WO2011129717A1 - Three-phase electrical reactor with magnetic biasing - Google Patents

Three-phase electrical reactor with magnetic biasing Download PDF

Info

Publication number
WO2011129717A1
WO2011129717A1 PCT/RU2010/000820 RU2010000820W WO2011129717A1 WO 2011129717 A1 WO2011129717 A1 WO 2011129717A1 RU 2010000820 W RU2010000820 W RU 2010000820W WO 2011129717 A1 WO2011129717 A1 WO 2011129717A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
sections
section
windings
reactor
Prior art date
Application number
PCT/RU2010/000820
Other languages
French (fr)
Russian (ru)
Inventor
Александр Михайлович БРЯНЦЕВ
Original Assignee
Bryantsev Alexander Mikhailovich
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bryantsev Alexander Mikhailovich filed Critical Bryantsev Alexander Mikhailovich
Priority to UAA201210464A priority Critical patent/UA102354C2/en
Priority to EP10849930.2A priority patent/EP2560174A4/en
Publication of WO2011129717A1 publication Critical patent/WO2011129717A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F3/14Constrictions; Gaps, e.g. air-gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/346Preventing or reducing leakage fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F37/00Fixed inductances not covered by group H01F17/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F3/12Magnetic shunt paths

Definitions

  • the invention relates to the field of electrical engineering and can be used for magnetization controlled reactors installed, for example, in an electrical network to compensate for reactive power, stabilize voltage, parallel operation with capacitor banks, increase throughput, etc.
  • a three-phase electric reactor with magnetization is known [1], which contains a charged magnetic system with upper, lower, middle and two side yokes, coaxial upper and lower rods located on the rods of the upper and lower windings, as well as inputs, semiconductor diodes and thyristors.
  • the disadvantage of this device, an analogue is the increased consumption of steel of the magnetic circuit due to the increased magnetic flux in it (from the scattering magnetic field) in the load conditions of the reactor, as well as because of the non-optimal choice of the parameters of the magnetic circuit.
  • An electric three-phase magnetization reactor contains a charged magnetic system with three upper and three lower coaxial rods, with upper, lower, middle and two side yokes, the horizontal yokes having two middle and two extreme sections.
  • the windings located on each core consist of two parts.
  • the inputs of the reactor are connected to parts of the windings and converters with a control system.
  • Four magnetic shunts are installed in the reactor in the form of rectangular frames with horizontal and vertical parts, and the horizontal parts of the shunts are located at the ends of the windings along the upper, middle and lower yoke, and the vertical parts closing them are located along the side yards.
  • the disadvantage of this device, the prototype, is also the increased consumption of the magnetic circuit steel due to the increased magnetic flux in it (from the scattering magnetic field) in the reactor load conditions due to the suboptimal design and parameters of the shunts and magnetic circuit.
  • the range of reactor power control is limited and reliability is reduced due to the danger of in cases of high voltage on the control system due to its galvanic connection with the reactor windings.
  • the aim of the invention is to reduce the consumption of steel and losses, increase reliability, increase the functionality of the reactor — expand the range of power control — by introducing new elements into the design and electrical circuit, new connections between elements, and optimization of parameter ratios.
  • the magnetic system of which is made of charged sheets of electrical steel and contains a magnetic circuit with coaxially located three upper and three lower vertical rods, on which two-section windings are located, the upper, lower and middle horizontal and two lateral vertical yokes, and the horizontal yokes have two middle and two extreme sections, four magnetic shunts in the form of rectangular frames with horizontal vertical and vertical sections, the horizontal sections of the shunts located on the ends of the windings along the upper, middle and lower yoke, and the vertical sections closing them are located along the side holes, and the reactor also contains controllable semiconductor converters of diodes and resistors and a control system, windings are connected to a three-phase network and to converters; three-winding isolation transformers installed between the converters and the control system are introduced into the reactor.
  • Nonmagnetic gaps were made in the sections of the average horizontal yoke of the magnetic core. Each magnetic shunt has two additional vertical sections located between the windings. The ratio of the values of non-magnetic gaps of the magnetic circuit in the extreme sections of the average yoke of Akrain. and values of non-magnetic gaps in the middle sections of the average yoke A avg . (Assigned / Acreyn.) Is
  • the ratio between the steel cross section of all parts of the magnetic shunts S m and the cross section of the rods S is within
  • Figure 1 shows the withdrawal part of the reactor (a magnetic system with windings) - front view
  • figure 2 is the same
  • top view figure 3 is the same side view
  • Figure 4 shows the main magnetic circuit burdened from sheets of electrical steel
  • figure 5 shows one of the four magnetic shunts burdened from sheets of electrical steel in the form of a rectangular three-window frame.
  • Figure 6 shows the electrical circuit of the reactor.
  • the magnetic system of the reactor laden from sheets of electrical steel, consists of a main magnetic circuit and four magnetic shunts.
  • the magnetic core of the reactor (Figs. 1-4) contains six coaxial rods - three upper 1, 2, 3 and three lower 4, 5, 6. On each rod there is a winding consisting of two sections 7 and 8. There are two lateral vertical yokes 9 and 10, as well as three horizontal yokes - the upper yoke 11, the lower yoke 72, and the average yoke 13.
  • the section of the steel of the rods is S
  • the section of the steel of all the yokes except the average yoke is S
  • the section of the steel of the middle yoke is S cp fl p .
  • Each of the horizontal yards 11, 12 and 13 has four sections: two extreme and two middle.
  • All sections of the average horizontal yoke 13 have non-magnetic gaps 14 (the size of the gap in the middle sections ⁇ average ) and 15 (the size of the gap in the extreme sections ⁇ ⁇ ,,).
  • Each of the four magnetic shunts 16 is made in the form of a rectangular three-window frame (Fig. 5).
  • the horizontal parts of the shunts are located at the ends of the windings (between the end of the winding 7 and 8 and the pressing beam 17, Fig.Z).
  • Shunts 16 have two middle vertical parts 18 located between the windings. All parts of magnetic shunts have a steel cross section S m. .
  • the electrical circuit of the reactor contains three input phase network A, B and C.
  • Two sections 7 and 8 of the winding on the upper rod 1 of phase A have taps A1-A2 and AZ-A4, on the lower coaxial rod 4, taps A5-A6 and A7-A8.
  • Two sections of the RB winder on the upper rod of phase 2 have taps B1-B2 and VZ-B4, on the lower coaxial rod 5 - B5-B6 and B7-B8.
  • Two sections of the winding on the upper rod 3 of phase C have taps C1-C2 and C3-C4, on the lower coaxial rod 6 - C5-C6 and C7-C8.
  • the windings are connected in a circuit of two triangles and connected to the three inputs of the phases of the network A, B and C.
  • a converter is turned on, consisting of a diode D and a resistor R connected in parallel: converter P 1A is connected between taps A2 and A3, converter P 2A is connected between taps A6 and A7, and B2 and B3 are tapped between taps A6 and A7 converter P] B, and Wb between the taps V7- P converter 2B, C2 and between the taps SOC - UR converter between the taps Sa and C 7 - transducer n ⁇ 2C terminals converters notation means the same as the windings of the taps, which they are connected. In all 6 converters, the diodes D and the resistors R are the same.
  • insulating three-winding transformers ⁇ ⁇ , ⁇ criz and ⁇ lake are installed between the control system (SU) and the converters.
  • Each primary sectioned winding of the transformer is connected by its terminals (Um-Ugl. U v-U 2 v and U] s-U 2 s) to the control system.
  • Each of the two secondary windings is connected to the taps of the sections of the control windings and the terminals of the converters.
  • the transformer T A has one secondary winding connected to the taps A2 and A6 and simultaneously with the terminals of the transducer A2 and A6, the second one is connected to the taps A3 and A7 and simultaneously with the terminals of the transducer A3 and A7.
  • the secondary winding is connected to bends B2 and Bb and terminals B2 ⁇ ⁇ 6, the second to bends ⁇ and ⁇ 7 and terminals ⁇ and 57.
  • one secondary winding is connected to bends ⁇ 2 and ⁇ 6 and terminals C2 and Sat, the second - with taps SZ and S7 and terminals SZ and S 7.
  • Converters and isolation transformers are placed on the assembly panel 19, mounted on the withdrawal part (figure 2).
  • the extraction part the reactor magnetic system (magnetic core and shunts) with windings and structural fittings — is placed in the oil tank.
  • the reactor is connected to the three-phase network by inputs A, B and C, the mains voltage is supplied to the reactor windings.
  • the control system of the control system provides at the terminals U] A ⁇ U2A, U1V-U2V and U1S-2C the minimum resistance. Since the insulating transformer T A, T B and T c are thus short-circuited, and their resistance to scattering of small outlets sections A2 and A3 windings, Ab and A7, B2 and OT, B6 and B7, C 2 and SZ, C6 and C7 are almost pairwise shorted. Moreover, each of the converters P 1A and P 2 A, P 1B and P 2B , P ] C and P 2C is practically short-circuited, and there is no magnetization of the cores of the magnetic circuit.
  • the reactor switches to the maximum power mode - full-time saturation of the rods. This is due to the fact that the diodes D of the converters P 1L , P 2 A, P 1V are connected to the taps of the sections of the windings A2 and AZ, A6 and A7, B2 and VZ, V6 and V7, C2 and SZ, C6 and C7 , P 2V ,
  • the rated power mode is set for one of the intermediate modes - the half-period saturation reactor mode.
  • the steel of each core of the reactor is in a saturated state for half a period.
  • Such a regime is characterized not only by minimal (theoretically zero) distortions of the reactor current by higher harmonics, but also by the optimal consumption of active materials and optimal losses in the windings.
  • Isolation transformers are installed between the control system (it is located on the control panel in the room) and the converters, which ensure the absence of galvanic communication and increased safety of personnel and low-voltage equipment from possible high-voltage supply to the control system (for example, in emergency situations).
  • the converters, together with isolating transformers, are located on panel 19 in the reactor tank located in the open area of the substation.
  • Non-magnetic gaps 14 and 75 are made in the sections of the average horizontal yoke 13 of the magnetic circuit. These gaps are necessary in order to expand the limits of regulation of the reactor power. The magnitude of non-magnetic gaps should be minimal; when designing a reactor, it is selected from the technological capabilities of production and usually amounts to fractions or units of millimeters.
  • the magnitude of the nonmagnetic gap in the extreme sections of the average yoke A is extreme . should be less than the non-magnetic gap in the middle sections of this yoke A average (1.5- ⁇ 3) times, i.e.
  • the upper boundary should not be exceeded, otherwise the magnetic flux of scattering in the extreme vertical parts of the shunt will be reduced, and in the middle it will be increased.
  • the lower boundary must also be observed, otherwise the magnetic flux of scattering will be increased in the vertical extreme parts of the shunt, in the middle vertical parts of the shunt will be reduced. Fulfillment of the optimum ratio of the gap sizes allows one to obtain a favorable distribution of magnetic induction over the rods, yokes, and shunts, as well as the minimum steel consumption at the maximum shunt efficiency in terms of unloading the main magnet core of the reactor and reducing additional losses in the structural elements and tank wall .
  • the ratio between the steel cross section of the sections of the average yoke S cp and the cross section of the rods S should be chosen within
  • the reactor is obtained with an increased consumption of steel in yokes. If the steel cross section of the yoke is less than the minimum value, then steel saturation occurs in the reactor yokes in certain modes of its operation. This leads to adverse events - an increase additional losses due to eddy currents in structural elements, an increase in nonlinear distortions in the reactor current.
  • Magnetic shunts 16 effectively “channelize” the scattering magnetic flux that occurs when current flows in the windings, i.e. in all modes when magnetizing rods.
  • the scattering magnetic flux circulates axially inside the windings and closes by the yokes of the magnetic system and by magnetic shunts. If there are no magnetic shunts 16, then the magnetic flux closes along the structural elements and the tank wall, causing eddy currents, additional losses and unacceptable heating in them.
  • shunts have middle longitudinal vertical sections 18 located between the windings. These two additional (in comparison with the prototype) vertical sections are necessary for the optimal distribution of magnetic fluxes of scattering and to reduce the total consumption of steel in shunts and magnetic core.
  • the steel cross section of magnetic shunts should be the larger, the larger the radial size of the windings, because when the reactor is loaded, an increased magnetic flux of scattering occurs (in comparison with the magnetic flux in the rods and yokes of the magnetic circuit in idle mode).
  • the ratio between the steel cross section of all parts of each of the magnetic shunts S, JJ and the cross section of the rods S should be selected within
  • the steel cross section of the magnetic shunts is chosen to be larger than the maximum value of the given ratio, then an overspending of steel is obtained. If the steel cross section of the shunts is less than the minimum value, then the shunts become ineffective and do not shield the scattering flux of the windings. This leads to adverse phenomena - an increase in magnetic induction in the magnetic circuit, the main losses in steel and additional losses in structural elements.
  • the proposed “three-window” shunt design improved in comparison with the prototype provides an optimal distribution of the magnetic fluxes of the reactor, and, consequently, an optimal consumption of steel in the magnetic system. All the considered limits of optimal size ratios were determined as a result of the analysis of numerous calculations on mathematical models controlled by magnetization of reactors in a wide range of variation of their parameters. If necessary, the examination can be provided with the detailed results of these calculations.
  • a high voltage reactor is typically oil cooled.
  • the extraction part the reactor magnetic system (magnetic core and shunts) with windings and press fittings — is located in the oil tank, and the reactor inlets are on the tank cover. Converters and isolation transformers are located in the same tank on an assembly panel mounted on a removable part.
  • the operability of the proposed reactor and its high technical and economic indicators are confirmed by calculations, physical modeling, test results of prototypes of similar designs.
  • the proposed reactor has reduced steel consumption, losses, reliability, labor costs in manufacturing, and dimensions and weight have been reduced. In the near future it is planned to manufacture prototypes for mass production.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Inverter Devices (AREA)
  • Ac-Ac Conversion (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

The invention relates to electrical engineering and may be utilized in an electrical circuit for reactive power compensation, voltage stabilization, etc. The reactor comprises three upper and three lower vertical rods. Two-section windings are disposed on the rods. Horizontal yokes have two middle and two end sections, and four magnetic shunts in the form of rectangular frames. The horizontal sections of the shunts are disposed on the ends of the windings along the upper, middle and lower yokes, and the vertical sections are disposed along the lateral yokes. The reactor windings are connected to a three-phase circuit and to controllable semiconductor transducers. Non-magnetic gaps are formed in the sections of the middle horizontal yoke. Each magnetic shunt has two additional vertical sections between the windings. The ratio of the sizes of the non-magnetic gaps of the middle yoke in the end sections Δend and in the middle sections Δmiddle is 1.5<(Δmiddleend)<3, that between the cross section of the steel of the middle sections of the middle yokes Sm.y. and the cross section of the rods S is 0.9<(Sm.y./S)<1.3, that between the cross section of the steel of all other sections of the yokes Sy. and S is 0.7<(Sy./S)<0.9, and that between the cross section of the steel of all parts of the magnetic shunts Ssh and S is 0.07<(Ssh/S)<0.3.

Description

ЭЛЕКТРИЧЕСКИЙ ТРЕХФАЗНЫЙ РЕАКТОР С ПОДМАГНИЧИВАНИЕМ  ELECTRIC THREE PHASE REJECTOR WITH MAGNETIZATION
Изобретение относится к области электротехники и может быть использова- но для управляемых подмагничиванием реакторов, устанавливаемых, например, в электрической сети для компенсации реактивной мощности, стабилизации напря- жения, параллельной работы с конденсаторными батареями, повышения пропуск- ной способности и др. The invention relates to the field of electrical engineering and can be used for magnetization controlled reactors installed, for example, in an electrical network to compensate for reactive power, stabilize voltage, parallel operation with capacitor banks, increase throughput, etc.
Известен электрический трехфазный реактор с подмагничиванием [1], со- держащий шихтованную магнитную систему с верхним, нижним, средним и двумя боковыми ярмами, соосными верхними и нижними стержнями, расположенными на стержнях верхней и нижней обмотками, а также вводы, полупроводниковые диоды и тиристоры. Недостатком этого устройства - аналога - является повышен- ный расход стали магнитопровода из-за увеличенного магнитного потока в нем (от магнитного поля рассеяния) в режимах нагрузки реактора, а также из-за неопти- мального выбора параметров магнитопровода.  A three-phase electric reactor with magnetization is known [1], which contains a charged magnetic system with upper, lower, middle and two side yokes, coaxial upper and lower rods located on the rods of the upper and lower windings, as well as inputs, semiconductor diodes and thyristors. The disadvantage of this device, an analogue, is the increased consumption of steel of the magnetic circuit due to the increased magnetic flux in it (from the scattering magnetic field) in the load conditions of the reactor, as well as because of the non-optimal choice of the parameters of the magnetic circuit.
Этот недостаток частично устранен в [2]. Электрический трехфазный реак- тор с подмагничиванием содержит шихтованную магнитную систему с тремя верх- ними и тремя нижними соосными стержнями, с верхним, нижним, средним и двумя боковыми ярмами, причем горизонтальные ярма имеют два средних и два крайних участка. Обмотки, расположенные на каждом стержне, состоят из двух частей. Вводы реактора присоединены к частям обмоток и преобразователям с системой управления. В реакторе установлены четыре магнитных шунта в виде прямоуголь- ных рам с горизонтальными и вертикальными частями, причем горизонтальные части шунтов расположены на торцах обмоток вдоль верхнего, среднего и нижнего ярем, а замыкающие их вертикальные части расположены вдоль боковых ярем. Не- достатком этого устройства - прототипа - также является повышенный расход ста- ли магнитопровода из-за увеличенного магнитного потока в нем (от магнитного поля рассеяния) в режимах нагрузки реактора из-за неоптимальной конструкции и параметров шунтов и магнитопровода. Кроме того, ограничен диапазон регулиро- вания мощности реактора и снижена надежность из-за опасности появления в ава- рийных случаях высокого напряжения на системе регулирования ввиду гальвани- ческой связи ее с обмотками реактора. This drawback was partially eliminated in [2]. An electric three-phase magnetization reactor contains a charged magnetic system with three upper and three lower coaxial rods, with upper, lower, middle and two side yokes, the horizontal yokes having two middle and two extreme sections. The windings located on each core consist of two parts. The inputs of the reactor are connected to parts of the windings and converters with a control system. Four magnetic shunts are installed in the reactor in the form of rectangular frames with horizontal and vertical parts, and the horizontal parts of the shunts are located at the ends of the windings along the upper, middle and lower yoke, and the vertical parts closing them are located along the side yards. The disadvantage of this device, the prototype, is also the increased consumption of the magnetic circuit steel due to the increased magnetic flux in it (from the scattering magnetic field) in the reactor load conditions due to the suboptimal design and parameters of the shunts and magnetic circuit. In addition, the range of reactor power control is limited and reliability is reduced due to the danger of in cases of high voltage on the control system due to its galvanic connection with the reactor windings.
Целью изобретения является снижение расхода стали и потерь, увеличение надежности, повышение функциональных возможностей реактора - расширение диапазона регулирования мощности - за счет введения в конструкцию и электриче- скую схему новых элементов, новых связей между элементами, оптимизации соот- ношений параметров.  The aim of the invention is to reduce the consumption of steel and losses, increase reliability, increase the functionality of the reactor — expand the range of power control — by introducing new elements into the design and electrical circuit, new connections between elements, and optimization of parameter ratios.
Поставленная цель достигается тем, что в электрическом трехфазном реак- торе с подмагничиванием, магнитная система которого выполнена из шихтованных листов электротехнической стали и содержит магнитопровод с соосно располо- женными тремя верхними и тремя нижними вертикальными стержнями, на кото- рых размещены двухсекционные обмотки, верхние, нижние и средние горизон- тальные и два боковых вертикальных ярма, причем горизонтальные ярма имеют два средних и два крайних участка, четыре магнитных шунта в виде прямоуголь- ных рам с горизонтальными и вертикальными участками, причем горизонтальные участки шунтов расположены на торцах обмоток вдоль верхнего, среднего и ниж- него ярем, а замыкающие их вертикальные участки расположены вдоль боковых ярем, а также реактор содержит управляемые полупроводниковые преобразователи из диодов и резисторов и систему управления, причем упомянутые обмотки со- единены с трехфазной сетью и с преобразователями, в реактор введены трехобмо- точные изолирующие трансформаторы, установленные между преобразователями и системой управления. В участках среднего горизонтального ярма магнитопрово- да выполнены немагнитные зазоры. Каждый магнитный шунт имеет два дополни- тельных вертикальных участка, расположенных между обмотками. Соотношение величин немагнитных зазоров магнитопровода в крайних участках среднего ярма Акраин. и величин немагнитных зазоров в средних участках среднего ярма Асредн. (Асредн. /Акрайн.) составляет This goal is achieved by the fact that in an electric three-phase reactor with magnetization, the magnetic system of which is made of charged sheets of electrical steel and contains a magnetic circuit with coaxially located three upper and three lower vertical rods, on which two-section windings are located, the upper, lower and middle horizontal and two lateral vertical yokes, and the horizontal yokes have two middle and two extreme sections, four magnetic shunts in the form of rectangular frames with horizontal vertical and vertical sections, the horizontal sections of the shunts located on the ends of the windings along the upper, middle and lower yoke, and the vertical sections closing them are located along the side holes, and the reactor also contains controllable semiconductor converters of diodes and resistors and a control system, windings are connected to a three-phase network and to converters; three-winding isolation transformers installed between the converters and the control system are introduced into the reactor. Nonmagnetic gaps were made in the sections of the average horizontal yoke of the magnetic core. Each magnetic shunt has two additional vertical sections located between the windings. The ratio of the values of non-magnetic gaps of the magnetic circuit in the extreme sections of the average yoke of Akrain. and values of non-magnetic gaps in the middle sections of the average yoke A avg . (Assigned / Acreyn.) Is
1>5 < (Асредн, Δ,φ3βΗ ) < 3. 1 > 5 <(A average, Δ, φ 3 β Η ) <3.
Соотношение между сечением стали средних участков средних ярем Scp.p. и сече- нием стержней S находится в пределах The relationship between the steel section of the middle sections of the middle yoke S cp.P. and the cross section of the rods S is within
0,9 < (Scp.ap. /S) < l,3, соотношение между сечением стали всех других участков ярем SHp и сечением стержней S находится в пределах 0.9 <(S cp . Ap . / S) <l, 3, the ratio between the steel cross section of all other sections of the yoke S Hp and the cross section of the rods S is within
0,7 < (S„p. /S) < 0,9, 0.7 <(S „ p. / S) <0.9,
соотношение между сечением стали всех частей магнитных шунтов Sm и сечением стержней S находится в пределах the ratio between the steel cross section of all parts of the magnetic shunts S m and the cross section of the rods S is within
0,07 < (Sm /S) < 0,3. 0.07 <(S m / S) <0.3.
Предлагаемый реактор с подмагничиванием поясняется чертежами. На фиг.1 приведена выемная часть реактора (магнитная система с обмотками) - вид спереди, на фиг.2 - то же, вид сверху, на фиг.З -то же, вид сбоку. На фиг.4 изображен ших- тованный из листов электротехнической стали основной магнитопровод, на фиг.5 - один из четырех шихтованных из листов электротехнической стали магнитных шунтов в виде прямоугольной трехоконной рамы. На фиг.6 показана электрическая схема реактора.  The proposed reactor with magnetization is illustrated by drawings. Figure 1 shows the withdrawal part of the reactor (a magnetic system with windings) - front view, figure 2 is the same, top view, figure 3 is the same side view. Figure 4 shows the main magnetic circuit burdened from sheets of electrical steel, figure 5 shows one of the four magnetic shunts burdened from sheets of electrical steel in the form of a rectangular three-window frame. Figure 6 shows the electrical circuit of the reactor.
Магнитная система реактора, шихтованная из листов электротехнической стали, состоит из основного магнитопровода и четырех магнитных шунтов.  The magnetic system of the reactor, laden from sheets of electrical steel, consists of a main magnetic circuit and four magnetic shunts.
Магнитопровод реактора (фиг.1-4) содержит шесть соосных стержней - три верхних 1, 2, 3 и три нижних 4, 5, 6. На каждом стержне размещена обмотка, со- стоящая из двух секций 7 и 8. Имеются два боковых вертикальных ярма 9 и 10, а также три горизонтальных ярма - верхнее ярмо 11, нижнее ярмо 72, и среднее ярмо 13. Сечение стали стержней - S, сечение стали всех ярем кроме среднего ярма - S„, сечение стали среднего ярма - Scp flp.. The magnetic core of the reactor (Figs. 1-4) contains six coaxial rods - three upper 1, 2, 3 and three lower 4, 5, 6. On each rod there is a winding consisting of two sections 7 and 8. There are two lateral vertical yokes 9 and 10, as well as three horizontal yokes - the upper yoke 11, the lower yoke 72, and the average yoke 13. The section of the steel of the rods is S, the section of the steel of all the yokes except the average yoke is S „, the section of the steel of the middle yoke is S cp fl p ..
Каждое из горизонтальных ярем 11, 12 и 13 имеет четыре участка: два край- них и два средних.  Each of the horizontal yards 11, 12 and 13 has four sections: two extreme and two middle.
Все участки среднего горизонтального ярма 13 имеют немагнитные зазоры 14 (величина зазора в средних участках Δ средн) и 15 (величина зазора в крайних участках Δ^,,). All sections of the average horizontal yoke 13 have non-magnetic gaps 14 (the size of the gap in the middle sections Δ average ) and 15 (the size of the gap in the extreme sections Δ ^ ,,).
Каждый из четырех магнитных шунтов 16 выполнен в виде прямоугольной трехоконной рамы (фиг. 5). Горизонтальные части шунтов расположены на торцах обмоток (между торцом обмотки 7 и 8 и прессующей балкой 17, фиг.З). Шунты 16 имеют две средние вертикальные части 18, расположенные между обмотками. Все части магнитных шунтов имеют сечение стали Sm .. Each of the four magnetic shunts 16 is made in the form of a rectangular three-window frame (Fig. 5). The horizontal parts of the shunts are located at the ends of the windings (between the end of the winding 7 and 8 and the pressing beam 17, Fig.Z). Shunts 16 have two middle vertical parts 18 located between the windings. All parts of magnetic shunts have a steel cross section S m. .
Электрическая схема реактора (фиг.6) содержит три ввода фаз сети А, В и С. Две секции 7 и 8 обмотки на верхнем стержне 1 фазы А имеют отводы А1-А2 и АЗ-А4, на нижнем соосном стержне 4 - отводы А5-А6 и А7-А8. Две секции рб- мотки на верхнем стержне 2 фазы В имеют отводы В1-В2 и ВЗ-В4, на нижнем со- осном стержне 5 - В5-В6 и В7-В8. Две секции обмотки на верхнем стержне 3 фазы С имеют отводы С1-С2 и СЗ-С4, на нижнем соосном стержне 6 - С5-С6 и С7-С8. The electrical circuit of the reactor (Fig.6) contains three input phase network A, B and C. Two sections 7 and 8 of the winding on the upper rod 1 of phase A have taps A1-A2 and AZ-A4, on the lower coaxial rod 4, taps A5-A6 and A7-A8. Two sections of the RB winder on the upper rod of phase 2 have taps B1-B2 and VZ-B4, on the lower coaxial rod 5 - B5-B6 and B7-B8. Two sections of the winding on the upper rod 3 of phase C have taps C1-C2 and C3-C4, on the lower coaxial rod 6 - C5-C6 and C7-C8.
Обмотки соединены в схему двух треугольников и подсоединены к трем вводам фаз сети А, В я С.  The windings are connected in a circuit of two triangles and connected to the three inputs of the phases of the network A, B and C.
Между каждыми двумя секциями обмоток каждого стержня включен преоб- разователь, состоящий из параллельно включенных диода Д и резистора R: между отводами А2 и A3 включен преобразователь П, между отводами А6 и А7 - преоб- разователь П, между отводами В2 и ВЗ - преобразователь П, между отводами Вб и В7— преобразователь П, между отводами С2 и СЗ - преобразователь Пю между отводами Сб и С 7 - преобразователь П · Клеммы преобразователей обо- значены так же, как и отводы частей обмоток, с которыми они соединены. Во всех 6-ти преобразователях диоды Д и резисторы R одинаковы. Between each two sections of the windings of each rod, a converter is turned on, consisting of a diode D and a resistor R connected in parallel: converter P 1A is connected between taps A2 and A3, converter P 2A is connected between taps A6 and A7, and B2 and B3 are tapped between taps A6 and A7 converter P] B, and Wb between the taps V7- P converter 2B, C2 and between the taps SOC - UR converter between the taps Sa and C 7 - transducer n · 2C terminals converters notation means the same as the windings of the taps, which they are connected. In all 6 converters, the diodes D and the resistors R are the same.
Между системой управления (СУ) и преобразователями установлены изоли- рующие трехобмоточные трансформаторы ТА, Тв и Тс. Каждая первичная секцио- нированная обмотка трансформатора подсоединена своими выводами (Ум-Угл. У в- У2в и У]с-У2с) к СУ. Каждая из двух вторичных обмоток соединена с отводами сек- ций обмоток управления и клеммами преобразователей. У трансформатора ТА одна вторичная обмотка соединена с отводами А2 и А6 и одновременно с клеммами преобразователя А2 и А6, вторая - с отводами A3 и А7 и одновременно с клеммами преобразователя A3 и А7. У трансформатора Тв одна вторичная обмотка соединена с отводами В2 и Вб и клеммами В2 ιι Β6 , вторая - с отводами ВЗ и В7 и клеммами ВЗ и 57. У трансформатора Тс одна вторичная обмотка соединена с отводами С 2 и С6 и клеммами С2 и Сб , вторая - с отводами СЗ и С7 и клеммами СЗ и С 7. Between the control system (SU) and the converters, insulating three-winding transformers Т А , Т в and Т с are installed. Each primary sectioned winding of the transformer is connected by its terminals (Um-Ugl. U v-U 2 v and U] s-U 2 s) to the control system. Each of the two secondary windings is connected to the taps of the sections of the control windings and the terminals of the converters. The transformer T A has one secondary winding connected to the taps A2 and A6 and simultaneously with the terminals of the transducer A2 and A6, the second one is connected to the taps A3 and A7 and simultaneously with the terminals of the transducer A3 and A7. At transformer T in one, the secondary winding is connected to bends B2 and Bb and terminals B2 ιι Β6, the second to bends ВЗ and В7 and terminals ВЗ and 57. At transformer T с, one secondary winding is connected to bends С 2 and С6 and terminals C2 and Sat, the second - with taps SZ and S7 and terminals SZ and S 7.
Преобразователи и изолирующие трансформаторы размещаются на сбороч- ной панели 19, закрепленной на выемной части (фиг.2). Выемная часть - магнитная система реактора (магнитопровод и шунты) с обмотками и конструктивными эле- ментами запрессовки - размещается в баке с маслом.  Converters and isolation transformers are placed on the assembly panel 19, mounted on the withdrawal part (figure 2). The extraction part — the reactor magnetic system (magnetic core and shunts) with windings and structural fittings — is placed in the oil tank.
Рассмотрим работу реактора. Реактор подключается к трехфазной сети вводами А, В и С, на обмотки ре- актора подается напряжение сети. Consider the operation of the reactor. The reactor is connected to the three-phase network by inputs A, B and C, the mains voltage is supplied to the reactor windings.
Для перевода реактора в режим минимальной мощности - режим холостого хода - система управления СУ обеспечивает на выводах У]А~ У2А, У1В- У2В и У1С- 2С минимальное сопротивление. Так как изолирующие трансформаторы ТА, Тв и Тс оказываются при этом в режиме короткого замыкания, а их сопротивление рассея- ния мало, отводы секций обмоток А2 и A3, Аб и А7, В2 и ВЗ , В6 и В7, С 2 и СЗ, С6 и С7 оказываются практически попарно закороченными. При этом каждый из пре- образователей П и П2А , П и П , П и П практически закорачивается, и под- магничивание стержней магнитопровода отсутствует. To transfer the reactor to the minimum power mode - idle mode - the control system of the control system provides at the terminals U] A ~ U2A, U1V-U2V and U1S-2C the minimum resistance. Since the insulating transformer T A, T B and T c are thus short-circuited, and their resistance to scattering of small outlets sections A2 and A3 windings, Ab and A7, B2 and OT, B6 and B7, C 2 and SZ, C6 and C7 are almost pairwise shorted. Moreover, each of the converters P 1A and P 2 A, P 1B and P 2B , P ] C and P 2C is practically short-circuited, and there is no magnetization of the cores of the magnetic circuit.
В случае, когда система управления СУ к отводам У1А- У2А, У1В- У2В И У1С- У2С подсоединяет максимальное сопротивление, реактор переходит в режим макси- мальной мощности - режим полнопериодного насыщения стержней. Это происхо- дит из-за того, что к отводам секций обмоток А2 и АЗ, А6 и А7, В2 и ВЗ , В6 и В7, С2 и СЗ, С6 и С7 подключаются диоды Д преобразователей П , П2А , П , П ,
Figure imgf000006_0001
In the case when the control system of the control system connects the maximum resistance to the U1A-U2A, U1V-U2V, and U1S-U2S taps, the reactor switches to the maximum power mode - full-time saturation of the rods. This is due to the fact that the diodes D of the converters P 1L , P 2 A, P 1V are connected to the taps of the sections of the windings A2 and AZ, A6 and A7, B2 and VZ, V6 and V7, C2 and SZ, C6 and C7 , P 2V ,
Figure imgf000006_0001
Промежуточные режимы от режима холостого хода до режима максималь- ной мощности обеспечиваются системой управления СУ по заданной программе (например, для стабилизации напряжения сети) или при ручной регулировке. При этом режим номинальной мощности, как правило, задается для одного из промежу- точных режимов - режима реактора с полупериодным насыщением. В этом режиме сталь каждого стержня реактора находится в насыщенном состоянии половину пе- риода. Для такого режима характерны не только минимальные (теоретически нуле- вые) искажения тока реактора высшими гармониками, но и оптимальная затрата активных материалов и оптимальные потери в обмотках.  Intermediate modes from idle to maximum power are provided by the control system of the control system according to a given program (for example, to stabilize the mains voltage) or during manual adjustment. In this case, the rated power mode, as a rule, is set for one of the intermediate modes - the half-period saturation reactor mode. In this mode, the steel of each core of the reactor is in a saturated state for half a period. Such a regime is characterized not only by minimal (theoretically zero) distortions of the reactor current by higher harmonics, but also by the optimal consumption of active materials and optimal losses in the windings.
Между СУ (она расположена на пульте управления в помещении) и преобра- зователями установлены изолирующие трансформаторы, обеспечивающие отсутст- вие гальванической связи и повышенную безопасность персонала и низковольтной аппаратуры от возможного попадания на СУ высокого напряжения сети (например, при аварийных ситуациях). Преобразователи вместе с изолирующими трансфор- маторами размещены на панели 19 в баке реактора, находящегося на открытой площадке подстанции. В участках среднего горизонтального ярма 13 магнитопровода выполнены немагнитные зазоры 14 и 75. Эти зазоры необходимы для того, чтобы расширить пределы регулирования мощности реактора. Величина немагнитных зазоров долж- на быть минимальной, при проектировании реактора выбирается из технологиче- ских возможностей производства и обычно составляет доли или единицы милли- метров. Isolation transformers are installed between the control system (it is located on the control panel in the room) and the converters, which ensure the absence of galvanic communication and increased safety of personnel and low-voltage equipment from possible high-voltage supply to the control system (for example, in emergency situations). The converters, together with isolating transformers, are located on panel 19 in the reactor tank located in the open area of the substation. Non-magnetic gaps 14 and 75 are made in the sections of the average horizontal yoke 13 of the magnetic circuit. These gaps are necessary in order to expand the limits of regulation of the reactor power. The magnitude of non-magnetic gaps should be minimal; when designing a reactor, it is selected from the technological capabilities of production and usually amounts to fractions or units of millimeters.
В магнитопроводе величина немагнитного зазора в крайних участках сред- него ярма Акрайн. должна быть меньше величины немагнитного зазора в средних участках этого ярма Асредн в (1,5-^3) раза, т.е. In the magnetic circuit, the magnitude of the nonmagnetic gap in the extreme sections of the average yoke A is extreme . should be less than the non-magnetic gap in the middle sections of this yoke A average (1.5- ^ 3) times, i.e.
1,5 < (Асредн /(Акрайн) < 3. 1.5 <(A sredn / (A krayn ) <3.
Верхняя граница не должна быть превышена, иначе магнитный поток рас- сеяния в крайних вертикальных частях шунта будет снижен, а в средних будет увеличен. Также должна быть соблюдена нижняя граница, иначе магнитный поток рассеяния будет увеличен в вертикальных крайних частях шунта, в средних верти- кальных частях шунта будет снижен. Выполнение оптимального соотношения раз- меров зазоров позволяет получить благоприятное распределение магнитных ин- дукций по стержням, ярмам и шунтам, а также минимальный расход стали при максимальной эффективности шунтов с точки зрения разгрузки основного магни- топровода реактора и снижения добавочнбых потерь в элементах конструкции и стенке бака.  The upper boundary should not be exceeded, otherwise the magnetic flux of scattering in the extreme vertical parts of the shunt will be reduced, and in the middle it will be increased. The lower boundary must also be observed, otherwise the magnetic flux of scattering will be increased in the vertical extreme parts of the shunt, in the middle vertical parts of the shunt will be reduced. Fulfillment of the optimum ratio of the gap sizes allows one to obtain a favorable distribution of magnetic induction over the rods, yokes, and shunts, as well as the minimum steel consumption at the maximum shunt efficiency in terms of unloading the main magnet core of the reactor and reducing additional losses in the structural elements and tank wall .
Важное значение имеет выбор площади сечения стали всех участков магни- топровода.  Of great importance is the choice of the cross-sectional area of steel for all sections of the magnet wire.
Соотношение между сечением стали участков среднего ярма Scp и сече- нием стержней S должно быть выбрано в пределах The ratio between the steel cross section of the sections of the average yoke S cp and the cross section of the rods S should be chosen within
0,9 < (Scp p /S) < l,3. 0.9 <(S cp p / S) <l, 3.
Соотношение между сечением стали всех других участков ярем S„p. и сече- нием стержней S - должно быть выбрано в пределах The relationship between the cross section of the steel of all other sections with the S „ p . and the cross section of the rods S - must be selected within
0, 7 < (SV. /S) < 0,9. 0.7 <(S V. / S) <0.9.
Если сечение стали ярем превышает максимальную границу, то реактор по- лучается с увеличенным расходом стали в ярмах. Если сечение стали ярем менее минимального значения, то в ярмах реактора в определенных режимах его работы возникает насыщение стали. Это ведет к неблагоприятным явлениям - возрастанию добавочных потерь на вихревые токи в элементах конструкции, увеличению нели- нейных искажений в токе реактора. If the cross section of steel with a yoke exceeds the maximum boundary, then the reactor is obtained with an increased consumption of steel in yokes. If the steel cross section of the yoke is less than the minimum value, then steel saturation occurs in the reactor yokes in certain modes of its operation. This leads to adverse events - an increase additional losses due to eddy currents in structural elements, an increase in nonlinear distortions in the reactor current.
Магнитные шунты 16 эффективно «канализируют» магнитный поток рас- сеяния, который возникает при протекании в обмотках тока, т.е. во всех режимах при подмагничивании стержней. Магнитный поток рассеяния циркулирует в осе- вом направлении внутри обмоток и замыкается по ярмам магнитной системы и по магнитным шунтам. Если магнитные шунты 16 отсутствуют, то магнитный поток замыкается по элементам конструкции и стенке бака, вызывая в них вихревые токи, добавочные потери и недопустимые нагревы. Для эффективного замыкания маг- нитного потока в шунтах предусмотрены средние продольные вертикальные участ- ки 18, расположенные между обмотками. Эти два дополнительных (по сравнению с прототипом) вертикальных участка необходимы для оптимального распределения магнитных потоков рассеяния и снижения общего расхода стали в шунтах и магни- топроводе.  Magnetic shunts 16 effectively “channelize” the scattering magnetic flux that occurs when current flows in the windings, i.e. in all modes when magnetizing rods. The scattering magnetic flux circulates axially inside the windings and closes by the yokes of the magnetic system and by magnetic shunts. If there are no magnetic shunts 16, then the magnetic flux closes along the structural elements and the tank wall, causing eddy currents, additional losses and unacceptable heating in them. For effective magnetic flux closure, shunts have middle longitudinal vertical sections 18 located between the windings. These two additional (in comparison with the prototype) vertical sections are necessary for the optimal distribution of magnetic fluxes of scattering and to reduce the total consumption of steel in shunts and magnetic core.
Сечение стали магнитных шунтов должно быть тем больше, чем больше ра- диальный размер обмоток, т.к. при нагрузке реактора возникает увеличенный маг- нитный поток рассеяния (по сравнению с магнитным потоком в стержнях и ярмах магнитопровода в режиме холостого хода).  The steel cross section of magnetic shunts should be the larger, the larger the radial size of the windings, because when the reactor is loaded, an increased magnetic flux of scattering occurs (in comparison with the magnetic flux in the rods and yokes of the magnetic circuit in idle mode).
Соотношение между сечением стали всех частей каждого из магнитных шунтов S,JJ и сечением стержней S должно быть выбрано в пределах The ratio between the steel cross section of all parts of each of the magnetic shunts S, JJ and the cross section of the rods S should be selected within
0,07 < (Sw /S) < 0,3. 0.07 <(S w / S) <0.3.
Если сечение стали магнитных шунтов выбрать больше максимальной вели- чины заданного соотношения, то получается перерасход стали. Если сечение стали шунтов меньше минимального значения, то шунты становятся мало эффективными и не экранируют поток рассеяния обмоток. Это ведет к неблагоприятным явлениям - возрастанию магнитной индукции в магнитопроводе, основных потерь в стали и добавочных потерь в элементах конструкции.  If the steel cross section of the magnetic shunts is chosen to be larger than the maximum value of the given ratio, then an overspending of steel is obtained. If the steel cross section of the shunts is less than the minimum value, then the shunts become ineffective and do not shield the scattering flux of the windings. This leads to adverse phenomena - an increase in magnetic induction in the magnetic circuit, the main losses in steel and additional losses in structural elements.
Предложенная усовершенствованная по сравнению с прототипом «трех- оконная» конструкция шунтов обеспечивает оптимальное распределение магнит- ных потоков реактора, а, следовательно, и оптимальный расход стали в магнитной системе. Все рассмотренные пределы оптимальных соотношений размеров были оп- ределены в результате анализа многочисленных расчетов на математических моде- лях управляемых подмагничиванием реакторов в широком диапазоне варьирования их параметров. В случае необходимости экспертизе могут быть предоставлены подробные результаты этих расчетов. The proposed “three-window” shunt design improved in comparison with the prototype provides an optimal distribution of the magnetic fluxes of the reactor, and, consequently, an optimal consumption of steel in the magnetic system. All the considered limits of optimal size ratios were determined as a result of the analysis of numerous calculations on mathematical models controlled by magnetization of reactors in a wide range of variation of their parameters. If necessary, the examination can be provided with the detailed results of these calculations.
Высоковольтный реактор обычно выполняется с масляным охлаждением. Выемная часть - магнитная система реактора (магнитопровод и шунты) с обмотка- ми и конструктивными элементами запрессовки - размещается в баке с маслом, а вводы реактора - на крышке бака. Преобразователи и изолирующие трансформато- ры размещаются в том же баке на сборочной панели, укрепленной на выемной час- ти.  A high voltage reactor is typically oil cooled. The extraction part — the reactor magnetic system (magnetic core and shunts) with windings and press fittings — is located in the oil tank, and the reactor inlets are on the tank cover. Converters and isolation transformers are located in the same tank on an assembly panel mounted on a removable part.
Работоспособность предлагаемого реактора и его высокие технико- экономические показатели подтверждены расчетами, физическим моделированием, результатами испытаний опытных образцов аналогичных конструкций. В предло- женном реакторе по сравнению с аналогами и прототипом уменьшен расход стали, снижены потери, увеличена надежность, а также трудозатраты при изготовлении, снижены габариты и масса. На ближайшее время намечено изготовление опытных образцов для серийного производства.  The operability of the proposed reactor and its high technical and economic indicators are confirmed by calculations, physical modeling, test results of prototypes of similar designs. Compared to analogues and prototype, the proposed reactor has reduced steel consumption, losses, reliability, labor costs in manufacturing, and dimensions and weight have been reduced. In the near future it is planned to manufacture prototypes for mass production.
ЛИТЕРАТУРА LITERATURE
1. Брянцев A.M. «Электрический реактор с подмагничиванием». Патент РФ JYO RU 2324251 , заявка: 2006146290/09, 26.12.2006 .Опубликовано: 10.05.2008. 1. Bryantsev AM "Electric reactor with magnetization." RF patent JY O RU 2324251, application: 2006146290/09, 12/26/2006. Published: 05/10/2008.
2. Брянцев A.M. «Электрический реактор с подмагничиванием». Патент РФ JYO RU 2324250, заявка: 2006145299/09, 20.12.2006 .Опубликовано: 10.05.2008.  2. Bryantsev A.M. "Electric reactor with magnetization." RF patent JYO RU 2324250, application: 2006145299/09, 12.20.2006. Published: 05.10.2008.

Claims

ФОРМУЛА ИЗОБРЕТЕНИЯ CLAIM
Электрический трехфазный реактор с подмагничиванием, магнитная система которого выполнена из шихтованных листов электротехнической стали и содержит магнитопровод с соосно расположенными тремя верхними и тремя нижними вер- тикальными стержнями, на которых размещены двухсекционные обмотки, верхние, нижние и средние горизонтальные и два боковых вертикальных ярма, причем гори- зонтальные ярма имеют два средних и два крайних участка, четыре магнитных шунта в виде прямоугольных рам с горизонтальными и вертикальными участками, причем горизонтальные участки шунтов расположены на торцах обмоток вдоль верхнего, среднего и нижнего ярем, а замыкающие их вертикальные участки рас- положены вдоль боковых ярем, а также реактор содержит управляемые полупро- водниковые преобразователи из диодов и резисторов и систему управления, при- чем упомянутые обмотки соединены с трехфазной сетью и с преобразователями, отличающийся тем, что в реактор введены трехобмоточные изолирующие транс- форматоры, установленные между преобразователями и системой управления, в участках среднего горизонтального ярма магнитопровода выполнены немагнитные зазоры, каждый магнитный шунт имеет два дополнительных вертикальных участ- ка, расположенных между обмотками, соотношение величин немагнитных зазоров магнитопровода в крайних участках среднего ярма Лкрайн и величин немагнитных зазоров в средних участках среднего ярма Асредн составляет An electric three-phase magnetization reactor, the magnetic system of which is made of charged sheets of electrical steel and contains a magnetic circuit with coaxially arranged three upper and three lower vertical rods, on which two-section windings, upper, lower and middle horizontal and two lateral vertical yokes are placed, The horizontal yokes have two middle and two extreme sections, four magnetic shunts in the form of rectangular frames with horizontal and vertical sections, and the horizontal the on-site sections of the shunts are located at the ends of the windings along the upper, middle, and lower yokes, and the vertical sections closing them are located along the side yards, and the reactor also contains controllable semiconductor converters of diodes and resistors and a control system, the windings being connected with a three-phase network and with converters, characterized in that three-winding isolating transformers installed between the converters and the control system in mid-horizon sections are introduced into the reactor For the magnetic yoke of the magnetic core, non-magnetic gaps are made, each magnetic shunt has two additional vertical sections located between the windings, the ratio of the values of the non-magnetic gaps of the magnetic core in the extreme parts of the average yoke Lcr Ain and the values of non-magnetic gaps in the middle parts of the average yoke A, the average
1 5 < (Дсредн.
Figure imgf000010_0001
1 5 <(Avg.
Figure imgf000010_0001
соотношение между сечением стали средних участков средних ярем 8ср.яр. и сече- нием стержней S находится в пределах the ratio between the steel section of the middle sections of the middle jugle 8 sr. and the cross section of the rods S is within
0,9 < (Scp.ap. /S) < l,3, 0.9 <(S cp.ap. / S) <l, 3,
соотношение между сечением стали всех других участков ярем Sap. и сечением стержней S находится в пределах the ratio between the steel cross section of all other sections of the core S ap . and the cross section of the rods S is within
0,7 < (Sap. /S) < 0,9, 0.7 <(S ap . / S) <0.9,
соотношение между сечением стали всех частей магнитных шунтов Sm и сечением стержней S находится в пределах the ratio between the steel cross section of all parts of the magnetic shunts S m and the cross section of the rods S is within
0,07 < (Sm /S) < 0,3. 0.07 <(S m / S) <0.3.
PCT/RU2010/000820 2010-04-14 2010-12-31 Three-phase electrical reactor with magnetic biasing WO2011129717A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
UAA201210464A UA102354C2 (en) 2010-04-14 2010-12-31 Electric three-phase transductor reactor
EP10849930.2A EP2560174A4 (en) 2010-04-14 2010-12-31 Three-phase electrical reactor with magnetic biasing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2010114824 2010-04-14
RU2010114824/07A RU2418332C1 (en) 2010-04-14 2010-04-14 Electric three-phase inductor with magnetic bias

Publications (1)

Publication Number Publication Date
WO2011129717A1 true WO2011129717A1 (en) 2011-10-20

Family

ID=44732800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2010/000820 WO2011129717A1 (en) 2010-04-14 2010-12-31 Three-phase electrical reactor with magnetic biasing

Country Status (4)

Country Link
EP (1) EP2560174A4 (en)
RU (1) RU2418332C1 (en)
UA (1) UA102354C2 (en)
WO (1) WO2011129717A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2486619C1 (en) * 2012-02-07 2013-06-27 Александр Михайлович Брянцев Electric three-phase inductor with magnetic bias
IL225693A0 (en) * 2013-04-11 2013-09-30 Eliezer Adar Three phase choke and methods of their manufacturing
CN103745813A (en) * 2013-12-20 2014-04-23 保定天威保变电气股份有限公司 External circulation bypass structure between converter transformer core pulling plate columns
RU2630253C2 (en) * 2015-06-19 2017-09-06 Иван Николаевич Степанов Electrical magnetization reactor
DE102016122435A1 (en) * 2016-11-22 2018-05-24 Wobben Properties Gmbh Wind turbine and 3-phase throttle unit
RU2659820C1 (en) * 2017-07-13 2018-07-04 Илья Николаевич Джус Seven-rod three-phase magnified reactor
RU2682648C1 (en) * 2017-11-10 2019-03-20 Иннокентий Иванович Петров Electric reactor controlled by magnetization
RU2690662C1 (en) * 2018-05-25 2019-06-05 Илья Николаевич Джус Controlled shunting reactor (versions)
RU2701150C1 (en) * 2019-01-28 2019-09-25 Илья Николаевич Джус Controlled reactor-compensator (versions)
RU2701144C1 (en) * 2019-01-28 2019-09-25 Илья Николаевич Джус Controlled shunting reactor
RU2700569C1 (en) * 2019-03-26 2019-09-18 Илья Николаевич Джус Controlled reactor with independent magnetization
US20230386737A1 (en) * 2020-10-26 2023-11-30 Siemens Energy Global GmbH & Co. KG Compensation structure for reducing circulating current in window of transformer and transformer comprising compensation structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1164795A1 (en) * 1983-06-01 1985-06-30 Алма-Атинский Энергетический Институт Electric induction device
RU2269175C1 (en) * 2004-07-13 2006-01-27 Александр Михайлович Брянцев Saturable electrical reactor
RU2324250C1 (en) 2006-12-20 2008-05-10 Александр Михайлович Брянцев Electrical reactor with magnetic biasing
RU2324251C1 (en) 2006-12-26 2008-05-10 Александр Михайлович Брянцев Electrical reactor with magnetic biasing

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1417576A (en) * 1972-11-07 1975-12-10 Inductotherm Corp Saturable core reactor
DE3305708A1 (en) * 1983-02-18 1984-08-23 Transformatoren Union Ag, 7000 Stuttgart THREE-PHASE THROTTLE COIL WITH FIFTH LEG CORE

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1164795A1 (en) * 1983-06-01 1985-06-30 Алма-Атинский Энергетический Институт Electric induction device
RU2269175C1 (en) * 2004-07-13 2006-01-27 Александр Михайлович Брянцев Saturable electrical reactor
RU2324250C1 (en) 2006-12-20 2008-05-10 Александр Михайлович Брянцев Electrical reactor with magnetic biasing
RU2324251C1 (en) 2006-12-26 2008-05-10 Александр Михайлович Брянцев Electrical reactor with magnetic biasing

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2560174A4 *

Also Published As

Publication number Publication date
EP2560174A4 (en) 2018-01-24
UA102354C2 (en) 2013-06-25
RU2418332C1 (en) 2011-05-10
EP2560174A1 (en) 2013-02-20

Similar Documents

Publication Publication Date Title
WO2011129717A1 (en) Three-phase electrical reactor with magnetic biasing
EP2441077B1 (en) A versatile distribution transformer
US6335872B1 (en) Nine-phase transformer
US11848602B2 (en) Circuit assembly, electrolysis device, and method for operating a circuit assembly or an electrolysis device
WO2017221253A1 (en) Three-phase transformer
CN107749726A (en) A kind of GIS detecting current transformers flow up device and up-flow calibrating circuit with high current
Zhu et al. Power transformer design practices
Shaarbafi Transformer modelling guide
DE102019121287A1 (en) SMOOTHING AND CURRENT LIMITING THROTTLE FOR FILTER DEVICE OF THE TRAIN TRACTION SUBSTATION
JP2022033814A (en) Harmonic filter using semi-magnetic bobbin
JP2021197545A (en) Transformer
CN205264454U (en) Traction transformer
Nakamura et al. Basic characteristics of lap-winding type three-phase laminated-core variable inductor
US9583252B2 (en) Transformer
Oh et al. Preliminary design of the ITER AC/DC converters supplied by the Korean Domestic Agency
RU2486619C1 (en) Electric three-phase inductor with magnetic bias
CN209216746U (en) A kind of inverse Scott Transformer
CN207367754U (en) A tractor serves several purposes dry-type transformer
RU2340975C1 (en) Three-phase electric reactor with magnetisation
Ibatullayeva Power Transformers in Electrical Transmission and Distribution Grids
CN111446074A (en) Transformer device
Das et al. Optimal design and experimental validation of a novel line-frequency zig-zag transformer employed in a unified ac-dc system
Das et al. Efficiency characterization and optimal power sharing in a unified ac-dc system employing a line-frequency zig-zag transformer with high winding leakage inductance
CN215342240U (en) Three-phase transformer applied to power distribution network and capable of independently regulating voltage of each phase
Chaw et al. Design comparison for rectangular and round winding distribution transformer (1000 kVA)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10849930

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: A201210464

Country of ref document: UA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010849930

Country of ref document: EP