WO2011132559A1 - Laser annealing method, device, and microlens array - Google Patents

Laser annealing method, device, and microlens array Download PDF

Info

Publication number
WO2011132559A1
WO2011132559A1 PCT/JP2011/058990 JP2011058990W WO2011132559A1 WO 2011132559 A1 WO2011132559 A1 WO 2011132559A1 JP 2011058990 W JP2011058990 W JP 2011058990W WO 2011132559 A1 WO2011132559 A1 WO 2011132559A1
Authority
WO
WIPO (PCT)
Prior art keywords
microlenses
laser
rows
microlens
group
Prior art date
Application number
PCT/JP2011/058990
Other languages
French (fr)
Japanese (ja)
Inventor
水村 通伸
渡辺 由雄
畑中 誠
Original Assignee
株式会社ブイ・テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブイ・テクノロジー filed Critical 株式会社ブイ・テクノロジー
Priority to CN201180020284.5A priority Critical patent/CN102844839B/en
Priority to KR1020127030599A priority patent/KR101773219B1/en
Publication of WO2011132559A1 publication Critical patent/WO2011132559A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/02068Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02678Beam shaping, e.g. using a mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02691Scanning of a beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • H01L27/1285Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor using control of the annealing or irradiation parameters, e.g. using different scanning direction or intensity for different transistors

Definitions

  • the present invention relates to a laser annealing method and apparatus for forming a low-temperature polysilicon film by annealing an amorphous silicon film by irradiation with laser light in a thin film transistor liquid crystal panel or the like, and in particular, a microlens array used therefor.
  • the present invention relates to a laser annealing method and apparatus capable of annealing only a region where a thin film transistor is to be formed.
  • an amorphous silicon film is formed on a glass substrate, and laser light having a linear beam shape is applied to the amorphous silicon film from one end of the substrate in a direction perpendicular to the longitudinal direction of the beam.
  • laser light having a linear beam shape is applied to the amorphous silicon film from one end of the substrate in a direction perpendicular to the longitudinal direction of the beam.
  • a low-temperature polysilicon film is formed.
  • the linear laser beam the amorphous silicon film is heated and melted by the laser beam, and then the molten silicon is rapidly cooled by the passage of the laser beam and solidified to be crystallized to form a low-temperature polysilicon film.
  • the entire amorphous silicon film is heated to a high temperature upon irradiation with laser light, and the entire amorphous silicon film becomes a low-temperature polysilicon film by melting and solidifying. For this reason, since regions other than the region where a thin film transistor (hereinafter referred to as TFT) is to be formed are also annealed, there is a problem that processing efficiency is poor.
  • TFT thin film transistor
  • a microlens array is used, and each microlens condenses laser light onto a plurality of minute areas on the amorphous silicon film, and simultaneously individually applies laser light to the minute areas corresponding to each transistor.
  • a method of annealing by irradiation has been proposed (Patent Document 2). This method has an advantage that the use efficiency of the laser beam is increased because only the amorphous silicon film in a plurality of TFT formation regions is annealed.
  • the present invention has been made in view of such a problem, and the microlens array can be configured with a large pitch different from the pitch of the transistor formation scheduled region in the amorphous silicon film.
  • Another object of the present invention is to provide a laser annealing method, apparatus, and microlens array capable of forming a micro polysilicon film region by laser annealing on an amorphous silicon film with a small pitch.
  • a laser annealing method includes a microlens array in which a plurality of microlenses are arranged in m (m is a natural number), a mask having an opening corresponding to each microlens, and generation of laser light.
  • the m rows of microlenses form a group every n (n is a natural number, n ⁇ m) rows, and in each group, the microlenses are arranged at the same pitch P.
  • the lenses are separated by P + P / n.
  • the first step laser annealing is performed by irradiating the amorphous silicon film on the substrate with the first laser beam from the microlens for n rows
  • the second step When the laser beam irradiation system and the substrate move relatively by n ⁇ P, the amorphous silicon film on the substrate is irradiated with a second laser beam from the microlens for 2 ⁇ n rows to perform laser processing.
  • Annealing is performed, and thereafter, laser irradiation is performed a plurality of times in the same manner to form laser annealing regions with a P / n pitch.
  • the laser annealing apparatus includes a microlens array in which a plurality of microlenses are arranged in m (m is a natural number), a mask having an opening corresponding to each microlens, and laser light.
  • a light guide unit for guiding laser light from the generation source to the mask and the microlens, a laser light irradiation system including the mask and the microlens, and a substrate in a row of the microlenses.
  • the m rows of microlenses form a group every n (n is a natural number, n ⁇ m) rows, and in each group, the microlenses are arranged at the same pitch P.
  • the lenses are separated by P + P / n,
  • the control device performs laser annealing by irradiating the amorphous silicon film on the substrate with the first laser beam from n rows of microlenses, and in the second step, the laser beam irradiation system.
  • laser annealing is performed by irradiating the amorphous silicon film on the substrate with a second laser beam from microlenses for 2 ⁇ n rows, and so on.
  • the driving means and the generation source are controlled so that laser annealing is performed a plurality of times and laser annealing regions are formed at a P / n pitch.
  • the microlens array according to the present invention is used in a laser beam irradiation apparatus, and in the microlens array in which a plurality of microlenses are arranged in m (m is a natural number), the m rows of microlenses are arranged. Is a group for every n (n is a natural number, n ⁇ m) column, and in each group, the microlenses are arranged at the same pitch P, and between each group, the microlens is P + P / n It is characterized by being separated.
  • the laser light irradiation system and the substrate are relatively moved.
  • n rows of laser light irradiation regions can be provided between the pitches P of the microlens array. That is, n rows of irradiation areas can be provided in the arrangement pitch of each group of microlenses within P, and the arrangement pitch of the irradiation areas can be made fine.
  • the microlens array can be formed with a large pitch different from the pitch of the transistor formation planned region in the amorphous silicon film, and the microcrystalline array by laser annealing is applied to the amorphous silicon film at a pitch smaller than the arrangement pitch of the microlens array.
  • a silicon film region can be formed.
  • FIG. 4 is a diagram showing a step subsequent to FIG. 3. It is a figure which shows the next process of FIG. It is a figure which shows the next process of FIG. It is a figure which shows the next process of FIG. It is a figure which shows the next process of FIG. It is a figure which shows the next process of FIG. It is a figure which shows the next process of FIG. It is a figure which shows the next process of FIG. It is a figure which shows the next process of FIG.
  • FIG. 1 is a diagram showing a laser irradiation apparatus using a microlens 5.
  • the laser irradiation apparatus shown in FIG. 1 is annealed by irradiating only the channel region formation scheduled region with laser light, for example. This is an apparatus for polycrystallizing and forming a polysilicon film.
  • the laser light emitted from the light source 1 is shaped into a parallel beam by the lens group 2 and applied to the irradiated object 6 through a microlens array including a large number of microlenses 5. Irradiate.
  • the laser light source 1 is, for example, an excimer laser that emits laser light having a wavelength of 308 nm or 353 nm at a repetition period of, for example, 50 Hz.
  • a large number of microlenses 5 are arranged on a transparent substrate 4, and the laser light is focused on a thin film transistor formation scheduled area set on a thin film transistor substrate as an irradiated body 6.
  • the transparent substrate 4 is arranged in parallel to the irradiated body 6, and the microlenses 5 are arranged at a pitch of an integer multiple (for example, 2) of 2 or more of the arrangement pitch of the transistor formation scheduled regions.
  • the irradiated body 6 of the present embodiment is, for example, a thin film transistor, and a polysilicon channel region is formed by irradiating a laser beam to the channel region formation scheduled region of the a-Si film.
  • a mask 3 for irradiating only the channel formation scheduled region with the laser beam is arranged by the microlens 5, and the channel region is defined in the irradiated object 6 by this mask 3. .
  • a gate electrode made of a metal film such as Al is patterned on a glass substrate by sputtering.
  • a gate insulating film made of a SiN film is formed on the entire surface by low-temperature plasma CVD at 250 to 300 ° C. using silane and H 2 gas as source gases.
  • an a-Si: H film is formed on the gate insulating film by, eg, plasma CVD.
  • This a-Si: H film is formed by using a mixed gas of silane and H 2 gas as a source gas.
  • one microlens 5 is arranged in each channel region, and only this channel formation planned region is irradiated with laser light and annealed. Then, this channel formation scheduled region is polycrystallized to form a polysilicon channel region.
  • the microlenses 5 are not arranged in a single row but are arranged in a plurality of rows. In the present embodiment of FIGS. 2 to 9, three groups of three rows are provided, and a total of nine rows of microlenses are arranged. .
  • FIG. 2 is a plan view showing the arrangement of the microlenses 5 and the laser light irradiation area.
  • FIG. 3 to FIG. 9 are upper views of them, showing a region 10 (region subjected to annealing) in which the laser light is condensed on the amorphous silicon film by the microlens and a planar arrangement of the microlens 5.
  • the lower figure is a front view showing laser light irradiated on the glass substrate.
  • an aluminum mask 3 is disposed above the microlens 5, and a light shielding plate 7 that shields the laser light is disposed above the mask 3. As shown in FIG.
  • the microlenses 5 are arranged in a total of 9 rows of 3 rows each of the first group 11, the second group 12, and the third group 13.
  • the microlenses 5 are arranged at a constant pitch P.
  • P the pitch between the microlenses between the first group 11 and the second group 12, and between the microlenses between the second group 12 and the third group 13, both are P + 1 / 3P. They are separated by an interval.
  • a gate layer 21 is formed on the entire surface of the glass substrate 20, and an amorphous silicon layer 22 is further formed on the gate layer 21.
  • the mask 3, the microlens 5, and the light shielding plate 7 are disposed in front of the upper region of the glass substrate 20.
  • the glass substrate 20 is moved to the right in the figure while the light shielding plate 7, the mask 3 and the microlens 5 are fixed.
  • This movement of the substrate is performed by irradiating the laser beam after moving by a distance three times the arrangement pitch P of the microlenses, and further irradiating the laser beam after the substrate has moved by a distance three times the pitch P. It is to do.
  • the operation of the laser beam generation system and the driving means for moving the laser beam irradiation system including the mask and the microlens and the substrate relative to each other in the direction perpendicular to the microlens row is performed. It is controlled by the control device to control. As shown in FIG. 3, the mask 3 is held in a state in which the positional relationship with the microlenses 5 is constant so that the openings correspond to the microlenses 5 on the transparent substrate 4.
  • the light shielding plate 7 covers the upper part of the other microlenses 5 except for the region above the microlenses 5 for three rows on the front end side (on the substrate 20 side), and shields the laser light.
  • the glass substrate 20 is moved to the right in the drawing. Then, when the position of the glass substrate 20 moves by a distance three times the pitch P, the glass substrate 20 enters the microlens 5 and the mask 3 below the width of the three rows of the microlens 5. At this time, one shot of the laser beam 30 is irradiated. Then, in the amorphous silicon film 21, the region 10 collected by the microlenses 5 for three rows of the pitch P is heated by the laser beam to be heated and melted and solidified to crystallize the region 10. As a result, the regions 10 for the three rows become polysilicon films. The microlenses 5 other than the microlenses 5 for the three rows are shielded by the light shielding plate 7 and are not irradiated with laser light.
  • the laser beam is 1 Irradiate a shot.
  • laser annealing is performed in the region 10 collected by the micro lens 5 of the first group 11 and the micro lens 5 of the second group 12.
  • the region irradiated with the laser light by the microlenses 5 of the first group and the second group in the step of FIG. No. 10 has been subjected to laser annealing.
  • the laser annealing region 10 formed by the first group of microlenses 5 in the first shot and the second group of microlenses 5 in the second shot in the row portion (a portion having a width of about 3P).
  • the laser annealing region 10 formed by the above is shifted by 1 / 3P. That is, in the regions 10 arranged at the pitch P, the regions 10 adjacent to the regions 10 formed in the first shot by 1 / 3P are formed in only three rows.
  • a third shot of laser light is performed. Then, the laser light is focused on the amorphous silicon film 22 through all the microlenses of the first group 11, the second group 12, and the third group 13.
  • the first shot of the first group of laser beams, the second shot of the second group of laser beams, and the third shot are irradiated with a shift of 1 / 3P, thereby forming a total of 9 rows of laser annealing regions 10 of 3 rows ⁇ 3 at a 1 / 3P pitch.
  • a one-shot laser beam is further irradiated.
  • the glass substrate 20 advances forward by a width of about 3P from the lower portion of the microlens 5 and the mask 3, and the portion of the amorphous silicon film 22 excluding the portion of about 3P is irradiated with the laser light.
  • laser light is condensed on the amorphous silicon film 22 from all the microlenses 5 of the first group 11, the second group 12, and the third group 13, and subjected to laser annealing in each region 10. .
  • 18 rows of laser annealing regions 10 are arranged at a 1 / 3P pitch for a portion having a width of about 6P from the front end of the glass substrate 20, and a 1 / 3P pitch for a portion about 3P behind.
  • Six rows of regions 10 are arranged at a pitch of 2 / 3P, and further, three rows of regions 10 are arranged at a pitch of P in a portion about 3P behind.
  • the portions of the microlens 5 and the front end side of the mask 3 are arranged in three rows, and the laser beam is blocked by another light blocking plate, thereby stopping the irradiation of the laser beam. .
  • the irradiation of laser light from the leftmost three rows of microlenses 5 is stopped, the irradiation of laser light from the next three rows of microlenses 5 is stopped, and thereafter the glass substrate 20 is only 3P.
  • laser annealing is completed in all regions of the amorphous film.
  • the arrangement pitch of the microlenses 5 is P
  • the polysilicon region 10 having an arrangement pitch of 1 / 3P is formed on the glass substrate 20.
  • a fine region of polysilicon can be formed with a finer pitch than the arrangement pitch of the microlenses 5.
  • the number of rows of microlenses having the same pitch belonging to each group is appropriately set, and the interval between the groups is set to (P + P / n), so that the laser annealing region 10, that is, a fine polycrystal is formed.
  • the formation pitch of the silicon regions 10 can be set arbitrarily (P / n) regardless of the pitch of the microlenses 5.
  • the semiconductor device since a minute laser annealing region can be formed at a finer pitch than the arrangement pitch of the microlens array, the semiconductor device can be miniaturized and the microlens array can be easily manufactured. It is extremely useful.
  • Laser light source 2 Lens group 3: Mask 4: Transparent substrate 5: Micro lens 6: Irradiated body 7: Light shielding plate 11: First group (micro lens) 12: Second group (microlens) 13: Third group (micro lens) 20: Glass substrate 21: Gate layer 22: Amorphous silicon film

Abstract

Disclosed are a laser annealing method, device, and microlens array that are able to configure a microlens array at a large pitch that differs from the pitch of regions at which the formation of a transistor is planned in an amorphous silicon film, and are able, at a smaller pitch than the arraying pitch of the microlens array, to form minute polysilicon film regions resulting from laser annealing of the amorphous silicon film. Of the microlenses, comprising a first group (11), a second group (12), and a third group (13), three rows are arrayed at the same pitch (P) within each group, and the microlenses are spaced by P+1/3 P between each group. In a first step, a first instance of laser light is radiated from the three rows of microlenses that are of the first group, and in a second step, a second instance of laser light is radiated from 2x3 rows of microlenses (5) at the point in time when the substrate (20) has been moved a distance of 3P, and in the same way thereafter, laser annealed regions are formed at a pitch of P/3.

Description

レーザアニール方法、装置及びマイクロレンズアレイLaser annealing method, apparatus, and microlens array
 本発明は、薄膜トランジスタ液晶パネル等において、アモルファスシリコン膜をレーザ光の照射によりアニールして低温ポリシリコン膜を形成するレーザアニール方法、装置及びそれに使用するマイクロレンズアレイに関し、特に、マイクロレンズアレイを使用して、薄膜トランジスタを形成すべき領域のみをアニールすることができるレーザアニール方法及び装置に関する。 The present invention relates to a laser annealing method and apparatus for forming a low-temperature polysilicon film by annealing an amorphous silicon film by irradiation with laser light in a thin film transistor liquid crystal panel or the like, and in particular, a microlens array used therefor. The present invention relates to a laser annealing method and apparatus capable of annealing only a region where a thin film transistor is to be formed.
 液晶パネルにおいては、ガラス基板上にアモルファスシリコン膜を形成し、このアモルファスシリコン膜に対して、基板の一端から、線状のビーム形状を有するレーザ光を、前記ビームの長手方向に垂直の方向に走査することにより、低温ポリシリコン膜を形成している。この線状のレーザ光の走査により、アモルファスシリコン膜がレーザ光により加熱されて一旦溶融し、その後、レーザ光の通過により溶融シリコンが急冷され、凝固することにより結晶化して、低温ポリシリコン膜が形成される(特許文献1)。 In a liquid crystal panel, an amorphous silicon film is formed on a glass substrate, and laser light having a linear beam shape is applied to the amorphous silicon film from one end of the substrate in a direction perpendicular to the longitudinal direction of the beam. By scanning, a low-temperature polysilicon film is formed. By scanning the linear laser beam, the amorphous silicon film is heated and melted by the laser beam, and then the molten silicon is rapidly cooled by the passage of the laser beam and solidified to be crystallized to form a low-temperature polysilicon film. (Patent Document 1).
 しかし、この低温ポリシリコン膜の形成方法においては、アモルファスシリコン膜の全体がレーザ光の照射を受けて高温になり、アモルファスシリコン膜の溶融凝固により全体が低温ポリシリコン膜となる。このため、薄膜トランジスタ(以下、TFT)を形成すべき領域以外の領域もアニールされるため、処理効率が悪いという問題点がある。 However, in this low-temperature polysilicon film forming method, the entire amorphous silicon film is heated to a high temperature upon irradiation with laser light, and the entire amorphous silicon film becomes a low-temperature polysilicon film by melting and solidifying. For this reason, since regions other than the region where a thin film transistor (hereinafter referred to as TFT) is to be formed are also annealed, there is a problem that processing efficiency is poor.
 そこで、マイクロレンズアレイを使用し、各マイクロレンズにより、アモルファスシリコン膜上で、微小な複数個の領域にレーザ光を集光させ、各トランジスタに対応する微小領域に、同時に個別的にレーザ光を照射してアニールする方法が提案されている(特許文献2)。この方法では、複数個のTFT形成予定領域のアモルファスシリコン膜のみをアニール処理するため、レーザ光の利用効率が高くなるという利点がある。 Therefore, a microlens array is used, and each microlens condenses laser light onto a plurality of minute areas on the amorphous silicon film, and simultaneously individually applies laser light to the minute areas corresponding to each transistor. A method of annealing by irradiation has been proposed (Patent Document 2). This method has an advantage that the use efficiency of the laser beam is increased because only the amorphous silicon film in a plurality of TFT formation regions is annealed.
特許第3945805号公報Japanese Patent No. 3945805 特開2004-311906号公報JP 2004-311906 A
 しかしながら、この従来のマイクロレンズアレイを使用したレーザアニール方法においては、マイクロレンズアレイの配列ピッチが固定されているため、それに合わせたピッチでTFT形成領域を設けるか、又はTFT形成予定領域の位置に合わせたピッチで、マイクロレンズアレイを組み立てる必要があり、汎用性が低いという問題点がある。 However, in this laser annealing method using the conventional microlens array, since the arrangement pitch of the microlens array is fixed, a TFT formation region is provided at a pitch corresponding to the arrangement pitch or at the position of the TFT formation scheduled region. It is necessary to assemble the microlens array at the matched pitch, and there is a problem that versatility is low.
 本発明はかかる問題点に鑑みてなされたものであって、アモルファスシリコン膜におけるトランジスタ形成予定領域のピッチと異なる大きなピッチでマイクロレンズアレイを構成することができ、また、マイクロレンズアレイの配列ピッチよりも小さいピッチでアモルファスシリコン膜にレーザアニールによる微小ポリシリコン膜領域を形成することができるレーザアニール方法、装置及びマイクロレンズアレイを提供することを目的とする。 The present invention has been made in view of such a problem, and the microlens array can be configured with a large pitch different from the pitch of the transistor formation scheduled region in the amorphous silicon film. Another object of the present invention is to provide a laser annealing method, apparatus, and microlens array capable of forming a micro polysilicon film region by laser annealing on an amorphous silicon film with a small pitch.
 本発明に係るレーザアニール方法は、m(mは自然数)列で各列複数個のマイクロレンズが配置されたマイクロレンズアレイと、各マイクロレンズに対応する開口部を有するマスクと、レーザ光の発生源と、この発生源からのレーザ光を前記マスク及びマイクロレンズに導く導光部と、前記マスク及びマイクロレンズを含むレーザ光の照射系と基板とを相対的に前記マイクロレンズの列に垂直の方向に移動させる駆動手段とを有するレーザ光の照射装置を使用し、
前記m列のマイクロレンズは、n(nは自然数、n<m)列毎に群をなし、各群の中で、マイクロレンズは同一のピッチPで配列され、各群の相互間で、マイクロレンズはP+P/nで離隔しており、第1工程で、前記基板上のアモルファスシリコン膜にn列分のマイクロレンズから1回目のレーザ光を照射してレーザアニールを行い、第2工程で、前記レーザ光の照射系と前記基板とが相対的にn×Pだけ移動した時点で、前記基板上のアモルファスシリコン膜に2×n列分のマイクロレンズから2回目のレーザ光を照射してレーザアニールを行い、以後同様にして、複数回のレーザ光の照射を行い、P/nピッチでレーザアニール領域を形成することを特徴とする。
A laser annealing method according to the present invention includes a microlens array in which a plurality of microlenses are arranged in m (m is a natural number), a mask having an opening corresponding to each microlens, and generation of laser light. A light source, a light guide for guiding laser light from the source to the mask and microlens, a laser light irradiation system including the mask and microlens, and a substrate relatively perpendicular to the microlens array. Using a laser beam irradiation device having a driving means for moving in a direction,
The m rows of microlenses form a group every n (n is a natural number, n <m) rows, and in each group, the microlenses are arranged at the same pitch P. The lenses are separated by P + P / n. In the first step, laser annealing is performed by irradiating the amorphous silicon film on the substrate with the first laser beam from the microlens for n rows, and in the second step, When the laser beam irradiation system and the substrate move relatively by n × P, the amorphous silicon film on the substrate is irradiated with a second laser beam from the microlens for 2 × n rows to perform laser processing. Annealing is performed, and thereafter, laser irradiation is performed a plurality of times in the same manner to form laser annealing regions with a P / n pitch.
 また、本発明に係るレーザアニール装置は、m(mは自然数)列で各列複数個のマイクロレンズが配置されたマイクロレンズアレイと、各マイクロレンズに対応する開口部を有するマスクと、レーザ光の発生源と、この発生源からのレーザ光を前記マスク及びマイクロレンズに導く導光部と、前記マスク及びマイクロレンズを含むレーザ光の照射系と基板とを相対的に前記マイクロレンズの列に垂直の方向に移動させる駆動手段と、前記駆動手段の動作と前記発生源の動作を制御する制御装置とを有し、
前記m列のマイクロレンズは、n(nは自然数、n<m)列毎に群をなし、各群の中で、マイクロレンズは同一のピッチPで配列され、各群の相互間で、マイクロレンズはP+P/nで離隔しており、
前記制御装置は、第1工程で、前記基板上のアモルファスシリコン膜にn列分のマイクロレンズから1回目のレーザ光を照射してレーザアニールを行い、第2工程で、前記レーザ光の照射系と前記基板とが相対的にn×Pだけ移動した時点で、前記基板上のアモルファスシリコン膜に2×n列分のマイクロレンズから2回目のレーザ光を照射してレーザアニールを行い、以後同様にして、複数回のレーザ光の照射を行い、P/nピッチでレーザアニール領域を形成するように、前記駆動手段及び前記発生源を制御することを特徴とする。
The laser annealing apparatus according to the present invention includes a microlens array in which a plurality of microlenses are arranged in m (m is a natural number), a mask having an opening corresponding to each microlens, and laser light. A light guide unit for guiding laser light from the generation source to the mask and the microlens, a laser light irradiation system including the mask and the microlens, and a substrate in a row of the microlenses. Drive means for moving in a vertical direction, and a control device for controlling the operation of the drive means and the operation of the generation source,
The m rows of microlenses form a group every n (n is a natural number, n <m) rows, and in each group, the microlenses are arranged at the same pitch P. The lenses are separated by P + P / n,
In the first step, the control device performs laser annealing by irradiating the amorphous silicon film on the substrate with the first laser beam from n rows of microlenses, and in the second step, the laser beam irradiation system. When the substrate moves relative to the substrate by n × P, laser annealing is performed by irradiating the amorphous silicon film on the substrate with a second laser beam from microlenses for 2 × n rows, and so on. Thus, the driving means and the generation source are controlled so that laser annealing is performed a plurality of times and laser annealing regions are formed at a P / n pitch.
 更に、本発明に係るマイクロレンズアレイは、レーザ光の照射装置に使用され、m(mは自然数)列で各列複数個のマイクロレンズが配置されたマイクロレンズアレイにおいて、前記m列のマイクロレンズは、n(nは自然数、n<m)列毎に群をなし、各群の中で、マイクロレンズは同一のピッチPで配列され、各群の相互間で、マイクロレンズはP+P/nで離隔していることを特徴とする。 Furthermore, the microlens array according to the present invention is used in a laser beam irradiation apparatus, and in the microlens array in which a plurality of microlenses are arranged in m (m is a natural number), the m rows of microlenses are arranged. Is a group for every n (n is a natural number, n <m) column, and in each group, the microlenses are arranged at the same pitch P, and between each group, the microlens is P + P / n It is characterized by being separated.
 本発明によれば、群の最後列のマイクロレンズと最初列のマイクロレンズとの間に、P+P/nの間隔があいているので、レーザ光の照射系と基板とを相対的に移動させ、移動距離がn×Pになった時点で、レーザ光を照射していくと、マイクロレンズアレイのピッチPの間に(n-1)列のレーザ光照射領域を設けることができる。即ち、マイクロレンズの各群の配列ピッチがPの中に、n列の照射領域を設けることができ、照射領域の配列ピッチを微細にすることができる。これにより、アモルファスシリコン膜におけるトランジスタ形成予定領域のピッチと異なる大きなピッチでマイクロレンズアレイを構成することができ、また、マイクロレンズアレイの配列ピッチよりも小さいピッチでアモルファスシリコン膜にレーザアニールによる微小ポリシリコン膜領域を形成することができる。 According to the present invention, since there is a P + P / n interval between the last row of microlenses and the first row of microlenses, the laser light irradiation system and the substrate are relatively moved, When laser light is irradiated when the moving distance reaches n × P, (n−1) rows of laser light irradiation regions can be provided between the pitches P of the microlens array. That is, n rows of irradiation areas can be provided in the arrangement pitch of each group of microlenses within P, and the arrangement pitch of the irradiation areas can be made fine. As a result, the microlens array can be formed with a large pitch different from the pitch of the transistor formation planned region in the amorphous silicon film, and the microcrystalline array by laser annealing is applied to the amorphous silicon film at a pitch smaller than the arrangement pitch of the microlens array. A silicon film region can be formed.
レーザ照射装置を示す図である。It is a figure which shows a laser irradiation apparatus. レーザ照射領域の推移を示す模式図である。It is a schematic diagram which shows transition of a laser irradiation area | region. 上図は、マイクロレンズによりアモルファスシリコン膜上でレーザ光が集光された領域10(アニールを受けた領域)とマイクロレンズ5の平面的配置とを示し、下図は、ガラス基板上に照射されるレーザ光を示す正面図である。The upper diagram shows a region 10 (region subjected to annealing) where laser light is condensed on the amorphous silicon film by the microlens and the planar arrangement of the microlens 5, and the lower diagram irradiates the glass substrate. It is a front view which shows a laser beam. 図3の次の工程を示す図である。FIG. 4 is a diagram showing a step subsequent to FIG. 3. 図4の次の工程を示す図である。It is a figure which shows the next process of FIG. 図5の次の工程を示す図である。It is a figure which shows the next process of FIG. 図6の次の工程を示す図である。It is a figure which shows the next process of FIG. 図7の次の工程を示す図である。It is a figure which shows the next process of FIG. 図8の次の工程を示す図である。It is a figure which shows the next process of FIG.
 以下、本発明の好適実施形態について、添付の図面を参照して具体的に説明する。図1は、マイクロレンズ5を使用したレーザ照射装置を示す図である。図1に示すレーザ照射装置は、逆スタガ構造の薄膜トランジスタのような半導体装置の製造工程において、例えば、そのチャネル領域形成予定領域のみにレーザ光を照射してアニールし、このチャネル領域形成予定領域を多結晶化して、ポリシリコン膜を形成するための装置である。このマイクロレンズ5を使用したレーザアニール装置は、光源1から出射されたレーザ光を、レンズ群2により平行ビームに整形し、多数のマイクロレンズ5からなるマイクロレンズアレイを介して被照射体6に照射する。レーザ光源1は、例えば、波長が308nm又は353nmのレーザ光を例えば50Hzの繰り返し周期で放射するエキシマレーザである。マイクロレンズアレイは、透明基板4に多数のマイクロレンズ5が配置されたものであり、レーザ光を被照射体6としての薄膜トランジスタ基板に設定された薄膜トランジスタ形成予定領域に集光させるものである。透明基板4は被照射体6に平行に配置され、マイクロレンズ5は、トランジスタ形成予定領域の配列ピッチの2以上の整数倍(例えば2)のピッチで配置されている。本実施形態の被照射体6は、例えば、薄膜トランジスタであり、そのa-Si膜のチャネル領域形成予定領域にレーザ光を照射して、ポリシリコンチャネル領域を形成する。マイクロレンズ5の上方には、マイクロレンズ5により、チャネル形成予定領域のみにレーザ光を照射するためのマスク3が配置されており、このマスク3により、被照射体6においてチャネル領域が画定される。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a diagram showing a laser irradiation apparatus using a microlens 5. In the manufacturing process of a semiconductor device such as a thin film transistor having an inverted stagger structure, the laser irradiation apparatus shown in FIG. 1 is annealed by irradiating only the channel region formation scheduled region with laser light, for example. This is an apparatus for polycrystallizing and forming a polysilicon film. In the laser annealing apparatus using the microlens 5, the laser light emitted from the light source 1 is shaped into a parallel beam by the lens group 2 and applied to the irradiated object 6 through a microlens array including a large number of microlenses 5. Irradiate. The laser light source 1 is, for example, an excimer laser that emits laser light having a wavelength of 308 nm or 353 nm at a repetition period of, for example, 50 Hz. In the microlens array, a large number of microlenses 5 are arranged on a transparent substrate 4, and the laser light is focused on a thin film transistor formation scheduled area set on a thin film transistor substrate as an irradiated body 6. The transparent substrate 4 is arranged in parallel to the irradiated body 6, and the microlenses 5 are arranged at a pitch of an integer multiple (for example, 2) of 2 or more of the arrangement pitch of the transistor formation scheduled regions. The irradiated body 6 of the present embodiment is, for example, a thin film transistor, and a polysilicon channel region is formed by irradiating a laser beam to the channel region formation scheduled region of the a-Si film. Above the microlens 5, a mask 3 for irradiating only the channel formation scheduled region with the laser beam is arranged by the microlens 5, and the channel region is defined in the irradiated object 6 by this mask 3. .
 例えば、液晶表示装置の周辺回路として、画素の駆動トランジスタを形成する場合、ガラス基板上にAl等の金属膜からなるゲート電極を、スパッタによりパターン形成する。そして、シラン及びHガスを原料ガスとし、250~300℃の低温プラズマCVD法により、全面にSiN膜からなるゲート絶縁膜を形成する。その後、ゲート絶縁膜上に、例えば、プラズマCVD法によりa-Si:H膜を形成する。このa-Si:H膜はシランとHガスを混合したガスを原料ガスとして成膜する。このa-Si:H膜のゲート電極上の領域をチャネル形成予定領域として、各チャネル領域に1個のマイクロレンズ5を配置して、このチャネル形成予定領域のみにレーザ光を照射してアニールし、このチャネル形成予定領域を多結晶化してポリシリコンチャネル領域を形成する。なお、マイクロレンズ5は1列ではなく、複数列に配置されており、図2乃至図9の本実施形態では、3列が3群設けられて、計9列のマイクロレンズが配置されている。 For example, when a pixel driving transistor is formed as a peripheral circuit of a liquid crystal display device, a gate electrode made of a metal film such as Al is patterned on a glass substrate by sputtering. Then, a gate insulating film made of a SiN film is formed on the entire surface by low-temperature plasma CVD at 250 to 300 ° C. using silane and H 2 gas as source gases. Thereafter, an a-Si: H film is formed on the gate insulating film by, eg, plasma CVD. This a-Si: H film is formed by using a mixed gas of silane and H 2 gas as a source gas. Using the region on the gate electrode of the a-Si: H film as a channel formation planned region, one microlens 5 is arranged in each channel region, and only this channel formation planned region is irradiated with laser light and annealed. Then, this channel formation scheduled region is polycrystallized to form a polysilicon channel region. Note that the microlenses 5 are not arranged in a single row but are arranged in a plurality of rows. In the present embodiment of FIGS. 2 to 9, three groups of three rows are provided, and a total of nine rows of microlenses are arranged. .
 図2は、マイクロレンズ5の配置と、レーザ光の照射領域とを示す平面図である。図3乃至図9は、それらの上図で、マイクロレンズによりアモルファスシリコン膜上でレーザ光が集光された領域10(アニールを受けた領域)とマイクロレンズ5の平面的配置とを示し、それらの下図は、ガラス基板上に照射されるレーザ光を示す正面図である。マイクロレンズ5の上方に例えばアルミニウム製のマスク3が配置され、マスク3の上方にレーザ光を遮光する遮光板7が配置されている。図2に示すように、マイクロレンズ5は、第1群11、第2群12及び第3群13の各群3列の計9列に配置されている。第1群11、第2群12、第3群13の各群の中では、マイクロレンズ5は一定のピッチPで配置されている。そして、第1群11と第2群12との間のマイクロレンズの相互間と、第2群12と第3群13との間のマイクロレンズの相互間とは、いずれも、P+1/3Pの間隔で離隔している。 FIG. 2 is a plan view showing the arrangement of the microlenses 5 and the laser light irradiation area. FIG. 3 to FIG. 9 are upper views of them, showing a region 10 (region subjected to annealing) in which the laser light is condensed on the amorphous silicon film by the microlens and a planar arrangement of the microlens 5. The lower figure is a front view showing laser light irradiated on the glass substrate. For example, an aluminum mask 3 is disposed above the microlens 5, and a light shielding plate 7 that shields the laser light is disposed above the mask 3. As shown in FIG. 2, the microlenses 5 are arranged in a total of 9 rows of 3 rows each of the first group 11, the second group 12, and the third group 13. In each of the first group 11, the second group 12, and the third group 13, the microlenses 5 are arranged at a constant pitch P. And between the microlenses between the first group 11 and the second group 12, and between the microlenses between the second group 12 and the third group 13, both are P + 1 / 3P. They are separated by an interval.
 ガラス基板20上の全面にはゲート層21が形成され、更にゲート層21上にはアモルファスシリコン層22が形成されている。また、図3に示す初期段階で、マスク3、マイクロレンズ5及び遮光板7は、ガラス基板20の上方域よりも手前に配置されている。 A gate layer 21 is formed on the entire surface of the glass substrate 20, and an amorphous silicon layer 22 is further formed on the gate layer 21. In the initial stage shown in FIG. 3, the mask 3, the microlens 5, and the light shielding plate 7 are disposed in front of the upper region of the glass substrate 20.
 そして、遮光板7、マスク3及びマイクロレンズ5を固定した状態で、ガラス基板20を図中、右方に移動させる。この基板の移動態様は、マイクロレンズの配列ピッチPの3倍の距離だけ移動した後、レーザ光を照射し、更に、ピッチPの3倍の距離だけ、基板が移動した後、レーザ光を照射するというものである。 Then, the glass substrate 20 is moved to the right in the figure while the light shielding plate 7, the mask 3 and the microlens 5 are fixed. This movement of the substrate is performed by irradiating the laser beam after moving by a distance three times the arrangement pitch P of the microlenses, and further irradiating the laser beam after the substrate has moved by a distance three times the pitch P. It is to do.
 次に、上述のごとく構成されたレーザ照射装置により本実施形態のレーザアニール方法を実施する場合の動作について説明する。なお、以下の動作は、マスク及びマイクロレンズを含むレーザ光の照射系と基板とを相対的に前記マイクロレンズの列に垂直の方向に移動させる駆動手段と、レーザ光の発生源との動作を制御する制御装置により制御される。図3に示すように、マスク3は、その開口部が透明基板4上の各マイクロレンズ5に対応するようにして、マイクロレンズ5との位置関係が一定の状態で保持されている。遮光板7は先端側の(基板20側の)3列分のマイクロレンズ5の上方の領域を除いて、その他のマイクロレンズ5の上方を覆い、レーザ光を遮光している。 Next, the operation when the laser annealing method of this embodiment is performed by the laser irradiation apparatus configured as described above will be described. In the following operations, the operation of the laser beam generation system and the driving means for moving the laser beam irradiation system including the mask and the microlens and the substrate relative to each other in the direction perpendicular to the microlens row is performed. It is controlled by the control device to control. As shown in FIG. 3, the mask 3 is held in a state in which the positional relationship with the microlenses 5 is constant so that the openings correspond to the microlenses 5 on the transparent substrate 4. The light shielding plate 7 covers the upper part of the other microlenses 5 except for the region above the microlenses 5 for three rows on the front end side (on the substrate 20 side), and shields the laser light.
 そして、図4に示すように、ガラス基板20を図中右方へ移動させる。そうすると、ガラス基板20の位置が、ピッチPの3倍の距離だけ移動した時点で、マイクロレンズ5及びマスク3の下方にマイクロレンズ5の3列分の幅だけ入り込む。そして、この時点で、レーザ光30を1ショット照射する。そうすると、アモルファスシリコン膜21においては、ピッチPの3列分のマイクロレンズ5により集光された領域10がレーザ光により加熱されて昇温し、溶融凝固して、この領域10が結晶化する。これにより、この3列分の領域10がポリシリコン膜となる。3列分のマイクロレンズ5以外のマイクロレンズ5には、遮光板7により遮光されてレーザ光は照射されない。 Then, as shown in FIG. 4, the glass substrate 20 is moved to the right in the drawing. Then, when the position of the glass substrate 20 moves by a distance three times the pitch P, the glass substrate 20 enters the microlens 5 and the mask 3 below the width of the three rows of the microlens 5. At this time, one shot of the laser beam 30 is irradiated. Then, in the amorphous silicon film 21, the region 10 collected by the microlenses 5 for three rows of the pitch P is heated by the laser beam to be heated and melted and solidified to crystallize the region 10. As a result, the regions 10 for the three rows become polysilicon films. The microlenses 5 other than the microlenses 5 for the three rows are shielded by the light shielding plate 7 and are not irradiated with laser light.
 次に、図5に示すように、ガラス基板20が更に移動して、ピッチPの3倍の距離移動した時点で、即ち、移動開始後、6Pの距離だけ移動した時点で、レーザ光を1ショット照射する。そうすると、第1群11のマイクロレンズ5と第2群12のマイクロレンズ5とにより集光された領域10で、レーザアニールが実施される。これにより、図4の工程でレーザ光が照射された第1群11の領域10に加えて、図5の工程で、第1群と第2群のマイクロレンズ5によりレーザ光が照射された領域10がレーザアニールを実施されたことになる。そして、第1群と第2群とは、P+1/3Pだけ距離が離れているので、図5の工程が終了すると、図5及び図2に示すように、ガラス基板20の先端部の約3列分の部分(約3Pの幅の部分)において、第1回目のショットの第1群のマイクロレンズ5により形成されたレーザアニール領域10と、第2回目のショットの第2群のマイクロレンズ5により形成されたレーザアニール領域10とは1/3Pだけずれる。つまり、ピッチPで配列された領域10の中に、3列だけ、第1回目のショットで形成された領域10に対し1/3Pで隣接する領域10が形成される。 Next, as shown in FIG. 5, when the glass substrate 20 further moves and moves a distance three times the pitch P, that is, when the glass substrate 20 moves by a distance of 6P after the start of the movement, the laser beam is 1 Irradiate a shot. Then, laser annealing is performed in the region 10 collected by the micro lens 5 of the first group 11 and the micro lens 5 of the second group 12. Thus, in addition to the region 10 of the first group 11 irradiated with the laser light in the step of FIG. 4, the region irradiated with the laser light by the microlenses 5 of the first group and the second group in the step of FIG. No. 10 has been subjected to laser annealing. Since the first group and the second group are separated from each other by P + 1 / 3P, when the process of FIG. 5 is finished, as shown in FIGS. 5 and 2, about 3 of the front end portion of the glass substrate 20 is obtained. The laser annealing region 10 formed by the first group of microlenses 5 in the first shot and the second group of microlenses 5 in the second shot in the row portion (a portion having a width of about 3P). The laser annealing region 10 formed by the above is shifted by 1 / 3P. That is, in the regions 10 arranged at the pitch P, the regions 10 adjacent to the regions 10 formed in the first shot by 1 / 3P are formed in only three rows.
 次いで、図6に示すように、ガラス基板20が、移動開始後、9Pだけ移動した時点で、第3回目のレーザ光のショットを行う。そうすると、第1群11、第2群12及び第3群13のマイクロレンズの全てのマイクロレンズを介してレーザ光がアモルファスシリコン膜22に集光されて照射される。これにより、ガラス基板20の先端部の約3Pの幅の部分においては、第1回目の第1群のレーザ光のショットと、第2回目の第2群のレーザ光のショットと、第3回目の第3群のレーザ光のショットとが1/3Pずつずれて照射され、1/3Pピッチで3列×3の合計9列のレーザアニール領域10が形成される。ガラス基板20の先端から、約3P離れた位置から約6P離れた位置までの3P分の部分においては、第2回目の第1群のマイクロレンズによるショットと第3回目の第2群のマイクロレンズによりショットとの結果、合計6列のレーザアニール領域10が形成される。 Next, as shown in FIG. 6, when the glass substrate 20 moves by 9P after the movement starts, a third shot of laser light is performed. Then, the laser light is focused on the amorphous silicon film 22 through all the microlenses of the first group 11, the second group 12, and the third group 13. Thus, in the portion of the tip portion of the glass substrate 20 having a width of about 3P, the first shot of the first group of laser beams, the second shot of the second group of laser beams, and the third shot The third group of laser light shots are irradiated with a shift of 1 / 3P, thereby forming a total of 9 rows of laser annealing regions 10 of 3 rows × 3 at a 1 / 3P pitch. In a 3P portion from the tip of the glass substrate 20 to a position about 6P away from the position about 3P away, the second shot of the first group of microlenses and the third shot of the second group of microlenses As a result of the shot, a total of six rows of laser annealing regions 10 are formed.
 次いで、図7に示すように、ガラス基板20が更に3Pの距離だけ移動した時点で、更に、1ショットレーザ光を照射する。そうすると、ガラス基板20は、マイクロレンズ5及びマスク3の下方の部分から、約3Pの幅だけ、前方に進出し、この約3Pの部分を除いたアモルファスシリコン膜22の部分が、レーザ光の照射を受ける。この工程においても、第1群11、第2群12及び第3群13の全てのマイクロレンズ5から、レーザ光がアモルファスシリコン膜22上に集光されて、各領域10にてレーザアニールを受ける。これにより、ガラス基板20の先端から約6Pの幅の部分については、18列のレーザアニール領域10が1/3Pピッチで並び、更に、約3Pだけ後方の部分については、1/3Pのピッチと2/3Pのピッチで6列の領域10が並び、更に、約3Pだけ後方の部分では、Pのピッチで3列の領域10が並ぶ。 Next, as shown in FIG. 7, when the glass substrate 20 is further moved by a distance of 3P, a one-shot laser beam is further irradiated. Then, the glass substrate 20 advances forward by a width of about 3P from the lower portion of the microlens 5 and the mask 3, and the portion of the amorphous silicon film 22 excluding the portion of about 3P is irradiated with the laser light. Receive. Also in this step, laser light is condensed on the amorphous silicon film 22 from all the microlenses 5 of the first group 11, the second group 12, and the third group 13, and subjected to laser annealing in each region 10. . As a result, 18 rows of laser annealing regions 10 are arranged at a 1 / 3P pitch for a portion having a width of about 6P from the front end of the glass substrate 20, and a 1 / 3P pitch for a portion about 3P behind. Six rows of regions 10 are arranged at a pitch of 2 / 3P, and further, three rows of regions 10 are arranged at a pitch of P in a portion about 3P behind.
 以後、同様にして、ガラス基板10が3Pだけ移動した時点で、レーザ光が1ショット打たれ、第1群11から第3群13までの全てのマイクロレンズ5を使用して、レーザアニールが繰り返されていく。これにより、図8及び図9に示すように、1/3Pでレーザアニール領域10が並ぶ領域が拡大されていく。 Thereafter, in the same manner, when the glass substrate 10 moves by 3P, one shot of laser light is emitted, and laser annealing is repeated using all the microlenses 5 from the first group 11 to the third group 13. It will be. As a result, as shown in FIGS. 8 and 9, the region where the laser annealing regions 10 are arranged at 1 / 3P is enlarged.
 最後に、ガラス基板の後端部においては、マイクロレンズ5及びマスク3の先端側の部分が3列づつ、他の遮光板によりレーザ光を遮光することにより、レーザ光の照射を停止していく。図中、最も左側の3列のマイクロレンズ5からのレーザ光の照射が停止された後、次の3列のマイクロレンズ5からのレーザ光の照射が停止され、その後、ガラス基板20が3Pだけ移動して、最後のレーザ光のショットが行われると、アモルファス膜の全ての領域でレーザアニールが終了する。 Finally, at the rear end portion of the glass substrate, the portions of the microlens 5 and the front end side of the mask 3 are arranged in three rows, and the laser beam is blocked by another light blocking plate, thereby stopping the irradiation of the laser beam. . In the figure, after the irradiation of laser light from the leftmost three rows of microlenses 5 is stopped, the irradiation of laser light from the next three rows of microlenses 5 is stopped, and thereafter the glass substrate 20 is only 3P. When the last shot of laser light is performed, laser annealing is completed in all regions of the amorphous film.
 以上のようにして、マイクロレンズ5の配列ピッチはPであるにも拘わらず、ガラス基板20上には、配列ピッチが1/3Pのポリシリコン領域10が形成される。これにより、マイクロレンズ5の配列ピッチよりも微細なピッチでポリシリコンの微細な領域を形成することができる。また、各群に属するピッチが同一のマイクロレンズの列の数を、適宜設定し、各群の間の間隔を、(P+P/n)にすることにより、レーザアニール領域10、即ち、微細なポリシリコン領域10の形成ピッチを、マイクロレンズ5のピッチに拘わらず、任意(P/n)に設定することができる。 As described above, although the arrangement pitch of the microlenses 5 is P, the polysilicon region 10 having an arrangement pitch of 1 / 3P is formed on the glass substrate 20. Thereby, a fine region of polysilicon can be formed with a finer pitch than the arrangement pitch of the microlenses 5. Further, the number of rows of microlenses having the same pitch belonging to each group is appropriately set, and the interval between the groups is set to (P + P / n), so that the laser annealing region 10, that is, a fine polycrystal is formed. The formation pitch of the silicon regions 10 can be set arbitrarily (P / n) regardless of the pitch of the microlenses 5.
 本発明によれば、マイクロレンズアレイの配列ピッチよりも更に細かいピッチで微小なレーザアニール領域を形成することができるので、半導体装置の微小化が可能になると共に、マイクロレンズアレイの製造が容易になり、極めて有用である。 According to the present invention, since a minute laser annealing region can be formed at a finer pitch than the arrangement pitch of the microlens array, the semiconductor device can be miniaturized and the microlens array can be easily manufactured. It is extremely useful.
1:レーザ光源
2:レンズ群
3:マスク
4:透明基板
5:マイクロレンズ
6:被照射体
7:遮光板
11:第1群(のマイクロレンズ)
12:第2群(のマイクロレンズ)
13:第3群(のマイクロレンズ)
20:ガラス基板
21:ゲート層
22:アモルファスシリコン膜
1: Laser light source 2: Lens group 3: Mask 4: Transparent substrate 5: Micro lens 6: Irradiated body 7: Light shielding plate 11: First group (micro lens)
12: Second group (microlens)
13: Third group (micro lens)
20: Glass substrate 21: Gate layer 22: Amorphous silicon film

Claims (3)

  1. m(mは自然数)列で各列複数個のマイクロレンズが配置されたマイクロレンズアレイと、各マイクロレンズに対応する開口部を有するマスクと、レーザ光の発生源と、この発生源からのレーザ光を前記マスク及びマイクロレンズに導く導光部と、前記マスク及びマイクロレンズを含むレーザ光の照射系と基板とを相対的に前記マイクロレンズの列に垂直の方向に移動させる駆動手段とを有するレーザ光の照射装置を使用し、
    前記m列のマイクロレンズは、n(nは自然数、n<m)列毎に群をなし、各群の中で、マイクロレンズは同一のピッチPで配列され、各群の相互間で、マイクロレンズはP+P/nで離隔しており、第1工程で、前記基板上のアモルファスシリコン膜にn列分のマイクロレンズから1回目のレーザ光を照射してレーザアニールを行い、第2工程で、前記レーザ光の照射系と前記基板とが相対的にn×Pだけ移動した時点で、前記基板上のアモルファスシリコン膜に2×n列分のマイクロレンズから2回目のレーザ光を照射してレーザアニールを行い、以後同様にして、複数回のレーザ光の照射を行い、P/nピッチでレーザアニール領域を形成することを特徴とするレーザアニール方法。
    A microlens array in which a plurality of microlenses are arranged in m (m is a natural number), a mask having an opening corresponding to each microlens, a laser light source, and a laser from the source A light guide unit that guides light to the mask and the microlens; and a driving unit that moves the irradiation system of the laser beam including the mask and the microlens and the substrate in a direction perpendicular to the row of the microlenses. Use a laser beam irradiation device,
    The m rows of microlenses form a group every n (n is a natural number, n <m) rows, and in each group, the microlenses are arranged at the same pitch P. The lenses are separated by P + P / n. In the first step, laser annealing is performed by irradiating the amorphous silicon film on the substrate with the first laser beam from the microlens for n rows, and in the second step, When the laser beam irradiation system and the substrate move relatively by n × P, the amorphous silicon film on the substrate is irradiated with a second laser beam from the microlens for 2 × n rows to perform laser processing. A laser annealing method characterized in that annealing is performed, and thereafter laser irradiation is performed a plurality of times in the same manner to form laser annealing regions at a P / n pitch.
  2. m(mは自然数)列で各列複数個のマイクロレンズが配置されたマイクロレンズアレイと、各マイクロレンズに対応する開口部を有するマスクと、レーザ光の発生源と、この発生源からのレーザ光を前記マスク及びマイクロレンズに導く導光部と、前記マスク及びマイクロレンズを含むレーザ光の照射系と基板とを相対的に前記マイクロレンズの列に垂直の方向に移動させる駆動手段と、前記駆動手段の動作と前記発生源の動作を制御する制御装置とを有し、
    前記m列のマイクロレンズは、n(nは自然数、n<m)列毎に群をなし、各群の中で、マイクロレンズは同一のピッチPで配列され、各群の相互間で、マイクロレンズはP+P/nで離隔しており、
    前記制御装置は、第1工程で、前記基板上のアモルファスシリコン膜にn列分のマイクロレンズから1回目のレーザ光を照射してレーザアニールを行い、第2工程で、前記レーザ光の照射系と前記基板とが相対的にn×Pだけ移動した時点で、前記基板上のアモルファスシリコン膜に2×n列分のマイクロレンズから2回目のレーザ光を照射してレーザアニールを行い、以後同様にして、複数回のレーザ光の照射を行い、P/nピッチでレーザアニール領域を形成するように、前記駆動手段及び前記発生源を制御することを特徴とするレーザアニール装置。
    A microlens array in which a plurality of microlenses are arranged in m (m is a natural number), a mask having an opening corresponding to each microlens, a laser light source, and a laser from the source A light guide unit that guides light to the mask and the microlens, a driving unit that relatively moves the irradiation system of the laser beam including the mask and the microlens and the substrate in a direction perpendicular to the row of the microlens, and A controller for controlling the operation of the driving means and the operation of the generation source,
    The m rows of microlenses form a group every n (n is a natural number, n <m) rows, and in each group, the microlenses are arranged at the same pitch P. The lenses are separated by P + P / n,
    In the first step, the control device performs laser annealing by irradiating the amorphous silicon film on the substrate with the first laser beam from n rows of microlenses, and in the second step, the laser beam irradiation system. When the substrate moves relative to the substrate by n × P, laser annealing is performed by irradiating the amorphous silicon film on the substrate with a second laser beam from microlenses for 2 × n rows, and so on. Then, the laser annealing apparatus is characterized in that the driving means and the generation source are controlled so that the laser annealing region is formed at a P / n pitch by irradiating a plurality of times of laser light.
  3. レーザ光の照射装置に使用され、m(mは自然数)列で各列複数個のマイクロレンズが配置されたマイクロレンズアレイにおいて、
    前記m列のマイクロレンズは、n(nは自然数、n<m)列毎に群をなし、各群の中で、マイクロレンズは同一のピッチPで配列され、各群の相互間で、マイクロレンズはP+P/nで離隔していることを特徴とするマイクロレンズアレイ。
    In a microlens array that is used in a laser light irradiation apparatus and in which a plurality of microlenses are arranged in m (m is a natural number) rows,
    The m rows of microlenses form a group every n (n is a natural number, n <m) rows, and in each group, the microlenses are arranged at the same pitch P. A microlens array wherein the lenses are separated by P + P / n.
PCT/JP2011/058990 2010-04-23 2011-04-11 Laser annealing method, device, and microlens array WO2011132559A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180020284.5A CN102844839B (en) 2010-04-23 2011-04-11 Laser anneal method, device and microlens array
KR1020127030599A KR101773219B1 (en) 2010-04-23 2011-04-11 Laser annealing method, device, and microlens array

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010100298A JP5495043B2 (en) 2010-04-23 2010-04-23 Laser annealing method, apparatus, and microlens array
JP2010-100298 2010-04-23

Publications (1)

Publication Number Publication Date
WO2011132559A1 true WO2011132559A1 (en) 2011-10-27

Family

ID=44834086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058990 WO2011132559A1 (en) 2010-04-23 2011-04-11 Laser annealing method, device, and microlens array

Country Status (5)

Country Link
JP (1) JP5495043B2 (en)
KR (1) KR101773219B1 (en)
CN (1) CN102844839B (en)
TW (1) TWI513530B (en)
WO (1) WO2011132559A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019102548A1 (en) * 2017-11-22 2019-05-31 堺ディスプレイプロダクト株式会社 Laser annealing method, laser annealing apparatus, and method for manufacturing active matrix substrate
WO2019171502A1 (en) * 2018-03-07 2019-09-12 堺ディスプレイプロダクト株式会社 Laser annealing device, laser annealing method, and active matrix substrate production method
CN110462787A (en) * 2017-01-24 2019-11-15 堺显示器制品株式会社 Laser anneal device, laser anneal method and mask
WO2019234856A1 (en) * 2018-06-06 2019-12-12 堺ディスプレイプロダクト株式会社 Laser annealing method, laser annealing apparatus and method for producing active matrix substrate
US10559600B2 (en) 2018-06-28 2020-02-11 Sakai Display Products Corporation Thin film transistor, display device and method for producing thin film transistor
US10770483B2 (en) 2018-06-28 2020-09-08 Sakai Display Products Corporation Thin film transistor, display device and method for manufacturing thin film transistor
US11081507B2 (en) 2017-07-12 2021-08-03 Sakai Display Products Corporation Semiconductor device and method for manufacturing same
US11121262B2 (en) 2017-07-12 2021-09-14 Sakai Display Products Corporation Semiconductor device including thin film transistor and method for manufacturing the same
US11133333B2 (en) 2018-06-28 2021-09-28 Sakai Display Products Corporation Producing method for thin film transistor with different crystallinities
US11495689B2 (en) 2018-08-08 2022-11-08 Sakai Display Products Corporation Thin-film transistor and method for producing same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10811286B2 (en) 2016-09-28 2020-10-20 Sakai Display Products Corporation Laser annealing device and laser annealing method
US11004682B2 (en) * 2016-12-15 2021-05-11 Sakai Display Products Corporation Laser annealing apparatus, laser annealing method, and mask
CN108227376A (en) * 2018-01-03 2018-06-29 京东方科技集团股份有限公司 A kind of preparation method of micro-structure, impression formboard, display base plate
CN112916873B (en) * 2021-01-26 2022-01-28 上海交通大学 Micro-droplet three-dimensional printing system and method based on pulse laser driving
CN114799225B (en) * 2022-05-05 2023-05-23 上海交通大学 Pulse laser driven metal droplet printing system and adjusting method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0823105A (en) * 1994-05-02 1996-01-23 Sony Corp Manufacture of semiconductor chip for display
JPH0886901A (en) * 1994-09-16 1996-04-02 Nippon Sheet Glass Co Ltd Flat plate lens array and liquid crystal display element formed by using the same
JP2001269789A (en) * 2000-01-20 2001-10-02 Komatsu Ltd Laser beam machining device
JP2003109911A (en) * 2001-10-01 2003-04-11 Sharp Corp Device and method for treating thin film and thin film device
JP2004311906A (en) * 2003-04-10 2004-11-04 Phoeton Corp Laser processing device and laser processing method
JP2005197730A (en) * 2003-12-29 2005-07-21 Lg Philips Lcd Co Ltd Laser mask, crystallization method, display element using the same, and manufacturing method thereof
JP2010075982A (en) * 2008-09-29 2010-04-08 V Technology Co Ltd Laser beam machining method and apparatus used therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6625181B1 (en) * 2000-10-23 2003-09-23 U.C. Laser Ltd. Method and apparatus for multi-beam laser machining
CN101189097B (en) * 2005-06-01 2011-04-20 飞腾股份有限公司 Laser processing apparatus and laser processing method
JP2008294186A (en) * 2007-05-24 2008-12-04 Shimadzu Corp Crystallization device and crystallization method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0823105A (en) * 1994-05-02 1996-01-23 Sony Corp Manufacture of semiconductor chip for display
JPH0886901A (en) * 1994-09-16 1996-04-02 Nippon Sheet Glass Co Ltd Flat plate lens array and liquid crystal display element formed by using the same
JP2001269789A (en) * 2000-01-20 2001-10-02 Komatsu Ltd Laser beam machining device
JP2003109911A (en) * 2001-10-01 2003-04-11 Sharp Corp Device and method for treating thin film and thin film device
JP2004311906A (en) * 2003-04-10 2004-11-04 Phoeton Corp Laser processing device and laser processing method
JP2005197730A (en) * 2003-12-29 2005-07-21 Lg Philips Lcd Co Ltd Laser mask, crystallization method, display element using the same, and manufacturing method thereof
JP2010075982A (en) * 2008-09-29 2010-04-08 V Technology Co Ltd Laser beam machining method and apparatus used therefor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110462787A (en) * 2017-01-24 2019-11-15 堺显示器制品株式会社 Laser anneal device, laser anneal method and mask
US11081507B2 (en) 2017-07-12 2021-08-03 Sakai Display Products Corporation Semiconductor device and method for manufacturing same
US11121262B2 (en) 2017-07-12 2021-09-14 Sakai Display Products Corporation Semiconductor device including thin film transistor and method for manufacturing the same
WO2019102548A1 (en) * 2017-11-22 2019-05-31 堺ディスプレイプロダクト株式会社 Laser annealing method, laser annealing apparatus, and method for manufacturing active matrix substrate
WO2019171502A1 (en) * 2018-03-07 2019-09-12 堺ディスプレイプロダクト株式会社 Laser annealing device, laser annealing method, and active matrix substrate production method
WO2019234856A1 (en) * 2018-06-06 2019-12-12 堺ディスプレイプロダクト株式会社 Laser annealing method, laser annealing apparatus and method for producing active matrix substrate
US10559600B2 (en) 2018-06-28 2020-02-11 Sakai Display Products Corporation Thin film transistor, display device and method for producing thin film transistor
US10770483B2 (en) 2018-06-28 2020-09-08 Sakai Display Products Corporation Thin film transistor, display device and method for manufacturing thin film transistor
US11133333B2 (en) 2018-06-28 2021-09-28 Sakai Display Products Corporation Producing method for thin film transistor with different crystallinities
US11495689B2 (en) 2018-08-08 2022-11-08 Sakai Display Products Corporation Thin-film transistor and method for producing same

Also Published As

Publication number Publication date
CN102844839A (en) 2012-12-26
KR101773219B1 (en) 2017-08-31
CN102844839B (en) 2015-08-26
JP2011233597A (en) 2011-11-17
TWI513530B (en) 2015-12-21
KR20130065661A (en) 2013-06-19
TW201143949A (en) 2011-12-16
JP5495043B2 (en) 2014-05-21

Similar Documents

Publication Publication Date Title
JP5495043B2 (en) Laser annealing method, apparatus, and microlens array
KR101645770B1 (en) Apparatus and method for formation of low-temperature polysilicon film
US7906414B2 (en) Single-shot semiconductor processing system and method having various irradiation patterns
US8440581B2 (en) Systems and methods for non-periodic pulse sequential lateral solidification
US7078649B2 (en) Method of forming semiconductor thin-film and laser apparatus used therefore
WO2011158612A1 (en) Device and method for forming low-temperature polysilicon film
US10608115B2 (en) Laser beam irradiation device, thin-film transistor, and method of manufacturing thin-film transistor
TWI521563B (en) Laser processing device
KR20120101087A (en) Systems and methods for non-periodic pulse sequential lateral solidification
WO2006075568A1 (en) Production method and production device for polycrystalline semiconductor thin film
JP2008227077A (en) Masking structure for laser light, laser processing method, tft element, and laser processing apparatus
TW202034388A (en) Laser annealing method and laser annealing apparatus
JP2007281465A (en) Method of forming polycrystalline film
JP2007221062A (en) Method and apparatus for manufacturing semiconductor device
CN213366530U (en) Laser annealing device
WO2021181700A1 (en) Laser anneal device and laser anneal method
JP2018137302A (en) Laser irradiation device, method for manufacturing thin-film transistor and program
CN111788658A (en) Laser annealing apparatus, laser annealing method, and method for manufacturing active matrix substrate
TW202303705A (en) Laser annealing device and laser annealing method
KR20050121548A (en) Method for crystallizing silicon and method of manufacturing tft substrate using the same
CN111033693A (en) Laser irradiation device, method and program for manufacturing thin film transistor, and projection mask
JP2008258432A (en) Mask, beam irradiator and beam irradiation method
JP2008147236A (en) Crystallizing apparatus and laser processing method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180020284.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11771894

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127030599

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11771894

Country of ref document: EP

Kind code of ref document: A1