WO2011132299A1 - Reception device and reception method - Google Patents

Reception device and reception method Download PDF

Info

Publication number
WO2011132299A1
WO2011132299A1 PCT/JP2010/057187 JP2010057187W WO2011132299A1 WO 2011132299 A1 WO2011132299 A1 WO 2011132299A1 JP 2010057187 W JP2010057187 W JP 2010057187W WO 2011132299 A1 WO2011132299 A1 WO 2011132299A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
window
complex baseband
baseband signal
difference filter
Prior art date
Application number
PCT/JP2010/057187
Other languages
French (fr)
Japanese (ja)
Inventor
義徳 阿部
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2010/057187 priority Critical patent/WO2011132299A1/en
Publication of WO2011132299A1 publication Critical patent/WO2011132299A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2689Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation
    • H04L27/2691Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation involving interference determination or cancellation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2662Symbol synchronisation

Definitions

  • the present invention relates to a receiving apparatus and a receiving method for receiving and demodulating a digital modulation signal conforming to the OFDM system.
  • OFDM Orthogonal Frequency Division Multiplex modulation
  • European DVB-T Digital Video Broadcasting-Terrestrial
  • Japan's ISDB-T Integrated-Terregarded-B
  • Etc. are adopted in the terrestrial digital broadcasting standards of each country.
  • the OFDM modulated wave transmitted from the broadcast station is received in a form in which various interference waves such as impulse noise, spurious interference, and co-channel NTSC interference are superimposed on the transmission path.
  • various interference waves such as impulse noise, spurious interference, and co-channel NTSC interference are superimposed on the transmission path.
  • improvement of resistance to various interference waves is an important issue.
  • in-vehicle receivers and portable receivers that are assumed to be used in various reception environments, high resistance to these various interference waves is required.
  • the present invention relates to a technique for improving resistance to spurious interference among these interferences.
  • the spurious interference mentioned here refers to an interference wave having a spectrum with a very narrow bandwidth (several kHz) compared to the transmission bandwidth of the OFDM modulated wave (about 5.57 MHz in the case of ISDB-T). Shall point to.
  • Fig. 7 shows the general configuration of an OFDM receiver.
  • the receiving apparatus 300 includes a time domain processing unit 2, a window extraction unit 6, an FFT processing unit 7, a guard correlation calculation unit 4, a window position control unit 5, a frequency control unit 8, and a frequency domain processing unit 50.
  • a time domain processing unit 2 includes a window extraction unit 6, an FFT processing unit 7, a guard correlation calculation unit 4, a window position control unit 5, a frequency control unit 8, and a frequency domain processing unit 50.
  • the time domain processing unit converts the input RF signal into a complex baseband signal and outputs it.
  • the time domain processing unit generally performs processing such as RF filtering, frequency conversion to IF signals, IF filtering, A / D conversion, sampling frequency conversion, and quadrature detection.
  • the window extraction unit extracts a window having an effective symbol length from the complex baseband signal.
  • the FFT processing unit performs FFT processing on the window-extracted signal and outputs a received OFDM symbol composed of a plurality of received subcarriers.
  • the frequency domain processing unit performs processing such as channel estimation, equalization, and error correction on the received OFDM symbol, and restores and outputs the transmitted information data.
  • the guard correlation calculation unit calculates a guard correlation signal from the input complex baseband signal and outputs it.
  • the window position control unit controls the window extraction unit based on the guard correlation signal so that window extraction at an appropriate window position is performed.
  • this window position control processing is called symbol synchronization processing.
  • the symbol synchronization processing is achieved by a symbol synchronization unit 21 including a guard correlation calculation unit and a window position control unit.
  • the frequency control unit controls the time domain processing unit based on the guard correlation signal so that the modulation frequency of the complex baseband signal becomes exactly zero. In general, this frequency control processing is called narrowband AFC processing.
  • FIG. 8 shows a general configuration of the guard correlation calculation unit.
  • the delayed correlator 12 performs a complex correlation operation between the input complex baseband signal and a signal obtained by delaying the complex baseband signal by the effective symbol length, and outputs the result.
  • the moving averager 13 calculates a moving average of the guard length width for the output signal of the delay correlator and outputs this as a guard correlation signal.
  • Other methods for configuring the guard correlation calculation unit include performing averaging between different OFDM symbols after taking a moving average, or using a moving average width different from the guard length, etc. There is.
  • the OFDM modulated signal is composed of a guard interval and an effective symbol interval in the time domain.
  • the rear end portion of the effective symbol section is copied to the guard section arranged at the symbol head.
  • the window position control unit detects the triangular wave peak, and controls the window extraction unit based on the timing at which the peak is detected.
  • the frequency control unit controls the conversion frequency of the time domain processing unit based on the angle of the detected peak value on the complex plane.
  • Patent Document 1 A reception method (see Patent Document 1) that solves the above problem has already been proposed.
  • an interference wave is detected after FFT processing, and a component near the interference frequency is removed from the complex baseband signal by a notch filter.
  • the above-mentioned problem is solved by performing a synchronous process using the signal which removed this interference wave.
  • it is necessary to prepare a disturbance detector and a notch filter separately, and in order to cope with a plurality of spurious disturbances, it is necessary to prepare a plurality of notch filters. It ’s hard to say.
  • complicated control is required. For example, if the number of spurious jamming waves is larger than the number of notch filters and the power of each spurious jamming wave fluctuates, the notch filters must be adaptively allocated to high power jamming waves. Very complex control is required.
  • a general OFDM receiver may not be able to properly perform symbol synchronization in a severe spurious interference environment.
  • a method for solving this problem has been proposed, it has a problem to be improved from the viewpoint of cost or complexity of control.
  • An object of the present invention is to realize a receiver having high resistance to spurious interference waves with a simple circuit configuration.
  • the invention according to claim 1 is characterized in that a time domain processing means for converting a received OFDM signal into a complex baseband signal, and the complex baseband signal or a signal obtained by further processing it.
  • a window extracting means for extracting a section of a predetermined length from FFT processing means for performing FFT processing on the window extracted by the window extraction means, and a prediction residual signal for a signal obtained by thinning the complex baseband signal with a thinning rate of 1 / N (N is a natural number)
  • an adaptive prediction difference filter means for performing, and a symbol synchronization means for controlling the extraction window position of the window extraction means based on the prediction residual signal.
  • the invention according to claim 6 is a time domain processing step for converting a received OFDM signal into a complex baseband signal, and further obtained by processing the complex baseband signal or the complex baseband signal.
  • N is An adaptive prediction difference filter step for outputting a prediction residual signal for a signal thinned out at a thinning rate of a natural number), and a symbol synchronization step for controlling the extraction window position of the window extraction means based on the prediction residual signal.
  • the receiving device 100 includes a time domain processing unit 2, a symbol synchronization unit 21, a window extraction unit 6, an FFT processing unit 7, a frequency control unit 8, an adaptive prediction difference filter 11, and a frequency domain processing unit 50. is doing.
  • the symbol synchronization unit includes a guard correlation calculation unit 4 and a window position control unit 5.
  • an adaptive prediction difference filter is placed in front of the symbol synchronization unit. The following description focuses on the function of the adaptive prediction difference filter, which is a new element, and its effect.
  • the arrow which shows the flow of the signal in a figure shows the flow of the main signal between each component
  • signals such as a response signal and a monitoring signal accompanying such a main signal
  • the arrows in the figure conceptually indicate the flow of signals between the components, and in an actual device, it is not necessary for each signal to be faithfully exchanged along the path indicated by the arrows. .
  • each component is divided faithfully as shown in FIG.
  • the time domain processing unit corresponds to the time domain processing means described in each claim
  • the adaptive prediction difference filter corresponds to the adaptive prediction difference filter means
  • the window extraction unit corresponds to the window extraction means.
  • the symbol synchronization unit corresponds to symbol synchronization means
  • the FFT processing unit corresponds to FFT processing means
  • the frequency control unit corresponds to frequency control means.
  • the prediction difference filter is a filter that predicts a current value of an input sequence from an input sequence other than the current value, and outputs a difference between the predicted value and the current value, that is, a prediction residual.
  • the adaptive prediction difference filter has a function of autonomously controlling the filter characteristics so that the power of the prediction residual is minimized.
  • the predicted value is calculated by an FIR filter.
  • An adaptive prediction difference filter can be configured by updating the prediction coefficient with an appropriate algorithm.
  • the configuration of the adaptive prediction difference filter described above is merely an example.
  • the so-called forward prediction that predicts the current value from the past series is exemplified, but backward prediction that predicts the current value from the future series or bidirectional prediction that predicts the current value from both the past series and the future series is used. Even in this case, there is no difference in the effect of the present invention.
  • the adaptive prediction difference filter has the property of whitening the signal. That is, the adaptive prediction difference filter operates so as to minimize the autocorrelation within the range of the tap length of the output signal. In the frequency domain, this is nothing other than controlling the frequency characteristics so that the power spectrum of the output signal is made as flat as possible, that is, whitened. Due to this whitening property, the power of the spurious interference wave is suppressed at the output of the adaptive prediction difference filter.
  • Fig. 2 shows the computer simulation result showing the spurious interference suppression effect of the adaptive prediction differential filter.
  • the conditions used for the simulation are shown in FIG.
  • a signal obtained by superimposing three spurious interference waves on an OFDM modulated signal is input to an adaptive prediction difference filter.
  • the power spectrum of the input signal obtained by the simulation is shown in FIG.
  • FIG. 2B shows the frequency characteristics of the prediction difference filter after the coefficient is updated for a sufficient period in a state where such a signal is input. It can be seen that zeros are formed corresponding to the frequencies of the three spurious interference waves.
  • the output spectrum of the adaptive prediction difference filter that is, the power spectrum of the prediction residual signal is as shown in FIG. It can be seen that the spurious interference wave component is greatly suppressed compared to the input power spectrum.
  • the adaptive prediction difference filter autonomously, i.e., externally, filters the input signal including a plurality of spurious interference waves to suppress these interference waves. Can be formed without the need for control from
  • the adaptive prediction difference filter has the property of suppressing spurious interference waves.
  • an output signal of the adaptive prediction difference filter that is, a signal in which spurious interference waves are suppressed is input to the symbol synchronization unit.
  • the DC offset generated in the guard correlation signal is reduced as compared with the conventional receiver that does not have an adaptive prediction difference filter, and symbol synchronization processing and narrowband AFC processing can be performed appropriately.
  • the number of spurious interference waves that can be suppressed by the adaptive prediction difference filter increases according to the number of taps. However, it is not preferable to increase the number of taps more than necessary. This is because when the impulse response of the adaptive prediction difference filter is long, the waveform of the guard correlation signal itself changes, which may adversely affect the synchronization processing. For the same reason, it is understood that an FIR filter that can limit the length of the impulse response within the number of taps is desirable as the structure of the adaptive prediction difference filter. In the above computer simulation, a 16-tap FIR type adaptive prediction difference filter is used. In this number of taps, the impulse response is limited to be sufficiently smaller than the effective symbol length, so the above-described adverse effect is extremely small, and substantial performance degradation can be ignored. On the other hand, it will be apparent from the simulation results that this tap number has a sufficient spurious interference suppression effect.
  • FIG. 1 An example of the configuration of a receiving apparatus according to the second embodiment of the present invention is shown in FIG.
  • symbol same as FIG. 1 is attached
  • the difference between the receiving apparatus shown in FIG. 1 and the receiving apparatus shown in FIG. 4 is only the input source of the window extraction unit.
  • the output signal of the time domain processing unit is input to the window extraction unit, whereas in FIG. 4, the output signal of the adaptive prediction difference filter is input to the window extraction unit.
  • FIG. 5 shows a configuration example of a receiving apparatus according to the third embodiment of the present invention.
  • symbol same as FIG. 1 is attached
  • the configuration of FIG. 5 is different from FIG. 1 in that a decimation unit 15 is inserted before the adaptive prediction difference filter. The decimation unit thins out the input signal sequence every other sample and halves the sampling frequency.
  • the first is the effect of reducing circuit scale and power consumption. This is because the operation speed of the guard correlation calculation unit is reduced by half due to decimation, and the number of operations is reduced accordingly.
  • the adaptive prediction difference filter relatively amplifies the noise component outside the band.
  • the purity of the input signal to the guard correlation calculation unit may decrease, and the accuracy of symbol synchronization processing and narrowband AFC processing may decrease.
  • the spurious interference suppression performance that is essential may be lowered.
  • FIG. 6 shows a simulation result of the adaptive prediction difference filter in a state where the decimation unit is placed in front.
  • An OFDM signal in which three spurious interference waves are superimposed is input to the decimation unit as in the above-described simulation.
  • the power spectrum after decimation is shown in FIG.
  • the prediction difference filter can apply its spectrum flattening capability only to suppression of spurious interference without amplifying unnecessary bands.
  • the thinning rate is set to 1/2. However, the same effect can be expected when the thinning rate other than this is set to 1/3 or 1/4.
  • the decimation unit into the input of the adaptive prediction difference filter, the amount of calculation of the adaptive prediction difference filter can be reduced, and spurious interference can be efficiently performed without amplifying noise components outside the OFDM band. It becomes possible to suppress well.
  • Time domain processing unit (equivalent to time domain processing means) 4 Guard correlation calculation part 5 Window position control part 6 Window extraction part (equivalent to window extraction means) 7 FFT processing unit (equivalent to FFT processing means) 8 Frequency controller (equivalent to frequency control means) 11 Adaptive prediction difference filter (equivalent to adaptive prediction difference filter means) 13 Moving averager 15 Decimation unit 21 Symbol synchronization unit (symbol synchronization means) 50 Frequency Domain Processing Unit 100, 200 Receiver

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Noise Elimination (AREA)

Abstract

The disclosed reception device is highly resistant to spurious interference and is implemented with a simple circuit. Said reception device has: a time-domain processing unit (2) which transforms a received OFDM signal into a complex baseband signal; a window extraction unit (6) which extracts a segment of a prescribed length from the complex baseband signal or a signal obtained by further processing same; an FFT unit (7) which performs an FFT on the segment extracted by the window extraction unit (6); an adaptive-prediction difference filter (11) which outputs a prediction-residual signal for a signal obtained by downsampling the complex baseband signal by a factor of N (N being a natural number); and a symbol synchronization unit (21) which controls the window extraction position of the window extraction unit (6) on the basis of the prediction-residual signal. Performing symbol synchronization on the basis of a signal whitened by an adaptive-prediction difference filter (11) improves the resistance of the symbol synchronization to spurious interference.

Description

受信装置及び受信方法Receiving apparatus and receiving method
 本発明は、OFDM方式に準拠したデジタル変調信号を受信復調する受信装置及び受信方法に関する。 The present invention relates to a receiving apparatus and a receiving method for receiving and demodulating a digital modulation signal conforming to the OFDM system.
 OFDM(Orthogonal Frequency Division Multiplex)変調はマルチパス妨害に対する耐性が高い変調方式として知られており、欧州のDVB-T(Digital Video Broadcasting-Terrestrial)や、日本のISDB-T(Integrated Services Digital Broadcasting-Terrestrial)など、各国の地上波デジタル放送規格において採用されている。 OFDM (Orthogonal Frequency Division Multiplex) modulation is known as a modulation system that is highly resistant to multipath interference, such as European DVB-T (Digital Video Broadcasting-Terrestrial), Japan's ISDB-T (Integrated-Terregarded-B). ), Etc., are adopted in the terrestrial digital broadcasting standards of each country.
 放送局から送出されたOFDM変調波は、伝送経路において、インパルス雑音、スプリアス妨害、同一チャンネルNTSC妨害などの様々な妨害波が重畳された形で受信される。OFDM受信装置の構成においては、こうした様々な妨害波に対する耐性の向上が重要な課題である。特に、多様な受信環境での使用が想定される車載型受信装置や携帯型受信装置などにおいては、これらの様々な妨害波に対する高い耐性が必要となる。本発明は、これらの妨害の中でも、特にスプリアス妨害に対する耐性を向上させる技術に関する。なお、ここで言うスプリアス妨害とは、OFDM変調波の伝送帯域幅(ISDB-Tの場合で約5.57MHz)に較べて、非常に狭い帯域幅(数kHz程度)のスペクトラムを持つ妨害波を指すものとする。 The OFDM modulated wave transmitted from the broadcast station is received in a form in which various interference waves such as impulse noise, spurious interference, and co-channel NTSC interference are superimposed on the transmission path. In the configuration of the OFDM receiver, improvement of resistance to various interference waves is an important issue. In particular, in-vehicle receivers and portable receivers that are assumed to be used in various reception environments, high resistance to these various interference waves is required. The present invention relates to a technique for improving resistance to spurious interference among these interferences. The spurious interference mentioned here refers to an interference wave having a spectrum with a very narrow bandwidth (several kHz) compared to the transmission bandwidth of the OFDM modulated wave (about 5.57 MHz in the case of ISDB-T). Shall point to.
 OFDM変調においては、送出データが複数のサブキャリアに分散されて伝送されるため、他の変調方式に較べて、スプリアス妨害対策は容易である。もっとも一般的かつ簡易な対策は、受信サブキャリアのうちスプリアス妨害の影響が著しいサブキャリアを消失扱いにすることにより、妨害の影響を軽減するものである。地上波テレビジョン放送ではサブキャリア数は数千のオーダーであり、スプリアス妨害の影響が著しい数十のサブキャリアを消失扱いとしても、充分な伝送品質を維持可能である。通常はこの対策で充分なスプリアス妨害耐性を得ることができる。 In OFDM modulation, since transmission data is distributed and transmitted over a plurality of subcarriers, it is easier to take measures against spurious interference than other modulation schemes. The most general and simple countermeasure is to reduce the influence of interference by treating subcarriers that are significantly affected by spurious interference among received subcarriers as erasures. In terrestrial television broadcasting, the number of subcarriers is on the order of several thousand. Sufficient transmission quality can be maintained even if tens of subcarriers that are significantly affected by spurious interference are treated as erasures. Normally, this measure can provide sufficient spurious interference resistance.
 しかしながら、移動受信などで遭遇する重篤なスプリアス妨害環境においては、前記の対策では不十分な場合も多い。例えば、スプリアス妨害波の電力が所望OFDM波の電力よりも高いような、非常に重篤なスプリアス妨害環境においては、シンボル同期処理や狭帯域AFCなどの同期処理が適切に行われない場合がある。 However, in severe spurious interference environments encountered by mobile reception, the above measures are often insufficient. For example, in a very severe spurious interference environment where the power of the spurious interference wave is higher than the power of the desired OFDM wave, synchronization processing such as symbol synchronization processing or narrowband AFC may not be performed properly. .
 図7にOFDM受信装置の一般的な構成を示す。受信装置300は、時間領域処理部2と、窓抽出部6と、FFT処理部7と、ガード相関算出部4と、窓位置制御部5と、周波数制御部8と、周波数領域処理部50を有している。 Fig. 7 shows the general configuration of an OFDM receiver. The receiving apparatus 300 includes a time domain processing unit 2, a window extraction unit 6, an FFT processing unit 7, a guard correlation calculation unit 4, a window position control unit 5, a frequency control unit 8, and a frequency domain processing unit 50. Have.
 時間領域処理部は、入力されるRF信号を複素基底域信号に変換して出力する。時間領域処理部は、RFフィルタリング、IF信号への周波数変換、IFフィルタリング、A/D変換、サンプリング周波数変換、直交検波などの処理を行うのが一般的である。窓抽出部は、複素基底域信号から有効シンボル長の区間を窓抽出する。FFT処理部は、窓抽出後の信号に対してFFT処理を行って、複数の受信サブキャリアから構成される受信OFDMシンボルを出力する。周波数領域処理部は、受信OFDMシンボルに対して、伝送路推定、等化、誤り訂正などの処理を行い、送出された情報データを復元して出力する。ガード相関算出部は、入力される複素基底域信号からガード相関信号を算出し、これを出力する。ガード相関算出部については、後で詳細に説明する。窓位置制御部は、ガード相関信号に基づいて、適切な窓位置での窓抽出が行われるように、窓抽出部を制御する。一般に、この窓位置制御処理はシンボル同期処理と呼ばれる。ここで、シンボル同期処理は、ガード相関算出部、窓位置制御部で構成されるシンボル同期部21によって達成されている。周波数制御部は、ガード相関信号に基づいて、複素基底域信号の変調周波数が正確に零となるように時間領域処理部を制御する。一般に、この周波数制御処理は狭帯域AFC処理と呼ばれる。 The time domain processing unit converts the input RF signal into a complex baseband signal and outputs it. The time domain processing unit generally performs processing such as RF filtering, frequency conversion to IF signals, IF filtering, A / D conversion, sampling frequency conversion, and quadrature detection. The window extraction unit extracts a window having an effective symbol length from the complex baseband signal. The FFT processing unit performs FFT processing on the window-extracted signal and outputs a received OFDM symbol composed of a plurality of received subcarriers. The frequency domain processing unit performs processing such as channel estimation, equalization, and error correction on the received OFDM symbol, and restores and outputs the transmitted information data. The guard correlation calculation unit calculates a guard correlation signal from the input complex baseband signal and outputs it. The guard correlation calculation unit will be described in detail later. The window position control unit controls the window extraction unit based on the guard correlation signal so that window extraction at an appropriate window position is performed. In general, this window position control processing is called symbol synchronization processing. Here, the symbol synchronization processing is achieved by a symbol synchronization unit 21 including a guard correlation calculation unit and a window position control unit. The frequency control unit controls the time domain processing unit based on the guard correlation signal so that the modulation frequency of the complex baseband signal becomes exactly zero. In general, this frequency control processing is called narrowband AFC processing.
 ここで、ガード相関算出部の内部構成について説明する。図8にガード相関算出部の一般的な構成を示す。遅延相関器12は、入力される複素基底域信号と、これを有効シンボル長だけ遅延させた信号との複素相関演算を行い、この結果を出力する。移動平均器13は、遅延相関器の出力信号に対して、ガード長幅の移動平均を求め、これをガード相関信号として出力する。なお、ガード相関算出部の構成方法としては、これ以外にも、移動平均を取った後で、異なるOFDMシンボル間での平均化を行うものや、ガード長とは異なる移動平均幅を用いるものなどがある。 Here, the internal configuration of the guard correlation calculation unit will be described. FIG. 8 shows a general configuration of the guard correlation calculation unit. The delayed correlator 12 performs a complex correlation operation between the input complex baseband signal and a signal obtained by delaying the complex baseband signal by the effective symbol length, and outputs the result. The moving averager 13 calculates a moving average of the guard length width for the output signal of the delay correlator and outputs this as a guard correlation signal. Other methods for configuring the guard correlation calculation unit include performing averaging between different OFDM symbols after taking a moving average, or using a moving average width different from the guard length, etc. There is.
 ガード相関算出部の機能とシンボル同期処理および狭帯域AFC処理について、図9を参照して詳細に説明する。OFDM変調信号は、時間領域において、図9(a)に示すように、ガード区間と有効シンボル区間とで構成されている。シンボル先頭部に配置されるガード区間には有効シンボル区間の後端部分がコピーされている。こうしたOFDM信号と、これを有効シンボル長だけ遅延させた信号、すなわち図9(b)に示される信号との複素相関演算を行うことにより、遅延相関器の出力には、図9(c)に示すように、ガード長幅の高相関区間が周期的に現れることが期待される。また、移動平均器の出力では、図9(d)に示すように、伝送シンボルの境界において、三角波ピークが観測されることが期待される。窓位置制御部は、この三角波ピークを検出し、これが検出されたタイミングに基づいて窓抽出部を制御する。一方、周波数制御部は検出されたピーク値の複素平面上での角度に基づいて、時間領域処理部の変換周波数を制御する。 The function of the guard correlation calculation unit, symbol synchronization processing, and narrowband AFC processing will be described in detail with reference to FIG. As shown in FIG. 9A, the OFDM modulated signal is composed of a guard interval and an effective symbol interval in the time domain. The rear end portion of the effective symbol section is copied to the guard section arranged at the symbol head. By performing a complex correlation operation between such an OFDM signal and a signal obtained by delaying the OFDM signal by an effective symbol length, that is, the signal shown in FIG. 9B, the output of the delayed correlator is as shown in FIG. As shown, it is expected that a highly correlated section with a guard width will appear periodically. Further, at the output of the moving averager, it is expected that a triangular wave peak is observed at the boundary of the transmission symbols as shown in FIG. 9 (d). The window position control unit detects the triangular wave peak, and controls the window extraction unit based on the timing at which the peak is detected. On the other hand, the frequency control unit controls the conversion frequency of the time domain processing unit based on the angle of the detected peak value on the complex plane.
 ここで、受信信号にスプリアス妨害が重畳されている場合を考える。こうした場合、ガード相関信号にはDCオフセットが発生することが知られている。この現象は、スプリアス妨害波が極めて高い時間領域相関を有していることに起因する。このDCオフセット成分が負実数である場合には、ガード相関信号は図9(e)のように下方にオフセットしてしまう。この場合、シンボル同期部、周波数制御部はピーク点を検出できなくなるため、同期処理が適切に行われなくなってしまう。 Suppose here that spurious interference is superimposed on the received signal. In such a case, it is known that a DC offset occurs in the guard correlation signal. This phenomenon is caused by spurious interference waves having a very high time domain correlation. When this DC offset component is a negative real number, the guard correlation signal is offset downward as shown in FIG. In this case, since the symbol synchronization unit and the frequency control unit cannot detect the peak point, the synchronization process is not appropriately performed.
 上記の問題を解決する受信方法(特許文献1参照)が既に提案されている。この従来技術では、FFT処理後において妨害波を検出し、当該妨害周波数の近傍成分を複素基底域信号からノッチフィルタにより除去している。そして、この妨害波を除去した信号を用いて同期処理を行うことにより、上記の問題を解決している。しかしながら、この方法では、妨害検出器とノッチフィルタを個別に用意する必要があり、更に複数のスプリアス妨害に対応するためには、複数個のノッチフィルタを用意する必要が生じるなど、コスト的に有効な方法とは言いがたい。また、効率的にスプリアス妨害波を除去するためには、複雑な制御が必要となる。例えば、スプリアス妨害波の数がノッチフィルタの個数より大きく、各スプリアス妨害波の電力が変動しているような場合には、ノッチフィルタを、電力の高い妨害波に適応的に割り当てなければならず、非常に複雑な制御が必要となる。 A reception method (see Patent Document 1) that solves the above problem has already been proposed. In this prior art, an interference wave is detected after FFT processing, and a component near the interference frequency is removed from the complex baseband signal by a notch filter. And the above-mentioned problem is solved by performing a synchronous process using the signal which removed this interference wave. However, in this method, it is necessary to prepare a disturbance detector and a notch filter separately, and in order to cope with a plurality of spurious disturbances, it is necessary to prepare a plurality of notch filters. It ’s hard to say. Further, in order to efficiently remove spurious interference waves, complicated control is required. For example, if the number of spurious jamming waves is larger than the number of notch filters and the power of each spurious jamming wave fluctuates, the notch filters must be adaptively allocated to high power jamming waves. Very complex control is required.
特開2006-174218号公報JP 2006-174218 A
 上記したように、一般的なOFDM受信装置では、重篤なスプリアス妨害環境において、シンボル同期を適切に行えなくなってしまう場合がある。これを解決する方法は提案されているものの、コスト的な見地、あるいは制御の複雑さという見地から改善すべき課題を有していた。 As described above, a general OFDM receiver may not be able to properly perform symbol synchronization in a severe spurious interference environment. Although a method for solving this problem has been proposed, it has a problem to be improved from the viewpoint of cost or complexity of control.
 本発明は、スプリアス妨害波耐性の高い受信装置を簡易な回路構成で実現することを目的とする。 An object of the present invention is to realize a receiver having high resistance to spurious interference waves with a simple circuit configuration.
 上記課題を解決するために、請求項1に記載の発明は、受信したOFDM信号を複素基底域信号に変換する時間領域処理手段と、前記複素基底域信号あるいはこれを更に処理して得られる信号から所定長の区間を窓抽出する窓抽出手段と、
前記窓抽出手段によって窓抽出された区間に対してFFT処理を行うFFT処理手段と、前記複素基底域信号を1/N(Nは自然数)の間引き率で間引いた信号に対する予測残差信号を出力する適応予測差分フィルタ手段と、前記予測残差信号に基づいて、前記窓抽出手段の抽出窓位置を制御するシンボル同期手段と、を有する。
In order to solve the above-mentioned problems, the invention according to claim 1 is characterized in that a time domain processing means for converting a received OFDM signal into a complex baseband signal, and the complex baseband signal or a signal obtained by further processing it. A window extracting means for extracting a section of a predetermined length from
FFT processing means for performing FFT processing on the window extracted by the window extraction means, and a prediction residual signal for a signal obtained by thinning the complex baseband signal with a thinning rate of 1 / N (N is a natural number) And an adaptive prediction difference filter means for performing, and a symbol synchronization means for controlling the extraction window position of the window extraction means based on the prediction residual signal.
 また、上記課題を解決するために、請求項6に記載の発明は、受信したOFDM信号を複素基底域信号に変換する時間領域処理ステップと、前記複素基底域信号あるいはこれを更に処理して得られる信号から所定長の区間を窓抽出する窓抽出ステップと、前記窓抽出手段によって窓抽出された区間に対してFFT処理を行うFFT処理ステップと、前記複素基底域信号をN:1(Nは自然数)の間引き率で間引いた信号に対する予測残差信号を出力する適応予測差分フィルタステップと、前記予測残差信号に基づいて、前記窓抽出手段の抽出窓位置を制御するシンボル同期ステップと、を有する。 In order to solve the above problem, the invention according to claim 6 is a time domain processing step for converting a received OFDM signal into a complex baseband signal, and further obtained by processing the complex baseband signal or the complex baseband signal. A window extraction step for extracting a section of a predetermined length from the obtained signal, an FFT processing step for performing FFT processing on the section extracted by the window extraction means, and the complex baseband signal N: 1 (N is An adaptive prediction difference filter step for outputting a prediction residual signal for a signal thinned out at a thinning rate of a natural number), and a symbol synchronization step for controlling the extraction window position of the window extraction means based on the prediction residual signal. Have.
第1の実施形態の構成を示すブロック図The block diagram which shows the structure of 1st Embodiment. 適応予測差分フィルタのシミュレーション結果Simulation results of adaptive prediction difference filter シミュレーションの諸条件を示す表Table showing simulation conditions 第2の実施形態の構成を示すブロック図The block diagram which shows the structure of 2nd Embodiment. 第3の実施形態の構成を示すブロック図The block diagram which shows the structure of 3rd Embodiment. デシメーション部と適応予測差分フィルタのシミュレーション結果Simulation results of decimation part and adaptive prediction difference filter 従来の一般的な受信装置の構成を示すブロック図The block diagram which shows the structure of the conventional general receiver ガード相関算出部の構成例を示すブロック図Block diagram showing a configuration example of the guard correlation calculation unit ガード相関信号の算出過程を表す図Diagram showing the calculation process of guard correlation signal
 以下、本発明の実施の形態について、図面を参照しつつ説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 (第1の実施形態)
 本発明の第1の実施形態における受信装置の構成例を図1に示す。なお、図7と同等な機能を持つ構成要素については、図7と同じ符号を付すこととし、適宜説明を省略する。受信装置100は、時間領域処理部2と、シンボル同期部21と、窓抽出部6と、FFT処理部7と、周波数制御部8と、適応予測差分フィルタ11と、周波数領域処理部50を有している。また、シンボル同期部は、ガード相関算出部4と、窓位置制御部5で構成されている。ここで、図7の従来の受信装置との相違点は、適応予測差分フィルタがシンボル同期部に前置されていることのみである。以降では、新規要素である適応予測差分フィルタの機能と、その効果に焦点を絞って説明する。
(First embodiment)
A configuration example of a receiving apparatus according to the first embodiment of the present invention is shown in FIG. Components having the same functions as those in FIG. 7 are denoted by the same reference numerals as those in FIG. The receiving device 100 includes a time domain processing unit 2, a symbol synchronization unit 21, a window extraction unit 6, an FFT processing unit 7, a frequency control unit 8, an adaptive prediction difference filter 11, and a frequency domain processing unit 50. is doing. Further, the symbol synchronization unit includes a guard correlation calculation unit 4 and a window position control unit 5. Here, the only difference from the conventional receiver of FIG. 7 is that an adaptive prediction difference filter is placed in front of the symbol synchronization unit. The following description focuses on the function of the adaptive prediction difference filter, which is a new element, and its effect.
 なお、図中における信号の流れを示す矢印は、各構成要素間の主要な信号の流れを示すものであり、例えば、このような主要信号に付随する応答信号や監視信号等の信号に関しては、図中の矢印と逆方向の向きに伝達される場合を含むものとする。さらに、図中の矢印は、各構成要素間における信号の流れを概念的に示すものであって、実際の装置において、各信号が矢印で示される経路の通りに忠実に授受される必要はない。また、実際の装置では、各構成要素が同図に示されるように忠実に区分されている必要もない。 In addition, the arrow which shows the flow of the signal in a figure shows the flow of the main signal between each component, For example, regarding signals, such as a response signal and a monitoring signal accompanying such a main signal, The case where it is transmitted in the direction opposite to the arrow in the figure is included. Furthermore, the arrows in the figure conceptually indicate the flow of signals between the components, and in an actual device, it is not necessary for each signal to be faithfully exchanged along the path indicated by the arrows. . Moreover, in an actual apparatus, it is not necessary that each component is divided faithfully as shown in FIG.
 また、上記時間領域処理部が、各請求項記載の時間領域処理手段に相当し、適応予測差分フィルタが、適応予測差分フィルタ手段に相当し、窓抽出部が、窓抽出手段に相当する。また、シンボル同期部が、シンボル同期手段に相当し、FFT処理部が、FFT処理手段に相当し、周波数制御部が、周波数制御手段に相当する。 The time domain processing unit corresponds to the time domain processing means described in each claim, the adaptive prediction difference filter corresponds to the adaptive prediction difference filter means, and the window extraction unit corresponds to the window extraction means. The symbol synchronization unit corresponds to symbol synchronization means, the FFT processing unit corresponds to FFT processing means, and the frequency control unit corresponds to frequency control means.
 最初に、公知である適応予測差分フィルタについて説明する。予測差分フィルタとは、入力系列の現在値を、現在値以外の入力系列から予測し、この予測値と現在値との差分、すなわち予測残差を出力するフィルタである。予測差分フィルタの中でも、適応予測差分フィルタは、予測残差の電力が最小になるように、フィルタ特性を自律制御する機能を有する。 First, a known adaptive prediction difference filter will be described. The prediction difference filter is a filter that predicts a current value of an input sequence from an input sequence other than the current value, and outputs a difference between the predicted value and the current value, that is, a prediction residual. Among the prediction difference filters, the adaptive prediction difference filter has a function of autonomously controlling the filter characteristics so that the power of the prediction residual is minimized.
 ここで、予測差分フィルタの構成例を示す。予測値の算出はFIRフィルタにより行うのが一般的である。この場合、時点kにおける入力 xk の予測値 pk は、過去Mタップの入力系列{ xk-1,xk-1, …, xk-M}と予測係数 { c-1,c-2,…,c-M } から以下のように算出される、
   pk = c1xk-1 + c2xk-2+ … + cMxk-M  
また、予測残差 yk は次式で与えられる。
   yk = xk - pk  
Here, the example of a structure of a prediction difference filter is shown. In general, the predicted value is calculated by an FIR filter. In this case, the predicted value p k of the input x k at time k, the input sequence of past M taps {x k-1, x k -1, ..., x kM} and the prediction coefficients {c- 1, c- 2, ..., c- M } is calculated as follows:
p k = c 1 x k-1 + c 2 x k-2 +… + c M x kM
The prediction residual y k is given by the following equation.
y k = x k -p k
 上記の予測係数を適当なアルゴリズムで更新することにより、適応予測差分フィルタが構成可能である。係数更新アルゴリズムとしては、次式で表されるLMSアルゴリズムがもっとも一般的に使用される。
  cn ← cn + u yxk-n * (n = 1,2,…,M )
ここで、u は適当な更新ステップであり、* は複素共役演算子である。
An adaptive prediction difference filter can be configured by updating the prediction coefficient with an appropriate algorithm. As the coefficient update algorithm, the LMS algorithm represented by the following equation is most commonly used.
c n ← c n + u y k x kn * (n = 1,2,…, M)
Where u is the appropriate update step and * is the complex conjugate operator.
 なお、上記した適応予測差分フィルタの構成は、あくまで一例である。上記では、過去系列から現在値を予測する、いわゆる前方予測を例示したが、未来系列から現在値を予測する後方予測、あるいは過去系列と未来系列の双方から現在値を予測する両方向予測を用いた場合でも、本発明の効果に差異はない。また、フィルタ構造にIIRフィルタを用いた場合や、係数更新アルゴリズムにRLSアルゴリズムを用いた場合も、同様である。 Note that the configuration of the adaptive prediction difference filter described above is merely an example. In the above, the so-called forward prediction that predicts the current value from the past series is exemplified, but backward prediction that predicts the current value from the future series or bidirectional prediction that predicts the current value from both the past series and the future series is used. Even in this case, there is no difference in the effect of the present invention. The same applies to the case where an IIR filter is used for the filter structure and the case where an RLS algorithm is used for the coefficient update algorithm.
 適応予測差分フィルタが信号を白色化する性質を持っていることは広く知られている。すなわち、適応予測差分フィルタは、出力信号のタップ長の範囲内における自己相関を最小化するように動作する。これは、周波数領域においては、出力信号のパワースペクトラムをなるべく一様平坦にするように、すなわち白色化するように、周波数特性を制御していることに他ならない。この白色化性質により、適応予測差分フィルタの出力では、スプリアス妨害波の電力が抑圧されることになる。 It is well known that the adaptive prediction difference filter has the property of whitening the signal. That is, the adaptive prediction difference filter operates so as to minimize the autocorrelation within the range of the tap length of the output signal. In the frequency domain, this is nothing other than controlling the frequency characteristics so that the power spectrum of the output signal is made as flat as possible, that is, whitened. Due to this whitening property, the power of the spurious interference wave is suppressed at the output of the adaptive prediction difference filter.
 適応予測差分フィルタが有するスプリアス妨害抑圧効果を示す計算機シミュレーション結果を図2に示す。また、シミュレーションに用いた諸条件を図3に示す。このシミュレーションではOFDM変調信号に3つのスプリアス妨害波を重畳したものを適応予測差分フィルタに入力している。シミュレーションで得られた入力信号のパワースペクトラムを図2(a)に示す。DCを中心として約5.57MHzの帯域に広がる矩形上のOFDMスペクトラムに加えて、スプリアス妨害波による3本の線状スペクトラムが見てとれる。こうした信号を入力した状態で、充分な期間、係数更新を行った後での予測差分フィルタの周波数特性を図2(b)に示す。3本のスプリアス妨害波の周波数に対応して、零点が形成されていることが見てとれる。このとき、適応予測差分フィルタの出力信号、すなわち予測残差信号のパワースペクトラムは図2(c)のようになる。入力のパワースペクトラムと較べて、スプリアス妨害波の成分が大きく抑圧されている様子が見てとれる。以上のシミュレーション結果から分かるように、適応予測差分フィルタは、複数のスプリアス妨害波が含まれている入力信号に対して、これらの妨害波を抑圧するようなフィルタ特性を、自律的に、すなわち外部からの制御を必要とせずに、形成することができる。 Fig. 2 shows the computer simulation result showing the spurious interference suppression effect of the adaptive prediction differential filter. The conditions used for the simulation are shown in FIG. In this simulation, a signal obtained by superimposing three spurious interference waves on an OFDM modulated signal is input to an adaptive prediction difference filter. The power spectrum of the input signal obtained by the simulation is shown in FIG. In addition to the rectangular OFDM spectrum that spreads in a band of about 5.57 MHz centering on DC, three linear spectra due to spurious interference waves can be seen. FIG. 2B shows the frequency characteristics of the prediction difference filter after the coefficient is updated for a sufficient period in a state where such a signal is input. It can be seen that zeros are formed corresponding to the frequencies of the three spurious interference waves. At this time, the output spectrum of the adaptive prediction difference filter, that is, the power spectrum of the prediction residual signal is as shown in FIG. It can be seen that the spurious interference wave component is greatly suppressed compared to the input power spectrum. As can be seen from the above simulation results, the adaptive prediction difference filter autonomously, i.e., externally, filters the input signal including a plurality of spurious interference waves to suppress these interference waves. Can be formed without the need for control from
 上記したように、適応予測差分フィルタは、スプリアス妨害波を抑圧する性質を有する。本実施形態における受信装置では、適応予測差分フィルタの出力信号、すなわちスプリアス妨害波が抑圧された信号がシンボル同期部に入力されている。この結果、適応予測差分フィルタが存在しない従来の受信装置に較べて、ガード相関信号に生じるDCオフセットが小さくなり、シンボル同期処理、狭帯域AFC処理を適切に行うことができるわけである。 As described above, the adaptive prediction difference filter has the property of suppressing spurious interference waves. In the receiving apparatus according to the present embodiment, an output signal of the adaptive prediction difference filter, that is, a signal in which spurious interference waves are suppressed is input to the symbol synchronization unit. As a result, the DC offset generated in the guard correlation signal is reduced as compared with the conventional receiver that does not have an adaptive prediction difference filter, and symbol synchronization processing and narrowband AFC processing can be performed appropriately.
 なお、適応予測差分フィルタが抑圧できるスプリアス妨害波の数は、タップ数に応じて、多くなる。しかしながら、タップ数を必要以上に大きくすることは好ましくない。これは、適応予測差分フィルタのインパルス応答が長い場合には、ガード相関信号の波形自体が変化してしまい、同期処理に悪影響を与えることがあるためである。同様の理由により、適応予測差分フィルタの構造としては、インパルス応答の長さをタップ数内に限定できるFIRフィルタが望ましいことがわかる。前記の計算機シミュレーションでは16タップのFIR型適応予測差分フィルタを用いていた。このタップ数においては、インパルス応答は有効シンボル長に較べて充分に小さく限定されるため、上記の悪影響は極めて小さく、実質的な性能劣化は無視できる。一方、このタップ数でも充分なスプリアス妨害抑圧効果があることはシミュレーション結果から明らかであろう。 Note that the number of spurious interference waves that can be suppressed by the adaptive prediction difference filter increases according to the number of taps. However, it is not preferable to increase the number of taps more than necessary. This is because when the impulse response of the adaptive prediction difference filter is long, the waveform of the guard correlation signal itself changes, which may adversely affect the synchronization processing. For the same reason, it is understood that an FIR filter that can limit the length of the impulse response within the number of taps is desirable as the structure of the adaptive prediction difference filter. In the above computer simulation, a 16-tap FIR type adaptive prediction difference filter is used. In this number of taps, the impulse response is limited to be sufficiently smaller than the effective symbol length, so the above-described adverse effect is extremely small, and substantial performance degradation can be ignored. On the other hand, it will be apparent from the simulation results that this tap number has a sufficient spurious interference suppression effect.
  (第2の実施形態)
 本発明の第2の実施形態における受信装置の構成例を図4に示す。なお、図1と同等な機能を持つ構成要素については、図1と同じ符号を付すこととし、説明を省略する。図1に示される受信装置と、図4に示される受信装置との相違点は、窓抽出部の入力元のみである。図1では、窓抽出部に時間領域処理部の出力信号が入力されているのに対し、図4では、窓抽出部に適応予測差分フィルタの出力信号が入力されている。図4の構成では、スプリアス妨害が抑圧された信号に基づいてFFT処理や周波数領域処理を行っているため、図1の構成に比して、妨害の影響を更に軽減できる可能性がある。なお、図4の構成においても、図1の構成と同様に、同期処理に対するスプリアス妨害の影響が軽減されることは明らかであろう。
(Second Embodiment)
An example of the configuration of a receiving apparatus according to the second embodiment of the present invention is shown in FIG. In addition, about the component which has a function equivalent to FIG. 1, the code | symbol same as FIG. 1 is attached | subjected, and description is abbreviate | omitted. The difference between the receiving apparatus shown in FIG. 1 and the receiving apparatus shown in FIG. 4 is only the input source of the window extraction unit. In FIG. 1, the output signal of the time domain processing unit is input to the window extraction unit, whereas in FIG. 4, the output signal of the adaptive prediction difference filter is input to the window extraction unit. In the configuration of FIG. 4, since FFT processing and frequency domain processing are performed based on a signal in which spurious interference is suppressed, there is a possibility that the influence of interference can be further reduced as compared with the configuration of FIG. It will be apparent that the configuration of FIG. 4 also reduces the influence of spurious interference on the synchronization processing, as in the configuration of FIG.
  (第3の実施形態)
 本発明の第3の実施形態における受信装置の構成例を図5に示す。なお、図1と同様な機能を持つ構成要素については、図1と同じ符号を付すこととし、説明を省略する。図5の構成では、適応予測差分フィルタの前にデシメーション部15が挿入されている点が図1と異なる。デシメーション部は、入力信号系列を1サンプルおきに間引き、サンプリング周波数を半分にするものである。
(Third embodiment)
FIG. 5 shows a configuration example of a receiving apparatus according to the third embodiment of the present invention. In addition, about the component which has the same function as FIG. 1, the code | symbol same as FIG. 1 is attached | subjected, and description is abbreviate | omitted. The configuration of FIG. 5 is different from FIG. 1 in that a decimation unit 15 is inserted before the adaptive prediction difference filter. The decimation unit thins out the input signal sequence every other sample and halves the sampling frequency.
 デシメーションの効果は大きく2つ挙げることができる。一つめは、回路規模、消費電力の削減効果である。これは、デシメーションにより、ガード相関算出部の動作速度が半分に減少し、これに伴い演算回数が少なくなるためである。 There are two main effects of decimation. The first is the effect of reducing circuit scale and power consumption. This is because the operation speed of the guard correlation calculation unit is reduced by half due to decimation, and the number of operations is reduced accordingly.
 デシメーション部の二つめの効果の説明に先立って、デシメーションしない場合の問題点を明らかにしておく。前記した計算機シミュレーションにおける、複素基底域信号のパワースペクトラム、すなわち図2(a)を見ると、DCを中心として、約5.57MHzの帯域にOFDMスペクトラムが矩形上に分布している。一方、この帯域の外側、すなわちOFDM帯域外では、電力密度が帯域内に較べて20dB程度、低くなっていることがわかる。この領域には、有効信号は存在せず、雑音成分が分布するのみである。前にも述べたように、適応予測差分フィルタは出力信号のパワースペクトラムを平坦化する性質を持っている。この結果、図2(c)に示される出力スペクトラムでは、帯域外の電力密度が帯域内に対して相対的に上がり、両者の電力密度比が15dB程度まで減少していることがわかる。すなわち、適応予測差分フィルタは帯域外の雑音成分を相対的に増幅してしまっているわけである。結果として、ガード相関算出部への入力信号の純度が下がり、シンボル同期処理、狭帯域AFC処理の精度が低下する恐れがある。また、不要な帯域を増幅してしまっているがために、肝心のスプリアス妨害抑圧性能が低下する恐れもある。 問題 Prior to explaining the second effect of the decimation part, we will clarify the problems when not decimating. Looking at the power spectrum of the complex baseband signal in the computer simulation described above, that is, FIG. 2A, the OFDM spectrum is distributed on a rectangle in a band of about 5.57 MHz centering on DC. On the other hand, outside the band, that is, outside the OFDM band, it can be seen that the power density is lower by about 20 dB than in the band. In this region, there is no effective signal and only a noise component is distributed. As described above, the adaptive prediction difference filter has the property of flattening the power spectrum of the output signal. As a result, in the output spectrum shown in FIG. 2C, it can be seen that the power density outside the band is relatively increased with respect to the inside of the band, and the power density ratio of both is reduced to about 15 dB. That is, the adaptive prediction difference filter relatively amplifies the noise component outside the band. As a result, the purity of the input signal to the guard correlation calculation unit may decrease, and the accuracy of symbol synchronization processing and narrowband AFC processing may decrease. In addition, since unnecessary bands are amplified, the spurious interference suppression performance that is essential may be lowered.
 上記の問題は、適応予測差分フィルタの前でデシメーションを行うことにより解決できる。デシメーション部を前置した状態での適応予測差分フィルタのシミュレーション結果を図6に示す。デシメーション部には、前述のシミュレーションと同様にスプリアス妨害波を3つ重畳したOFDM信号を入力している。デシメーション後のパワースペクトラムを図6(b)に示す。図6(a)に示されるデシメーション前のパワースペクトラムと較べた場合、デシメーションによって引き起こされた周波数領域エイリアシングによって、低電力密度な領域が無くなり、スペクトラムの平坦度が上がっていることがわかる。この結果、予測差分フィルタは、不要な帯域を増幅することなく、そのスペクトラム平坦化能力をスプリアス妨害の抑圧のみに当てることが可能となる。 The above problem can be solved by performing decimation before the adaptive prediction difference filter. FIG. 6 shows a simulation result of the adaptive prediction difference filter in a state where the decimation unit is placed in front. An OFDM signal in which three spurious interference waves are superimposed is input to the decimation unit as in the above-described simulation. The power spectrum after decimation is shown in FIG. When compared with the power spectrum before decimation shown in FIG. 6A, it can be seen that the frequency domain aliasing caused by the decimation eliminates the low power density region and increases the flatness of the spectrum. As a result, the prediction difference filter can apply its spectrum flattening capability only to suppression of spurious interference without amplifying unnecessary bands.
 なお、以上の説明では、間引き率を1/2としたが、これ以外の間引き率、すなわち1/3あるいは1/4等の間引き率とした場合にも、同様の効果が期待できる。 In the above description, the thinning rate is set to 1/2. However, the same effect can be expected when the thinning rate other than this is set to 1/3 or 1/4.
 上記したように、デシメーション部を適応予測差分フィルタの入力に挿入することにより、適応予測差分フィルタの演算量を削減でき、かつ、OFDM帯域外の雑音成分を増幅することなしに、スプリアス妨害を効率よく抑圧することが可能となる。 As described above, by inserting the decimation unit into the input of the adaptive prediction difference filter, the amount of calculation of the adaptive prediction difference filter can be reduced, and spurious interference can be efficiently performed without amplifying noise components outside the OFDM band. It becomes possible to suppress well.
 また、以上既に述べた以外にも、上記の各実施形態による手法を適宜組み合わせて利用しても良い。 In addition to those already described above, the methods according to the above embodiments may be used in appropriate combination.
 2        時間領域処理部(時間領域処理手段に相当)
 4        ガード相関算出部
 5        窓位置制御部
 6        窓抽出部(窓抽出手段に相当)
 7        FFT処理部(FFT処理手段に相当)
 8        周波数制御部(周波数制御手段に相当)
 11       適応予測差分フィルタ(適応予測差分フィルタ手段に相当)
 13       移動平均器
 15       デシメーション部
 21       シンボル同期部(シンボル同期手段)
 50       周波数領域処理部
 100,200  受信装置
2 Time domain processing unit (equivalent to time domain processing means)
4 Guard correlation calculation part 5 Window position control part 6 Window extraction part (equivalent to window extraction means)
7 FFT processing unit (equivalent to FFT processing means)
8 Frequency controller (equivalent to frequency control means)
11 Adaptive prediction difference filter (equivalent to adaptive prediction difference filter means)
13 Moving averager 15 Decimation unit 21 Symbol synchronization unit (symbol synchronization means)
50 Frequency Domain Processing Unit 100, 200 Receiver

Claims (6)

  1.  受信したOFDM信号を複素基底域信号に変換する時間領域処理手段と、
     前記複素基底域信号あるいはこれを更に処理して得られる信号から所定長の区間を窓抽出する窓抽出手段と、
     前記窓抽出手段によって窓抽出された区間に対してFFT処理を行うFFT処理手段と、
     前記複素基底域信号を1/N(Nは自然数)の間引き率で間引いた信号に対する予測残差信号を出力する適応予測差分フィルタ手段と、
     前記予測残差信号に基づいて、前記窓抽出手段の抽出窓位置を制御するシンボル同期手段と、
    を有することを特徴とする受信装置。
    Time domain processing means for converting the received OFDM signal into a complex baseband signal;
    Window extraction means for extracting a window of a predetermined length from the complex baseband signal or a signal obtained by further processing the complex baseband signal;
    FFT processing means for performing FFT processing on the window extracted by the window extraction means;
    Adaptive prediction difference filter means for outputting a prediction residual signal for a signal obtained by thinning out the complex baseband signal at a thinning rate of 1 / N (N is a natural number);
    Symbol synchronization means for controlling the extraction window position of the window extraction means based on the prediction residual signal;
    A receiving apparatus comprising:
  2.  前記間引き率1/NのNが2以上の自然数で与えられることを特徴とする請求項1に記載の受信装置。 The receiving apparatus according to claim 1, wherein N of the thinning rate 1 / N is given as a natural number of 2 or more.
  3.  前記適応予測差分フィルタ手段は、線型可変係数フィルタとして構成され、
     当該線型可変係数フィルタの係数値は前記予測残差信号の電力が小さくなるようにLMSアルゴリズムによって更新されることを特徴とする請求項1又は2記載の受信装置。
    The adaptive prediction difference filter means is configured as a linear variable coefficient filter,
    3. The receiving apparatus according to claim 1, wherein the coefficient value of the linear variable coefficient filter is updated by an LMS algorithm so that the power of the prediction residual signal is reduced.
  4.  前記シンボル同期手段は、
     前記予測残差信号と、当該予測残差信号を有効シンボル長だけ遅延させた信号との複素相関に基づいて前記窓抽出手段の抽出窓位置を制御することを特徴とする請求項1乃至3のいずれか1項に記載の受信装置。
    The symbol synchronization means includes
    The extraction window position of the window extraction means is controlled based on a complex correlation between the prediction residual signal and a signal obtained by delaying the prediction residual signal by an effective symbol length. The receiving device according to any one of claims.
  5.  前記受信装置は、
     前記複素相関に基づいて前記複素基底域信号の変調周波数誤差が零になるように前記時間領域処理手段を制御する周波数制御手段を更に有する
    ことを特徴とする請求項4記載の受信装置。
    The receiving device is:
    5. The receiving apparatus according to claim 4, further comprising frequency control means for controlling the time domain processing means so that a modulation frequency error of the complex baseband signal becomes zero based on the complex correlation.
  6.  受信したOFDM信号を複素基底域信号に変換する時間領域処理ステップと、
     前記複素基底域信号あるいはこれを更に処理して得られる信号から所定長の区間を窓抽出する窓抽出ステップと、
     前記窓抽出手段によって窓抽出された区間に対してFFT処理を行うFFT処理ステップと、
     前記複素基底域信号をN:1(Nは自然数)の間引き率で間引いた信号に対する予測残差信号を出力する適応予測差分フィルタステップと、
     前記予測残差信号に基づいて、前記窓抽出手段の抽出窓位置を制御するシンボル同期ステップと、
    を有することを特徴とする受信方法。
    A time domain processing step of converting the received OFDM signal into a complex baseband signal;
    A window extraction step for extracting a predetermined length section from the complex baseband signal or a signal obtained by further processing the complex baseband signal;
    An FFT processing step for performing FFT processing on the section extracted by the window extraction means;
    An adaptive prediction difference filter step of outputting a prediction residual signal for a signal obtained by thinning out the complex baseband signal at a thinning rate of N: 1 (N is a natural number);
    A symbol synchronization step for controlling an extraction window position of the window extraction means based on the prediction residual signal;
    A receiving method comprising:
PCT/JP2010/057187 2010-04-22 2010-04-22 Reception device and reception method WO2011132299A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/057187 WO2011132299A1 (en) 2010-04-22 2010-04-22 Reception device and reception method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/057187 WO2011132299A1 (en) 2010-04-22 2010-04-22 Reception device and reception method

Publications (1)

Publication Number Publication Date
WO2011132299A1 true WO2011132299A1 (en) 2011-10-27

Family

ID=44833851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057187 WO2011132299A1 (en) 2010-04-22 2010-04-22 Reception device and reception method

Country Status (1)

Country Link
WO (1) WO2011132299A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108875706A (en) * 2018-07-18 2018-11-23 中国海洋大学 The ocean structure Time-Frequency Analysis Method collected based on sliding average and energy
JP2020155872A (en) * 2019-03-19 2020-09-24 日本無線株式会社 Ofdm demodulator, ofdm demodulation method, and relay broadcast device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000224134A (en) * 1999-01-29 2000-08-11 Nec Corp Orthogonal frequency division multiplex demodulator and correction method for phase errors in symbol in orthogonal frequency division multiplex demodulation
JP2006174218A (en) * 2004-12-17 2006-06-29 Matsushita Electric Ind Co Ltd Ofdm reception apparatus and ofdm reception method
JP2008199602A (en) * 2007-02-09 2008-08-28 Research In Motion Ltd Apparatus and associated method for filtering receive signal by adaptive operation of input noise whitening filter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000224134A (en) * 1999-01-29 2000-08-11 Nec Corp Orthogonal frequency division multiplex demodulator and correction method for phase errors in symbol in orthogonal frequency division multiplex demodulation
JP2006174218A (en) * 2004-12-17 2006-06-29 Matsushita Electric Ind Co Ltd Ofdm reception apparatus and ofdm reception method
JP2008199602A (en) * 2007-02-09 2008-08-28 Research In Motion Ltd Apparatus and associated method for filtering receive signal by adaptive operation of input noise whitening filter

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ARATA KAWAMURA ET AL.: "A Study on Prediction Error Filter for Noise Reduction", IEICE TECHNICAL REPORT, vol. 104, no. 305, 9 September 2004 (2004-09-09), pages 53 - 58 *
HIROJI KUSAKA ET AL.: "An Effect of a DS-SSMA System on Narrow-Band Communication Systems Using in Common Frequency Region and Its Rejection Method", IEICE TECHNICAL REPORT, vol. 93, no. 193, 26 August 1993 (1993-08-26), pages 49 - 54 *
TEPPEI WASHI ET AL.: "Sinusoidal Noise Reduction Method Using Leaky LMS Algorithm", IEICE TECHNICAL REPORT, vol. 106, no. 95, 8 June 2006 (2006-06-08), pages 37 - 42 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108875706A (en) * 2018-07-18 2018-11-23 中国海洋大学 The ocean structure Time-Frequency Analysis Method collected based on sliding average and energy
CN108875706B (en) * 2018-07-18 2021-08-17 中国海洋大学 Ocean structure time-frequency analysis method based on moving average and energy collection
JP2020155872A (en) * 2019-03-19 2020-09-24 日本無線株式会社 Ofdm demodulator, ofdm demodulation method, and relay broadcast device

Similar Documents

Publication Publication Date Title
JP5113834B2 (en) OFDM receiving apparatus and OFDM receiving method
JP2005287043A (en) Receiver
WO2005117381A1 (en) A method for signal processing and a signal processor in an ofdm system
US20080175328A1 (en) Power adaptive channel estimation for a multi-path receiving
KR20070006662A (en) Ofdm receiver apparatus and ofdm receiving method
US8363539B2 (en) OFDM receiver and OFDM receiving method
US9544168B2 (en) Channel estimation device, receiving device, channel estimation method, channel estimation program, and recording medium
US9413449B2 (en) Diversity reception apparatus, diversity reception method, reception program, and recording medium
JP4780161B2 (en) Receiving device, receiving method, and program
JP2008278363A (en) Digital broadcast reception device
US9503290B2 (en) Diversity reception device, diversity reception method, reception program, and recording medium
WO2011132299A1 (en) Reception device and reception method
JP2008042663A (en) Wraparound canceler
JP5570456B2 (en) OFDM signal receiving apparatus and relay apparatus
US8139664B2 (en) Reception apparatus, reception method and program
US9036724B2 (en) Data signal correction circuit, receiver, and data signal correction method
JP5314002B2 (en) Receiving device, integrated circuit, and receiving method
JP4877765B2 (en) Wireless device
US8374261B2 (en) Method and apparatus for Doppler estimation in orthogonal frequency-division multiplexing (OFDM)
JP2010021670A (en) Ofdm signal receiver and relay device
JP5995703B2 (en) Equalizer, equalization method, and receiver
JP6110650B2 (en) Wraparound canceller and relay device
JP5331583B2 (en) Multipath equalizer
JP2005167594A (en) Signal generator and signal generating method
JP5023006B2 (en) OFDM signal receiving apparatus and relay apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10850240

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10850240

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP