WO2011130994A1 - Multi-user channel estimation method and device - Google Patents

Multi-user channel estimation method and device Download PDF

Info

Publication number
WO2011130994A1
WO2011130994A1 PCT/CN2010/077714 CN2010077714W WO2011130994A1 WO 2011130994 A1 WO2011130994 A1 WO 2011130994A1 CN 2010077714 W CN2010077714 W CN 2010077714W WO 2011130994 A1 WO2011130994 A1 WO 2011130994A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel estimation
frequency domain
user
values
domain channel
Prior art date
Application number
PCT/CN2010/077714
Other languages
French (fr)
Chinese (zh)
Inventor
李萍
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2011130994A1 publication Critical patent/WO2011130994A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/022Channel estimation of frequency response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • H04L25/023Channel estimation using sounding signals with direct estimation from sounding signals with extension to other symbols

Definitions

  • LTE Long Term Evolution
  • 3G third generation mobile communication system
  • SC-FDMA single-carrier frequency division multiplexing multiple access system
  • CP cyclic prefix
  • Orthogonal, and effective frequency domain equalization can be obtained on the receiver side, thereby reducing the peak-to-average power ratio of the transmitting terminal and reducing the size and cost of the terminal.
  • the wireless channel can cause distortion of the received signal, including amplitude, phase, and frequency.
  • the receiver In order to correctly resolve the start-end signal, the receiver must perform channel estimation.
  • the FDMA system is also called DFT-S-OFDM system, and a demodulation reference signal is designed for channel estimation in the transmitted signal.
  • the delay may not always be an integer multiple of the interval, which will result in leakage. Therefore, when the channel is post-processed to remove noise, excessive introduction of noise paths can degrade the receiver demodulation performance, and improper deletion of the useful signal path also degrades the demodulation performance of the receiver and loses system capacity.
  • a primary object of the present invention is to provide a multi-user channel estimation method and apparatus to solve at least one of the above problems.
  • a multi-user channel estimation method including: a receiver uses a received frequency domain pilot demodulation reference signal and a local frequency domain pilot demodulation reference signal to obtain Taking M frequency domain channel estimation values of the target user at the pilot position, M is the total number of pilot subcarriers; extracting R values from the M frequency domain channel estimation values, and using the extracted R values to M frequency
  • the domain channel estimation value is extended to obtain a frequency domain channel estimation value, where W is an integer multiple of the number of users er carried on the same time-frequency resource block, W is less than or equal to M; when the frequency domain channel estimation value is converted to Domain, obtains a time domain channel estimation value; uses the channel estimation window of the target user to perform noise reduction processing on the time domain channel estimation values, and obtains the M+R time domain channel estimation values after noise reduction;
  • a multi-user channel estimation apparatus including: a receiving module, configured to receive a frequency domain pilot demodulation reference signal; and a frequency domain estimation module, configured to use a frequency domain received by the receiving module
  • the pilot demodulation reference signal and the local frequency domain pilot demodulation reference signal obtain M frequency domain channel estimation values of the target user at the pilot position, where M is the total number of pilot subcarriers; and the spread spectrum module is used to R values are extracted from the M frequency-domain channel estimation values, and the M frequency-domain channel estimates are extended by using the extracted R values to obtain M+R frequency-domain channel estimates, where W is the same time-frequency resource block.
  • the frequency-time transform module is configured to transform the M+R frequency-domain channel estimates obtained by the spread spectrum module into the time domain to obtain M+R time-domain channel estimates; the noise cancellation module, The method uses the channel estimation window of the target user to perform noise reduction processing on the M+R time domain channel estimation values, and obtains the noise-reduced time domain channel estimation values; the time-frequency transform module is configured to reduce the noise after the M+ R time domain channel estimates are transformed to In the frequency domain, the M+R frequency domain channel estimation values after noise reduction are obtained; the extraction module is configured to extract channel estimation values on the effective subcarriers from the frequency domain channel estimation values after the noise reduction, and obtain a time domain drop. Channel estimation of the frequency domain pilot position of the noise.
  • the pilot channel estimation in the frequency domain is spread in the frequency domain according to the user number, and then transformed into the time domain, and the time domain channel estimation is performed. Elimination, then transform back to the frequency domain, extract the channel estimation value on the effective subcarrier, thereby realizing the channel estimation of the target user, especially the channel estimation of multiple users, the scheme can improve the detection probability of the signal path, and effectively reduce the false deletion signal The performance loss caused by the path improves the receiver demodulation performance.
  • FIG. 1 is a schematic structural diagram of a multi-user channel estimating apparatus according to Embodiment 1 of the present invention
  • 2 is a flowchart of a multi-user channel estimation method according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic structural diagram of a multi-user channel estimation apparatus according to Embodiment 2 of the present invention
  • FIG. 1 is a schematic structural diagram of a multi-user channel estimation apparatus according to Embodiment 1 of the present invention
  • 2 is a flowchart of a multi-user channel estimation method according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic structural diagram of a multi-user channel estimation apparatus according to Embodiment 2 of the present invention
  • FIG. 1 is a schematic structural diagram of a multi-user channel estimation apparatus according to Embodiment 1 of the present invention
  • 2 is a flowchart of a multi-user channel estimation method according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic structural diagram of
  • FIG. 1 is a schematic structural diagram of a multi-user channel estimation apparatus according to an embodiment of the present invention. The apparatus is located at a receiver side for performing channel estimation on a signal of a target user received by a receiver.
  • the device mainly includes: a receiving module 10, a frequency domain estimating module 20, a spreading module 30, a time-frequency transform module 40, a noise canceling module 50, a time-frequency transform module 60, and an extracting module 70.
  • the receiving module 10 is configured to receive a frequency domain pilot demodulation reference signal
  • the frequency domain estimation module 20 is configured to use the frequency domain pilot demodulation reference signal received by the receiving module 10 and the local frequency domain pilot demodulation signal.
  • the frequency-domain channel estimation value H ⁇ ik) of the pilot position is expanded by the spreading factor module 20 using the W values of the M H ⁇ ik), thereby realizing The user's channel estimation can effectively reduce the performance loss caused by the erroneous deletion of the signal path, thereby improving the demodulation performance of the receiver.
  • 2 is a flowchart of a multi-user channel estimation method according to Embodiment 1 of the present invention. The method mainly includes the following steps: step 4: S4 - Step 4: S208: Step S200, the frequency domain estimation module 20 uses a receiving module.
  • the frequency domain estimation module 20 may generate the frequency domain pilot demodulation reference signal Y ⁇ ik and the receiving end to generate the same local frequency domain pilot demodulation reference signal X RS (k) as the transmitting end, and calculate the frequency domain uplink.
  • the channel estimation value H ⁇ CA:) of the frequency position is:
  • Step 202 The spreading module 30 extracts R values from the M Hj k), and uses the extracted R values to extend the frequency domain channel estimation value H ⁇ i ⁇ ) to obtain M+R frequency domain channel estimation values.
  • the time-frequency transform module 40 can transform the ⁇ ⁇ (/) to the time using the inverse discrete Fourier transform.
  • Step S206 the noise cancellation module 50 performs noise reduction processing on the time domain channel estimation values/ ⁇ f ⁇ by using the channel estimation window of the target user, and obtains the M+R time domain channel estimation values h RS (n) after noise reduction.
  • the window length J w of the channel estimation window of the target user may be:
  • a discrete Fourier transform can be used to transform ⁇ «) into the frequency domain.
  • the spreading module 30 uses the W values in the H ⁇ ik to spread the frequency domain channel estimation value H ⁇ C of the pilot position, and the frequency-time conversion module 40 then The extended sequence is transformed into the time domain by the noise cancellation module 50 for noise reduction processing, and the time-frequency transform module 60 converts the channel estimation after the noise reduction into the frequency domain to obtain a noise reduction signal in the frequency domain.
  • FIG. 3 is a schematic structural diagram of a multi-user channel estimation apparatus according to the embodiment. As shown in FIG. 3, the multi-user channel estimation apparatus of this embodiment is different from the first embodiment in that, in this embodiment, The spread spectrum module 30 is composed of a grouping module 300, an extracting module 302, a flipping module 304, and a spread spectrum computing module 306.
  • the module 306 is configured to perform frequency domain expansion on H ⁇ CA:) according to the following formula to obtain H' - ⁇ .
  • the spread spectrum module 30 groups the M H ⁇ ks according to the number of users when spreading the frequency domain pilot estimation values, and then from the M/K_er The RIK user group is extracted from the group, so that the Hj k) for the spread spectrum can be guaranteed to be more in line with the actual situation, thereby improving the accuracy of the channel estimation.
  • the spread spectrum calculation module 306 expands the M frequency domain channel estimation values into M+R frequency domain channel estimation values in a backward spread manner, it is not limited to Therefore, in practical applications, the M carrier channel estimates may be forward-expanded to obtain M+R frequency i or channel estimation values by using the extracted R values, or may be extended forward and backward to obtain M+R frequency. i or channel estimate.
  • 4 is a flowchart of a multi-user channel estimation method according to Embodiment 2 of the present invention. As shown in FIG.
  • Step S401 the frequency domain estimation module 20 is configured according to the receiving module 10
  • the received frequency domain pilot demodulation reference signal s and the receiver generate the same local frequency domain pilot demodulation reference signal as the transmitting end
  • H RS (k) ⁇ -, ⁇ k ⁇ Ml
  • M 192;
  • A represents the number in the frequency domain, taking an integer.
  • the grouping module 300 groups the 192 pilot subcarriers according to the length 2 and divides them into 96 groups.
  • the extraction module 302 extracts the groups of the 96 groups of H ⁇ k) into the smallest unit, and extracts 24
  • Step S405 the flipping module 304 flips the extracted ext (t) to obtain ⁇ n (t)
  • Step S406 the spread spectrum calculation module 306 obtains according to ⁇ 2 (0 Spreading sequence
  • step S408 calculating the effective channel impulse response window length of the target user (ie, the window length of the channel estimation window) J W , the number of ring shifts
  • the sample estimation window of the target user is obtained, wherein the different values of the "high-level configuration parameters, through” can identify the starting point of the channel estimation window of different target users, and the CP is the length of the cyclic prefix (CP).
  • CP is the length of the cyclic prefix (CP).
  • / ⁇ takes 144
  • / ⁇ takes 512
  • the parameters related to the effective channel impulse response window length can be obtained through simulation or field actual environmental testing.
  • the noise cancellation module 50 filters out the window interference and noise h RS (ri) n ⁇ t,
  • the length of the spread spectrum is determined by the number of users, and M H ⁇ ( k ) is grouped and extracted by the number of users, thereby further ensuring the accuracy of channel estimation.
  • M + R is a power of 2, which is different from Embodiment 1 or Embodiment 2 in that, in this embodiment, the frequency-time transform module 40 uses an inverse fast Fourier. The transformation will ⁇ (/) ,
  • the fast Fourier transform can be used for channel estimation, which greatly reduces the computational complexity of the implementation, and therefore reduces the hardware cost.
  • the communication system to which the foregoing technical solutions provided by the embodiments of the present invention are applicable includes, but is not limited to, an SC-FDMA system and an OFDM system. From the above description, it can be seen that, in the embodiment of the present invention, the frequency of the reference symbol is demodulated.
  • the pilot channel estimation in the frequency domain is spread in the frequency domain, and then transformed into the time domain, and the interference and noise are eliminated in the time domain channel estimation, and then converted back to the frequency domain to extract the effective subcarriers.
  • the channel estimation value is used to realize multi-user channel estimation, which reduces the interference and noise impact on the target user.
  • the channel estimation is performed by the signal-based extension method, the performance of the erroneous deletion signal path is effectively reduced. loss Therefore, the demodulation performance of the receiver is improved.
  • the technical solution provided by the embodiment of the invention increases the system capacity and provides a reliable guarantee for the communication service quality.
  • the method can implement channel estimation simply and efficiently, and expands the manner.

Abstract

A multi-user channel estimation method and device are disclosed in the present invention. The method includes: by a receiver, obtaining M frequency domain channel estimation values of target users at pilot locations by using a received frequency domain pilot demodulation reference signal and a local frequency domain pilot demodulation reference signal; extracting R values from the M frequency domain channel estimation values, and spreading the M frequency domain channel estimation values by using the extracted R values to obtain M+R frequency domain channel estimation values; transforming the M+R frequency domain channel estimation values to the time domain to obtain M+R time domain channel estimation values; performing noise reduction processing on the M+R time domain channel estimation values by using a channel estimation window of the target users to obtain noise-reduced M+R time domain channel estimation values; and transforming the noise-reduced M+R time domain channel estimation values to the frequency domain, and extracting channel estimation values of effective sub-carriers from them. Use of the present invention can improve the demodulation performance of the receiver.

Description

多用户信道估计方法^置 技术领域 本发明涉及通信领域,具体而言, 涉及一种多用户信道估计方法及装置。 背景技术 长期演进(Long Term Evolution, 简称为 LTE ) 改进并增强了第三代移 动通信系统(简称为 3G )的空中接入技术。 与 3G相比, LTE更具技术优势, 主要体现在更高的用户数据速率、 分组传送、 降氐系统延迟、 系统容量和覆 盖的改善以及运营成本的降低等方面。 在相关技术中, LTE上行链路传输方案釆用带循环前缀(cycle prefix, 简称为 CP ) 的单载波频分复用多址系统 (简称为 SC-FDMA ), 上行用户间 能在频域相互正交, 并且在接收机一侧能得到有效的频域均衡, 从而可以降 低发射终端的峰均功率比, 减小终端的体积和成本。 在无线通信系统中, 由 于发射机和接收机之间的传播路径非常复杂和多变, 无线信道会导致接收信 号的畸变, 包括幅度、 相位和频率。 为了能正确地解出发端信号, 接收机必 须进行信道估计。 目前, 在上行釆用带循环前缀的 SC-FDMA传输方案中, 在进行信道估 计时, 使用 DFT获得频域信号, 然后插入零符号进行频谱搬移, 搬移后的信 号再通过 IFFT (因此, SC-FDMA系统也称 DFT-S-OFDM系统), 并在发送 信号设计了解调参考信号用来做信道估计。 在实际的信道中由于时延并不可 能总是釆样间隔的整数倍, 从而将导致泄露。 因此, 在信道后处理删除噪声 时, 过多的引入噪声径会降低接收机解调性能, 并且, 不当的删除有用信号 径也会降低接收机的解调性能, 损失系统容量。 发明内容 本发明的主要目的在于提供一种多用户信道估计方法及装置, 以至少解 决上述问题之一。 根据本发明的一个方面, 提供了一种多用户信道估计方法, 包括: 接收 机利用接收到的频域导频解调参考信号和本地的频域导频解调参考信号, 获 取目标用户在导频位置的 M个频域信道估计值, M为导频子载波的总数; 从 M个频域信道估计值中抽取 R个值, 利用抽取得到的 R个值对 M个频域信 道估计值进行扩展, 得到 个频域信道估计值, 其中, W为相同时频资源 块上承载的用户数 ^er的整数倍, W小于等于 M; 将 个频域信道估 计值变换到时域, 得到 个时域信道估计值; 利用目标用户的信道估计 窗对 个时域信道估计值进行降噪处理,得到降噪后的 M+R个时域信道 估计值; 将降噪后的 M+R 个时域信道估计值变换到频域, 从中提取有效子 载波上的信道估计值。 根据本发明的另一方面, 提供了一种多用户信道估计装置, 包括: 接收 模块, 用于接收频域导频解调参考信号; 频域估计模块, 用于利用接收模块 接收到的频域导频解调参考信号与本地的频域导频解调参考信号, 获取目标 用户在导频位置的 M个频域信道估计值, M为导频子载波的总数;扩频模块, 用于从 M个频域信道估计值中抽取 R个值, 利用抽取得到的 R个值对 M个 频域信道估计进行扩展, 得到 M+R个频域信道估计, 其中, W为相同时频资 源块上承载的用户数 ^er的整数倍; 频时变换模块, 用于将扩频模块得到 的 M+R个频域信道估计变换到时域, 得到 M+R个时域信道估计; 噪声消除 模块, 用于利用目标用户的信道估计窗对 M+R个时域信道估计值进行降噪 处理, 得到降噪后的 个时域信道估计值; 时频变换模块, 用于将降噪 后的 M+R个时域信道估计值变换到频域,得到降噪后的 M+R个频域信道估 计值; 提取模块, 用于从降噪后的 个频域信道估计值中提取有效子载 波上的信道估计值, 得到经过时域降噪的频域导频位置的信道估计。 通过本发明, 通过对解调参考符号频域^信道估计, 将频域的导频信道 估计在按照用户数频域扩展, 再变换到时域, 并对时域信道估计进行千 4尤和 噪声的消除, 再变换回频域, 提取有效子载波上的信道估计值, 从而实现目 标用户的信道估计, 尤其是多用户的信道估计, 该方案能提高信号径的检测 概率, 有效降低误删除信号径带来的性能损失, 从而提高接收机解调性能。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中: 图 1为 居本发明实施例一的多用户信道估计装置的结构示意图; 图 2为 居本发明实施例一的多用户信道估计方法的流程图; 图 3为 居本发明实施例二的多用户信道估计装置的结构示意图; 图 4为 居本发明实施例二的多用户信道估计方法的流程图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在 不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互组合。 实施例一 图 1为本实施例中多用户信道估计装置的结构示意图, 该装置位置接收 机侧, 用于对接收机接收到的目标用户的信号进行信道估计。 该装置主要包 括: 接收模块 10、 频域估计模块 20、 扩频模块 30、 频时变换模块 40、 噪声 消除模块 50、 时频变换模块 60和提取模块 70。 其中, 接收模块 10, 用于接收频域导频解调参考信号; 频域估计模块 20, 用于利用接收模块 10 接收到的频域导频解调参考信号与本地的频域导 频解调参考信号, 获取目标用户在导频位置的 M个频域信道估计值 H^^) , 其中, k = 0, ..., M - 1 , M为导频子载波的总数; 扩频模块 30, 用于从 M 个 H^ih)中抽取 R个值, 利用抽取得到的 R个值对频域信道估计值 H^ik)进 行扩展, 得到 M+R个频域信道估计值 H^^ /), 其中, W为相同时频资源块 上 载的用户数 ^er的整数倍, I = 0, ..., M +R - 7; 频时变换模块 40, 用于将扩频模块 30 得到的 Η^Γ)变换到时域, 得到时域序列 hRS(n n = Q,' ' ',M + R _ \ ; 噪声消除模块 50, 用于利用目标用户的信道估计窗 对时域序列 /j^sf^进行降噪处理, 得到降噪后的 M+R 个时域信道估计值 JiRsin);时频变换模块 60,用于将 个时域信道估计值^ «0 变换到频域, 得到降噪后的 M+R个频域信道估计值; 提取模块 70, 用于从时频变换模块 60得到的 M+R个频域信道估计值中提取有效子载波上的信道估计值, 得到 经过时域降噪的频域导频位置的信道估计。 优选地, R小于等于 。 通过本实施例的上述多用户信道估计装置, 通过扩频模块 20利用 M个 H^ik)中的 W个值对导频位置的频域信道估计值 H^ik)进行扩展, 从而可以 实现多用户的信道估计, 能够有效降低误删除信号径带来的性能损失, 从而 提高接收机的解调性能。 图 2为 居本发明实施例一的多用户信道估计方法的流程图, 该方法主 要包括以下步 4聚 (步 4聚 S200 -步 4聚 S208 ): 步骤 S200 ,频域估计模块 20利用接收模块 10接收到的频域导频解调参 考信号和本地的频域导频解调参考信号, 获取目标用户在导频位置的频域信 道估计值 H^ , 其中, k = 0, ..., M - 1 , M为导频子载波的总数; 在实际应用中, 接收模块 10 在接收到目标用户发送的信号时, 可以从 导频位置获取频域导频解调参考信号, 而接收机侧将会生成与目标用户发送 时使用的相同的本地的频域导频解调参考信号, 从而可以计算出目标用户在 导频位置的频域信道估计值。 例如, 频域估计模块 20 可以 居频域导频解 调参考信号 Y^ik 和接收端生成与发送端相同的本地频域导频解调参考信号 XRS(k) , 计算得到频域上导频位置的信道估计值 H^CA:)为: TECHNICAL FIELD The present invention relates to the field of communications, and in particular to a multi-user channel estimation method and apparatus. BACKGROUND Long Term Evolution (LTE) improves and enhances the air access technology of the third generation mobile communication system (referred to as 3G). Compared with 3G, LTE has more technical advantages, mainly in higher user data rate, packet transmission, system delay, system capacity and coverage improvement, and lower operating costs. In the related art, the LTE uplink transmission scheme uses a single-carrier frequency division multiplexing multiple access system (referred to as SC-FDMA) with a cyclic prefix (CP), and the uplink users can mutually interact in the frequency domain. Orthogonal, and effective frequency domain equalization can be obtained on the receiver side, thereby reducing the peak-to-average power ratio of the transmitting terminal and reducing the size and cost of the terminal. In wireless communication systems, because the propagation path between the transmitter and the receiver is very complex and variable, the wireless channel can cause distortion of the received signal, including amplitude, phase, and frequency. In order to correctly resolve the start-end signal, the receiver must perform channel estimation. At present, in the uplink-using SC-FDMA transmission scheme with cyclic prefix, when performing channel estimation, DFT is used to obtain the frequency domain signal, and then the zero symbol is inserted for spectrum shifting, and the shifted signal is then passed through IFFT (hence, SC- The FDMA system is also called DFT-S-OFDM system, and a demodulation reference signal is designed for channel estimation in the transmitted signal. In the actual channel, the delay may not always be an integer multiple of the interval, which will result in leakage. Therefore, when the channel is post-processed to remove noise, excessive introduction of noise paths can degrade the receiver demodulation performance, and improper deletion of the useful signal path also degrades the demodulation performance of the receiver and loses system capacity. SUMMARY OF THE INVENTION A primary object of the present invention is to provide a multi-user channel estimation method and apparatus to solve at least one of the above problems. According to an aspect of the present invention, a multi-user channel estimation method is provided, including: a receiver uses a received frequency domain pilot demodulation reference signal and a local frequency domain pilot demodulation reference signal to obtain Taking M frequency domain channel estimation values of the target user at the pilot position, M is the total number of pilot subcarriers; extracting R values from the M frequency domain channel estimation values, and using the extracted R values to M frequency The domain channel estimation value is extended to obtain a frequency domain channel estimation value, where W is an integer multiple of the number of users er carried on the same time-frequency resource block, W is less than or equal to M; when the frequency domain channel estimation value is converted to Domain, obtains a time domain channel estimation value; uses the channel estimation window of the target user to perform noise reduction processing on the time domain channel estimation values, and obtains the M+R time domain channel estimation values after noise reduction; The +R time domain channel estimates are transformed into the frequency domain from which channel estimates on the effective subcarriers are extracted. According to another aspect of the present invention, a multi-user channel estimation apparatus is provided, including: a receiving module, configured to receive a frequency domain pilot demodulation reference signal; and a frequency domain estimation module, configured to use a frequency domain received by the receiving module The pilot demodulation reference signal and the local frequency domain pilot demodulation reference signal obtain M frequency domain channel estimation values of the target user at the pilot position, where M is the total number of pilot subcarriers; and the spread spectrum module is used to R values are extracted from the M frequency-domain channel estimation values, and the M frequency-domain channel estimates are extended by using the extracted R values to obtain M+R frequency-domain channel estimates, where W is the same time-frequency resource block. The frequency-time transform module is configured to transform the M+R frequency-domain channel estimates obtained by the spread spectrum module into the time domain to obtain M+R time-domain channel estimates; the noise cancellation module, The method uses the channel estimation window of the target user to perform noise reduction processing on the M+R time domain channel estimation values, and obtains the noise-reduced time domain channel estimation values; the time-frequency transform module is configured to reduce the noise after the M+ R time domain channel estimates are transformed to In the frequency domain, the M+R frequency domain channel estimation values after noise reduction are obtained; the extraction module is configured to extract channel estimation values on the effective subcarriers from the frequency domain channel estimation values after the noise reduction, and obtain a time domain drop. Channel estimation of the frequency domain pilot position of the noise. According to the present invention, by estimating the frequency domain of the demodulation reference symbol, the pilot channel estimation in the frequency domain is spread in the frequency domain according to the user number, and then transformed into the time domain, and the time domain channel estimation is performed. Elimination, then transform back to the frequency domain, extract the channel estimation value on the effective subcarrier, thereby realizing the channel estimation of the target user, especially the channel estimation of multiple users, the scheme can improve the detection probability of the signal path, and effectively reduce the false deletion signal The performance loss caused by the path improves the receiver demodulation performance. BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are set to illustrate,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, In the drawings: FIG. 1 is a schematic structural diagram of a multi-user channel estimating apparatus according to Embodiment 1 of the present invention; 2 is a flowchart of a multi-user channel estimation method according to Embodiment 1 of the present invention; FIG. 3 is a schematic structural diagram of a multi-user channel estimation apparatus according to Embodiment 2 of the present invention; FIG. 4 is a multi-user according to Embodiment 2 of the present invention; Flow chart of the channel estimation method. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. It should be noted that the embodiments in the present application and the features in the embodiments may be combined with each other without conflict. Embodiment 1 FIG. 1 is a schematic structural diagram of a multi-user channel estimation apparatus according to an embodiment of the present invention. The apparatus is located at a receiver side for performing channel estimation on a signal of a target user received by a receiver. The device mainly includes: a receiving module 10, a frequency domain estimating module 20, a spreading module 30, a time-frequency transform module 40, a noise canceling module 50, a time-frequency transform module 60, and an extracting module 70. The receiving module 10 is configured to receive a frequency domain pilot demodulation reference signal, and the frequency domain estimation module 20 is configured to use the frequency domain pilot demodulation reference signal received by the receiving module 10 and the local frequency domain pilot demodulation signal. The reference signal obtains M frequency domain channel estimation values H^^) of the target user at the pilot position, where k = 0, ..., M - 1 , M is the total number of pilot subcarriers; the spreading module 30 , for extracting R values from M H^ih), and using the extracted R values to extend the frequency domain channel estimation value H^ik) to obtain M+R frequency domain channel estimation values H^^ / ), where W is an integer multiple of the number of users ^er uploaded by the same time-frequency resource block, I = 0, ..., M + R - 7; the frequency-time transform module 40 is configured to obtain the spread spectrum module 30变换^Γ) transforms into the time domain, and obtains the time domain sequence h RS (nn = Q, ''', M + R _ \ ; the noise cancellation module 50 is configured to utilize the channel estimation window of the target user to the time domain sequence /j ^sf^ performs noise reduction processing to obtain M+R time domain channel estimation values JiRsin) after noise reduction; time-frequency transform module 60 is configured to transform time domain channel estimation values ^ «0 into the frequency domain, and obtain a drop M+R after noise The frequency domain channel estimation value is used by the extraction module 70, for extracting the channel estimation value on the effective subcarrier from the M+R frequency domain channel estimation values obtained by the time-frequency transform module 60, and obtaining the frequency domain after time domain noise reduction. Channel estimation of the pilot position. Preferably, R is less than or equal to. With the above-described multi-user channel estimation apparatus of the present embodiment, the frequency-domain channel estimation value H^ik) of the pilot position is expanded by the spreading factor module 20 using the W values of the M H^ik), thereby realizing The user's channel estimation can effectively reduce the performance loss caused by the erroneous deletion of the signal path, thereby improving the demodulation performance of the receiver. 2 is a flowchart of a multi-user channel estimation method according to Embodiment 1 of the present invention. The method mainly includes the following steps: step 4: S4 - Step 4: S208: Step S200, the frequency domain estimation module 20 uses a receiving module. 10: receiving the frequency domain pilot demodulation reference signal and the local frequency domain pilot demodulation reference signal, and obtaining a frequency domain channel estimation value H^ of the target user at the pilot position, where k=0, ..., M - 1 , M is the total number of pilot subcarriers; in practical applications, when receiving the signal sent by the target user, the receiving module 10 can obtain the frequency domain pilot demodulation reference signal from the pilot position, and the receiver side The same local frequency domain pilot demodulation reference signal used for transmission by the target user will be generated, so that the frequency domain channel estimation value of the target user at the pilot position can be calculated. For example, the frequency domain estimation module 20 may generate the frequency domain pilot demodulation reference signal Y^ik and the receiving end to generate the same local frequency domain pilot demodulation reference signal X RS (k) as the transmitting end, and calculate the frequency domain uplink. The channel estimation value H^CA:) of the frequency position is:
XRS(k) ^ 0≤k≤M - \ 其中, M表示系统的子载波总数; A表示频域上的编号, 取整数。 步骤 202 ,扩频模块 30从 M个 Hj k)中抽取 R个值, 利用抽取得到的 R 个值对频域信道估计值 H^i^)进行扩展, 得到 M+R 个频域信道估计值 ^χρ{1) , 其中, W为相同时频资源块上 7 载的用户数 f—^er的整数倍, I = 0, ..., M +R - 7 ; 例如, 如果用户数 K user为 2 , 则 W可以为 48。 步骤 S204 , 频时变换模块 40将 M+R个频域信道估计值 Η^ρ (/)变换 时 i或, 得到 M+R个时 i或信道估计值 w = 0,".,M + R— 1; 例如, 频时变换模块 40可以利用反离散傅里叶变换将 Η^χν (/)变换到时 X RS (k) ^ 0≤k≤M - \ where M represents the total number of subcarriers of the system; A represents the number in the frequency domain, taking an integer. Step 202: The spreading module 30 extracts R values from the M Hj k), and uses the extracted R values to extend the frequency domain channel estimation value H^i^) to obtain M+R frequency domain channel estimation values. ^ χρ {1) , where W is an integer multiple of the number of users f-^er on the same time-frequency resource block, I = 0, ..., M +R - 7 ; for example, if the number of users is K user If it is 2, then W can be 48. Step S204, the frequency-time transform module 40 converts M+R frequency-domain channel estimation values Η^ ρ (/) when i or, obtains M+R times i or channel estimation value w = 0, "., M + R For example, the time-frequency transform module 40 can transform the Η^ χν (/) to the time using the inverse discrete Fourier transform.
步骤 S206,噪声消除模块 50利用目标用户的信道估计窗对 个时域 信道估计值 /^f ^进行降噪处理, 得到降噪后的 M+R 个时域信道估计值 hRS(n) . 目标用户的信道估计窗的窗长 Jw可以为: Step S206, the noise cancellation module 50 performs noise reduction processing on the time domain channel estimation values/^f^ by using the channel estimation window of the target user, and obtains the M+R time domain channel estimation values h RS (n) after noise reduction. The window length J w of the channel estimation window of the target user may be:
Lw=(\ + Y)\ (M + R)x 其中, γ≥ο L w =(\ + Y)\ (M + R)x where γ≥ο
2048 利用该窗长, 噪声消除模块 50将窗外噪声滤掉, 即有:
Figure imgf000007_0001
步骤 S208 , 时频变换模块 60将降噪后的 M+R个时域信道估计值 hRs n 变换到频域, 得到经降噪后的 个频域估计值 t = o,---, + R-l, 提 取 模 块 70 从 中 提 取 有 效 子 载 波 上 的 信 道 估 计
2048 Using the window length, the noise cancellation module 50 filters out the noise outside the window, that is:
Figure imgf000007_0001
Step S208, the time-frequency transform module 60 transforms the noise-reduced M+R time-domain channel estimation values hRs n into the frequency domain, and obtains the frequency- reduced frequency domain estimation values t = o, ---, + Rl Extracting module 70 extracts channel estimates on valid subcarriers therefrom
例如, 可以利用离散傅里叶变换将^ «)变换到频域。 通过本实施例的上述多用户信道估计方法,扩频模块 30利用 Μ个 H^ik 中的 W个值对导频位置的频域信道估计值 H^C 进行扩展, 频时变换模块 40 而后再将扩展后的序列变换到时域由噪声消除模块 50 进行降噪处理, 时频 变换模块 60 再将降噪处理后的信道估计转换到频域, 得到频域的降噪的信 道估计, 提取模块 70 从中选择有效子载波上的信道估计值, 从而可以实现 多用户的信道估计, 能够有效降低误删除信号径带来的性能损失, 从而提高 接收机的解调性能。 实施例二 图 3为本实施例的多用户信道估计装置的结构示意图, 如图 3所示, 本 实施例的多用户信道估计装置与实施例一相比的区别之处在于, 在本实施例 中的扩频模块 30由分组模块 300、 抽取模块 302、 翻转模块 304和扩频计算 模块 306组成。 其中, 分组模块 300, 用于将 M个 H^^)分为 M/K—user个组; 抽取模 块 302,用干^M/K user个组中抽取 W/ -M r个组,得到共 R个值 HRS ) , 其中, t =0, ..., R -1 翻转模块 304, 将抽取得到的 HRSCTi(t)进行按照下式 进行翻转, 得到 H^CTi2W: For example, a discrete Fourier transform can be used to transform ^ «) into the frequency domain. With the above-described multi-user channel estimation method of the present embodiment, the spreading module 30 uses the W values in the H^ik to spread the frequency domain channel estimation value H^C of the pilot position, and the frequency-time conversion module 40 then The extended sequence is transformed into the time domain by the noise cancellation module 50 for noise reduction processing, and the time-frequency transform module 60 converts the channel estimation after the noise reduction into the frequency domain to obtain a noise reduction signal in the frequency domain. In the channel estimation, the extraction module 70 selects the channel estimation value on the effective subcarrier, thereby realizing multi-user channel estimation, which can effectively reduce the performance loss caused by the erroneous deletion signal path, thereby improving the demodulation performance of the receiver. Embodiment 2 FIG. 3 is a schematic structural diagram of a multi-user channel estimation apparatus according to the embodiment. As shown in FIG. 3, the multi-user channel estimation apparatus of this embodiment is different from the first embodiment in that, in this embodiment, The spread spectrum module 30 is composed of a grouping module 300, an extracting module 302, a flipping module 304, and a spread spectrum computing module 306. The grouping module 300 is configured to divide the M H^^) into M/K-user groups; the extracting module 302 extracts W / -M r groups from the dry ^M/K user groups to obtain a total of R values H RS ) , where t =0, ..., R -1 flip module 304, and the extracted H RSCTi (t) is flipped according to the following formula to obtain H^ CTi2 W:
HRS ^(txK _user: txK _user + K _user -V) H RS ^(txK _user: txK _user + K _user -V)
= HRS ext ((R/K_ user -t -Y)xK _user + l:(R/ K _user -t)xK _ user) 其中, t =0, ..., RIK user -7; 扩频计算模块 306, 用于按照下面公式对 H^CA:)进行频域扩展, 得到 H '
Figure imgf000008_0001
-\。 通过本实施例的上述多用户信道估计装置, 扩频模块 30 在对频域导频 估计值进行扩频时, 根据用户数对 M个 H^k)进行分组, 再从 M/K— er个 组中抽取 R I K user个组, 从而可以保证抽取用于扩频的 Hj k)更符合实际情 况, 从而提高信道估计的准确性。 需要说明的是, 在上述实施例中, 虽然扩频计算模块 306釆用向后扩展 的方式将 M个频域信道估计值扩展为 M+R个频域信道估计值, 但并不限于 此, 在实际应用中, 也可以利用抽取的 R个值将 M个载波信道估计向前扩展 得到 M+R个频 i或信道估计值,或者同时向前和向后扩展得到 M+R个频 i或信 道估计值。 图 4为 居本发明实施例二的多用户信道估计方法的流程图, 如图 4所 示, 在本实施例中主要通过以下步骤进行信道估计: 步骤 S401,频域估计模块 20根据接收模块 10接收到的频域导频解调参 考信号 s 和接收机生成与发送端相同的本地频域导频解调参考信号
= H RS ext ((R/K_ user -t -Y)xK _user + l:(R/ K _user -t)xK _ user) where t =0, ..., RIK user -7; spread spectrum calculation The module 306 is configured to perform frequency domain expansion on H^CA:) according to the following formula to obtain H'
Figure imgf000008_0001
-\. With the above-described multi-user channel estimation apparatus of the present embodiment, the spread spectrum module 30 groups the M H^ks according to the number of users when spreading the frequency domain pilot estimation values, and then from the M/K_er The RIK user group is extracted from the group, so that the Hj k) for the spread spectrum can be guaranteed to be more in line with the actual situation, thereby improving the accuracy of the channel estimation. It should be noted that, in the above embodiment, although the spread spectrum calculation module 306 expands the M frequency domain channel estimation values into M+R frequency domain channel estimation values in a backward spread manner, it is not limited to Therefore, in practical applications, the M carrier channel estimates may be forward-expanded to obtain M+R frequency i or channel estimation values by using the extracted R values, or may be extended forward and backward to obtain M+R frequency. i or channel estimate. 4 is a flowchart of a multi-user channel estimation method according to Embodiment 2 of the present invention. As shown in FIG. 4, in the embodiment, channel estimation is performed mainly by the following steps: Step S401, the frequency domain estimation module 20 is configured according to the receiving module 10 The received frequency domain pilot demodulation reference signal s and the receiver generate the same local frequency domain pilot demodulation reference signal as the transmitting end
XRS(k) , 计算得到频域上导频位置的频域信道估计值 H^ A:): X RS (k) , calculated the frequency domain channel estimate of the pilot position in the frequency domain H^ A:):
HRS(k)=^^-, ≤k≤M-l H RS (k)=^^-, ≤k≤Ml
XRS(k) 其中, M表示子载波的总数, 在本实施例中, M = 192; X RS (k) where M represents the total number of subcarriers, in this embodiment, M = 192;
A表示频域上的编号, 取整数。 步骤 S402,根据用户数确定 R,在本实施例中,假设用户数 K user为 2, 则可以取扩展子长度 R=48; 在实际应用中, R的具体数值可通过仿真获取; 步骤 S403 , 分组模块 300将 192个导频子载波上的 的按照长度 2 进行分组, 共分成 96个组; 步骤 S404, 抽取模块 302对 96个组的 H^k)以组为最小单位进行抽取, 抽取 24个组; 抽取模块 302可以釆用任意方式抽取, 例如, 可以釆用等间隔的方式进 行抽取, 共 48个值, U , t = 0,---,47 , 有 A represents the number in the frequency domain, taking an integer. In step S402, R is determined according to the number of users. In this embodiment, if the number of users K user is 2, the extension sub-length R=48 may be taken. In practical applications, the specific value of R may be obtained through simulation; step S403; The grouping module 300 groups the 192 pilot subcarriers according to the length 2 and divides them into 96 groups. In step S404, the extraction module 302 extracts the groups of the 96 groups of H^k) into the smallest unit, and extracts 24 The extraction module 302 can be extracted in any manner, for example, can be extracted in equal intervals, a total of 48 values, U, t = 0, ---, 47,
K2t') = ^(^ (96/24)」) K2t') = ^(^ (96/24)")
J , t =0,···,23 , k =0,···,95 J , t =0,···,23 , k =0,···,95
H^ext (2t +1) = Η^ ([2k' /(96 / 24)」 + 1) 步骤 S405 ,翻转模块 304将抽取得到的 ext (t)进行翻转,得到 ∞n (t) H^ ext (2t +1) = Η^ ([2k' /(96 / 24)" + 1) Step S405, the flipping module 304 flips the extracted ext (t) to obtain ∞n (t)
Η^α2 (2t :2t + \) = H^ext (48 - 2t - 1 : 48 - 2t) , t =0, ..., 23; 步骤 S406, 扩频计算模块 306根据 ∞ί2(0得到扩频序列
Figure imgf000010_0001
步骤 S407, 频时变换模块 40 将 ^(/)用离散傅里叶变换变换到时域 h^n), « = 0,···, 192 + 47, 进行千 4尤和噪声消除; 步骤 S408, 计算目标用户的有效信道冲击响应窗长(即信道估计窗的窗 长) JW , 环移位数
Η^ α2 (2t : 2t + \) = H^ ext (48 - 2t - 1 : 48 - 2t) , t =0, ..., 23; Step S406, the spread spectrum calculation module 306 obtains according to ∞ί2 (0 Spreading sequence
Figure imgf000010_0001
Step S407, the frequency-time transform module 40 converts ^(/) into a time domain h^n), «= 0,····, 192 + 47, using a discrete Fourier transform to perform noise cancellation; step S408 , calculating the effective channel impulse response window length of the target user (ie, the window length of the channel estimation window) J W , the number of ring shifts
Figure imgf000010_0002
Figure imgf000010_0002
个样点得到该目标用户的信道估计窗, 其中, "为高层配置参数, 通过"的 不同取值可以标识不同的目标用户的信道估计窗的起点, lCP是循环前缀( CP ) 的长度, 对于常规 CP, /^取 144, 对于扩展 CP, /^取512。 在实际应用中, 与有效信道冲击响应窗长度相关的参数, 可以通过仿真 或者外场实际环境测试得到。 步骤 S409 , 噪声 消 除模块 50 将窗外千扰和噪声 滤掉 hRS(ri) n<t、 The sample estimation window of the target user is obtained, wherein the different values of the "high-level configuration parameters, through" can identify the starting point of the channel estimation window of different target users, and the CP is the length of the cyclic prefix (CP). For a regular CP, /^ takes 144, and for an extended CP, /^ takes 512. In practical applications, the parameters related to the effective channel impulse response window length can be obtained through simulation or field actual environmental testing. Step S409, the noise cancellation module 50 filters out the window interference and noise h RS (ri) n<t,
0 n≥L 步骤 S410,时频变换模块 60将经过降噪的信道估计值 用离散傅里 叶变换变换到频域 RS(k t = 0,---, + R-l; 步骤 S411, 提取模块 70提取有效子载波上的信道估计值, 得到经过时 域降噪的频域导频位置的信道估计: 0 n ≥ L. Step S410, the time-frequency transform module 60 transforms the channel estimation value after noise reduction into a frequency domain RS by using a discrete Fourier transform (kt = 0, ---, + R1; step S411, the extraction module 70 extracts Channel estimation value on valid subcarriers Channel estimation of frequency domain pilot locations for domain noise reduction:
%RS{k) =
Figure imgf000011_0001
k = 0, ' -、M _ \。 在本实施例中, 利用用户数确定扩频的长度, 并利用用户数对 M 个 H^ (k)进行分组和抽取, 从而进一步保证了信道估计的准确性。 实施例三 在本实施例中, M + R为 2的冪数, 与上述实施例一或实施例二的不同 之处在于,在本实施例中, 频时变换模块 40用反快速傅里叶变换将 ^ (/) ,
% RS {k) =
Figure imgf000011_0001
k = 0, ' -, M _ \. In this embodiment, the length of the spread spectrum is determined by the number of users, and M H ^ ( k ) is grouped and extracted by the number of users, thereby further ensuring the accuracy of channel estimation. Embodiment 3 In this embodiment, M + R is a power of 2, which is different from Embodiment 1 or Embodiment 2 in that, in this embodiment, the frequency-time transform module 40 uses an inverse fast Fourier. The transformation will ^ (/) ,
1 = 0 , ..., - 变换为 ( ' ":^,…, + ^^— 而时频变换模块 60用快 速傅里叶变换将^^ ")变换到频域, 得到 ^(^>' = 0," ', + R - 1。 通过本实施例, 信道估计中可以使用快速傅里叶变换进行计算, 大大降 低了实现的运算复杂度, 因此并降低硬件成本。 需要说明的是, 本发明实施例提供的上述技术方案适用的通信系统包括 但不限于: SC-FDMA系统和 OFDM系统。 从以上的描述中, 可以看出, 在本发明实施例中, 通过对解调参考符号 频域^信道估计, 将频域的导频信道估计在频域扩展, 再变换到时域, 并对 时域信道估计进行千扰和噪声的消除, 再变换回频域, 提取有效子载波上的 信道估计值, 从而实现多用户信道估计, 降低了对目标用户的千扰和噪声影 响。 并且, 由于釆用基于信号的扩展方式进行信道估计, 还有效地降低了误 删除信号径带来的性能损失, 从而提高了接收机解调性能。 另外, 通过本发 明实施例提供的技术方案增加了系统容量, 为通信服务质量提供了可靠的保 障。 且该方法可以简单、 高效地实现信道估计, 扩展的方式简单, 可操作性 强, 没有因为性能提升, 而过多的增加实现的运算复杂度。 由于信道估计中 还可以使用快速傅里叶变换进行计算, 从而大大降低了实现的运算复杂度, 因此并降低硬件成本。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可 以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布 在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程 序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 并 且在某些情况下, 可以以不同于此处的顺序执行所示出或描述的步骤, 或者 将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制作 成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软件 结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的 ^"神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。 1 = 0 , ..., - is transformed into ( '":^,..., + ^^ - and the time-frequency transform module 60 transforms ^^ ") into the frequency domain by fast Fourier transform to obtain ^(^>' = 0,"', + R - 1. With the present embodiment, the fast Fourier transform can be used for channel estimation, which greatly reduces the computational complexity of the implementation, and therefore reduces the hardware cost. The communication system to which the foregoing technical solutions provided by the embodiments of the present invention are applicable includes, but is not limited to, an SC-FDMA system and an OFDM system. From the above description, it can be seen that, in the embodiment of the present invention, the frequency of the reference symbol is demodulated. Domain channel estimation, the pilot channel estimation in the frequency domain is spread in the frequency domain, and then transformed into the time domain, and the interference and noise are eliminated in the time domain channel estimation, and then converted back to the frequency domain to extract the effective subcarriers. The channel estimation value is used to realize multi-user channel estimation, which reduces the interference and noise impact on the target user. Moreover, since the channel estimation is performed by the signal-based extension method, the performance of the erroneous deletion signal path is effectively reduced. loss Therefore, the demodulation performance of the receiver is improved. In addition, the technical solution provided by the embodiment of the invention increases the system capacity and provides a reliable guarantee for the communication service quality. The method can implement channel estimation simply and efficiently, and expands the manner. Simple, operability, no increase in performance due to performance improvement, and the computational complexity of the implementation is increased. Since the fast Fourier transform can also be used for calculation in channel estimation, the computational complexity of the implementation is greatly reduced. Reducing hardware costs. Obviously, those skilled in the art will appreciate that the various modules or steps of the present invention described above can be implemented with a general purpose computing device, which can be centralized on a single computing device or distributed across multiple computing devices. On the network formed, optionally, they can be executed by a computing device The program code is implemented so that they can be stored in the storage device by the computing device, and in some cases, the steps shown or described can be performed in a different order than here, or they can be separately produced. The individual integrated circuit modules are implemented, or a plurality of modules or steps thereof are fabricated into a single integrated circuit module. Thus, the invention is not limited to any specific combination of hardware and software. The above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the scope of the present invention are intended to be included within the scope of the present invention.

Claims

权 利 要 求 书 一种多用户信道估计方法, 其特征在于, 包括: A multi-user channel estimation method, characterized in that it comprises:
接收机利用接收到的频域导频解调参考信号和本地的频域导频解调 参考信号, 获取目标用户在导频位置的 M个频域信道估计值, M为导频 子载波的总数;  The receiver uses the received frequency domain pilot demodulation reference signal and the local frequency domain pilot demodulation reference signal to obtain M frequency domain channel estimation values of the target user at the pilot position, where M is the total number of pilot subcarriers. ;
从所述 M个频域信道估计值中抽取 R个值,利用抽取得到的 R个值 对所述 M个频域信道估计值进行扩展, 得到 M+R个频域信道估计值, 其中, R为相同时频资源块上 载的用户数 f—^er的整数倍, R小于等 于 M;  Extracting R values from the M frequency domain channel estimation values, and expanding the M frequency domain channel estimation values by using the extracted R values to obtain M+R frequency domain channel estimation values, where R The integer number of users f_^er uploaded for the same time-frequency resource block, R is less than or equal to M;
将所述 个频域信道估计值变换到时域, 得到 M+R个时域信道 估计值;  Transforming the frequency domain channel estimation values into a time domain to obtain M+R time domain channel estimation values;
利用所述目标用户的信道估计窗对所述 M+R 个时域信道估计值进 行降噪处理, 得到降噪后的 M+R个时域信道估计值;  And using the channel estimation window of the target user to perform noise reduction processing on the M+R time domain channel estimation values, to obtain the M+R time domain channel estimation values after noise reduction;
将降噪后的所述 M+R 个时域信道估计值变换到频域, 从中提取有 效子载波上的信道估计值。 根据权利要求 1所述的方法, 其特征在于, 从所述 M个频域信道估计值 中抽取 W个值包括: 将所述 M个频域信道估计值 H^ik)分为 M/K—user个组, 其中, k = 0, ..., M - 1;  The M+R time domain channel estimation values after noise reduction are transformed into a frequency domain, and channel estimation values on the effective subcarriers are extracted therefrom. The method according to claim 1, wherein extracting W values from the M frequency domain channel estimation values comprises: dividing the M frequency domain channel estimation values H^ik) into M/K— User group, where k = 0, ..., M - 1;
从所述 M/K—user 个组中抽取 R / K user个组, 得到共 R 个值 U , 其中, t = 0, ..., R - 1. 根据权利要求 2所述的方法, 其特征在于, 利用抽取得到的 R个值对所 述 M个频域信道估计值进行扩展, 得到 M+R个频域信道估计值包括: 将抽取得到的所述 HRS CTi(t)进行按照下式进行翻转, 得到 u : ext2(^K _ user: txK _ user + K _ user - 1) Extracting R/K user groups from the M/K-user group, obtaining a total of R values U, where t = 0, ..., R - 1. The method according to claim 2, The method further comprises: expanding the M frequency domain channel estimation values by using the extracted R values, and obtaining the M+R frequency domain channel estimation values, comprising: performing the extracted H RS CTi (t) according to the following Flip to get u : e xt2 (^K _ user: txK _ user + K _ user - 1)
=
Figure imgf000013_0001
_ user + 1 : (Rl K _ user - t)xK _ user) '、 中, t = 0, ..., R / K user - 7 ; 按照下面公式对^^(^)进行频域扩展,得到所述 个频域信道估 计值 ^( ):
Figure imgf000014_0001
=
Figure imgf000013_0001
_ user + 1 : (Rl K _ user - t)xK _ user) ', medium, t = 0, ..., R / K user - 7 ; The frequency domain extension of ^^(^) is performed according to the following formula to obtain the frequency domain channel estimation value ^( ):
Figure imgf000014_0001
4. 才艮据权利要求 2所述的方法, 其特征在于, 从所述 M / K user个组中抽取 R I K user个组包括: 釆用等间隔的方式从所述 M 个组中抽取所 i^R / K user个组。 4. The method according to claim 2, wherein extracting the RIK user groups from the M/K user groups comprises: extracting the i groups from the M groups in an equally spaced manner. ^R / K user groups.
5. 根据权利要求 1所述的方法, 其特征在于, 5. The method of claim 1 wherein
将所述 个频域信道估计值变换到时域包括: 釆用反离散傅里 叶变换将所述 M+R个频域信道估计值变换到时域, 得到所述 M+R个时 域信道估计值;  Transforming the frequency domain channel estimation values into the time domain comprises: transforming the M+R frequency domain channel estimation values into a time domain by using an inverse discrete Fourier transform to obtain the M+R time domain channels estimated value;
将降噪后的所述 个时域信道估计值变换到频域包括: 釆用离 散傅里叶变换将降噪后的所述 M+R个时域信道估计值变换到频域。  Transforming the noise-reduced time domain channel estimate to the frequency domain comprises: transforming the noise-reduced M+R time-domain channel estimates into the frequency domain using an discrete Fourier transform.
6. 根据权利要求 1所述的方法, 其特征在于, 6. The method of claim 1 wherein
所述 M与 R之和为 2的冪数;  The sum of M and R is a power of 2;
将所述 个频域信道估计值变换到时域包括: 釆用反快速傅里 叶变换将所述 M+R个频域信道估计值变换到时域, 得到所述 M+R个时 域信道估计值;  Transforming the frequency domain channel estimation values into the time domain comprises: transforming the M+R frequency domain channel estimation values into a time domain by using an inverse fast Fourier transform to obtain the M+R time domain channels estimated value;
将降噪后的所述 个时域信道估计值变换到频域包括: 釆用快 速傅里叶变换将降噪后的所述 M+R个时域信道估计值变换到频域。  Transforming the noise-reduced said time domain channel estimate to the frequency domain comprises: transforming the noise-reduced M+R time-domain channel estimates into the frequency domain using a fast Fourier transform.
7. 根据权利要求 1所述的方法, 其特征在于, 通过以下方式获取所述目标 用户的信道估计窗: 7. The method according to claim 1, wherein the channel estimation window of the target user is obtained by:
按照以下公式计算所述信道估计窗的窗长 JwCalculate the window length J w of the channel estimation window according to the following formula:
LW = (\ + Y)\\ (M + R)x L W = (\ + Y)\\ (M + R)x
2048  2048
, 其中, r≥o, 是循环前缀的长度; 以所述目标用户相对母码的循环移位数^ 为参考点, 向前扩展  Where r ≥ o is the length of the cyclic prefix; forwards the number of cyclic shifts of the target user relative to the mother code as a reference point
 2π
/Cj (M + R) x 和向后取的 (M + R)x 1' 点,得到所述目标用户的包 /Cj (M + R) x and the backward (M + R) x 1 ' point, get the package of the target user
2048 2048 含 w个样点的所述信道估计窗, 其中, "为预先配置的参数, 对于不同 的目标用户取不同的"值。 一种多用户信道估计装置, 其特征在于, 包括: 2048 2048 The channel estimation window containing w samples, where "is a pre-configured parameter, taking different values for different target users. A multi-user channel estimation apparatus, comprising:
接收模块, 用于接收频域导频解调参考信号;  a receiving module, configured to receive a frequency domain pilot demodulation reference signal;
频域估计模块, 用于利用所述接收模块接收到的所述频域导频解调 参考信号与本地的频域导频解调参考信号, 获取目标用户在导频位置的 a frequency domain estimation module, configured to use the frequency domain pilot demodulation reference signal received by the receiving module and a local frequency domain pilot demodulation reference signal to obtain a target user at a pilot position
M个频域信道估计值, M为导频子载波的总数; M frequency domain channel estimation values, M is the total number of pilot subcarriers;
扩频模块, 用于从所述 M个频域信道估计值中抽取 R个值, 利用抽 取得到的 R个值对所述 M个频域信道估计进行扩展, 得到 M+R个频域 信道估计,其中 , R为相同时频资源块上 载的用户数 ^er的整数倍, R小于等于 M;  a spreading module, configured to extract R values from the M frequency domain channel estimation values, and expand the M frequency domain channel estimates by using the extracted R values to obtain M+R frequency domain channel estimations. Where R is an integer multiple of the number of users uploaded by the same time-frequency resource block, R is less than or equal to M;
频时变换模块, 用于将所述扩频模块得到的所述 个频域信道 估计变换到时域, 得到 M+R个时域信道估计;  a time-frequency transform module, configured to transform the frequency domain channel estimates obtained by the spreading module into a time domain, to obtain M+R time domain channel estimates;
噪声消除模块, 用于利用所述目标用户的信道估计窗对所述 M+R 个时域信道估计值进行降噪处理, 得到降噪后的 M+R 个时域信道估计 值;  a noise cancellation module, configured to perform noise reduction processing on the M+R time domain channel estimation values by using a channel estimation window of the target user, to obtain a M+R time domain channel estimation value after noise reduction;
时频变换模块, 用于将降噪后的 M+R 个时域信道估计值变换到频 域, 得到降噪后的 M+R个频域信道估计值;  a time-frequency transform module, configured to transform the M+R time-domain channel estimation values after noise reduction into a frequency domain, to obtain M+R frequency-domain channel estimation values after noise reduction;
提取模块, 用于从降噪后的所述 个频域信道估计值中提取有 效子载波上的信道估计值, 得到经过时域降噪的频域导频位置的信道估 计。 根据权利要求 8所述的装置, 其特征在于, 所述扩频模块包括:  And an extracting module, configured to extract a channel estimation value on the effective subcarrier from the frequency domain channel estimation values after the noise reduction, to obtain a channel estimation of the frequency domain pilot position after the time domain noise reduction. The apparatus according to claim 8, wherein the spread spectrum module comprises:
分组模块, 用于将所述 M个频域信道估计值 H^i^)分为 M/K—user 个组;  a grouping module, configured to divide the M frequency domain channel estimation values H^i^) into M/K_user groups;
抽取模块, 用于从所述 M/K—user个组中抽取 R I K user个组, 得到 共 W个值 HRS CTi(t) , 其中, t = 0, ..., R - l ; 翻转模块, 将抽取得到的所述 HRS CTi(t)进行按照下式进行翻转, 得到
Figure imgf000015_0001
H RS exti x K—user: txK _ user + K _ user - 1)
An extracting module, configured to extract RIK user groups from the M/K-user group, and obtain a total of W values H RS CTi (t), where t = 0, ..., R - l ; And extracting the extracted H RS CTi (t) according to the following formula to obtain
Figure imgf000015_0001
H RS exti x K—user: txK _ user + K _ user - 1)
=
Figure imgf000016_0001
_ user -t-\)xK _ user + 1 : (Rl K _ user -t)xK _ user) '、 中, t =0, ..., R/K user -7; 扩频计算模块, 用于按照下面公式对 ^ ^)进行频域扩展, 得到所 述 个频域信道估计值 H^^ o:
Figure imgf000016_0002
才艮据权利要求 8或 9所述的装置, 其特征在于, 所述 M与 R之和为 2的 幕数; 所述频时变换模块釆用反快速傅里叶变换将所述 个频域信 道估计变换到时域; 所述时频变换模块釆用快速傅里叶变换将降噪后的 所述 个时域信道估计值变换到频域。
=
Figure imgf000016_0001
_ user -t-\)xK _ user + 1 : (Rl K _ user -t)xK _ user) ', medium, t =0, ..., R/K user -7; spread spectrum calculation module, The frequency domain extension is performed on the ^^) according to the following formula to obtain the frequency domain channel estimation value H^^o:
Figure imgf000016_0002
The apparatus according to claim 8 or 9, wherein the sum of M and R is a number of screens of 2; and the frequency-time transform module uses the inverse fast Fourier transform to set the frequency domains The channel estimate is transformed into a time domain; the time-frequency transform module uses a fast Fourier transform to transform the noise-reduced time domain channel estimates into a frequency domain.
PCT/CN2010/077714 2010-04-23 2010-10-13 Multi-user channel estimation method and device WO2011130994A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010155353.0 2010-04-23
CN201010155353.0A CN102238110B (en) 2010-04-23 2010-04-23 Multi-user channel estimation method and device

Publications (1)

Publication Number Publication Date
WO2011130994A1 true WO2011130994A1 (en) 2011-10-27

Family

ID=44833666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/077714 WO2011130994A1 (en) 2010-04-23 2010-10-13 Multi-user channel estimation method and device

Country Status (2)

Country Link
CN (1) CN102238110B (en)
WO (1) WO2011130994A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104253771A (en) * 2013-06-27 2014-12-31 富士通株式会社 Multi-parameter joint estimation method and apparatus

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103856974B (en) * 2012-11-30 2017-08-08 展讯通信(天津)有限公司 The method and apparatus of cell measurement in communication terminal and long evolving system
CN103856973B (en) * 2012-11-30 2017-04-26 展讯通信(天津)有限公司 Communication terminal and measurement method and device in long term evolution system
CN103856419B (en) * 2012-12-05 2017-06-06 上海贝尔股份有限公司 Method and apparatus to carrying out channel estimation to the up channel of eNB
CN103532885B (en) * 2013-10-17 2017-01-04 北京锐安科技有限公司 A kind of for the multiple sampling rate data stream method that channel is estimated simultaneously
CN107508778B (en) * 2017-08-03 2020-09-29 北京睿信丰科技有限公司 Cyclic correlation channel estimation method and device
CN111404850B (en) * 2020-03-23 2022-12-13 北京星网锐捷网络技术有限公司 Uplink channel estimation method and device based on 5G system
CN112787962A (en) * 2020-12-28 2021-05-11 上海复旦通讯股份有限公司 Channel time domain feature extraction method and system based on pilot frequency reference signal
CN112866150A (en) * 2021-01-13 2021-05-28 上海复旦通讯股份有限公司 Wireless channel feature extraction and dimension reduction method and system
CN114745236A (en) * 2022-04-07 2022-07-12 展讯通信(上海)有限公司 Data preprocessing method and device for transform domain channel estimation and communication equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101127745A (en) * 2006-08-16 2008-02-20 大唐移动通信设备有限公司 A chancel estimation method and device
CN101414986A (en) * 2007-10-17 2009-04-22 华为技术有限公司 Channel estimation method and apparatus
CN101437010A (en) * 2008-12-03 2009-05-20 深圳华为通信技术有限公司 Method and apparatus for estimating OFDM system channel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101127745A (en) * 2006-08-16 2008-02-20 大唐移动通信设备有限公司 A chancel estimation method and device
CN101414986A (en) * 2007-10-17 2009-04-22 华为技术有限公司 Channel estimation method and apparatus
CN101437010A (en) * 2008-12-03 2009-05-20 深圳华为通信技术有限公司 Method and apparatus for estimating OFDM system channel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104253771A (en) * 2013-06-27 2014-12-31 富士通株式会社 Multi-parameter joint estimation method and apparatus

Also Published As

Publication number Publication date
CN102238110A (en) 2011-11-09
CN102238110B (en) 2014-07-16

Similar Documents

Publication Publication Date Title
WO2011130994A1 (en) Multi-user channel estimation method and device
JP4659840B2 (en) Communication apparatus and channel estimation method
CN109391403B (en) Method and apparatus for transmission and reception of wireless signals
JP5089682B2 (en) Frequency domain channel estimation in single carrier frequency division multiple access system
KR20150114987A (en) Pulse-shaped orthogonal frequency division multiplexing
CN101682588A (en) Channel estimator for OFDM systems
WO2011000244A1 (en) Pilot-based time offset estimation apparatus and method
US20170214518A1 (en) Method and apparatus for estimating and correcting phase error in wireless communication system
US8275074B2 (en) OFDM receiver for dispersive environment
WO2010139234A1 (en) Method and device for estimating maximum doppler frequency offset
CN107819716B (en) Frequency offset compensation method and device based on frequency domain
Eldessoki et al. Impact of waveforms on coexistence of mixed numerologies in 5G URLLC networks
JP2011517518A (en) Method and system for selecting cyclic delays in a multi-antenna OFDM system
JP4830613B2 (en) Multi-user communication system, communication apparatus, and multipath transmission path estimation method using them
CN108632188B (en) Method, device and system for wireless communication
WO2011009399A1 (en) Method and module for pilot insertion and transmitter
Garcia-Roger et al. Hardware testbed for sidelink transmission of 5G waveforms without synchronization
WO2012109928A1 (en) Method, device, and system for processing signal
JP6553296B2 (en) Channel estimation for ZT DFT-s-OFDM
Wang et al. Temporal-correlation-based compressive channel estimation for universal filtered multicarrier system over fast-fading channels
KR20120071250A (en) Method and device for channel estimation in mobile communication system
Liu et al. Robust preamble-based timing synchronization for OFDM systems
WO2017178075A1 (en) Method for generating pulse shapes with adjustable length, orthogonality and localization properties
KR20110135662A (en) Ofdm receiver being capable of estimating timing error in multi-path fading channel, ofdm system having the same and timing error estimation method thereof
WO2015061953A1 (en) Chanel estimation method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10850126

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10850126

Country of ref document: EP

Kind code of ref document: A1