiency transmission due to the attraction and repulsive force with the divided magnet.
발전장치라 함은 역학 에너지를 전기 에너지로 변환시키는 장치로 일컬어 지는 것으로서, 수력이나 파력 또는 증기나 디젤 기관 따위의 원동 수단으로부터 회전 동력을 얻어 원통형의 자성체가 회전되게 하면, 자성체의 주변에 위치하고 있는 철심코어 상에 권선된 코일에 전하가 유도되어 전류가 발생되게 하는 장치인 것이다. 즉, 일반적인 발전장치는 자성체로 된 로터가 코일이 권선된 상태의 스테이터 코어 내부에서 회전시키면, 스테이터의 코일에서는 전기가 발생되어 흐르게 되는 것이다.A generator is a device that converts mechanical energy into electrical energy. When a cylindrical magnetic body is rotated by rotating power from hydraulic, wave, or steam or diesel engines, it is located near the magnetic body. It is a device that generates electric current by inducing charge in a coil wound on an iron core. That is, in the general power generation apparatus, when a rotor made of a magnetic material rotates inside a stator core in a state in which a coil is wound, electricity is generated and flows in the coil of the stator.
우리 주위에서 쉽게 볼 수 있는 발전장치로는 자전거 라이트용 발전기가 있고, 자동차의 발전기도 마찬가지 원리이다. 단지 자전거용 발전기와 다른 점은 자전거용은 코일 내부에 영구자석이 내장되어 있지만 자동차용 발전기에는 영구자석이 아닌 전자석(로터코일)이 감겨 있는 것이 다르다.그러나, 상기한 바와 같은 일반적인 발전장치는 비교적 무거운 중량을 갖는 자성체를 회전시켜야 하므로 그에 따른 기동력이나 회전동력이 과다하게 필요한 문제점이 있는 것이다.Power generators that can be easily seen around us include generators for bicycle lights, and generators for cars are the same principle. The only difference from the bicycle generator is that the permanent magnet is built into the coil of the bicycle, but the electromagnetic generator is wound with an electromagnet (rotor coil) rather than a permanent magnet. Since the magnetic material having a heavy weight should be rotated, there is a problem in that excessive maneuverability or rotational force is required.
또한, 종래와 같은 방식의 유도 활성화를 위한 철심 코어는 중앙의 회전 자성체와 서로 잡아당기는 인력(引力)이 발생하므로, 상기의 인력을 넘어서기 위한 과도한 회전 운동력이 요구되므로 그에 따른 에너지의 소모량이 극심할 뿐만 아니라 상기의 인력은 자성체의 회전 저항으로 작용하므로 자성체를 회전시키기 위한 회전동력을 불필요하게 소모하는 결과를 초래하는 것이다.In addition, since the core core for inductive activation of the conventional method is attracted to each other and the rotational magnetic material in the center, excessive rotational kinetic force is required to exceed the attraction force, so the energy consumption is extremely high. In addition, the attraction force acts as a rotational resistance of the magnetic body, resulting in unnecessary consumption of the rotational power for rotating the magnetic body.
특히, 종래의 원통형 자성체와 철심코어는 공간의 한계로 인하여 4극성 유도 만을 채택할 수밖에 없어서 필요한 전기를 생산하기 위해서는 고속 회전이 요구되므로 경제적인 효율성이 지극히 낮은 문제점이 있는 것이다. 또한, 상기의 자성체 를 별도의 구동모터의 회전력을 이용하여 강제 회전시키고, 그에 따른 발전장치로부터 생산되는 전기를 변압기 등을 통해 전환하여 사용하고자 하는 경우, 상기의 구동모터 및 발전장치로부터 손실되는 전기 에너지가 막대한 것으로서, 상기와 같은 방식의 발전 시스템은 통상적으로 약 35%의 에너지 효율을 갖고 있는 것으로 알려져 있어 극히 비효율적이면서도 비경제적인 것이다.In particular, the conventional cylindrical magnetic material and the core core has only a four-pole induction due to the limitation of space, so the high-speed rotation is required to produce the required electricity has a problem of extremely low economic efficiency. In addition, when the magnetic material is forcibly rotated by using the rotational force of a separate drive motor, and the electricity produced from the power generation device is to be converted and used through a transformer, the electricity lost from the drive motor and the power generation device. As energy is enormous, power generation systems of this type are typically known to have an energy efficiency of about 35%, making them extremely inefficient and uneconomical.
또한, 전동기는 전류가 흐르는 도체가 자기장 속에서 받는 힘을 이용하여 전기에너지를 역학적 에너지로 바꾸는 장치이고 일반적으로 모터(motor)를 말한다. 전원의 종류에 따라 직류전동기와 교류전동기로 분류되며, 교류전동기는 다시 3상 교류용과 단상교류용으로 구분되며, 오늘날에는 3상 교류용 전동기를 주로 사용하고 있다. 전류가 자기장 속에서 받는 힘을 이용하여 전기에너지를 기계적인 일로 바꾸는 장치로서, 대부분의 전동기는 회전운동의 동력을 만들지만 직선운동을 생산하기도 한다.In addition, an electric motor is a device that converts electrical energy into mechanical energy by using a force received by a current-carrying conductor in a magnetic field and generally refers to a motor. According to the type of power, it is classified into DC motor and AC motor. AC motor is divided into three phase AC and single phase AC. Today, three phase AC motor is mainly used. A device that converts electrical energy into mechanical work by using the force that electric currents receive in a magnetic field. Most electric motors produce rotational power, but also produce linear motion.
상기의 전동기는 1831년 페러데이가 전자기유도를 발견한 무렵부터 전동기가 만들어지기 시작했고, 초기의 전동기는 영구자석의 인력과 척력을 이용하여 가동부는 회전시키지 않고 요동시키는 방식이었다. 1830년 대에는 오늘날의 직류전동기 형식이 전기자와 직류 여자 된 전자석을 사용하여 최초로 만들어졌으나 출력이 적고 연구 단계에 불과하였다. 이후, 페라리스와 테슬라가 교류에서 만들어지는 회전자기장을 발견한 것을 계기로 각각 독자적으로 2상 교류전동기를 발명하였다. 1889년 독일의 도브로월스키가 출력 100와트(W)의 3상 교류전동기를 처음 만든 이래 3상 교류전동기가 오늘날 교류전동기의 주류를 이루고 있다.The motor started to be made when Faraday discovered electromagnetic induction in 1831. Early motors were made to swing the moving part without rotating by using the attraction force and repulsive force of the permanent magnet. In the 1830s, today's DC motor types were first created using armatures and DC-excited electromagnets, but with low output and only a research stage. Later, when Ferraris and Tesla discovered a rotating magnetic field created by alternating current, each independently invented a two-phase alternating current motor. Three-phase AC motors have become the mainstream of today's AC motors since Dobrowalski, Germany, first made a three-phase three-phase AC motor in 1889.
또한, 직류전동기와 교류전동기 모두 동일한 원리로 동작하는데, 전류가 흐르는 도체를 자기장 속에 놓으면 자기장의 방향에 수직한 방향으로 전자기적인 힘(로렌츠 힘)이 발생한다. 전동기 내부에 자석을 놓아 자기장을 만들고, 축에 연결된 도선에 전류를 흘리면 전자력이 발생하여 플레밍의 왼손법칙에 의해 회전하게 되어 동력을 창출한다. 도선에 작용하는 전자기력은 자기장의 세기, 전류의 세기 그리고 도선의 길이에 비례한다.In addition, both the DC motor and the AC motor operate on the same principle. When a conductor in which current flows is placed in a magnetic field, electromagnetic force (Lorentz force) is generated in a direction perpendicular to the direction of the magnetic field. A magnet is placed inside the motor to create a magnetic field, and when a current flows through the wire connected to the shaft, an electromagnetic force is generated, which is rotated by Fleming's left-hand law to generate power. The electromagnetic force acting on the conductor is proportional to the strength of the magnetic field, the strength of the current and the length of the conductor.
이와 같은 원리에 의한 가장 일반적인 전동기는 영구자석 또는 전자석으로 된 고정자의 내부에 영구자석 또는 전자석으로 된 회전자가 내장되어 있는 것이 보편적인 기본 구성이라 할 것이다. 특히, 직류 전동기는 4접점인 경우 전자석으로 된 회전자는 상기의 접점을 통해 전력을 공급받아 전자기화에 의한 인력과 척력을통해 연속적인 회전 운동이 발생하게 되는 것이다.The most common electric motor according to this principle is a universal basic configuration in which a rotor of permanent magnets or electromagnets is built in a stator of permanent magnets or electromagnets. In particular, when the DC motor has four contacts, the rotor made of electromagnet receives electric power through the contact point, so that continuous rotational motion occurs through attraction and repulsive force by electromagneticization.
그러나, 상기와 같은 일반적인 전동기는 거의 원통형으로 회전중심체에 영구자석이나 전자석을 구성체로 하고 각극의 인력과 척력을 교번하여 회전시키는 과정에서 회전중심축의 중량이나 자성의 인력으로 인해 기동성이나 회전 지구력이 떨어지게 되고, 6극성 이하의 교번기능은 인력과 척력의 한계로 인해 효율이 극히 제한적인 문제점이 있는 것이다.However, such a general electric motor is substantially cylindrical and has a permanent magnet or an electromagnet as a component of the rotating core, and in the process of alternately rotating the attractive force and repulsive force of each pole, the mobility or rotational endurance is reduced due to the weight or magnetic attraction of the rotating central shaft. And, the alternating function of 6 polarity or less is that the efficiency is extremely limited due to the limitation of manpower and repulsive force.
특히, 직류 전동기의 경우 초기 기동력이 우수하다는 것에 반해 전기한 바와 같은 전원공급 방식에 의해 회전측에 부하가 발생하여 속도가 낮아질 경우 직류저항이 낮아져 급작스럽게 공급전력의 수요가 증가하면서 열이 발생하는 문제점이 복합적으로 발생하는 것이다. 이에 따라 상기와 같은 문제점들로 인한 주동력의 소모전력과 부가해야하는 장치의 전력 소모 대비 회전력의 한계를 극복하지 못하고 있는 실정이다.In particular, in the case of a DC motor, the initial starting force is excellent, whereas when the load is generated on the rotating side by the power supply method as described above, when the speed is lowered, the DC resistance is lowered, and heat is suddenly generated due to a sudden increase in supply power demand. The problem is a combination. As a result, power consumption of the main power and the rotational power versus the power consumption of the device to be added due to the above problems are not overcome.
이에 따라, 근자에 들어서는 상기와 같은 발전기 또는 전동기가 갖고 있는 다양한 문제점을 극복하고자 디스크 형태로 된 발전기 또는 전동기가 안출된 바 있다. 이와 같은 디스크 형태로 된 발전 또는 전동기는 일본공개특허공보 평14-153036호와 같이 디스크에 서로 다른 극성을 갖는 자석체가 순차적으로 연접하여 배치된 것을 유도코일이 분할 배치된 회전판의 양측에 대응 위치시켜서 상기 유도코일을 갖는 회전판이 회전됨에 따라 자석체로부터 자력을 유도코일로 유기시켜 발전이 이루어지도록 한 바 있다.Accordingly, in order to overcome various problems of the generator or the motor as described above, the generator or the motor in the form of a disk has been devised. Such a disk-type power generator or motor has a magnet body having different polarities sequentially connected to the disk, such as in Japanese Patent Laid-Open Publication No. 14-153036, to correspond to both sides of a rotating plate in which the induction coil is dividedly arranged. As the rotating plate having the induction coil is rotated, the magnetic force is induced from the magnet body into the induction coil to generate power.
또한, 등록특허공보 제0683472호는 코일이 비자성체인 플라스틱 코일틀에 감겨져서 코일지지판에 고정 부착되어 있고, 자석들이 부착되어 있는 평판형의 회전체가 상기 코일지지판과 근접하게 좌우로 고정되어 회전축과 일체로 회전함으로써 전력을 얻게 하는 것으로서 코일뭉치가 결합되어 있는 코일지지판은 지지판 고정부재에 의해 고정되어 있고, 자석들이 부착되어 있는 자석지지판은 회전축에 의해 회전하도록 되어 있어 코일이 자성체인 철판에 감겨 있는 일반적인 발전기보다 적은 동력으로 전력을 얻는 것을 특징으로 하는 디스크 회전형 발전기를 안출한 바 있다.In addition, Korean Patent No. 0683472 discloses a coil wound around a non-magnetic plastic coil frame to be fixedly attached to a coil support plate, and a rotating shaft having a flat plate attached with magnets is fixed left and right close to the coil support plate. The coil support plate to which the coil bundle is coupled is fixed by the support plate fixing member, and the magnet support plate to which the magnets are attached is rotated by the rotating shaft so that the coil is wound on the magnetic plate which is magnetic. It has been devised a disk rotary generator characterized in that the power is obtained with less power than a typical generator.
이와 같은 기존의 디스크형 발전기는 도 1의 도시와 같이 비회전체인 코일판(100)에 유도코일(101)(101')을 방사상으로 배치하고, 상기 코일판(100)의 양측에 회전축(110)과 함께 회전되는 자석판(120)(120')을 이격 배치하되, 이들 각각의 자석판(120)(120')에는 서로 대응하는 자석체(121)(121')가 분할 배치되어 있는 것이며, 서로 마주하는 자석체(121)(121')는 서로 다른 극성을 갖게 하여 상호 간의 인력이 작용하도록 구성되어 있는 것이다.In the conventional disc-type generator as shown in FIG. 1, the induction coils 101 and 101 ′ are radially disposed on the coil plate 100, which is a non-rotating body, and the rotating shaft 110 is disposed on both sides of the coil plate 100. The magnetic plates 120 and 120 'which are rotated together with each other are disposed to be spaced apart from each other, and the magnetic bodies 121 and 121' corresponding to each other are separately disposed on the magnetic plates 120 and 120 ', respectively. The opposing magnet bodies 121 and 121 'are configured to have different polarities so that mutual attraction forces act.
그러나, 상기와 같은 종래의 디스크형 발전기들에 대한 자석체의 배치를 살펴보면, 자석체 간의 접합 상태가 이루어져 있거나 방사상으로 배치된 자석체의 중앙부가 접합된 상태가 이루어져 있는 것이므로, 자석수와 정매칭하여 전력을 얻어내기 위해서는 위상전환이 반드시 필요하게 된다. 즉, 동일한 위상의 전력을 얻기 위해 코일 접지를 달리해야하는 것이고, 자력의 유도력은 자장의 밀도 교차력 및 교차속도와 정비례하므로 상기의 종래의 사례인 경우 전력 싸이클을 생성하기 위한 자력 유기점이 매우 넓어 실질적인 발전 효율이 극히 떨어지는 문제점을 갖고 있는 것이다.However, looking at the arrangement of the magnet body for the conventional disk-type generators as described above, since the state of bonding between the magnet body is made or the center portion of the magnet body arranged radially is bonded, the number of magnets and the exact matching In order to obtain power, a phase shift is necessary. That is, in order to obtain the power of the same phase, the coil ground must be different, and the induction force of the magnetic force is directly proportional to the density intersection force and the crossover speed of the magnetic field, so in the case of the conventional case, the magnetic induction point for generating the power cycle is very wide. The actual power generation efficiency is extremely poor.
더욱이, 단극착자점을 이용하는 기존의 발전기는 서로 대향 배치되는 자석체의 단극착자점에 대한 집합부를 이용하게 되므로, 이들 대향의 단극착자점으로 인해 자석체의 단면적이 넓어져 그에 따른 인력은 크게 될 것이나 자력의 집중력이 떨어져 상대적으로 발산력이 약하므로 코일체에 작용하는 자력의 유도력이 현저히 낮은 것이다.In addition, the existing generator using a single pole magnetization point uses an assembly portion for the single pole magnetization points of the magnet bodies arranged opposite to each other. However, due to the low concentration of magnetic force and relatively weak divergence, the inductive force of the magnetic force acting on the coil body is remarkably low.
따라서, 상기와 같은 자력의 유도력 저하를 극복하기 위하여 코일체의 양측으로부터 자석체를 서로 대칭형으로 구성한 바 있으나 전력의 인가(부하)시 코일체가 전자석으로 변하여 회전저항을 발생시키므로 운동력이 상쇄되는 것이고 이와 동시에 전력 생산 효율이 크게 떨어지게 되는 것이다.Therefore, in order to overcome the deterioration of the induction force of the magnetic force as described above, the magnet bodies are symmetrically configured from both sides of the coil body. At the same time, the efficiency of power production is greatly reduced.
특히, 각기 다른 단극을 마주보게 함으로써 추가된 자석의 비용 및 설치공간의 점유 등 비효율적이고 비경제적인 문제점을 수반하게 되는 것이고, 단극성의 넓은 쪽을 마주보게 설치하는 데에는 자석 간의 인력에 의해 한계가 발생하므로 부득이 유도코일을 두껍게 제작 배치해야 한다는 불합리성도 동반하게 되는 것이다.In particular, by facing different unipolar poles, it is accompanied by inefficient and inconvenient problems such as the cost of additional magnets and the occupying of the installation space. Therefore, it is also accompanied by the irrationality that the induction coil must be made and placed thick.
따라서, 기존에 안출되어진 대부분의 디스크형 발전기는 무철심 원반 발전기의 장점인 무회전 저항 매커니즘은 사실상(실제 부하를 걸어 사용하는데 있어서) 실현 가능성이 매우 떨어지는 동시에 효용가치가 극히 낮은 수준인 것이다.Therefore, most of the disk-type generators that have been proposed in the past have a very low practical value and a very low utility value.
본 발명은 전기한 바와 같은 문제점을 개선한 것으로서, 적어도 2개 이상의 영구자석이 겹쳐져 만들어진 분할자석체를 제1디스크 상에 방사상으로 이격 배치하고, 상기 제1디스크와 이격되는 제2디스크에는 상기 분할자석체와 대응하거나 2배수로 된 유도코일을 분할 배치하여, 상기 제1디스크 또는 제2디스크를 선택적으로 회전축에 결합 고정하되, 상기 분할자석체는 양극착자점이 유도코일을 향하도록 고정 배치됨에 따라 상기 제1디스크와 제2디스크 간의 회전 작용으로 인해 분할자석체의 자력이 유도코일로 유기되며 전력이 생산되게 하거나, 유도코일로 교번 전력을 공급하여 분할자석체와의 사이에서 발생하는 인력 및 척력에 의해 회전축이 회전되도록 한 전동기로 사용되게 한 양극착자점을 이용한 디스크형 발전 겸용 전동모듈을 제공함에 본 발명의 목적이 있는 것이다.The present invention improves the above-described problems, and the radially spaced divided magnet body formed by overlapping at least two permanent magnets is radially spaced on the first disc, and the divided disc is divided on the second disc spaced apart from the first disc. By arranging an induction coil corresponding to or doubled by a magnet body, the first disk or the second disk is selectively fixed to the rotating shaft, and the divided magnet body is fixedly disposed so that the anodic bonding point faces the induction coil. Due to the rotational action between the first disk and the second disk, the magnetic force of the split magnetic body is induced to the induction coil and power is produced, or alternating power is supplied to the induction coil to reduce the attraction force and repulsion between the split magnetic body. To provide a disk-type power generation combined electric module using a positive electrode contact point that is used as an electric motor to rotate the rotating shaft by It is an object of the invention.
상기한 바와 같은 목적을 달성하기 위한 본 발명은, 비자성체로 된 제1디스크에는 분할자석체들을 방사상으로 이격 배치하고, 비자성체로 된 제2디스크에는 직렬 연결된 유도코일들을 방사상으로 이격 배치하며, 상기 제1디스크 또는 제2디스크 중 선택된 하나의 디스크는 별도의 회전축에 결합 고정되게 하여 그 회전축과 함께 선택된 하나의 디스크가 회전될 수 있도록 구성하되,The present invention for achieving the object as described above, radially spaced apart divided magnets in the first non-magnetic disk, radially spaced induction coils connected in series to the non-magnetic second disk, One of the selected disk of the first disk or the second disk is configured to be coupled to a separate rotation shaft so that the selected one disk can be rotated with the rotation shaft,
상기 분할자석체들은, 적어도 2개 이상의 장방형 육면체로 된 영구자석을 서로 겹쳐 접합하여 형성하고 이들 영구자석에 의한 분할자석체들은 양극착자점이 유도코일을 향하도록 배치 구성하여 이루어지는 것이다.The divided magnets are formed by overlapping and joining permanent magnets of at least two rectangular hexahedrons to each other, and the divided magnets formed by these permanent magnets are configured so that the anodic bonding point faces the induction coil.
본 발명은, 유도코일의 넓이와 정매칭된 분할자석체 및 그 분할자석체의 사이에 생성되는 또 하나의 자석군으로 인해 1회전시 종래에 비하여 2배의 효율이 발생하고, 양극착자점을 갖는 자석에 의한 가장 강력한 자력이 유도되는 부분에 유도코일이 배치되므로 종래와 같이 코일의 양측 또는 상,하로 대칭된 상태의 구조가 불필요한 것이며, 유도코일에 대하여 일측으로의 분할자석체만 배치하더라도 고도의 발전 또는 전동 효율성을 갖게 되므로 생산 및 제작비의 절감은 물론 전체적인 모듈의 두께 혹은 넓이가 매우 축소되므로 더욱 슬림하고 콤팩트한 형태로 제작할 수 있는 것이다.According to the present invention, due to the width of the induction coil and the matching magnet and the magnet group generated between the divided magnets, twice as much efficiency occurs as compared to the conventional one rotation, Since the induction coil is disposed at the portion where the strongest magnetic force is induced by the magnet having it, a structure in which the coils are symmetrical on both sides or up and down as in the prior art is unnecessary, and even if only a divided magnet is disposed to one side with respect to the induction coil, As it has power generation or transmission efficiency, it can reduce production and manufacturing costs as well as reduce the thickness or width of the entire module, making it possible to produce a slimmer and more compact form.
또한, 본 발명의 발전 겸용 전동모듈은 회전축에 작용하는 회전동력으로부터 전력을 생산할 수 있는 발전기로 사용하거나, 유도코일에 교번 전원을 직접 공급하여 상기 회전축이 고효율로 회전되게 한 전동기로 적용할 수 있어 그 활용도가 매우 높은 것이다.In addition, the combined power generation module of the present invention can be used as a generator capable of producing electric power from the rotating power acting on the rotating shaft, or can be applied to the electric motor to rotate the rotary shaft with high efficiency by supplying alternating power directly to the induction coil. Its utilization is very high.
도 1은 일반적인 디스크형 발전기의 개략 구성도1 is a schematic configuration diagram of a general disk type generator
도 2는 본 발명에 따른 발전 겸용 전동모듈의 분리 사시도2 is an exploded perspective view of the combined power generation module according to the present invention
도 3은 본 발명에 따른 발전 겸용 전동모듈의 전체 구성도3 is an overall configuration diagram of a combined power generation module according to the present invention
도 4는 본 발명에 따른 발전 겸용 전동모듈의 분할자석체 배치도4 is a divided magnet arrangement of the combined power generation module according to the present invention
도 5a 내지 도 5c는 본 발명의 발전 겸용 전동모듈과 기존의 발전기와의 자력선 비교도로서,5a to 5c is a comparison of the magnetic field lines of the electric power generation combined use module of the present invention and the existing generator,
도 5a는 본 발명에 양극착자점에 의한 자석체로 된 분할자석체와 유도코일 간의 자력선 분포도 Figure 5a is a magnetic field distribution diagram between the split magnet body and the induction coil of the magnet body by the anodic bonding point in the present invention
도 5b는 단극착자점의 자석체로 이루어진 종래 발전기의 자력선 분포도 Figure 5b is a magnetic force line distribution diagram of a conventional generator consisting of a magnet body of a single pole magnetization point
도 5c는 양방향 대응형 자석체로 된 종래 발전기의 자력선 분포도 Figure 5c is a magnetic field distribution diagram of a conventional generator of a bi-directional magnetic body
도 6은 본 발명에 따른 발전 겸용 전동모듈의 전력 생산 과정도6 is a power production process diagram of the combined power generation module according to the present invention
도 7은 본 발명에 따른 발전 겸용 전동모듈의 분할자석체 배치에 따른 자력 형성부 상세도7 is a detailed view of the magnetic force forming unit according to the arrangement of the divided magnet body of the combined power generation module according to the present invention
도 8은 본 발명에 따른 발전 겸용 전동모듈과 기존 발전기 간의 전력 생성부 비교도8 is a comparison of the power generation unit between the combined power generation module and the existing generator according to the present invention
도 9는 본 발명에 따른 발전 겸용 전동모듈의 다른 실시예를 보인 사시도9 is a perspective view showing another embodiment of the combined power generation module according to the present invention
도 10은 도 9에 따른 정면 전체도10 is an overall front view according to FIG.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in this specification and claims are not to be construed as being limited to the common or dictionary meanings, and the inventors can appropriately define the concept of terms in order to explain their invention in the best way. Based on the principle, it should be interpreted as meaning and concept corresponding to the technical idea of the present invention.
이하 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 여기서, 본 발명의 발전 겸용 전동모듈과 종래의 발전기의 대비 도면에서 종래의 발전기에 대한 부호는 배경기술에서의 종래 발전기에 대한 부호와 동일하게 표시하도록 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. Here, the reference to the conventional generator in the contrast drawing of the combined power generation module of the present invention and the conventional generator to be displayed the same as the reference to the conventional generator in the background art.
도 2는 본 발명에 따른 발전 겸용 전동모듈의 분리 사시도이고, 도 3은 본 발명에 따른 발전 겸용 전동모듈의 전체 구성도이며, 도 4는 본 발명에 따른 발전 겸용 전동모듈의 분할자석체 배치도이다.Figure 2 is an exploded perspective view of a combined power generation module according to the present invention, Figure 3 is an overall configuration diagram of a combined power generation module according to the present invention, Figure 4 is a divided magnet arrangement of the combined power generation module according to the present invention. .
도시와 같이 본 발명에 따른 발전 겸용 전동모듈은 합성수지와 같은 비자성체로 된 제1디스크(10)와 역시 비자성체로 된 제2디스크(20) 및 별도의 회전축(30으로 이루어져 있는 것이다.As shown in the drawing, the combined electric power module according to the present invention comprises a first disk 10 made of a nonmagnetic material such as a synthetic resin, a second disk 20 made of a nonmagnetic material, and a separate rotating shaft 30.
이때, 상기의 제1디스크(10)에는 중앙부로부터 방사상으로 분할 자석체(11)(11')들이 서로 이격 배치되어 있는 것이고, 상기 제2디스크(20)에는 수평 권선 형태로 납작한 형상을 갖는 유도코일(21)(21')이 중앙부로부터 방사상으로 분할 배치되어 있는 것이다.In this case, the split magnet body 11 (11 ') is arranged to be spaced apart from each other radially from the central portion in the first disk 10, the induction having a flat shape in the form of a horizontal winding on the second disk (20). The coils 21 and 21 'are radially divided from the center portion.
여기서, 상기의 분할자석체(11)(11')는 장방형 육면체로 된 영구자석을 적어도 2개 이상 겹쳐 형성한 것이고, N극과 S극이 양립하는 양극착자점이 상기 유도코일(21)(21')을 향하도록 배치한 것이다.Herein, the divided magnets 11 and 11 'are formed by stacking at least two permanent magnets of rectangular hexahedron, and the induction coils 21 and 21 having an anodic bonding point in which both the N pole and the S pole are compatible. ') To face.
또한, 상기의 유도코일(21)(21')은 제2디스크(20)로부터 직렬 연결 형성되어 있는 것으로서, 상기 분할자석체(11)(11')로부터 자력을 유도 받아 전력을 생산하게 되는 것이다.In addition, the induction coils 21 and 21 'are connected in series from the second disk 20 to generate electric power by inducing magnetic force from the divided magnets 11 and 11'. .
특히, 상기의 회전축(30)은 제1디스크(10) 또는 제2디스크(20) 중 하나의 디스크와 결합되어 있어 선택된 하나의 디스크와 함께 회전될 수 있는 것인데, 예컨데 분할자석체(11)(11')를 갖는 제1디스크(10)가 회전축(30)과 고정되어 있다면 상기의 제2디스크(20)는 고정 상태이어야 하는 것이고, 반대로 상기의 제2디스크(20)가 회전축(30)과 고정된 상태라면 제1디스크(10)는 고정 상태가 이루어져야 할 것이다. 또한, 상기의 제1디스크(10)와 제2디스크(20) 중 선택된 하나의 디스크를 회전축(30)에 고정하여 상기 회전축(30)과 함께 회전될 수 있도록 하고 나머지 하나의 디스크는 회전축(30)과 함께 회전되는 디스크와 반대방향으로 회전될 수 있도록 하여 상호 간의 회전 운동력이 배가되도록 할 수도 있는 것이다.In particular, the rotating shaft 30 is coupled to one of the first disk 10 or the second disk 20 can be rotated together with the selected disk, for example, a divided magnet 11 ( If the first disk 10 having the 11 ') is fixed to the rotating shaft 30, the second disk 20 should be fixed. On the contrary, the second disk 20 is connected to the rotating shaft 30. If it is in a fixed state, the first disk 10 should be in a fixed state. In addition, the one disk selected from the first disk 10 and the second disk 20 is fixed to the rotating shaft 30 to be rotated together with the rotating shaft 30 and the other disk is the rotating shaft 30 ) So that it can be rotated in the opposite direction to the disk that is rotated with each other to double the rotational momentum of each other.
여기서, 상기의 회전축(30)과 함께 회전될 수 있도록 한 디스크는 분할자석체(11)(11')를 갖는 제1디스크(10)가 이상적인 것으로서, 가벼운 유도코일(21)(21')을 갖는 제2디스크(20) 보다는 중량체인 분할자석체(11)(11')가 배치된제1디스크(10)가 회전될 수 있도록 하여 회전 관성의 상승으로 인한 효율 증대를 꾀할 수 있을 것이다.Here, the disk that can be rotated together with the rotating shaft 30 is ideally the first disk 10 having a divided magnet (11, 11 '), the light guide coil (21) (21') By increasing the rotational inertia, the first disk 10 having the divided magnetic bodies 11 and 11 ′, which is a weight body rather than the second disk 20, may be rotated, thereby increasing efficiency.
이때, 상기와 같은 분할자석체(11)(11')에 대한 부연 설명을 하면, 전기한 바와 같이 상기의 분할자석체(11)(11')는 적어도 2개 이상의 영구자석을 겹쳐 형성한 것이고 이들 분할자석체(11)(11')는 양극착자점이 유도코일(21)(21')을 향하도록 배치됨에 따라 강력한 자력이 유기되는 양극착자점으로 인해 고도의 발전 및 전동 효율을 얻을 수 있는 것이다.At this time, when the description of the above-described divided magnets (11, 11 '), as described above, the divided magnets (11, 11') is formed by overlapping at least two or more permanent magnets These divided magnets (11) (11 ') can obtain a high power generation and transmission efficiency due to the anode magnetization point where a strong magnetic force is induced as the anode magnetizer points toward the induction coil (21) (21') will be.
즉, 통상적으로 육면체로 된 막대형 자석의 경우 N극과 S극으로 각기 구분되는 2면의 단극착자점과 N극 및 S극이 양분되어 있는 4면의 양극착자점을 갖고 있는 것이다. 이에 따라 본 발명에서는 상기와 같은 양극착자점으로부터 유기되는 자력을 극대화시키기 위해 그 분할자석체(11)(11')를 다수의 영구자석을 접합시켜 형성한 것이다.That is, in the case of a rod-shaped magnet, which is usually a hexahedron, it has two-sided single-pole magnetized points divided into N-poles and S-poles, and four-sided anode-bonded magnets in which N-poles and S-poles are bisected. Accordingly, in the present invention, the divided magnets 11 and 11 'are formed by joining a plurality of permanent magnets in order to maximize the magnetic force induced from the anodic bonding point.
예컨데, 2개의 영구자석을 접합시키는 경우 각각의 영구자석이 갖는 양극착자점이 서로 접합됨에 따라 두 개의 양극착자점이 하나의 강력한 양극착자점과 같은 형태(영구자석의 접합으로부터 흡수된 양을 대기로부터 대전하기 때문)로 재편되는 동시에 서로 이웃하는 영구자석의 각기 다른 극성으로부터 자력을 흡입하는 힘에 의해 강력한 자력의 유기가 이루어지는 것이다. 이는 도 5a 내지 도 5c와 같은 비교도에 의해 알 수 있듯이 도 5b의 도시와 같이 유도코일(121)에 대하여 단독의 영구자석으로 된 자석체(101)인 경우 또는 도 5c의 도시와 같이 유도코일(121)에 대하여 상,하 대응의 자석체(101)(101')인 경우에는 양극착자점에 비하여 단극착자점의 자장은 넓지만 유도력은 대략 10%가 약한 것으로 측정되는 것이고, 본 발명에서와 같이 영구자석을 2개로 접합하는 경우에는 양극착자점에 대한 자력이 단극착자점에 비하여 2배 이상의 자력을 갖고 있음을 알 수 있는 것으로서, 이와 같은 결과는 가우스 측정기에 의해서도 확인될 수 있는 것이다.For example, in the case of bonding two permanent magnets, the anodic contact points of each permanent magnet are bonded to each other, so that the two anodic contact points are shaped like one strong anodic contact point (the amount absorbed from the bonding of the permanent magnet is charged from the atmosphere. At the same time, a strong magnetic force is induced by the force of attracting magnetic force from different polarities of neighboring permanent magnets. This can be seen by the comparison diagram as shown in Figures 5a to 5c as shown in Figure 5b the magnet body 101 made of a permanent magnet alone with respect to the induction coil 121 or induction coil as shown in Figure 5c In the case of the magnet body 101 (101 ') corresponding to the upper and lower parts (121), the magnetic field of the monopole magnetization point is wider but the induction force is approximately 10% weaker than that of the anodic magnetization point. In the case of joining two permanent magnets as in the above, it can be seen that the magnetic force for the bipolar magnetization point has more than twice the magnetic force than the monopolar magnetization point. Such a result can be confirmed by a Gaussian. .
이에 따라, 유도코일을 향하는 분할자석체(11)(11')의 양극착자점은 단일 개체의 영구자석을 이용하는 것이 아니라 적어도 2개 이상의 영구자석이 접합된 상태의 영구자석으로 이루어진 형태의 것을 사용하는 것이 본 발명에서 목적하는 효율을 기대할 수 있는 것이고, 상기와 같은 영구자석을 3개 내지 그 이상의 분할개체를 갖고 서로 접합시켜 분할자석체(11)(11')를 형성하는 경우에는 분할된 영구자석의 개체수와 비례하여 자력의 유기량이 증대하는 것인데, 발전 효율 또는 전동 효율을 가일층 향상시키고자 할 때에는 상기와 같이 회전 상태이거나 비회전 상태인 디스크 내 방사형 분할 배치구조의 허용 범위 내에서 상기의 분할자석체(11)(11')는 다수의 영구자석을 서로 접합하여 적용할 수 있을 것이다.Accordingly, the anodic bonding point of the divided magnets 11 and 11 'facing the induction coil is not a permanent magnet of a single object, but a permanent magnet in which at least two permanent magnets are joined. In the present invention, the desired efficiency can be expected, and when the permanent magnets having three or more divided objects are joined to each other to form the divided magnets 11 and 11 ', the divided permanent magnets are formed. The amount of induced magnetic force increases in proportion to the number of magnets. To further improve the power generation efficiency or transmission efficiency, the above-mentioned division within the allowable range of the radial division arrangement in the disk which is rotated or non-rotated as described above. The magnet bodies 11 and 11 'may be applied by bonding a plurality of permanent magnets to each other.
도 6은 본 발명의 발전 겸용 전동모듈에 의한 교류 발전 상태의 순차 과정도로서, 도시와 같이 분할자석체(11)(11')와 유도코일(21)(21')이 대응하고 있는 상태에서, 분할자석체(11)(11') 또는 유도코일(21)(21')이 회전을 시작하면(도면에서는 유도코일이 회전되는 것을 표시하였으므로 이를 기준으로 함), 상기의 유도코일(21)(21')에는 분할자석체(11)(11')의 양극착자점으로부터 N극이 유도되는 동시에 S극의 자력이 상호 흡입력의 발생으로 인해 유도되는 것인데, 상기의 양극착자점은 2개의 영구자석이 겹쳐져 이루어져 있는 상태이므로 유도되는 자력은 하나의 영구자석인 경우에 비하여 2배가량 증대되는 것이다.6 is a sequential process diagram of an alternating current generation state by the combined electric power generation module of the present invention, in the state in which the divided magnet bodies 11, 11 'and the induction coil 21, 21' correspond to each other as shown in the figure. When the divided magnets 11, 11 'or the induction coils 21 and 21' start to rotate (the drawing indicates that the induction coil is rotated, the induction coil 21 above). At 21 ', the N pole is induced from the anodic bonding point of the divided magnets 11 and 11' and the magnetic force of the S pole is induced due to the generation of mutual suction force. Since the magnets are in a superimposed state, the induced magnetic force is increased by about 2 times compared to the case of one permanent magnet.
또한, 자성은 반대를 향해 또는 유도하므로 회전상태의 유도코일(21)(21')에는 N극에 의한 양(+)부호와 S극에 의한 음(-)부호를 통해 전극이 형성되는 것이고, 전기적으로는 A부 보다는 B부가 양부호가 되고 C부 보다는 D부가 양부호가 되는 것이다. 이에 따라 모든 전하는 양부호와 음부호가 대립하며 반복되는 싸이클을 갖는 위상을 형성하게 되는 것이고, 이와 같은 위상은 교류 발전이 이루어질 수 있음을 나타내게 되는 것이다.In addition, the magnetism is directed toward or opposite, so that the electrode is formed in the induction coils 21 and 21 'of the rotating state through a positive sign by the N pole and a negative sign by the S pole, Electrically, B is positive rather than A, and D is positive rather than C. As a result, all charges form a phase in which the positive signs and the negative signs are opposed to each other, and the cycles are repeated, indicating that alternating current can be generated.
도 7은 본 발명의 발전 겸용 전동모듈의 분할자석체에 대한 배치도 및 이들 분할자석체에 의한 본래의 자석군 및 새로이 생성되는 가상 자석군을 도시한 것으로서, 본 발명의 발전 겸용 전동모듈은 유도코일(21)(21')의 넓이와 정매칭된 분할자석체(11)(11')에 의한 본래의 양극착자점(Mp)이 분할자석체(11)(11')와 동일한 수로 형성됨은 당연한 것이고, 이들 분할자석체(11)(11')의 사이인 자력선의 집합 범위에 생성되는 또 하나의 가상 자석군으로 인해 생성되는 양극착자점(Sp)으로 인해 디스크의 1회전시 2배의 발전 또는 전동 효율이 발생하고, 양극착자점을 갖는 분할자석체(11)(11')에 의한 가장 강력한 자력이 유도되는 부분에 유도코일(21)(21')이 배치되므로 종래와 같이 코일의 양측 또는 상,하로 대칭된 상태의 구조가 불필요한 것이며, 유도코일(21)(21')에 대하여 일측으로만 분할자석체(11)(11')를 배치하더라도 더욱 고도의 효율성을 갖게 되므로 생산 및 제작비의 절감은 물론 전체적인 모듈의 두께 혹은 넓이가 매우 축소되므로 더욱 슬림하고 콤팩트한 발전 겸용 전동모듈을 완성할 수 있는 것이다.7 is a layout view of the divided magnet body of the combined power generation module of the present invention and the original magnet group and the newly generated virtual magnet group by the divided magnet body, the combined power generation module of the present invention is an induction coil It is obvious that the original anodic bonding point Mp by the width of (21) and (21 ') and the matching magnets 11 and 11' is formed in the same number as the division magnets 11 and 11 '. 2 times the power generated by one rotation of the disk due to the spontaneous magnetization point Sp generated by another group of virtual magnets generated in the aggregate range of the magnetic force lines between the divided magnets 11 and 11 '. Or induction coils 21 and 21 'are disposed at the portion where the transmission efficiency is generated and the strongest magnetic force is induced by the divided magnets 11 and 11' having the anodic bonding point. Or, the structure of the up and down symmetrical state is unnecessary, and the induction coils 21 and 21 ' Even if the split magnets 11 and 11 'are arranged on only one side, they will have higher efficiency, resulting in a reduction in production and manufacturing costs as well as a reduction in the thickness or width of the overall module, resulting in a slimmer and more compact power generation module. Will be able to complete.
또한, 상기의 유도코일(21)(21')에 대한 개체수를 분할자석체(11)(11')의 개체수와 동일하게 구성하지 아니하고 상기 분할자석체(11)(11')의 개체수에 대한 유도코일(21)(21')의 개체수를 2배수로 구성하는 경우에는 더욱 극대화된 효율을 얻을 수 있는 것인데, 이때에는 본래 분할자석체(11)(11')가 갖는 자석군에 의한 양극착자점(Mp)과 이들 사이에서 생성된 가상 자석군에 의한 양극착자점(Sp)으로 인해 2배수로 된 유도코일(21)(21')에는 월등한 자력의 유도 작용으로 인해 발전 및 전동 효율이 극대화되는 것이다. 다만, 상기와 같이 유도코일(21)(21')의 개체수가 분할자석체(11)(11')의 개체수에 대하여 2배수인 경우에는 유도코일(21)(21')에 작용하는 분할자석체(11)(11')에 의한 자석군과 가상의 자석군에 대한 극성이 서로 다를 것이므로 동일한 위상의 전력을 얻어내기 위해서 유도코일(21)(21')의 권선방향을 순차적으로 반대로 권선하여 이들을 직렬연결하는 조치가 필요하게 될 것이다. 이에 따라 본 발명의 분할자석체와 유도코일은 반드시 1:1 대응형 구조가 이루어지지 않더라도 실현이 가능한 것이다.In addition, the population of the induction coils 21 and 21 'is not the same as the population of the divided magnets 11 and 11', and the population of the divided magnets 11 and 11 'is determined. When the number of induction coils 21 and 21 'is doubled, the maximum efficiency can be obtained. In this case, the anodic bonding point due to the magnet group of the original divided magnets 11 and 11' is obtained. The induction coils 21 and 21 ', which are doubled due to the splicing point of spliced by the group of virtual magnets generated between the Mp and the magnets, are maximized due to the induction action of superior magnetic force. will be. However, as described above, when the number of the induction coils 21 and 21 'is twice the number of the divided magnets 11 and 11', the divided magnets acting on the induction coils 21 and 21 '. Since the polarities of the magnet group and the virtual magnet group by the sieves 11 and 11 'are different from each other, the winding directions of the induction coils 21 and 21' are sequentially reversed to obtain the same phase power. You will need to serialize them. Accordingly, the divided magnet and the induction coil of the present invention can be realized even if the 1: 1 structure does not necessarily occur.
도 8은 본 발명에 따른 분할자석체(11)(11')의 배치와 기존 발전 또는 전동장치가 갖고 있는 자석체의 배치도를 대비한 것으로서, (a)와 같이 본 발명의 발전 겸용 전동모듈은 N극과 S극이 양분된 양극착자점을 갖는 분할자석체(11)(11')가 방사상으로 분할 배치되어 있는 것으로서, 일률적으로 분할된 자석에 의해 서로 이웃하는 분할자석체(11)(11')의 사이에는 주지한 바와 같이 또 하나의 자석군이 생성되므로 유도코일(21)(21')의 위상 변화 접속이 불필요하며 상기 분할자석체(11)(11')의 개체수에 대하여 배수의 개체수를 갖도록 유도코일(21)(21')의 수를 증가시켜 적용할 수 있는 것이다.8 is a contrast between the arrangement of the divided magnet body 11 (11 ') according to the present invention and the arrangement of the magnet body of the existing power generation or transmission apparatus, as shown in (a) The divided magnets 11 and 11 'having an anodic bonding point in which the N pole and the S pole are bisected are radially divided, and the divided magnets 11 and 11 which are adjacent to each other by the uniformly divided magnets. As is known, another magnet group is generated between '), so that the phase change connection of the induction coils (21) and (21') is unnecessary. The number of guide coils 21 and 21 'may be increased to have a number of individuals.
반면에, (b)와 같은 형태의 종래 자석체의 배치는 자석체(101)(101') 간의 접합 상태가 이루어져 있는 것이고, (c)와 같은 형태는 방사상으로 배치된 자석체(101)(101')의 중앙부가 접합된 상태가 이루어져 있는 것이므로, 자석체(101)(101')의 개체수와 정매칭하여 전력을 얻어내기 위해서는 유도코일에 대한 위상전환이 반드시 필요하게 된다. 즉, 동일한 위상의 전력을 얻기 위해 유도코일의 접지를 달리해야하는 것이고, 자력의 유도력은 자장의 밀도 교차력 및 교차속도와 정비례하므로 상기의 (b)와 (c)의 사례인 경우 교류 싸이클을 표시하는 G점의 운동반경이 넓어 본 발명에 비하여 1/2의 효율만을 갖게 되는 것이다. 즉, 8분할 배치된 본 발명의 경우 1회전시 16회의 G점이 형성되는 반면 (b)와 (c)의 경우 8회의 G점만이 형성되므로 동일 회전수에 대비할 때 현저한 효율 차이를 갖게 되는 것은 물론, 전기한 바와 같은 본 발명의 분할자석체(11)(11')는 자력이 가장 강한 양극착자점을 이용하므로 단극착자점을 이용하는 기존의 사례와는 비교되지 않을 정도로 우수한 효율성을 갖게 되는 것이다.On the other hand, the arrangement of the conventional magnet body of the form as shown in (b) is that the bonding state between the magnet body (101, 101 ') is made, the shape as shown in (c) is a magnet body 101 (radially arranged ( Since the center portion of the 101 'is joined, the phase shift of the induction coil is necessary to obtain power by matching the numbers of the magnet bodies 101 and 101'. That is, in order to obtain the power of the same phase, the grounding of the induction coil needs to be different, and the induction force of the magnetic force is directly proportional to the density crossover force and the crossover speed of the magnetic field, so in the case of (b) and (c) above, The radius of motion of the G point to be displayed is wider, so that the efficiency is only 1/2 of the present invention. That is, in the case of the present invention arranged in 8 divisions, 16 times G points are formed in one rotation, whereas only 8 times G points are formed in (b) and (c), as well as having a remarkable efficiency difference when preparing for the same rotation speed. As described above, the divided magnets 11 and 11 ′ of the present invention use the bipolar magnetization point having the strongest magnetic force, so that the dividing magnets 11 and 11 ′ have an efficiency that is not comparable with the conventional case of using the monopolar magnetization point.
더욱이, 단극착자점을 이용하는 기존의 발전 또는 전동장치는 단극착자점으로 인해 단면적이 넓어져 그에 따른 인력은 매우 크지만 자력의 집중력이 떨어져 상대적으로 발산력이 약하므로 본 발명의 양극착자점에 비하여 자력의 유도력이 현저히 낮은 것이다. 따라서, 상기와 같은 자력의 유도력 저하를 극복하기 위하여 코일체의 양측으로부터 서로 대칭형으로 구성한 바 있으나 전력의 인가(부하)시 코일체가 전자석으로 변하여 회전저항을 발생시키므로 운동력이 상쇄되는 것이고 이와 동시에 전력 생산 효율이 크게 떨어지게 되는 것이다.Moreover, the existing power generation or transmission apparatus using a single pole magnetization point has a wide cross-sectional area due to the single pole magnetization point, and thus the attraction force is very large, but the concentration of magnetic force is relatively low and the divergence force is weak. Induction of magnetic force is significantly low. Therefore, in order to overcome the deterioration of the induction force of the magnetic force as described above, both sides of the coil body are symmetrically configured, but when the power is applied (loaded), the coil body turns into an electromagnet and generates rotational resistance, and at the same time, The power production efficiency will be greatly reduced.
특히, 각기 다른 단극을 마주보게 함으로써 추가된 자석의 비용 및 설치공간의 점유 등 비효율적이고 비경제적인 문제점을 수반하게 되는 것이고, 단극성의 넓은 쪽을 마주보게 설치하는 데에는 자석 간의 인력에 의해 한계가 발생하므로 부득이 유도코일을 두껍게 제작 배치해야 한다는 불합리성도 동반하게 되는 것이다.In particular, by facing different unipolar poles, it is accompanied by inefficient and inconvenient problems such as the cost of the added magnets and the occupancy of the installation space, and there is a limit due to the attractive force between the magnets to face the wide unipolar side. Therefore, it is also accompanied by the irrationality that the induction coil must be made and placed thick.
따라서, 기존에 안출되어진 대부분의 디스크형 발전 또는 전동 모듈은 무철심 원반 발전기의 장점인 무회전 저항 매커니즘은 사실상(실제 부하를 걸어 사용하는데 있어서) 실현 가능성이 매우 떨어지는 동시에 효용가치가 극히 낮은 수준인 것이다.As a result, most of the disk-type power generation or motorized modules that have been proposed in the past have a very low practical value and a very low utility value. will be.
이에 반하여 본 발명의 발전 겸용 전동모듈은 유도코일의 넓이와 정매칭된 분할자석체(11)(11') 및 그 분할자석체(11)(11')의 사이에 생성되는 또 하나의 자석군으로 인해 1회전시 2배의 효율이 발생하고, 분할자석체(11)(11')에 의한 가장 강력한 자력이 유도되는 양극착자점에 유도코일(21)(21')이 근접 배치되므로 종래와 같이 코일의 양측 또는 상,하로 대칭된 상태의 구조가 불필요한 것이며, 유도코일(21)(21')에 대하여 일측으로의 분할자석체(11)(11')만 배치하더라도 더욱 고도의 효율성을 갖게 되므로 생산 및 제작비의 절감은 물론 전체적인 모듈의 두께 혹은 넓이가 매우 축소되므로 더욱 슬림하고 콤팩트한 발전 겸용 전동모듈을 완성할 수 있는 것이다.또한, 상기와 같은 본 발명의 발전 겸용 전동모듈의 효율성을 극대화하기 위해서 도 9 및 도 10의 도시와 같이 분할자석체(11)(11')의 사이에 해당하는 위치에 별도의 제3디스크(40)를 이용하여 그 제3디스크(40)에 분할 이격된 보조자석체(41)(41')를 방사상으로 이격 배치함에 따라, 분할자석체(11)(11') 사이에 형성되는 또 하나의 자석군에 대하여 상대극성을 유인시켜 유도력을 보완 및 증대시키고 자력 유인시에 발생되는(부하시) 전자저항을 줄이기 위해 자성 유기 정점에서 척력이 발휘되게 함에 따라 회전판의 밀림을 방지하는 부수적인 효과를 연출하게 된다.On the contrary, in the electric power generation combined use module of the present invention, another magnet group is generated between the width of the induction coil and the matched divided magnets 11 and 11 'and the divided magnets 11 and 11'. As a result, twice the efficiency is generated in one revolution, and the induction coils 21 and 21 'are disposed close to the anode bonding point where the strongest magnetic force is induced by the divided magnets 11 and 11'. Likewise, a structure in which the coils are symmetrical on both sides or up and down is unnecessary, and even if only the divided magnets 11 and 11 'are disposed on one side with respect to the induction coils 21 and 21', the coil has higher efficiency. Therefore, as well as reducing the production and manufacturing costs, the thickness or width of the overall module is greatly reduced, so that a more slim and compact combined power module can be completed. In addition, maximize the efficiency of the combined power module of the present invention as described above. 9 and 10 in order to As shown above, the auxiliary magnets 41 and 41 'are divided and spaced apart from the third disk 40 by using a separate third disk 40 at a position corresponding to the divided magnets 11 and 11'. By radially spaced apart, induces relative polarity to another magnet group formed between the divided magnets (11) (11 ') to supplement and increase the induction force and occur during magnetic attraction (loading) ) As the repulsive force is exerted at the magnetic organic apex to reduce the electronic resistance, the side effect of preventing the rolling of the rotating plate is produced.
이때, 상기의 제3디스크(40)는 분할자석체(11)(11')를 갖는 제1디스크(10)와 동시에 회전하거나 동시에 고정된 상태를 유지하여야 이들 제1디스크(10)와 제3디스크(40) 사이에 위치하는 제2디스크(20)의 유도코일(21)(21')에 대한 안정적이고 효율적인 자력의 유기 또는 인력과 척력에 의한 전동이 이루어질 수 있는 것이다.At this time, the third disk 40 must rotate simultaneously with or maintain a fixed state with the first disk 10 having the divided magnets 11 and 11 '. Stable and efficient induction of the induction coils 21 and 21 'of the second disk 20 located between the disks 40 can be made by electric or magnetic force and repulsion.
이와 같은 본 발명의 발전 겸용 전동모듈은 전기한 바와 같은 회전축에 수력이나 파력 또는 풍력을 이용할 수 있는 수차 또는 풍차 등을 연결함에 따라 상기의 회전축(30)이 이들 자연에 의한 외력으로부터 또는 인위적인 외력에 의해 회전되게 하고, 상기 회전축(30)에 분할자석체(11)(11')가 분할 배치된 제1디스크(10)가 고정되게 하면 상기 제1디스크(10)의 회전에 따라 제2디스크(20)의 유도코일(21)(21')로부터 교류가 생산되게 하는 발전장치로 사용할 수 있는 것이다.Such a power generation combined electric module of the present invention is connected to the axle or windmill that can use hydraulic power, wave power or wind power to the rotary shaft as described above, so that the rotary shaft 30 is driven from external forces caused by these natural or artificial external forces. And the first disk 10 having the divided magnets 11 and 11 'dividedly disposed on the rotation shaft 30 is fixed to the second shaft according to the rotation of the first disk 10. 20 can be used as a power generation device to produce alternating current from the induction coil (21) (21 ').
또한, 상기와 같은 유도코일(21)(21')에 외부로부터 교번 극성 형태의 직류전원을 인가시켜 상기 유도코일(21)(21')에서 교번으로 발생하는 전하의 부호와 분할자석체(11)(11')에서의 양극성 간에 작용하는 인력과 척력을 이용하여 상기 회전축(30)이 연속 회전되게 한 전동장치로 사용할 수 있는 것이다.In addition, by applying an alternating polarity type DC power source from the outside to the induction coils 21 and 21 'as described above, the sign and the divided magnet 11 of the charge generated alternately in the induction coils 21 and 21'. By using the attraction force and the repulsive force acting between the polarity in the (11 ') it can be used as a transmission device that allows the rotary shaft 30 to rotate continuously.
이에 따라, 본 발명의 발전 겸용 전동모듈은 더욱 간소화된 구성은 물론 고도의 에너지 효율을 갖고 있으면서도, 필요에 따라 발전장치 또는 전동장치로 선택 적용시킬 수 있으므로 매우 합리적인 것이다.Accordingly, the combined power generation module of the present invention is very reasonable because it can be selectively applied to the power generation device or the power transmission device as well as having a high energy efficiency as well as a more simplified configuration.
이상과 같은 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다.The embodiments described in the present specification and the drawings shown in the drawings are only the most preferred embodiments of the present invention and do not represent all of the technical idea of the present invention, and various equivalents and modifications that may be substituted for them are provided. It should be understood that there may be examples.

Claims (6)

  1. 비자성체로 된 제1디스크(10)에는 분할자석체(11)(11')들을 방사상으로 이격 배치하고, 비자성체로 된 제2디스크(20)에는 직렬 연결된 유도코일(21)(21')들을 방사상으로 이격 배치하며, 상기 제1디스크(10) 또는 제2디스크(20) 중 선택된 하나의 디스크는 별도의 회전축(30)에 결합 고정되게 하여 그 회전축(30)과 함께 선택된 하나의 디스크가 회전될 수 있도록 구성하되,Split magnets 11 and 11 'are radially spaced apart on the first disk 10 made of nonmagnetic material, and induction coils 21 and 21' connected in series to the second disk 20 made of nonmagnetic material. Are radially spaced apart from each other, and the selected one of the first disk 10 or the second disk 20 is fixedly coupled to a separate rotation shaft 30 so that one disk selected together with the rotation shaft 30 is fixed. So that it can rotate,
    상기 분할자석체(11)(11')들은, 적어도 2개 이상의 장방형 육면체로 된 영구자석을 서로 겹쳐 접합하여 형성하고 이들 영구자석에 의한 분할자석체(11)(11')들은 양극착자점이 유도코일(21)(21')을 향하도록 배치하여 구성됨을 특징으로 하는 양극착자점을 이용한 디스크형 발전 겸용 전동모듈.The divided magnets 11 and 11 'are formed by overlapping and joining permanent magnets of at least two or more rectangular hexahedrons to each other, and the divided magnets 11 and 11' by these permanent magnets induce anodic bonding points. Disc-type power generation combined electric module using a positive electrode contact point, characterized in that arranged to face the coil (21) (21 ').
  2. 제 1항에 있어서,The method of claim 1,
    제2디스크(20)의 일측에는 별도의 제3디스크(40)를 이격 형성하되, 상기 제3디스크(40)에는 제1디스크(10)에 형성된 분할자석체(11)(11')들의 사이 사이에 배치되도록 고정된 보조자석체(41)(41')들을 분할 형성하되, 이들 보조자석체(41)(41')는 양극착자점이 유도코일(21)(21')을 향하도록 고정되어 이루어짐을 특징으로 하는 양극착자점을 이용한 디스크형 발전 겸용 전동모듈.A separate third disk 40 is formed on one side of the second disk 20, and the third disk 40 is disposed between the divided magnets 11 and 11 ′ formed on the first disk 10. The secondary magnets 41 and 41 'fixed to be disposed therebetween are formed separately, and these auxiliary magnets 41 and 41' are fixed so that the anodic bonding point faces the induction coils 21 and 21 '. Disc type power generation combined electric module using the anode magnetization point characterized in that made.
  3. 제 1항에 있어서,The method of claim 1,
    분할자석체(11)(11')와 유도코일(21)(21')은 서로 동일한 개체수를 갖고 대응 배치되도록 구성함을 특징으로 하는 양극착자점을 이용한 디스크형 발전 겸용 전동모듈.Disc-type power generation combined electric module using a bipolar magnetization point, characterized in that the divided magnets (11) (11 ') and the guide coils (21) (21') are configured to have the same number and correspond to each other.
  4. 제 1항에 있어서,The method of claim 1,
    유도코일(21)(21')은 분할자석체(11)(11')의 2배수에 해당하는 개체수를 갖고 배치되도록 구성함을 특징으로 하는 양극착자점을 이용한 디스크형 발전 겸용 전동모듈.Induction coil (21) (21 ') is a disk-type power generation combined use electric module using a bipolar bonding point, characterized in that configured to be arranged with the number of individuals corresponding to twice the number of the divided magnets (11) (11').
  5. 제 1항에 있어서,The method of claim 1,
    회전축(30)에 외부로부터 회전동력을 인가시켜 상기 회전축(30)의 회전에 따라 서로 엇갈려 회전되는 분할자석체(11)(11')와 유도코일(21)(21')은, 분할자석체(11)(11')의 자력이 유도코일(21)(21')로 유기되어 전력을 생산할 수 있도록 한 발전기로 사용되게 함을 특징으로 하는 양극착자점을 이용한 디스크형 발전 겸용 전동모듈.The divided magnets 11 and 11 'and the guide coils 21 and 21', which are alternately rotated according to the rotation of the rotary shaft 30 by applying rotational power to the rotary shaft 30 from the outside, are divided magnetic bodies. (11) (11 ') of the magnetic force is induced by the induction coil (21) (21') to be used as a generator for producing electric power disk-type power generation combined electric module using a positive electrode pole.
  6. 제 1항에 있어서,The method of claim 1,
    유도코일(21)(21')에 외부로부터 교번 극성 형태의 직류전원을 인가시켜 상기 유도코일(21)(21')에서의 전하 부호와 분할자석체(11)(11')의 양극성 간에 작용하는 인력과 척력을 이용하여 상기 회전축(30)이 연속 회전되게 한 전동기로 사용되게 함을 특징으로 하는 양극착자점을 이용한 디스크형 발전 겸용 전동모듈.An alternating polarity type DC power source is applied to the induction coils 21 and 21 'from the outside to act between the charge sign in the induction coils 21 and 21' and the polarity of the divided magnets 11 and 11 '. Disc-driven combined power module using a positive electrode contact point, characterized in that the rotating shaft 30 is used as an electric motor to continuously rotate by using a manpower and repulsive force.
PCT/KR2011/002779 2010-04-19 2011-04-19 Disk-type module for both electric generation and electromotion using anode magnetization point WO2011132907A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0035747 2010-04-19
KR1020100035747A KR20110116371A (en) 2010-04-19 2010-04-19 Disc type electric power module which serves as generator

Publications (2)

Publication Number Publication Date
WO2011132907A2 true WO2011132907A2 (en) 2011-10-27
WO2011132907A3 WO2011132907A3 (en) 2012-01-19

Family

ID=44834622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/002779 WO2011132907A2 (en) 2010-04-19 2011-04-19 Disk-type module for both electric generation and electromotion using anode magnetization point

Country Status (2)

Country Link
KR (1) KR20110116371A (en)
WO (1) WO2011132907A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112311188A (en) * 2020-09-25 2021-02-02 南京信息职业技术学院 Rolling ball magnetic orthogonal induction generating set
WO2021052073A1 (en) * 2019-09-20 2021-03-25 上海磁雷革传动系统有限公司 Permanent magnet rotor and permanent magnet motor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090004012U (en) * 2007-10-24 2009-04-29 전진익 AFPM Wind generator applied principle of AFPM generator for electric car
KR20100007359A (en) * 2008-07-14 2010-01-22 장석호 Electric generator with fixing plate comprising segmented magnets and rotary disk having segmented coil
KR20100012178A (en) * 2008-07-28 2010-02-08 장석호 Electric motor having ratary plate with devided coil and devided magnet
KR20100003427U (en) * 2008-09-19 2010-03-29 이진명 ACAlternating Current Generator with multipole and multiphase

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090004012U (en) * 2007-10-24 2009-04-29 전진익 AFPM Wind generator applied principle of AFPM generator for electric car
KR20100007359A (en) * 2008-07-14 2010-01-22 장석호 Electric generator with fixing plate comprising segmented magnets and rotary disk having segmented coil
KR20100012178A (en) * 2008-07-28 2010-02-08 장석호 Electric motor having ratary plate with devided coil and devided magnet
KR20100003427U (en) * 2008-09-19 2010-03-29 이진명 ACAlternating Current Generator with multipole and multiphase

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021052073A1 (en) * 2019-09-20 2021-03-25 上海磁雷革传动系统有限公司 Permanent magnet rotor and permanent magnet motor
CN112311188A (en) * 2020-09-25 2021-02-02 南京信息职业技术学院 Rolling ball magnetic orthogonal induction generating set

Also Published As

Publication number Publication date
WO2011132907A3 (en) 2012-01-19
KR20110116371A (en) 2011-10-26

Similar Documents

Publication Publication Date Title
US20220190661A1 (en) Dc electric motor/generator with enhanced permanent magnet flux densities
US20200007016A1 (en) Brushless electric motor/generator
WO2010085044A2 (en) Power-generating apparatus with improved power-generating efficiency and rotating force
CN110601482B (en) Axial magnetic field flywheel pulse synchronous generator system
CN1848607A (en) Multi-directional mixed permanent-magnetic energy-saving electric machine
CN108270338B (en) Tooth slot type double-sided primary permanent magnet synchronous linear motor
WO2010008144A2 (en) Power generating apparatus with rotary disc containing separated coil members and stationary plate containing separated magnets
WO2013090812A1 (en) Axial flux alternator with one or more flux augmentation rings
WO2011132907A2 (en) Disk-type module for both electric generation and electromotion using anode magnetization point
WO2023063740A1 (en) Power generation device with improved counter-electromotive force reduction efficiency
CN211481123U (en) Stator-free multi-loop energy-saving motor
CN108258820B (en) Non-overlapping winding tooth slot type double-rotor permanent magnet synchronous motor
CN113346638A (en) Three-phase parallel magnetic circuit motor
CN110138161B (en) External disk motor with barrier stator
WO2010013895A2 (en) Electro-motive apparatus with rotary plate containing separated coil members and stationary plate containing separated magnetic members
KR20190090755A (en) Mechanical drive to the motor and alternator
CN107026559B (en) Method for generating magnetic field along center line and vertical center line and magnetic armature motor
RU2035114C1 (en) Motor-wheel
CN114142701B (en) Back-to-back multiple excitation hybrid generator based on homodromous electromagnetic pole coupling
CN108288905B (en) Non-overlapping winding tooth slot type bilateral electro-magnetic flux switching linear motor
CN115622444A (en) Permanent magnet ferromagnetic variable rotor transmission structure and magnetic variable energy system thereof
CN202260943U (en) Motor-assisted bicycle magnet-free motor
RU2368054C2 (en) Electric motor on permanent magnets in rotor
CN109194073A (en) A kind of low short circuit current generator of low electromagnetic resistance
RU94000522A (en) SELF-EXCESSING MECHANICAL ALTERNATOR OF ALTERNATIVE AND SINGLE-DIRECTIONAL CURRENT

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11772195

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11772195

Country of ref document: EP

Kind code of ref document: A2