WO2011132416A1 - 撮像装置及び画像復元方法 - Google Patents

撮像装置及び画像復元方法 Download PDF

Info

Publication number
WO2011132416A1
WO2011132416A1 PCT/JP2011/002316 JP2011002316W WO2011132416A1 WO 2011132416 A1 WO2011132416 A1 WO 2011132416A1 JP 2011002316 W JP2011002316 W JP 2011002316W WO 2011132416 A1 WO2011132416 A1 WO 2011132416A1
Authority
WO
WIPO (PCT)
Prior art keywords
psf
information
image
gain
component
Prior art date
Application number
PCT/JP2011/002316
Other languages
English (en)
French (fr)
Inventor
大山 一朗
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/319,406 priority Critical patent/US20120070096A1/en
Priority to JP2011534947A priority patent/JP4856293B2/ja
Priority to CN201180002030.0A priority patent/CN102422321B/zh
Publication of WO2011132416A1 publication Critical patent/WO2011132416A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/73Deblurring; Sharpening
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/61Noise processing, e.g. detecting, correcting, reducing or removing noise the noise originating only from the lens unit, e.g. flare, shading, vignetting or "cos4"
    • H04N25/615Noise processing, e.g. detecting, correcting, reducing or removing noise the noise originating only from the lens unit, e.g. flare, shading, vignetting or "cos4" involving a transfer function modelling the optical system, e.g. optical transfer function [OTF], phase transfer function [PhTF] or modulation transfer function [MTF]

Definitions

  • the present invention relates to a technique for restoring an image deteriorated at the time of photographing into an image with little deterioration.
  • a degraded image (photographed image) deteriorated due to out-of-focus, blur, or aberration is converted into a point spread function (PSF: Point Spread Function) due to out-of-focus, blur, or aberration.
  • PSF Point Spread Function
  • a restored image with corrected degradation can be obtained by a restoration operation using a correction function having an inverse characteristic.
  • a correction function is created using PSF data created by a computer based on design data or the like.
  • a PSF image is captured particularly when a restoration operation for a degraded image is performed using a PSF image obtained by capturing a point light source instead of PSF data created by a computer.
  • the unnecessary luminance of the image sensor at that time hereinafter referred to as “noise” as appropriate
  • the PSF indicated by the PSF image deviates from the actual PSF due to the influence of the noise.
  • the present invention has been made to solve the above-described problem, and in the case of restoring a deteriorated image based on a PSF image photographed by an optical system, imaging capable of restoring the deteriorated image with high resolution. It is an object to provide an apparatus and an image restoration method.
  • an imaging apparatus corrects an optical system and PSF (Point Spread Function) information captured by the optical system and corrects the PSF information.
  • a PSF photographing unit that outputs PSF information
  • a subject photographing unit that acquires and outputs subject information photographed by the optical system
  • an image restoration that performs a restoration calculation of the subject information based on the corrected PSF information and the subject information
  • the PSF imaging unit converts the PSF information into frequency domain data and outputs OTF (Optical Transfer Function) information, and the OTF information includes a low frequency component that is not a direct current component. Low frequency to correct so that the ratio of the gain of DC component to the gain of And a component gain smoothing unit.
  • the random noise included in the PSF image is corrected by correcting the OTF information so that the ratio of the DC component to the low frequency component becomes small. Can reduce the effect of. As a result, it is possible to restore a degraded image with high resolution.
  • the luminance average of the PSF image is obtained.
  • FIG. 1 is a block diagram showing a configuration of an imaging apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram for explaining the relationship among the original image, the PSF, and the deteriorated image in the embodiment of the present invention.
  • FIG. 3 is a diagram showing the luminance distribution of the PSF in the embodiment of the present invention.
  • FIG. 4 is a diagram showing a simulator for verifying the influence of noise on the restored image in the embodiment of the present invention.
  • FIG. 5 is a diagram for explaining the relationship between the noise included in the deteriorated image and the restored image in the embodiment of the present invention.
  • FIG. 6 is a diagram for explaining the relationship between the noise included in the PSF image and the restored image in the embodiment of the present invention.
  • FIG. 1 is a block diagram showing a configuration of an imaging apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram for explaining the relationship among the original image, the PSF, and the deteriorated image in the embodiment of the present invention.
  • FIG. 7 is a diagram illustrating the relationship between the noise included in the deteriorated image and the PSF image and the resolution of the restored image according to the embodiment of the present invention.
  • FIG. 8 is a diagram showing ideal PSF information in the embodiment of the present invention.
  • FIG. 9 is a diagram showing PSF information including noise in the embodiment of the present invention.
  • FIG. 10 is a flowchart showing the operation of the imaging apparatus according to the embodiment of the present invention.
  • FIG. 11 is a diagram showing PSF information in the embodiment of the present invention.
  • FIG. 12 is a diagram showing OTF information in the embodiment of the present invention.
  • FIG. 13 is a diagram showing a restored image according to the embodiment of the present invention.
  • FIG. 14 is a diagram showing the resolution of the restored image in the embodiment of the present invention.
  • FIG. 2A shows an original image (subject) without deterioration. It is a wedge-shaped chart generally used when measuring the resolution of a photographed image.
  • FIG. 2B shows an example of the PSF image of the optical system.
  • the point image has a finite spread as shown in FIG. 2 (b) due to defocusing, blurring, or aberration of the optical system.
  • the original image in FIG. 2A is formed on the image sensor as a deteriorated image with degraded resolution as shown in FIG.
  • a deteriorated image is represented by a convolution integral between an original image and a PSF image normalized so that the luminance integral value of the entire image region becomes “1”.
  • FIG. 3 is a luminance distribution obtained by enlarging the periphery of the region with the highest luminance among the lines including the portion with the highest luminance in the PSF image of FIG.
  • FIG. 3 shows a luminance distribution when the PSF image does not contain noise.
  • the expression of the luminance of the image differs depending on the system to be mounted, but here, “0” is expressed as black and “1.0” is expressed as white.
  • FIG. 4 shows a block diagram of a simulator for examining the influence of noise mixed in each of the deteriorated image and the PSF image on the resolution of the restored image when capturing the subject image formed on the image sensor.
  • the simulator includes a deteriorated image noise applying unit 101 that adds noise to a deteriorated image that does not include noise, a PSF image noise applying unit 102 that adds noise to a PSF image that does not include noise, and an image restoration calculation unit 103. Using this simulator, the influence of noise on each of the deteriorated image and the PSF image can be examined.
  • the noise is Gaussian noise.
  • the influence of the noise is examined by changing the standard deviation ⁇ of the Gaussian noise.
  • fixed value noise for example, dark current noise or noise generated due to defective manufacturing of an image sensor at a predetermined line or pixel position
  • the noise at each image position in advance Since it can be easily compensated by checking the value, it is not considered here. That is, the influence of noise is examined only considering random noise (assuming Gaussian noise) that changes randomly in time series, which is difficult to compensate.
  • the image position is a position on the image, and is typically a position of a pixel constituting the image.
  • Gaussian noise is noise in which the luminance value distribution of a noise component approximates a Gaussian distribution.
  • the image restoration calculation unit 103 may perform the image restoration calculation using a Wiener filter known as an image restoration algorithm or a Richardson-Lucy algorithm.
  • the image restoration calculation unit 103 is configured to obtain a restored image by performing an image restoration calculation using a Wiener filter.
  • Wiener filter Hw (u, v) is described in, for example, the following (formula 1) described in non-patent literature ("Digital Image Processing (July 22, 2004, issued by CG-ARTS Association)" 146). May be used.
  • H (u, v) represents an optical transfer function (OTF) that is a Fourier transform of the PSF image.
  • U represents the address of an array in which each frequency component in the vertical direction of the PSF image is stored.
  • v represents an address of an array in which each frequency component in the horizontal direction of the PSF image is stored.
  • K is an appropriate constant.
  • the image restoration calculation unit 103 multiplies the Fourier transform data of the deteriorated image and the Wiener filter Hw (u, v) for each frequency component, and generates a restored image by performing inverse Fourier transform on the multiplication result.
  • the wedge chart shown in FIG. 2A is used as the subject.
  • the PSF image the PSF image shown in FIG. 2B is normalized so that the luminance integral value in all regions becomes 1 after adding noise as necessary by the PSF image noise adding unit 102.
  • a restored image corresponding to ⁇ is shown.
  • the PSF image and the deteriorated image have an image size of 512 ⁇ 512 pixels.
  • the standard deviation ⁇ is set as the luminance maximum setting value of the deteriorated image (here, “0” is black and “1.0” is white). Therefore, the restored image is shown when 0%, 0.05%, and 0.3% of the maximum luminance setting value is “1”. At this time, no noise is added to the PSF image. As apparent from FIGS. 5A, 5B, and 5C, the resolution of the restored image is slightly lowered as the standard deviation ⁇ is increased.
  • the maximum luminance setting value is a value indicating the highest luminance among the values indicating luminance.
  • each standard when Gaussian noise in which the standard deviation ⁇ is changed by the PSF image noise applying unit 102 is added to the PSF image of FIG. 2B.
  • a restored image corresponding to the deviation ⁇ is shown.
  • the standard deviation ⁇ of the Gaussian noise is set to 0%, 0.05%, and 0.3% of the maximum luminance value of the PSF image, respectively.
  • a restored image when set is shown. At this time, no noise is added to the deteriorated image.
  • the resolution of the restored image is significantly reduced as the standard deviation ⁇ of the Gaussian noise is increased.
  • the maximum luminance value of a PSF image is a luminance value at an image position showing the highest luminance in the PSF image.
  • the maximum luminance value of the PSF image is, for example, the luminance value of the pixel that exhibits the highest luminance among the pixels that form the PSF image.
  • FIG. 7 shows the result of comparing the resolution change of the restored image when the standard deviation ⁇ of Gaussian noise is changed.
  • symbol 701 represents the resolution of the restored image when Gaussian noise is given only to the degraded image.
  • a symbol 702 represents the resolution of the restored image when Gaussian noise is given only to the PSF image.
  • the standard deviation ⁇ of Gaussian noise given to the degraded image is expressed as a percentage of the maximum brightness setting value. Further, the standard deviation ⁇ of Gaussian noise given to the PSF image is expressed as a ratio to the maximum luminance value.
  • the PSF image is normalized so that the maximum luminance value becomes the maximum luminance setting value “1.0”, and equivalent noise is added to the deteriorated image and the PSF image. Compared with the conditions.
  • the resolution is measured using the resolution measurement tool HYRes3.1 distributed by CIPA with reference to CIPA standard DC-003 “Digital Camera Resolution Measurement Method”.
  • the resolution measured in this way indicates that the higher the number of measured lines, the higher the resolution.
  • the resolution of the restored image that is restored when Gaussian noise is not applied to both the degraded image and the PSF image is 428.
  • the resolution of the restored image changes depending on the ratio between the image signal and the standard deviation ⁇ of the Gaussian noise. It can also be seen that the PSF image has a significantly lower resolution when the standard deviation ⁇ of the Gaussian noise is increased than the degraded image.
  • the noise included in the PSF image has a greater adverse effect on the restored image than the noise included in the degraded image.
  • the result is that measurement is impossible due to the blur due to aberration regardless of the presence or absence of noise, and the resolution is zero.
  • FIG. 8A shows a luminance distribution obtained by enlarging a line around a portion where the luminance of the PSF image of FIG. 2B is the highest.
  • noise is not included in the PSF image.
  • FIG. 8B shows the gain of the OTF obtained by Fourier transforming this PSF image not including noise.
  • the OTF in FIG. 8B is normalized so that the gain at the DC component (frequency “0”) is 1.
  • the horizontal axis of FIG. 8B represents the frequency, and the right side of the DC component (frequency “0”) represents the positive frequency and the left side represents the negative frequency.
  • the PSF image in FIG. 2B uses an example having a symmetrical luminance distribution around the image position where the luminance is maximum. Therefore, in consideration of the visibility of the gain distribution, in FIG. 8B and the subsequent figures showing the OTF, only one line data including the DC component data in the vertical and horizontal directions in the two-dimensional OTF is obtained. Is extracted and displayed.
  • FIG. 9A is an enlarged view of a line around the portion with the highest luminance of an image obtained by adding Gaussian noise having a standard deviation ⁇ of 0.3% of the maximum luminance value to the PSF image of FIG. 2B. It represents the luminance distribution.
  • FIG. 9B shows the gain of the OTF obtained by Fourier transforming this noise-containing PSF image. The OTF in FIG. 9B is also normalized so that the gain at the DC component (frequency “0”) is “1”.
  • FIG. 9B shows that the gain of the component of frequency “0” (DC component) is significantly larger than the gain of other frequency components as compared to FIG. 8B.
  • FIG. 1 is a block diagram showing an example of the configuration of an imaging apparatus according to an embodiment of the present invention.
  • the imaging apparatus 10 includes an optical system 1, a PSF imaging unit 2 including a frequency domain conversion unit 3 and a low frequency component gain smoothing unit 4, a subject imaging unit 5, and an image restoration unit 6.
  • the optical system 1 acquires a subject image.
  • the optical system 1 includes, for example, a lens and an image sensor.
  • the optical system 1 generates a PSF image I_psf (x, y) by capturing a point image or a subject image corresponding to the point image. Further, the optical system 1 generates a subject image I_img (x, y) by capturing an arbitrary subject image.
  • the PSF photographing unit 2 causes the optical system 1 to photograph a point image or a subject image corresponding to the PSF corresponding to the optical system 1, and obtains and stores the PSF image I_psf (x, y) from the optical system 1.
  • x represents an image position in the vertical direction in the image
  • y represents an image position in the horizontal direction.
  • the PSF photographing unit 2 acquires PSF information.
  • the PSF information is information based on the PSF image I_psf (x, y) photographed by the optical system 1.
  • the PSF information indicates, for example, the PSF image I_psf (x, y) itself.
  • the PSF information may be information obtained by converting the PSF image I_psf (x, y) from the spatial domain to the frequency domain.
  • the PSF image I_psf (x, y) is an image shot so that the maximum luminance value is close to the maximum luminance setting value “1.0” in order to minimize the influence of noise. preferable.
  • the PSF imaging unit 2 represents the luminance value Nf (x, y) of the fixed value noise previously examined at each image position of the PSF image I_psf (x, y), as shown in (Expression 2), and the PSF image I_psf (x, y). ) Is subtracted from.
  • Ir1_psf (x, y) I_psf (x, y) ⁇ Nf (x, y) (Formula 2)
  • the PSF photographing unit 2 corrects the luminance value at the image position where the luminance value becomes negative in the PSF image Ir1_psf (x, y) obtained by subtracting the luminance value of the fixed value noise to “0”.
  • the PSF photographing unit 2 does not necessarily need to subtract the luminance value Nf (x, y) of the fixed value noise from the PSF image I_psf (x, y). For example, when it is known in advance that the fixed value noise is a substantially constant value in the entire image region, the PSF photographing unit 2 determines the luminance value Nf (x of the fixed value noise) from the PSF image I_psf (x, y). , Y) need not be subtracted.
  • the PSF photographing unit 2 acquires PSF information.
  • the PSF information is information based on the PSF image I_psf (x, y) photographed by the optical system 1.
  • the PSF information indicates, for example, a PSF image I_psf (x, y).
  • the PSF information may indicate a PSF image Ir1_psf (x, y) obtained by subtracting the luminance value Nf (x, y) of fixed value noise from the PSF image I_psf (x, y).
  • the PSF image Ir1_psf (x, y) obtained by subtracting the luminance value Nf (x, y) of fixed value noise from the PSF image I_psf (x, y) is also simply referred to as PSF image Ir1_psf (x, y). .
  • the frequency domain transform unit 3 transforms the PSF image Ir1_psf (x, y) from the spatial domain to the frequency domain data using a Fourier transform method such as FFT (Fast Fourier Transform), and the OTF information H_psf (u, v).
  • a Fourier transform method such as FFT (Fast Fourier Transform)
  • the OTF information H_psf (u, v) converts the PSF information into frequency domain data and outputs OTF information.
  • the frequency domain conversion unit 3 outputs the OTF information H_psf (u, v) by converting the PSF image Ir1_psf (x, y) indicated by the PSF information from the spatial domain to the frequency domain.
  • the low frequency component gain smoothing unit 4 reduces the ratio Gain_H_psf (u0, v0) / Gain_low_freq of the DC component gain Gain_H_psf (u0, v0) to the low frequency component gain Gain_low_freq in the OOTF information H_psf (u, v).
  • the OTF information H_psf (u, v) is corrected.
  • the low frequency component gain is a gain obtained from a frequency component at a frequency lower than a predetermined frequency, excluding the frequency of the DC component.
  • the gain of the low frequency component is a gain obtained from a frequency component at a frequency near the frequency of the DC component.
  • the gain of the low frequency component is an average value of frequency components at a frequency adjacent to the frequency of the DC component.
  • the gain Gain_low_freq of the low frequency component is Gain_H_psf (u0, v0 + 1) and Gain_H_psf (u0 + 1, where the gain value of the frequency component at the lowest frequency is stored in the OTF information H_psf (u, v) except the frequency of the DC component. v0) and the average value.
  • U0 represents the address where the DC component value is stored in the array storing the frequency components in the vertical direction of the PSF image. Further, v0 represents an address in which the DC component value is stored in an array in which the horizontal frequency components of the PSF image are stored.
  • the PSF imaging unit 2 outputs the corrected PSF information Hr_psf (u, v) by correcting the OTF information H_psf (u, v).
  • the modified PSF information Hr_psf (u, v) is output after being normalized as necessary.
  • the reason for correcting the OTF information H_psf (u, v) and the setting range of Gain_H_psf (u0, v0) / Gain_low_freq will be described later.
  • the subject photographing unit 5 stores subject images I_img (x, y) of various subjects acquired by the optical system 1.
  • the subject photographing unit 5 may subject the subject image I_img (x, y) to noise compensation processing such as fixed value noise compensation and median filter as necessary.
  • the subject photographing unit 5 acquires the subject image I_img (x, y) photographed by the optical system 1 and outputs subject information.
  • the subject information is information based on the acquired subject image I_img (x, y).
  • the subject information is information indicating the subject image I_img (x, y) itself.
  • the subject information may be information indicating an image obtained by performing various noise compensation processes on the subject image I_img (x, y).
  • the subject information may be information obtained by converting an image obtained by performing various noise compensation processes on the subject image I_img (x, y) or the subject image I_img (x, y) from a spatial domain to a frequency domain.
  • the image restoration unit 6 performs an image restoration calculation using a Wiener filter or the like based on the corrected PSF information and the subject information, and creates a restored image. That is, the image restoration unit 6 performs a subject information restoration calculation based on the corrected PSF information and the subject information. In other words, the image restoration unit 6 generates a restored image having a higher resolution than the image indicated by the subject information by performing an image restoration operation that causes the corrected PSF information to act on the subject information.
  • the image restoration unit 6 converts the subject image I_img (x, y) indicated by the subject information from the spatial domain to the frequency domain, and uses the modified PSF information Hr_psf (u, v) for the transformation result. Restore operation is performed by acting.
  • the corrected PSF information Hr_psf (u, v) may be data obtained by photographing once at the time of factory shipment or maintenance. That is, the image restoration unit 6 has storage means such as a memory, stores the corrected PSF information Hr_psf (u, v) generated by the PSF photographing unit 2 in advance, and stores the corrected PSF information Hr_psf (u, v A restored image may be generated using v). That is, the PSF photographing unit 2 does not necessarily need to generate the corrected PSF information Hr_psf (u, v) every time the subject image I_img (x, y) changes.
  • FIG. 10 is a flowchart showing the operation of the imaging apparatus according to the embodiment of the present invention described above. Specifically, FIG. 10A is a flowchart showing the flow of the modified PSF information generation process. FIG. 10B is a flowchart showing the flow of image restoration processing. As described above, the process illustrated in FIG. 10A may be performed at least once before the process illustrated in FIG. 10B, and is not necessarily performed in synchronization.
  • the optical system 1 captures the PSF image I_psf (x, y) (S101). Subsequently, the PSF imaging unit 2 subtracts the luminance value Nf (x, y) of the fixed value noise from the PSF image I_psf (x, y) according to the equation (2), thereby subtracting the luminance value of the fixed value noise.
  • the PSF image Ir1_psf (x, y) thus obtained is calculated (S102).
  • the frequency domain conversion unit 3 calculates the OTF information H_psf (u, v) by converting the PSF image Ir1_psf (x, y) subtracted from the luminance value of the fixed value noise from the spatial domain to the frequency domain. (S103).
  • the low frequency component gain smoothing unit 4 corrects the OTF information H_psf (u, v) so that the ratio of the gain of the DC component to the gain of the low frequency component becomes small, thereby correcting the PSF information Hr_psf ( u, v) is generated (S104).
  • the PSF photographing unit 2 normalizes the generated corrected PSF information Hr_psf (u, v) and outputs it to the image restoration unit 6 (S105).
  • the fixed-value noise subtraction process in step S102 is not necessarily executed.
  • the PSF photographing unit 2 executes the fixed value noise subtraction process when the fixed value noise is very small or when it is known in advance that the fixed value noise is a substantially constant value in the entire image area. It does not have to be.
  • the optical system 1 captures the subject image I_img (x, y) (S111). Subsequently, the subject photographing unit 5 performs noise compensation processing on the subject image I_img (x, y) after the noise compensation processing (S112). Finally, the image restoration unit 6 performs a restoration operation based on the subject image I_img (x, y) after the noise compensation process and the corrected PSF information Hr_psf (u, v), thereby generating a restored image (S113). ).
  • step S112 is not necessarily executed.
  • the reason for correcting the OTF information H_psf and the setting range of Gain_H_psf (u0, v0) / Gain_low_freq will be described.
  • the deteriorated image of the wedge chart shown in FIG. 2C is used as the subject image I_img (x, y).
  • the PSF image Ir1_psf (x, y) an image in which Gaussian noise having a standard deviation ⁇ of 0.3% of the maximum luminance value is added to the PSF image in FIG. 2B is used (the luminance value is negative). The luminance value at the image position is corrected to 0).
  • FIG. 11A shows the luminance distribution of the line including the position of the maximum luminance value of the PSF image Ir1_psf (x, y). Since the fixed value noise is removed, the luminance distribution based on the PSF of the optical system 1 in FIG. It has become.
  • FIG. 11B shows an enlarged luminance distribution near the broken line in FIG. It can be seen that there is a minute luminance distribution (a minute fluctuation in luminance value) due to the influence of Gaussian noise distributed randomly even at a position away from the position of the maximum luminance value.
  • FIG. 11C shows OTF information H_psf (u, v) obtained by Fourier transform of the PSF image Ir1_psf (x, y).
  • the OTF information H_psf (u, v) in FIG. 11C is normalized so that the gain at the DC component (frequency “0”) is “1”. From FIG. 11C, it can be seen that the gain of the DC component is significantly larger than that of the other frequency components. This is presumably because the average luminance value of the entire PSF image Ir1_psf (x, y) has increased significantly due to Gaussian noise as described above.
  • FIG. 12 shows the corrected PSF information Hr_psf (u, v) when the OTF information H_psf (u, v) is corrected so that Gain_H_psf (u0, v0) / Gain_low_freq becomes small.
  • the modified PSF information Hr_psf (u, v) in FIG. 12 is normalized so that the gain at the DC component (frequency “0”) is “1”.
  • FIG. 13 shows a restored image when the image restoration calculation is performed using the corrected PSF information shown in FIG.
  • FIG. 13A shows a restored image when the OTF information H_psf (u, v) is not corrected.
  • FIG. 13 shows that the resolution of the restored image is improved by correcting the OTF information H_psf (u, v) so that Gain_H_psf (u0, v0) / Gain_low_freq becomes small.
  • FIG. 14 shows a change in resolution when Gain_H_psf (u0, v0) / Gain_low_freq is changed.
  • FIG. 14 shows that the resolution improves when the OTF information H_psf (u, v) is corrected so that the DC gain / low frequency gain is between 0.2 and 5. That is, the low frequency component gain smoothing unit 4 makes the ratio of the gain of the direct current component to the gain of the low frequency component that is not the direct current component be between 0.2 times and 5 times in the OTF information H_psf (u, v). It is preferable to correct.
  • the low frequency component gain smoothing unit 4 makes the ratio of the gain of the DC component to the gain of the low frequency component that is not the DC component be between 0.2 and 2 in the OTF information H_psf (u, v). It is more preferable to correct.
  • the low frequency component gain smoothing unit 4 makes the ratio of the gain of the DC component to the gain of the low frequency component that is not the DC component be between 0.2 and 1 in the OTF information H_psf (u, v). It is more preferable to correct.
  • the unnecessary luminance (particularly, random noise that varies in time series) of the captured PSF image is large during the image restoration calculation. Even so, by correcting the OTF information H_psf (u, v) so that the DC gain / low frequency gain becomes an appropriate value, the PSF information for restoring the image becomes more accurate, and the high-resolution image Restoration is possible.
  • the modified PSF information Hr_psf (u, v) output from the PSF imaging unit 2 is described as frequency domain data, but the modified PSF information may be spatial domain data.
  • the modified PSF information Hr_psf (u, v) is subjected to inverse Fourier transform. And may be output as image area data. That is, the PSF photographing unit 2 may convert the data into an appropriate data format according to the subsequent processing of the PSF photographing unit 2 and output the corrected PSF information.
  • the low frequency component gain smoothing unit 4 uses the average value of the gains of the smallest frequency component except the DC component as the gain Gain_low_freq of the low frequency component, but is not limited to this.
  • the gain Gain_low_freq of the low frequency component is the gain of the low frequency component other than the DC component, such as the maximum value or minimum value of the gain at the smallest frequency excluding the DC component, and the average value of the gain including other low frequency components. It may be determined based on this.
  • the PSF photographing unit 2 does not necessarily perform the subtraction of the luminance value of the fixed value noise of (Equation 2).
  • the PSF photographing unit 2 does not necessarily perform the subtraction of the luminance value of the fixed value noise. That is, the PSF photographing unit 2 may subtract the luminance value of the fixed value noise from the luminance value of the PSF image as necessary, and it goes without saying that the subtraction of the luminance value of the fixed value noise is not an essential configuration.
  • the PSF distribution is explained using an example having a symmetrical luminance distribution around the image position where the luminance is maximum as shown in FIG. Needless to say, the present invention is also applicable to an optical system having a distribution PSF.
  • the imaging device 10 has been described based on the embodiments, but the present invention is not limited to these embodiments. Unless it deviates from the meaning of this invention, what made the various deformation
  • the imaging apparatus 10 includes the PSF imaging unit 2, but does not necessarily include the PSF imaging unit 2.
  • the imaging device 10 may store, for example, corrected PSF information generated in advance. Even in this case, since the imaging apparatus 10 can perform the subject information restoration calculation based on the corrected PSF information and the subject information stored in advance, the subject image can be restored with high resolution. .
  • the imaging device 10 in the above embodiment may be configured by one system LSI (Large Scale Integration).
  • the imaging device 10 may be configured by a system LSI having a PSF photographing unit 2, a subject photographing unit 5, and an image restoration unit 6.
  • the system LSI is an ultra-multifunctional LSI manufactured by integrating a plurality of components on a single chip. Specifically, a microprocessor, a ROM (Read Only Memory), a RAM (Random Access Memory), etc. It is a computer system comprised including. A computer program is stored in the RAM. The system LSI achieves its functions by the microprocessor operating according to the computer program.
  • system LSI may be called IC, LSI, super LSI, or ultra LSI depending on the degree of integration.
  • method of circuit integration is not limited to LSI's, and implementation using dedicated circuitry or general purpose processors is also possible.
  • An FPGA Field Programmable Gate Array
  • reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • the present invention can be realized not only as an imaging device including such a characteristic processing unit, but also as an image restoration method using a characteristic processing unit included in the imaging device as a step. . It can also be realized as a computer program that causes a computer to execute the characteristic steps included in the image restoration method. Needless to say, such a computer program can be distributed via a computer-readable recording medium such as a CD-ROM (Compact Disc Only Memory) or a communication network such as the Internet.
  • a computer-readable recording medium such as a CD-ROM (Compact Disc Only Memory) or a communication network such as the Internet.
  • the present invention provides a digital still camera, a digital video camera, a mobile phone camera, a surveillance camera, a medical camera, a telescope, a microscope, an in-vehicle camera, a stereo distance measuring camera, a multi-view camera for stereoscopic video shooting, and a free viewpoint video creation.
  • the present invention is useful for all imaging devices that take a subject image with an optical system, such as a light space capturing camera, an EDOF (Extended Depth of Field) camera, or an FDOF (Flexible Depth of Field) Photograph.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Image Processing (AREA)
  • Studio Devices (AREA)

Abstract

 光学系によって撮影されたPSF画像に基づいて劣化画像を復元する場合に、高解像度に劣化画像を復元することができる撮像装置を提供する。撮像装置(10)は、光学系(1)と、光学系(1)により撮影されたPSF(Point Spread Function)情報を取得し、PSF情報を補正することにより修正PSF情報を出力するPSF撮影部(2)と、光学系(1)により撮影された被写体情報を取得し出力する被写体撮影部(5)と、修正PSF情報と被写体情報とに基づき被写体情報の復元演算を行う画像復元部(6)とを有し、PSF撮影部(2)は、PSF情報を周波数領域のデータに変換しOTF(Optical Transfer Function)情報を出力する周波数領域変換部(3)と、OTF情報において、直流成分でない低周波成分のゲインに対する直流成分のゲインの比が小さくなるよう補正する低周波成分ゲイン平滑化部(4)とを有する。

Description

撮像装置及び画像復元方法
 本発明は、撮影時に劣化した画像を、劣化の少ない画像に復元する技術に関する。
 撮影時に光学系のピントずれ、ブレ、あるいは収差等の要因で劣化した画像を、劣化の少ない画像に復元する技術の開発が進められている。例えば、特許文献1に開示された技術では、ピントずれ、ブレ、あるいは収差等により劣化した劣化画像(撮影画像)を、ピントずれやブレ、収差等による点広がり関数(PSF:Point Spread Function)の逆特性を持つ補正関数を用いた復元演算により、劣化を補正した復元画像を得ることができる。多くの場合、設計データ等に基づいてコンピュータにより作成されたPSFデータを用いて補正関数が作成される。
 また、特許文献2に開示された技術では、PSFデータの作成が困難である場合に、実写して得られたPSFデータを用いて、劣化画像の復元演算を行っている。
特開昭62-127976号公報 特開2009-163642号公報
 しかし、設計データ等に基づきコンピュータにより作成されたPSFデータを用いて劣化画像の復元演算を実施した場合、カメラ組立て時の実装誤差が大きいなどの理由によりPSFデータが示すPSFと実際のPSFとの乖離が大きいときに、高解像度な復元画像を得ることができなくなる。そのため、コンピュータにより作成されたPSFデータでなく実際に撮影して得られたPSF画像を用いた画像復元を実施する必要が出てくる場合がある。
 また、特許文献2のように、コンピュータにより作成されたPSFデータでなく、点光源を撮影して得られるPSF画像を用いて劣化画像の復元演算を行った場合においても、特にPSF画像を撮影する際の撮像素子の不要輝度(以下、適宜「ノイズ」と記載)が大きい場合には、そのノイズの影響によりPSF画像が示すPSFが実際のPSFと乖離する。その結果、高解像度な復元画像が得られなくなるという課題がある。
 そこで、本発明は、上記課題を解決するためになされたものであり、光学系によって撮影されたPSF画像に基づいて劣化画像を復元する場合に、高解像度に劣化画像を復元することができる撮像装置及び画像復元方法を提供することを目的とする。
 上記目的を達成するために、本発明の一態様に係る撮像装置は、光学系と、前記光学系により撮影されたPSF(Point Spread Function)情報を取得し、前記PSF情報を補正することにより修正PSF情報を出力するPSF撮影部と、前記光学系により撮影された被写体情報を取得し出力する被写体撮影部と、前記修正PSF情報と前記被写体情報とに基づき前記被写体情報の復元演算を行う画像復元部とを有し、前記PSF撮影部は、前記PSF情報を周波数領域のデータに変換しOTF(Optical Transfer Function)情報を出力する周波数領域変換部と、前記OTF情報において、直流成分でない低周波成分のゲインに対する直流成分のゲインの比が小さくなるよう補正する低周波成分ゲイン平滑化部とを有する。
 このように、光学系によって撮影されたPSF情報を周波数領域へ変換したOTF情報において、低周波成分に対する直流成分の比が小さくなるようにOTF情報を補正することにより、PSF画像に含まれるランダムノイズの影響を低下させることができる。その結果、高解像度に劣化画像を復元することが可能となる。
 本発明の一態様に係る撮像装置によれば、画像復元演算の際に、撮影PSF画像の不要輝度(特に時系列的に変動するランダムノイズ)が大きい場合であっても、PSF画像の輝度平均値が適正な値になるよう、低周波ゲインに対する直流ゲインの比が小さくなるようにOTF情報を補正することにより、復元情報がより正確になり、高解像度な画像復元が可能となる。
図1は、本発明の実施の形態に係る撮像装置の構成を示すブロック図である。 図2は、本発明の実施の形態における元画像、PSF、劣化画像の関係を説明するための図である。 図3は、本発明の実施の形態におけるPSFの輝度分布を示す図である。 図4は、本発明の実施の形態におけるノイズが復元画像に及ぼす影響を検証するためのシミュレータを示す図である。 図5は、本発明の実施の形態における劣化画像に含まれるノイズと復元画像との関係を説明する図である。 図6は、本発明の実施の形態におけるPSF画像に含まれるノイズと復元画像との関係を説明する図である。 図7は、本発明の実施の形態における劣化画像及びPSF画像に含まれるノイズと復元画像の解像度との関係を説明する図である。 図8は、本発明の実施の形態における理想のPSF情報を示す図である。 図9は、本発明の実施の形態におけるノイズが含まれたPSF情報を示す図である。 図10は、本発明の実施の形態に係る撮像装置の動作を示すフローチャートである。 図11は、本発明の実施の形態におけるPSF情報を示す図である。 図12は、本発明の実施の形態におけるOTF情報を示す図である。 図13は、本発明の実施の形態における復元画像を示す図である。 図14は、本発明の実施の形態における復元画像の解像度を示す図である。
 以下、本発明の実施の形態を説明する前に、撮影されたPSF画像の不要輝度(ノイズ)が大きい場合に高解像度な画像復元が困難となる要因について説明する。
 図2から図9を用いて、撮影されたPSF画像のノイズが大きい場合に高解像度な画像復元が困難になる要因について説明する。図2(a)に劣化の無い元画像(被写体)を示す。撮影された画像の解像度を測定する際に一般的に用いられるくさび型チャートである。図2(b)に光学系のPSF画像の一例を示す。
 光学系のピントずれ、ブレ、あるいは収差等により点像が図2(b)に示すように有限の広がりを持つ。そのため、図2(a)の元画像は、光学系を介することにより、図2(c)に示すような解像度が劣化した劣化画像として撮像素子上に結像される。劣化画像は、元画像と、全画像領域の輝度積分値が「1」になるよう正規化されたPSF画像との畳込み積分により表わされることが知られている。
 なお、図3は、図2(b)のPSF画像で輝度が最も大きい部分を含むラインのうち、輝度が最も大きい領域の周辺を拡大した輝度分布である。図3は、PSF画像がノイズを含まない場合の輝度分布である。画像の輝度の表現は、実装するシステムにより異なるが、ここでは「0」を黒、「1.0」を白として表現する。
 図4は、撮像素子に結像した被写体像を取込む際に、劣化画像及びPSF画像のそれぞれに混入するノイズが、復元画像の解像度に与える影響を調べるためのシミュレータのブロック図を表わす。シミュレータは、ノイズを含まない劣化画像にノイズを付与する劣化画像ノイズ付与部101と、ノイズを含まないPSF画像にノイズを付与するPSF画像ノイズ付与部102と、画像復元演算部103とを備える。このシミュレータを用いて、劣化画像とPSF画像とのそれぞれに対するノイズの影響を調べることができる。
 ノイズはガウスノイズを仮定する。そして、そのガウスノイズの標準偏差σを変動させることにより、ノイズの影響が調べられる。例えば画像位置により時系列的に殆ど変化しない固定値ノイズ(例えば、暗電流ノイズ、または所定のラインもしくは画素位置における撮像素子の製造不良により発生するノイズ等)は、あらかじめそれぞれの画像位置でのノイズ値を調べておくことにより容易に補償可能であるためここでは考慮しない。すなわち、補償が困難な時系列的にランダムに変化するランダムノイズ(ガウスノイズで仮定)のみを考慮して、ノイズの影響を調べている。なお、画像位置とは、画像上の位置であり、典型的には画像を構成する画素の位置である。また、ガウスノイズとは、ノイズ成分の輝度値分布がガウス分布に近似するノイズである。
 画像復元演算部103は、画像復元アルゴリズムとして知られているウィナーフィルタあるいはリチャードソン・ルーシー(Richardson-Lucy)アルゴリズム等を用いて画像復元演算を行えばよい。ここでは、画像復元演算部103は、ウィナーフィルタを用いて画像復元演算を行うことにより復元画像を得る構成としている。
 ウィナーフィルタHw(u,v)の構成は、例えば非特許文献(「ディジタル画像処理(2004年7月22日 CG-ARTS協会発行)」の146ページ)に記載されている以下の(式1)を用いればよい。
 Hw(u,v)=
 1/H(u,v)・|H(u,v)|^2/(|H(u,v)|^2+K) (式1)
 ここで、H(u,v)はPSF画像のフーリエ変換である光学伝達関数(OTF:Optical Transfer Function)を表わす。また、uはPSF画像の垂直方向の各周波数成分が格納されている配列のアドレスを表わす。また、vはPSF画像の水平方向の各周波数成分が格納されている配列のアドレスを表わす。Kは適当な定数である。
 画像復元演算部103は、劣化画像のフーリエ変換データと、ウィナーフィルタHw(u,v)とを各周波数成分毎で乗算し、その乗算結果を逆フーリエ変換することにより復元画像を生成する。被写体としては図2(a)に示したくさび型チャートを用いている。PSF画像としては、図2(b)のPSF画像にPSF画像ノイズ付与部102で必要に応じてノイズを付与した後に全領域における輝度積分値が1となるよう正規化した画像を用いている。
 図5の(a)、(b)及び(c)に、図2(c)の劣化画像に、劣化画像ノイズ付与部101で標準偏差σを変動させたガウスノイズを付与した場合の各標準偏差σに対応する復元画像を示す。PSF画像及び劣化画像は、ここでは一例として512×512画素の画像サイズとしている。
 具体的には、図5の(a)、(b)及び(c)は、標準偏差σをそれぞれ劣化画像の輝度最大設定値(ここでは「0」を黒、「1.0」を白としているため、輝度最大設定値は「1」である)の0%、0.05%、及び0.3%に設定した場合における復元画像を示す。このときPSF画像にはノイズを付与していない。図5の(a)、(b)及び(c)から明らかなように、標準偏差σを大きくするに従って、復元画像の解像度が若干低下している。なお、輝度最大設定値とは、輝度を示す値のうち最も大きい輝度を示す値である。
 図6の(a)、(b)及び(c)に、図2(b)のPSF画像に、PSF画像ノイズ付与部102で標準偏差σを変動させたガウスノイズを付与した場合の、各標準偏差σに対応する復元画像を示す。具体的には、図6の(a)、(b)及び(c)は、ガウスノイズの標準偏差σをそれぞれPSF画像の最大輝度値の0%、0.05%、及び0.3%に設定した場合における復元画像を示す。このとき劣化画像にはノイズを付与していない。図6の(a)、(b)及び(c)から明らかなように、ガウスノイズの標準偏差σを大きくするに従って、復元画像の解像度が顕著に低下している。
 なお、PSF画像の最大輝度値とは、PSF画像において、最も大きい輝度を示す画像位置の輝度値である。具体的には、PSF画像の最大輝度値とは、例えば、PSF画像を構成する画素のうち、最も大きい輝度を示す画素の輝度値である。
 図7に、ガウスノイズの標準偏差σを変動させた場合の復元画像の解像度の変化を比較した結果を示す。図7において、記号701は劣化画像のみにガウスノイズを与えた場合における復元画像の解像度を表している。また、記号702はPSF画像のみにガウスノイズを与えた場合における復元画像の解像度を表している。
 劣化画像に与えるガウスノイズの標準偏差σは輝度最大設定値に対する割合で表している。また、PSF画像に与えるガウスノイズの標準偏差σは最大輝度値に対する割合で表している。ここでは、ガウスノイズをPSF画像に付与する際には、PSF画像は最大輝度値が輝度最大設定値「1.0」となるよう正規化しており、劣化画像及びPSF画像に同等のノイズを付与した条件で比較している。
 解像度は、CIPA規格DC-003「デジタルカメラの解像度測定方法」を参照し、CIPAより配布されている解像度測定用ツールHYRes3.1を用いて測定されている。このように測定される解像度は、測定された本数が多いほど高解像度であることを表す。なお、本実施の形態において、劣化画像及びPSF画像のいずれにもガウスノイズを与えない場合に復元される復元画像の解像度は428本である。
 図7から分かるように、画像信号とガウスノイズの標準偏差σとの比に依存して復元画像の解像度が変化している。また、劣化画像よりもPSF画像の方が、ガウスノイズの標準偏差σを大きくしていった場合の解像度の低下が著しいことが分かる。
 劣化画像のみにガウスノイズを与えた場合は、ガウスノイズの標準偏差σが輝度最大設定値の0.6%以上になると解像度が著しく低下して解像度が0本(測定不能)となっている。一方、PSF画像のみにガウスノイズを与えた場合は、ガウスノイズの標準偏差σが最大輝度値の0.3%以上になると解像度が著しく低下して解像度が0本となっている。
 したがって、劣化画像に含まれるノイズよりも、PSF画像に含まれるノイズの方が復元画像に対して大きな悪影響を及ぼすことが分かった。ちなみに、図2(c)の復元前の劣化画像の解像度を測定した場合は、ノイズの有無にかかわらず、収差によるぼけの影響で測定不能という結果になり、解像度は0本である。
 PSF画像に含まれるノイズにより復元画像の解像度が大幅に低下する要因を検証した結果を、図8及び図9を用いて説明する。
 図8(a)は図2(b)のPSF画像の輝度が最も大きい部分の周辺のラインを拡大した輝度分布を表わしている。ここでは、PSF画像にノイズは含まれていない。
 図8(b)はこのノイズを含まないPSF画像をフーリエ変換したOTFのゲインを表わす。図8(b)のOTFは直流成分(周波数「0」)でのゲインが1となるよう正規化されている。図8(b)の横軸は周波数を表し、直流成分(周波数「0」)より右側が正の周波数、左側が負の周波数を表す。図2(b)のPSF画像は輝度最大となる画像位置を中心として対称な輝度分布を持っている例を用いている。そこで、ゲイン分布の見易さを考慮して、図8(b)及びOTFを示す以降の図では、2次元配列であるOTFのうち垂直及び水平方向の直流成分のデータを含む1ラインのみデータを抽出し、表示している。
 図9(a)は、図2(b)のPSF画像に、標準偏差σが最大輝度値の0.3%のガウスノイズを付与した画像の、輝度が最も大きい部分の周辺のラインを拡大した輝度分布を表わしている。図9(b)はこのノイズを含んだPSF画像をフーリエ変換したOTFのゲインを表わす。図9(b)のOTFも直流成分(周波数「0」)でのゲインが「1」となるよう正規化されている。
 図9(b)では図8(b)と比較して、周波数「0」の成分(直流成分)のゲインが他の周波数成分のゲインと比較して顕著に大きくなっているのが分かる。これは、図2(b)のPSF画像は、輝度の小さい領域が画像全体のうちの大部分を占めており、その輝度の小さい領域にノイズが付与されることにより、ノイズによるPSF画像全体の輝度平均値(=直流成分)が大幅に変動するためと考えられる。
 したがって、撮影されたPSF画像のOTFと実際のOTFとの乖離が大きくなることにより、復元画像の解像度が大幅に低下する。なお、メディアンフィルタなどのランダムノイズを低減する一般的なフィルタをPSF画像に作用させても、PSF画像の輝度の小さい領域からランダムノイズを完全に除去することは困難なため、PSF画像全体の輝度平均値の変動を除去することは難しい。
 このように、撮影されたPSF画像を用いて劣化画像を復元する場合には、補正が困難なランダムノイズ(ガウスノイズ)の影響でPSF画像の輝度平均値が変動することにより、PSFの周波数成分のうち直流成分が大きく変動し、高解像度な復元画像が得られないという課題が、図4のシミュレータを用いた検討により明らかになった。
 そこで、上記の課題を解決することができる、本発明の一態様に係る撮像装置について、以下に説明する。
 (実施の形態)
 以下、本発明の実施の形態について図面を参照しながら説明する。
 図1は、本発明の実施の形態に係る撮像装置の構成の一例を示すブロック図である。撮像装置10は、光学系1と、周波数領域変換部3及び低周波成分ゲイン平滑化部4を含むPSF撮影部2と、被写体撮影部5と、画像復元部6とを備える。
 光学系1は被写体像を取得する。具体的には、光学系1は、例えばレンズ及び撮像素子などを含む。光学系1は、点像又は点像に相当する被写体像を撮影することにより、PSF画像I_psf(x,y)を生成する。また、光学系1は、任意の被写体像を撮影することにより、被写体画像I_img(x,y)を生成する。
 PSF撮影部2は、光学系1に対応するPSFを取得するために光学系1に点像もしくはそれに相当する被写体像を撮影させ、PSF画像I_psf(x,y)を光学系1から取得し保存する。ここで、xは画像中の垂直方向の画像位置、yは水平方向の画像位置を表わす。
 つまり、PSF撮影部2は、PSF情報を取得する。ここで、PSF情報とは、光学系1によって撮影されたPSF画像I_psf(x,y)に基づく情報である。具体的には、PSF情報は、例えば、PSF画像I_psf(x,y)そのものを示す。また例えば、PSF情報は、PSF画像I_psf(x,y)を空間領域から周波数領域へ変換した情報であってもよい。
 なお、PSF画像I_psf(x,y)は、ノイズの影響を最小限とするため、最大輝度値が輝度最大設定値「1.0」に近い値となるように撮影された画像であることが好ましい。また、画像位置により時系列的に変化しない既知の固定値ノイズ(例えば、暗電流ノイズ、または所定のラインもしくは画素位置における撮像素子の製造不良により発生するノイズなど)がある場合は、PSF撮影部2は、PSF画像I_psf(x,y)のそれぞれの画像位置であらかじめ調べられた固定値ノイズの輝度値Nf(x,y)を、(式2)のように、PSF画像I_psf(x,y)からを減算する。
 Ir1_psf(x,y)=I_psf(x,y)-Nf(x,y) (式2)
 ここで、PSF撮影部2は、固定値ノイズの輝度値が減算されたPSF画像Ir1_psf(x,y)で輝度値が負になった画像位置の輝度値を「0」に補正する。
 なお、PSF撮影部2は、必ずしも、PSF画像I_psf(x,y)から固定値ノイズの輝度値Nf(x,y)を減算する必要はない。例えば、固定値ノイズが全画像領域でほぼ一定値であることがあらかじめ分かっている場合などには、PSF撮影部2は、PSF画像I_psf(x,y)から固定値ノイズの輝度値Nf(x,y)を減算する必要はない。
 以上のように、PSF撮影部2は、PSF情報を取得する。ここで、PSF情報とは、光学系1によって撮影されたPSF画像I_psf(x,y)に基づく情報である。具体的には、PSF情報は、例えば、PSF画像I_psf(x,y)を示す。また例えば、PSF情報は、PSF画像I_psf(x,y)から固定値ノイズの輝度値Nf(x,y)が減算されたPSF画像Ir1_psf(x,y)を示してもよい。
 なお、以下において、PSF画像I_psf(x,y)から固定値ノイズの輝度値Nf(x,y)が減算されたPSF画像Ir1_psf(x,y)を単にPSF画像Ir1_psf(x,y)ともいう。
 周波数領域変換部3は、PSF画像Ir1_psf(x,y)を、FFT(Fast Fourier Transform)などのフーリエ変換手法を用いて空間領域から周波数領域のデータに変換し、OTF情報H_psf(u,v)を作成する。つまり、周波数領域変換部3は、PSF情報を周波数領域のデータに変換しOTF情報を出力する。具体的には、周波数領域変換部3は、PSF情報が示すPSF画像Ir1_psf(x,y)を空間領域から周波数領域へ変換することにより、OTF情報H_psf(u,v)を出力する。
 低周波成分ゲイン平滑化部4は、OOTF情報H_psf(u,v)において、低周波成分のゲインGain_low_freqに対する直流成分のゲインGain_H_psf(u0,v0)の比Gain_H_psf(u0,v0)/Gain_low_freqが小さくなるよう、OTF情報H_psf(u,v)を補正する。
 低周波成分のゲインとは、直流成分の周波数を除く、所定の周波数より低い周波数における周波数成分から得られるゲインである。具体的には、低周波成分のゲインとは、直流成分の周波数の近傍の周波数における周波数成分から得られるゲインである。例えば、低周波成分のゲインは、直流成分の周波数に隣接する周波数における周波数成分の平均値である。ここでは低周波成分のゲインGain_low_freqはOTF情報H_psf(u,v)で直流成分の周波数を除き最も小さい周波数における周波数成分のゲインの値が格納されているGain_H_psf(u0,v0+1)とGain_H_psf(u0+1,v0)との平均値とする。
 u0は、PSF画像の垂直方向の各周波数成分が格納されている配列の、直流成分の値が格納されているアドレスを表わす。また、v0は、PSF画像の水平方向の各周波数成分が格納されている配列の、直流成分の値が格納されているアドレスを表わす。
 こうしてPSF撮影部2は、OTF情報H_psf(u,v)を補正することにより、修正PSF情報Hr_psf(u,v)を出力する。
 なお、修正PSF情報Hr_psf(u,v)は必要に応じて正規化処理をして出力される。OTF情報H_psf(u,v)を補正する理由及びGain_H_psf(u0,v0)/Gain_low_freqの設定範囲は後述する。
 被写体撮影部5は光学系1で取得した様々な被写体の被写体画像I_img(x,y)を保存する。被写体撮影部5は、必要に応じて、前記固定値ノイズの補償やメディアンフィルタなどのノイズ補償処理を被写体画像I_img(x,y)に施してもよい。
 つまり、被写体撮影部5は、光学系1によって撮影された被写体画像I_img(x,y)を取得し、被写体情報を出力する。ここで、被写体情報とは、取得した被写体画像I_img(x,y)に基づく情報である。例えば、被写体情報は、被写体画像I_img(x,y)そのものを示す情報である。また例えば、被写体情報は、被写体画像I_img(x,y)に各種ノイズ補償処理を施した画像を示す情報であってもよい。また例えば、被写体情報は、被写体画像I_img(x,y)又は被写体画像I_img(x,y)に各種ノイズ補償処理を施した画像を空間領域から周波数領域へ変換した情報であってもよい。
 画像復元部6は、修正PSF情報と被写体情報とに基づき、ウィナーフィルタ等による画像復元演算を行い、復元画像を作成する。つまり、画像復元部6は、修正PSF情報と被写体情報とに基づき、被写体情報の復元演算を行う。すなわち、画像復元部6は、被写体情報に修正PSF情報を作用させる画像復元演算を行うことにより、被写体情報が示す画像よりも解像度が高い復元画像を生成する。
 具体的には、画像復元部6は、例えば、被写体情報が示す被写体画像I_img(x,y)を空間領域から周波数領域へ変換し、変換結果に対して修正PSF情報Hr_psf(u,v)を作用させることにより復元演算を行う。
 なお、修正PSF情報Hr_psf(u,v)は、工場出荷時やメンテナンス時などに一度撮影し算出したデータであってもよい。つまり、画像復元部6は、メモリなどの記憶手段を有し、PSF撮影部2によって生成された修正PSF情報Hr_psf(u,v)をあらかじめ保存しておき、保存した修正PSF情報Hr_psf(u,v)を用いて、復元画像を生成すればよい。すなわち、PSF撮影部2は、被写体画像I_img(x,y)が変わる度に必ずしも修正PSF情報Hr_psf(u,v)を生成する必要はない。
 次に、以上のように構成された本実施の形態に係る撮像装置における各種動作について説明する。
 図10は、前記に説明した本発明の実施の形態に係る撮像装置の動作を示すフローチャートである。具体的には、図10の(a)は、修正PSF情報生成処理の流れを示すフローチャートである。また、図10の(b)は、画像復元処理の流れを示すフローチャートである。上述したように、図10の(a)に示す処理は、図10の(b)に示す処理よりも先に少なくとも1回行われればよく、必ずしも同期して行われる必要はない。
 まず、図10の(a)に示すフローチャートについて説明する。
 光学系1は、PSF画像I_psf(x,y)を撮影する(S101)。続いて、PSF撮影部2は、式(2)に従って、PSF画像I_psf(x,y)から固定値ノイズの輝度値Nf(x,y)を減算することにより、固定値ノイズの輝度値が減算されたPSF画像Ir1_psf(x,y)を算出する(S102)。
 そして、周波数領域変換部3は、固定値ノイズの輝度値を減算されたPSF画像Ir1_psf(x,y)を空間領域から周波数領域へ変換することにより、OTF情報H_psf(u,v)を算出する(S103)。続いて、低周波成分ゲイン平滑化部4は、低周波成分のゲインに対する直流成分のゲインの比率が小さくなるように、OTF情報H_psf(u,v)を補正することにより、修正PSF情報Hr_psf(u,v)を生成する(S104)。最後に、PSF撮影部2は、生成された修正PSF情報Hr_psf(u,v)を正規化し、画像復元部6へ出力する(S105)。
 なお、ステップS102の固定値ノイズ減算処理は必ずしも実行される必要はない。例えば、PSF撮影部2は、固定値ノイズが非常に小さい場合や、固定値ノイズが全画像領域でほぼ一定値であることがあらかじめ分かっている場合などには、固定値ノイズ減算処理を実行しなくてもよい。
 次に、図10の(b)に示すフローチャートについて説明する。
 光学系1は、被写体画像I_img(x,y)を撮影する(S111)。続いて、被写体撮影部5は、ノイズ補償処理後の被写体画像I_img(x,y)にノイズ補償処理を行なう(S112)。最後に、画像復元部6は、ノイズ補償処理後の被写体画像I_img(x,y)と修正PSF情報Hr_psf(u,v)とに基づいて復元演算を行うことにより、復元画像を生成する(S113)。
 なお、ステップS112のノイズ補償処理は必ずしも実行される必要はない。
 次に、OTF情報H_psfを補正する理由及びGain_H_psf(u0,v0)/Gain_low_freqの設定範囲の説明を行う。以下の説明において、被写体画像I_img(x,y)としては図2(c)に示したくさび型チャートの劣化画像を用いる。PSF画像Ir1_psf(x,y)としては、図2(b)のPSF画像に、標準偏差σが最大輝度値の0.3%であるガウスノイズが付与された画像を用いる(輝度値が負になった画像位置の輝度値は0に補正)。
 図11(a)にPSF画像Ir1_psf(x,y)の最大輝度値の位置を含むラインの輝度分布を示す。固定値ノイズを除去しているため、最大輝度値の位置付近では図1の光学系1のPSFに基づく輝度分布を持ち、最大輝度値の位置から離れた位置では輝度値がほぼ「0」になっている。
 図11(b)に図11(a)の破線付近を拡大した輝度分布を示す。最大輝度値の位置から離れた位置でもランダムに分布するガウスノイズの影響により微少な輝度分布(微小な輝度値の変動)が存在するのがわかる。
 図11(c)にPSF画像Ir1_psf(x,y)をフーリエ変換したOTF情報H_psf(u,v)を示す。図11(c)のOTF情報H_psf(u,v)は直流成分(周波数「0」)でのゲインが「1」となるよう正規化されている。図11(c)を見れば、直流成分が他の周波数成分と比較してゲインが顕著に大きくなっているのが分かる。これは、前述したようにガウスノイズにより、PSF画像Ir1_psf(x,y)全体の輝度平均値が大幅に増加したためと考えられる。
 したがって、PSF画像Ir1_psf(x,y)を用いて画像復元演算をした場合には、図11(c)のOTF情報H_psf(u,v)が示すOTFと実際のOTFとの乖離が大きくなることにより、復元画像の解像度が大幅に低下する。そこで、本実施の形態においては、OTF情報H_psf(u,v)の直流成分のゲインと他の周波数のゲインとの乖離を補正し、実際のOTFに近づけることにより、高解像度な画像復元を可能にする。
 図12に、Gain_H_psf(u0,v0)/Gain_low_freqが小さくなるようにOTF情報H_psf(u,v)を補正した場合の修正PSF情報Hr_psf(u,v)を示す。図12の修正PSF情報Hr_psf(u,v)は、直流成分(周波数「0」)でのゲインが「1」となるよう正規化されている。図12(a)はGain_H_psf(u0,v0)/Gain_low_freq=1.5となるようにOTF情報H_psf(u,v)を補正した場合の修正PSF情報Hr_psf(u,v)である。また、図12(b)はGain_H_psf(u0,v0)/Gain_low_freq=1.0となるようにOTF情報H_psf(u,v)を補正した場合の修正PSF情報Hr_psf(u,v)である。また、図12(c)はGain_H_psf(u0,v0)/Gain_low_freq=0.67となるようにOTF情報H_psf(u,v)を補正した場合の修正PSF情報Hr_psf(u,v)である。
 図13に、図12に示す修正PSF情報を用いて画像復元演算をした時の復元画像を示す。図13(a)はOTF情報H_psf(u,v)を補正しない場合の復元画像を示す。また、図13(b)はGain_H_psf(u0,v0)/Gain_low_freq=1.5となるようにOTF情報H_psf(u,v)を補正した場合の復元画像を示す。また、図13(c)はGain_H_psf(u0,v0)/Gain_low_freq=1.0となるようにOTF情報H_psf(u,v)を補正した場合の復元画像を示す。また、図13(d)はGain_H_psf(u0,v0)/Gain_low_freq=0.67となるようにOTF情報H_psf(u,v)を補正した場合の復元画像を示す。
 図13を見れば、Gain_H_psf(u0,v0)/Gain_low_freqが小さくなるようにOTF情報H_psf(u,v)を補正することにより、復元画像の解像度が向上していることが分かる。
 図14にGain_H_psf(u0,v0)/Gain_low_freqを変化させた場合の解像度の変化を示す。図14に示すグラフにおいて、縦軸はCIPAより配布されている解像度測定用ツールHYRes3.1を用いて測定した復元画像の解像度を表わし、横軸は修正PSF情報のDCゲイン/低周波ゲイン(=Gain_H_psf(u0,v0)/Gain_low_freq)を表わす。
 図14から、DCゲイン/低周波ゲインが0.2から5の間になるようにOTF情報H_psf(u,v)を補正した場合に解像度が向上することが分かる。つまり、低周波成分ゲイン平滑化部4は、OTF情報H_psf(u,v)において、直流成分でない低周波成分のゲインに対する直流成分のゲインの比が0.2倍から5倍の間になるよう補正することが好ましい。
 さらに、DCゲイン/低周波ゲインが「0.2」から「2.0」の間になるようにOTF情報H_psf(u,v)を補正した場合に、ガウスノイズが存在しない場合の半分以上の解像度を得られるようになる。つまり、低周波成分ゲイン平滑化部4は、OTF情報H_psf(u,v)において、直流成分でない低周波成分のゲインに対する直流成分のゲインの比が0.2倍から2倍の間になるよう補正することがより好ましい。
 さらに、DCゲイン/低周波ゲインが「0.2」から「1.0」の間になるようにOTF情報H_psf(u,v)を補正した場合に、ガウスノイズが存在しない場合と同等の解像度を得られるようになる。つまり、低周波成分ゲイン平滑化部4は、OTF情報H_psf(u,v)において、直流成分でない低周波成分のゲインに対する直流成分のゲインの比が0.2倍から1倍の間になるよう補正することがより好ましい。
 DCゲイン/低周波ゲインが「0.2」より小さい場合は、DCゲインが他の周波数成分のゲインに比較して小さくなり過ぎ、補正した修正PSF情報Hr_psf(u,v)が示すOTFと実際のOTFとの乖離が大きくなり過ぎることにより、復元画像の解像度が大幅に低下する。
 上記の結果から、図12(b)のようにDCゲイン/低周波ゲインが「1」になるようOTF情報H_psf(u,v)を補正すると、修正PSF情報Hr_psf(u,v)が示すOTFが実際のOTFと近くなるために復元画像の解像度が向上することが分かった。さらに、DCゲイン/低周波ゲインが「1」でなくても上記に示した所定の範囲内となるようにOTF情報H_psf(u,v)を補正するのであれば、復元画像の解像度は向上することが分かった。
 以上のように、本発明の実施の形態に係る撮像装置10によれば、画像復元演算の際に、撮影されたPSF画像の不要輝度(特に時系列的に変動するランダムノイズ)が大きい場合であっても、DCゲイン/低周波ゲインが適正な値となるようにOTF情報H_psf(u,v)を補正することにより、画像を復元するためのPSF情報がより正確になり、高解像度な画像復元が可能となる。
 なお、PSF撮影部2から出力される修正PSF情報Hr_psf(u,v)は、周波数領域のデータとして説明しているが、修正PSF情報は空間領域のデータであってもよい。例えば、画像復元部6の演算アルゴリズムとして空間領域で演算を行うリチャードソン・ルーシーアルゴリズムを用いる場合などは、PSF撮影部2、必要に応じて修正PSF情報Hr_psf(u,v)を逆フーリエ変換を行って画像領域のデータとして出力してもよい。つまり、PSF撮影部2は、PSF撮影部2の後段の処理に応じて適切なデータ形態に変換して修正PSF情報を出力してもよい。
 なお、低周波成分ゲイン平滑化部4は、直流成分を除き最も小さい周波数成分のゲインの平均値を低周波成分のゲインGain_low_freqとして用いているが、これに限定されるわけではない。例えば、低周波成分のゲインGain_low_freqは、直流成分を除き最も小さい周波数におけるゲインの最大値や最小値、その他の低周波成分を含めたゲインの平均値など、直流成分以外の低周波成分のゲインに基づき決定されればよい。
 なお、PSF撮影部2は、(式2)の固定値ノイズの輝度値の減算を必ずしも行わなくてもよい。PSF撮影部2は、例えば、固定値ノイズが全画像領域でほぼ一定値である場合などは、固定値ノイズの輝度値の減算を必ずしも行わなくてもよい。つまり、PSF撮影部2は、必要に応じてPSF画像の輝度値から固定値ノイズの輝度値を減算すればよく、固定値ノイズの輝度値の減算は必須の構成ではないことは言うまでもない。
 なお、本実施の形態では、PSFの分布が図2(b)のように輝度最大となる画像位置を中心として対称な輝度分布を持っている例を用いて説明しているが、対称でない輝度分布のPSFを持った光学系に対しても適用可能であることは言うまでもない。
 以上、本発明の一態様に係る撮像装置10について、実施の形態に基づいて説明したが、本発明は、これらの実施の形態に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものも、本発明の範囲内に含まれる。
 例えば、上記実施の形態において、撮像装置10は、PSF撮影部2を備えていたが、必ずしもPSF撮影部2を備える必要はない。具体的には、撮像装置10は、例えば、あらかじめ生成された修正PSF情報を保存しておけばよい。この場合であっても、撮像装置10は、あらかじめ保存された修正PSF情報と被写体情報とに基づき被写体情報の復元演算を行うことができるので、高解像度に被写体画像を復元することが可能となる。
 また、上記実施の形態における撮像装置10が備える構成要素の一部または全部は、1個のシステムLSI(Large Scale Integration:大規模集積回路)から構成されているとしてもよい。例えば、撮像装置10は、PSF撮影部2と被写体撮影部5と画像復元部6とを有するシステムLSIから構成されてもよい。
 システムLSIは、複数の構成部を1個のチップ上に集積して製造された超多機能LSIであり、具体的には、マイクロプロセッサ、ROM(Read Only Memory)、RAM(Ramdom Access Memory)などを含んで構成されるコンピュータシステムである。前記RAMには、コンピュータプログラムが記憶されている。前記マイクロプロセッサが、前記コンピュータプログラムに従って動作することにより、システムLSIは、その機能を達成する。
 なお、ここでは、システムLSIとしたが、集積度の違いにより、IC、LSI、スーパーLSI、ウルトラLSIと呼称されることもある。また、集積回路化の手法はLSIに限るものではなく、専用回路又は汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)、あるいはLSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。
 さらには、半導体技術の進歩又は派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。
 また、本発明は、このような特徴的な処理部を備える撮像装置として実現することができるだけでなく、撮像装置に含まれる特徴的な処理部をステップとする画像復元方法として実現することもできる。また、画像復元方法に含まれる特徴的な各ステップをコンピュータに実行させるコンピュータプログラムとして実現することもできる。そして、そのようなコンピュータプログラムを、CD-ROM(Compact Disc Read Only Memory)等のコンピュータ読取可能な記録媒体あるいはインターネット等の通信ネットワークを介して流通させることができるのは、言うまでもない。
 本発明は、デジタルスチルカメラ、デジタルビデオカメラ、携帯電話用カメラ、監視カメラ、医療用カメラ、望遠鏡、顕微鏡、車載カメラ、ステレオ測距カメラ、立体映像撮影用多眼式カメラ、自由視点映像作成に用いる光線空間取込用カメラ、EDOF(Extended Depth of Field)カメラ、又はFDOF(Flexible Depth of Field) Photographyなど、光学系により被写体像を撮影する撮像装置全般に有用である。
   1 光学系
   2 PSF撮影部
   3 周波数領域変換部
   4 低周波成分ゲイン平滑化部
   5 被写体撮影部
   6 画像復元部
  10 撮像装置
 101 劣化画像ノイズ付与部
 102 PSF画像ノイズ付与部
 103 画像復元演算部

Claims (6)

  1.  光学系と、
     前記光学系により撮影されたPSF(Point Spread Function)情報を取得し、前記PSF情報を補正することにより修正PSF情報を出力するPSF撮影部と、
     前記光学系により撮影された被写体情報を取得し出力する被写体撮影部と、
     前記修正PSF情報と前記被写体情報とに基づき前記被写体情報の復元演算を行う画像復元部とを有し、
     前記PSF撮影部は、
     前記PSF情報を周波数領域のデータに変換しOTF(Optical Transfer Function)情報を出力する周波数領域変換部と、
     前記OTF情報において、直流成分でない低周波成分のゲインに対する直流成分のゲインの比が小さくなるよう補正する低周波成分ゲイン平滑化部とを有する
     撮像装置。
  2.  前記低周波成分ゲイン平滑化部は、前記OTF情報において、直流成分でない低周波成分のゲインに対する直流成分のゲインの比が0.2倍から5倍の間になるよう補正する
     請求項1記載の撮像装置。
  3.  前記低周波成分ゲイン平滑化部は、前記OTF情報において、直流成分でない低周波成分のゲインに対する直流成分のゲインの比が0.2倍から1倍の間になるよう補正する
     請求項1記載の撮像装置。
  4.  光学系と、
     前記光学系により撮影された被写体情報を取得し出力する被写体撮影部と、
     あらかじめ保存された修正PSF(Point Spread Function)情報と前記被写体情報とに基づき前記被写体情報の復元演算を行う画像復元部とを有し、
     前記修正PSF情報は、前記光学系により撮影されたPSF情報を周波数領域のデータに変換したOTF(Optical Transfer Function)情報において、直流成分でない低周波成分のゲインに対する直流成分のゲインの比が小さくなるよう補正することにより生成された情報である
     撮像装置。
  5.  光学系により撮影されたPSF(Point Spread Function)情報を取得し、前記PSF情報を補正することにより修正PSF情報を出力するPSF撮影ステップと、
     前記光学系により撮影された被写体情報を取得し出力する被写体撮影ステップと、
     前記修正PSF情報と前記被写体情報とに基づき前記被写体情報の復元演算を行う画像復元ステップとを有し、
     前記PSF撮影ステップは、
     前記PSF情報を周波数領域のデータに変換しOTF情報を出力する周波数領域変換サブステップと、
     前記OTF情報において、直流成分でない低周波成分のゲインに対する直流成分のゲインの比が小さくなるよう補正する低周波成分ゲイン平滑化サブステップとを有する
     画像復元方法。
  6.  請求項5に記載の画像復元方法をコンピュータに実行させるためのプログラム。
PCT/JP2011/002316 2010-04-23 2011-04-20 撮像装置及び画像復元方法 WO2011132416A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/319,406 US20120070096A1 (en) 2010-04-23 2011-04-20 Imaging apparatus and image restoration method
JP2011534947A JP4856293B2 (ja) 2010-04-23 2011-04-20 撮像装置及び画像復元方法
CN201180002030.0A CN102422321B (zh) 2010-04-23 2011-04-20 摄像装置以及图像复原方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010100408 2010-04-23
JP2010-100408 2010-04-23

Publications (1)

Publication Number Publication Date
WO2011132416A1 true WO2011132416A1 (ja) 2011-10-27

Family

ID=44833957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/002316 WO2011132416A1 (ja) 2010-04-23 2011-04-20 撮像装置及び画像復元方法

Country Status (4)

Country Link
US (1) US20120070096A1 (ja)
JP (1) JP4856293B2 (ja)
CN (1) CN102422321B (ja)
WO (1) WO2011132416A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013240054A (ja) * 2012-05-14 2013-11-28 Ricoh Co Ltd 非コヒーレント・サンプリングのための辞書学習

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8606032B2 (en) * 2009-12-23 2013-12-10 Sony Corporation Image processing method, device and program to process a moving image
JP5361976B2 (ja) * 2011-08-25 2013-12-04 キヤノン株式会社 画像処理プログラム、画像処理方法、画像処理装置及び撮像装置
US9373023B2 (en) * 2012-02-22 2016-06-21 Sri International Method and apparatus for robustly collecting facial, ocular, and iris images using a single sensor
JP6318520B2 (ja) 2013-09-27 2018-05-09 株式会社リコー 撮像装置、撮像システムおよび撮像方法
CN104580879B (zh) * 2013-10-09 2018-01-12 佳能株式会社 图像处理设备、图像拾取设备以及图像处理方法
JP5819925B2 (ja) * 2013-12-25 2015-11-24 ウイングアーク1st株式会社 コード読取装置およびコード読取用プログラム
CN103886596B (zh) * 2014-03-19 2016-08-31 江苏大学 一种基于深度图像骨架端点分析的生猪行走步频提取方法
CN109460690B (zh) * 2017-09-01 2022-10-14 虹软科技股份有限公司 一种用于模式识别的方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004205802A (ja) * 2002-12-25 2004-07-22 Nikon Corp ブレ補正カメラシステム、ブレ補正カメラ、画像回復装置及びブレ補正プログラム
JP2009163642A (ja) * 2008-01-09 2009-07-23 Raitoron Kk 劣化した画像を復元する装置、方法およびプログラム
JP2010081263A (ja) * 2008-09-25 2010-04-08 Sony Corp 画像処理装置及び画像処理方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6097856A (en) * 1998-07-10 2000-08-01 Welch Allyn, Inc. Apparatus and method for reducing imaging errors in imaging systems having an extended depth of field
CN100592763C (zh) * 2007-02-15 2010-02-24 北京思比科微电子技术有限公司 对图像亮度进行调整的方法和装置
JP5261796B2 (ja) * 2008-02-05 2013-08-14 富士フイルム株式会社 撮像装置、撮像方法、画像処理装置、画像処理方法、およびプログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004205802A (ja) * 2002-12-25 2004-07-22 Nikon Corp ブレ補正カメラシステム、ブレ補正カメラ、画像回復装置及びブレ補正プログラム
JP2009163642A (ja) * 2008-01-09 2009-07-23 Raitoron Kk 劣化した画像を復元する装置、方法およびプログラム
JP2010081263A (ja) * 2008-09-25 2010-04-08 Sony Corp 画像処理装置及び画像処理方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013240054A (ja) * 2012-05-14 2013-11-28 Ricoh Co Ltd 非コヒーレント・サンプリングのための辞書学習

Also Published As

Publication number Publication date
US20120070096A1 (en) 2012-03-22
JP4856293B2 (ja) 2012-01-18
JPWO2011132416A1 (ja) 2013-07-18
CN102422321A (zh) 2012-04-18
CN102422321B (zh) 2015-01-07

Similar Documents

Publication Publication Date Title
JP4856293B2 (ja) 撮像装置及び画像復元方法
JP4847633B2 (ja) 撮像装置及び画像復元方法
RU2716843C1 (ru) Цифровая коррекция аберраций оптической системы
JP5489897B2 (ja) ステレオ測距装置及びステレオ測距方法
JP4782899B2 (ja) 視差検出装置、測距装置及び視差検出方法
EP3620989A1 (en) Information processing method, information processing apparatus, and program
JP5615393B2 (ja) 画像処理装置、撮像装置、画像処理方法、画像処理プログラム、および、記憶媒体
JP6648914B2 (ja) 画像処理装置、画像処理方法及びプログラム
JP5672527B2 (ja) 画像処理装置及び画像処理方法
US10846839B2 (en) Image processing apparatus, image processing method, and storage medium
WO2015133593A1 (en) Image processing method, image processing apparatus, image capturing apparatus, image processing program and non-transitory computer-readable storage medium
JP2015115733A (ja) 画像処理方法、画像処理装置、撮像装置および画像処理プログラム
US10748252B2 (en) Method and device for image correction
EP4109396A1 (en) Image de-blurring
US10628928B2 (en) Image processing apparatus, image processing method, and storage medium for gain adjustment
JP4927005B2 (ja) 変化要因情報のデータの生成法および信号処理装置
CN112073603B (zh) 图像处理设备、摄像设备、图像处理方法和存储介质
JP4606976B2 (ja) 画像処理装置
JP2015091072A (ja) 撮像装置及びこの撮像装置を備えた撮像システム及び偽色除去方法
JP2015119428A (ja) 画像処理方法、画像処理装置、撮像装置、画像処理プログラム、および、記憶媒体
JP6189172B2 (ja) 画像処理装置、画像処理方法およびプログラム
WO2009110184A1 (ja) 変化要因情報のデータの生成法および信号処理装置
JP5065099B2 (ja) 変化要因情報のデータの生成法および信号処理装置
JP2015109562A (ja) 画像処理装置、撮像装置、制御方法、及びプログラム
JP6216667B2 (ja) 画像処理装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180002030.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011534947

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13319406

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11771757

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11771757

Country of ref document: EP

Kind code of ref document: A1