WO2011132836A2 - 에탄올-저항성 효모 유전자 및 이의 용도 - Google Patents

에탄올-저항성 효모 유전자 및 이의 용도 Download PDF

Info

Publication number
WO2011132836A2
WO2011132836A2 PCT/KR2010/008340 KR2010008340W WO2011132836A2 WO 2011132836 A2 WO2011132836 A2 WO 2011132836A2 KR 2010008340 W KR2010008340 W KR 2010008340W WO 2011132836 A2 WO2011132836 A2 WO 2011132836A2
Authority
WO
WIPO (PCT)
Prior art keywords
yeast strain
ethanol
yeast
mutated
spp
Prior art date
Application number
PCT/KR2010/008340
Other languages
English (en)
French (fr)
Other versions
WO2011132836A3 (ko
Inventor
최원자
김완기
이영미
배주윤
양정우
Original Assignee
이화여자대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020100101765A external-priority patent/KR101244315B1/ko
Priority claimed from KR1020100101739A external-priority patent/KR101182749B1/ko
Application filed by 이화여자대학교 산학협력단 filed Critical 이화여자대학교 산학협력단
Priority to US13/643,015 priority Critical patent/US8809060B2/en
Priority claimed from KR1020100117208A external-priority patent/KR101241346B1/ko
Publication of WO2011132836A2 publication Critical patent/WO2011132836A2/ko
Publication of WO2011132836A3 publication Critical patent/WO2011132836A3/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/37Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
    • C07K14/39Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts
    • C07K14/395Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts from Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention is directed to ethanol-resistant yeast strains and their use.
  • Yeast Saccharomyces cerevisiae (5. cerevisiae) has been used in a variety of industries, including the production of bioethanol from biomass resources. Yeast cells are always exposed to various environmental stresses such as high concentrations of ethanol that occur during the fermentation process of industrial ethane, which in turn results in a decrease in cell growth, cell viability and ethanol production (Casey and Ingledew, 1986). Therefore, the development of yeast strains capable of overcoming the stress caused by the high concentration of ethane has been required. Furthermore, the use of genome-wide assays, such as microarrays and comprehensive expression pattern analysis, have led to new ethanol stress-related novelties.
  • genes are known to affect important intracellular phenotypes (eg, overexpression of metabolites from pathological conditions).
  • most cellular and metabolic engineering approaches have been carried out through deletion or overexpression of single genes due to experimental limitations of vector construction and transformation efficiency. As a result, the investigation through modification of several genes was excluded.
  • the methods can be used only when about 5-10% of genes encoded in the yeast genome are identified.
  • the identification of ethanol-sensitive genes can help to understand the molecular basis of ethane resistance, but it does not ensure ethane build resistance strains.
  • the overexpression of ethanol-sensitive genes is likely to verify whether it confers ethanol resistance Although easy and simple, few successful examples have been reported (Gibson, BR, et al., 2007).
  • gTME reprograms the overall transcription profile through random mutagenesis of one or more common transcription factors.
  • This approach was used for the first time to create strains with increased ethanol resistance by inducing mutations in the TBPCTATA-binding protein encoded by the SPT15 gene, previously reported to be able to grow at lethal ethanol concentrations (Alper, H., et al., 2006). However, other authors have reported that this increased ethanol resistance is not regenerated in a rich medium that is not selected for industrial applications (Baerends, R. J., et al., 2009).
  • SPT15 mutations alter transcription profiles through interaction with Spt3p, a subunit of the SAGA (Spt-Ada-Gcn5-acetyltransferase) complex that regulates many RNA polymerase ⁇ -dependent genes.
  • SPT15 mutations have been identified as pleiotrophic (Eisenmann, DM, et al., 1989), and several mutations in the regulatory domain of SPT15 resulted in increased transcription (Cang, Y., et al., 1999). The above findings indicate that different mutations of SPT15 can induce the expression of different sets of genes.
  • ethanol-resistant yeast strains We sought to develop ethanol-resistant yeast strains.
  • the inventors constructed a mutated SPT15 gene using PCR-mediated random mutagenesis and transformed it into yeast to isolate ethanol-resistant transformed yeast strains, which contained high concentrations of ethanol (eg, , 15% ethanol) as well as high concentrations of glucose or sucrose (for example 20%, 30% or 40%) can be confirmed that the transcriptome profiling (transscriptome profiling) in the transformed yeast using this -18 genes involved in resistance were isolated / identified, and the present invention was completed by confirming that the transformed yeast strains could grow high concentration ethane (eg, 6-1 ethane).
  • high concentrations of ethanol eg, 15% ethanol
  • glucose or sucrose for example 20%, 30% or 40%
  • Another object of the present invention is to provide an osmo-resistant yeast strain and genes related thereto.
  • Another object of the present invention is to provide an ethanol-resistant transformed yeast strain.
  • the invention provides a ethane-resistant transformed yeast strain comprising a mutated SPT15 gene.
  • a mutated SPT15 gene was used to construct a mutated SPT15 gene and transform it into yeast to isolate ethanol-resistant transformed yeast strains, which contained high concentrations of ethane (eg 15% ethanol) as well as high levels of glucose or sucrose (eg 20).
  • transcriptome profiling was performed on the transformed yeast to isolate / identify 18 genes involved in ethanol-resistance. It was confirmed that the transformed yeast strains can be grown in high concentration ethanol (eg 6-1 ethanol). Ethanol, a flammable, volatile colorless liquid, is the most widely used solvent. Industrially, ethanol is used as an automotive fuel and fuel additive, and also as a perfume, fl avorings, color ings and medicines. In addition, ethanol is a major psychoactive component in alcoholic beverages and has a calming effect on the central nervous system.
  • Ethane can be produced petrochemically through hydration of ethylene and biologically by fermenting sugars using yeast, which is produced by petrochemical processes that depend on the price of petroleum and grain feed. Much economical than production. Therefore, the development of yeast strains for the production of biological ethanol is very important.
  • the present invention provides yeast strains that have transformed the SPT15 gene mutated by PCR in yeast.
  • the mutation of the invention comprises an amino acid sequence mutated within the amino acid sequence of the wild type SPT15 gene, more preferably comprises three to five mutated amino acid sequences, most preferably SEQ ID NO: 6 amino acid sequence consisting of the tenth sequence is included.
  • the mutated SPT15 gene of the present invention comprises an amino acid sequence of which the amino acid sequence of the K201, G216 and Q225 positions of the wild type SPT15 gene is mutated; Amino acid sequences of which the amino acid sequences of the L76 and L175 positions of the wild-type SPT15 gene are mutated; Of the wild-type SPT15 gene Amino acid sequences having mutated amino acid sequences at positions S42, C78, S163, and 1212; An amino acid sequence of which the amino acid sequences of the F10 and M197 positions of the wild-type SPT15 gene are mutated; Or the mutated SPT15 gene comprising the mutated amino acid sequence of the amino acid sequence at positions K15, 26 and G192 of the wild-type SPT15 gene.
  • the mutated SPT15 gene of the present invention comprises a mutant sequence (SEQ ID NO: 6 sequence) in which the amino acid sequence of the K201, G216 and N225 positions of the wild type SPT15 gene is mutated to K201Q, G216S and Q225Stop; Mutant sequences in which the amino acid sequences of the L76 and L175 positions of the wild-type SPT15 gene have been changed to L76V and L175S (SEQ ID NO: 7 sequence); Mutant sequences in which the amino acid sequences at positions S42, C78, S163 and 1212 of the wild-type SPT15 gene have been changed to S42N, C78R, S163P and I212N (SEQ ID NO: 8 sequence); A mutant sequence in which the amino acid sequence of the F10 and M197 positions of the wild-type SPT15 gene is mutated to F10S and M197K (SEQ ID NO: 9); Or a mutated SPT15 gene comprising a mutant sequence (SEQ ID NO: 6 sequence) in
  • the yeast strain transformed with the above-described mutated SPT15 gene preferably the mutated SPT15 gene consisting of the first to fifth sequences of SEQ ID NO: 5 is high concentration ethanol, more preferably 5-15% ethanol, Even more preferably 10-15% ethanol, and most preferably 12.5-15% ethanol.
  • the mutated SPT15 gene described above may be introduced into yeast cells as a plasmid.
  • the mutated SPT15 gene described above may be introduced into genomic DNA of yeast cells.
  • Saccharomyces as MY access species (Saccharomyces spp.), 0:00; Seth species (Schi zosaccharomyces spp J, Pichia ⁇ (Pichia spp.), Papia species 03 ⁇ 4 /// ⁇ 3 sp. ), Kluyberomyces spp. (J uyveromyces spp.), Candida ⁇ Candida spp.), Talaromyces spp.), Bretanomyces sp.
  • the yeast strain that can be used for the transformation of the above-described mutated SPT15 gene is Saccharomyces species, even more preferably Saccharomyces cerevisiae, and most preferably Saccharomyces The Seth Cervage is L3262.
  • the invention provides an osmosis-resistant transformed yeast strain comprising a mutated SPT15 gene.
  • the yeast strain of the present invention includes the above-described yeast strain transformed with the mutated SPT15 gene of the present invention as an active ingredient, the overlapping content between the two is described in order to avoid excessive complexity of the present specification according to the overlapping description. Omit.
  • the present invention provides osmo-resistant yeast strains that have transformed the SPT15 gene mutated by PCR in yeast.
  • the mutated SPT15 gene of the present invention is a mutated SPT15 gene comprising an amino acid sequence of which the amino acid sequences of wild type S42, C78, S163 and 1212 positions are mutated.
  • the mutated SPT15 gene of the present invention is a mutant sequence wherein the amino acid sequence at positions S42, C78, S163 and 1212 of the wild-type SPT15 gene is mutated to S42N, C78R, S163P and I212N (SEQ ID NO: Mutated SPT15 gene).
  • the yeast strain transformed with the above-described mutated SPT15 gene comprises high concentration glucose or sucrose, more preferably 20-50% glucose or sucrose, Even more preferably 30-40% glucose or sucrose, and most preferably ⁇ 0 glucose or sucrose.
  • the yeast strain of the present invention is in high concentration ethanol, more preferably 5-15% ethanol, even more preferably 10-15% ethanol, and most preferably 12.5-15% ethanol You can grow.
  • the invention ALD3 YMR169C),
  • USVli YPL230 FMP16 (YDR070O, RGI YER067W), BTN2 ⁇ YGR142V), RTC3 ⁇ 087), HSP3 (YCR021O, Cm (YGR088W), AIMlA YHL021O, STF2 ⁇ YGR008, GPHli YPR160W), YFRL4M8 YER037f), HSP12 YFL014IT), SSA4 ⁇ YER103), SPI YER150W), and (M45 ⁇ 36 ⁇ ) to provide an ethanol-resistant transformed yeast strain overexpressed with one or more nucleotide sequences.
  • HSP3 YCR021O, Cm (YGR088W), AIMlA YHL021O, STF2 ⁇ YGR008, GPHli YPR160W), YFRL4M8 YER037f
  • HSP12 YFL014IT HSP12 YFL014
  • the present invention isolates / identifies novel genes involved in ethanol-resistance through transcript profiles using ethane-resistant transformed yeast strains and the transformed yeast strains have ethanol resistance. It was confirmed.
  • the transcript profile is carried out in the yeast strains described above.
  • the identification of genes involved in ethanol-resistance comprises the steps of: (i) performing transcriptome profiling from the transformed yeast strains of the invention and untransformed normal yeast; And (ii) comparing / analyzing the transcript profiles, thereby allowing mass identification of ethanol resistant and / or sensitive yeast genes.
  • the comparison / analysis of the transcript profile if the localization signal in the transformed yeast strain is more than twofold increase in fold than the normal yeast, it is determined that the gene up-regulates ethanol resistance, If the signal is detected by a fold decrease of two or more times, it is determined that the gene is down-regulated in ethane.
  • the method of the present invention includes the above-described yeast strain transformed with the mutated SPT15 gene of the present invention as an active ingredient, the overlapping information between the two is omitted to avoid excessive complexity of the present specification according to the overlapping description. Omit.
  • the transcript profile of the present invention can be carried out by microarray.
  • the probe is used as a hybridizable array element and immobilized on a substrate.
  • Preferred gases include suitable rigid or semi-rigid supports such as membranes, filters, chips, slides, wafers, fibers, magnetic beads or nonmagnetic beads, gels, tubing, plates, polymers, microparticles and capillaries.
  • Said localization array element is arranged and immobilized on said gas. This immobilization is carried out by chemical bonding methods or by covalent binding methods such as UV.
  • the hybridization array element can be bonded to a glass surface modified to include an epoxy compound or an aldehyde group, and can also be bonded by UV at the polylysine coating surface.
  • the localization array element can be coupled to the gas via a linker (eg, ethylene glycol oligomer and diamine).
  • probe refers to a linear oligomer of natural or modified monomers or linkages, includes deoxyribonucleotides and ribonucleotides, and can specifically hybridize to a target nucleotide sequence, naturally Or artificially synthesized.
  • the probe of the present invention is preferably single chain and oligodioxyribonucleotides. Probes of the invention can include naturally occurring dNMPs (ie, dAMP, dGMP, dCMP and dTMP), nucleotide analogues or derivatives. In addition, the probe of the present invention may also include ribonucleotides.
  • the probes of the present invention may be selected from the group consisting of backbone modified nucleotides such as peptide nucleic acids (PNAKM. Egholm et al., Nature, 365: 566-568 (1993)), phosphorothioate DNA, phosphorodithioate DNA, phosphoro Amidate DNA, amide-linked DNA, MMI-linked DNA, 2'-0_methyl RNA, alpha -DNA and methylphosphonate DNA, sugar modified nucleotides such as 2'-0 "methyl RNA, 2'- Fluoro RNA, 2'-amino RNA, 2'-0_alkyl DNA, 2'-0-allyl DNA, 2'-0- alkynyl DNA, nuclear source DNA, pyranosyl RNA and anhydronucleocytic DNA, And nucleotides with base modifications such as C-5 substituted pyrimidines (substituents Fluoro-, Bromo-, Chloro-
  • the sample DNA applied to the microarray of the present invention is labeled and hybridized with the array elements on the microarray.
  • the conditions for homogenization can vary. Detection and analysis of the degree of localization may vary depending on the labeling agent.
  • the sample DNA of the present invention is synthesized by inserting aminoallyl -dUTP and labeled with NHS-ester Cy die, but is not limited thereto.
  • Nucleic acid samples to be analyzed can be prepared using mRNA obtained from various biosamples.
  • the raw sample is preferably a yeast cell, most preferably the transformed yeast cell of the present invention described above.
  • cDNAs to be analyzed can be labeled and subjected to a hybridization reaction-based analysis.
  • probes When using probes, probes are hybridized with cDNA molecules.
  • suitable isomerization conditions can be determined in a series of procedures by an optimization procedure. This procedure is carried out by a person skilled in the art in order to establish a protocol for use in the laboratory. For example, conditions such as temperature, concentration of components, shake and wash time, complete fluid components and their pH and ionic strength depend on various factors such as probe length and GC amount and target nucleotide sequence. Detailed conditions for the shake are described in Joseph Sambrook, et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (2001); And M ⁇ . M. Anderson, Nucleic Acid Hybridization, Springer® Ver lag New York Inc. NY (1999).
  • the high stringency conditions were shaken at 65 ° C in 0.5 NaHP0 4 , 7% sodium dodecyl sulfate (SDS), 1 mM EDTA, and 68 at 0.1 x SSCCstandard saline citrate / 0.1% SDS. Means to wash at ° C conditions.
  • high stringency conditions can be achieved by washing at 48 ° C in 6 X SSC / 0.05% sodium pyrophosphate. it means.
  • Low stringency means washing at 42 ° C, for example, at 0.2 X SSC / 0.1% SDS.
  • Labeling of nucleic acid samples or probes can provide a signal to detect whether it is active, which can be linked to oligonucleotides.
  • Suitable labels are fluorophores (e.g. fluorescein, phycoerythrin, rhodamine, lysamine (1 issamine), and Cy3 and Cy5 (Pharmacia), chromophores, chemilumines, magnetic particles, radioactivity Isotopes (P 32 and S 35 ), mass markers, electron-dense particles, enzymes (alkaline phosphatase or horseradish peroxidase), cofactors, substrates for enzymes, heavy metals (eg gold) and antibodies, strapavi Hapten with specific binding partners, such as, but not limited to, dine, biotin, digoxigenin and chelating groups.
  • Labeling is carried out in a variety of methods commonly practiced in the art, such as nick translation methods, random priming methods (Multiprime DNA labeling systems booklet, "Amersham” (1989)), and chination methods (Maxam & Gilbert, Methods). in Enzymology, 65: 499 (1986)). Labels provide signals that can be detected by fluorescence, radioactivity, colorimetry, gravimetric, X-ray diffraction or absorption, magnetism, enzymatic activity, mass analysis, binding affinity, hybridization high frequency, nanocrystals.
  • the localization signal can be performed by various methods, for example, depending on the type of label bound to the nucleic acid sample or probe.
  • the substrate of the enzyme can be reacted with the result of the shake reaction to determine whether it is shaken.
  • Combinations of enzymes / substrates that can be used include peroxidase (eg horseradish peroxidase) and chloronaphthol, aminoethylcarbazole, diaminobenzidine, D-luciferin and lucigenin (bis-N-methylacrididi).
  • Nitrate resorupine benzyl ether, luminol, amplex red reagent (10-acetyl-3,7-dihydroxyphenoxazine), HYR (p-pheny 1 ened i am i ne- HC1 and pyrocatechol), TMB (tetramethylbenzidine), ABTS (2,2'—Azine— di [3-ethylbenzthiazol ine sulfonate]), phenylenediamine (0PD) and naph / pyronine; Alkaline phosphatase and bromochloroindolyl phosphate (BCIP), nitro blue tetrazolium (NBT), naph -AS-B1- Phosphate (naphthol-AS-Bl-phosphate) and ECF substrates; Glucose oxidase, t-NBT (nitrobhie tetrazolium) and m-PMS (phenza
  • the ethanol resistance and / or susceptible yeast gene of the present invention When labeled with gold particles, it can be detected by silver dyeing using silver nitrate. Therefore, when large-scale identification of the ethanol resistance and / or susceptible yeast gene of the present invention is performed based on the hybridization, specifically (i) a nucleic acid sample derived from the above-described transformed yeast strain of the present invention and normal yeast Localizing with a probe fixed to the microarray substrate; (ii) detecting the occurrence of said hybridization reaction. By analyzing the intensities of the signal of the stimulation, the ethanol resistance and / or susceptible yeast genes can be determined.
  • the gene is judged to be up-regulated, and when the signal is detected by a factor of 2 or more decrease, the ethane resistance is lowered. It is thought to be a gene that regulates.
  • the ethanol resistance gene detected through the microarray of the present invention is ALD3 ⁇ i69C USV YPL230T), FMPM YDR070O, RGI1 ⁇ YER067), ⁇ 2 ⁇ YGR142), RTC YHR087T), HSP3 (K YCR021O , Cm (YGR088W), AIMl YHL021O, STF2 (YGR008O, GPH YPR160V), YFR017C, S0L4 (YGR248V), PHM8 (YER037W), HSP12 YFLOUf), SSA4 ⁇ YER103T), SPIl ⁇ YER150f) or 0 ⁇ 45i) It is not limited to this.
  • the ethanol sensitive genes detected by the microarrays include RAX2 YLR084C>, BSC YDL037O, PRM YDL039O, WS1 ⁇ Y0R359f), RRN7 ⁇ YJL025H, VEL1 ⁇ YGL258f), YGR035C or Y0R387C.
  • ethane detected through the microarray of the present invention can be reconfirmed by additionally measuring the expression level of the resistant and / or sensitive yeast gene.
  • the measurement of expression level can be carried out through various methods known in the art. For example, RT-PCR (Sambrook et al., Molecular Cloning. A Laboratory Manual, 3rd ed. Cold Spring Harbor Press (200D), Northern blotting (Peter B. Kaufma et al., Molecular and Cellular Methods in Biology and Medicine, 102-108, CRC press or in situ shake reaction (Sambrook et al., Molecular Cloning. A Laboratory Manual, 3rd ed. Cold Spring Harbor Press (2001)) can do.
  • the present invention comprises introducing a mutated SPT15 gene copy as described above into a yeast strain and / or mutating the endogenous SPT15 gene of the genome DNA of yeast cells. It provides a manufacturing method.
  • the present invention provides a method of introducing the above-described nucleotide sequence (SEQ ID NO: 11-28) into a yeast strain and / or overexpressing the above-described nucleotide sequence of genome DNA of yeast cells. It provides a method for producing an ethanol-resistant yeast strain comprising the step of.
  • the present invention provides a method for producing ethane comprising culturing the yeast strain into which the above-described mutated SPT15 gene is inserted in a culture medium comprising at least one substrate capable of metabolizing with ethanol. to provide.
  • the method of the present invention comprises a yeast strain transformed with the above-described mutated SPT15 gene of the present invention or the above-described nucleotide sequence (SEQ ID NO: 11 to 28) as an active ingredient, the overlapping content between the two Is omitted in order to avoid undue complexity of the present specification due to overlapping descriptions.
  • the substrate which can be metabolized to ethanol includes C6 sugars, and according to a more preferred embodiment of the present invention, the C6 sugar comprises glucose, but is not limited thereto.
  • the present invention provides a cell infected with a recombinant vector or a transcript thereof comprising the mutated SPT15 gene described above or the nucleotide sequence described above (SEQ ID NO: 11-28 sequences) and transformed cells by gene introduction. .
  • the present invention also relates to a recombinant vector comprising the above-described mutated SPT15 gene or the above-described nucleotide sequence (SEQ ID NO: 11-28 sequences) or the above-described mutated SPT15 protein or a protein encoded by the above-described nucleotide sequence.
  • a transformed transformant Provide a transformed transformant.
  • the recombinant vector of the present invention comprises a nucleotide sequence encoding the amino acid sequence of SEQ ID NO: 6 to 10 sequence or 29 th to 46th sequence or a complementary nucleotide sequence thereof.
  • Vectors of the invention can typically be constructed as vectors for cloning or vectors for expression.
  • the vector of the present invention can be constructed using prokaryotic and eukaryotic cells as hosts.
  • prokaryotic cells include bacterial cells and archaea
  • eukaryotic cells include yeast cells, mammalian cells, plant cells, tortilla cells, stem cells and fungi, most preferably yeast cells.
  • the recombinant vector of the present invention comprises (i) a nucleotide sequence encoding the above-described expression target of the present invention; (ii) a promoter operably linked to the nucleotide sequence of (i) and acting on an animal cell to form an RNA molecule, and more preferably (i) the above-described SEQ ID NO: 6 to 6 of the present invention Nucleotide sequences encoding amino acid sequences of SEQ ID NO: 10 or 29-46, or complementary nucleotide sequences thereof; (ii) a promoter operably linked to the nucleotide sequence of (i) and acting on animal cells to form RNA molecules; And (iii) a recombinant expression vector comprising a 3'-non-detoxification site that acts in an animal cell to cause 3'-end polyadenylation of the RNA molecule.
  • the above-described expression target is a mutated SPT15 protein or a protein encoded by the nucleotide sequence described above, more preferably a mutated SPT15 protein consisting of SEQ ID NO: 6 to 10 or SEQ ID NO: 29 to 46 Include but are not limited to proteins consisting of sequences.
  • promoter refers to a DNA sequence that regulates the expression of a coding sequence or functional RNA.
  • the expression-coding nucleotide sequence is operably linked to the promoter.
  • operatively linked means a functional binding between a nucleic acid expression control sequence (eg, a promoter sequence, a signal sequence, or an array of transcriptional regulator binding sites) and another nucleic acid sequence; Whereby the regulatory sequence modulates the transcription and / or translation of the other nucleic acid sequence.
  • a strong promoter capable of promoting transcription for example, a tac promoter, a lac promoter, a lac UV5 promoter, an Ipp promoter, a p L x promoter, a p R x promoter, a rac5 promoter , Amp promoter, recA promoter, SP6 promoter, trp promoter, T7 promoter, etc.
  • the host cell used in the present invention is E. coli, most preferably E. coli DH5a.
  • coli is used as a host cell, a promoter and an operator site of the E. coli tryptophan biosynthetic pathway (Yanofsky, C, J. Bacteriol., 158: 1018-1024 (1984)) and a phage left promoter ( p x L promoter, Herskowitz, I. and Hagen, D. , Ann Rev. Genet, 14:.. may be used 399-445 (1980)) as a control region.
  • vectors that can be used in the present invention are plasmids often used in the art (eg pRS316, pSClOl, ColEl, pBR322, PUC8 / 9, pHC79, pUC19, pET, etc.), phage (eg, gt4. ⁇ , ⁇ ).
  • plasmids often used in the art (eg pRS316, pSClOl, ColEl, pBR322, PUC8 / 9, pHC79, pUC19, pET, etc.), phage (eg, gt4. ⁇ , ⁇ ).
  • a promoter that can be used is a promoter derived from the yeast cell that can regulate the transcription of the expression target material of the present invention
  • Promoters derived from mammalian viruses and promoters derived from genomes of mammalian cells including, for example, the yeast (5. cerevisiae) GAPDHCGlyceraldehyde 3-phosphate dehydrogenase promoter, the yeast (5.
  • GAL1 to GAL10 promoters ⁇ — Pichia pastor is A0X1 or A0X2 promoter, cyt omega lo virus (CMV) promoter, late adenovirus promoter, vaccinia virus 7.5K promoter, SV40 promoter, tk promoter of HSV, RSV promoter, EF1 alpha promoter, metallothionine promoter Beta-actin promoter, promoter of human IL-2 gene, promoter of human IFN gene, promoter of human IL-4 gene, promoter of human lymphoroxine gene, and promoter of human GM-CSF gene, including but not limited to no. Most preferably, it is a yeast GAPDH promoter.
  • the expression construct used in the present invention comprises a poly adenylation sequence (e.g., a glial growth hormone terminator and a SV40 derived poly adenylation sequence).
  • a poly adenylation sequence e.g., a glial growth hormone terminator and a SV40 derived poly adenylation sequence.
  • the method of carrying the vector of the present invention into a host cell may use various methods known in the art, for example, when the host cell is a prokaryotic cell, the CaCl 2 method (Cohen, et al., Proc. Natl. Acac Sci. USA, 9: 2110-2114 (1973)), one method (Cohen, et al., Proc. Natl. Acac. Sci. USA, 9: 2110-2114 (1973); and Hanahan, D., J. Mo J. Biol., 166: 557-580 (1983)) and electroporation methods (Dower, et al., Nucleic. Acids Res., 16: 6127-6145 (1988)), and the like.
  • the expression-encoding nucleotide sequence used in the present invention has a structure of "promoter-expression encoding nucleotide sequence-poly adenylation sequence".
  • the vector system of the present invention can be constructed through various methods known in the art, and specific methods thereof are described in Sambrook et al., Molecular. Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press (2001), which is incorporated herein by reference.
  • Production of transformed yeast cells using the recombinant expression vector of the present invention can be carried out by gene transfer methods commonly known in the art. For example, electroporation, lithium acetate / DMS0 method (Hill, J., et al., (1991), DMSO-enhanced whole cell yeast transformation. Nucleic Acids Res. 19, 5791.), liposomes— Mediated transfer method (Wong et al., 1980), retrovirus-mediated transfer method (Chen, et al.
  • the expression target protein of the present invention in order to use the expression target protein of the present invention as an active ingredient to be introduced into the gene should be able to effectively penetrate into the cell.
  • the protein transport domain protein It is preferable to attach the transduction domain to the mutated SPT15 protein or the above-described protein. That is, in order to introduce the mutated SPT15 protein of the present invention or the above-mentioned protein into cells as an active ingredient (permeable peptide transduction), a protein transduction domain (PTD) is fused with the protein to form a fusion protein.
  • the protein transport domain mainly contains basic amino acid residues such as lysine / arginine, and serves to infiltrate the cell membrane with the fused protein.
  • the protein transport domain (PTD) is preferably in the HIV-1 Tat protein, the homeodomain of the drosophila antennaefeida, the HSV VP22 transcriptional regulator protein, the MTS peptide derived from vFGF, the penetratin, the transpotane or the Pep-1 peptide. Including but not limited to sequences derived.
  • the present invention relates to genes involved in ethanol-resistance, yeast strains modified using the same, and uses thereof.
  • the yeast strain of the present invention is a yeast strain capable of growing in high concentration ethanol, preferably 6-15% ethane.
  • Yeast strains of the present invention are yeast strains capable of growing in high osmotic conditions, preferably 30-40% glucose or sucrose.
  • 1 is a spot assay result showing increased ethanol resistance of five ETS1-5.
  • Cells were grown up to ODgoo value 1 in YSCD-Ura or YPD liquid medium and serially diluted 10-fold. Aliquots of cultured cells (5 ⁇ ) were spotted in YSCD—Ura or YPD plate medium containing ethanol at the appropriate concentration and plates were incubated at 30 ° C. for 4-6 days. Control strains were prepared by typing parental plasmids into L3262 (C-L3262) and BY474UC-BY4741). 1A shows the results of a spot assay of ETS1-5 on YSCD—Ura plates.
  • FIG. 1B shows that the plasmid recovered from ETS1-5 was retransformed into L3262 and BY4741 to prepare rL-ETSl-5 and rBY-ETSl-5, respectively, and spot assayed on YSCD-Ura plates.
  • 1C shows the results of spot assays of ETS2 and ETS3 on YPD plates.
  • FIG. 1D shows the preparation of iL3262, iETS2 and iETS3, respectively, by incorporating the parent plasmid and plasmids recovered from ETS2 and ETS3 into the genome of L3262, and spot assay in YSCD-Ura (top panel) and YPD plate (bottom panel) Was carried out.
  • 3 shows microarray data analysis results of ETS2 and ETS3.
  • Microarray analysis was performed using poly (A) + RNAs prepared from C-L3262 (control), ETS2 and ETS3 grown to mid-log phase without stress. Differently expressed genes with more than two-fold expression fold changes were profiled by clustering (A) and Venn diagram (B).
  • 3C shows microarray data revalidated using semi-quantitative RT-PCR for Hsp30, Hsp42 and Hspl04. Numerals 1 and 2 represent two times biologically independent of each other.
  • FIG. 4 is a spot assay result showing ethanol sensitivity of SGK0 mutants. Individual clones were cloned from the BY4741 SGK0 library that complimented 30 genes that are commonly up-regulated in ETS2 and ETS3. As in FIG. 1, a spot assay was performed. Parent strain BY4741 was used as a control. Cells were cultured in liquid YPD, spotted on solid YPD containing 0%, 6%, 8%, 10% and 123 ⁇ 4> ethanol, and then incubated at 30 ° C. for 4-6 days.
  • YPD30E6 [YP] supplemented with 30% glucose and 6% (v / v) ethanol].
  • Starting cell density was adjusted to a 0D 600 value of 0.3.
  • Cells were incubated at 3CTC with shaking at 120 rpm. After samples were taken every 12 hours, cell growth (A) and ethanol concentration (B) were determined using cell density measurement and HPLCOiigh-pressure liquid chromatography, respectively. The experiment was conducted two times (triplicate).
  • ETS3 shows the results of observing the growth rate of ETS3 under different glucose concentrations. Varying concentrations of glucose (A) and sucrose (B; 20%, 30% and Osmo-resistant strain, ETS3 (Korea) and control (Sc L3262, ⁇ ) cells were incubated at 30 ° C. at 120 rpm in YPD medium containing 4OT). After samples were taken at designated times, cell density was determined to determine cell growth. The experiment was conducted three times (triplicate).
  • ETS7 is a result of observing the fermentation capacity of the osmo-resistant strain ETS3.
  • Cell growth and ethane production of ETS3 ( «) and control (Sc L3262; O) in YPD medium containing high concentrations of glucose (50%) were shown, respectively.
  • the cells were incubated at 30 ° C with shaking at 120 rpm. After each sample was taken at a designated time, cell growth (A, C) and ethane producing ability (B, D) were measured, respectively. Representative results are shown.
  • Saccharomyces cerevisiae (5. cerevisiae) L3262 (MT-a, ura3-52 leu2-3 112 his4-34; Biotechnology Research Institute, Daejeon) and ⁇ 4741 ⁇ 4 ⁇ his3A 1 leu2A 0 met 15 ⁇ 0 wra ⁇ li? It was used as a transformation recipient.
  • a nonnessential haploid Saccharomyces cerevisiae library was kindly provided by Dr. Hur Won-ki (Seoul National University, Seoul, Korea) and used to identify the identified genes.
  • yeast cells were treated with YPD medium (1% Bakto Yeast Extract, 2% Bakto Peptone and 2w / v% Glucose for non-selective propagation, and 153 ⁇ 4> Bakto- for solid plates). Further comprises agar; Incubate at 30 ° C in Difco, MI or for yeast synthesis complete yeast synthetic medium (YSCD medium; 0.67% yeast nitrogen base without amino acids, amino acid complement complex and 2> dextrose, and 1.5 for solid plates Additionally containing% Bacto-Agar; MP, OH) was incubated at 30 ° C.
  • YPD medium 1% Bakto Yeast Extract, 2% Bakto Peptone and 2w / v% Glucose for non-selective propagation, and 153 ⁇ 4> Bakto- for solid plates.
  • YPD medium 1% Bakto Yeast Extract, 2% Bakto Peptone and 2w / v% Glucose for non-selective propagation, and
  • the pRS316 vector (CEO of the Institute; CEN-based vector, Saccharomyces cerevisiae promoter, selection marker) was used as the expression vector, and E. coli DH5a (Stratagene, CA) was used as the host. Incubated at 37 ° C. in Luria-Bertani medium (LB): Difco, MI supplemented with 100 mg / 1 of ampicillin (Sigma- Aldrich, M0). Molecular Biological Methods
  • Plasmid preparation, cloning and sequencer were performed as previously described (Sambrook, 2001).
  • E. coli DH5 a (Stratagene, USA) was used as the host for plasmid preparation.
  • Primary strand cDNAs were synthesized by transcription of 2 // g total RNA using an optional nucleomer and 200 U of M—MLV reverse transcriptase (Promega, Madison, WI, USA) as recommended by the manufacturer.
  • Oligonucleotides used for PCR are listed in Table 1. Amplification conditions were as follows: 95 ° C., 1 min; 55-60 ° C, 1 minute; And 72 ° C., extension time appropriate to the length of DNA to be amplified.
  • RT-PCR and general PCR performed 20 cycles and 30 cycles, respectively. If necessary, PCR products were purified by gel extraction, cloned into pGEM-T easy vector (Promega), and sequenced (Bionics, Seoul).
  • SPT15wt The full OR open reading frame of wild type SPT15 (SPT15wt) was used as a template for genome DNA as a sense primer (5 '-gt agggatcc t gaga t ggccga t gaggaacgt t -3', underlined sequence Ba N [position) and antisense Primer (5 '-gt aggaattct cacat 1111 ct aaat t cac 11 ag-3', underlined The sequence was PCR-amplified with Ecc position) and cloned into pGEM-T easy vector to prepare pT-SPT15.
  • the SPT15 mutation library was prepared using GeneMorph II random mutagenesis kit (Stratagene, La Jolla, Calif., USA) and primers described above as tempolate pT-SPT15.
  • PCR products were cleaved with Bai and EcoRi and cloned into pRS316—derived plasmid pRS316-GCYH2gR, with cloned genes being the glyceraldehyde-3-phosphate dehydrogenase promoter and galactose-1-phosphate terminator (GAL7 Located under the control of T ).
  • GAL7 galactose-1-phosphate terminator
  • the mutated SPT15 gene was cloned into the integration vector pRS406 and linearized using the unique? Ai position in URA3 and then transformed to Saccharomyces cerevisiae with L3262.
  • a control strain, iL3262 was prepared by similarly treating the clone-free plasmid (inset-free plasmid). Genome integration was confirmed by PCR. Transcriptome profiling and data analysis
  • RNA quality control (Park, et al., 2007).
  • CDNAs with aminoallyl-dUTP were synthesized from 40-50 / g total RNA using aminoallyl post DNA labeling kit (GeneChem, Dae j eon, Korea) and Superscript reverse transcriptase (Invitrogen, Carlsbad, CA, USA) It became. Synthesized cDNA was labeled with NHS-ester Cy die and used for hybridization.
  • the shakes were washed with SSC complete fluid and then scanned with a ScanArray 5000 scanner (Hewlett-Packard, Palo Alto, Calif., USA).
  • Raw microarray data is generated using Ar r ayNorm (http://genome.tugraz.at/), a platform-independent Java means for standardization, and statistical analysis. Analyzes (Pieler, et al., 2004). Clustering for genes that change more than twice as high on average is Cluster
  • Exponentially growing cells were obtained and transferred to 100 ml of YPD30E6 [YP supplemented with 30% glucose and 6% (v / v) ethanol]. Starting cell density was adjusted to an ODeoo value of 0.3. Cells were incubated at 30 ° C with shaking at 120 rpm. After samples were taken every 12 hours, cell growth and ethane concentrations were determined using cell density measurements and high-pressure liquid chromatography (HPLC), respectively. Samples were loaded on an Aminex HPX-87H column (Bio-Rad, Hercules, CA, USA) set at 60 ° C.
  • Glucose and ethanol were eluted with 0.5 mM H 2 SO 4 at a flow rate of 0.6 ml / min. Peaks were detected by refractory index and identified according to retention time and quantified according to a standard curve. Cell growth was monitored by measuring optical density at 600 nm.
  • Ethanol of 15 colonies was examined by spot assay in solid YSCD-Ura medium containing up to 15% ethanol. As a result, five ethanol resistant strains (ETS; ETS1-5) were obtained. All five strains were resistant to 15% ethanol under synthetic medium, whereas the control group was not resistant to ethanol concentrations above 1 (FIG. 1A).
  • the plasmids were converted to ETS1-5 (pSPT15-Ml, -M2, -M3, -M4 and-for mutated alleles of SPT15, respectively) M5).
  • the plasmids described above were separately reintroduced into L3262 and By4741 to produce rL_ETS1-5 and rBY-ETSl-5, respectively.
  • pRS316—GCYH2gR containing SPT15wt was reintroduced into L3262 and By 4741 to prepare C-L3262 and C-By4741, respectively.
  • rL-ETSl-5 showed ethanol resistance even at the same level as ETS1-5 (FIG. IB, top panel).
  • rBY-ETSl-5 showed resistance in high ethanol such as 17.5% ethanol (FIG. IB, bottom panel). This is not surprising because BY4741 is basically a strain that showed higher ethanol resistance than L3262 (no results shown). Therefore, the increased ethane of ETS1-5 could be regarded as the effect of mutated SPT15.
  • each plasmid was sequenced to identify mutations.
  • Table 1 lists amino acids mutated in each SPT15 allele: for SPT15-M1, K201Q, G216S and Q225Stop; L76V and L175S for SPT15-M2; For SPT15-M3, S42N, C78R, S163P and I212N; For SPT15-M4, F10S and M197K; For SPT15-M5, K15T, W26C and G192D.
  • ETS1 showed less resistance than ETS4 and ETS5
  • ETS2 and ETS3 showed slightly more (or at least the same) resistance than ETS4 and ETS5. Therefore, ETS2 and ETS3 were chosen for future experiments.
  • S. cerevisiae laboratory strains used for expression of specific genes always have mutations that are independent of each other in many genes encoding enzymes involved in amino acid biosynthesis, so that they can complement specific amino acids for growth when grown in a limited medium. There is a need. It was controversial that increased ethanol resistance could result from low levels of leucine complement rather than mutated SPT15 (Baerends, et al., 2009). More specifically, YPD cells are not suitable for industrial applications Ethanol resistance was destroyed when incubated in complex rich media. Also,
  • ETS2 and ETS3 Since leucine and histidine complement layers are required for the growth of ETS2 and ETS3, the increased ethanol resistance of these strains may not be due to SPT15 mutations. Thus, the ethanes of ETS2 and ETS3 were tested for resistance to spot assay on YPD. As can be seen in FIG. 1C, ETS2 was sensitive to 15% ethanol against the data of FIG. 1A, while ETS3 exhibited resistance to ethane similar to the results seen in synthetic media. However, C-L3262 Strainin, which was very sensitive to 15% ethanol in synthetic media, appeared to have some ethanol resistance on YPD, indicating that the base level of ethanol resistance in enriched media is higher than synthetic media. The overall data agreed with the conclusion that ETS3 was more resistant to ethane on YPD than ETS2.
  • FIG. 1D shows the spot assay results of the three strains in YSCD (top panel) and YPD (bottom panel).
  • the degree of ethanol resistance of iETS2 and iETS3 in YSCD was similar to that in YPD (FIG. 1C). That is, iETS2 and iETS3 in YPD had higher ethane resistance than in YSCD, with no difference observed between the two even at 15% ethanol concentration.
  • ETS2 and eleven genes were up- and down-regulated, respectively, while in ETS3 79 and 21 genes were up- and down-regulated, respectively (FIG. 3B).
  • ETS2 and ETS3 shared 34 up-regulated genes and 8 down-regulated genes (FIG. 3B).
  • HSP30, HSP42 and HSP104 were up-regulated at 5.7, 4.5 and 1.7 times in ETS2 and 6.3, 4.1 and 1.8 times, respectively, in ETS3.
  • the increase fold of the genes described above was consistent with RT-PCR data (FIG. 3C).
  • up-regulated genes include stress response and protein folding (11 genes); Pentose-phosphate pathway, cell wall and transport (two genes each); Metabolism and energy generation of energy storage (one gene); And unclassified proteins (15 genes) (Tables 2 and 3).
  • YPR145C-A 1.3 1 0 1.6 1 0 0 0 0 0 0 0
  • HSP42 Stress reactions and protein folding genes are responsible for several stratified genes (HSP42, HSP31, HSP30, HSP12) that function at many sub-cellular locations (eg, nucleus, mitochondria, cytoplasm, cytoskeleton, membranes and cell walls).
  • Oxidative stress response gene (CTT1) and endoplasmic reticulum and mitochondrial translocation gene (SSA4) were also included.
  • CTT1 Oxidative stress response gene
  • SSA4 endoplasmic reticulum and mitochondrial translocation gene
  • PGM2 involved in glycolysis
  • GPH1 involved in glyconogenesis
  • TSL1 involved in trihalose biosynthesis
  • metabolic processes in energy storage STF2 (Ma, M., and ZL Liu., 2010).
  • genes Common functions of down-regulated genes include budding cell polarity and filament formation (one gene); Carbon compounds (C-compound) and carbohydrate metabolism (one gene); Mating (correction; one gene); Protein targeting sorting and shifting (one gene); rRNA synthesis (1 gene); And unclassified proteins (3 genes) (Table 4).
  • up-regulation of a gene increases ethane resistance, deletion of the gene will most likely confer cells with sensitivity or resistance to ethane. Conversely, the same would be true for down-regulated genes.
  • Deletion mutants corresponding to 30 up-regulated genes and 6 down-regulated genes were obtained from BY4741 SG 0 library. Deletion mutants corresponding to four up-regulated genes (YER053C-A, YNR034W-A, YPR145C-A and YBL029O A) and two down-regulated genes (RRN7 and Y0R387C) were not useful, which Because of their lethality.
  • BY4741 and individual deletion mutants were serially diluted 10-fold as a control in which the OD 600 value was incubated to 0.5 and spotted in solid YPD medium containing different concentrations of ethanol.
  • deletion mutants that commonly conjugate to up-regulated genes are shown in FIG. 4.
  • Several deletion mutations were sensitive to low concentrations of ethanol, such as 6% ethanol, which were lower than those that had a toxic effect on BY4741.
  • the total number of susceptible mutants increased in proportion to the increased ethanol concentration by 12%.
  • Sensitivity to 6% ethane was seen in deletion mutants of GPHl, SOL4 and SSA4.
  • Seven additional mutants (ALD3, BTN2, SPI1, 0M45, RTC3, USV1 and YFR017C) were sensitive to 8% ethanol.
  • HSP12 deletion mutants were sensitive to 10% ethane.
  • deletion mutations in HSP30, CTT1, SDP1, STF2, AIM17, FMP16, RGI1 and PHM8 were sensitive to 12% ethane.
  • deletion of 19 of 30 genes commonly up-regulated in ETS2 and ETS3 gave ethane sensitivity.
  • the contribution to ethanol sensitivity was greatest in GPHl, S0L4 or SSA4, followed by ALD3, BTN2, SPIl, 0M45, RTC3, USV1 or YFR017C, followed by HSP12, HSP30, CTT1, SDP1, Lowest in STF2, AIM17, FMP16, RGI1 and PHM8.
  • the purpose of producing ethanol resistant strains is to improve ethanol productivity and / or final yield.
  • strains resistant to increased ethane are thought to be able to better cope with the toxic effects of ethanol (Ding, et al., 2009).
  • the effect of increased ethanol resistance is generally determined by measuring the highest ethanol titers from batch cultures in complex rich media containing up to 30% glucose (Hong, et al., 2009; Hou, 2009; Hou, et al., 2009; Teixeira, et al., 2009).
  • the yields in the above studies did not significantly improve and only increased by 1 compared to the control strain.
  • the cell density of the control group (iL3262) and two ethanol resistant integrants (iETS2 and iETS3) decreased after reaching the maximum at 84 hours (FIG. 5A).
  • the characteristic of this profile was that iL3262 required a longer lag period (24 hours) for dropping for ethanol added from the start and no saturation plateau was observed.
  • the growth rate of iETS3 over the next 24 hours was slightly higher than that of iL3262 and iETS2 growing at the same rate. In general, after 48 hours the three strains grew at a similar growth rate up to 84 hours except at 60 hours (for iETS3). therefore, Relatively short induction groups characterize ethanol resistant strains.
  • Fermentation ability of iL3262, iETS2 and iETS3 was determined by measuring ethanol titers from the YPD30E6 cultures. 6% (v / v) of starting ethanol corresponded to 47.5 g / L on HPLC. As can be seen in FIG. 5B, the highest ethanol titers produced by iETS2 and iETS3 during the 120-hour fermentation were 95.0 g / L and 93.0 g / L, respectively, while the ethanol titers of the control group were 74.0 g / L. Interestingly, induction phase in ethanol production was not observed in the control strain in contrast to cell growth, for which reason is unclear.
  • the ETS3 strain of the present invention is resistant to high osmotic pressure caused by high glucose or sucrose.
  • the ETS3 strain of the present invention showed higher growth rates compared to the control at various concentrations of glucose and sucrose (eg, 20%, 30% or 40%).
  • ETS3 showed better growth rate at 40% glucose, a higher glucose concentration than the control (Sc L3262).
  • FIG. 7 a fermentation experiment in 50% glucose-YPD, it is clear that the osmo-resistant strain ETS3 of the present invention is closely related to ethanol fermentation.
  • the ETS3 strain of the present invention showed an increased ethanol production of 70.3% over 72 hours compared to the control (Sc 3262) (63 g / L in ETS3; and 37 g in the control). / L).
  • ETS3 showed about 70% higher fermentation capacity than the control under the experimental conditions used in the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Mycology (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 발명은 에탄올-저항성에 관여하는 유전자 및 이를 이용하여 형질변형된 효모 균주, 그리고 이의 용도에 관한 것이다. 본 발명의 효모 균주는 고농도 에탄올, 바람직하게는 6-15% 에탄올에서 성장할 수 있으며, 고 삼투 조건 바람직하게는 30-40% 글루코오스 또는 수크로오스에서 성장할 수 있는 효모 균주이다. 본 발명은 고농도 글루코오스 및 에탄올에 내성을 보이는 균주를 발명함으로써 보다 효율적인 에탄올 생산에 유용하게 사용될 것이며, 또한 바이오에탄올 생산공정 시 발생하는 여러 스트레스에 저항성을 가진 고효율의 에탄올 생성능의 슈퍼균주로서 실용성을 가질 것이다.

Description

【명세서】
【발명의 명칭】
에탄을-저항성 효모 유전자 및 이의 용도 【기술 분야】
본 발명은 에탄올-저항성 효모 균주 및 이의 용도에 대한 것이다.
【배경 기술】
식물 또는 해초 (seaweed) 바이오매스로부터의 바이오에탄을의 생산은 장기간의 유용성 및 화석 연료의 해로운 환경적 측면에서 전세계적인 관심의 대상이 되고 있다 (Jeffries, T. , and P. Lindbladm, 2009; Ragauskas, A. J. , et al . , 2006; Rubin, E. M. , 2008). 하지만, 바이오에탄올의 상대적으로 높은 생산 비용이 연관 산업에서의 투자를 방해하고 있다. 이에, 바이오매스 획득, 전처리, 발효 및 산물 회수의 비용을 저감시키기 위한 많은 노력이 있어 왔다 (Xu, Q., A. Singh, and M. E. Himmel, 2009). 바이오에탄을 생산 과정 동안, 에탄올 -생산 미생물은 초기 기질의 높은 농도, 증가된 에탄올 농도 및 독성 부산물의 축적 같은 다양한 스트레스에 직면한다. 빠른 성장 및 효과적인 발효능 이 외에도, 상술한 스트레스들에 견딜 수 있는 능력이 에탄을 생산자를 선택하는 데 중요한 인자이다 (Ding, J., et al . , 2009; Gibson, B. R. , et al., 2007; Yoshikawa, . , et al., 2009). 에탄올 생산율을 개선하기 위한 하나의 방법이 증가된 스트레스 저항성을 가진 스트레인들을 개발하는 것이다.
효모 사카로미세스 세레비지에 (5. cerevisiae)는 바이오매스 자원으로부터 바이오에탄올의 생산을 포함하는 여러 산업 분야에서 다양하게 이용되어 왔다. 효모 세포는 산업적 에탄을 발효 과정 동안 발생하는 고농도 에탄올 같은 여러 환경적 스트레스에 항상 노출되고, 이는 결국 세포 성장, 세포 생존율 및 에탄올 생산에 있어서의 감소를 초래한다 (Casey and Ingledew, 1986). 따라서, 고농도 에탄을에 의해 야기된 스트레스를 극복할 수 있는 효모 균주의 개발이 요구되어져 왔다. 더 나아가, 마이크로어레이 및 포괄적 발현 패턴 분석 같은 지놈 전반에 걸친 (genome-wide) 분석들의 이용이 에탄올 스트레스 관련된 신규한 유전자들을 동정하는 데 유용하였다 (Hirasawa, et al., 2007; Teixeira, et al., 2009; Yoshikawa, et al . , 2009). 이러한 접근방법을 통해, 에탄올 저항성에 관련된 많은 유전자들이 비 -필수 (nonessential) 유전자들로 동정되었다. 또한, 에탄올 저항성에 관련된 결과들은 각각 매치하지 않았고, 이러한 불일치는 균주 및 성장 조건에 기인한다고 보고하였다 (Teixeira, et al., 2009) . 따라서, 상술한 유전 정보로부터 구축된 균주는 항상 에탄을 스트레스 조건에 대한 변화를 초래하지 않는다 (Yoshikawa, et al., 2009). 또한, 상업적으로 유용한 사카로미세스 세레비지에의 결실 돌연변이 라이브러리는 에탄올 저항성에 관련된 유전자들의 지놈 전반에 걸친 스크리닝에 이용되었다 (Fuji ta, et al. , 2006; Teixeira, et al . , 2009; Yoshikawa, et al. , 2009). 상술한 연구들은 주로 에탄올 민감성을 나타내는 돌연변이체들을 선택하여 상웅하는 유전자를 고농도 에탄올 조건 하에서 성장에 필요한 유전자들로 동정하였다.
일반적으로, 많은 유전자들이 중요한 세포내 표현형 (예컨대, 병적 상태부터 대사산물의 과다발현)에 영향을 미친다고 알려져 있다. 하지만, 대부분의 세포 및 대사적 변형 (engineering) 접근방법들은 백터 구축 및 형질전환 효율의 실험적 제한점들로 인해 단일 유전자들의 결실 (deletion) 또는 과다발현 (overexpression)을 통해 실시되었다. 이로 인해, 여러 유전자들의 변형을 통한 조사가 배제되었다.
에탄올 스트레스 저항성에 대한 기작을 조사하기 위해, 많은 연구들이 있었다. 특히, 막 유동성과 관계된 불포화 지방산은 효모에서 에탄올 저항성의 중요한 결정인자로 간주되어 보고되었다 (Kajiwara, et al. 2000; You, et al, 2003). 또한, 트리할로오스 (Kim, et al. , 1996) 또는 프롤린 (Takagi, et al., 2005)의 세포내 축적이 효모의 에탄올 저항성을 개선시키고 에르고스테롤이 사카로미세스 세레비지에의 에탄올 저항성과 관련된 중요한 인자 (Inoue, et al., 2000)라는 것이 보고되었다.
한편, 일반적으로 많은 양의 에탄올을 짧은 시간의 발효과정에서 얻기 위해 VGH 발효기법 (very high gravity fermentation)을 이용하고 있는데, 여러 가지 공정의 단계를 줄여 시간과 예산을 절감할 수 있는 효과가 있다. 그러나, 일반적인 효모의 경우, 높은 글루코오스로 인해서 발효시간이 길어지며 그로 인해 낮은 에탄올 생성을 보인다. 따라서, VGH 발효기법에서는 효모의 에탄올에 대한 저항성을 가질 뿐 아니라 높은 글루코오스에 의한 높은 삼투압에 대한 저항성이 필수적이다.
에탄올 저항성 스트레인들을 개발하기 위해, 진화적 적웅 (Stanley, D., et al., 2010), 임의적 화학물질 돌연변이유발법 (Mobini-Dehkordi , M., et al., 2008) 및 유전자 셔플링 (Hou, L., 2010) 같은 고전적인 전략 이외에 3 가지 다른 전략들이 최근에 이용되고 있다: 지놈 전반에 걸친 DNA 마이크로어레이 분석 (Hirasawa, T. , et al., 2007) , 트랜스포존-매개된 결실 돌연변이 라이브러리 (Takahashi, T., et al., 2001), 단일 유전자 넉- 아웃 (SGK0) 라이브러리 (Auesukaree, C. , et al., 2009; Fujita, K., et al. , 2006; Kubota, S. , et al . , 2004; Teixeira, M. C. , et al., 2009; van Voorst , F. , et al., 2006; Yoshikawa, K., et al., 2009) 스크리닝 및 gTMECglobal transcriptional machinery engineering; Alper , H. , et al . , 2006) . DNA 마이크로어레이 분석에서, 에탄올 스트레스에 의해 유도된 상향- 또는 하향-조절된 유전자들이 타겟 유전자들로서 처음으로 동정된 후, 에탄올 저항성을 부여하는 유전자들의 능력이 상향-조절된 유전자들의 과다발현 또는 하향-조절된 유전자들의 결실에 의해 검증된다. SGK0 라이브러리 스크리닝의 경우에는, 감소된 또는 증가된 성장을 나타내는 클론들은 에탄올을 존재 하에서 스크리닝하여 우선적으로 분리한다. 결실이 둔화된 성장을 야기하는 유전자들은 실질적으로 에탄올 민감성과 연관되어 있기 때문에, 과다발현에 의한 에탄올 저항성과의 연관성에 대해 검증해야 한다. 이와 대조적으로, 결실이 증가된 성장을 야기하는 유전자들은 에탄올 저항성 스트레인들을 제조하는 데 직접적으로 이용될 수 있다. 하지만, 상기 2 가지 접근방법들의 문제는 매우 많은 수의 타겟 유전자들이 동정되어 있어야만 한다는 것이다. 예컨대, 효모 지놈에서 인코딩된 유전자들의 5-10% 정도의 유전자들이 동정된 경우에만 상기 방법들을 이용할 수 있다. 에탄올 민감성 유전자들의 동정은 에탄을 저항성의 분자 기반을 이해하는 데 도움을 줄 수 있지만, 에탄을 저항성 스트레인의 구축을 확실하게 보장하지는 않는다. 비록 에탄올 민감성 유전자들의 과다발현이 에탄올 저항성을 부여할 지 여부를 검증하는 것이 용이하고 간단할 지라도, 성공적인 예들이 거의 보고되지 않았다 (Gibson, B. R., et al., 2007) .
gTME 는 하나 이상의 일반적인 전사인자들의 임의적 돌연변이유발법을 통해 전반적인 전사 프로파일을 재프로그래밍한다. 상기 접근방법은 이전에 치명적인 에탄올 농도에서 자랄 수 있는 것으로 보고된 SPT15 유전자에 의해 인코딩되는 TBPCTATA-binding protein)의 돌연변이를 유발함으로써 증가된 에탄올 저항성을 가지는 스트레인을 창출하는 데 처음으로 이용되었다 (Alper, H. , et al., 2006). 하지만, 다른 저자들은 이러한 증가된 에탄올 저항성이 산업적 적용을 위해 선택되지 않는 풍부 배지 (rich medium)에서는 재생되지 않는다는 것을 보고하였다 (Baerends, R. J., et al., 2009). 그럼에도 불구하고, SPT15 돌연변이는 많은 RNA 폴리머라제 Π-의존성 유전자들을 조절하는 SAGA(Spt- Ada-Gcn5-아세틸트랜스퍼라제) 복합체의 서브유니트인 Spt3p 와의 상호작용을 통해 전사 프로파일을 변화시킨다. 또한, SPT15 돌연변이는 다면발현 유전형질 (pleiotrophic)로 동정되었으며 (Eisenmann, D. M. , et al., 1989), SPT15 의 조절 도메인에서 몇몇 돌연변이가 전사증가를 초래하였다 (Cang, Y., et al., 1999) . 상술한 발견들은 SPT15 의 다른 돌연변이들이 다른 세트의 유전자들의 발현을 유도할 수 있다는 것을 나타낸다.
본 연구에서, 에탄올 저항성을 가지는 S. 세레비지에 스트레인을 개발하기 위해 이전에 보고된 바와 같이 gTME 를 실시하였다 (Alper, H. , et al., 2006). 본 발명자들은 서로 다른 SPT15 돌연변이체 대립형질 (allele)을 포함하는 다섯 개의 에탄을 저항성 스트레인들 (ETSs)을 얻었으며, 에탄올 저항성 상에 SPT15 돌연변이의 효과를 조사하였다. 지놈 전반에 걸친 (genome-wide) 마이크로어레이를 실시하여 에탄올 저항성에 관련된 유전자들을 동정하고 결실 돌연변이체를 이용하여 그들의 기능을 추가적으로 조사하였다. 본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다.
【발명의 상세한 설명】
본 발명자들은 에탄올-저항성 효모 균주를 개발하고자 노력하였다. 그 결과, 본 발명자들은 PCR-매개된 임의적 돌연변이유발법 (random mutagenesis)을 이용하여 돌연변이된 SPT15 유전자를 제작하고 이를 효모에 형질전환시켜 에탄올—저항성 형질변형 효모 균주를 분리하였으며, 이들이 고농도 에탄올 (예컨대, 15% 에탄올) 뿐 아니라 고농도 글루코오스 또는 수크로오스 (예컨대, 20%, 30% 또는 40%)에서 성장할 수 있다는 것을 확인하고, 이를 이용하여 형질전환된 효모에서 전사체 프로파일 (transcriptome profiling)을 실시하여 에탄올-저항성에 관여하는 18 개의 유전자를 분리 /동정하였으며, 이를 이용해 형질변형된 효모 균주들이 고농도 에탄을 (예컨대, 6-1 에탄을)에서 성장할 수 있다는 것을 확인함으로써, 본 발명을 완성하게 되었다.
따라서, 본 발명의 목적은 에탄올-저항성 효모 균주 및 이와 관련된 유전자를 제공하는 데 있다.
본 발명의 다른 목적은 삼투-저항성 효모 균주 및 이와 관련된 유전자를 제공하는 데 있다.
본 발명의 또 다른 목적은 에탄올-저항성 형질변형 효모 균주를 제공하는 데 있다.
본 발명의 또 다른 목적은 에탄을 생산방법을 제공하는 데 있다. 본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다. 본 발명의 일 양태에 따르면, 본 발명은 돌연변이 (mutation)된 SPT15 유전자를 포함하는 에탄을—저항성 형질변형 효모 균주를 제공한다. 본 발명자들은 에탄올-저항성 효모 균주를 개발하고자 노력하였다. 그 결과, 본 발명자들은 PCR-매개된 임의적 돌연변이유발법 (random mutagenesis)을 이용하여 돌연변이된 SPT15 유전자를 제작하고 이를 효모에 형질전환시켜 에탄올-저항성 형질변형 효모 균주를 분리하였으며, 이들이 고농도 에탄을 (예컨대, 15% 에탄올) 뿐 아니라 고농도 글루코오스 또는 수크로오스 (예컨대, 20%, 30% 또는 40%)에서 성장할 수 있다는 것을 확인하고, 이를 이용하여 형질전환된 효모에서 전사체 프로파일 (transcriptome profiling)을 실시하여 에탄올-저항성에 관여하는 18 개의 유전자를 분리 /동정하였으며, 이를 이용해 형질변형된 효모 균주들이 고농도 에탄올 (예컨대, 6-1 에탄올)에서 성장할 수 있다는 것을 확인하였다. 발화성, 휘발성 무색 액체인 에탄올은 가장 널리 이용되는 용매이다. 산업적으로, 에탄올은 자동차 연료 및 연료 첨가제로서 이용되며, 향수 (scents), 향료 (fl avor ings) , 착색제 (color ings) 및 의약품 (medicines)으로도 이용된다. 또한, 에탄올은 알코올 음료 내 주요 정신활성 구성성분으로 중추신경계에 진정 효능을 가진다. 에탄을은 에틸렌의 수화를 통해 석유화학적으로 생산될 수 있으며, 효모를 이용하여 당을 발효시킴으로써 생물학적으로 생산될 수 있는데, 이러한 생물학적 생산은 석유 및 곡물 사료제의 가격에 의존적인 석유화학적 과정에 의한 생산보다 훨씬 경제적이다. 따라서, 생물학적 에탄올의 생산 과정을 위한 효모 균주의 개발은 매우 중요하다.
본 발명에 따르면, 본 발명은 효모에서 PCR에 의해 돌연변이 유발된 SPT15유전자를 형질전환시킨 효모 균주들을 제공한다.
본 발명의 바람직한 구현예에 따르면, 본 발명의 돌연변이는 야생형 SPT15유전자의 아미노산 서열 내에 돌연변이된 아미노산 서열을 포함하며, 보다 바람직하게는 세 개 내지 다섯 개의 돌연변이된 아미노산 서열을 포함하고, 가장 바람직하게는 서열목록 제 6 서열 내지 제 10 서열로 이루어진 아미노산서열을 포함한다.
본 발명의 바람직한 구현예에 따르면, 본 발명의 돌연변이된 SPT15 유전자는 야생형 SPT15 유전자의 K201, G216 및 Q225 위치의 아미노산 서열이 돌연변이된 아미노산 서열; 야생형 SPT15 유전자의 L76 및 L175 위치의 아미노산 서열이 돌연변이된 아미노산 서열; 야생형 SPT15 유전자의 S42, C78, S163 및 1212 위치의 아미노산 서열이 돌연변이된 아미노산 서열; 야생형 SPT15 유전자의 F10 및 M197 위치의 아미노산 서열이 돌연변이된 아미노산 서열; 또는 야생형 SPT15 유전자의 K15, 26 및 G192 위치의 아미노산 서열이 돌연변이된 아미노산 서열을 포함하는 돌연변이된 SPT15 유전자이다.
본 발명의 보다 바람직한 구현예에 따르면, 본 발명의 돌연변이된 SPT15 유전자는 야생형 SPT15 유전자의 K201, G216 및 N225 위치의 아미노산 서열이 K201Q, G216S 및 Q225Stop 으로 변이된 돌연변이 서열 (서열목록 제 6 서열); 야생형 SPT15 유전자의 L76 및 L175 위치의 아미노산 서열이 L76V 및 L175S 로 변이된 돌연변이 서열 (서열목록 제 7 서열); 야생형 SPT15 유전자의 S42, C78, S163 및 1212 위치의 아미노산 서열이 S42N, C78R, S163P 및 I212N으로 변이된 돌연변이 서열 (서열목록 제 8 서열); 야생형 SPT15 유전자의 F10 및 M197 위치의 아미노산 서열이 F10S 및 M197K로 변이된 돌연변이 서열 (서열목록 제 9서열); 또는 야생형 SPT15 유전자의 K15, W26 및 G192 위치의 아미노산 서열이 K15T, W26C 및 G192D로 변이된 돌연변이 서열 (서열목록 제 10 서열)을 포함하는 돌연변이된 SPT15 유전자이다.
본 발명에 따르면, 상술한 돌연변이된 SPT15 유전자, 바람직하게는 서열목록 제 1 서열 내지 제 5 서열로 이루어진 돌연변이된 SPT15 유전자로 형질전환된 효모 균주는 고농도 에탄올, 보다 바람직하게는 5-15% 에탄올, 보다 더 바람직하게는 10-15% 에탄올, 그리고 가장 바람직하게는 12.5-15% 에탄올에서 성장할 수 있다.
본 발명의 바람직한 구현예에 따르면, 상술한 돌연변이된 SPT15 유전자는 플라스미드로 효모 세포에 도입될 수 있다. 또한, 본 발명의 바람직한 구현예에 따르면, 상술한 돌연변이된 SPT15 유전자는 효모 세포의 지놈 (genomic) DNA에 도입될 수 있다.
본 발명의 바람직한 구현예에 따르면, 상술한 돌연변이된 SPT15 유전자의 형질전환에 이용될 수 있는 효모 균주는 사카로마이세스 종 ( Saccharomyces spp . ), 시 0】세스 종 ( Schi zosaccharomyces spp J, 피키아 ^{Pichia spp.), 파피아 종0¾///<3 sp . ) , 클루이베로미세스 종 (J uyveromyces spp.), 칸디다 ^ Candida spp.), 탈라로미세스 종 Talaromyces spp.), 브레타노미세스 종 Brettanomyces spp.), 파키솔렌 종 {Pachysolen spp.), 데바리오미세스 종 {Debaryomyces spp.) 또는 산업적인 배수체 (polyploid) 효모 균주를 포함하지만, 이에 한정되는 것은 아니다. 보다 바람직하게는, 상술한 돌연변이된 SPT15 유전자의 형질전환에 이용될 수 있는 효모 균주는 사카로마이세스 종이며, 보다 더 바람직하게는 사카로마이세스 세레비지에이고, 가장 바람직하게는 사카로마이세스 세레비지에 L3262이다. 본 발명의 다른 양태에 따르면, 본 발명은 돌연변이 (mutation)된 SPT15 유전자를 포함하는 삼투 (osmosis)-저항성 형질변형 효모 균주를 제공한다.
본 발명의 효모 균주는 상술한 본 발명의 돌연변이된 SPT15 유전자로 형질전환된 효모 균주를 유효성분으로 포함하기 때문에, 둘 사이에 중복된 내용은 중복 기재에 따른 본 명세서의 과도한 복잡성을 피하기 위하여 그 기재를 생략한다.
본 발명은 효모에서 PCR 에 의해 돌연변이 유발된 SPT15 유전자를 형질전환시킨 삼투-저항성 효모 균주들을 제공한다.
본 발명의 바람직한 구현예에 따르면, 본 발명의 돌연변이된 SPT15 유전자는 야생형 S42, C78, S163 및 1212 위치의 아미노산 서열이 돌연변이된 아미노산 서열을 포함하는 돌연변이된 SPT15 유전자이다.
본 발명의 보다 바람직한 구현예에 따르면, 본 발명의 돌연변이된 SPT15 유전자는 야생형 SPT15 유전자의 S42, C78, S163 및 1212 위치의 아미노산 서열이 S42N, C78R, S163P 및 I212N 로 변이된 돌연변이 서열 (서열목록 제 8 서열)을 포함하는 돌연변이된 SPT15 유전자이다.
본 발명에 따르면, 상술한 돌연변이된 SPT15 유전자, 바람직하게는 서열목록 제 8서열로 이루어진 돌연변이된 SPT15 유전자로 형질전환된 효모 균주는 고농도 글루코오스 또는 수크로오스, 보다 바람직하게는 20-50% 글루코오스 또는 수크로오스, 보다 더 바람직하게는 30-40% 글루코오스 또는 수크로오스 , 그리고 가장 바람직하게는 標 0 글루코오스 또는 수크로오스에서 성장할 수 있다. 본 발명의 바람직한 구현예에 따르면 , 본 발명의 효모 균주는 고농도 에탄올, 보다 바람직하게는 5-15% 에탄올, 보다 더 바람직하게는 10-15% 에탄올, 그리고 가장 바람직하게는 12.5-15% 에탄올에서 성장할 수 있다. 본 발명의 또 다른 양태에 따르면, 본 발명은 ALD3 YMR169C) ,
USVli YPL230 ) , FMP16( YDR070O , RGI YER067W) , BTN2^YGR142V) , RTC3{ ΥΜ087) , HSP3( YCR021O , Cm( YGR088W) , AIMlA YHL021O , STF2{ YGR008 , GPHli YPR160W) , YFR017C, S0L4 YGR248T) , PHM8{YER037f) , HSP12 YFL014IT) , SSA4{YER103 ) , SPI YER150W) 및 (Μ45 ΊΙ 36^로 구성된 군으로부터 선택된 하나 이상의 뉴클레오타이드 서열이 과다발현된 에탄올- 저항성 형질변형 효모균주를 제공한다.
본 발명에 따르면, 본 발명은 에탄을-저항성 형질변형 효모 균주를 이용한 전사체 프로파일을 통해 에탄올-저항성에 관여하는 신규한 유전자를 분리 /동정하고 이를 이용하여 형질전환된 효모 균주들이 에탄올 저항성을 가진다는 것을 확인하였다.
본 발명에 따르면, 전사체 프로파일이 상술한 효모 균주에서 실시한다.
보다 상세하게는, 상기 에탄올-저항성에 관여하는 유전자의 동정은 ( i ) 본 발명의 형질전환된 효모 균주 및 형질전환되지 않은 정상 효모로부터 전사체 프로파일 (transcriptome profiling)을 실시하는 단계; 및 (ii) 상기 전사체 프로파일을 비교 /분석하는 단계를 실시함으로써, 에탄올 저항성 및 /또는 민감성 효모유전자를 대량으로동정할 수 있다. 상기 전사체 프로파일의 비교 /분석에 있어서, 상기 정상 효모보다 상기 형질전환된 효모 균주에서 흔성화 시그널이 2 배 이상의 증가 배수 (fold increase)로 검출되면 에탄올 저항성을 상향-조절하는 유전자로 판단되고, 상기 시그널이 2배 이상의 감소 배수 (fold decrease)로 검출되면 에탄을 저항성을 하향-조절하는 유전자로 판단된다.
본 발명의 방법은 상술한 본 발명의 돌연변이된 SPT15 유전자로 형질전환된 효모 균주를 유효성분으로 포함하기 때문에, 둘 사이에 중복된 내용은 중복 기재에 따른 본 명세서의 과도한 복잡성을 피하기 위하여 그 기재를 생략한다. 본 발명의 바람직한 구현예에 따르면, 본 발명의 전사체 프로파일은 마이크로어레이로 실시할 수 있다.
본 발명의. 마이크로어레이에 있어서, 프로브는 흔성화 어레이 요소 (hybridizable array element)로서 이용되며, 기체 (substrate) 상에 고정화된다. 바람직한 기체는 적합한 견고성 또는 반-견고성 지지체로서, 예컨대, 막, 필터, 칩, 슬라이드, 웨이퍼, 파이버, 자기성 비드 또는 비자기성 비드, 겔, 튜빙, 플레이트, 고분자, 미소입자 및 모세관을 포함한다. 상기한 흔성화 어레이 요소는 상기의 기체 상에 배열되고 고정화 된다. 이와 같은 고정화는 화학적 결합 방법 또는 UV와 같은 공유 결합적 방법에 의해 실시된다. 예를 들어, 상기 흔성화 어레이 요소는 에폭시 화합물 또는 알데히드기를 포함하도록 변형된 글래스 표면에 결합될 수 있고, 또한 폴리라이신 코팅 표면에서 UV 에 의해 결합될 수 있다. 또한, 상기 흔성화 어레이 요소는 링커 (예: 에틸렌 글리콜 올리고머 및 디아민)를 통해 기체에 결합될 수 있다.
본 명세서에서 사용된 용어 "프로브" 는 자연의 또는 변형된 모노머 또는 연쇄 (linkages)의 선형 올리고머를 의미하며, 디옥시리보뉴클레오타이드 및 리보뉴클레오타이드를 포함하고 타깃 뉴클레오타이드 서열에 특이적으로 흔성화 할 수 있으며, 자연적으로 존재하거나 또는 인위적으로 합성된 것이다. 본 발명의 프로브는 바람직하게는 단일쇄이며, 올리고디옥시리보뉴클레오타이드이다. 본 발명의 프로브는 자연 (naturally occurring) dNMP (즉, dAMP, dGMP, dCMP 및 dTMP), 뉴클레오타이드 유사체 또는 유도체를 포함할 수 있다. 또한, 본 발명의 프로브는 리보뉴클레오타이드도 포함할 수 있다. 예컨대, 본 발명의 프로브는 골격 변형된 뉴클레오타이드 예컨대, 펩타이드 핵산 (PNAKM. Egholm et al . , Nature, 365:566-568(1993)), 포스포로티오에이트 DNA, 포스포로디티오에이트 DNA, 포스포로아미데이트 DNA, 아마이드-연결된 DNA, MMI-연결된 DNA, 2'-0_메틸 RNA, 알파 -DNA 및 메틸포스포네이트 DNA, 당 변형된 뉴클레오타이드, 예컨대, 2'-0"메틸 RNA, 2'-플루오로 RNA, 2'-아미노 RNA, 2'-0_알킬 DNA, 2'-0-알릴 DNA, 2'-0- 알카이닐 DNA, 핵소스 DNA, 피라노실 RNA 및 안히드로핵시를 DNA, 및 염기 변형을 갖는 뉴클레오타이드 예컨대, C-5 치환된 피리미딘 (치환기는 플루오로-, 브로모-, 클로로-, 아이오도-, 메틸-, 에틸-, 비닐—, 포르밀-, 에티틸-, 프로피닐-, 알카이닐-, 티아조릴-, 이미다조릴—, 피리딜- 포함),
C-7 치환기를 갖는 7-데아자퓨린 (치환기는 플루오로-, 브로모-, 클로로-, 아이오도-, 메틸-, 에틸-, 비닐-, 포르밀-, 알카이닐-, 알켄일-, 티아조릴- 이미다조릴-, 피리딜 -), 이노신 및 디아미노퓨린을 포함할 수 있다.
본 발명의 마이크로어레이에 적용되는 시료 DNA 는 표지 (labeling)되어 마이크로어레이상의 어레이 요소와 흔성화된다. 흔성화 조건은 다양하게 할 수 있다. 흔성화 정도의 검출 및 분석은 표지 물질에 따라 다양하게 실시될 수 있다. 본 발명의 바람직한 구현예에 따르면, 본 발명의 시료 DNA 는 아미노알릴 -dUTP 가 삽입되어 합성되며, NHS-에스테르 Cy 다이로 표지되어 있으나, 이에 한정되는 것은 아니다.
분석 대상이 되는 핵산 시료는 다양한 생시료 (biosamples)에서 얻은 mRNA 를 이용하여 제조할 수 있다. 상기 생시료는, 바람직하게는 효모 세포, 가장 바람직하게는 상술한 본 발명의 형질전환된 효모 세포이다. 프로브 대신에 분석 대상이 되는 cDNA를 표지하여 흔성화 반웅 -기초 분석을 실시할 수 있다.
프로브를 이용하는 경우, 프로브를 cDNA 분자와 흔성화시킨다. 본 발명에서, 적합한 흔성화 조건은 최적화 절차에 의하여 일련의 과정으로 결정될 수 있다. 이런 절차는 연구실에서 사용을 위한 프로토콜을 수립하기 위하여 당업자에 의하여 일련의 과정으로 실시된다. 예를 들어, 온도, 성분의 농도, 흔성화 및 세척 시간, 완층액 성분 및 이들의 pH 및 이온세기 등의 조건은 프로브의 길이 및 GC 양 및 타깃 뉴클레오타이드 서열 등의 다양한 인자에 의존한다. 흔성화를 위한 상세한 조건은 Joseph Sambrook , et al ., Molecular Cloning, A Laboratory Manual , Cold Spring Harbor Laboratory Press, Cold Spring Harbor , N.Y.(2001); 및 M丄. M. Anderson, Nucleic Acid Hybridization, Springerᅳ Ver lag New York Inc. N.Y.(1999)에서 확인할 수 있다. 예를 들어, 상기 엄격조건 중에서 고 엄격조건은 0.5 NaHP04, 7% SDS( sodium dodecyl sulfate), 1 mM EDTA 에서 65 °C 조건으로 흔성화하고, 0.1 x SSCCstandard saline citrate)/0.1% SDS 에서 68°C 조건으로 세척하는 것을 의미한다. 또는, 고 엄격조건은 6 X SSC/0.05% 소듐 파이로포스페이트에서 48 °C 조건으로 세척하는 것을 의미한다. 저 엄격조건은 예를 들어, 0.2 X SSC/0.1% SDS 에서 42°C 조건으로 세척하는 것을 의미한다.
핵산 시료 또는 프로브의 표지는 흔성화 여부를 검출케 하는 시그널을 제공할 수 있으며, 이는 올리고뉴클레오타이드에 연결될 수 있다. 적합한 표지는 형광단 (예컨대, 플루오리신 (fluorescein), 피코에리트린 (phycoerythrin), 로다민, 리사민 ( 1 issamine), 그리고 Cy3 와 Cy5(Pharmacia)), 발색단, 화학발광단, 자기입자, 방사능동위원소 (P32 및 S35), 매스 표지, 전자밀집입자, 효소 (알칼린 포스파타아제 또는 호스래디쉬 퍼옥시다아제), 조인자, 효소에 대한 기질, 중금속 (예컨대, 금) 그리고 항체, 스트랩타비딘, 바이오틴, 디곡시게닌과 킬레이팅기와 같은 특정 결합 파트너를 갖는 햅텐을 포함하나, 이에 한정되는 것은 아니다. 표지는 당업계에서 통상적으로 실시되는 다양한 방법, 예컨대, 닉 트랜스레이션 (nick translation) 방법, 무작위 프라이밍 방법 (Multiprime DNA labelling systems booklet, "Amersham"(1989)) 및 카이네이션 방법 (Maxam & Gilbert, Methods in Enzymology, 65 :499(1986))을 통해 실시될 수 있다. 표지는 형광, 방사능, 발색 측정, 중량 측정, X-선 회절 또는 흡수, 자기, 효소적 활성, 매스 분석, 결합 친화도, 흔성화 고주파, 나노크리스탈에 의하여 검출할 수 있는 시그널을 제공한다.
흔성화 반웅 이후에, 흔성화 반웅을 통하여 나오는 흔성화 시그널을 검출한다. 흔성화 시그널은 예컨대, 핵산 시료 또는 프로브에 결합된 표지의 종류에 따라 다양한 방법으로 실시할 수 있다. 예를 들어, 효소에 의해 표지된 경우, 이 효소의 기질을 흔성화 반웅 결과물과 반웅시켜 흔성화 여부를 확인할 수 있다. 이용될 수 있는 효소 /기질의 조합은, 퍼옥시다아제 (예컨대, 호스래디쉬 퍼옥시다아제)와 클로로나프틀, 아미노에틸카바졸, 디아미노벤지딘, D-루시페린, 루시게닌 (비스 -N- 메틸아크리디늄 니트레이트), 레소루핀 벤질 에테르, 루미놀, 암플렉스 레드 시약 (10-아세틸 -3 ,7-디하이드록시페녹사진), HYR ( p-pheny 1 ened i am i ne- HC1 and pyrocatechol ) , TMB(tetramethylbenzidine) , ABTS(2,2 '— Azine— di [3-ethylbenzthiazol ine sulfonate]), 페닐렌디아민 (0PD) 및 나프를 /파이로닌; 알칼린 포스파타아제와 브로모클로로인돌일 포스페이트 (BCIP), 니트로 블루 테트라졸리움 (NBT), 나프를 -AS-B1- 포스페이트 (naphthol-AS-Bl-phosphate) 및 ECF 기질; 글루코스 옥시다아제와 t-NBT(nitrobhie tetrazolium) 및 m-PMS(phenzaine methosulfate) 등이다. 금 입자로 표지된 경우에는 실버 나이트레이트를 이용하여 실버 염색 방법으로 검출할 수 있다. 따라서, 본 발명의 에탄올 저항성 및 /또는 민감성 효모 유전자의 대규모 동정을 흔성화에 기초하여 실시하는 경우에는, 구체적으로 (i) 상술한 본 발명의 형질전환 효모 균주 및 정상 효모로부터 유래한 핵산 시료를 마이크로어레이 기판에 고정된 프로브와 흔성화시키는 단계; (ii) 상기 흔성화 반응 발생 여부를 검출하는 단계를 포함한다. 흔성화 과정에 의한 흔성화 시그널의 세기를 분석함으로써, 에탄올 저항성 및 /또는 민감성 효모 유전자 여부를 판단할 수 있다. 즉, 시료에서의 흔성화 시그널이 정상 시료 (정상 세포)보다 1.5 배 이상의 증가 배수로 검출되면 에탄올 저항성을 상향-조절하는 유전자로 판단되고, 상기 시그널이 2 배 이상의 감소 배수로 검출되면 에탄을 저항성을 하향-조절하는 유전자로 판단된다.
본 발명의 바람직한 구현예에 따르면, 본 발명의 마이크로어레이를 통해 검출된 에탄올 저항성 유전자는 ALD3< i69C USV YPL230T) , FMPM YDR070O , RGI1{ YER067 ) , ΒΤΝ2{ YGR142 ) , RTC YHR087T) , HSP3(K YCR021O , Cm{ YGR088W) , AIMl YHL021O , STF2{ YGR008O , GPH YPR160V) , YFR017C, S0L4{YGR248V) , PHM8{YER037W) , HSP12 YFLOUf) , SSA4{ YER103T) , SPIl{YER150f) 또는 0M45 L136i)^ 포함하지만, 이에 한정되는 것은 아니다.
본 발명의 바람직한 구현예에.따르면, 본 발명의 마이크로어레이를 통해 검출된 에탄올 민감성 유전자는 RAX2 YLR084C> , BSC YDL037O , PRM YDL039O , WS1{ Y0R359f) , RRN7{ YJL025H , VEL1{ YGL258f) , YGR035C 또는 Y0R387C를 포함한다.
본 발명의 바람직한 구현예에 따르면, 본 발명의 마이크로어레이를 통해 검출된 에탄을 저항성 및 /또는 민감성 효모 유전자의 발현량을 추가적으로 측정함으로써 재확인할 수 있다. 발현량의 측정은 당업계에 공지된 다양한 방법을 통해 실시될 수 있다. 예를 들어 , RT-PCR(Sambrook 등, Molecular Cloning. A Laboratory Manual , 3rd ed. Cold Spring Harbor Press(200D), 노던 블롯팅 (Peter B. Kaufma et al. , Molecular and Cellular Methods in Biology and Medicine, 102-108, CRC press) 또는 인 시투 (/ situ) 흔성화 반응 (Sambrook 등, Molecular Cloning. A Laboratory Manual, 3rd ed. Cold Spring Harbor Press(2001))을 이용하여 실시할 수 있다.
RT-PCR 프로토콜에 따라 실시하는 경우에는 우선, 본 발명의 형질전환된 효모 균주 및 형질전환되지 않은 정상 효모로부터 총 RNA 를 분리한 다음, 올리고 dT프라이머 및 역전사효소를 이용하여 제 1쇄 cDNA를 제조한다. 이어, 제 1 쇄 cDNA 를 주형으로 이용하고, 에탄을 저항성 및 /또는 민감성 효모 유전자-특이적 프라이머 세트를 이용하여 PCR 반웅을 실시한다. 그런 다음, PCR 증폭 산물을 전기영동하고, 형성된 밴드를 분석하여 상술한 마이크로어레이 데이터와 비교함으로써 에탄올 저항성 및 /또는 민감성 효모 유전자의 발현량 변화를 재검증한다. 본 발명의 다른 양태에 따르면, 본 발명은 상술한 돌연변이된 SPT15 유전자 카피를 효모 균주에 도입하는 단계 및 /또는 효모 세포의 지놈 DNA의 내인성 SPT15 유전자를 돌연변이시키는 단계를 포함하는 에탄을-저항성 효모 균주 제조방법을 제공한다.
본 발명의 또 다른 양태에 따르면, 본 발명은 상술한 뉴클레오타이드 서열 (서열목록 제 11 서열 내지 제 28 서열)을 효모 균주에 도입하는 단계 및 /또는 효모 세포의 지놈 DNA 의 상술한 뉴클레오타이드 서열을 과다발현시키는 단계를 포함하는 에탄올-저항성 효모 균주 제조방법을 제공한다.
본 발명의 또 다른 양태에 따르면, 본 발명은 상술한 돌연변이된 SPT15 유전자가 삽입된 효모 균주를 에탄올로 대사될 수 있는 하나 이상의 기질을 포함하는 배양배지에서 배양하는 단계를 포함하는 에탄을 생산방법을 제공한다.
본 발명의 방법은 상술한 본 발명의 돌연변이된 SPT15 유전자 또는 상술한 뉴클레오타이드 서열 (서열목록 제 11 서열 내지 제 28 서열)로 형질전환된 효모 균주를 유효성분으로 포함하기 때문에, 둘 사이에 중복된 내용은 중복 기재에 따른 본 명세서의 과도한 복잡성을 피하기 위하여 그 기재를 생략한다. 본 발명의 바람직한 구현예에 따르면, 상기 에탄올로 대사될 수 있는 기질은 C6 당 (sugars)을 포함하고, 본 발명의 보다 바람직한 구현예에 따르면, 상기 C6 당은 글루코오스를 포함하지만, 이에 한정되는 것은 아니다ᅳ
본 발명은 상술한 돌연변이된 SPT15 유전자 또는 상술한 뉴클레오타이드 서열 (서열목록 제 11 서열 내지 제 28 서열)을 포함하는 재조합 백터 또는 그의 전사체에 의해 감염된 세포 및 유전자 도입에 의한 형질전환된 세포를 제공한다. 또한, 본 발명은 상술한 돌연변이된 SPT15 유전자 또는 상술한 뉴클레오타이드 서열 (서열목록 제 11 서열 내지 제 28 서열)을 포함하는 재조합 백터 또는 상술한 돌연변이된 SPT15 단백질 또는 상술한 뉴클레오타이드 서열로 인코딩되는 단백질에 의해 형질전환된 형질전환체를 제공한다.
본 발명의 재조합 백터는 서열목록 제 6 서열 내지 제 10 서열 또는 제 29 서열 내지 제 46 서열의 아미노산 서열을 코딩하는 뉴클레오타이드 서열 또는 이의 상보적인 뉴클레오타이드 서열을 포함한다. 본 발명의 백터는 전형적으로 클로닝을 위한 백터 또는 발현을 위한 백터로서 구축될 수 있다. 또한, 본 발명의 백터는 원핵세포 및 진핵세포를 숙주로 하여 구축될 수 있다. 예를 들어, 원핵세포는 박테리아 세포 및 고세균을 포함하며, 진핵세포는 효모세포, 포유동물세포, 식물세포, 곤층세포, 줄기세포 및 곰팡이를 포함하고, 가장 바람직하게는 효모세포이다.
바람직하게는, 본 발명의 재조합 백터는 ( i ) 상술한 본 발명의 발현대상물질을 인코딩하는 뉴클레오타이드 서열; (ii) 상기 ( i )의 뉴클레오타이드 서열에 작동적으로 연결되며 동물세포에서 작용하여 RNA 분자를 형성시키는 프로모터를 포함하며, 보다 바람직하게는 ( i ) 상술한 본 발명의 서열목록 제 6서열 내지 제 10서열 또는 제 29서열 내지 제 46 서열의 아미노산 서열을 코딩하는 뉴클레오타이드 서열 또는 이의 상보적인 뉴클레오타이드 서열; (ii) 상기 ( i )의 뉴클레오타이드 서열에 작동적으로 연결되며 동물세포에서 작용하여 RNA분자를 형성시키는 프로모터; 및 (iii) 동물세포에서 작용하여 상기 RNA 분자의 3'-말단의 폴리아데닐화를 야기시키는 3'-비-해독화 부위를 포함하는 재조합 발현백터를 포함한다. 바람직하게는, 상술한 발현대상물질은 돌연변이된 SPT15 단백질 또는 상술한 뉴클레오타이드 서열로 인코딩되는 단백질, 보다 바람직하게는 서열목록 제 6 서열 내지 제 10 서열로 이루어진 돌연변이된 SPT15 단백질 또는 제 29 서열 내지 제 46 서열로 이루어진 단백질을 포함하지만, 이에 한정되는 것은 아니다.
본 명세서에서 용어 "프로모터" 는 코딩 서열 또는 기능적 RNA 의 발현을 조절하는 DNA 서열을 의미한다. 본 발명의 제조합 발현백터에서 발현대상물질 -코딩 뉴클레오타이드 서열은 상기 프로모터에 작동적으로 연결된다. 본 명세서에서 용어 "작동적으로 결합된 (operatively linked)" 은 핵산 발현 조절 서열 (예: 프로모터 서열, 시그널 서열, 또는 전사조절인자 결합 위치의 어레이)과 다른 핵산 서열 사이의 기능적인 결합을 의미하며, 이에 의해 상기 조절 서열은 상기 다른 핵산 서열의 전사 및 /또는 번역을 조절하게 된다.
본 발명의 백터가 원핵 세포를 숙주로 하는 경우에는, 전사를 진행시킬 수 있는 강력한 프로모터 (예컨대, tac 프로모터, lac 프로모터, lac UV5 프로모터, Ipp 프로모터 , pL x 프로모터, pR x 프로모터, rac5 프로모터, amp 프로모터, recA 프로모터, SP6 프로머터, trp 프로모터, T7 프로모터, 등), 해독의 개시를 위한 라이보좀 결합 자리 및 전사 /해독 종결 서열을 포함하는 것이 일반적이다. 보다 더 바람직하게는, 본 발명에서 이용되는 숙주 세포는 E. coli이며 , 가장 바람직하게는 E. coli DH5a이다. 또한, 숙주 세포로서 E. coli 가 이용되는 경우, E. coli 트립토판 생합성 경로의 프로모터 및 오퍼레이터 부위 (Yanofsky, C, J. Bacteriol. , 158: 1018-1024(1984)) 그리고 파아지 λ의 좌향 프로모터 (pL x 프로모터, Herskowitz, I. and Hagen, D., Ann. Rev. Genet., 14: 399-445(1980))가 조절 부위로서 이용될 수 있다. 한편, 본 발명에 이용될 수 있는 백터는 당업계에서 종종 사용되는 플라스미드 (예: pRS316, pSClOl, ColEl, pBR322, PUC8/9, pHC79, pUC19, pET 등), 파지 (예: gt4. λΒ, λ -Charon, λ Δζΐ 및 M13 등) 또는 바이러스 (예: SV40 등)를 조작하여 제작될 수 있다.
또한, 본 발명의 재조합 백터가 진핵세포, 바람직하게는 효모 세포에 적용되는 경우, 이용될 수 있는 프로모터는, 본 발명의 발현대상물질의 전사를 조절할 수 있는 것으로서, 효모 세포에서 유래된 프로모터, 포유동물 바이러스로부터 유래된 프로모터 및 포유동물 세포의 지놈으로부터 유래된 프로모터를 포함하며, 예컨대, 효모 (5. cerevisiae) GAPDHCGlyceraldehyde 3-phosphate dehydrogenase) 프로모터, 효모 (5. cerevisiae) GAL1 내지 GAL10 프로모터, ^— Pichia pastor is) A0X1 또는 A0X2 프로모터, CMV(cyt omega lo virus) 프로모터, 아데노바이러스 후기 프로모터, 백시니아 바이러스 7.5K 프로모터, SV40 프로모터, HSV 의 tk 프로모터, RSV 프로모터, EF1 알파 프로모터, 메탈로티오닌 프로모터, 베타—액틴 프로모터, 인간 IL-2 유전자의 프로모터, 인간 IFN 유전자의 프로모터, 인간 IL-4 유전자의 프로모터, 인간 림포록신 유전자의 프로모터 및 인간 GM-CSF 유전자의 프로모터를 포함하나, 이에 한정되는 것은 아니다. 가장 바람직하게는, 효모 GAPDH프로모터이다.
바람직하게는 본 발명에 이용되는 발현 컨스트럭트는 폴리 아네닐화 서열을 포함한다 (예: 소성장 호르몬 터미네이터 및 SV40 유래 폴리 아데닐화 서열).
본 발명의 백터를 숙주 세포 내로 운반하는 방법은 당업계에 공지된 다양한 방법들을 이용할 수 있으며, 예를 들어 숙주 세포가 원핵 세포인 경우, CaCl2 방법 (Cohen, et al., Proc. Natl. Acac. Sci. USA, 9:2110- 2114(1973)), 하나한 방법 (Cohen, et al . , Proc. Natl. Acac. Sci. USA, 9:2110-2114(1973); 및 Hanahan, D., J. Mo J. Biol., 166 :557-580(1983)) 및 전기 천공 방법 (Dower, et al. , Nucleic. Acids Res. , 16:6127- 6145(1988)) 등에 의해 실시될 수 있으며, 진핵세포인 경우, 전기천공법 (electroporation), 리포펙션 (lipofection), 마이크로인젝션, 유전자총 (particle bombardment ) , YAC 에서 이용되는 효모 구형질체 /세포 융합, 식물세포에서 이용되는 아그로박테리움-매개된 형질전환 등을 이용하여 실시할 수 있다.
본 발명의 바람직한 구현예에 따르면, 본 발명에 이용되는 발현대상물질-인코딩 뉴클레오타이드 서열은 "프로모터-발현대상물질 인코딩 뉴클레오타이드 서열 -폴리 아데닐화 서열" 의 구조를 갖는다.
본 발명의 백터 시스템은 당업계에 공지된 다양한 방법을 통해 구축될 수 있으며, 이에 대한 구체적인 방법은 Sambrook et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press(2001)에 개시되어 있으며, 이 문헌은 본 명세서에 참조로서 삽입된다. 본 발명의 재조합 발현백터를 이용하여 형질전환된 효모 세포의 제조는 당업계에 통상적으로 공지된 유전자 전이방법에 의해 실시될 수 있다. 예를 들어, 전기천공법 (electroporation), 리튬 아세테이트 /DMS0 방법 (Hill, J., et al. , (1991), DMSO-enhanced whole cell yeast transformation. Nucleic Acids Res. 19, 5791.), 리포좀—매개 전이방법 (Wong et al. , 1980), 레트로바이러스 -매개 전이방법 (Chen, et al ·, (1990), J. Reprod. Fert. 41:173-182; Kopchick, et al . , (1991) Methods for the introduction of recombinant DNA into chicken embryos . In Transgenic Animals, ed. N.L. First & F.P. Haseltine, pp.275-293, Boston; But t erwor t h-He i nemann; Lee, M.-R. and Shuman , R. (1990) Proc. 4th World Congr . Genet . Ap l. Livestock Prod. 16, 107-110) 등을 이용하여 실시한다.
한편, 본 발명의 발현대상물질 단백질을 유효성분으로써 유전자 도입에 이용하기 위해 발현대상물질 단백질이 효과적으로 세포 내로 침투할 수 있어야 한다. 예를 들어, 상술한 돌연변이된 SPT15 단백질 (서열목록 제 6 서열 내지 제 10 서열) 또는 상술한 단백질 (서열목록 제 29 서열 내지 제 46 서열)을 유효성분으로 이용하는 경우, 단백질 운반 도메인 (PTD: protein transduction domain)을 돌연변이된 SPT15 단백질 또는 상술한 단백질에 부착시키는 것이 바람직하다. 즉, 유효성분으로서 본 발명의 돌연변이된 SPT15 단백질 또는 상술한 단백질을 세포 내로 도입 (permeable peptide transduction)하기 위하여 단백질 운반 도메인 (PTD: protein transduction domain)을 상기 단백질과 융합하여 융합 단백질을 만든다. 상기 단백질 운반 도메인 (PTD)은 라이신 /아르기닌 등 기본 아미노산 잔기들을 주로 포함하고 있어서 이와 융합된 단백질들을 세포막을 투과하여 세포내로 침투시키는 역할을 한다. 상기 단백질 운반 도메인 (PTD)은 바람직하게는 HIV— 1 Tat 단백질, 드로소필라 안테나페디아의 homeodomain, HSV VP22 전사조절단백질, vFGF 에서 유도된 MTS 펩타이드, 페네트라틴, 트랜스포탄 또는 Pep-1 펩타이드에서 유래된 서열을 포함하나, 이에 한정되는 것은 아니다. 본 발명의 특징 및 이점을 요약하면 다음과 같다:
(a) 본 발명은 에탄올-저항성에 관여하는 유전자 및 이를 이용하여 형 질변형된 효모 균주 , 그리고 이의 용도에 관한 것이다.
(b) 본 발명의 효모 균주는 고농도 에탄올, 바람직하게는 6-15% 에탄을에서 성장할 수 있는 효모 균주이다 .
(c) 본 발명의 효모 균주는 고 삼투 조건, 바람직하게는 30-40% 글루코오스 또는 수크로오스에서 성장할 수 있는 효모 균주이다.
(d) 고농도 글루코오스 및 에탄을에 내성을 보이는 균주를 발명함으로써 보다 효율적 인 에탄올 생산에 유용하게 사용될 것이며, 또한 바이오에탄올 생산공정 시 발생하는 여 러 스트레스에 저항성을 가진 고효율의 에탄올 생성능의 슈퍼균주로서 실용성을 가질 것이다.
【도면의 간단한 설명】
도 1 은 5 개의 ETS1-5 의 증가된 에탄올 저항성을 보여주는 스팟 어세이 결과이다 . 세포를 YSCD-Ura 또는 YPD 액체 배지에서 ODgoo 값 1 까지 성장시킨 후 10 배씩 연속적으로 희석하였다 . 배양된 세포의 분취 액 (5 ^)을 적합한 농도의 에 탄올을 포함하는 YSCD— Ura 또는 YPD 플레이트 배지에 스팟팅하고, 플레이트를 30°C에서 4-6 일 동안 배양시 켰다. 대조군 스트레인들은 부모 플라스미드 (parental plasmids)를 L3262(C-L3262) 및 BY474UC-BY4741)에 형 질전화시켜 제조하였다 . 도 1A 는 YSCD—Ura 플레이트에서 ETS1-5 의 스팟 어세이를 실시한 결과이다 . 도 1B 는 ETS1- 5 로부터 회수된 플라스미드를 L3262 및 BY4741 에 다시 형 질전환시켜 각각 rL-ETSl-5 및 rBY-ETSl-5 을 제조하고, YSCD-Ura 플레이트에서 스팟 어세이를 실시하였다. 도 1C 는 YPD 플레이트에서 실시한 ETS2 및 ETS3 의 스팟 어세이 결과이다. 도 1D 는 부모 플라스미드, 및 ETS2 및 ETS3 로부터 회수된 플라스미드를 L3262 의 지놈에 통합시킴으로써, 각각 iL3262 , iETS2 및 iETS3 을 제조하고, YSCD-Ura (위쪽 패널 ) 및 YPD 플레이트 (아래쪽 패널 )에서 스팟 어세이를 실시하였다 .
도 2 는 ETS2 및 ETS3 의 에탄을 민감성을 보여주는 결과이다 . 지시된 시간에 에탄올 층격을 가한 후, C-L3262 , ETS2 및 ETS3 를 12.5%(A) 및 15 (B) 에탄을의 존재 하에서 YSCD-Ura 플레이트에서 2 일 동안 성장시켰다. 상대적인 생존율을 콜로니의 수를 카운팅한 후 ¾ 대조군으로서 표현하였다. 심볼: C-L3262, Δ; ETS2, ■; 및 ETS3, ·. 실험은 세 번에 걸쳐서 (triplicate) 실시하였다.
도 3 은 ETS2 및 ETS3 의 마이크로어레이 데이터 분석 결과이다. 마이크로어레이 분석은 에탄을 스트레스 없이 중간 -로그 기 (mid— log phase)까지 성장된 C-L3262(대조군), ETS2 및 ETS3 로부터 제조된 폴리 (A)+ RNAs 를 이용하여 실시하였다. 2 배 이상의 발현 배수 변화를 보이는 서로 다르게 발현된 유전자들이 클러스터링 (A) 및 벤 도식 (Venn diagram; B)로 프로파일링되었다. 도 3C 는 마이크로어레이 데이터는 Hsp30, Hsp42 및 Hspl04 에 대한 반-정량적 RT-PCR 을 이용하여 재검증한 결과이다. 숫자 1 및 2 는 생물학적으로 서로 독립적으로 두 번에 걸쳐서 실시한 것을 나타낸다.
도 4 는 SGK0 돌연변이체들의 에탄올 민감도를 보여주는 스팟 어세이 결과이다. ETS2 및 ETS3 에서 공통적으로 상향-조절되는 30 개 유전자에 상웅하는 개별 클론들을 BY4741 SGK0 라이브러리로부터 얻었다. 도 1 과 마찬가지로, 스팟 어세이를 실시하였다. 부모 스트레인인 BY4741 은 대조군으로서 이용하였다. 세포를 액체 YPD 에서 배양시켜 0%, 6%, 8%, 10% 및 12¾> 에탄올을 포함하는 고형 YPD 에 스팟팅한 후, 30°C에서 4-6 일 동안 배양시켰다.
도 5 는 iETS2 및 iETS3 의 에탄올 저항성 스트레인들의 발효 능력을 관찰한 결과이다. 지수적으로 성장하는 대조군 (iL3262, Δ) 및 2 개의 저항성 스트레인, iETS2(國) 및 iETS3(«) 세포를 수득하여 100 ml 의
YPD30E6[30% 글루코오스 및 6%(v/v) 에탄올로 보층된 YP]로 옮겼다. 시작 세포 밀도는 0.3 의 0D600 값으로 조정하였다. 세포를 120 rpm으로 흔들면서 3CTC에서 배양하였다. 시료를 12 시간 마다 취한 후, 세포 성장 (A) 및 에탄올 농도 (B)를 각각 세포 밀도 측정 및 HPLCOiigh-pressure liquid chromatography)를 이용하여 결정하였다. 실험은 두 번에 걸쳐서 (triplicate) 실시하였다.
도 6 은 서로 다른 글루코오스 농도 하에서 ETS3 의 성장률을 관찰한 결과이다. 다양한 농도의 글루코오스 (A)와 수크로오스 (B; 각각 20%, 30% 및 4OT)를 함유한 YPD 배지에서 삼투-저항성 스트레인, ETS3(國) 및 대조군 (Sc L3262, □)세포를 120 rpm으로 흔들면서 30°C로 배양하였다. 시료를 지정된 시간마다 취한 후, 세포 밀도를 측정하여 세포 성장를을 결정하였다. 실험은 세 번에 걸쳐서 (triplicate) 실시하였다.
도 7 은 삼투-저항성 스트레인인 ETS3 의 발효 능력을 관찰한 결과이다. 고농도의 글루코우스 (50%)를 함유한 YPD 배지에서의 ETS3(«) 및 대조군 (Sc L3262; O)의 세포 성장과 에탄을 생성을 각각 나타내었다. 세포를 120 rpm 으로 흔들면서 30°C로 배양하였다. 각 시료를 지정된 시간 마다 취한 후, 세포 성장 (A, C) 및 에탄을 생성능 (B, D)을 각각 측정하였다. 대표적인 결과가 제시된다.
【실시예】
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어서 자명할 것이다. 실시예 실험재료 및 실험방법
효모 균주 및 성장조건
사카로미세스 세레비지에 (5. cerevisiae) L3262(MT-a, ura3-52 leu2-3 112 his4-34; 생명공학 연구소, 대전) 및 ΒΥ4741θΚ4Γα his3A 1 leu2A 0 met 15 Δ 0 wra^ li?)를 발현 숙주 (transformation recipients)로 이용하였다. 필수적이지 않은 반수체 (nonessential haploid) 사카로미세스 세레비지에 결실 라이브러리는 허원기 박사 (Seoul National University, Seoul , Korea)로부터 친절하게도 제공되었으며 , 동정된 유전자의 확인에 이용되었다. 특별한 언급이 없는 한, 효모 세포는 비- 선택적 증식 (propagation )을 위해서 YPD 배지 (1% 박토 효모 추출물, 2% 박토 펩톤 및 2w/v% 글루코오스, 그리고 고형 플레이트를 위해서 15¾> 박토- 아가를 추가적으로 포함; Difco, MI)에서 30°C로 배양하거나 또는 선택적 증식을 위해서 효모 합성 완전 배지 (YSCD medium; 아미노산이 없는 0.67% 효모 질소 베이스, 아미노산 보층 흔합물 및 2 > 덱스트로오스, 그리고 고형 플레이트를 위해서 1.5% 박토-아가를 추가적으로 포함; MP, OH)에서 30°C로 배양하였다. 플라스미드 구축을 위해, pRS316 백터 (본 연구소 소장; CEN— 기반된 백터, 사카로미세스 세레비지애 프로모터, 선택마커)를 발현 백터로 이용하였으며 , E. coli DH5a (Stratagene, CA)를 숙주로 이용하여 100 mg/1 의 암피실린 (Sigma— Aldrich, M0)이 보층된 루리아— 베르타니 배지 (LB): Difco, MI)에서 37 °C 배양시켰다. 분자생물학적 방법
플라스미드 제조, 클로닝 및 시뭔싱은 이전에 기재된 바와 같이 실시하였다 (Sambrook, 2001). E.coli DH5 a (Stratagene, USA)를 플라스미드 제조를 위한숙주로사용하였다.
RT-PCR(Rever se transcript ionᅳ polymerase chain reaction) 및 PCR
RT를 위해, 총 RNA 를 지수적으로 성장하는 세포로부터 추출하였다. 일차 가닥 cDNAs 를 제조자가 추천하는 바와 같이 임의적 핵사머 및 200 U 의 M— MLV 역전사 효소 (Promega, Madison, WI, USA)를 이용하여 2 //g의 총 RNA 를 전사하여 합성하였다. PCR 에 이용된 올리고뉴클레오타이드는 표 1 에 기재되어 있다. 증폭 조건은 다음과 같다: 95°C, 1 분; 55-60°C, 1 분; 및 72°C, 증폭될 DNA 길이에 따라 적합한 연장 시간. RT-PCR 및 일반 PCR 은 각각 20 사이클 및 30 사이클을 수행하였다. 필요하다면, PCR 산물을 젤 추출에 의해 정제하여 pGEM-T easy vector (Promega)에 클로닝하고 시뭔싱 ((주 )Bionics, Seoul)하였다.
STP15돌연변이 라이브러리 구축
야생형 SPT15(SPT15wt)의 전체 OR open reading frame)를 지놈 DNA 를 템플레이트로 이용하여 센스 프라이머 (5' - gt agggatcc t gaga t ggccga t gaggaacgt t -3 ' , 밑줄 친 서열은 Ba N[ 위치) 및 안티센스 프라이머 (5' -gt aggaattct cacat 1111 ct aaat t cac 11 ag-3' , 밑줄 친 서열은 Ecc 위치)로 PCR-증폭시켜 pGEM— T easy 백터에 클로닝하여 pT- SPT15 를 제조하였다. SPT15 돌연변이 라이브러리는 pT-SPT15 를 템폴레이트로 GeneMorph II 임의 돌연변이유발 키트 (Stratagene, La Jolla, CA, USA) 및 상술한 프라이머를 이용하여 제조하였다. PCR 산물을 Bai 및 EcoRi 로 절단하여 pRS316—유래된 플라스미드인 pRS316-GCYH2gR 에 클로닝하혔으며, 클론된 유전자들은 글라이세르알데하이드 -3-포스페이트 디하이드로게나제 프로모터 및 갈락토오스 -1-포스페이트 종결자 (GAL7T)의 조절 하에 위치한다. 결과적인 플라스미드들을 E.coli DH5a에 형질전화시켜 30°C에서 배양함으로써, 4X106 의 총 콜로니 수를 가지는 SPT15 돌연변이체에 대한 일차 라이브러리를 제조하였다. 임의적으로 선택된 20 개의 콜로니들의 시뭔싱 결과, 분자-기반돤 돌연변이 생성률이 70%로 측정되었다. 돌연변이는 14 개의 콜로니에서 거의 하나 이상, 대부분 3-5 위치에서 발견되었으며, 나머지는 야생형과 동일하였다. 증폭 및 대규모 제조를 거쳐, 라이브러리 플라스미드 (500 /g)7} S. 세레비지에 L3262 로 형질전환되어 고형 YSCD-Ura 에서 25°C로 배양시켰다. 전체적인 효모 콜로니의 수는 약 5X106개로, 1 ;g의 DNA 당 약 4X106의 콜로니 형성 단위 (CFU)의 형질전환 효율을 나타냈다. 모든 콜로니들을 15 ml YSCD-Ura 로 도포된 플레이트 표면을 긁어서 수득하여 SPT15 돌연변이체에 대한 효모 라이브러리를 제조하였다. 25°C에서 세포수를 4 배 증식시킨 후, 사용할 때까지 세포 현탁액의 분취액 (aliquots)을 2 글라이세를의 존재 하에서 -80°C에 저장하였다. 효모 형질전환
효모 형질전환을 위한 모든 플라스미드들을 RNA 절단 없이 수작업으로 제조하였다. DNA 농도는 알려진 농도의 대조군 DNA 의 밴드 강도와 비교하여 측정하였다. DNAs 및 RNAs 의 흔합물을 이전에 기술된 바와 같이 효모 형질전환에 사용하였다 (Hirasawa, et al., 2007) . 스팟 어세이 0D600 값 1 로 배양된 세포의 분취액 (5 /£)을 10 배씩 연속적으로 희석하여 적합한 농도의 에탄을을 포함하는 고형 합성 배지 또는 풍부 배지에 스팟팅하였다. 플레이트를 30°C에서 4-6일 동안 배양시켰다. 에탄올 민감성 어세이
0D600 값 1 로 배양된 세포를 수득하여 12.5%(v/v) 및 15¾(v/v) 에탄을을 포함하는 신선한 YSCD-Ura 배지에 동일하게 분주하고 30°C에서 4- 6 시간 동안 배양시켰다. 적절한 시간에 분취액올 회석하여 고형 YPD 플레이트에 플레이팅하였다. 세포 생존율을 시간에 따라 측정하고 상대적인 CFU수로 표현하였다. 지놈 통합 (Genomic integration)
돌연변이된 SPT15 유전자를 통합용 백터 pRS406 에 클로닝하여 URA3 내의 유일한 ?ai 위치를 이용하여 선형화시킨 후 사카로미세스 세레비지에 L3262로 형질전환시켰다. 또한, 클론을 포함하지 않는 플라스미드 (inset- free plasmid)를 유사하게 처리하여 대조군 스트레인인 iL3262 를 제조하였다. 지놈 통합은 PCR에 의해 확인하였다. 전사체 프로파일 (Transcriptome profiling) 및 데이터 분석
전사체 프로파일을 위해 사카로미세스 세레비지에 30K 올리고 마이크로어레이 (MYcroarray, Ann Arbor , MI, USA)를 이용하였다. 이전에 기술된 바와 같이 , 총 RNA를 지수적으로 성장하는 세포로부터 추출하였으며, 마이크로어레이 분석을 위한 RNA QC(quality control)를 실시하였다 (Park, et al., 2007) . 아미노알릴 -dUTP 가 삽입된 cDNAs 이 아미노알릴 포스트 DNA 표지 키트 (GeneChem, Dae j eon, Korea) 및 Superscript 역전사 효소 (Invitrogen, Carlsbad, CA, USA)를 이용하여 40-50 /g의 총 RNA로부터 합성되었다. 합성된 cDNA 는 NHS-에스테르 Cy 다이로 표지되어 흔성화에 이용되었다. 흔성화된 슬라이드는 SSC 완층액으로 세척한 후, ScanArray 5000 스캐너 (Hewlett-Packard, Palo Alto, CA, USA)로 스캐닝되었다. 일차 (raw) 마이크로어레이 데이터는 표준화를 위한 플랫품-비의존성 Java 수단인 Ar r ayNorm (http: //genome .tugraz.at/) 및 통계 분석을 이용하여 분석하였다 (Pieler, et al . , 2004). 평균적으로 두 배 이상으로 높게 변화하는 유전자들에 대한 클러스터링은 Cluster
3.0(http://rana. lbj .gov/EisenSoftware.htm)올 이용하여 실시하였다. 서로 다르게 발현된 유전자들 간의 기능적 카테고리의 인리치먼트는 MIPS Functional Catalogue(hUp: //mips. gsf.de)를 이용하여 분석하였다. 특정 유전자 기능은 사카로미세스 지놈 데이터베이스 (ht t p: //www . yeastgenome . org)에 기반하였고 전사인자 결합 위치는 YEATRACT(httt>://丽. yeastact. com/index. php)로 분석하였다. DNA 마이크로어레이 데이터를 유효화시키기 위해, 반-정량적 역전사 PCR 를 마이크로어레이 실험에 이용된 RNA 시료로 이전에 기술된 바와 같이 실시하였다 (Oh, et al., 2004) . 발효
지수적으로 성장하는 세포를 수득하여 100 ml 의 YPD30E6[30% 글루코오스 및 6%(v/v) 에탄올로 보충된 YP]로 옮겼다. 시작 세포 밀도는 0.3 의 ODeoo 값으로 조정하였다. 세포를 120 rpm으로 흔들면서 30°C에서 배양하였다. 시료를 12 시간 마다 취한 후, 세포 성장 및 에탄을 농도를 각각 세포 밀도 측정 및 HPLC(high-pressure liquid chromatography)를 이용하여 결정하였다. 시료를 60°C로 세팅된 Aminex HPX-87H 컬럼 (Bio- Rad, Hercules, CA, USA)에 로딩하였다. 글루코오스 및 에탄올을 0.5 mM H2SO4 를 이용하여 0.6 ml/분의 유동속도로 용출시켰다. 피크들은 굴절율 (refractory index)에 의해 검출되고 지연시간 (retention time)에 따라 동정되어 표준 곡선에 따라 정량화되었다. 세포 성장은 600 nm 에서 광학밀도를 측정함으로써 모니터링하였다. 실험결과
에탄을-저항성 스트레인들의 동정
고속 스크리닝을 통해 에탄을-저항성을 부여하는 유전자들을 동정하기 위해, 저농도의 에탄올 저항성 백그라운드를 가지는 스트레인을 이용하는 것이 일반적으로 유용하다. 테스트된 여러 사카로미세스 세레비지에 실험실 스트레인들은 대부분의 에탄을 민감하였기 때문에 (결과를 보이지 않음), L3262 를 선택하여 효모 SPT15 돌연변이체 라이브러리를 구축하는 데 이용하였다 . 에탄올 저항성 스트레인의 스크리닝을 위해, 5 X 106 CFU 의 효모 라이브러 리 스탁의 분취 액을 12.5% 또는 15% 에탄올이 첨가된 고형 YSCD-Ura 배지에 플레이 팅하였다 . 에탄올 증발을 억제하기 위해 플레이트를 밀봉한 후 30°C에서 배양시 켰다. 10 일 후, 12.5% 또는 15¾> 에탄을의 존재 하에서 각각 9 개 및 6 개의 콜로니가 나타났다 . 15 개 콜로니의 에탄을 저항성을 15% 에탄올까지 포함하는 고형 YSCD-Ura 배지에서 스팟 어세이로 조사하였다 . 그 결과, 5 개의 에탄올 저항성 스트레인들 (ETS; ETS1-5)를 얻었다 . 모든 5 개의 스트레인들은 합성 배지 하의 15% 에탄올에 저항성을 가진 반면에, 대조군은 1 를 초과하는 에탄올 농도에 저항성을 가지지 않았다 (도 1A) .
증가된 에탄올 저항성 이 돌연변이된 SPT15 에 의해 부여되는 지 여부를 확인하기 위해, 플라스미드들을 ETS1-5(SPT15 의 돌연변이된 대 립형질들에 대해 각각 pSPT15-Ml , -M2, -M3, -M4 및 -M5)로 회복시켰다. 상술한 플라스미드들이 개별적으로 L3262 및 By4741 로 재도입되어 각각 rL_ ETS1-5 및 rBY-ETSl-5 가 제조되었다. 대조군 스트레인을 구축하기 위해, SPT15wt 를 포함하는 pRS316— GCYH2gR 가 L3262 및 By 4741 로 재도입되어 각각 C-L3262 및 C-By4741 가 제조되 었다. 합성 배지 상에서 실시된 스팟 어세이의 경우, rL-ETSl-5 는 ETS1-5 와 동일한 정로도 에탄올 저항성을 나타냈다 (도 IB, 위쪽 패널 ) . 반면에, rBY-ETSl-5 는 17.5% 에탄올과 같은 높은 에탄올에서 저항성을 나타냈다 (도 IB, 아래쪽 패널 ) . 이는 BY4741 이 기본적으로 L3262 보다 더 높은 에탄올 저항성을 보였던 스트레인이 기 때문에 놀라운 현상이 아니다 (결과를 보이지 않음) . 따라서, ETS1-5 의 증가된 에탄을 저항성은 돌연변이된 SPT15 의 효과로 간주할 수 있었다. 다음으로 , 돌연변이를 확인하기 위해 각 플라스미드들을 시 퀀싱하였다 . 표 1 은 각 SPT15 대 립형 질에서 돌연변이된 아미노산을 기 재하고 있다: SPT15-M1 의 경우 , K201Q, G216S 및 Q225Stop; SPT15- M2 의 경우, L76V 및 L175S; SPT15-M3 의 경우 , S42N, C78R, S163P 및 I212N; SPT15-M4 의 경우, F10S 및 M197K; SPT15-M5 의 경우, K15T, W26C 및 G192D.
【표 11 SPT15 대립형질에서 발생된 점 돌연변이
Figure imgf000029_0001
a Chasman et al. (1993)에 기재된 바와 같은 구조 도메인 명칭: H, α- 헬릭스; S, β-쉬트
b N225Sto으로 인한 C-말단에서 16개의 아미노산이 결실됨 . 특히, SPT15-M1 에서의 침묵 돌연변이 (silent mutation)는 C—말단에 16 개의 잔기가 결실된 절단 형태 (truncated version)를 생산하였다. 표 1 에서 볼 수 있듯이, SPT15 0RF 전반에 걸쳐서 퍼져있는 점 돌연변이들은 증가된 에탄올 저항성과 관련된 구조 도메인에 위치하지 않았다. SPT15- M2 만이 유전자 전사 조절에 있어서 더욱 초기에 포함된 Spt3p 와 상호작용하는 도메인에 돌연변이 (L175S)를 포함하였다. 상술한 데이터는 Sptl5p 의 여러 소구역 (subregions)에서의 돌연변이가 에탄올 저항성을 부여한다는 제안과 일치하는데, 이는 Spt3p 이 외에도 전사 기전의 다른 구성성분들과의 상호작용을 통해 이루어질 것으로 추측된다.
도 1B 의 데이터에 따르면, ETS1 은 ETS4 및 ETS5 보다 덜 저항성을 나타냈으며, ETS2 및 ETS3 는 ETS4 및 ETS5 보다 약간 더 (또는 적어도 동일한) 저항성을 나타냈다. 따라서, ETS2 및 ETS3 를 향후 실험을 위해 선택하였다. 특정 유전자의 발현을 위해 이용되는 S. 세레비지에 실험실 스트레인들은 항상 아미노산 생합성에 관계된 효소들을 인코딩하는 많은 유전자들에서 서로 독립적인 돌연변이들을 가지기 때문에 제한된 배지에서 배양되는 경우 성장을 위한 특정 아미노산을 보층할 필요가 있다. 돌연변이된 SPT15 가 아닌 저농도 루이신 보층으로 인해 증가된 에탄올 저항성이 나타날 수 있다는 것이 논쟁의 대상이었다 (Baerends, et al. , 2009). 보다 자세하게는, 세포가 산업적 적용에 적합하지 않은 YPD 복합물 풍부 배지에서 배양된 경우 에탄올 저항성이 파괴되었다. 또한,
ETS2 및 ETS3 의 성장을 위해 루이신 및 히스티딘 보층이 필요하기 때문에, 이들 스트레인들의 증가된 에탄올 저항성이 SPT15 돌연변이에 의한 것이 아닐 수 있다. 따라서, ETS2 및 ETS3 의 에탄을 저항성이 YPD 상의 스팟 어세이로 테스트되었다. 도 1C 에서 볼 수 있듯이, 도 1A 의 데이터에 반하여 ETS2 는 15%에탄올에 민감한 반면에, ETS3는 합성 배지에서 보여진 결과와 유사한 에탄을 저항성을 나타냈다. 하지만, 합성 배지에서 15% 에탄올에 매우 민감하였던 C-L3262 스트렌인은 YPD 상에서 약간의 에탄올 저항성을 가지는 것처럼 보였는데, 이는 풍부 배지에서 에탄올 저항성의 기본 레벨이 합성 배지보다 더 높다는 것을 의미한다. 종합적인 데이터는 ETS3 가 ETS2 보다 YPD 상에서 에탄을에 대한 저항성이 더 크다는 결론과 일치하였다.
발현 상의 세포 -세포 이질성 (heterogeneity)는 실험실 스트레인들에서 에피좀 과다발현으로부터 얻어진 정보가 산업적 적용으로까지 확대된 경우에 직면할 수 있는 문제들 중 하나이다. 이질성은 산업적 적용에서 효모 배양을 위해 임의대로 선택할 수 없는 선택 압력 (selective pressures)의 지속적인 존재에도 불구하고 카피 수를 조절할 수 없음으로 인해 야기된다. 따라서, 선택 압력의 부재 (즉, 염색체로의 통합) 하에서 유전자의 안정적인 발현 및 유지가 매우 바람직하다. 본 발명에서, 본 발명자들은 SPT15-M2 및 -M3 가 L3262 의 지놈에 통합된 스트레인들을 구축하였다: 상웅하는 컨스트럭트를 각각 iETS2 및 iETS3 로 명명하였다. 대조군 스트레인인 iL3262 는 SPT15wt 를 포함하는 플라스미드로 제조하였다. 도 1D 는 YSCD (위쪽 패널) 및 YPD (아래쪽 패널)에서 상기 3 개의 스트레인들의 스팟 어세이 결과를 보여준다. YSCD 에서 iETS2 및 iETS3 의 에탄올 저항성 정도는 YPD 에서와 모두 유사하였다 (도 1C). 즉, YPD 에서 iETS2 및 iETS3 가 YSCD 에서보다 더 높은 에탄을 저항성을 가졌는데, 둘 간의 차이는 15% 에탄올 농도에서 조차도 관찰되지 않았다.
스팟 어세이 결과들을 다시 확인하기 위해, 12.5% 및 15 >에 대한 민감성을 조사하였다. 두 스트레인들의 생존율이 12.5% 및 15% 에탄올 모두에서 대조군에 비해 현저하게 증가하였다 (도 2ᅳ). 12.5% 에탄을에서 50% 생존율 (T50)올 나타내는 시간은 ETS2 및 ETS3의 경우 4.5시간이었으며, 대조군에서는 3.5 시간이었다. 15% 에탄을에서는 Τ50은 ETS2 및 ETS3 의 경우 100 분, 그리고 대조군에서는 40 분으로 더욱 큰 차이가 관찰되었다. 스팟 어세이 데이터와 함께 상술한 데이터는 ETS2 및 ETS3 가 SPT15 돌연변이에 의해 증가된 에탄올 저항성을 가진다는 것을 확증하였다.
증가된 에탄올 저항성을 가진 5 개의 스트레인들은 SPT15 돌연변이체 라이브러리 스크리닝을 통해 얻어졌다. 플라스미드들이 이들 스트레이들로부터 회복되어 라이브러리 구축 (L3262) 및 다른 스트레인 (BY4741)에 이용된 스트레인에 다시 형질전환되었다. 또한, 새롭게 구축된 모든 스트레인들도 제한된 배지에서 증가된 에탄올 저항성을 나타냈다. ETS2 및 ETS3의 증가된 에탄올 저항성은 복합 풍부 배지에서도 유지되었기 때문에, 이전에 논쟁 (Baerends, et al., 2009)과 같은 증가된 에탄을 저항성이 특정 SPT15 돌연변이체 대립형질에 의한 루이신 섭취 및 /또는 이용의 활성화에 의해 부여된다는 가능성을 배제하였다. ETS2 및 ETS3 의 증가된 에탄올 저항성은 에탄을 민감성에 따른 에탄을 충격에 의해 확인되었다. 증가된 에탄올 저항성은 2 개의 통합된 스트레인들에서 추가적으로 관찰되었는데, ETS2 및 ETS3 로부터 유래된 이들 SPT15 돌연변이체 대립형질들은 L3262 지놈 상에 통합되었다. 에탄올-저항성 돌연변이체 스트레인들의 전사체 프로파일 분석
본 발명자들은 ETS2 및 ETS3 의 증가된 에탄을 저항성을 책임지는 유전자들의 발현 레벨이 SPT15 돌연변이에 의해 조절되는가 여부에 관심을 가졌다. 이를 위해, YSCD-Ura 에서 초기 -로그 기 (early— log phase)로 성장된 대조군 C-L3262, ETS2 및 ETS3 세포들로부터 추출된 총 RNAs 를 이용하여 전사체 프로파일에 대한 DNA 마이크로어레이를 실시하였다. 두 번에 걸쳐서 마이크로어레이 실험을 실시한 후, 발현 배수의 변화를 평균화하였다. 일차 데이터가 접근번호 GSE23965 로 G KGene Expression Omnibus)에 등록되었다. 대조군과 비교하여 발현 배수 변화 (fold change)가 두 배보다 크게 변화한 유전자들의 클러스터링은 ETS2 와 ETS3 간의 서로 다른 발현 패턴으로 나타났는데, 이는 전반적인 전사 상에 SPT15의 다른 돌연변이들의 효과를 반영한다 (도 3A). ETS2의 경우, 49개 및 11 개의 유전자들이 각각 상향 _ 및 하향-조절되는 반면에, ETS3 에서는 79 개 및 21 개의 유전자들이 각각 상향- 및 하향 -조절되었다 (도 3B). ETS2 와 ETS3 는 34 개의 상향-조절된 유전자들 및 8 개의 하향-조절된 유전자들을 공유하였다 (도 3B). 마이크로어레이 데이터를 검증하기 위해, 컷오프 (cutoff) 값 이상의 HSP30 및 HSP42, 그리고 컷오프 값 이하의 HSP104 의 실제 발현 레벨을 RT-PCR 로 조사하였다. 마이크로어레이 데이터에 따르면, HSP30, HSP42 및 HSP104 가 ETS2 에서는 각각 5.7 배, 4.5 배 및 1.7 배 상향-조절되었으며, ETS3 에서는 각각 6.3 배, 4.1 배 및 1.8배 상향-조절되었다. 상술한 유전자들의 증가 배수는 RT-PCR 데이터와 일치하였다 (도 3C).
다음으로, 공통적으로 상향- 및 하향-조절된 유전자들을 지시된 기능에 기반하여 분류하였다. 상향-조절된 유전자들의 기능은 스트레스 반웅 및 단백질 폴딩 (11 개의 유전자들); 펜토오스 -포스페이트 경로, 세포벽 및 운반 (각각 2 개의 유전자들); 에너지 저장의 대사과정 및 에너지 발생 (1 개의 유전자); 및 분류되지 않는 단백질들 (15 개의 유전자들)을 포함하였다 (표 2 및 표 3).
【표 2】
에탄을 스트레스의 부재 하에서 에탄올 저항성 스트레인인 ETS2 및 ETS3에서 공통적으로 상향-조절된 유전자들의 리스트.
Figure imgf000032_0001
SDP1 2.0 1.3 1.8 1.6 3 0 2 0
SSA4 1.0 1.7 1.4 2.0 3 1 1 1
TSL1 1.2 1.2 1.1 1.9 7 0 1 2
YJL144W 3.7 2.3 3.4 2.7 1 1 2 2
¾토오스-포스페이트경로
PGM2 1.7 1.2 1.7 2.1 7 1 0 1
SOU 1.9 1.5 1.6 1.9 1 0 6 0 세포벽
SPI1 2.0 1.3 1.8 1.6 3 1 2 1
0SW2 1.2 1.0 1.9 1.40 0 1 2 1 운반
PIC2 1.5 1.1 1.4 1.1 1 0 2 0
ΒΊΝ2 2.9 3.1 2.9 3.5 2 0 1 0 에너지 저장의 대사과정
GP1 1.6 1.3 1.2 2.1 3 1 0 1 에너지 발생
STF2 1.7 1.2 1.8 1.4 2 1 1 2 분류되지 않는 단백질들
AIM17 2.4 1.0 1.8 1.9 3 0 2 2
FMP16 1.2 1.3 1.0 1.6 1 1 0 0
0M45 1.4 1.0 1.0 1.5 3 1 4 3
PM8 1.5 1.6 1.6 1.0 4 0 2 0
RTC3 2.4 2.1 2.1 1.6 4 1 0 0
RTN2 3.4 1.7 1.6 2.4 1 0 2 0
USV1 2.4 1.0 1.8 1.7 6 1 0 4
RGI1 3.3 1.1 3.1 2.2 4 1 4 3
YBL029C-A 1.3 1.0 1.3 1.1 4 1 0 0
YBR285W 1.7 1.2 1.6 1.3 2 1 2 1
YER053C-A 1.3 1.1 1.3 1.0 2 0 0 0
YFR017C 3.1 1.1 2.6 1.6 2 0 0 1 YJR096W 1.4 1 3 1.7 1 6 1 1 2 1
YNR034W-A 3.4 2 5 3.3 3 1 5 1 0 0
YPR145C-A 1.3 1 0 1.6 1 0 0 0 0 0
2 배 이상의 증가 배수를 나타내는 유전자들이 기 재되어 있다 . 결실로 인해 세포에 에탄올 민감성을 부여하는 유전자들이 굵은 글씨체로 표시되어 있다 (참고 : 도 4A) . 【표 3】
ETS2 및 ETS3 에서 에탄을 저항성에 관여하는 유전자 리스트 .
Figure imgf000034_0001
스트레스 반웅 및 단백질 폴딩 유전자들은 많은 서브—세포내 위치 (예컨대, 핵, 마이토콘드리아, 세포질, 세포골격, 막 및 세포벽 )에서 기능하는 여러 열층격 유전자들 (HSP42, HSP31, HSP30, HSP12)을 포함하였으며, 산화적 스트레스 반응 유전자 (CTT1) 및 소포체 및 마이토콘드리아 이동 (translocation) 유전자 (SSA4)도 포함하였다. 에탄올에 의해 유도되는 것으로 보고된 여러 유전자들도 포함되었다: 해당과정에 관여하는 PGM2, 당신생 (glyconeogenesis)에 관여하는 GPH1, 트리할로오스 생합성에 관여하는 TSL1 및 에너지 저장의 대사과정에 관여하는 STF2(Ma, M., and Z. L. Liu. , 2010). 공통적으로 하향-조절된 유전자들의 기능은 버딩 세포 극성 및 필라멘트 형성 (1 개의 유전자); 탄소 화합물 (C-compound) 및 카보하이드레이트 대사과정 (1 개의 유전자); 메이팅 (수정 ; 1 개의 유전자); 단백질 타겟팅 분류 (protein targeting sorting) 및 이동 (1 개의 유전자); rRNA 합성 (1 개의 유전자); 및 분류되지 않는 단백질들 (3개의 유전자들)을 포함하였다 (표 4).
【표 4】
에탄을 스트레스의 부재 하에서 에탄을 저항성 스트레인인 ETS2 및 ETS3에서 공통적으로하향-조절된 유전자들의 리스트 .
Figure imgf000035_0001
분류되지 않는 단백질들
VEL1 -2.6 -1 0 -1 2 -5 1 0 0 2 0
YGR035C -1.8 -1 1 -1 1 -1 7 0 0 2 1
Y0R387C -2.7 -1 0 -1 1 -4 5 0 0 2 1
2 배 이상의 증가 배수를 나타내는 유전자들이 기재되어 있다. 결실로 인해 세포에 에탄올 저항성을 부여하는 유전자들이 굵은 글씨체로 표시되어 있다 (참고: 도 4B). 공통적으로 상향- 및 하향-조절된 유전자들의 전사 조절에 대한 추가적인 정보를 얻기 위해, 본 발명자들은 다양한 스트레스 반웅에 포함될 것으로 예측되는 전사인자들에 대한 잠재적인 결합위치의 존재를 조사하였다. 예를 들어, 상기 전사인자는 일반적인 스트레스에 관여하는 sn2p/Msn4p(Watanabe, et al . , 2007), 단백질 분비 소트레스에 관여하는 Haclp(Ogawa and Mori, 2004) , 열 스트레스에 관여하는 Hsflp(Yamamoto, et al., 2008) 및 산화적 스트레스에 관여하는 Yaplp(He and Fassler, 2005) 등을 포함한다. 매우 흥미롭게도, 상술한 전사인자들에 대한 결합 위치들은 공통적으로 상향-조절된 유전자들의 업스트림 부위에 매우 풍부하게 존재하였다 (표 2). 특히, Msn2p/Msn4p 에 대한 결합 위치들이 거의 모든 상향-조절된 유전자들에서 공통적으로 발견되었다. 한편, Haclp 및 Hsflp 는 상향-조절된 유전자들와 하향-조절된 유전자들에서 유사한 빈도인 반면에, Msn2p/Msn4p 및 Yaplp 에 대한 결합 위치들은 8 개의 하향- 조절된 유전자들에서 공통적으로 거의 발견되지 않았다 (표 3). 종합적인 데이터는 Msn2p/Msn4p 및 Yaplp 이 에탄을 저항성과 연관된 유전자들의 조절을 책임진다는 것을 제시한다. 상술한 전사인자들이 돌연변이된 Sptl5p 에 의해 직접적으로 또는 간접적으로 조절되는 지, 또는 돌연변이된 Sptl5p 와 협력하여 기능하는 지 여부를 조사하기 위한 추가적인 연구가 필요하다. 상술한 과정을 통해, 증가된 에탄올 저항성을 부여하는 일련의 유전자들의 상향- 및 하향-조절이 야기될 것이다. 에탄올-저항성에 대한 공통적으로 조절된 유전자들의 효과 상기 공통적인 34 개의 상향-조절된 유전자들 및 8 개의 하향-조절된 유전자들이 에탄을 저항성에 대한 원인 또는 효과를 가지는 지 여부가 주된 관심사였다. 한 유전자의 상향-조절이 에탄을 저항성을 증가시킨다면, 유전자의 결실은 세포에 에탄 에 대한 민감성 또는 저항성을 부여할 가능성이 클 것이다. 역으로, 하향-조절된 유전자에 대해서도 마찬가지일 것이다. 30 개의 상향-조절된 유전자들 및 6 개의 하향-조절된 유전자들에 상응하는 결실 돌연변이체들을 BY4741 SG 0 라이브러리로부터 얻었다. 4개의 상향-조절된 유전자들 (YER053C-A, YNR034W-A, YPR145C-A 및 YBL029O A) 및 2 개의 하향-조절된 유전자들 (RRN7 및 Y0R387C)에 상응하는 결실 돌연변이체들은 유용하지 않았는데, 이는 그들의 치명성 (lethality) 때문이다. OD600 값이 0.5 까지 배양된 대조군으로서 BY4741 및 개개의 결실 돌연변이체들을 10 배씩 연속적으로 희석하여 여러 다른 농도의 에탄올을 포함하는 고형 YPD배지에 스팟팅하였다.
공통적으로 상향-조절된 유전자들에 상웅하는 30 개의 결실 돌연변이체들에 대한 결과가 도 4 에 보여진다. 몇 개의 결실 돌연변이들은 6% 에탄올 같이 저농도 에탄올에 대해 민감하였는데, 이는 BY4741에 독성 효과를 나타내는 농도보다 더 낮은 농도였다. 전체 민감성 돌연변이체들의 수가 12%까지 증가된 에탄올 농도에 비례하여 증가하였다. 6% 에탄을에 대한 민감도는 GPHl, S0L4 및 SSA4 의 결실 돌연변이체들에서 나타났다. 추가적인 7 개의 돌연변이체들 (ALD3, BTN2, SPIl, 0M45, RTC3, USV1 및 YFR017C)은 8% 에탄올에 민감하였다. HSP12 결실 돌연변이체는 10% 에탄을에 민감하였다. 마지막으로, HSP30, CTT1, SDP1, STF2, AIM17, FMP16, RGI1 및 PHM8 에서의 결실 돌연변이들은 12% 에탄을에 민감하였다. 따라서, ETS2 및 ETS3 에서 공통적으로 상향-조절된 30 개의 유전자들 중 19개의 유전자들의 결실은 에탄을 민감도를 부여하였다. 에탄올 민감도에 대한 기여 정도는 GPHl, S0L4 또는 SSA4 에서 가장 컸으며, 그 다음으로 ALD3, BTN2, SPIl, 0M45, RTC3, USV1 또는 YFR017C 의 순서였고, HSP12 가 그 다음을 이었으며 , HSP30, CTT1, SDP1, STF2, AIM17, FMP16, RGI1 및 PHM8에서 가장 낮았다 .
한편, 상술한 가설에 기초한 본 발명자들의 예상과는 달리, 공통적으로 하향-조절된 유전자들에 상웅하는 6 개의 결실 돌연변이체들 중 어떠한 것도 증가된 성장을 나타내지 않았으며, 하향-조절된 유전자들에 상웅하는 결실 돌연변이체들은 대조군처럼 동일한 또는 더 높은 정도의 에탄올 저항성을 나타냈다. 이것에 대한 이유는 불확실한 상태이다. 에탄올 생산에서 돌연변이된 SPT15S의 효과
에탄올 저항성에 관한 기작을 이해하는 것 이외에도, 에탄올 저항성 스트레인의 제조 목적은 에탄올 생산성 및 /또는 최종 수율을 개선하는 것이다. 대조군 스트레인과 비교하여, 증가된 에탄을 저항성을 가진 스트레인들은 에탄올의 독성 효과를 보다 더 잘 대처할 수 있을 것으로 추측된다 (Ding, et al., 2009). 표현형질적으로 규명된 이후, 증가된 에탄올 저항성의 효과는 일반적으로 글루코오스를 30%까지 포함하는 복합 풍부 배지에서 배치 배양으로부터 가장 높은 에탄올 역가를 측정함으로써 결정된다 (Hong, et al., 2009; Hou, 2009; Hou, et al. , 2009; Teixeira, et al., 2009). 하지만, 상술한 연구들에서의 수율은 현저하게 개선되지 않았고 대조군 스트레인과 비교하여 1 정도로만 증가하였다. 이러한 원인은 이용되는 대부분의 실험실 부모 스트레인들이 기본적으로 에탄올의 최대 레벨을 생산할 수 있어서 증가된 에탄올 저항성의 효과를 관찰하기 어렵기 때문일 것이다. 따라서, 부모 스트레인들의 기본적인 에탄올 -생산 능력을 거의 초과하지 않는 에탄을 농도에서만 그러한 효과를 관찰하는 것이 가능할 것이다. 본 발명의 연구에서, 6%(v/v) 에탄올이 시작부터 첨가된 YPD30 배지인 YPD30E6 배지를 발효를 위해 이용하였다.
발효가 실험물질 및 실험방법에 기재된 바와 같이 실시되었을 경우, 대조군 (iL3262) 및 2 개의 에탄올 저항성 인테그란트 (iETS2 및 iETS3)의 세포 밀도는 84 시간 째에 최대치에 이른 후 감소하였다 (도 5A). 이러한 프로파일의 특징은 iL3262 가 시작부터 첨가된 에탄올에 대한 적웅을 위해 보다 더 긴 유도기 (lag period; 24 시간)를 필요로 하며 포화기 (saturation plateau)가 관찰되지 않는다는 것이었다. 이후 24 시간 동안 iETS3 의 성장률은 동일 비율로 성장하는 iL3262 및 iETS2 의 성장를보다 약간 더 높았다. 일반적으로, 48시간 후에는 3가지 스트레인이 60시간 째 (iETS3의 경우)를 제외하고는 84 시간 까지 유사한 성장률로 성장하였다. 따라서, 상대적으로 짧은 길이의 유도기는 에탄올 저항성 스트레인들의 특징을 나타낸다.
iL3262, iETS2 및 iETS3 의 발효 능력은 동인한 YPD30E6 배양액으로부터 에탄올 역가를 측정함으로써 결정하였다. 6%(v/v)의 개시 에탄올은 HPLC 상에서 47.5 g/L 에 상응하였다. 도 5B에서 볼 수 있듯이 , 120 시간의 발효 과정 동안 iETS2 및 iETS3 에 의해서 생산된 가장 높은 에탄올 역가는 각각 95.0 g/L 및 93.0 g/L 이었던 반면에, 대조군의 에탄올 역가는 74.0 g/L 이었다. 흥미롭게도, 에탄올 생산에서의 유도기는 세포 성장과는 대조적으로 대조군 스트레인에서는 관찰되지 않았는데, 그 이유는 불분명하다. 최종 역가 수율에서 시작부터 첨가된 에탄올 (47.5 g/L)을 공제함으로써 발효 과정 동안 생산된 에탄올의 양 (net amount)은 다음과 같다: 대조군, 26.5g/L; iETS2, 47.5 g/L; 및 iETS3, 45.5 g/L. 상술한 수율이 예상보다 더 낮았을 지라도, iETS2 및 iETS3 는 본 발명에서 이용된 실험 조건에서 대조군보다 80% 정도 더 높은 발효 능력을 나타냈다. 에탄올 생산에서 돌연변이된 SPT15s 의 효과 및 고농도 글루코오스 또는 수크로오스 하에서 성장률
본 발명의 ETS3 스트레인은 고농도 글루코오스 또는 수크로오스에 의해 유발된 고삼투압에 대한 저항성을 가진다. 도 6에서 확인할 수 있듯이 본 발명의 ETS3 스트레인은 다양한 농도의 글루코오스 및 수크로오스 (예컨대, 20%, 30% 또는 40%)에서 대조군과 비교하여 더 높은 성장률을 나타냈다. 특히, ETS3 는 대조군 (Sc L3262)에 비해 높은 글루코오스 농도인 40% 글루코오스에서 더욱 우수한 성장률을 나타냈다. 또한, 50%글루코오스 -YPD에서의 발효 실험인 도 7 의 결과를 살펴보면, 본 발명의 삼투-저항성 스트레인인 ETS3 가 에탄올 발효와 밀접한 관련이 있음이 명확하다. 즉, 50% 글루코오스 하의 배양에 있어서 본 발명의 ETS3 스트레인은 대조군 (Sc 3262)과 비교하여 72 시간을 기준으로 70.3%의 증가된 에탄올 생산량을 나타냈다 (ETS3 에서는 63 g/L; 및 대조군에서는 37 g/L). 따라서, ETS3 는 본 발명에서 이용된 실험 조건에서 대조군보다 약 70% 정도 더 높은 발효 능력을 나타냈다. 이상으로 본 발명의 특정한 부분을 상세히 기술 하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다. 참고문헌
Alper , H. , J . Moxley, E. Nevoigt , G. R. Fink, and G. Stephanopoulos . Engineering yeast transcript ion machinery for improved ethanol tolerance and production. Science, 314: 1565ᅳ 1568(2006) ·
Auesukaree, C. , et al . , Genome-wide identification of genes involved in tolerance to various environmental stresses in Saccharomyces cerevisiae. J Ap l Genet , 50(3): 301-310(2009).
Baerends , R. J. , J. L. Qiu, S. Rasmus sen, H. B. Nielsen, and A. Brandt . Impaired uptake and/ or utilization of leucine by Saccharomyces cerevisiae is suppressed by the SPT15ᅳ 300 allele of the TATA-binding protein gene. Ap l Environ Microbiol , 75: 6055-61(2009) .
Casey, G. P., et al . , ETHANOL TOLERANCE IN YEASTS. Critical Reviews in
Microbiology, Vol 13(3): 219-280(1986).
Cang, Y. , D. T. Aub 1 e , and G. Prel ich. A new regulatory domain on the
TATA-binding protein. EMBO J, 18: 6662-71(1999).
Chasman et al . , Crystal structure of yeast TATA-binding protein and model for interaction with DNA. Proc Natl Acad Sci USA, 90(17): 8174- 8178(1993).
Ding, J. , X. Huang, L. Zhang, N. Zhao, D. Yang, and K. Zhang . Tolerance and stress response to ethanol in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol, 85: 253-63(2009).
Eisenmann, D. M. , C. Dol lard, and F. Winston. SPT15, the gene encoding the yeast TATA binding factor TFIID, is required for normal transcription initiation in vivo. Cell , 58: 1183-91(1989). Fuj ita, K. , et al . , The genome-wide screening of yeast deletion mutants to identify the genes required for tolerance to ethanol and other alcohols. FEMS Yeast Research, Vol 6(5): 744-750(2006).
Gibson, B. R. , S. J . Lawrence, J. P. Leclaire, C. D. Powell, and K. A. Smart . Yeast responses to stresses associated with industrial brewery handling. FEMS Microbiol Rev, 31: 535-69(2007).
He, X. J . , and J . S. Fassler . Identification of novel Yaplp and Skn7p binding sites involved in the oxidative stress response of
Saccharomyces cerevisiae. Mol Microbiol , 58: 1454-67(2005) .
Hirasawa, T. , et al . , Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis. Journal of Biotechnology, 131: 34-44(2007) .
Hong, M. E., K. S. Lee, B. J. Yu, Y. J. Sung, S. M. Park, H. M. Koo, D.
H. Kweon , J . C. Park, and Y. S. Jin. Identification of gene targets eliciting improved alcohol tolerance in Saccharomyces cerevisiae through inverse metabolic engineering. J Biotechnol , 149: 52-9(2009) .
Hou, L. Novel methods of genome shuffling in Saccharomyces cerevisiae.
Biotechnol Lett, 31: 671-7(2009).
Hou, L. , X. Cao, C. Wang, and M. Lu. Effect of overexpression of transcription factors on the fermentation properties of Saccharomyces cerevisiae industrial strains. Lett Appl Microbiol , 49: 14-9(2009) .
Jeffries, T. , and P. Lindblad. We march backwards into the future. Curr Op in Biotechnol, 20: 255-6(2009) .
Kaj iwara, S. , et al . , Overexpression of the OLEl gene enhances ethanol fermentation by Saccharomyces cerevisiae. Appl Microbiol Biotechnol , 53: 568-574(2000).
KIM, J . , et al . , Disrupt ion of the Yeast ATH1 Gene Confers Better Survival after Dehydration, Freezing, and Ethanol Shock: Potential Co瞧 ercial Applications. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Vol 62(5): 1563-1569(1996). Inoue, T. , et al . , Cloning and Characterization of a Gene Complementing the Mutation of an Ethanolᅳ sensit ive Mutant of Sake Yeast . Biosci. Biotechnol. Biochem. , 64(2): 229-236(2000) .
Ma, M. , and Z. L. Liu. Mechanisms of ethanol tolerance in Saccharomyces cerevisiae. Appl . Microbiol . Biotechnol . , 87: 829- 845(2010).
Merja Suut ar i and Siino Laakso, Microbial Fatty Acids and Thermal Adaptation. Critical Reviews in Microbiology, 20(4): 255-328(1994).
Oh K. S., 0. K., Y. W.Oh , M. J.Sohn, S. Jung., Y. K. Kim. , M.-G. Kim, S. K. Rhee, G. Gel 1 issen, and Kang H. A. Fabrication of a partial genome microarray of the methyl otrophic yeast Hansenula polymorpha: optimization and evaluation for transcript profiling. J. Microbiol . Biotechnol., 14: 1239-48(2004).
Ogawa , N. , and K. Mori . Autoregulat ion of the HAC1 gene is required for sustained activation of the yeast unfolded protein response . Genes Cells, 9: 95-104(2004).
Park, J. N. , M. J. Sohn, D. B. Oh, 0. Kwon, S. K. Rhee, C. G. Hur, S.
Y. Lee, G. Gel 1 issen, and H. A. Kang. 2007. Identification of the cadmium- inducible Hansenula polymorpha SE01 gene promoter by transcriptome analysis and its application to whole-cell heavy-metal detection systems. Appl Environ Microbiol, 73: 5990-6000(2007).
Pieler , R. , F. Sanchezᅳ Cabo, H. Hackl , G. G. Thai linger, and Z.
Trajanoski . ArrayNorm: comprehensive normalization and analysis of microarray data. Bioinformatics, 20: 1971-3(2004).
Ragauskas , A. J. , C. K. Williams, B. H. Davison, G. Britovsek, J.
Cairney, C. A. Eckert , W. J. Frederick, Jr. , J. P. Hal lett , D. J. Leak,
C. L. Liotta, J. R. Mielenz, R. Murphy, R. Tem ler , and T.
Tschapl inski . The path forward for biofuels and biomaterials. Science,
311: 484-9(2006).
Rubin, E. M. Genomics of cellulosic biofuels. Nature, 454: 841-5(2008). Sambrook , J . a. D. W. R. Molecular cloning: a laboratory manual , 3rd ed. ed. Cold Spring Harbor Laboratory Press , N.Y. (2001) .
Schar 1 emann , J . P. , and W. F. Laurance. Environmental science. How green are biofuels? Science, 319: 43-4(2008) .
Takagi , H. , et al . , Effect of Lᅳ Prol ine on Sake Brewing and Ethanol Stress in Saccharomyces cerevisiae. Appl ied and Environmental Microbiology, Vol 71(12): 8656-8662(2005) .
Takahashi , T. , et al . , Ident i f icat ion of genes required for growth under ethanol stress using transposon mutagenesis in Saccharomyces cerevisiae. Molecular Genet ics and Genomics , Vol 265(6) : 1112- 1119(2001) .
Teixeira, MC. , et al . , Genome-Wide Ident i f icat ion of Saccharomyces cerevisiae Genes Required for Maximal Tolerance to Ethanol . APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Vol 75(18) : 5761-5772(2009) .
Watanabe, M. , K. Tamura, J . P. Magbanua , K. Takano , K. Kitamoto, H. Kitagaki , T. Akao, and H. Shimoi . Elevated expression of genes under the control of stress response element (STRE) and Msn2p in an ethanol— tolerance sake yeast Kyokai no. 11. J Biosci Bioeng, 104: 163-70(2007) . Xu, Q. , A. Singh, and M. E. Himmel . Perspect ives and new direct ions for the product ion of bioethanol using consol idated bioprocessing of l ignocel lulose. Curr Opin Biotechnol , 20: 364-71(2009) .
Yamamoto, N. , Y. Maeda , A. Ikeda , and H. Sakurai . Regulat ion of thermotolerance by stress-induced transcript ion factors in Saccharomyces cerevisiae. Eukaryot Cel l , 7: 783-90(2008)
Yoshikawa, K. , et al . , Genome-Wide Analysis of the Effects of Locat ion and Number of Stress Response Elements on Gene Expression in Saccharomyces cerevisiae. JOURNAL OF BIOSCIENCE AND B I (ENGINEERING, vol 106(5): 507-510(2008) .
Yoshikawa, K. , T. Tanaka , C. Furusawa, K. Nagahisa, T. Hirasawa, and H. Shimizu. Comprehensive phenoty ic analysis for ident i f icat ion of genes affect ing growth under ethanol stress in Saccharomyces cerevisiae. FEMS Yeast Res , 9: 32-44(2009) .
You, K. M. , et al . , Ethanol Tolerance in the Yeast Saccharomyces cerevisiae Is Dependent on Cel lular Oleic Acid Content . APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Vol 69(3): 1499-1503(2003) .

Claims

【청구의 범위】
【청구항 11
돌연변이 (mutation)된 SPT15 유전자를 포함하는 에탄올-저항성 형질변형 효모 균주.
【청구항 2]
제 1 항에 있어서, 상기 돌연변이는 야생형 SPT15 유전자의 아미노산 서열에서 세 개 내지 다섯 개의 돌연변이된 아미노산 서열을 포함하는 것을 특징으로 하는 효모 균주.
【청구항 3]
제 1 항에 있어서, 상기 돌연변이된 SPT15 유전자는 야생형 SPT15 유전자의 K201, G216 및 Q225 위치의 아미노산 서열이 돌연변이된 아미노산 서열; 야생형 SPT15 유전자의 L76 및 L175 위치의 아미노산 서열이 돌연변이된 아미노산 서열; 야생형 SPT15 유전자의 S42, C78, S163 및 1212 위치의 아미노산 서열이 돌연변이된 아미노산 서열; 야생형 SPT15 유전자의 F10 및 M197 위치의 아미노산 서열이 돌연변이된 아미노산 서열; 또는 야생형 SPT15 유전자의 K15, W26 및 G192 위치의 아미노산 서열이 돌연변이된 아미노산 서열을 포함하는 돌연변이된 SPT15 유전자인 것을 특징으로 하는 효모 균주.
【청구항 4]
제 3 항에 있어서, 상기 돌연변이된 SPT15 유전자는 야생형 SPT15 유전자의 K201, G216 및 N225 위치의 아미노산 서열이 K201Q, G216S 및 Q225Stop으로 변이된 돌연변이 서열; 야생형 SPT15 유전자의 L76 및 L175 위치의 아미노산 서열이 L76V 및 L175S로 변이된 돌연변이 서열; 야생형 SPT15 유전자의 S42, C78, S163 및 1212 위치의 아미노산 서열이 S42N, C78R, S163P 및 I212N으로 변이된 돌연변이 서열; 야생형 SPT15 유전자의 F10 및 M197 위치의 아미노산 서열이 F10S 및 M197K로 변이된 돌연변이 서열; 또는 야생형 SPT15 유전자의 K15, W26 및 G192 위치의 아미노산 서열이 K15T, W26C 및 G192D로 변이된 돌연변이 서열을 포함하는 돌연변이된 SPT15 유전자인 것을 특징으로 하는 효모 균주. 【청구항 5】
제 1 항에 있어서, 상기 돌연변이된 SPT15 유전자는 폴라스미드로 효모 세포에 도입되는 것을 특징으로 하는 효모 균주.
【청구항 6]
제 1 항에 있어서, 상기 돌연변이된 SPT15 유전자는 효모 세포의 지놈 (genomic) DNA에 도입되는 것을 특징으로 하는 효모 균주.
【청구항 7】
제 1 항에 있어서, 상기 효모 균주는 5-15% 에탄을 배양 조건에서 성장할 수 있는 것을 특징으로 하는 효모 균주. 【청구항 8】
제 7 항에 있어서, 상기 효모 균주는 12.5-15% 에탄올 배양 조건에서 성장할 수 있는 것을 특징으로 하는 효모 균주.
【청구항 9]
제 1 항에 있어서, 상기 효모 균주는 사카로마이세스 종 ( Saccharomyces spp . ) , 1 ^^ ^^.^ °1세스 종 ( Schi zosaccharomyces spp.), 피키아 종 Pichia spp.), 파피아 종 0¾///a spp.), 클루이베로미세스 종 Khiyveromyces spp.), 칸디다 ^ Candida spp.), 탈라로미세스 종、 Talaromyces spp.), 브레타노미세스 종 Brettanomyces spp.), 파키솔렌 ^ Pachysolen spp.), 데바리오미세스 Debaryomyces spp.) 또는 산업적인 배수체 (polyploid) 효모 균주인 것을 특징으로 하는 효모 균주.
【청구항 10]
제 9 항에 있어서, 상기 효모 균주는 사카로마이세스 종인 것을 특징으로 하는 효모 균주. 【청구항 111
돌연변이 (mutation)된 SPT15 유전자를 포함하는 삼투 (osmosis)- 저항성 형질변형 효모 균주. 【청구항 12】
제 11 항에 있어서, 상기 돌연변이는 야생형 SPT15 유전자의 아미노산 서열에서 돌연변이된 아미노산 서열을 포함하는 것을 특징으로 하는 효모 균주 . 【청구항 13】
제 11 항에 있어서, 상기 돌연변이된 SPT15 유전자는 야생형 SPT15 유전자의 S42, C78, S163 및 1212 위치의 아미노산 서열이 돌연변이된 아미노산 서열을 포함하는 돌연변이된 SPT15 유전자인 것을 특징으로 하는 효모 균주.
【청구항 14】
제 13 항에 있어서, 상기 돌연변이된 SPT15 유전자는 야생형 SPT15 유전자의 S42, C78, S163 및 1212 위치의 아미노산 서열이 S42N, C78R, S163P 및 I212N로 변이된 돌연변이 서열을 포함하는 돌연변이된 SPT15 유전자인 것을 특징으로 하는 효모 균주.
【청구항 15】
제 11 항에 있어서, 상기 돌연변이된 SPT15 유전자는 플라스미드로 효모 세포에 도입되는 것을 특징으로 하는 효모 균주.
【청구항 16】
제 11 항에 있어서, 상기 돌연변이된 SPT15 유전자는 효모 세포의 지놈 (genomic) DNA에 도입되는 것을 특징으로 하는 효모 균주. 【청구항 17】
제 11 항에 있어서, 상기 효모 균주는 30-40% 글루코오스 또는 수크로오스 배양 조건에서 성장할 수 있는 것을 특징으로 하는 효모 균주.
【청구항 18]
제 11 항에 있어서, 상기 효모 균주는 에탄을에 대한 저항성을 추가적으로 가지는 것을 특징으로 하는 효모 균주.
【청구항 19]
제 18 항에 있어서, 상기 효모 균주는 5-15% 에탄올 배양 조건에서 성장할 수 있는 것을 특징으로 하는 효모 균주.
【청구항 20】
제 11 항에 있어서, 상기 효모 균주는 사카로마이세스 종, 시조사카로마이세스 종, 피키아 종, 파피아 종, 클루이베로미세스 종, 칸디다 종, 탈라로미세스 종, 브레타노미세스 종, 파키솔렌 종, 데바리오미세스 종 또는 산업적인 배수체 효모 균주인 것을 특징으로 하는 효모 균주 .
【청구항 21]
ALD YMR1690 , USVl{YPL230 ) , FMP16 YDR070O , RGI1{ YER067f) , BTN2 YGR142W) , RTC3^YHR087f) , HSP3( YCR021O , OT YGR088f) , ΑΙΜ17ί YHL021O , STF2 YGR008O , GPH YPR160 ) , YFR017C, S0L4{ YGR248f) , PHM8^YER037f) , ffSP12{ VFLO I) , SSA4{YER103 ) , SPIl{YER150f) 및 0Μ45 ΊΙΛ36Ψ)로 구성된 군으로부터 선택된 하나 이상의 뉴클레오타이드 서열이 과다발현된 에탄올-저항성 형질변형 효모 균주.
【청구항 22】
제 21 항에 있어서, 상기 뉴클레오타이드 서열은 플라스미드로 효모 세포에 도입되는 것을 특징으로 하는 효모 균주. 【청구항 23】
제 21 항에 있어서, 상기 뉴클레오타이드 서열은 효모 세포의 지놈 (genomic) DNA에 도입되는 것을 특징으로 하는 효모 균주.
【청구항 24】
제 21 항에 있어서, 상기 효모 균주는 6—12% 에탄을 배양 조건에서 성장할 수 있는 것을 특징으로 하는 효모 균주.
【청구항 25】
제 21 항에 있어서, 상기 과다발현은 전사체 프로파일 (transcriptome profiling)에서 평균적으로 1.5-4.5배 증가하는 것을 특징으로 하는 효모 균주.
【청구항 26】
제 25 항에 있어서, 상기 전사체 프로파일은 마이크로어레이를 이용하여 실시하는 것을 특징으로 하는 효모 균주.
【청구항 27】
제 21 항에 있어서, 상기 효모 균주는 사카로마이세스 종, 시조사카로마이세스 종, 피키아 종, 파피아 종, 클루이베로미세스 종, 칸디다 종, 탈라로미세스 종, 브레타노미세스 종, 파키솔렌 종, 데바리오미세스 종 또는 산업적인 배수체 효모 균주인 것을 특징으로 하는 효모 균주 .
【청구항 28】
제 27 항에 있어서, 상기 효모 균주는 사카로마이세스 종인 것을 특징으로 하는 효모 균주 .
【청구항 29】
제 1 항, 제 11 항 또는 제 21 항의 효모 균주를 에탄올로 대사될 수 있는 하나 이상의 기질을 포함하는 배양배지에서 배양하는 단계를 포함하는 에탄을 생산방법 . 【청구항 30】
제 29 항에 있어서, 상기 에탄올로 대사될 수 있는 기질은 C6 당 (sugars)을 포함하는 것을 특징으로 하는 방법. 【청구항 31】
제 31 항에 있어서, 상기 C6 당은 글루코오스인 것을 특징으로 하는 방법.
PCT/KR2010/008340 2010-04-23 2010-11-24 에탄올-저항성 효모 유전자 및 이의 용도 WO2011132836A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/643,015 US8809060B2 (en) 2010-04-23 2010-11-24 Ethanol-resistant yeast gene, and use thereof

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR20100037818 2010-04-23
KR10-2010-0037818 2010-04-23
KR10-2010-0101765 2010-10-19
KR1020100101765A KR101244315B1 (ko) 2010-10-19 2010-10-19 에탄올―저항성 효모 유전자 및 이의 용도
KR1020100101739A KR101182749B1 (ko) 2010-04-23 2010-10-19 에탄올?저항성 효모 균주 및 이의 용도
KR10-2010-0101739 2010-10-19
KR1020100117208A KR101241346B1 (ko) 2010-11-24 2010-11-24 삼투―저항성 효모 균주 및 이의 용도
KR10-2010-0117208 2010-11-24

Publications (2)

Publication Number Publication Date
WO2011132836A2 true WO2011132836A2 (ko) 2011-10-27
WO2011132836A3 WO2011132836A3 (ko) 2011-12-22

Family

ID=44834577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/008340 WO2011132836A2 (ko) 2010-04-23 2010-11-24 에탄올-저항성 효모 유전자 및 이의 용도

Country Status (1)

Country Link
WO (1) WO2011132836A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104176751A (zh) * 2014-07-02 2014-12-03 北京理工大学 一种高中低温加压直接法制备三氘化铝的方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ALPER, H. ET AL.: 'Engineering yeast transcription machinery for improved ethanol tolerance and production' SCIENCE vol. 314, no. 5805, 08 December 2006, pages 1565 - 1568 *
DING, J. ET AL.: 'Tolerance and stress response to ethanol in the yeast Saccharomyces cerevisiae' APPLIED MICROBIOLOGY AND BIOTECHNOLOGY. vol. 85, 2009, pages 253 - 263 *
HOU, L. ET AL.: 'Effect of overexpression of transcription factors on the fermentation properties of Saccharomyces cerevisiae industrial strains' LETTERS IN APPLIED MICROBIOLOGY. vol. 49, no. 1, 17 April 2009, pages 14 - 19 *
WATANABE, M. ET AL.: 'Overexpression of MSN2 in a sake yeast strain promotes ethanol tolerance and increases ethanol production in sake brewing' JOURNAL OF BIOSCIENCE AND BIOENGINEERING. vol. 107, no. 5, May 2009, pages 516 - 518 *
YANG, J. ET AL.: 'Construction of Saccharomyces cerevisiae strains with enhanced ethanol tolerance by mutagenesis of the TATA-binding protein gene and identification of novel genes associated with ethanol tolerance' BIOTECHNOLOGY AND BIOENGINEERING. vol. 108, no. 8, 03 April 2011, pages 1776 - 1787 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104176751A (zh) * 2014-07-02 2014-12-03 北京理工大学 一种高中低温加压直接法制备三氘化铝的方法

Also Published As

Publication number Publication date
WO2011132836A3 (ko) 2011-12-22

Similar Documents

Publication Publication Date Title
KR101244315B1 (ko) 에탄올―저항성 효모 유전자 및 이의 용도
Enquist-Newman et al. Efficient ethanol production from brown macroalgae sugars by a synthetic yeast platform
Wisselink et al. Metabolome, transcriptome and metabolic flux analysis of arabinose fermentation by engineered Saccharomyces cerevisiae
Yang et al. Construction of Saccharomyces cerevisiae strains with enhanced ethanol tolerance by mutagenesis of the TATA‐binding protein gene and identification of novel genes associated with ethanol tolerance
Lee et al. Improved galactose fermentation of Saccharomyces cerevisiae through inverse metabolic engineering
Brauer et al. Homeostatic adjustment and metabolic remodeling in glucose-limited yeast cultures
Kutyna et al. Adaptive evolution of Saccharomyces cerevisiae to generate strains with enhanced glycerol production
Cordier et al. A metabolic and genomic study of engineered Saccharomyces cerevisiae strains for high glycerol production
Zhang et al. Adaptive evolution relieves nitrogen catabolite repression and decreases urea accumulation in cultures of the Chinese rice wine yeast strain Saccharomyces cerevisiae XZ-11
CN109536398A (zh) 用于产量增加的方法中的重组体微生物
Liu et al. Multiplex navigation of global regulatory networks (MINR) in yeast for improved ethanol tolerance and production
Löbs et al. High throughput, colorimetric screening of microbial ester biosynthesis reveals high ethyl acetate production from Kluyveromyces marxianus on C5, C6, and C12 carbon sources
Malak et al. Blastobotrys (Arxula) adeninivorans: a promising alternative yeast for biotechnology and basic research
Verhoeven et al. Laboratory evolution of a glucose-phosphorylation-deficient, arabinose-fermenting S. cerevisiae strain reveals mutations in GAL2 that enable glucose-insensitive l-arabinose uptake
Gibson et al. Variation in α‐acetolactate production within the hybrid lager yeast group Saccharomyces pastorianus and affirmation of the central role of the ILV6 gene
Espinosa et al. Benchmarking two Saccharomyces cerevisiae laboratory strains for growth and transcriptional response to methanol
Johansson et al. Identification of factors for improved ethylene production via the ethylene forming enzyme in chemostat cultures of Saccharomyces cerevisiae
Kuanyshev et al. Domesticating a food spoilage yeast into an organic acid‐tolerant metabolic engineering host: Lactic acid production by engineered Zygosaccharomyces bailii
US8809060B2 (en) Ethanol-resistant yeast gene, and use thereof
KR20100117465A (ko) 호스트셀의 알코올 내성을 증대시키는 단리된 폴리뉴클레오티드, 이를 포함하는 벡터, 호스트셀 및 이를 이용한 알코올의 생산방법
KR101182749B1 (ko) 에탄올?저항성 효모 균주 및 이의 용도
Hou et al. Effect of overexpression of transcription factors on the fermentation properties of Saccharomyces cerevisiae industrial strains
WO2011132836A2 (ko) 에탄올-저항성 효모 유전자 및 이의 용도
Chen et al. Transcriptomic analysis and driver mutant prioritization for differentially expressed genes from a Saccharomyces cerevisiae strain with high glucose tolerance generated by UV irradiation
Suleau et al. Transcriptomic analysis of extensive changes in metabolic regulation in Kluyveromyces lactis strains

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10850319

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13643015

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10850319

Country of ref document: EP

Kind code of ref document: A2