WO2011129478A1 - 양손 임피던스를 이용한 심박출량 모니터링장치 및 방법 - Google Patents

양손 임피던스를 이용한 심박출량 모니터링장치 및 방법 Download PDF

Info

Publication number
WO2011129478A1
WO2011129478A1 PCT/KR2010/002676 KR2010002676W WO2011129478A1 WO 2011129478 A1 WO2011129478 A1 WO 2011129478A1 KR 2010002676 W KR2010002676 W KR 2010002676W WO 2011129478 A1 WO2011129478 A1 WO 2011129478A1
Authority
WO
WIPO (PCT)
Prior art keywords
icg
data
current
impedance
ecg
Prior art date
Application number
PCT/KR2010/002676
Other languages
English (en)
French (fr)
Inventor
조승현
이종수
이계형
윤형로
심명헌
정상오
정운모
김민용
Original Assignee
(주)누가의료기
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)누가의료기, 연세대학교 산학협력단 filed Critical (주)누가의료기
Publication of WO2011129478A1 publication Critical patent/WO2011129478A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/029Measuring or recording blood output from the heart, e.g. minute volume

Definitions

  • the present invention relates to a cardiac output monitoring system capable of extracting parameters used to evaluate overall circulatory function by measuring electrical impedance of a living body, and more particularly, to measure a bioelectrical impedance through a hand grip electrode.
  • the cardiac output using two-handed impedance can solve the constraints of the existing circulatory function test by detecting the impedance change at each cardiac cycle and calculating the cardiac output from the cardiac cycle.
  • a monitoring device and method are provided.
  • Cardiac output is the amount of blood per minute that enters the body through the heartbeat. It is an indicator that reflects not only heart function but also the state of the entire circulatory system, and is controlled through autonomous control of systemic tissue. Therefore, in the treatment of patients, the direction and method of treatment are determined in consideration of blood pressure, left ventricular filling pressure, cardiac output, and systemic vascular resistance. The measurement of cardiac output can yield many indicators that reflect the function of the entire circulatory system. Using cardiac output, central venous pressure, and blood pressure, systemic vascular resistance can be determined.
  • the method of measuring cardiac output using impedance is somewhat inferior to the invasive method, but it is safe, cost-effective and highly efficient because the continuous technology development can obtain similar values to the invasive method. It has the advantage of easy and low test time, and also has the advantage of continuously measuring hemodynamic indicators that change with each heartbeat.
  • Non-invasive impedance cardiograpy (hereinafter referred to as ICG) measurement method currently used in the clinic uses a spot type electrode (spot ECG electrode) or a band type electrode as shown in FIG.
  • spot ECG electrode spot ECG electrode
  • band type electrode a band type electrode
  • four pairs of electrodes are attached to the neck and thoracic apex, and a constant current is injected from the outer two pairs of electrodes, and the differential voltage therebetween is measured through the inner two pairs of electrodes.
  • the measured impedance changes are due to changes in blood volume due to contraction and relaxation of the heart in the aorta at every cardiac cycle.
  • the heart rate measurement method has the advantage of complementing the invasive method, which is a conventional cardiac output measurement method, but it is cumbersome to attach the electrode to the chest, and complete unrestrained by the trouble of the lead due to the electrode attachment. It's not a natural way.
  • the technical problem to be solved by the present invention by using a hand grip type electrode, by measuring the cardiac output once through the impedance change for each cardiac cycle, and obtain a high-resolution circulatory system function evaluation data non-invasive mechanical function of the heart Cardiac output using two-handed impedance, which provides convenience to patients and operators by minimizing the restraint by electrode attachment to existing chests and can be applied to home health care system to easily diagnose cardiac output at home. It is to provide a monitoring device and method.
  • Another technical problem to be solved by the present invention is to measure the electrocardiogram (ECG) synchronously with the heart rate (ICG) heart using the two-hand impedance to be used to determine the hemodynamic function of the heart according to the waveform of the ICG and ECG It is an object of the present invention to provide an apparatus and a method for monitoring a discharge amount.
  • ECG electrocardiogram
  • ICG heart rate
  • One embodiment of the device of the present invention for achieving the above object is made of a hand grip type mounted on the hand of one side, the first current electrode (CH) for supplying a fine current and the first voltage electrode for detecting a voltage (
  • a first differential amplifier configured to differentially amplify a potential difference measured at the voltage electrode of the first impedance measurer and the voltage electrode of the second impedance measurer to output a difference value of an impedance signal for two points of the human body;
  • An ICG signal preprocessing unit converting the potential difference amplified by the differential amplifier into a direct current form and filtering to remove only a direct current component to detect ICG (non-invasive impedance heartbeat) data; heart rate monitoring using two-handed impedance Device.
  • the ICG signal preprocessor includes: an AC / DC converter for converting a potential difference amplified by the differential amplifier into a direct current form; A direct current component remover including a low pass filter and a second differential amplifier for low frequency filtering and amplifying an output signal from the AC / DC converter at a cutoff frequency of 0.03 Hz to remove only the direct current component included in the DC signal; And a high pass / low pass filtering unit configured to sequentially pass a high pass filter having a cutoff frequency of 0.03 Hz and a low pass filter having a cutoff frequency of 30 Hz to sequentially remove the DC component output from the DC component remover.
  • the ICG signal preprocessor further includes an inverting amplifier for inverting and amplifying the output of the high pass / low pass filtering unit.
  • the cardiac output monitoring device further includes an ECG detector, wherein the ECG detector includes a potential difference and a second current measured by the first voltage electrode VH and the second voltage electrode VL of the second measurement unit.
  • a third differential amplifier for differentially amplifying the amount of current measured at the electrode CL;
  • an ECG signal preprocessor configured to detect ECG data by filtering and amplifying the output signal in the third differential amplifier.
  • the ECG signal preprocessor includes: a high pass filter for high pass filtering the potential difference and the amount of current differentially amplified by the third differential amplifier at a cutoff frequency of 0.03 Hz; A low pass filter for low pass filtering the output signal of the high pass filter at a cutoff frequency of 130 Hz; And an inverting amplifier for inverting and amplifying the output of the low pass filter.
  • the cardiac output monitoring device may include: a high level digital converter configured to convert ICG data output from the ICG signal preprocessor or ECG data output from the ECG signal preprocessor into a high level digital signal; A main control unit extracting a parameter for evaluating a circulatory system function from ICG data output from the ICG signal preprocessor; And a display unit which is operated by the control of the main control unit and displays the detected ICG data and the parameters calculated by the main control unit.
  • the main controller detects feature points related to two neighboring peak values, a minimum value between two peak values, and a code conversion point from differential waveforms by performing high-pass filtering and first-order differentiation of ICG data output from the ICG signal preprocessor.
  • Left ventricular ejection time (LVET), stroke volume, and cardiac output which are parameters for circulatory function evaluation, are calculated from the time values between the feature points.
  • Another embodiment of the device of the present invention for achieving the above object is a current providing unit for generating an electrical impedance of the living body by introducing a current into the measurement site through each current electrode of the hand grip type, generated in the measurement site by the current inlet
  • An ICG detector for detecting ICG data according to a change in electrical impedance of a living body by measuring the potential difference through each voltage electrode, a main controller for controlling the operation of the ICG detector, and extracting a parameter for evaluating the overall circulatory function from the ICG data;
  • An apparatus for monitoring cardiac output using a two-handed impedance which is operated by control of the main controller and includes a display unit displaying ICG data and parameters calculated by the main controller.
  • the potential difference and the amount of current drawn in the measurement site by the current draw is measured through the respective voltage electrode and current electrode
  • an ECG detector for detecting ECG data for evaluation of the hemodynamic function of the heart according to the change in the electrical impedance of the living body, and the main control part controls the operation of the ICG detector and the ECG detector, as well as the entire circulatory system from the ICG data and the ECG data.
  • It is a cardiac output monitoring device using two-handed impedance that has the characteristics of extracting the function and parameters for the evaluation of mechanical function of the heart, respectively.
  • One embodiment of the method of the present invention for achieving the above object is an ICG detector for detecting ICG data for circulatory function evaluation by measuring the potential difference by the current input, extracting a plurality of parameters for circulatory function evaluation from the ICG data
  • a cardiac output monitoring method in an ICG inspection apparatus having a main control unit wherein the ICG detection unit includes a base impedance and a circulatory function evaluation element of the measurement site from both hands of the subject through current input and voltage measurement through each electrode.
  • Is a cardiac output monitoring methods using both hands impedance.
  • ICG detection unit for detecting ICG data for circulatory function evaluation by measuring the potential difference by the current inlet, blood flow of the heart through the potential difference and current input amount measurement by the current inlet
  • ECG detector for detecting ECG data for evaluation of mechanical function
  • ICG and ECG test apparatus equipped with a main controller for extracting a plurality of parameters for circulatory function evaluation or hemodynamic function evaluation of the heart from the ICG data and ECG data
  • ICG detection step of detecting the ICG data including the base impedance and the circulatory system function evaluation elements of the measurement site from the two hands of the subject through current input and voltage measurement through each electrode in the ICG detector Current draw and voltage through each electrode in ECG detector
  • ECG detection step of detecting ECG data including hemodynamic function evaluation elements of the heart of the measurement site from both hands of the subject through measurement, and firstly differentiating the ICG data and then applying two neighboring peaks from the differentiated waveform.
  • the cardiac output can be monitored by measuring the two-hand impedance through the hand grip type electrode, thereby minimizing discomfort due to the electrode attachment to the chest. Therefore, there is an advantage in that it is possible to derive the same experiment and measurement results as the existing method while providing maximum convenience to the operator and the user.
  • the present invention has the advantage of being able to self-diagnose the abnormality of cardiac function easily at home without using a hospital by applying to a home health care system that has been widely studied recently, and since it uses a semi-permanent hand grip electrode It is possible to minimize the economic loss of using a point type electrode or a band type electrode.
  • 1 and 2 are reference diagrams illustrating a conventional non-invasive ICG measurement method and a graph illustrating the detection result accordingly.
  • FIG. 3 is a block diagram illustrating the overall configuration of a cardiac output monitoring device using two-hand impedance according to the present invention.
  • FIG. 4 is a state diagram illustrating the use of the electrode of FIG. 3 in the form of a hand grip.
  • FIG. 5 is a detailed view of the ICG detector and ECG detector of FIG. 3.
  • 6 and 7 are algorithm flow charts for deriving cardiac output from ICG data detected through impedance measurement according to the present invention.
  • FIG. 8 is a reference graph exemplified to explain the daily ejection amount and cardiac output amount and the mechanical function of the heart in the ICG measured by the present invention.
  • FIG. 3 is a block diagram schematically showing the overall configuration of the cardiac output monitoring device using the two-hand impedance according to an embodiment of the present invention
  • Figure 4 is a state diagram using the electrode of Figure 3 in the form of a hand grip
  • 5 is a detailed view of the ICG detector and ECG detector of FIG. 3.
  • the apparatus for monitoring cardiac output includes a current providing unit 110 having a hand grip type electrodes 101 and 102, an ICG detecting unit 120, an ECG detecting unit 130, and a high level digital display. It is configured to include a conversion unit 200, the main control unit 300 and the display unit 400.
  • the current providing unit 110 draws current into the measurement site through each of the hand grip type current electrodes CH and CL to generate electrical impedance of the living body, and changes the RM impedance through each voltage electrode VH and VL. It is configured to be able to measure the potential difference.
  • the current providing unit 110 is, for example, a sine wave generator 111 for generating a sine wave of 100 KHz, a constant current source 112 for converting the output of the sine wave generator into a constant current of, for example, 1 mA, and a constant current supplied from the constant current source.
  • the first current electrode CH and the second current electrode CL for introducing into the measurement site of the subject to be measured, and the first voltage electrode for measuring the voltage difference across the two measurement sites into which current is introduced by each current electrode ( VH) and the second voltage electrode VL.
  • the electrodes 101 and 102 are sensor devices consisting of a tetrapolar electrode in the form of a hand grip, and include a first current electrode CH, a first voltage electrode VH, a second current electrode CL, and a second voltage electrode. (VL) to inject a current directly into the measurement site and measure the voltage change according to the change in the bioelectrical impedance accordingly, and as shown in Figure 4 constitutes a hand grip type electrode.
  • Such an electrode supplies a constant current supplied from the constant current source 112 to the measurement site of the subject through the first current electrode CH and the second current electrode CL, and thus is generated at the two measurement sites.
  • the potential difference is measured through the first voltage electrode VH and the second voltage electrode VL.
  • the hand grip type mounted on one side of the hand and having the first current electrode CH and the first voltage electrode VH is called a first measurement unit.
  • the second measuring unit is formed of a hand grip type mounted on the other hand and includes a second current electrode CL and a second voltage electrode VL.
  • the ICG detector 120 detects the ICG data according to the change in the electrical impedance of the living body by measuring the potential difference generated at the measurement site by the current drawing through each voltage electrode.
  • the ICG detector 120 includes a first differential amplifier 121 for amplifying a potential difference measured at two voltage electrodes VH and VL, and an AC / DC current for converting a differentially amplified potential difference into a direct current form.
  • the low pass filter 123 and the second differential amplifier 124 having a cutoff frequency of 0.03 Hz to remove only the DC component included in the DC converted signal by low-pass filtering and amplifying the DC converted signal are provided.
  • the ICG detector 120 differentially amplifies a potential difference measured at the voltage electrode of the first impedance measuring unit and the voltage electrode of the second impedance measuring unit to output a difference value of an impedance signal for two points of the human body.
  • Differential amplifier an ICG signal preprocessing unit for converting the potential difference amplified by the differential amplifier into a direct current form, filtering, and removing only the direct current component to detect ICG data.
  • the ECG detection unit 130 measures ECG data for evaluating the hemodynamic function of the heart according to the change in the electrical impedance of the living body by measuring the potential difference and the amount of drawn current generated at the measurement site by the current drawing through the respective voltage electrodes and the current electrodes. Detect. As illustrated in FIG. 5, the ECG detector 130 differentially amplifies the potential difference measured at the two voltage electrodes VH and VL and the current amount measured at the one current electrode CL. A high pass filter 132 with a cutoff frequency of 0.03 Hz and a low pass filter with a cutoff frequency of 130 Hz for detecting ECG data for determining the hemodynamic function of the heart by sequentially filtering and amplifying the differentially amplified potential difference and the amount of current. 133 and an inverting amplifier 134.
  • the high level digital converter 200 converts the ICG data output from the ICG detector 120 or the ECG data output from the ECG detector 130 into a high level digital signal and transmits the converted high level digital signal to the main controller 300.
  • the main controller 300 adjusts the operation of the ICG detector and extracts a parameter for evaluating the overall circulatory function from the ICG data.
  • the main control unit 300 performs high pass filtering and first derivative of the ICG data output from the ICG detection unit 120 to detect two neighboring peak values, the lowest value between the two peak values, and a feature point about a code conversion point from the differentiated waveform.
  • the left ventricular ejection time (LVET), stroke volume, and cardiac output which are parameters for evaluating the overall circulatory function, are calculated from the time points between each feature point and each feature point.
  • the main controller 300 controls both the operations of the ICG detector 120 and the ECG detector 130, and functions as a whole circulatory system from the ICG data and the ECG data. And parameters for evaluating the mechanical function of the heart, respectively.
  • the main control unit 300 synchronizes the ECG data output from the ECG detection unit 130 with the ICG data output from the ICG detection unit 120, and then the time between the code conversion point of the ECG data and the code conversion point of the first derivative. From this value, the rescue electrical (PEP), a parameter for evaluating the heart's mechanical function, is calculated.
  • PEP rescue electrical
  • the display unit 400 is operated under the control of the main control unit and displays ICG data and parameters for evaluating the overall circulatory function and the cardiac mechanical function calculated by the main control unit.
  • the display unit displays the raw data of the measured ICG to enable a measurer to determine whether the correct data is obtained.
  • the display unit 410 shows a stroke volume, cardiac output, cardiac output, It consists of a cardiac information recorder 420 which provides, as a number, parameter information such as a pre-ejection period, a left ventricular ejection time (LVET).
  • LVET left ventricular ejection time
  • the cardiac output monitoring method including the base impedance and circulatory system function evaluation elements which the measurement site has from both hands of the subject through the current input and voltage measurement through each electrode ICG detection step of detecting data respectively, first derivative of ICG data, two neighboring peak values and the lowest value therebetween from the differentiated waveform, and feature points related to code conversion points are detected to determine parameters used for circulatory function evaluation. It consists of extracting the circulatory function evaluation element to extract.
  • ICG detection unit ICG including the base impedance and circulatory system function evaluation elements that the measurement site has from both hands of the subject through the current input and voltage measurement through each electrode ICG detection step of detecting each data
  • ECG detection to detect ECG data including the hemodynamic function evaluation elements of the heart of the measurement site from both hands of the subject through current input and voltage measurement through each electrode in the ECG detection unit Extracting the parameters used for circulatory function evaluation by detecting the two neighboring peaks, the lowest value therebetween, and the feature points related to the code conversion point from the derivative waveform after the first derivative of the ICG data.
  • Step after synchronizing the detected ECG data with the ICG data of the ECG data And extracting the hemodynamic function evaluation element of the heart, which extracts a rescue electrochemical (PEP), which is a parameter for evaluating the hemodynamic function of the heart, from a time value between the code conversion point and the code conversion point of the first differential ICG waveform.
  • PEP rescue electrochemical
  • the ICG detection step of each embodiment includes converting a potential difference signal measured through a voltage electrode into a direct current form, and low-pass filtering and amplifying the direct-converted signal to remove only the direct current component contained in the direct-converted signal. It is preferred to include sequential high pass / low pass filtering and amplification of the removed signal to detect a change in impedance according to blood flow in the aorta as ICG data in the form of voltage.
  • FIGS. 6 and 7 are algorithm flow charts of the circulatory function evaluation component extraction process for deriving the cardiac output through the impedance measured by the present invention
  • Figure 8 is the daily output and cardiac output and heart in the ICG measured by the present invention This is a graph to illustrate the mechanical function of
  • the circulatory function evaluation element extraction step obtains first-order differentiated ICG data by performing high-pass filtering and first-order differentiation of ICG data detected through the ICG detection unit at a cutoff frequency of 1 Hz, and a cutoff frequency of 10 Hz.
  • Low-pass filtering (S301-S304), setting the baseline (threshold) for an initial constant time using the first derivative and the low-pass filtered ICG data (S305, S306), two neighbors from the differentiated ICG data Extracting a feature point with respect to a peak value (first peak value C point), a minimum value (X point), and a sign conversion point (B point) therebetween (S307-S314), and a circulatory system with feature points and time values associated therewith. And acquiring and displaying the left ventricular ejection time LVET, stroke volume, and cardiac output, which are parameters for function evaluation (S315-S318).
  • the current providing unit 110 introduces a current into the measurement site through each current electrode, and the ICG detector 120 and the ECG detector 130 measure each voltage electrode from both hands of the subject through voltage measurement. ICG data and ECG data including the base impedance and circulatory function evaluation elements of the site or the hemodynamic function evaluation elements of the heart are detected, respectively.
  • the ICG detector 120 amplifies the potential difference measured by the two voltage electrodes VH and VL with the first differential amplifier 121 as shown in FIG. 5, and converts the differentially amplified potential difference into the AC / DC converter 122. Convert to DC form through.
  • the DC-converted signal is low-pass filtered and amplified by the low pass filter 123 and the second differential amplifier 124, thereby removing the DC component included in the DC-converted signal.
  • the signal from which the DC component is removed is sequentially high pass / low pass filtered and amplified by the high pass filter 125, the low pass filter 126, and the inverting amplifier 127.
  • the ICG detector 120 may detect the impedance change according to the blood flow in the aorta as ICG data in the form of voltage.
  • the ECG detector 130 measures the potential difference measured at the two voltage electrodes VH and VL and the amount of current measured at one current electrode CL through the third differential amplifier 131.
  • the differentially amplified potential difference and the current amount are sequentially high pass / low pass filtered and amplified by the high pass filter 132, the low pass filter 133, and the inverting amplifier 134.
  • the ECG detection unit 130 can detect ECG data for determining the hemodynamic function of the heart.
  • the ICG data having the high level digital conversion is read by the main controller 300 (S301), and the ICG data having the improved SNR is obtained through the high pass filter (blocking frequency 1 Hz) (S302).
  • the data for the initial constant time (for example, data for 3 seconds) is the data for the stable time of the signal for the transient response, during which the initial baseline value is determined.
  • first peak is point C
  • feature points regarding the lowest value X point
  • sign conversion point B point
  • LVET left ventricular ejection time
  • stroke volume stroke volume
  • cardiac output which are parameters for circulatory function evaluation
  • the main control unit 300 synchronizes the high-level digitally converted ECG data with the ICG data, and then, from the time value between the code conversion point of the ECG data and the code conversion point of the first derivative of the ICG waveform,
  • the rescue electricity (PEP) which is a parameter for hemodynamic function evaluation, may be extracted and displayed on the display unit 400.
  • the cardiac output monitoring system according to the present invention can derive the same experiment and measurement results as the conventional method even by using a hand grip type electrode, it minimizes the inconvenience caused by the electrode attachment to the chest. It is possible to provide maximum convenience.
  • the cardiac output monitoring system enables self-diagnosis of cardiac function easily at home without using a hospital in line with the home health care system, which is widely studied, and can be used semi-permanently. By using this method, the economic loss due to the use of spot or band type electrode can be minimized.
  • the present invention measures the bioelectrical impedance from both hands of a subject through a hand grip electrode to detect impedance changes at every cardiac cycle, and calculates one-time cardiac output non-invasively and non-consistently.
  • the present invention relates to a cardiac output monitoring device and method using two-hand impedance that can solve the limitation of circulatory function test. It can be applied to home health care system as well as medical device, and it is possible to easily check for abnormal cardiac function at home without using a hospital. Self diagnosis is possible.

Abstract

본 발명은 양손 임피던스를 이용한 심박출량 모니터링 장치 및 방법에 관한 것으로, 핸드그립 전극을 이용하여, 매 심주기마다의 임피던스 변화를 통해 심박출량을 측정하고 고분해능 순환계 기능 평가 데이터를 획득하기 위한 것이다. 이를 위하여 본 발명은 핸드 그립형의 각 전류 전극을 통해 측정 부위에 전류를 인입하여 생체의 전기적 임피던스를 발생시키는 전류 제공부, 전류 인입에 의해 측정 부위에 발생되는 전위차를 각각의 전압 전극을 통해 측정하여 생체의 전기적 임피던스 변화에 따른 ICG 데이터를 검출하는 ICG 검출부, ICG 검출부의 동작을 조절하며 ICG 데이터로부터 전체 순환계 기능 평가를 위한 파라미터를 추출하는 주제어부, 및 주제어부의 제어에 의해 동작되며 ICG 데이터 및 주제어부에서 계산된 파라미터들을 표시하는 디스플레이부를 포함하는 양손 임피던스를 이용한 심박출량 모니터링 장치를 제공하여, 비침습적으로 심장의 역학적 기능을 평가할 수 있게 하며, 흉부로의 전극 부착에 의한 구속성을 최소화할 수 있게 한다.

Description

양손 임피던스를 이용한 심박출량 모니터링장치 및 방법
본 발명은 생체의 전기적 임피던스 측정을 통해 전체 순환계기능 평가에 사용되는 파라미터 추출이 가능한 심박출량(cardiac output) 모니터링 시스템에 관한 것으로, 보다 상세하게는 생체전기 임피던스를 핸드그립 형태의 전극을 통해 피측정자의 양손으로부터 측정하여 매 심주기마다의 임피던스 변화를 검출하고 그로부터 1회 심박출량을 비침습적 및 비구속적으로 산출할 수 있도록 함으로써 기존의 순환계기능 검사의 구속성을 해결할 수 있는 양손 임피던스를 이용한 심박출량 모니터링 장치 및 방법에 관한 것이다.
심박출량은 심장 박동을 통해 전신으로 나가는 분당 혈액의 양으로써, 심장 기능뿐만 아니라 전체 순환계의 상태를 반영하는 지표이며, 전신 조직의 자율적인 조절을 통해 통제된다. 따라서 환자를 치료하는 데 있어, 혈압, 좌심실 충만압, 심박출량, 전신혈관저항을 모두 고려하여 치료 방향과 방법을 결정하게 된다. 이러한 심박출량의 측정은 전체적인 순환계 기능을 반영하는 많은 지표들을 산출해 낼 수 있으며, 심박출량과 중심 정맥압, 그리고 혈압을 이용하면 전신혈관저항을 알아낼 수 있다.
심박출량을 측정하는 일반적인 방법으로는 크게 침습적인 방법(indicator dilution, thermal indicator dilution, PICCO, LidCO, oesophageal doppler, TOE 방법 등)과 비침습적인 방법(doppler ultrasound, thoracic electrical bioimpedance, TTE 방법 등)으로 나눌 수 있다.
심박출량을 측정하는 방법을 선택함에 있어, 덜 침습적이고 정확하며 신뢰도가 높고 지속적인 측정이 가능할수록 이상적일 것이다. 침습적인 방법을 이용하게 되면 시술에 의한 합병증 때문에 환자에게 위험부담을 줄 수 있을뿐더러 시술자의 숙련된 기술이 필요하게 된다.
이러한 단점을 보완하기 위해 비침습적으로 심박출량을 측정할 수 있는 방법이 개발되었으며 1970년대 Kubicek에 의해 임피던스를 이용한 심박출량 측정이 시작된 후로 환자에게 최소한의 위험을 주기 위한 심박출량 검출을 위한 수많은 연구들이 진행되어 오고 있다.
이와 같이 임피던스를 이용하여 심박출량을 측정하는 방법은 침습적인 방법에 비해 다소 정확성이 떨어지는 단점이 있지만 지속적인 기술개발로 비교적 정확하게 침습적 방법에 유사한 값을 얻을 수 있게 되어 안전하며 가격대비 효율이 높고 조작법이 쉽고 검사 시간도 적은 이점이 있고, 또한 각 심장박동에 따라 변화하는 혈역학적 지표를 연속적으로 측정할 수 있는 장점이 있다.
현재 임상에서 사용되고 있는 비침습형 임피던스 심박동(Impedance cardiograpy : 이하 ICG라 칭함) 측정방법은 도 1에 도시된 바와 같이 점 타입 전극(spot ECG electrode)이나 밴드 타입의 전극을 이용하고 있다. 이러한 점 타입이나 밴드 타입의 경우 4쌍의 전극을 목과 흉부의 검상돌기에 부착 후 바깥쪽 2쌍의 전극으로부터 정전류를 주입하고, 안쪽 2쌍의 전극을 통해 그 사이에서의 차동 전압을 측정하여 혈액량의 변화에 의한 임피던스 변화(△Z)(도 2의 그래프 참조)를 측정할 수 있게 된다. 이때 측정되는 임피던스 변화는 매 심주기마다의 대동맥에서의 심장의 수축과 이완에 따른 혈액량의 변화에 의한 것이다.
그러나 이와 같은 심박동 측정방법은 기존의 심박출량 측정방법인 침습적인 방법을 보완할 수 있는 장점이 있지만 흉부에 전극을 부착해야 하는 번거로움이 따르고, 전극 부착에 따른 리드의 번거로움에 의해 완전한 비구속적인 방법이라 할 수 없다.
본 발명이 해결하고자 하는 기술적 과제는, 핸드그립 타입의 전극을 이용하여, 매 심주기마다의 임피던스 변화를 통해 1회 심박출량을 측정하고 고분해능 순환계 기능 평가 데이터를 획득하여 비침습적으로 심장의 역학적 기능을 평가할 수 있도록 함으로서 기존 흉부로의 전극 부착에 의한 구속성을 최소화하여 환자 및 시술자에게 편의성을 제공하고 홈 헬스 케어 시스템에 적용하여 가정에서 손쉽게 심박출량을 자가 진단할 수 있도록 하는 양손 임피던스를 이용한 심박출량 모니터링 장치 및 방법을 제공하고자 하는 것이다.
본 발명이 해결하고자 하는 다른 기술적 과제는, 심박동(ICG)과 동기적으로 심전도(ECG)를 측정하여 ICG와 ECG의 파형에 따른 심장의 혈류역학적 기능을 판단에 사용할 수 있도록 한 양손 임피던스를 이용한 심박출량 모니터링 장치 및 방법을 제공하고자 하는 것이다.
상기 목적을 달성하기 위한 본 발명 장치의 일 실시 형태는, 일측의 손에 장착되는 핸드 그립형으로 이루어지며, 미세전류를 공급하는 제1 전류 전극(CH)과 전압을 검출하는 제1 전압 전극(VH)을 구비하는 제1 측정부; 다른 일측의 손에 장착되는 핸드 그립형으로 이루어지며, 미세전류를 공급하는 제2 전류 전극(CL)과 전압을 검출하는 제 2전압 전극(VL)을 구비하는 제2 측정부; 상기 제1 임피던스 측정부의 전압 전극과 상기 제2 임피던스 측정부의 전압 전극에서 측정되는 전위차를 차동 증폭하여 인체의 두 지점에 대한 임피던스 신호의 차이값을 출력하는 제1 차동 증폭부; 상기 차동 증폭부에서 증폭된 전위차를 직류 형태로 변환하고, 필터링하여 직류성분만을 제거하여 ICG(비침습형 임피던스 심박동) 데이터를 검출하는 ICG 신호 전처리부;를 포함하여 이루어진 양손 임피던스를 이용한 심박출량 모니터링 장치이다.
상기 ICG 신호 전처리부는, 상기 차동 증폭부에서 증폭된 전위차를 직류 형태로 변환하는 교류/직류 변환기; 상기 교류/직류 변환부로부터 출력 신호를 차단 주파수 0.03Hz로 저역 필터링하고 증폭하여 직류 변환된 신호 중에 포함된 직류 성분만을 제거하는 저역통과필터 및 제2 차동 증폭기을 구비하는 직류성분 제거부; 상기 직류성분 제거부로부터 출력된 직류 성분이 제거된 신호를 차단주파수 0.03Hz의 고역통과필터 및 차단주파수 30Hz의 저역통과필터를 순차적으로 거치는 고역/저역 필터링부;를 구비하여 이루어진다.
상기 ICG 신호 전처리부는, 상기 고역/저역 필터링부의 출력을 반전 증폭하는 반전 증폭기를 더 구비한다.
상기 심박출량 모니터링 장치는 ECG 검출부를 더 구비하되, 상기 ECG 검출부는, 상기 제1 측정부의 제1 전압 전극(VH) 및 제2 측정부의 제 2전압 전극(VL)에서 측정되는 전위차와 제2 전류 전극(CL)에서 측정되는 전류량을 차동 증폭하는 제3차동 증폭기; 상기 제3차동 증폭기에서 출력신호를 필터링 및 증폭하여 ECG 데이터를 검출하는 ECG 신호전처리부;를 구비한다.
상기 ECG 신호전처리부는, 상기 제3차동 증폭기에서 차동 증폭된 전위차와 전류량을 차단주파수 0.03Hz로 고역통과 필터링하는 고역통과필터; 상기 고역통과필터의 출력신호를 차단주파수 130Hz로 저역통과 필터링하는 저역통과필터; 상기 저역 필터의 출력을 반전 증폭하는 반전 증폭기;를 구비한다.
상기 심박출량 모니터링 장치는, 상기 ICG 신호 전처리부에서 출력되는 ICG 데이터 또는 ECG 신호전처리부에서 출력되는 ECG 데이터를 고 레벨 디지털신호로 변환하는 고레벨 디지털 변환부; 상기 ICG 신호 전처리부에서 출력된 ICG 데이터로부터 순환계 기능 평가를 위한 파라미터를 추출하는 주제어부; 상기 주제어부의 제어에 의해 동작되며 상기 검출된 ICG 데이터 및 주제어부에서 계산된 파라미터들을 표시하는 디스플레이부;를 더 포함한다.
상기 주제어부는, 상기 ICG 신호 전처리부에서 출력된 ICG 데이터를 고역 필터링 및 1차 미분하여 미분된 파형으로부터 이웃하는 두 개의 피크치, 두 피크치 사이의 최저치, 부호변환점에 관한 특징점들을 검출하고, 각 특징점과 각 특징점 사이의 시간값으로부터 순환계 기능 평가를 위한 파라미터인 좌심실 박출시간(LVET), 일박출량(stroke volume), 심박출량(cardiac output)을 연산한다.
상기 목적을 달성하기 위한 본 발명 장치의 다른 실시 형태는, 핸드 그립형의 각 전류 전극을 통해 측정 부위에 전류를 인입하여 생체의 전기적 임피던스를 발생시키는 전류 제공부, 전류 인입에 의해 측정 부위에 발생되는 전위차를 각각의 전압 전극을 통해 측정하여 생체의 전기적 임피던스 변화에 따른 ICG 데이터를 검출하는 ICG 검출부, ICG 검출부의 동작을 조절하며 ICG 데이터로부터 전체 순환계 기능 평가를 위한 파라미터를 추출하는 주제어부, 및 주제어부의 제어에 의해 동작되며 ICG 데이터 및 주제어부에서 계산된 파라미터들을 표시하는 디스플레이부를 포함하는 양손 임피던스를 이용한 심박출량 모니터링 장치이다.
상기 목적을 달성하기 위한 본 발명 장치의 다른 실시 형태는, 상기 장치의 일 실시 형태의 구성에, 전류 인입에 의해 측정 부위에 발생되는 전위차 및 인입된 전류량을 각각의 전압 전극 및 전류전극을 통해 측정하여 생체의 전기적 임피던스 변화에 따른 심장의 혈류 역학적 기능 평가를 위한 ECG 데이터를 검출하는 ECG 검출부를 더 포함하는 구성이고, 주제어부는 ICG 검출부와 ECG 검출부의 동작 조절과 아울러 ICG 데이터 및 ECG 데이터로부터 전체 순환계 기능 및 심장의 역학적 기능 평가를 위한 파라미터를 각각 추출하는 특징을 갖는 양손 임피던스를 이용한 심박출량 모니터링 장치이다.
상기 목적을 달성하기 위한 본 발명 방법의 일 실시 형태는, 전류 인입에 의한 전위차 측정을 통해 순환계 기능 평가를 위한 ICG 데이터를 검출하는 ICG 검출부, 상기 ICG 데이터로부터 순환계 기능 평가를 위한 다수의 파라미터를 추출하는 주제어부를 구비한 ICG 검사장치에서의 심박출량 모니터링 방법에 있어서, ICG 검출부에서 각각의 전극을 통한 전류 인입과 전압 측정을 통해 피측정자의 양손으로부터 측정 부위가 갖는 베이스 임피던스 및 순환계기능 평가 요소가 포함된 ICG 데이터를 각각 검출하는 ICG 검출단계, ICG 데이터를 1차 미분한 후 그 미분된 파형으로부터 이웃하는 두 개의 피크치와 그 사이의 최저치, 및 부호 변환점에 관한 특징점들을 검출하여 순환계 기능 평가에 사용되는 파라미터들을 추출하는 순환계기능 평가요소 추출단계를 포함하는 양손 임피던스를 이용한 심박출량 모니터링 방법이다.
상기 목적을 달성하기 위한 본 발명 방법의 다른 실시 형태는, 전류 인입에 의한 전위차 측정을 통해 순환계 기능 평가를 위한 ICG 데이터를 검출하는 ICG 검출부, 전류 인입에 의한 전위차 및 인입 전류량 측정을 통해 심장의 혈류 역학적 기능 평가를 위한 ECG 데이터를 검출하는 ECG 검출부, 상기 ICG 데이터 및 ECG 데이터로부터 순환계 기능 평가 또는 심장의 혈류 역학적 기능 평가를 위한 다수의 파라미터를 추출하는 주제어부를 구비한 ICG 및 ECG 검사장치에서의 심박출량 모니터링 방법에 있어서, ICG 검출부에서 각각의 전극을 통한 전류 인입과 전압 측정을 통해 피측정자의 양손으로부터 측정 부위가 갖는 베이스 임피던스 및 순환계기능 평가 요소가 포함된 ICG 데이터를 각각 검출하는 ICG 검출단계, ECG 검출부에서 각각의 전극을 통한 전류 인입과 전압 측정을 통해 피측정자의 양손으로부터 측정 부위가 갖는 심장의 혈류 역학적 기능 평가 요소가 포함된 ECG 데이터를 검출하는 ECG 검출단계, ICG 데이터를 1차 미분한 후 그 미분된 파형으로부터 이웃하는 두 개의 피크치와 그 사이의 최저치, 및 부호 변환점에 관한 특징점들을 검출하여 순환계 기능 평가에 사용되는 파라미터들을 추출하는 순환계기능 평가요소 추출단계, 및 ECG 데이터를 ICG 데이터와 동기시킨 후 ECG 데이터의 부호 변환점과 1차 미분된 ICG 파형의 부호변환점 사이의 시간값으로부터 심장의 혈류 역학적 기능 평가를 위한 파라미터를 추출하는 심장의 혈류 역학적 기능 평가요소 추출단계를 포함하는 양손 임피던스를 이용한 심박출량 모니터링 방법이다.
본 발명에 따른 양손 임피던스를 이용한 심박출량 모니터링 장치 및 방법에 의하면, 핸드그립 타입의 전극을 통한 양손 임피던스 측정에 의해 심박출량을 모니터링할 수 있게 되므로 흉부로의 전극 부착에 따른 불편함을 최소화할 수 있게 되며, 따라서 시술자 및 사용자에게 최대한의 편의를 제공하면서도 기존의 방법과 동일한 실험 및 측정 결과를 도출할 수 있게 되는 이점이 있다.
또한 본 발명은 최근 폭넓게 연구되고 있는 홈 헬스 케어 시스템에 적용하여 병원을 이용하지 않고도 가정에서 손쉽게 심장 기능의 이상 유무를 자가 진단 가능하게 하는 이점이 있으며, 반영구적으로 사용 가능한 핸드그립 전극을 이용하게 되므로 점 타입 전극이나 밴드 타입 전극 사용에 따른 경제적 손실을 최소화할 수 있게 된다.
마지막으로 본 발명에 의하면, ICG와 동기된 ECG를 측정할 수 있게 되므로, ICG와 ECG의 파형에 따른 심장의 혈류역학적 기능 판단이 가능하게 되는 이점이 있다.
도 1과 도 2는 종래의 비침습적인 ICG 측정방법을 예시한 참고도와 그에 따른 검출 결과값을 예시한 그래프이다.
도 3은 본 발명에 의한 양손 임피던스를 이용한 심박출량 모니터링장치의 전체적인 구성을 예시한 블록도이다.
도 4는 도 3의 전극을 핸드 그립 형태로 구현한 사용 상태도이다.
도 5는 도 3의 ICG 검출부와 ECG 검출부의 상세도이다.
도 6과 도 7은 본 발명에 의해 임피던스 측정을 통해 검출된 ICG 데이터로부터 심박출량을 도출하기 위한 알고리즘 흐름도이다.
도 8은 본 발명에 의해 측정된 ICG에서 일박출량 및 심박출량과 심장의 역학적 기능을 설명하기 위하여 예시한 참고 그래프이다.
이하, 본 발명의 일 실시 예에 의한 양손 임피던스를 이용한 심박출량 모니터링장치의 구성 및 동작을 첨부한 도면을 참조하여 상세히 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정 해석되지 아니하며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
도 3은 본 발명의 일 실시 예에 따른 양손 임피던스를 이용한 심박출량 모니터링장치의 전체적인 구성을 개략적으로 도시한 블록도이고, 도 4는 도 3의 전극을 핸드 그립 형태로 구현한 사용 상태도이며, 도 5는 도 3의 ICG 검출부와 ECG 검출부의 상세도이다.
도 3에 도시된 바와 같이 본 발명의 일 실시 형태에 따른 심박출량 모니터링 장치는 핸드그립형 전극(101,102)을 갖는 전류 제공부(110), ICG 검출부(120), ECG 검출부(130), 고레벨 디지털 변환부(200), 주제어부(300) 및 디스플레이부(400)를 포함하여 구성된다.
전류 제공부(110)는 핸드 그립형의 각 전류 전극(CH,CL)을 통해 측정 부위에 전류를 인입하여 생체의 전기적 임피던스를 발생시키고, 각 전압 전극(VH,VL)을 통해 RM 임피던스 변화에 의한 전위차를 측정할 수 있도록 구성된다. 이 전류 제공부(110)는 예를 들어 100KHz의 사인파를 발생하는 사인파 발생기(111), 사인파 발생기의 출력을 예를 들어 1mA의 정전류로 변환하는 정전류원(112), 정전류원에서 공급되는 정전류를 피측정자의 측정 부위에 인입시키기 위한 제1전류전극(CH)과 제2전류전극(CL), 각 전류전극에 의해 전류가 인입되는 두 측정 부위 양단의 전압차를 측정하기 위한 제1전압전극(VH)과 제2전압전극(VL)을 포함하여 구성된다. 특히 전극(101,102)은 핸드 그립 형태의 4극(tetra polar) 전극으로 이루어지는 센서 장치로서 제1 전류 전극(CH)과 제1 전압 전극(VH), 제2 전류 전극(CL)과 제2 전압 전극(VL)으로 구성하여 측정부위에 직접 전류를 주입하고 그에 따른 생체전기 임피던스 변화에 따른 전압 변화를 측정하며, 도 4에 도시된 바와 같이 핸드 그립 형태의 전극을 구성한다. 이러한 전극은 정전류원(112)에서 공급되는 정전류를 제1 전류 전극(CH)과 제2 전류 전극(CL)을 통해 피측정자의 측정부위에 전류를 공급하게 되며, 그에 따라 두 측정부위에 발생되는 전위차를 제1전압전극(VH)과 제2전압전극(VL)을 통해 측정하게 된다. 이를 통해 본 발명에서는 임피던스 변화 측정시 접촉 임피던스 및 주파수에 따른 임피던스의 영향을 최소화할 수 있게 되며, 특히 정전류원의 출력 임피던스와 AC Volt meter의 입력 임피던스가 전극의 임피던스 및 전극과 피부사이의 접촉 저항에 비해 상당히 크면 전극의 임피던스 및 전극의 접촉저항에 영향을 최소화 할 수 있게 된다.
여기서, 일측의 손에 장착되는 핸드 그립형으로 이루어지며 제1 전류 전극(CH)과 제1 전압 전극(VH)을 구비하여 이루어진 것을 제1 측정부라한다. 다른 일측의 손에 장착되는 핸드 그립형으로 이루어지며 제2 전류 전극(CL)과 제 2전압 전극(VL)을 구비하여 이루어진 것을 제2 측정부라한다.
ICG 검출부(120)는 전류 인입에 의해 측정 부위에 발생되는 전위차를 각각의 전압 전극을 통해 측정하여 생체의 전기적 임피던스 변화에 따른 ICG 데이터를 검출한다. 이 ICG 검출부(120)는 도 5에 도시된 바와 같이 두 전압 전극(VH,VL)에서 측정되는 전위차를 증폭하는 제1차동 증폭기(121), 차동 증폭된 전위차를 직류 형태로 변환하는 교류/직류 변환기(122), 직류 변환된 신호를 저역 필터링 및 증폭하여 직류 변환된 신호 중에 포함된 직류 성분만을 제거하는 차단 주파수 0.03Hz의 저역통과필터(123) 및 제2 차동 증폭기(124), 직류 성분이 제거된 신호를 순차적인 고역/저역 필터링 및 증폭하여 대동맥에서의 혈류 이동에 따른 임피던스 변화를 전압 형태의 ICG 데이터로 검출하는 차단주파수 0.03Hz의 고역통과필터(125)와 차단주파수 30Hz의 저역통과필터(126) 및 반전 증폭기(127)를 포함하여 구성된다.
다시 말하면, ICG 검출부(120)는 상기 제1 임피던스 측정부의 전압 전극과 상기 제2 임피던스 측정부의 전압 전극에서 측정되는 전위차를 차동 증폭하여 인체의 두 지점에 대한 임피던스 신호의 차이값을 출력하는 제1 차동 증폭부; 상기 차동 증폭부에서 증폭된 전위차를 직류 형태로 변환하고, 필터링하여 직류성분만을 제거하여 ICG 데이터를 검출하는 ICG 신호 전처리부;를 포함하여 이루어진다.
ECG 검출부(130)는 전류 인입에 의해 측정 부위에 발생되는 전위차 및 인입된 전류량을 각각의 전압 전극 및 전류 전극을 통해 측정하여 생체의 전기적 임피던스 변화에 따른 심장의 혈류 역학적 기능 평가를 위한 ECG 데이터를 검출한다. 이 ECG 검출부(130)는 도 5에 도시된 바와 같이, 두 전압 전극(VH,VL)에서 측정되는 전위차와 하나의 전류 전극(CL)에서 측정되는 전류량을 차동 증폭하는 제3차동 증폭기(131), 차동 증폭된 전위차와 전류량을 순차적인 고역/저역 필터링 및 증폭하여 심장의 혈류 역학적 기능 판단을 위한 ECG 데이터를 검출하는 차단주파수 0.03Hz의 고역통과필터(132)와 차단주파수 130Hz의 저역통과필터(133) 및 반전 증폭기(134)를 포함하여 구성된다.
고레벨 디지털 변환부(200)는 ICG 검출부(120)에서 출력되는 ICG 데이터, 또는 ECG 검출부(130)에서 출력되는 ECG 데이터를 고 레벨 디지털신호로 변환하여 주제어부(300)로 전송한다.
주제어부(300)는 ICG 검출부의 동작을 조절하며, ICG 데이터로부터 전체 순환계 기능 평가를 위한 파라미터를 추출한다. 이때 주제어부(300)는 ICG 검출부(120)에서 출력된 ICG 데이터를 고역 필터링 및 1차 미분하여 그 미분된 파형으로부터 이웃하는 두 개의 피크치, 두 피크치 사이의 최저치, 부호변환점에 관한 특징점을 검출하고, 각각의 특징점과 각 특징점 사이의 시간값으로부터 전체 순환계 기능 평가를 위한 파라미터인 좌심실 박출시간(LVET), 일박출량(stroke volume), 심박출량(cardiac output)을 계산해낸다. 특히 ICG 검출부(120) 및 ECG 검출부(130)가 모두 구비된 경우 주제어부(300)는 ICG 검출부(120)와 ECG 검출부(130)의 동작을 모두 조절하며, ICG 데이터 및 ECG 데이터로부터 전체 순환계 기능 및 심장의 역학적 기능 평가를 위한 파라미터를 각각 추출한다. 이때 주제어부(300)는 ECG 검출부(130)에서 출력된 ECG 데이터를 ICG 검출부(120)에서 출력된 ICG 데이터와 동기시킨 후 ECG 데이터의 부호 변환점과 1차 미분된 ICG 파형의 부호변환점 사이의 시간값으로부터 심장의 역학적 기능 평가를 위한 파라미터인 구출전기(PEP)를 계산해낸다.
디스플레이부(400)는 주제어부의 제어에 의해 동작되며, ICG 데이터 및 주제어부에서 계산된 전체 순환계 기능 및 심장의 역학적 기능 평가를 위한 파라미터들을 표시한다. 이러한 디스플레이부는 측정된 ICG의 Raw data를 display하여 측정자로 하여금 올바른 데이터가 획득되는지의 여부를 판단 가능케 하는 파형 표시부(410)와, 측정 결과로서 일박출량(Stroke Volume), 심박출량(Cardiac Output), 구출전기(Pre-Ejection Period), 좌심실 박동시간(LVET:left ventricular ejection time)등의 파라미터 정보를 숫자로서 제공하는 심장정보 기록부(420)로 구성된다.
한편 본 발명의 일 실시 형태에 의한 심박출량 모니터링 방법은, ICG 검출부에서 각각의 전극을 통한 전류 인입과 전압 측정을 통해 피측정자의 양손으로부터 측정 부위가 갖는 베이스 임피던스 및 순환계기능 평가 요소가 포함된 ICG 데이터를 각각 검출하는 ICG 검출단계, ICG 데이터를 1차 미분한 후 그 미분된 파형으로부터 이웃하는 두 개의 피크치와 그 사이의 최저치, 및 부호 변환점에 관한 특징점들을 검출하여 순환계 기능 평가에 사용되는 파라미터들을 추출하는 순환계기능 평가요소 추출단계로 이루어진다.
한편 본 발명의 다른 실시 형태에 의한 심박출량 모니터링 방법은, ICG 검출부에서 각각의 전극을 통한 전류 인입과 전압 측정을 통해 피측정자의 양손으로부터 측정 부위가 갖는 베이스 임피던스 및 순환계기능 평가 요소가 포함된 ICG 데이터를 각각 검출하는 ICG 검출단계, ECG 검출부에서 각각의 전극을 통한 전류 인입과 전압 측정을 통해 피측정자의 양손으로부터 측정 부위가 갖는 심장의 혈류 역학적 기능 평가 요소가 포함된 ECG 데이터를 검출하는 ECG 검출단계, ICG 데이터를 1차 미분한 후 그 미분된 파형으로부터 이웃하는 두 개의 피크치와 그 사이의 최저치, 및 부호 변환점에 관한 특징점들을 검출하여 순환계 기능 평가에 사용되는 파라미터들을 추출하는 순환계기능 평가요소 추출단계, 검출된 ECG 데이터를 ICG 데이터와 동기시킨 후 ECG 데이터의 부호 변환점과 1차 미분된 ICG 파형의 부호변환점 사이의 시간값으로부터 심장의 혈류 역학적 기능 평가를 위한 파라미터인 구출전기(PEP)를 추출하는 심장의 혈류 역학적 기능 평가요소 추출단계를 포함하여 이루어진다.
각 실시 형태의 ICG 검출단계는 전압 전극을 통해 측정된 전위차 신호를 직류 형태로 변환하고, 직류 변환된 신호를 저역 필터링 및 증폭하여 직류 변환된 신호 중에 포함된 직류 성분만을 제거하는 단계, 직류 성분이 제거된 신호를 순차적인 고역/저역 필터링 및 증폭하여 대동맥에서의 혈류 이동에 따른 임피던스 변화를 전압 형태의 ICG 데이터로 검출하는 단계를 포함하는 것이 바람직하다.
도 6과 도 7은 본 발명에 의해 측정된 임피던스를 통해 심박출량을 도출하기 위한 순환계 기능 평가요소 추출과정의 알고리즘 흐름도이고, 도 8은 본 발명에 의해 측정된 ICG에서 일박출량 및 심박출량과 심장의 역학적 기능을 설명하기 위하여 예시한 그래프이다
도 6과 도 7에 도시된 바와 같이 순환계기능 평가요소 추출단계는, ICG 검출부를 통해 검출되는 ICG 데이터를 차단 주파수 1Hz로 고역 필터링 및 1차 미분하여 1차 미분된 ICG 데이터를 획득하고 차단 주파수 10Hz로 저역 필터링하는 단계(S301-S304), 1차 미분 및 저역 필터링된 ICG 데이터를 이용하여 초기 일정한 시간동안 베이스 라인(임계치)을 설정하는 단계(S305,S306), 미분된 ICG 데이터로부터 두 개의 이웃하는 피크치(제1피크치는 C점)와 그 사이의 최저치(X점) 및 부호 변환점(B점)에 관한 특징점을 추출하는 단계(S307-S314), 및 특징점들 및 그에 관련된 시간값들로 순환계 기능 평가를 위한 파라미터인 좌심실 박출시간(LVET), 일박출량(stroke volume), 심박출량(cardiac output)를 획득하여 디스플레이하는 단계(S315-S318)를 포함하여 이루어진다.
이와 같은 구성의 본 발명에 따른 심박출량 모니터링 방법 및 주제어부에서 이루어지는 순환계 기능 평가 요소 및 심장의 혈류 역학적 기능 평가요소 추출동작을 상세히 설명한다.
먼저, 전류 제공부(110)에서는 각각의 전류 전극을 통해 측정부위로 전류를 인입하고, ICG 검출부(120)와 ECG 검출부(130)에서는 각각의 전압 전극을 전압 측정을 통해 피측정자의 양손으로부터 측정 부위가 갖는 베이스 임피던스 및 순환계기능 평가 요소 또는 심장의 혈류 역학적 기능 평가 요소가 포함된 ICG 데이터 및 ECG 데이터를 각각 검출한다. 이때 ICG 검출부(120)에서는 도 5에 도시된 바와 같이 두 전압 전극(VH,VL)에서 측정되는 전위차를 제1차동 증폭기(121)로 증폭하고, 차동 증폭된 전위차를 교류/직류 변환기(122)를 통해 직류 형태로 변환한다. 이와 같이 직류 변환된 신호는 저역통과필터(123) 및 제2 차동 증폭기(124)를 통해 저역 필터링 및 증폭됨으로써, 직류 변환된 신호 중에 포함된 직류 성분이 제거된다. 이 직류 성분이 제거된 신호는 고역통과필터(125)와 저역통과필터(126) 및 반전 증폭기(127)를 통해 순차적으로 고역/저역 필터링 및 증폭된다. 이로써 ICG 검출부(120)에서는 대동맥에서의 혈류 이동에 따른 임피던스 변화를 전압 형태의 ICG 데이터로 검출할 수 있게 된다.
한편, ECG 검출부(130)에서는 도 5에 도시된 바와 같이, 제3차동 증폭기(131)를 통해 두 전압 전극(VH,VL)에서 측정되는 전위차와 하나의 전류 전극(CL)에서 측정되는 전류량을 차동 증폭하고, 이 차동 증폭된 전위차와 전류량은 고역통과필터(132)와 저역통과필터(133) 및 반전 증폭기(134)을 통해 순차적으로 고역/저역 필터링 및 증폭된다. 이로써 ECG 검출부(130)에서는 심장의 혈류 역학적 기능 판단을 위한 ECG 데이터를 검출할 수 있게 된다.
다음으로 순환계기능 평가요소 추출단계에서는 우선 고레벨 디지털 변환된 ICG 데이터를 주제어부(300)에서 읽어(S301) 고역통과필터(차단 주파수 1Hz)를 통하여 SNR이 향상된 ICG 데이터를 획득(S302)한다.
ICG 데이터를 1차 미분(S303)한 후 차단 주파수 10Hz 저역통과 필터링을 실시(S304)하고, 초기 일정한 시간(예를 들어 3초) 동안 그 미분값의 최대치를 검출하여 베이스 라인(Threshold=최대치*0.8)을 설정(S305,S306)한다. 이때 초기의 일정한 시간 동안의 데이터(예를 들어 3초간의 데이터)는 과도응답에 대한 신호의 안정 가능한 시간동안의 데이터이며, 이 시간 동안 초기 베이스 라인값을 결정하게 된다.
이후 1차 미분된 ICG 데이터로부터 두 개의 이웃하는 피크치(제1 피크치는 C점)와 그 피크치 사이의 최저치(X점) 및 부호 변환점(B점)에 관한 특징점을 차례로 추출(S307-S314)하고, 이렇게 추출된 특징점들과 그 각 특징점들에 관련된 시간값들로 순환계 기능 평가를 위한 파라미터인 좌심실 박출시간(LVET), 일박출량(stroke volume), 심박출량(cardiac output)를 계산(S315-S317)하여, 디스플레이부(400)를 통해 디스플레이(S318)한다.
이와 아울러 주제어부(300)에서는 도면으로는 도시되지 않았으나, 고레벨 디지털 변환된 ECG 데이터를 ICG 데이터와 동기시킨 후 ECG 데이터의 부호 변환점과 1차 미분된 ICG 파형의 부호변환점 사이의 시간값으로부터 심장의 혈류 역학적 기능 평가를 위한 파라미터인 구출전기(PEP)를 추출하여 디스플레이부(400)를 통해 디스플레이할 수 있게 된다.
이상의 본 발명에 의한 심박출량 모니터링 시스템은 핸드그립 타입의 전극을 이용하여서도 기존의 방법과 동일한 실험 및 측정 결과를 도출할 수 있기 때문에 흉부로의 전극 부착에 따른 불편함을 최소화하여 환자 LC 시술자에게 최대한의 편의성을 제공할 수 있게 된다.
또한, 본 발명에 의한 심박출량 모니터링 시스템은 폭넓게 연구되고 있는 홈헬스케어 시스템에 발맞추어 병원을 이용하지 않고도 가정에서 손쉽게 심장 기능의 이상 유무를 자가 진단할 수 있게 하며, 반영구적으로 사용 가능한 핸드그립 전극을 사용하여 spot이나 band 타입의 전극 사용에 따른 경제적 손실을 최소화할 수 있게 된다.
본 발명은 생체전기 임피던스를 핸드그립 형태의 전극을 통해 피측정자의 양손으로부터 측정하여 매 심주기마다의 임피던스 변화를 검출하고 그로부터 1회 심박출량을 비침습적 및 비구속적으로 산출할 수 있도록 함으로써 기존의 순환계기능 검사의 구속성을 해결할 수 있는 양손 임피던스를 이용한 심박출량 모니터링 장치 및 방법에 관한 것으로, 의료기기뿐만 아니라 홈 헬스 케어 시스템에 적용가능하여 병원을 이용하지 않고도 가정에서 손쉽게 심장 기능의 이상 유무를 자가 진단 가능다.

Claims (22)

  1. 일측의 손에 장착되는 핸드 그립형으로 이루어지며, 미세전류를 공급하는 제1 전류 전극(CH)과 전압을 검출하는 제1 전압 전극(VH)을 구비하는 제1 측정부;
    다른 일측의 손에 장착되는 핸드 그립형으로 이루어지며, 미세전류를 공급하는 제2 전류 전극(CL)과 전압을 검출하는 제 2전압 전극(VL)을 구비하는 제2 측정부;
    상기 제1 임피던스 측정부의 전압 전극과 상기 제2 임피던스 측정부의 전압 전극에서 측정되는 전위차를 차동 증폭하여 인체의 두 지점에 대한 임피던스 신호의 차이값을 출력하는 제1 차동 증폭부;
    상기 차동 증폭부에서 증폭된 전위차를 직류 형태로 변환하고, 필터링하여 직류성분만을 제거하여 ICG(Impedance cardiograpy, 비침습형 임피던스 심박동) 데이터를 검출하는 ICG 신호 전처리부;
    를 포함하여 이루어진 것을 특징으로 하는 양손 임피던스를 이용한 심박출량 모니터링 장치.
  2. 제1항에 있어서,
    상기 ICG 신호 전처리부는,
    상기 차동 증폭부에서 증폭된 전위차를 직류 형태로 변환하는 교류/직류 변환기;
    상기 교류/직류 변환부로부터 출력 신호를 차단 주파수 0.03Hz로 저역 필터링하고 증폭하여 직류 변환된 신호 중에 포함된 직류 성분만을 제거하는 저역통과필터 및 제2 차동 증폭기을 구비하는 직류성분 제거부;
    상기 직류성분 제거부로부터 출력된 직류 성분이 제거된 신호를 차단주파수 0.03Hz의 고역통과필터 및 차단주파수 30Hz의 저역통과필터를 순차적으로 거치는 고역/저역 필터링부;
    를 구비하는 것을 특징으로 하는 양손 임피던스를 이용한 심박출량 모니터링 장치.
  3. 제2항에 있어서,
    상기 ICG 신호 전처리부는, 상기 고역/저역 필터링부의 출력을 반전 증폭하는 반전 증폭기를 더 구비하는 것을 특징으로 하는 양손 임피던스를 이용한 심박출량 모니터링 장치.
  4. 제2항에 있어서,
    상기 심박출량 모니터링 장치는 ECG 검출부를 더 구비하되, 상기 ECG 검출부는,
    상기 제1 측정부의 제1 전압 전극(VH) 및 제2 측정부의 제 2전압 전극(VL)에서 측정되는 전위차와 제2 전류 전극(CL)에서 측정되는 전류량을 차동 증폭하는 제3차동 증폭기;
    상기 제3차동 증폭기에서 출력신호를 필터링 및 증폭하여 ECG 데이터를 검출하는 ECG 신호전처리부;
    를 구비하는 것을 특징으로 하는 양손 임피던스를 이용한 심박출량 모니터링 장치.
  5. 제4항에 있어서,
    상기 ECG 신호전처리부는,
    상기 제3차동 증폭기에서 차동 증폭된 전위차와 전류량을 차단주파수 0.03Hz로 고역통과 필터링하는 고역통과필터;
    상기 고역통과필터의 출력신호를 차단주파수 130Hz로 저역통과 필터링하는 저역통과필터;
    를 구비하는 것을 특징으로 하는 양손 임피던스를 이용한 심박출량 모니터링 장치.
  6. 제5항에 있어서,
    상기 ECG 신호전처리부는, 상기 저역 필터의 출력을 반전 증폭하는 반전 증폭기를 더 구비하는 것을 특징으로 하는 양손 임피던스를 이용한 심박출량 모니터링 장치.
  7. 제5항에 있어서,
    ICG 신호 전처리부에서 출력되는 ICG 데이터 또는 ECG 신호전처리부에서 출력되는 ECG 데이터를 고 레벨 디지털신호로 변환하는 고레벨 디지털 변환부를 더 구비하는 것을 특징으로 하는 양손 임피던스를 이용한 심박출량 모니터링 장치.
  8. 제7항에 있어서,
    ICG 신호 전처리부에서 출력된 ICG 데이터로부터 순환계 기능 평가를 위한 파라미터를 추출하는 주제어부를 더 포함하는 것을 특징으로 하는 양손 임피던스를 이용한 심박출량 모니터링 장치.
  9. 제8항에 있어서,
    상기 주제어부의 제어에 의해 동작되며, 상기 ICG 신호 전처리부에서 출력된 ICG 데이터 및 상기 주제어부에서 계산된 파라미터들을 표시하는 디스플레이부를 더 포함하는 것을 특징으로 하는 양손 임피던스를 이용한 심박출량 모니터링 장치.
  10. 제8항에 있어서, 상기 주제어부는,
    ICG 신호 전처리부에서 출력된 ICG 데이터를 고역 필터링 및 1차 미분하여 미분된 파형으로부터 이웃하는 두 개의 피크치, 두 피크치 사이의 최저치, 부호변환점에 관한 특징점들을 검출하고, 각 특징점과 각 특징점 사이의 시간값으로부터 순환계 기능 평가를 위한 파라미터인 좌심실 박출시간(LVET), 일박출량(stroke volume), 심박출량(cardiac output)을 연산하는 것을 특징으로 하는 양손 임피던스를 이용한 심박출량 모니터링 장치.
  11. 핸드 그립형의 각 전류 전극을 통해 측정 부위에 전류를 인입하여 생체의 전기적 임피던스를 발생시키는 전류 제공부;
    상기 전류 인입에 의해 측정 부위에 발생되는 전위차를 각각의 전압 전극을 통해 측정하여 생체의 전기적 임피던스 변화에 따른 ICG 데이터를 검출하는 ICG 검출부;
    ICG 검출부의 동작을 조절하며, ICG 데이터로부터 전체 순환계 기능 평가를 위한 파라미터를 추출하는 주제어부;
    주제어부의 제어에 의해 동작되며, 상기 검출된 ICG 데이터 및 주제어부에서 계산된 파라미터들을 표시하는 디스플레이부;를 포함하는 것을 특징으로 하는 양손 임피던스를 이용한 심박출량 모니터링 장치.
  12. 제11항에 있어서,
    상기 전류 인입에 의해 측정 부위에 발생되는 전위차 및 인입된 전류량을 각각의 전압 전극 및 전류전극을 통해 측정하여 생체의 전기적 임피던스 변화에 따른 심장의 혈류 역학적 기능 평가를 위한 ECG 데이터를 검출하는 ECG 검출부;를 더 포함하고,
    상기 주제어부는 상기 ICG 검출부와 ECG 검출부의 동작을 조절하며, ICG 데이터 및 ECG 데이터로부터 전체 순환계 기능 및 심장의 역학적 기능 평가를 위한 파라미터를 각각 추출하는 것을 특징으로 하는 양손 임피던스를 이용한 심박출량 모니터링 장치.
  13. 제11항 또는 제12항 중 어느 한 항에 있어서,
    상기 ICG 검출부에서 출력되는 ICG 데이터, 또는 상기 ECG 검출부에서 출력되는 ECG 데이터를 고 레벨 디지털신호로 변환하여 주제어부로 전송하는 고레벨 디지털 변환부;를 더 포함하는 것을 특징으로 하는 양손 임피던스를 이용한 심박출량 모니터링 장치.
  14. 제11항에 있어서, 상기 전류 제공부는,
    사인파 발생기;
    상기 사인파 발생기의 출력을 정전류로 변환하는 정전류원;
    상기 정전류원에서 공급되는 정전류를 피측정자의 측정 부위에 인입시키기 위한 제1전류전극과 제2전류전극;
    상기 각 전류전극에 의해 전류가 인입되는 두 측정 부위 양단의 전압차를 측정하기 위한 제1전압전극과 제2전압전극;를 포함하는 것을 특징으로 하는 양손 임피던스를 이용한 심박출량 모니터링장치.
  15. 제11항에 있어서, 상기 ICG 검출부는,
    상기 두 전압 전극에서 측정되는 전위차를 증폭하는 제1차동 증폭기;
    상기 차동 증폭된 전위차를 직류 형태로 변환하는 교류/직류 변환기;
    상기 직류 변환된 신호를 저역 필터링 및 증폭하여 직류 변환된 신호 중에 포함된 직류 성분만을 제거하는 저역통과필터 및 제2 차동 증폭기;
    상기 직류 성분이 제거된 신호를 순차적인 고역/저역 필터링 및 증폭하여 대동맥에서의 혈류 이동에 따른 임피던스 변화를 전압 형태의 ICG 데이터로 검출하는 고역통과필터와 저역통과필터 및 반전 증폭기;를 포함하여 구성되는 것을 특징으로 하는 양손 임피던스를 이용한 심박출량 모니터링장치.
  16. 제11항에 있어서, 상기 ECG 검출부는,
    상기 두 전압 전극에서 측정되는 전위차와 하나의 전류 전극에서 측정되는 전류량을 차동 증폭하는 제3차동 증폭기;
    상기 차동 증폭된 전위차와 전류량을 순차적인 고역/저역 필터링 및 증폭하여 심장 역학적 기능 판단을 위한 ECG 데이터를 검출하는 고역통과필터와 저역통과필터 및 반전 증폭기;를 포함하여 구성되는 것을 특징으로 하는 양손 임피던스를 이용한 심박출량 모니터링장치.
  17. 제11항에 있어서, 상기 주제어부는,
    상기 ICG 검출부에서 출력된 ICG 데이터를 저역 필터링 및 1차 미분하여 그 미분된 파형으로부터 이웃하는 두 개의 피크치, 두 피크치 사이의 최저치, 부호변환점에 관한 특징점을 검출하고, 각각의 특징점과 각 특징점 사이의 시간값으로부터 전체 순환계 기능 평가를 위한 파라미터인 좌심실 박출시간(LVET), 일박출량(stroke volume), 심박출량(cardiac output)을 계산하는 것을 특징으로 하는 양손 임피던스를 이용한 심박출량 모니터링장치.
  18. 제11항에 있어서, 상기 주제어부는,
    상기 ECG 검출부에서 출력된 ECG 데이터를 상기 ICG 검출부에서 출력된 ICG 데이터와 동기시킨 후 상기 ECG 데이터의 부호 변환점과 상기 1차 미분된 ICG 파형의 부호변환점 사이의 시간값으로부터 심장의 역학적 기능 평가를 위한 파라미터인 구출전기(PEP)를 계산하는 것을 특징으로 하는 양손 임피던스를 이용한 심박출량 모니터링장치.
  19. 전류 인입에 의한 전위차 측정을 통해 순환계 기능 평가를 위한 ICG 데이터를 검출하는 ICG 검출부, 상기 ICG 데이터로부터 순환계 기능 평가를 위한 다수의 파라미터를 추출하는 주제어부를 구비한 ICG 검사장치에서의 심박출량 모니터링 방법에 있어서,
    상기 ICG 검출부에서 각각의 전극을 통한 전류 인입과 전압 측정을 통해 피측정자의 양손으로부터 측정 부위가 갖는 베이스 임피던스 및 순환계기능 평가 요소가 포함된 ICG 데이터를 각각 검출하는 ICG 검출단계;
    상기 ICG 데이터를 1차 미분한 후 그 미분된 파형으로부터 이웃하는 두 개의 피크치와 그 사이의 최저치, 및 부호 변환점에 관한 특징점들을 검출하여 순환계 기능 평가에 사용되는 파라미터들을 추출하는 순환계기능 평가요소 추출단계;를 포함하여 이루어지는 것을 특징으로 하는 양손 임피던스를 이용한 심박출량 모니터링 방법.
  20. 제19항에 있어서, 상기 ICG 검출단계는,
    상기 전압 전극을 통해 측정된 전위차 신호를 직류 형태로 변환하고, 상기 직류 변환된 신호를 저역 필터링 및 증폭하여 직류 변환된 신호 중에 포함된 직류 성분만을 제거하는 단계;
    상기 직류 성분이 제거된 신호를 순차적인 고역/저역 필터링 및 증폭하여 대동맥에서의 혈류 이동에 따른 임피던스 변화를 전압 형태의 ICG 데이터로 검출하는 단계;를 포함하는 것을 특징으로 하는 양손 임피던스를 이용한 심박출량 모니터링방법.
  21. 제19항 또는 제20항 중 어느 한 항에 있어서, 상기 순환계기능 평가요소 추출단계는,
    ICG 검출부를 통해 검출되는 ICG 데이터를 고역 필터링 및 1차 미분하여 1차 미분된 ICG 데이터를 획득하는 단계;
    상기 1차 미분된 ICG 데이터를 이용하여 초기 일정한 시간동안 베이스 라인(임계치)을 설정하는 단계;
    상기 미분된 ICG 데이터로부터 두 개의 이웃하는 피크치와 그 사이의 최저치 및 부호 변환점에 관한 특징점을 추출하는 단계; 및,
    상기 특징점들 및 그에 관련된 시간값들로 순환계 기능 평가를 위한 파라미터인 좌심실 박출시간(LVET), 일박출량(stroke volume), 심박출량(cardiac output)를 획득하는 단계;를 포함하여 이루어지는 것을 특징으로 하는 양손 임피던스를 이용한 심박출량 모니터링 방법.
  22. 전류 인입에 의한 전위차 측정을 통해 순환계 기능 평가를 위한 ICG 데이터를 검출하는 ICG 검출부, 전류 인입에 의한 전위차 및 인입 전류량 측정을 통해 심장의 혈류 역학적 기능 평가를 위한 ECG 데이터를 검출하는 ECG 검출부, 상기 ICG 데이터 및 ECG 데이터로부터 순환계 기능 평가 또는 심장의 혈류 역학적 기능 평가를 위한 다수의 파라미터를 추출하는 주제어부를 구비한 ICG 및 ECG 검사장치에서의 심박출량 모니터링 방법에 있어서,
    상기 ICG 검출부에서 각각의 전극을 통한 전류 인입과 전압 측정을 통해 피측정자의 양손으로부터 측정 부위가 갖는 베이스 임피던스 및 순환계기능 평가 요소가 포함된 ICG 데이터를 각각 검출하는 ICG 검출단계;
    상기 ECG 검출부에서 각각의 전극을 통한 전류 인입과 전압 측정을 통해 피측정자의 양손으로부터 측정 부위가 갖는 심장의 혈류 역학적 기능 평가 요소가 포함된 ECG 데이터를 검출하는 ECG 검출단계;
    상기 ICG 데이터를 1차 미분한 후 그 미분된 파형으로부터 이웃하는 두 개의 피크치와 그 사이의 최저치, 및 부호 변환점에 관한 특징점들을 검출하여 순환계 기능 평가에 사용되는 파라미터들을 추출하는 순환계기능 평가요소 추출단계;
    상기 검출된 ECG 데이터를 상기 ICG 데이터와 동기시킨 후 상기 ECG 데이터의 부호 변환점과 상기 1차 미분된 ICG 파형의 부호변환점 사이의 시간값으로부터 심장의 혈류 역학적 기능 평가를 위한 파라미터를 추출하는 심장의 혈류 역학적 기능 평가요소 추출단계;를 포함하여 이루어지는 것을 특징으로 하는 양손 임피던스를 이용한 심박출량 모니터링 방법.
PCT/KR2010/002676 2010-04-15 2010-04-28 양손 임피던스를 이용한 심박출량 모니터링장치 및 방법 WO2011129478A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20100034791A KR101173354B1 (ko) 2010-04-15 2010-04-15 양손 임피던스를 이용한 심박출량 모니터링장치 및 방법
KR10-2010-0034791 2010-04-15

Publications (1)

Publication Number Publication Date
WO2011129478A1 true WO2011129478A1 (ko) 2011-10-20

Family

ID=44798834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/002676 WO2011129478A1 (ko) 2010-04-15 2010-04-28 양손 임피던스를 이용한 심박출량 모니터링장치 및 방법

Country Status (2)

Country Link
KR (1) KR101173354B1 (ko)
WO (1) WO2011129478A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109171675A (zh) * 2018-09-20 2019-01-11 芯海科技(深圳)股份有限公司 一种穿戴式设备及基于该设备的血流动力学参数测量方法
CN109171677A (zh) * 2018-09-20 2019-01-11 芯海科技(深圳)股份有限公司 一种便携式测量装置及基于该装置的血流动力学参数测量方法
CN109691993A (zh) * 2018-12-07 2019-04-30 芯海科技(深圳)股份有限公司 一种测量心率变异性的方法及人体秤
CN111387939A (zh) * 2020-03-06 2020-07-10 芯海科技(深圳)股份有限公司 心排量的测量方法、装置、计算机设备和存储介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013141419A1 (ko) * 2012-03-21 2013-09-26 연세대학교 원주산학협력단 양손을 이용한 혈관 및 심폐기능 평가를 위한 생체 계측 시스템
WO2017209360A1 (ko) * 2016-05-30 2017-12-07 주식회사 레드서브마린 그립형 생체 신호 측정 장치
KR102281745B1 (ko) * 2019-07-02 2021-07-26 울산대학교 산학협력단 심박출량 추정 방법 및 장치
KR102438217B1 (ko) * 2020-11-10 2022-08-30 주식회사 피지오닉스 리액턴스 성분을 이용한 심박출량 측정 장치 및 이를 포함한 체중계

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100321261B1 (ko) * 1999-01-11 2002-01-19 차기철 심박출량과 심전도를 모니터링하기 위한 전극 설치 방법 및 이를 이용한 장치
KR20030083427A (ko) * 2002-04-23 2003-10-30 송철규 휴대용 연속 심장기능변수 모니터링 장치
KR20090057094A (ko) * 2006-09-05 2009-06-03 엔. 아이. 메디컬 엘티디. 심장 지표들의 비침습적 측정을 위한 방법 및 시스템

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100321261B1 (ko) * 1999-01-11 2002-01-19 차기철 심박출량과 심전도를 모니터링하기 위한 전극 설치 방법 및 이를 이용한 장치
KR20030083427A (ko) * 2002-04-23 2003-10-30 송철규 휴대용 연속 심장기능변수 모니터링 장치
KR20090057094A (ko) * 2006-09-05 2009-06-03 엔. 아이. 메디컬 엘티디. 심장 지표들의 비침습적 측정을 위한 방법 및 시스템

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109171675A (zh) * 2018-09-20 2019-01-11 芯海科技(深圳)股份有限公司 一种穿戴式设备及基于该设备的血流动力学参数测量方法
CN109171677A (zh) * 2018-09-20 2019-01-11 芯海科技(深圳)股份有限公司 一种便携式测量装置及基于该装置的血流动力学参数测量方法
CN109691993A (zh) * 2018-12-07 2019-04-30 芯海科技(深圳)股份有限公司 一种测量心率变异性的方法及人体秤
CN109691993B (zh) * 2018-12-07 2022-07-26 芯海科技(深圳)股份有限公司 一种测量心率变异性的方法及人体秤
CN111387939A (zh) * 2020-03-06 2020-07-10 芯海科技(深圳)股份有限公司 心排量的测量方法、装置、计算机设备和存储介质
CN111387939B (zh) * 2020-03-06 2023-08-18 芯海科技(深圳)股份有限公司 心排量的测量方法、装置、计算机设备和存储介质

Also Published As

Publication number Publication date
KR20110115340A (ko) 2011-10-21
KR101173354B1 (ko) 2012-08-10

Similar Documents

Publication Publication Date Title
WO2011129478A1 (ko) 양손 임피던스를 이용한 심박출량 모니터링장치 및 방법
Hafid et al. Full impedance cardiography measurement device using raspberry PI3 and system-on-chip biomedical instrumentation solutions
WO2015167251A1 (ko) 다중 생체신호를 이용한 혈당 측정 방법 및 혈당 측정 장치
US20060264775A1 (en) Methods of and apparatus for determining fluid volume presence in mammalian tissue
JP2006501903A (ja) 高分解能生体インピーダンス装置
EP2063774A2 (en) Method and system for non-invasive measurement of cardiac parameters
CN105193413B (zh) Emg测量系统的信号处理单元
CN106572800A (zh) 同时阻抗测试方法和装置
JP2018528812A (ja) Ecgリード信号の高/低周波信号品質評価
WO2014035040A1 (ko) 다채널 임피던스 측정방법 및 측정기
WO2011129474A1 (ko) 양손 임피던스를 이용한 폐기능 모니터링장치 및 방법
JP2019146960A (ja) 被験者の呼吸モニタリングのためのシステム及び方法
JP3137900B2 (ja) 心電図信号を収集しかつ処理する装置
CN107212863A (zh) 人体心脏跳动冲击力检测系统
KR102273117B1 (ko) 리액턴스 성분을 이용한 심박출량 측정 장치 및 방법
Corciova et al. On using impedance plethysmography for estimation of blood flow
CN107714039A (zh) 一种基于电子秤检测人体动脉血管硬化的方法及系统
CN209733969U (zh) 一种脉搏波传播时间的测量设备
CN109567781B (zh) 心肺复苏过程中自动检测脉搏的装置及其检测方法
CN110090013A (zh) 基于脐参考电极的心电信号采集方法和采集电路
CN206518551U (zh) 一种基于阻抗变化的肠道动力检测系统
CN219480074U (zh) 一种用于检测心输出量的监测装置
CN219166389U (zh) 一种心率变异性检测仪
KR102438217B1 (ko) 리액턴스 성분을 이용한 심박출량 측정 장치 및 이를 포함한 체중계
US20230061041A1 (en) Bio electric impedance monitors, electrode arrays and method of use

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10849883

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10849883

Country of ref document: EP

Kind code of ref document: A1