WO2011132817A1 - 관내를 이동하여 불순물을 제거하는 로봇 - Google Patents
관내를 이동하여 불순물을 제거하는 로봇 Download PDFInfo
- Publication number
- WO2011132817A1 WO2011132817A1 PCT/KR2010/003372 KR2010003372W WO2011132817A1 WO 2011132817 A1 WO2011132817 A1 WO 2011132817A1 KR 2010003372 W KR2010003372 W KR 2010003372W WO 2011132817 A1 WO2011132817 A1 WO 2011132817A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- robot
- motor
- fluid
- cover
- impurities
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J5/00—Manipulators mounted on wheels or on carriages
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B9/00—Cleaning hollow articles by methods or apparatus specially adapted thereto
- B08B9/02—Cleaning pipes or tubes or systems of pipes or tubes
- B08B9/027—Cleaning the internal surfaces; Removal of blockages
- B08B9/04—Cleaning the internal surfaces; Removal of blockages using cleaning devices introduced into and moved along the pipes
- B08B9/049—Cleaning the internal surfaces; Removal of blockages using cleaning devices introduced into and moved along the pipes having self-contained propelling means for moving the cleaning devices along the pipes, i.e. self-propelled
- B08B9/051—Cleaning the internal surfaces; Removal of blockages using cleaning devices introduced into and moved along the pipes having self-contained propelling means for moving the cleaning devices along the pipes, i.e. self-propelled the cleaning devices having internal motors, e.g. turbines for powering cleaning tools
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B9/00—Cleaning hollow articles by methods or apparatus specially adapted thereto
- B08B9/02—Cleaning pipes or tubes or systems of pipes or tubes
- B08B9/027—Cleaning the internal surfaces; Removal of blockages
- B08B9/04—Cleaning the internal surfaces; Removal of blockages using cleaning devices introduced into and moved along the pipes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B9/00—Cleaning hollow articles by methods or apparatus specially adapted thereto
- B08B9/02—Cleaning pipes or tubes or systems of pipes or tubes
- B08B9/027—Cleaning the internal surfaces; Removal of blockages
- B08B9/04—Cleaning the internal surfaces; Removal of blockages using cleaning devices introduced into and moved along the pipes
- B08B9/043—Cleaning the internal surfaces; Removal of blockages using cleaning devices introduced into and moved along the pipes moved by externally powered mechanical linkage, e.g. pushed or drawn through the pipes
- B08B9/047—Cleaning the internal surfaces; Removal of blockages using cleaning devices introduced into and moved along the pipes moved by externally powered mechanical linkage, e.g. pushed or drawn through the pipes the cleaning devices having internal motors, e.g. turbines for powering cleaning tools
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B9/00—Cleaning hollow articles by methods or apparatus specially adapted thereto
- B08B9/02—Cleaning pipes or tubes or systems of pipes or tubes
- B08B9/027—Cleaning the internal surfaces; Removal of blockages
- B08B9/04—Cleaning the internal surfaces; Removal of blockages using cleaning devices introduced into and moved along the pipes
- B08B9/053—Cleaning the internal surfaces; Removal of blockages using cleaning devices introduced into and moved along the pipes moved along the pipes by a fluid, e.g. by fluid pressure or by suction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L55/00—Devices or appurtenances for use in, or in connection with, pipes or pipe systems
- F16L55/26—Pigs or moles, i.e. devices movable in a pipe or conduit with or without self-contained propulsion means
Definitions
- the present invention relates to a robot, and more particularly, to a robot capable of monitoring a state of a fluid inside a tube by installing a camera, a sensor, an impurity removing device, and moving a tube to remove impurities. It is about.
- the problem to be solved by the present invention is to provide a robot that can effectively perform a given purpose such as collecting information and removing impurities in the fluid environment with the transfer of the robot using a single actuator in a fluid environment in a conventional tube. have.
- Another problem to be solved by the present invention is to provide a robot that can effectively perform a given purpose without disturbing the flow of fluid under special circumstances, such as inside the tube.
- Robot according to an embodiment of the present invention; An impeller mounted on one end of a rotation shaft of the motor to convert the rotational force of the motor into a driving force; An impurity removal device mounted on the other end of the rotating shaft of the motor to remove impurities in the front fluid; An inner housing for protecting the motor and including a sealing device to prevent intrusion of an external fluid; External housing; At least one support for connecting and fixing the inner and outer housings; And a cover provided in contact with an outer surface of the outer housing and equipped with a power supply device for supplying power and a plurality of measurement devices for measuring a state of a fluid.
- a robot includes a motor equipped with an impeller and an impurity removal device for removing impurities in a fluid in front of the robot; An inner housing to seal the motor to protect the motor and prevent intrusion of external fluids; And a cover to which a plurality of measuring devices for measuring the state of the fluid and a power supply device for coupling and supplying power to the inner housing by at least one support are mounted.
- the robot is further connected to the front or rear of the cover characterized in that it further comprises a filtering device for collecting impurity debris flowing into the inside.
- the robot is characterized in that it further comprises a plurality of air bearing devices on the outside of the cover.
- a fluid movement path is provided between the inner housing and the outer housing.
- the at least one support is composed of three supports, each support is mounted at an angle of 120 degrees, characterized in that the fluid movement path for moving the fluid between each support is provided.
- the robot further includes a driving circuit for controlling the operation of the motor and communicating with an external device inside the cover.
- the robot further comprises a driving circuit for controlling the operation of the motor inside the cover.
- the robot may further include any one of a wireless communication device and a wired communication device for wireless communication with the outside inside the cover.
- the robot is characterized in that it is used to examine the state of the fluid in the water pipe, sewage pipe, or oil pipe, crush impurities, and collect the crushed debris.
- the robot is inserted into a blood vessel of an animal or a human, and is used to examine the state of blood vessels, to break up impurities or constrictions generated inside the blood vessels, and to collect the broken impurities or constrictions.
- the robot is characterized in that it is used to inspect the state of the fluid, such as rivers, rivers, crush impurities, and collect the crushed debris.
- the robot is characterized in that the plurality is formed to form a group and communicate with each other or an external device.
- the robot according to the present invention has the effect of performing a given purpose such as collecting information and removing impurities together with the transfer of the robot using a single actuator in a general fluid environment.
- the robot according to the present invention can move without disturbing the flow of fluid even under special circumstances such as inside a narrow tube, and has the effect of performing a given purpose such as collecting information and removing impurities.
- the robot according to the present invention can be inserted into blood vessels of animals or humans to examine the state of fluid (eg, blood) inside blood vessels, and can also crush impurities, and collect debris of crushed impurities to remove impurities. By analyzing the components of the, it can be used as a device for medical or medical assistance.
- fluid eg, blood
- the robot according to the present invention can be used to analyze the components of the impurities by inspecting the state of the fluid is injected into the water supply pipe, sewage pipe, or oil pipe, crushing the impurities inside and collecting the debris generated at this time.
- the robot according to the present invention is implemented so that a large number of groups can communicate with each other, or to exchange data with an external device, it is possible to inspect the state of the river, river or more complex and longer pipe, The impurities can be broken down and the resulting debris can be collected and collected and used to analyze the components of the impurities.
- FIG. 1 is a perspective view of a robot according to an embodiment of the present invention.
- FIG. 2 is a sectional view of A-A of another robot according to the embodiment of the present invention.
- Figure 3 shows a cross-sectional view of B-B of the robot according to an embodiment of the present invention.
- Figure 4 shows a perspective view from the rear of the robot according to an embodiment of the present invention.
- FIG. 5 is a perspective view showing the internal structure of a robot according to an embodiment of the present invention.
- FIG. 6 is a perspective view of removing the cover of the robot according to an embodiment of the present invention.
- FIG. 7 is a perspective view showing a battery assembled to a cover of a robot according to an embodiment of the present invention.
- FIG. 8 is a perspective view illustrating a driving circuit and a communication module assembled to a cover of a robot according to an exemplary embodiment of the present invention.
- FIG. 9 is a perspective view showing the inside of the internal housing of the robot according to an embodiment of the present invention.
- FIG. 10 is a perspective view of a motor according to an exemplary embodiment of the present invention.
- FIG. 11 is a perspective view showing the inside of a motor according to an embodiment of the present invention.
- FIG. 1 is a perspective view of a robot according to an embodiment of the present invention
- FIG. 2 is a cross-sectional view of AA of another robot according to an embodiment of the present invention
- Figure 3 is a BB of the robot according to an embodiment of the present invention Shows a cross-sectional view.
- Figures 1 to 3 is a view showing a shape in which the robot 100 according to an embodiment of the present invention is inserted into the tube (eg, blood vessel, 10).
- the tube eg, blood vessel, 10
- the robot 100 includes a motor 110, an impeller 120, an impurity removing device 130, an inner housing 140, an outer housing 150, and at least one support 160. ), A cover 170, a bearing device 180, and a filtering device.
- the motor 110 is implemented by either an AC motor or a DC motor, and generates a rotational force by the power supplied. Detailed structure of the motor 110 will be described in detail with reference to the accompanying drawings.
- the impeller 120 is mounted on one end (eg, in the opposite direction of the traveling direction) of the rotating shaft 111 of the motor as shown in FIGS. 2 and 3 to convert the rotational force generated from the motor 110 into thrust force. do.
- the robot 100 may be driven in the fluid by the driving force generated by the operation of the impeller 120.
- the impurity removal device 130 is mounted on the other end (eg, the traveling direction) of the rotation shaft of the motor 110 to perform a function of crushing impurities in the front tube.
- the impurity removal device 130 can be implemented using a device such as drilling, grinder, punching.
- the inner housing 140 functions as a protective case that protects the motor 110, and combines a sealing device to a coupling portion of the motor 110, the impeller 120, and the impurity removal device 130 to externally. To prevent fluid from entering the motor 110.
- the outer housing 150 is coupled to the inner housing 140 by at least one support 160.
- the at least one support 160 is described as an example consisting of three supports, but is not limited thereto.
- Each of the supports 160 is disposed at equal intervals of 120 degrees with respect to each other around the circumferential direction.
- the space between the support 160 is provided with a fluid movement passage through which fluid can move. As a result, the robot 100 may move without disturbing the flow because the robot 100 does not completely block the flow of the fluid even in the fluid.
- a predetermined space is provided inside the support 160, and internal wiring for supplying power to the motor 110 or controlling the operation of the motor 110 passes through the internal space of the support 160.
- the cover 170 is provided in contact with the outer surface of the outer housing 140, the cover 170 is equipped with a plurality of measuring devices 171.
- the plurality of measuring devices 171 may be implemented by a sensor or a camera, and various measuring devices may be added and mounted according to the purpose of the measurement.
- Figure 4 shows a perspective view from the rear of the robot according to an embodiment of the present invention.
- the robot 100 may further include a filtering device 180 and a bearing device 190.
- the filtering device 180 includes a filter 181 and a filter fixing device 182, and is connected to the cover 170 by the filter fixing device 182.
- the filtering device 180 may be implemented by being connected to the front or the rear of the cover 170. In the embodiment of the present invention will be described with an example connected to the rear of the cover 170.
- the filter 171 is a porous filtration filter form and is implemented to be detachable to the filter fixing device 182 is implemented to be easily replaced and repaired.
- the filter functions to collect impurity fragments of a predetermined size or more that are crushed by the impurity removal device 130, and thus used to collect the collected impurity fragments, which may be used to analyze impurities in the fluid. .
- the air bearing 190 is mounted on the outer surface of the cover 170 to cushion the robot 100 when it collides with the inner wall of the tube.
- the air bearing 190 is filled with air therein, and functions as a bearing by expansion and contraction of the membrane by air pressure.
- the air bearing 190 not only serves as a shock absorber when colliding with the inner wall of the tube, but also performs an auxiliary function of allowing the robot 100 to move correctly along the inner part of the tube.
- an axial repulsive force is generated.
- the air bearing 190 cancels the repulsive force and the robot ( Supporting 100 enables stable movement and operation.
- FIG. 5 is a perspective view showing the internal structure of a robot according to an embodiment of the present invention.
- the support 160 is provided with a predetermined space 161 through which internal wires for supplying power and control signals to the motor 110 pass.
- the support 160 is coupled to the support assembly groove 141 of the inner housing 140 to connect the inner housing 140 and the outer housing 150.
- FIG. 6 is a perspective view of a robot removed according to an embodiment of the present invention
- FIG. 7 is a perspective view illustrating a battery assembled to a cover of the robot according to an embodiment of the present invention
- FIG. 8 is an embodiment of the present invention. It is a perspective view which shows the drive circuit and the communication module assembled to the cover of a robot.
- the outer housing 150 and the inner housing 140 are formed by completely connecting inner and outer surfaces thereof, respectively. 7 and 8, a battery 161, a communication module 162, a driving circuit 163, and the like are mounted in the cover 160. In addition, an air inlet 164 for supplying air to the air bearing 190 is formed. Although not shown, a space through which the internal wires pass may be provided inside the cover 170 to pass the internal wires for transmitting power and control signals to the measuring device 171 and the motor 110.
- the battery 161 supplies power required for the operation of devices such as the motor 110, the communication module 162, the driving circuit 163, and the measuring device 171.
- the communication module 162 receives commands for controlling the motor 110 and the measuring device 171 through communication with an external device, or receives information collected through the measuring device 171. To send.
- the communication module 162 may be implemented as one of a wireless communication device and a wired communication device. Although not shown, if the wired communication device is implemented, a communication wiring for communicating with the outside may be further provided.
- the driving circuit 163 generates a control signal for controlling the operation of the motor 110 to control the operation of the motor 110.
- the communication module 162 is described as an example implemented separately from the driving circuit 163, but the communication module 162 may be implemented by being included in the driving circuit 163.
- FIG. 9 is a perspective view showing the interior of the internal housing of the robot according to an embodiment of the present invention
- Figure 10 is a perspective view showing a motor according to an embodiment of the present invention
- Figure 11 is an interior of the motor according to an embodiment of the present invention It is a perspective view showing. 9 to 11, when the internal housing 140 of the robot 100 is removed, the shape and the motor 110 shown in FIG. 9 are exposed to the outside, and the stator forms the outside of the motor 110. Removing the 112 will expose the internal rotor 113.
- FIG. 10 is a perspective view showing a motor according to an embodiment of the present invention
- Figure 11 is a perspective view showing the inside of the motor according to an embodiment of the present invention.
- the motor 110 transmits the rotational force of the motor 110 to the impurity removal device 130 through the bearing 114.
- a sealing device 116 is provided in a section where the internal housing 140, the impurity removing device 130, and the motor 110 are connected to prevent external fluid from penetrating into the motor 110.
- the motor includes a rotation shaft 111, a stator 112, and a mover 113.
- the rotating shaft 111 is circumferentially coupled with the mover 113 coupled to the permanent magnet 117 is arranged by repeating the N pole and the S pole.
- the stator 112 wound around the coil 118 forms a magnetic field by the supplied power to rotate the mover 113.
- the outer surface of the stator 112 is connected to and fixed to the inner surface of the inner housing 140.
- the robot 100 may be inserted into blood vessels of an animal or a person to inspect a state of a blood vessel internal fluid (eg, blood), and may crush impurities, and By collecting the debris and analyzing the components of the impurities, it can be used as a device for medical or medical aid.
- the robot 100 may be input to a water supply pipe, a sewage pipe, or an oil pipe to inspect the state of the fluid, crush the internal impurities, and collect the debris generated at this time to analyze the components of the impurities.
- the robot 100 is implemented to enable a plurality of groups to communicate with each other, or to exchange data with an external device, it is possible to inspect the state of the river, rivers or more complex and long pipe, The impurities can be crushed and the resulting debris can be collected and collected. It can also be used to analyze the components of impurities.
- the robot according to the present invention can be inserted into blood vessels of an animal or human to examine the state of blood vessel fluid (eg, blood), and can also crush impurities, and collect fragments of crushed impurities to collect impurities.
- blood vessel fluid eg, blood
- the robot according to the present invention can be used as a device for medical or medical activities, and it is put into water supply pipes, sewer pipes or oil pipes to check the condition of the fluid, crush the internal impurities, and collect the debris generated at this time.
- It can be used to analyze the composition of impurities, and also to inspect rivers, streams, or more complex and longer pipe internal conditions, to break up impurities, to collect and collect debris, and to analyze the components of impurities. It can be used to
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Pathology (AREA)
- Heart & Thoracic Surgery (AREA)
- Biophysics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Optics & Photonics (AREA)
- Combustion & Propulsion (AREA)
- Radiology & Medical Imaging (AREA)
- Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Robotics (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Fluid Mechanics (AREA)
- Manipulator (AREA)
Abstract
관내를 이동하여 불순물을 제거하는 로봇이 개시된다. 상기 로봇은 모터; 모터의 회전축의 일단에 장착되어 모터의 회전력을 추진력으로 변환하기 위한 임펠러; 모터의 회전축의 다른 일단에 장착되어 전방의 관 내부의 불순물을 제거하기 위한 불순물 제거장치; 외부 유체의 침입을 방지하기 위한 밀봉장치를 포함하며 상기 모터를 보호하기 위한 내부하우징; 외부하우징; 상기 내부하우징과 외부하우징을 접속시켜 고정하기 위한 적어도 하나의 지지대; 및 상기 외부 하우징의 외측면에 접촉되어 구비되고 전원을 공급하기 위한 전원공급장치와 관 내부의 상태를 측정하기 위한 다수의 측정장치가 장착되는 커버를 포함한다.
Description
본 발명은 로봇에 관한 것으로, 보다 상세하게는, 카메라, 센서, 불순물 제거 장치 등을 장착하여 관 내부의 유체의 상태를 모니터링 할 수 있고, 관 내를 이동하며 불순물 등을 제거할 수 있는 로봇에 관한 것이다.
산업의 발달에 따라 로봇의 설계, 제작, 제어 방법 등에 대한 다양한 시도가 이루어지고 있고, 다양한 형태를 가지는 로봇에 관한 연구가 이루어지고 있다. 그러나, 특수한 목적에 맞에 사용될수 있는 로봇에 대한 연구는 아직까지 미진한 상태이다. 따라서, 종전에는 사람의 손으로 직접 수행되거나 이마저도 불가능하거나 어려웠던 작업들을 대신할 수 있는 로봇의 개발이 요구되고 있다. 특히 관 내부와 같은 특수한 경우에 대하여 관 내부 상황을 모니터링 하고, 필요시 불순물 제거 등의 적절한 조치를 수행할 수 있는 로봇은 아직 구체화된 사례가 드물고 또한 다양한 크기의 관 내에 적절히 요구되는 로봇의 사양에 대한 상세 설계에 관한 연구가 미진하다. 관 내부 단면 크기가 작은 경우 이러한 로봇의 필요성은 더욱 증대되나 필연적으로 로봇의 구현 또한 매우 힘들다.
환경과 에너지에 관한 관심이 급증함에 따라 수중 생태계의 보호와 감시 기능을 저렴한 비용으로 다수의 로봇을 이용해 수행할 수 있는 기술이 요구되고 있으며, 유체가 흐르는 좁은 관 내부와 같은 곳을 이동하면서 관 내부의 측정 가능한 정보를 수집하거나 관 내 유동을 방해하는 불순물을 제거할 수 있는 로봇에 대한 필요성이 커지고 있다. 또한, 오늘날 의료 장비가 고도화되고 보편화되어 감에 따라 혈관 내부와 같은 특수한 환경에서 의료 행위를 수행하거나 이를 보조할 수 있는 로봇 또한 절실히 요구되고 있다.
이러한 환경에서 주어진 목적을 수행하기 위한 로봇의 설계와 구현을 위한 노력과 연구가 많이 수행되고 있으나 현재까지 그 성과는 미미한 수준이다.
따라서, 본 발명이 해결하고자 하는 과제는 통상적인 관 내의 유체 환경에서 단일 구동기를 이용해 로봇의 이송과 함께 유체 환경의 정보 수집 및 불순물 제거 등과 같은 주어진 목적을 효과적으로 수행할 수 있는 로봇을 제공하는 데에 있다.
또한, 본 발명이 해결하고자 하는 다른 과제는 관 내부와 같은 특수한 상황 하에서 유체의 흐름을 방해하지 않으면서 주어진 목적을 효과적으로 수행할 수 있는 로봇을 제공하는 데에 있다.
발명의 실시예에 따른 로봇은 모터; 모터의 회전축의 일단에 장착되어 모터의 회전력을 추진력으로 변환하기 위한 임펠러; 모터의 회전축의 다른 일단에 장착되어 전방의 유체 내의 불순물을 제거하기 위한 불순물 제거장치; 외부 유체의 침입을 방지하기 위한 밀봉장치를 포함하며 상기 모터를 보호하기 위한 내부하우징; 외부하우징; 상기 내부하우징과 외부하우징을 접속시켜 고정하기 위한 적어도 하나의 지지대; 및 상기 외부 하우징의 외측면에 접촉되어 구비되고 전원을 공급하기 위한 전원공급장치와 유체의 상태를 측정하기 위한 다수의 측정장치가 장착되는 커버를 포함하는 것을 특징으로 한다.
발명의 실시예에 따른 로봇은 임펠러와 전방의 유체 내의 불순물을 제거하기 위한 불순물 제거장치가 장착된 모터; 상기 모터를 보호하고 외부 유체의 침입을 방지하기 위하여 상기 모터를 밀봉하기 위한 내부하우징; 적어도 하나의 지지대에 의해 상기 내부하우징과 결합하고 전원을 공급하기 위한 전원공급장치와 유체의 상태를 측정하기 위한 다수의 측정장치가 장착되는 커버를 포함하는 것을 특징으로 한다.
상기 로봇은 상기 커버의 정면 또는 후면에 접속되어 내부로 유입되는 불순물 파편을 수집하기 위한 필터링장치를 더 포함하는 것을 특징으로 한다.
상기 로봇은 상기 커버의 외측에 다수의 공기 베어링 장치를 더 포함하는 것을 특징으로 한다.
상기 내부하우징과 외부하우징 사이에는 유체 이동통로가 마련되는 것을 특징으로 한다.
상기 적어도 하나의 지지대는 3개의 지지대로 구성되고 각각의 지지대가 120도 각도로 장착되고, 각각의 지지대 사이로 유체가 이동할 수 있는 유체이동통로가 마련되는 것을 특징으로 한다.
상기 로봇은 상기 커버의 내부에 상기 모터의 동작을 제어하고 외부 기기와 통신을 하기하기 위한 구동회로를 더 포함하는 것을 특징으로 한다.
상기 로봇은 상기 커버의 내부에 상기 모터의 동작을 제어하기 위한 구동회로를 더 포함하는 것을 특징으로 한다.
상기 로봇은 상기 커버의 내부에 외부와의 무선통신을 위한 무선 통신 장치 또는 유선 통신 장치 중 어느 하나를 더 포함하는 것을 특징으로 한다.
상기 로봇은 상수도관, 하수도관, 또는 송유관의 유체의 상태를 검사하고 불순물을 파쇄하고, 파쇄된 파편을 포집하는데 사용되는 것을 특징으로 한다.
상기 로봇은 동물, 또는 사람의 혈관에 삽입되어 혈관 내부 상태를 검사하고 불순물, 또는 혈관 내부에 생성된 협착물을 파쇄하고, 파쇄된 불순물 또는 협착물을 포집하는데 사용되는 것을 특징으로 한다.
상기 로봇은 강, 하천 등의 유체의 상태를 검사하고 불순물을 파쇄하고, 파쇄된 파편을 포집하는데 사용되는 것을 특징으로 한다.
상기 로봇은 다수가 모여 군을 이루고 상호간 또는 외부기기와 통신을 하도록 구현되는 것을 특징으로 한다.
본 발명에 따른 로봇은 일반적인 관 내 유체 환경에서 단일 구동기를 이용해 로봇의 이송과 함께 정보 수집 및 불순물 제거 등과 같은 주어진 목적을 수행할 수 있는 효과가 있다.
또한, 본 발명에 따른 로봇은 좁은 관 내부와 같은 특수한 상황 하에서도 유체의 흐름을 방해하지 않고 이동할 수 있고, 정보 수집 및 불순물 제거 등과 같은 주어진 목적을 수행할 수 있는 효과가 있다.
또한 본 발명에 따른 로봇은 동물, 또는 사람의 혈관에 삽입되어 혈관 내부 유체(예컨대, 혈액)의 상태를 검사할 수 있고, 또한, 불순물을 파쇄할 수 있고, 파쇄된 불순물의 파편을 포집하여 불순물의 성분을 분석함으로써, 의료용 또는 의료행위를 보조하는 장치로 이용될 수 있다.
또한, 본 발명에 따른 로봇은 상수도관, 하수도관, 또는 송유관에 투입되어 유체의 상태를 검사하고 내부의 불순물을 파쇄하고 이 때 생기는 파편을 포집하여 불순물의 성분을 분석하는데 이용될 수 있다.
또한, 본 발명에 따른 로봇은 다수가 군을 이루어 상호간, 또는 외부기기와 데이터를 주고 받을 수 있는 통신을 할 수 있도록 구현되어, 강, 하천 혹은 보다 복잡하고 긴 관 내부 상태를 검사할 수 있고, 불순물을 파쇄하고 이 때 생기는 파편을 포집, 수거할 수 있으며, 불순물의 성분을 분석하는데 이용될 수 있다.
본 발명의 상세한 설명에서 인용되는 도면을 보다 충분히 이해하기 위하여 각 도면의 간단한 설명이 제공된다.
도 1은 본 발명의 실시 예에 따른 로봇의 사시도를 나타낸다.
도 2는 본 발명의 실시 예에 다른 로봇의 A-A의 단면도를 나타낸다.
도 3은 본 발명의 실시 예에 따른 로봇의 B-B의 단면도를 나타낸다.
도 4는 본 발명의 실시 예에 따른 로봇의 후방에서의 사시도를 나타낸다.
도 5는 본 발명의 실시 예에 따른 로봇의 내부 구조를 나타내는 사시도이다.
도 6은 본 발명의 실시 예에 따른 로봇의 커버를 제거한 사시도이다.
도 7은 본 발명의 실시 예에 따른 로봇의 커버에 조립된 배터리를 나타내는 사시도이다.
도 8은 본 발명의 실시 예에 따른 로봇의 커버에 조립된 구동 회로 및 통신 모듈을 나타내는 사시도이다.
도 9는 본 발명의 실시 예에 따른 로봇의 내부하우징의 내부를 나타내는 사시도이다.
도 10은 본 발명의 실시 예에 따른 모터를 나타내는 사시도이다.
도 11은 본 발명의 실시 예에 따른 모터의 내부를 나타내는 사시도이다.
본 발명과 본 발명의 동작상의 이점 및 본 발명의 실시에 의하여 달성되는 목적을 충분히 이해하기 위해서는 본 발명의 바람직한 실시예를 예시하는 첨부 도면 및 첨부 도면에 기재된 내용을 참조하여야만 한다.
이하, 첨부한 도면을 참조하여 본 발명의 바람직한 실시예를 설명함으로써, 본 발명을 상세히 설명한다. 각 도면에 제시된 동일한 참조부호는 동일한 부재를 나타낸다.
도 1은 본 발명의 실시 예에 따른 로봇의 사시도를 나타내고, 도 2는 본 발명의 실시 예에 다른 로봇의 A-A의 단면도를 나타내고, 도 3은 도 3은 본 발명의 실시 예에 따른 로봇의 B-B의 단면도를 나타낸다. 좀더 상세히 설명하면, 도 1 내지 도 3은 본 발명의 실시 예에 따른 로봇(100)이 관(예컨대, 혈관 등, 10) 내부에 삽입된 모양을 나타내는 도면이다.
도 1 내지 도 3을 참조하면, 상기 로봇(100)은 모터(110), 임펠러(120), 불순물 제거장치(130), 내부하우징(140), 외부하우징(150), 적어도 하나의 지지대(160), 커버(170), 베어링 장치(180), 및 필터링 장치를 포함한다.
상기 모터(110)는 AC 모터 또는 DC 모터 중 어느 하나로 구현되고, 공급되는 전력에 의하여 회전력을 발생한다. 상기 모터(110)의 상세한 구조는 이하 도면을 참조하여 상세히 설명하고자 한다.
상기 임펠러(120)는 도 2와 도 3에 도시된 바와 같이 상기 모터의 회전축(111)의 일단(예컨대, 진행방향의 반대 방향)에 장착되어 상기 모터(110)로부터 발생되는 회전력을 추진력으로 변환한다. 결국, 상기 임펠러(120)의 동작에 의해 발생되는 추진력에 의해 상기 로봇(100)은 유체 내부에서 구동이 가능하다.
상기 불순물 제거장치(130)는 상기 모터(110)의 회전축의 다른 일단(예컨대, 진행방향)에 장착되어 전방의 관 내부의 불순물을 파쇄하는 기능을 수행한다. 상기 불순물 제거장치(130)는 드릴링, 그라인더, 펀칭 등의 장치를 이용하여 구현가능하다.
상기 내부하우징(140)은 상기 모터(110)를 보호하는 보호케이스 기능을 하고, 상기 모터(110)와 상기 임펠러(120) 및 상기 불순물 제거장치(130)의 결합부에 밀봉장치를 결합하여 외부의 유체가 상기 모터(110) 내부로 침입하는 것을 방지한다.
상기 외부하우징(150)은 상기 내부하우징(140)에 적어도 하나의 지지대(160)에 의하여 결합된다. 본 발명의 실시예에서는 상기 적어도 하나의 지지대(160)는 3개의 지지대로 구성된 예를 들어 설명하나 이에 한정된 것은 아니다.
상기 지지대(160) 각각은 원주 방향을 중심으로 서로 간에 120도의 등간격으로 배치된다. 상기 지지대(160) 사이의 공간에는 유체가 이동할 수 있는 유체이동 통로가 마련된다. 결국, 상기 유체 이동 통로에 의해 상기 로봇(100)은 유체 내에서도 유체의 흐름을 완전히 차단하지 않기 때문에 유동을 방해하지 않으면서 이동이 가능하다.
상기 지지대(160) 내부에는 일정한 공간이 마련되고, 상기 지지(160)대의 내부공간으로 상기 모터(110)에 전원을 공급하거나 상기 모터(110)의 동작을 제어하기 위한 내부 배선 등이 통과한다.
상기 커버(170)는 상기 외부하우징(140)의 외측면에 접촉되어 구비되고, 상기 커버(170)에는 다수의 측정장치(171)가 장착된다. 상기 다수의 측정장치(171)는 센서나 카메라 등으로 구현될 수 있고, 측정의 목적에 따라 다양한 측정장치들이 부가되어 장착될 수도 있다.
도 4는 본 발명의 실시 예에 따른 로봇의 후방에서의 사시도를 나타낸다. 도 4를 참조하면, 상기 로봇(100)은 필터링 장치(180) 및 베어링 장치(190)를 더 포함할 수 있다.
상기 필터링 장치(180)는 필터(181)와 필터 고정장치(182)를 포함하고, 상기 필터 고정장치(182)에 의하여 상기 커버(170)에 접속된다. 상기 필터링 장치(180)는 상기 커버(170)의 전방 또는 후방에 접속되어 구현될 수 있다. 본 발명의 실시예에서는 상기 커버(170)의 후방에 접속된 예를 들어 설명한다.
상기 필터(171)는 다공성의 여과 필터 형태를 하고 상기 필터 고정장치(182)에 탈부착이 가능하도록 구현되어 쉽게 교체 및 보수가 가능하도록 구현된다. 상기 필터는 상기 불순물 제거 장치(130)에 의해 파쇄된 일정 크기 이상의 불순물 파편을 수집하는 기능을 함으로써, 상기 수집된 불순물 파편을 수거하는 데 이용되며, 이는 유체 내부의 불순물을 분석하는데 이용될 수도 있다.
상기 공기베어링(190)은 상기 커버(170)의 외측면에 장착되어 상기 로봇(100)이 이동 중 관내벽과 충돌시 완충작용을 한다. 상기 공기베어링(190)은 내부에 공기로 채워지고, 공기 압력에 의한 막의 팽창과 수축에 의해 베어링의 기능을 수행한다. 상기 공기베어링(190)은 관 내벽과의 충돌시 완충 역할을 할 뿐만 아니라 로봇(100)이 관내부를 따라 정확히 이동할 수 있는 보조 기능을 수행한다. 또한, 로봇(100)이 관내부의 불순물을 제거하기 위한 기능을 수행하거나, 임펠러(120)가 동작할 때, 축방향의 반발력이 발생하게 되는데 상기 공기베어링(190)은 이러한 반발력을 상쇄하고 로봇(100)을 지지함으로써 안정된 이동이나 작업을 가능하게 된다.
도 5는 본 발명의 실시 예에 따른 로봇의 내부 구조를 나타내는 사시도이다. 도 5를 참조하면, 상기 지지대(160)는 내부에 상기 모터(110)에 전원 및 제어 신호를 공급하기 위한 내부 배선들이 통과하는 소정의 공간(161)이 마련된다. 상기 지지대(160)는 내부하우징(140)의 지지대 조립홈(141)에 결합되어 내부하우징(140)과 외부 하우징(150)을 접속시킨다.
도 6은 본 발명의 실시 예에 따른 로봇의 커버를 제거한 사시도이고, 도 7은 본 발명의 실시 예에 따른 로봇의 커버에 조립된 배터리를 나타내는 사시도이고, 도 8은 본 발명의 실시 예에 따른 로봇의 커버에 조립된 구동 회로 및 통신 모듈을 나타내는 사시도이다.
도 6 내지 도 8을 참조하면, 상기 외부하우징(150)과 상기 내부하우징(140)은 각각의 내측면과 외측면이 완전히 접속되어 형성된다. 도 7과 도 8을 참조하면, 상기 커버(160)의 내부에는 배터리(161), 통신 모듈(162), 및 구동회로(163) 등이 장착된다. 또한, 공기베어링(190)에 공기를 공급하기 위한 공기주입구(164)가 형성된다. 도시되지는 않았지만 상기 커버(170)의 내부에는 상기 내부 배선들이 통과할 수 있는 공간이 마련되어 측정장치(171), 및 모터(110)에 전원 및 제어신호 들을 전달하기 위한 내부배선들이 통과한다.
상기 배터리(161)는 모터(110), 통신모듈(162), 구동회로(163), 및 측정 장치(171) 등과 같은 장치의 동작에 필요한 전원을 공급한다.
상기 통신모듈(162)은 외부기기와의 통신을 통하여 상기 모터(110), 및 측정장치(171)를 제어할 수 있는 명령들을 수신하거나, 상기 측정장치(171)를 통하여 수집된 정보를 외부기기로 전송한다. 상기 통신모듈(162)은 무선 통신 장치 또는 유선 통신 장치 중 어느 하나로 구현될 수 있다. 상기 유선통신 장치로 구현될 경우 도시되지는 않았지만 외부와 통신하기 위한 통신배선이 더 마련될 수 있다.
상기 구동회로(163)는 상기 모터(110)의 동작을 제어하기 위한 제어신호를 발생하여 상기 모터(110)의 동작을 제어한다. 본 발명의 실시예에서는 상기 통신모듈(162)이 상기 구동회로(163)와 별도로 구현된 예를 들어 설명하였으나, 상기 통신모듈(162)은 상기 구동회로(163)에 포함되어 구현될 수 있다.
도 9는 본 발명의 실시 예에 따른 로봇의 내부하우징의 내부를 나타내는 사시도이고, 도 10은 본 발명의 실시 예에 따른 모터를 나타내는 사시도이고, 도 11은 본 발명의 실시 예에 따른 모터의 내부를 나타내는 사시도이다. 도 9 내지 도 11을 참조하면, 상기 로봇(100)의 내부하우징(140)을 제거하면 도 9에 도시한 형상과 모터(110)가 외부로 드러나고, 모터(110)의 외부를 형성하고 있는 고정자(112)를 제거하게 되면 내부의 회전자(113)가 드러나게 된다.
도 10은 본 발명의 실시 예에 따른 모터를 나타내는 사시도이고, 도 11은 본 발명의 실시 예에 따른 모터의 내부를 나타내는 사시도이다. 도 10에 도시된 바와 같이 내부하우징(140)의 측면 단면을 보면 상기 모터(110)는 베어링(114)을 통하여 모터(110)의 회전력을 불순물 제거장치(130)로 전달한다. 상기 내부하우징(140), 불순물 제거장치(130)와 모터(110)가 접속되는 부문에는 밀봉장치(116)가 구비되어 외부의 유체가 모터(110) 내부로 침투되는 것을 방지한다.
도 11은 모터 내부의 구조를 나타내는 사시도이다. 도 11을 참조하면, 상기 모터는 회전 축(111), 고정자(112), 및 이동자(113)를 포함한다. 상기 회전축(111)은 N극과 S극이 반복되어 배치된 영구자석(117)이 결합된 이동자(113)와 원주상에 결합된다. 코일(118)이 감겨진 상기 고정자(112)는 공급되는 전원에 의하여 자계를 형성하여 상기 이동자(113)를 회전시키게 된다. 상기 고정자(112)의 외부면은 상기 내부하우징(140)의 내부면과 접속되어 고정된다.
이상 상술한 본 발명에 따른 상기 로봇(100)은 동물, 또는 사람의 혈관에 삽입되어 혈관 내부 유체(예컨대 혈액)의 상태를 검사할 수 있고, 또한, 불순물을 파쇄할 수 있고, 파쇄된 불순물의 파편을 포집하여 불순물의 성분을 분석함으로써, 의료용 또는 의료행위를 보조하는 장치로 이용될 수 있다. 또한, 상기 로봇(100)은 상수도관, 하수도관, 또는 송유관에 투입되어 유체의 상태를 검사하고 내부의 불순물을 파쇄하고 이 때 생기는 파편을 포집하여 불순물의 성분을 분석하는데 이용될 수 있다. 또한, 상기 로봇(100)은 다수가 군을 이루어 상호간, 또는 외부기기와 데이터를 주고 받을 수 있는 통신을 할 수 있도록 구현되어, 강, 하천 혹은 보다 복잡하고 긴 관 내부 상태를 검사할 수 있고, 불순물을 파쇄하고 이 때 생기는 파편을 포집, 수거할 수 있다. 또한 이는 불순물의 성분을 분석하는데 이용될 수 있다. 본 발명은 도면에 도시된 일 실시 예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시 예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 등록청구범위의 기술적 사상에 의해 정해져야 할 것이다.
본 발명에 따른 로봇은 동물, 또는 사람의 혈관에 삽입되어 혈관 내부 유체(예컨대, 혈액)의 상태를 검사할 수 있고, 또한, 불순물을 파쇄할 수 있고, 파쇄된 불순물의 파편을 포집하여 불순물의 성분을 분석함으로써, 의료용 또는 의료행위를 보조하는 장치로 이용될 수 있으며, 또한 상수도관, 하수도관, 또는 송유관에 투입되어 유체의 상태를 검사하고 내부의 불순물을 파쇄하고 이 때 생기는 파편을 포집하여 불순물의 성분을 분석하는데 이용될 수 있으며, 또한 강, 하천 혹은 보다 복잡하고 긴 관 내부 상태를 검사할 수 있고, 불순물을 파쇄하고 이 때 생기는 파편을 포집, 수거할 수 있으며, 불순물의 성분을 분석하는데 이용될 수 있다.
Claims (13)
- 모터;모터의 회전축의 일단에 장착되어 모터의 회전력을 추진력으로 변환하기 위한 임펠러;모터의 회전축의 다른 일단에 장착되어 전방의 유체 내의 불순물을 제거하기 위한 불순물 제거장치;외부 유체의 침입을 방지하기 위한 밀봉장치를 포함하며 상기 모터를 보호하기 위한 내부하우징;외부하우징;상기 내부하우징과 외부하우징을 접속시켜 고정하기 위한 적어도 하나의 지지대; 및상기 외부 하우징의 외측면에 접촉되어 구비되고 전원을 공급하기 위한 전원공급장치와 유체의 상태를 측정하기 위한 다수의 측정장치가 장착되는 커버를 포함하는 것을 특징으로 하는 로봇.
- 임펠러와 전방의 유체 내의 불순물을 제거하기 위한 불순물 제거장치가 장착된 모터;상기 모터를 보호하고 외부 유체의 침입을 방지하기 위하여 상기 모터를 밀봉하기 위한 내부하우징;적어도 하나의 지지대에 의해 상기 내부하우징과 결합하고 전원을 공급하기 위한 전원공급장치와 유체의 상태를 측정하기 위한 다수의 측정장치가 장착되는 커버를 포함하는 것을 특징으로 하는 로봇.
- 제1항 또는 제2항 중 어느 한 항에 있어서,상기 로봇은,상기 커버의 정면 또는 후면에 접속되어 내부로 유입되는 불순물 파편을 수집하기 위한 필터링장치를 더 포함하는 것을 특징으로 하는 로봇.
- 제1항 내지 제3항 중 어느 한 항에 있어서,상기 로봇은,상기 커버의 외측에 다수의 공기 베어링 장치를 더 포함하는 것을 특징으로 하는 로봇.
- 제1항 내지 제4항 중 어느 한 항에 있어서,상기 내부하우징과 외부하우징 사이에는 유체 이동통로가 마련되는 것을 특징으로 하는 로봇.
- 제1항 내지 제4항 중 어느 한 항에 있어서,상기 적어도 하나의 지지대는,3개의 지지대로 구성되고 각각의 지지대가 120도 각도로 장착되고, 각각의 지지대 사이로 유체가 이동할 수 있는 유체이동통로가 마련되는 것을 특징으로 하는 로봇.
- 제6항에 있어서,상기 로봇은,상기 커버의 내부에 상기 모터의 동작을 제어하고 외부 기기와 통신을 하기하기 위한 구동회로를 더 포함하는 것을 특징으로 하는 로봇.
- 제6항에 있어서,상기 로봇은,상기 커버의 내부에 상기 모터의 동작을 제어하기 위한 구동회로를 더 포함하는 것을 특징으로 하는 로봇.
- 제8항에 있어서,상기 로봇은,상기 커버의 내부에 외부와의 무선통신을 위한 무선 통신 장치 또는 유선 통신 장치 중 어느 하나를 더 포함하는 것을 특징으로 하는 로봇.
- 제1항 내지 제9항 중 어느 한 항에 있어서,상기 로봇은,상수도관, 하수도관, 또는 송유관의 유체의 상태를 검사하고 불순물을 파쇄하고, 파쇄된 파편을 포집하는데 사용되는 것을 특징으로 하는 로봇.
- 제1항 내지 제9항 중 어느 한 항에 있어서,상기 로봇은,동물, 또는 사람의 혈관에 삽입되어 혈관 내부 상태를 검사하고 불순물, 또는 혈관 내부에 생성된 협착물을 파쇄하고, 파쇄된 불순물 또는 협착물을 포집하는데 사용되는 것을 특징으로 하는 로봇.
- 제1항 내지 제9항 중 어느 한 항에 있어서,상기 로봇은,강, 하천 등의 유체의 상태를 검사하고 불순물을 파쇄하고, 파쇄된 파편을 포집하는데 사용되는 것을 특징으로 하는 로봇.
- 제1항 내지 제9항 중 어느 한 항에 있어서,상기 로봇은,다수가 모여 군을 이루고 상호간 또는 외부기기와 통신을 하도록 구현되는 것을 특징으로 하는 로봇.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2010-0036403 | 2010-04-20 | ||
KR1020100036403 | 2010-04-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011132817A1 true WO2011132817A1 (ko) | 2011-10-27 |
Family
ID=44834326
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2010/003372 WO2011132817A1 (ko) | 2010-04-20 | 2010-05-27 | 관내를 이동하여 불순물을 제거하는 로봇 |
PCT/KR2011/002820 WO2011132925A2 (ko) | 2010-04-20 | 2011-04-20 | 유체 내 침투 가능한 이동 로봇 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2011/002820 WO2011132925A2 (ko) | 2010-04-20 | 2011-04-20 | 유체 내 침투 가능한 이동 로봇 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101315893B1 (ko) |
WO (2) | WO2011132817A1 (ko) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015050673A1 (en) * | 2013-10-01 | 2015-04-09 | Bp Corporation North America Inc. | Apparatus and methods for clearing a subsea tubular |
RU2602607C2 (ru) * | 2015-03-24 | 2016-11-20 | Федеральное государственное бюджетное научное учреждение "Всероссийский научно-исследовательский институт электрификации сельского хозяйства" (ФГБНУ ВИЭСХ) | Устройство для очистки молокопроводов доильных установок |
RU2654623C1 (ru) * | 2017-06-23 | 2018-05-21 | Федеральное государственное бюджетное научное учреждение Федеральный научный агроинженерный центр ВИМ (ФГБНУ ФНАЦ ВИМ) | Устройство очистки и контроля чистоты молочных линий |
CN109268618A (zh) * | 2018-09-19 | 2019-01-25 | 陈东 | 管道内况检测机器人 |
CN111379313A (zh) * | 2020-04-18 | 2020-07-07 | 上海澄泓管道机器人有限公司 | 一种旋转式吸污头装置 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101241844B1 (ko) * | 2012-09-06 | 2013-03-11 | (주)삼경이엔씨 | 트라이앵글형 정밀관로측량로봇을 통한 스마트형 관로측량장치 |
ES2859755T3 (es) * | 2013-02-01 | 2021-10-04 | Abb Power Grids Switzerland Ag | Dispositivo y método para inspección in-situ de transformador |
KR101596313B1 (ko) * | 2014-06-02 | 2016-02-23 | 한국원자력연구원 | 경사 시추공 삽입을 위한 추진체를 가지는 지구물리검층기 |
CN105145448B (zh) * | 2015-09-15 | 2018-09-11 | 中国水产科学研究院渔业机械仪器研究所 | 一种远程投饲系统的输料管道排堵装置 |
CN107537834B (zh) * | 2017-09-25 | 2023-08-11 | 国网江苏省电力公司常州供电公司 | 电缆保护管清障装置 |
KR101975863B1 (ko) * | 2017-11-20 | 2019-05-07 | 한국생산기술연구원 | 소프트 리니어 액추에이터 |
CN107893473B (zh) * | 2017-12-05 | 2019-12-06 | 瑞安市斯帝姆教育科技有限公司 | 一种下水管道清理机器人 |
CN109227556B (zh) * | 2018-09-28 | 2022-03-29 | 华南理工大学 | 一种超声波清洗机器人和清洗方法 |
CN109973754A (zh) * | 2019-04-01 | 2019-07-05 | 杨亚东 | 排水管 |
CN110695412B (zh) * | 2019-09-25 | 2020-10-30 | 泉州市早稻梦想文化发展有限公司 | 一种全自动机械无尘钻孔设备 |
CN112006778A (zh) * | 2020-08-20 | 2020-12-01 | 广州大学 | 一种用于清理血栓的旋切机器人 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5265682A (en) * | 1991-06-25 | 1993-11-30 | Camco Drilling Group Limited | Steerable rotary drilling systems |
JP2001096246A (ja) * | 1999-10-01 | 2001-04-10 | Toa Harbor Works Co Ltd | 管路内の清掃方法及び装置 |
WO2003062644A1 (en) * | 2002-01-16 | 2003-07-31 | Corac Group Plc | Downhole compressor |
KR20090122648A (ko) * | 2008-05-26 | 2009-12-01 | 전남대학교산학협력단 | 혈관치료용 마이크로 로봇 및 마이크로 로봇 시스템 |
KR20100015207A (ko) * | 2008-08-04 | 2010-02-12 | 전남대학교산학협력단 | 혈관 치료용 마이크로 로봇의 유지 및 이동 시스템 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3191717B2 (ja) * | 1991-11-05 | 2001-07-23 | セイコーエプソン株式会社 | マイクロロボット |
US6240312B1 (en) * | 1997-10-23 | 2001-05-29 | Robert R. Alfano | Remote-controllable, micro-scale device for use in in vivo medical diagnosis and/or treatment |
US8353896B2 (en) * | 2004-04-19 | 2013-01-15 | The Invention Science Fund I, Llc | Controllable release nasal system |
KR100863263B1 (ko) | 2007-11-07 | 2008-10-15 | 덕원산업개발주식회사 | 노후관로 갱생장치 및 방법 |
-
2010
- 2010-05-27 WO PCT/KR2010/003372 patent/WO2011132817A1/ko active Application Filing
-
2011
- 2011-04-20 KR KR1020110036561A patent/KR101315893B1/ko active IP Right Grant
- 2011-04-20 WO PCT/KR2011/002820 patent/WO2011132925A2/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5265682A (en) * | 1991-06-25 | 1993-11-30 | Camco Drilling Group Limited | Steerable rotary drilling systems |
JP2001096246A (ja) * | 1999-10-01 | 2001-04-10 | Toa Harbor Works Co Ltd | 管路内の清掃方法及び装置 |
WO2003062644A1 (en) * | 2002-01-16 | 2003-07-31 | Corac Group Plc | Downhole compressor |
KR20090122648A (ko) * | 2008-05-26 | 2009-12-01 | 전남대학교산학협력단 | 혈관치료용 마이크로 로봇 및 마이크로 로봇 시스템 |
KR20100015207A (ko) * | 2008-08-04 | 2010-02-12 | 전남대학교산학협력단 | 혈관 치료용 마이크로 로봇의 유지 및 이동 시스템 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015050673A1 (en) * | 2013-10-01 | 2015-04-09 | Bp Corporation North America Inc. | Apparatus and methods for clearing a subsea tubular |
RU2602607C2 (ru) * | 2015-03-24 | 2016-11-20 | Федеральное государственное бюджетное научное учреждение "Всероссийский научно-исследовательский институт электрификации сельского хозяйства" (ФГБНУ ВИЭСХ) | Устройство для очистки молокопроводов доильных установок |
RU2654623C1 (ru) * | 2017-06-23 | 2018-05-21 | Федеральное государственное бюджетное научное учреждение Федеральный научный агроинженерный центр ВИМ (ФГБНУ ФНАЦ ВИМ) | Устройство очистки и контроля чистоты молочных линий |
CN109268618A (zh) * | 2018-09-19 | 2019-01-25 | 陈东 | 管道内况检测机器人 |
CN111379313A (zh) * | 2020-04-18 | 2020-07-07 | 上海澄泓管道机器人有限公司 | 一种旋转式吸污头装置 |
Also Published As
Publication number | Publication date |
---|---|
WO2011132925A2 (ko) | 2011-10-27 |
KR20110117022A (ko) | 2011-10-26 |
WO2011132925A3 (ko) | 2012-02-02 |
KR101315893B1 (ko) | 2013-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011132817A1 (ko) | 관내를 이동하여 불순물을 제거하는 로봇 | |
KR20110116968A (ko) | 관내를 이동하여 불순물을 제거하는 로봇 | |
CN112888536B (zh) | 机器人及其集成关节 | |
WO2002070943A9 (en) | Gas main robotic inspection system | |
WO2013024935A1 (en) | Gas type fire-fighting apparatus having double detective function for ships | |
EP3326269B1 (en) | Line replaceable unit (lru) sensor systems for motors and other machines | |
WO2006085823A1 (en) | A method and a contact panel having contacts protruding through an opening in a cover forming part of an industrial robot | |
MX2014010370A (es) | Sistema y metodo para monitorear contaminantes corrosivos en un fluido. | |
CN106464013A (zh) | 电力供给系统 | |
EP1464456B1 (en) | Robot comprising a robot arm and a line laying arrangement for guiding a line element | |
CN113915450A (zh) | 一种管道巡检机器人及管道结构 | |
WO2022244947A1 (ko) | 스스로 풍향을 추종하는 바람유입장치 | |
WO2013058510A1 (ko) | 수력 발전장치 | |
CN103656898B (zh) | 鼓风过滤系统的鼓风过滤设备以及鼓风过滤系统 | |
EP3227561A1 (en) | Motor-compressor unit with magnetic bearings | |
CN100410620C (zh) | 磁力泵轴承间隙在线监测装置 | |
CN112792847A (zh) | 机器人的线条体单元以及线条体布线方法 | |
GB2196581A (en) | Submarine periscope systems | |
CN104913100B (zh) | 定位器 | |
KR101614323B1 (ko) | 모니터링 수단을 구비한 입축펌프 | |
EP1893995A1 (en) | Measurement instrument | |
WO2013180507A1 (ko) | 회전축 연결 구조체 및 이를 구비한 선박 | |
WO2024101695A1 (ko) | 지중매설 관로의 누수감지장치 | |
CN218984812U (zh) | 一种煤矿井下排水通道检测机器人 | |
RU2251117C2 (ru) | Устройство для сбора и передачи данных |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10850300 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10850300 Country of ref document: EP Kind code of ref document: A1 |