WO2011129317A1 - Cryogenic refrigerator - Google Patents

Cryogenic refrigerator Download PDF

Info

Publication number
WO2011129317A1
WO2011129317A1 PCT/JP2011/059052 JP2011059052W WO2011129317A1 WO 2011129317 A1 WO2011129317 A1 WO 2011129317A1 JP 2011059052 W JP2011059052 W JP 2011059052W WO 2011129317 A1 WO2011129317 A1 WO 2011129317A1
Authority
WO
WIPO (PCT)
Prior art keywords
displacer
pin
output shaft
engagement
stage
Prior art date
Application number
PCT/JP2011/059052
Other languages
French (fr)
Japanese (ja)
Inventor
貴裕 松原
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to KR1020127029555A priority Critical patent/KR101440709B1/en
Priority to JP2012510654A priority patent/JP5575880B2/en
Priority to CN201180019113.0A priority patent/CN102844633B/en
Publication of WO2011129317A1 publication Critical patent/WO2011129317A1/en
Priority to US13/649,328 priority patent/US8899053B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/06Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means
    • F04B37/08Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means by condensing or freezing, e.g. cryogenic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/001Gas cycle refrigeration machines with a linear configuration or a linear motor

Definitions

  • the present invention relates to a cryogenic refrigerator, and more particularly, to a cryogenic refrigerator having a connecting mechanism for connecting a driving device and a displacer.
  • Gifford McMahon refrigerator (hereinafter referred to as GM refrigerator) is known as a refrigerator that generates cryogenic temperatures.
  • This GM refrigerator is a refrigerator that obtains a cooling effect on the basis of the Gifford-McMahon cycle in which the movement of a displacer containing a regenerator and the adiabatic expansion of refrigerant gas by a valve are linked.
  • GM refrigerator first supplies refrigerant gas whose pressure is increased by a compressor to a cylinder. At this point, the displacer is at bottom dead center. The displacer is raised by the pressure difference of the refrigerant gas and by the power of the motor. When the displacer reaches the top dead center, the valve is switched, the refrigerant gas accumulated in the lower part of the displacer is adiabatically expanded, the refrigerant gas is cooled, and heat is exchanged with the regenerator material built in the displacer.
  • the displacer begins to descend, and when it returns to the bottom dead center, the valve is switched, and the refrigerant gas whose pressure has been increased again by the compressor enters the cylinder and is cooled by exchanging heat with the regenerator material in the displacer, and this is repeated.
  • the heat load flange portion at the lower end of the cylinder is cooled.
  • the reciprocating motion of the displacer is obtained by converting the rotational motion of the motor into a linear motion using a crank mechanism or a scotch yoke mechanism (see, for example, Patent Document 1).
  • This coupling mechanism is composed of a pin collar 102, a parallel pin 104, an upper cup 105, a spring pin 107, and the like.
  • the output shaft 101 is a rod-shaped member and reciprocates in the vertical direction in the figure when connected to a scotch yoke (not shown).
  • a donut-shaped pin collar 102 is fitted to the lower end portion of the output shaft 101, and is fixed by parallel pins 104 that pass through the pin collar 102 and the output shaft 101.
  • a shaft hole 103a is formed in the upper end surface of the displacer 103, and an output shaft 101 and a pin collar 102 are inserted therein.
  • An upper cup 105 is fixed to the upper end surface of the displacer 103 by a fixing bolt 106.
  • An opening 105a is formed at the center of the upper cup 105, and the output shaft 101 extends upward through the opening 105a.
  • the diameter of the pin collar 102 is set larger than the diameter of the opening 105a.
  • a seal material 108 that is in sliding contact with the cylinder 100 is provided on the side surface of the displacer 103 to suppress the occurrence of refrigerant gas blow-through.
  • the conventional rotation prevention mechanism press-fits and fixes the spring pin 107 to the upper cup 105 and forms the groove 102a in the pin collar 102, and engages the spring pin 107 with the groove 102a. It was supposed to be configured.
  • the output shaft 101 is restricted from rotating by being connected to a scotch yoke or the like. Further, the displacer 103 is restricted from rotating with respect to the output shaft 101 by a spring pin 107.
  • the conventional rotation prevention mechanism is configured to prevent the displacer 103 from rotating in the cylinder 100.
  • the upper cup 105 is press-fitted and fixed to the upper cup 105, and the spring pin 107 that has been press-fitted is engaged with the groove 102a formed in the pin collar 102, thereby preventing rotation.
  • a force to rotate the displacer 103 is applied, all the force is applied to the spring pin 107.
  • the conventional cryogenic refrigerator has a problem that the spring pin 107 may be broken. If the spring pin 107 is broken, the displacer 103 rotates in the cylinder 100, and the freezing process by the cryogenic refrigerator becomes unstable.
  • the present invention has a general object to provide an improved and useful cryogenic refrigerator that solves the problems of the prior art described above.
  • a more detailed object of the present invention is to provide a cryogenic refrigerator that stabilizes the freezing process by preventing the displacer from rotating.
  • the present invention provides a cylinder to which a refrigerant gas is supplied, A cryogenic refrigerator having a displacer that reciprocates in the cylinder, a drive device that reciprocates the displacer in the cylinder, and a connecting mechanism that connects the drive device and the displacer;
  • the coupling mechanism includes an output shaft extending from the driving device toward the displacer, an engagement pin provided through the output shaft so as to extend in a direction intersecting a reciprocating direction of the displacer, A rotation preventing mechanism that engages with the engaging pin when the displacer rotates to prevent the displacer from rotating; and a lid that is fixed to the one end of the displacer and engages with the output shaft. It is characterized by.
  • the rotation preventing mechanism includes a pair of engaging grooves that are formed in the displacer and that engage with both end portions of the engaging pin when the output shaft is attached to the displacer. It is good also as a structure.
  • the rotation preventing mechanism has a standing pin that is erected on the displacer and that engages both end portions of the engaging pin when the output shaft is mounted on the displacer. Also good.
  • the engagement pin may be a solid round bar.
  • the standing pin may be a bolt, and a screw portion formed at a lower portion may be screwed into the displacer, and an upper portion may be engaged with a concave portion formed in the lid.
  • FIG. 4 is a sectional view taken along line AA in FIG. 3. It is sectional drawing which expands and shows the displacer vicinity provided in the cryogenic refrigerator which is a modification of this invention.
  • FIG. 6 is a cross-sectional view taken along line BB in FIG. It is sectional drawing which expands and shows the displacer vicinity provided in the cryogenic refrigerator which is a conventional example.
  • FIG. 8 is a cross-sectional view taken along the line CC in FIG.
  • FIGS. 1 to 4 are diagrams for explaining a cryogenic refrigerator that is an embodiment of the present invention.
  • a Gifford McMahon refrigerator hereinafter referred to as a GM refrigerator
  • GM refrigerator Gifford McMahon refrigerator
  • the GM refrigerator includes a gas compressor 1 and a cold head 2.
  • the cold head 2 has a housing 23 and a cylinder part 10.
  • the gas compressor 1 draws in refrigerant gas from the intake port 1a, compresses it, and discharges it as high-pressure refrigerant gas from the discharge port 1b. Further, helium gas is used as the refrigerant gas.
  • the cylinder portion 10 has a two-stage configuration of a first-stage cylinder 10A and a second-stage cylinder 10B, and the second-stage cylinder 10B is set to be thinner than the first-stage cylinder 10A. Further, a first stage displacer 3A can be reciprocated in the first stage cylinder 10A, and a second stage displacer 3B can be reciprocated in the axial direction of each cylinder 10A, 10B inside the second stage cylinder 10B. Has been inserted.
  • the first stage displacer 3A and the second stage displacer 3B are connected to each other by a joint mechanism (not shown).
  • the first stage displacer 3A is provided with a cool storage material 4A
  • the second stage displacer 3B is filled with the cool storage material 4B.
  • gas flow paths L1 to L4 through which the refrigerant gas passes are formed in the first stage displacers 3A and 3B.
  • the first stage expansion chamber 11 is formed at the end of the first stage cylinder 10A on the second stage cylinder 10B side, and the upper chamber 13 is formed at the other end.
  • a second-stage expansion chamber 12 is formed at the end of the second-stage cylinder 10B opposite to the first-stage cylinder 10A side.
  • the upper chamber 13 and the first stage expansion chamber 11 are connected to each other via a gas flow path L1, a first stage cold storage material filling chamber filled with the cold storage material 4, and a gas flow path L2.
  • the first-stage expansion chamber 11 and the second-stage expansion chamber 12 are connected via the gas flow path L3, the second-stage cold storage material filling chamber filled with the cold storage material 4B, and the gas flow path L4. ing.
  • the cooling stage 6 is disposed at a position substantially corresponding to the first stage expansion chamber 11 in the outer peripheral surface of the first stage cylinder 10A.
  • a cooling stage 7 is disposed at a position substantially corresponding to the second stage expansion chamber 12 in the outer peripheral surface of the second stage cylinder 10B.
  • the sealing material 50 is disposed in the vicinity of the end on the upper chamber 13 side in the outer peripheral surface of the first stage displacer 3A.
  • the sealing material 50 seals between the outer peripheral surface of the first stage displacer 3A and the inner peripheral surface of the cylinder 10A.
  • a seal member 50 that is in sliding contact with the inner peripheral surface of the first stage cylinder 10A is provided on the outer surface of the first stage displacer 3A to suppress the occurrence of refrigerant gas blow-through.
  • the first stage displacer 3A is connected to an output shaft 22a of a scotch yoke 22 constituting a rotation / reciprocating motion conversion mechanism through a connection mechanism (which will be described in detail later).
  • the scotch yoke 22 is supported by a pair of sliding bearings 17a and 17b fixed to the housing 23 so as to be movable in the axial direction of the first stage displacers 3A and 3B. In the sliding bearing 17b, the airtightness of the sliding portion is maintained, and the space in the housing 23 and the upper chamber 13 are airtightly defined.
  • the motor 15 is connected to the scotch yoke 22.
  • the rotational movement of the motor 15 is converted into a reciprocating movement by the crank 14 and the scotch yoke 22.
  • This reciprocating motion is transmitted to the first stage displacer 3A via the output shaft 22a and the coupling mechanism, whereby the first stage displacer 3A is in the first stage cylinder 10A and the second stage displacer 3B is in the first stage. Reciprocal movement is performed in the second-stage cylinder 10B.
  • the motor 15 and the scotch yoke 22 (including the output shaft 22a) constitute the drive device described in the claims.
  • a rotary valve RV is disposed between the intake port 1 a and the discharge port 1 b of the compressor 1 and the upper chamber 13.
  • the rotary valve RV has a function of switching the flow path of the refrigerant gas.
  • the rotary valve RV has a first mode for guiding the refrigerant gas discharged from the discharge port 1b of the gas compressor 1 into the upper chamber 13, and the refrigerant gas in the upper chamber 13 of the gas compressor 1. Switching processing to the second mode leading to the intake port 1a is performed.
  • the rotary valve RV has a valve body 8 and a valve plate 9.
  • the valve plate 9 is made of, for example, an aluminum alloy, and the valve body 8 is made of, for example, tetrafluoroethylene (for example, BEAREE FL3000 manufactured by NTN).
  • the valve body 8 and the valve plate 9 have flat sliding surfaces, and the flat sliding surfaces are in surface contact with each other.
  • a thin film made of a hard material such as diamond-like carbon (DLC) is preferably formed on at least one of both sliding surfaces in order to reduce friction and improve wear resistance.
  • DLC diamond-like carbon
  • the valve plate 9 is rotatably supported in the housing 23 by a rotary bearing 16.
  • the eccentric pin 14a of the crank 14 that drives the scotch yoke 22 revolves around the rotation axis, the valve plate 9 rotates.
  • the valve body 8 is pressed against the valve plate 9 by a coil spring 20 and fixed by a pin 19 so as not to rotate.
  • the coil spring 20 is provided with pressing means for pressing the valve body 8 so that the valve body 8 does not move away from the valve plate 9 when the pressure on the exhaust side becomes larger than the pressure on the supply side. It is.
  • the force that presses the valve body 8 against the valve plate 9 during operation is generated by the pressure difference between the supply side pressure and the exhaust side pressure of the refrigerant gas acting on the valve body 8.
  • FIG. 2 is an exploded perspective view of the rotary valve RV.
  • the flat sliding surface 8a of the cylindrical valve body 8 and the flat sliding surface 9a of the valve plate 9 are in surface contact.
  • a gas flow path 8 b serving as a gas supply path passes through the valve body 8 along the central axis of the valve body 8. That is, one end of the gas flow path 8b is open to the sliding surface 8a.
  • the other end of the gas flow path 8b is connected to the discharge port 1b of the gas compressor 1 shown in FIG. From the discharge port 1b of the compressor 1 to the gas flow path 8b of the valve body 8 corresponds to a gas supply path.
  • a groove 8c is formed on the sliding surface 8a of the valve body 8 along an arc centered on the central axis of the valve body 8.
  • One end of the gas flow path 8d formed inside the valve body 8 is open to the bottom surface of the groove 8c.
  • the other end of the gas flow path 8d opens to the outer peripheral surface of the valve body 8, and further communicates with the upper chamber 13 via a gas flow path 21 formed in the housing 23 shown in FIG.
  • a groove 9d extending in the radial direction from the center is formed on the sliding surface 9a of the valve plate 9.
  • a gas flow path 9 b parallel to the rotation axis extends through the valve plate 9.
  • the gas flow path 9b opens at substantially the same position as the groove 8c formed in the sliding surface 8a of the valve body 8 with respect to the radial direction in the sliding surface 9a.
  • the gas flow path 8d and the gas flow path 9b communicate with each other.
  • the other end of the gas flow path 9b communicates with the intake port 1a of the gas compressor 1 through the cavity in the housing 23 shown in FIG. From the gas flow path of the valve plate 9 to the intake port 1a of the compressor 1 corresponds to the gas discharge path.
  • the refrigerant gas sent from the compressor 1 is sent into the upper chamber 13 via the rotary valve RV.
  • the gas flow path 8d and the gas flow path 9b are in communication, the refrigerant gas in the upper chamber 13 is recovered by the gas compressor 1. Therefore, when the valve plate 9 is rotated, introduction of refrigerant gas into the upper chamber 13 (supply) and recovery of refrigerant gas from the upper chamber 13 (exhaust) are repeated.
  • FIG. 3 is an enlarged view showing a connecting portion between the output shaft 22a and the first stage displacer 3A
  • FIG. 4 shows a cross section taken along line AA in FIG.
  • the connecting mechanism for connecting the output shaft 22a and the first stage displacer 3A (hereinafter simply referred to as the “displacer 3A”) is roughly composed of the output shaft 22a, the engaging pin 30, the pin collar 31, the shaft hole 32, the upper cup 37, and the like. It is comprised by the rotation prevention mechanism etc.
  • the rotation prevention mechanism according to the present embodiment is configured to have engagement grooves 36A and 36B.
  • the output shaft 22a extends in the vicinity of its lower end in a direction (indicated by arrows X1 and X2 in FIGS. 1 and 3) perpendicular to the reciprocating direction of the displacer 3A (indicated by arrows Z1 and Z2 in FIGS. 1 and 3).
  • a through hole 33 is formed so as to achieve this.
  • the engagement pin 30 is attached so as to penetrate the through hole 33. Therefore, in this attached state, the engaging pin 30 extends in the direction (X1, X2 direction) perpendicular to the reciprocating direction of the displacer 3A. Further, since the length of the engagement pin 30 is longer than the diameter of the output shaft 22a, both end portions 30a and 30b of the engagement pin 30 are extended outward with the output shaft 22a as a center.
  • a pin collar 31 is provided at the lower end of the output shaft 22a.
  • the pin collar 31 has a hollow cylindrical shape in which an insertion hole 31a into which the output shaft 22a is inserted is formed at the center.
  • the pin collar 31 is made of, for example, stainless steel. Further, the pin collar 31 is formed with an insertion hole 31a extending in a direction perpendicular to the reciprocating direction of the displacer 3A.
  • the through hole 33 formed in the output shaft 22a and the insertion hole 31a formed in the pin collar 31 are in a state of communicating in a straight line.
  • the engagement pin 30 is attached to the insertion hole 31 a and the through hole 33.
  • the length of the engagement pin 30 is set longer than the diameter of the pin collar 31. Therefore, even when the engagement pin 30 is mounted on the output shaft 22a and the pin collar 31, both end portions 30a and 30b of the engagement pin 30 extend outward from the outer peripheral surface with the pin collar 31 as the center. .
  • the shaft hole 32 and the engagement grooves 36A and 36B are formed at the upper end (the end in the Z1 direction) of the displacer 3A.
  • the shaft hole 32 is formed coaxially with the central axis of the displacer 3A having a cylindrical shape.
  • the diameter of the shaft hole 32 is set to be slightly larger than the diameter of the pin collar 31. That is, the shaft hole 32 is configured such that the output shaft 22a having the pin collar 31 attached therein can be inserted therein.
  • the length of the engagement pin 30 is set longer than the diameter of the shaft hole 32.
  • the engaging grooves 36 ⁇ / b> A and 36 ⁇ / b> B are formed on the side wall of the shaft hole 32.
  • the engagement grooves 36A and 36B are formed 180 degrees apart from each other, and thus the engagement groove 36A and the engagement groove 36B are formed to face each other.
  • the engaging grooves 36A and 36B have the same shape, and therefore the length (indicated by an arrow L1 in FIG. 4) and the width (indicated by an arrow W in FIG. 4) have the same dimensions.
  • each engagement groove 36A, 36B is longer than the length (indicated by arrow L2 in FIG. 4) in which each end 30a, 30b of the engagement pin 30 protrudes outward from the outer peripheral surface of the pin collar 31. (L1> L2).
  • the width W of each engagement groove 36A, 36B is set to be larger than the cross-sectional diameter of the engagement pin 30 (indicated by arrow R in FIG. 4) (W> R). Therefore, by inserting and mounting the output shaft 22a to which the engagement pin 30 and the pin collar 31 are attached into the shaft hole 32, both end portions 30a and 30b of the engagement pin 30 are inserted into the engagement grooves 36A and 36B. A combined state is obtained (see FIG. 4).
  • the upper cup 37 functions as a lid that closes the upper end of the displacer 3A.
  • the upper cup 37 is made of aluminum and has a disk shape with an insertion hole 37a formed in the center.
  • the output shaft 22a is inserted through the insertion hole 37a.
  • the upper cup 37 is formed with a hole for forming the gas flow path L1 and a mounting recess for mounting the fixing bolt 34.
  • the upper cup 37 is fixed to the displacer 3A by inserting the fixing bolt 34 into the mounting recess and screwing into the screw hole 35 formed in the upper end portion of the displacer 3A.
  • the pin collar 31 is located below the upper cup 37.
  • the diameter of the insertion hole 37 a formed in the upper cup 37 is set smaller than the diameter of the pin collar 31. Therefore, the pin collar 31 is engaged (contacted) with the upper cup 37 while the upper cup 37 is fixed to the displacer 3A.
  • the pin collar 31 engages with the upper cup 37 and urges the displacer 3A to move upward. That is, the upper cup 37 is engaged with the output shaft 22a via the pin collar 31. Accordingly, the displacer 3A moves upward as the output shaft 22a moves upward.
  • the displacer 3A moves down as the output shaft 22a moves down for the same reason as described above. Therefore, according to the connection mechanism according to the present embodiment, the displacer 3A can be reciprocated in the vertical direction by the vertical movement of the output shaft 22a of the drive device.
  • the engaging grooves 36A and 36B also rotate in the direction of the arrow C1 as the displacer 3A rotates in the C1 direction. Therefore, with the rotation in the C1 direction, one inner wall of the engagement groove 36A engages (contacts) with the end 30a of the engagement pin 30 and one inner wall of the engagement groove 36B ends with the end of the engagement pin 30. It will be in the state engaged with the part 30b.
  • the output shaft 22a is connected to the scotch yoke mechanism that constitutes the drive device as described above, the output shaft 22a is not rotatable, and therefore the engagement pin 30 penetrated through the through hole 33 of the output shaft 22a is also included. It cannot be rotated. Therefore, after the inner walls of the engagement grooves 36A and 36B are engaged with the end portions 30a and 30b of the engagement pin 30, further rotation of the displacer 3A in the C1 direction is restricted.
  • the restriction of the rotation of the displacer 3A is performed by engaging both end portions 30a and 30b of the engagement pin 30 with a pair of engagement grooves 36A and 36B constituting the rotation prevention mechanism. That is, the rotation of the displacer 103 is conventionally restricted only by the spring pin 107, in other words, only at one place, whereas in this embodiment, the rotation of the displacer 3A can be restricted at two places.
  • the shearing force applied to the end portions 30a and 30b of the engagement pin 30 when the rotation of the displacer 3A is restricted can be made smaller than before, the engagement pin 30 is damaged when the rotation of the displacer 3A is restricted. Can be prevented. This prevents the sealing material 50 disposed in the displacer 3A from separating from the first-stage cylinder 10A and prevents the refrigerant gas from being blown out, thereby stabilizing the cooling process of the GM refrigerator. .
  • a solid round bar made of metal for example, stainless steel
  • the strength of the engagement pin 30 is stronger than that of the conventional spring pin 107, and this also prevents damage to the engagement pin 30.
  • the conventionally required spring pin 107 can be omitted, and the formation of a fixing hole for fixing the spring pin 107 to the upper cup 105 is also unnecessary.
  • the GM refrigerator according to the present embodiment it is possible to reduce the number of parts and simplify the manufacturing process as compared with the refrigerator having the conventional configuration.
  • the engagement grooves 36A and 36B are provided as the rotation preventing mechanism, and when the first stage displacer 3A rotates in the C1 and C2 directions, the engagement pin 30 and the engagement grooves 36A and 36B are provided. Are engaged (contacted) to prevent the first-stage displacer 3A from rotating.
  • this modification is characterized in that a standing pin standing on the upper end of the first stage displacer 3A is used as a rotation preventing mechanism of the coupling mechanism.
  • bolts 40A and 40B (hereinafter referred to as engagement bolts 40A and 40B) are used as the standing pins.
  • Two engagement bolts 40A are arranged at one end 30a of the engagement pin 30, and two engagement bolts 40B are arranged at the other end 30b of the engagement pin 30. Therefore, in this modification, a total of four bolts 40A, 40B are erected on the upper end of the first stage displacer 3A.
  • standing pins are not limited to bolts, and it is possible to use other components as long as they can stand upright at the upper end of the first stage displacer 3A.
  • a circular recess 41 (hereinafter referred to as an upper end recess 41) is formed at the upper end of the first stage displacer 3A.
  • the output shaft 22 a is inserted through the center position of the upper end recess 41.
  • the diameter of the upper end recess 41 is set to be longer than the length of the engagement pin 30.
  • four screw holes are formed in the bottom surface of the upper end recess 41.
  • the four bolts 40A and 40B are screwed into the screw holes, the four bolts 40A and 40B are erected on the first stage displacer 3A (specifically, the bottom surface of the upper end recess 41).
  • the pair of engagement bolts 40 ⁇ / b> A is erected at a position sandwiching the end 30 a of the engagement pin 30 when the output shaft 22 a is attached to the first stage displacer 3 ⁇ / b> A.
  • the pair of engagement bolts 40B is erected at a position sandwiching the end 30b of the engagement pin 30 when the output shaft 22a is attached to the first stage displacer 3A.
  • engaging recesses 42A and 42B are formed at positions corresponding to the positions where the engaging bolts 40A and 40B of the upper cup 37 are disposed.
  • the engaging recesses 42A and 42B are configured to engage with the upper ends of the engaging bolts 40A and 40B provided upright on the pin collar 31 when the upper cup 37 is mounted on the first stage displacer 3A. (See FIG. 5).
  • the lower ends of the respective engagement bolts 40A and 40B are bolted to the first stage displacer 3A and the upper ends thereof are fixed by engaging with the engagement recesses 42A and 42B of the upper cup 37.
  • the engaging bolts 40A and 40B have high strength because their upper and lower ends are fixed.
  • the engagement bolts 40A and 40B also rotate in the arrow C1 direction as the displacer 3A rotates in the C1 direction. . Therefore, with this rotation in the C1 direction, one engagement bolt 40A (the engagement bolt 40A positioned below in FIG. 6) of the pair of engagement bolts 40A is engaged with the end 30a of the engagement pin 30. (Contact). Similarly, one engagement bolt 40B (the engagement bolt 40A positioned on the upper side in FIG. 6) of the pair of engagement bolts 40B is engaged (contacted) with the end portion 30b.
  • the output shaft 22a since the output shaft 22a is connected to the scotch yoke mechanism that constitutes the drive device, the output shaft 22a cannot rotate, and the engagement pin 30 also cannot rotate. Therefore, after the engagement bolts 40A and 40B are engaged with the end portions 30a and 30b of the engagement pin 30 as described above, the displacer 3A is restricted from further rotation in the C1 direction.
  • the restriction of the rotation of the displacer 3A is performed by engaging both end portions 30a and 30b of the engagement pin 30 with the engagement bolts 40A and 40B constituting the rotation prevention mechanism.
  • the engaging bolts 40A and 40B are firmly fixed to the first stage displacer 3A and the upper cup 37 at the upper and lower sides as described above, and therefore the first stage displacer 3A is rotated. It can be surely prevented. Moreover, when each engagement bolt 40A, 40B is a firm structure, when engaging with the engagement pin 30, it can prevent that engagement bolt 40A, 40B is damaged.
  • the engagement bolts 40A and 40B are used as the standing pins and are fixed by being screwed into the screw holes formed in the bottom surface of the upper end recess 41. It is good also as a structure fixed to the bottom face of the upper end recessed part 41 using an adhesive agent.
  • the four engagement bolts 40A, 40A, 40B, and 40B are engaged with the engagement pin 30.
  • two engagement bolts are provided only on one end of the engagement pin 30. It is good also as a structure which a joint bolt engages.
  • only one of the two engagement bolts 40A and 40A may be provided on one end 30a of the engagement pin 30, and two engagement bolts 40A and 40A may be provided on the other end 30a of the engagement pin 30. It is good also as a structure which provides only volt
  • one engagement bolt 40A, 40B is disposed at each of both end portions 30a, 30b of the engagement pin 30, and the pair of engagement bolts 40A, 40B are disposed on the same side of the engagement pin 30 together. It is good also as a structure.
  • the present invention is not limited to the two-stage type, but can be applied to a single-stage or multi-stage GM refrigerator. Further, the present invention is not limited to the one that generates reciprocating motion by the Scotch yoke mechanism, and can be applied to other mechanisms that generate reciprocating motion, such as a crank mechanism.
  • the displacer 3A is completely fixed to the output shaft 22a, the displacer 3A is configured to reciprocate in the cylinder portion 10, and thus allows rotation to some extent within a range in which refrigerant gas does not blow through. It is desirable. In this embodiment, by adjusting the width W of the engagement grooves 36A and 36B with respect to the diameter R of the engagement pin 30, this allowable rotation range can be easily set.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Transmission Devices (AREA)
  • Compressor (AREA)

Abstract

Disclosed is a cryogenic refrigerator having a cylinder to which refrigerant gas is supplied, a displacer which reciprocates within the cylinder, a drive device which reciprocates the displacer within the cylinder, and a coupling mechanism for coupling the drive device to the displacer. The coupling mechanism has an output shaft extending from the drive device toward the displacer, an engagement pin which penetrates the output shaft so as to extend in a direction intersecting with the reciprocating direction of the displacer, a rotation prevention mechanism which engages with the engagement pin when the displacer rotates, to prevent the displacer from rotating, and a closure which is secured to one end of the displacer and engaged with the output shaft.

Description

極低温冷凍機Cryogenic refrigerator
 本発明は極低温冷凍機に係り、特に駆動装置とディスプレーサを連結する連結機構を有した極低温冷凍機に関する。 The present invention relates to a cryogenic refrigerator, and more particularly, to a cryogenic refrigerator having a connecting mechanism for connecting a driving device and a displacer.
 一般に、極低温を発生する冷凍機としてギフォード・マクマホン冷凍機(以下、GM冷凍機という)が知られている。このGM冷凍機は、蓄冷材を内蔵するディスプレーサの動きとバルブによる冷媒ガスの断熱膨張とが連動するギフォード・マクマホンサイクルに基づいて冷却効果を得る冷凍機である。 Generally, Gifford McMahon refrigerator (hereinafter referred to as GM refrigerator) is known as a refrigerator that generates cryogenic temperatures. This GM refrigerator is a refrigerator that obtains a cooling effect on the basis of the Gifford-McMahon cycle in which the movement of a displacer containing a regenerator and the adiabatic expansion of refrigerant gas by a valve are linked.
 GM冷凍機は、まず、圧縮機により圧力を高めた冷媒ガスをシリンダに供給する。この時点ディスプレーサは下死点にある。冷媒ガスの圧力差により、またモータの力によりディスプレーサは上昇する。ディスプレーサが上死点に達した時バルブを切替え、ディスプレーサ下部に溜まった冷媒ガスを断熱膨張させ、冷媒ガスを冷却し、ディスプレーサに内蔵された蓄冷材と熱交換させる。その時、ディスプレーサは下降し始め、下死点に戻ったらバルブを切替え、再び圧縮機により圧力を高めた冷媒ガスがシリンダ内に入り、ディスプレーサ内の蓄冷材と熱交換して冷却され、これを繰り返すことで、シリンダ下端部の熱負荷フランジ部が冷却する。一般的に、モータの回転運動をクランク機構やスコッチヨーク機構を利用して直線運動に変換し、ディスプレーサの往復運動を得ている(例えば、特許文献1参照)。 GM refrigerator first supplies refrigerant gas whose pressure is increased by a compressor to a cylinder. At this point, the displacer is at bottom dead center. The displacer is raised by the pressure difference of the refrigerant gas and by the power of the motor. When the displacer reaches the top dead center, the valve is switched, the refrigerant gas accumulated in the lower part of the displacer is adiabatically expanded, the refrigerant gas is cooled, and heat is exchanged with the regenerator material built in the displacer. At that time, the displacer begins to descend, and when it returns to the bottom dead center, the valve is switched, and the refrigerant gas whose pressure has been increased again by the compressor enters the cylinder and is cooled by exchanging heat with the regenerator material in the displacer, and this is repeated. Thus, the heat load flange portion at the lower end of the cylinder is cooled. Generally, the reciprocating motion of the displacer is obtained by converting the rotational motion of the motor into a linear motion using a crank mechanism or a scotch yoke mechanism (see, for example, Patent Document 1).
 従来、スコッチヨーク機構の往復動する出力軸をディスプレーサに接続する場合、図7及び図8に示す連結機構が用いられていた。この連結機構は、ピンカラー102,平行ピン104,アッパーカップ105,スプリングピン107等により構成されていた。 Conventionally, when the output shaft of the scotch yoke mechanism that reciprocates is connected to the displacer, the coupling mechanism shown in FIGS. 7 and 8 has been used. This coupling mechanism is composed of a pin collar 102, a parallel pin 104, an upper cup 105, a spring pin 107, and the like.
 出力軸101はロッド状の部材であり、図示しないスコッチヨークに接続されることにより図中上下方向に往復運動する。この出力軸101の下端部にはドーナツ状のピンカラー102が嵌合され、ピンカラー102と出力軸101を貫通する平行ピン104により固定されている。 The output shaft 101 is a rod-shaped member and reciprocates in the vertical direction in the figure when connected to a scotch yoke (not shown). A donut-shaped pin collar 102 is fitted to the lower end portion of the output shaft 101, and is fixed by parallel pins 104 that pass through the pin collar 102 and the output shaft 101.
 ディスプレーサ103の上端面には軸孔103aが形成され、その中に出力軸101及びピンカラー102が挿入されている。また、ディスプレーサ103の上端面には、固定ボルト106によりアッパーカップ105が固定されている。 A shaft hole 103a is formed in the upper end surface of the displacer 103, and an output shaft 101 and a pin collar 102 are inserted therein. An upper cup 105 is fixed to the upper end surface of the displacer 103 by a fixing bolt 106.
 このアッパーカップ105の中央には開口105aが形成されており、出力軸101はこの開口105aを貫通して上方に向け延在している。また、ピンカラー102の直径は、開口105aの直径よりも大きく設定されている。 An opening 105a is formed at the center of the upper cup 105, and the output shaft 101 extends upward through the opening 105a. The diameter of the pin collar 102 is set larger than the diameter of the opening 105a.
 上記構成において、出力軸101が上方に移動すると、ピンカラー102の上面がアッパーカップ105と係合して引っ張られ、これによりディスプレーサ103はシリンダ100内で上方に向け移動する。一方、出力軸101が図中下方に移動すると、ディスプレーサ103はピンカラー102により下方に向けて押圧され、よってディスプレーサ103はシリンダ100内で下方に向け移動する。これにより、ディスプレーサ103はシリンダ100内で往復移動を行う。 In the above configuration, when the output shaft 101 moves upward, the upper surface of the pin collar 102 engages and is pulled by the upper cup 105, whereby the displacer 103 moves upward in the cylinder 100. On the other hand, when the output shaft 101 moves downward in the figure, the displacer 103 is pressed downward by the pin collar 102, and thus the displacer 103 moves downward in the cylinder 100. As a result, the displacer 103 reciprocates within the cylinder 100.
 また、GM冷凍機は冷媒ガスをシリンダ100内で膨張することにより寒冷を発生させるため、シリンダ100の内壁とディスプレーサ103の外壁との間に冷媒ガスが流れると(いわゆる冷媒ガスの吹き抜けが発生すると)、冷却効率が低下する原因となる。そこで、ディスプレーサ103の側面にシリンダ100と摺接するシール材108を設け、冷媒ガスの吹き抜けの発生を抑制している。 Further, since the GM refrigerator generates cold by expanding the refrigerant gas in the cylinder 100, when the refrigerant gas flows between the inner wall of the cylinder 100 and the outer wall of the displacer 103 (so-called refrigerant gas blow-off occurs). ), Which causes a decrease in cooling efficiency. Therefore, a seal material 108 that is in sliding contact with the cylinder 100 is provided on the side surface of the displacer 103 to suppress the occurrence of refrigerant gas blow-through.
 ところで、ディスプレーサ103がシリンダ100内で往復移動する際、ディスプレーサ103が上下動の軸回りで回転してしまうと、ディスプレーサ103の側面に配置されたシール材108とシリンダ100の内周面との当たり面が変化してしまう。このため、冷媒ガスの吹き抜けが発生し、GM冷凍機による冷却処理が不安定となる。これを防止するため、上記の連結機構にはディスプレーサ103の回転を防止する機構(回転防止機構)が付加されている。 By the way, when the displacer 103 reciprocates in the cylinder 100, if the displacer 103 rotates around the axis of vertical movement, the seal material 108 disposed on the side surface of the displacer 103 and the inner peripheral surface of the cylinder 100 will hit. The surface will change. For this reason, blow-by of the refrigerant gas occurs, and the cooling process by the GM refrigerator becomes unstable. In order to prevent this, a mechanism (rotation prevention mechanism) for preventing the displacer 103 from rotating is added to the above-described coupling mechanism.
 従来の回転防止機構は、図7に加えて図8に示すように、アッパーカップ105にスプリングピン107を圧入固定すると共にピンカラー102に溝102aを形成し、スプリングピン107を溝102aに係合させる構成としていた。出力軸101は、スコッチヨーク等に接続されることにより回転が規制されている。また、ディスプレーサ103は、スプリングピン107により出力軸101に対する回転が規制されている。これにより、従来の回転防止機構では、ディスプレーサ103のシリンダ100内における回転が防止される構成とされていた。 As shown in FIG. 8 in addition to FIG. 7, the conventional rotation prevention mechanism press-fits and fixes the spring pin 107 to the upper cup 105 and forms the groove 102a in the pin collar 102, and engages the spring pin 107 with the groove 102a. It was supposed to be configured. The output shaft 101 is restricted from rotating by being connected to a scotch yoke or the like. Further, the displacer 103 is restricted from rotating with respect to the output shaft 101 by a spring pin 107. Thus, the conventional rotation prevention mechanism is configured to prevent the displacer 103 from rotating in the cylinder 100.
特開2007-205582号公報JP 2007-205582 A
 しかしながら上記従来の極低温冷凍機では、アッパーカップ105にアッパーカップ105を圧入・固定し、圧入したスプリングピン107をピンカラー102に形成した溝102aに係合させることで回り止めを実施していたため、ディスプレーサ103に対してこれを回転させようとする力が作用した場合、この力は全てスプリングピン107に印加されてしまう。 However, in the conventional cryogenic refrigerator described above, the upper cup 105 is press-fitted and fixed to the upper cup 105, and the spring pin 107 that has been press-fitted is engaged with the groove 102a formed in the pin collar 102, thereby preventing rotation. When a force to rotate the displacer 103 is applied, all the force is applied to the spring pin 107.
 このため従来の極低温冷凍機では、スプリングピン107が破断するおそれがあるという問題点があった。仮にスプリングピン107が破断した場合には、ディスプレーサ103がシリンダ100内で回転してしまい、極低温冷凍機による冷凍処理が不安定になってしまう。 For this reason, the conventional cryogenic refrigerator has a problem that the spring pin 107 may be broken. If the spring pin 107 is broken, the displacer 103 rotates in the cylinder 100, and the freezing process by the cryogenic refrigerator becomes unstable.
 本発明は、上述した従来技術の問題を解決する、改良された有用な極低温冷凍機を提供することを総括的な目的とする。 The present invention has a general object to provide an improved and useful cryogenic refrigerator that solves the problems of the prior art described above.
 本発明のより詳細な目的は、ディスプレーサの回転を防止することにより冷凍処理の安定化を図った極低温冷凍機を提供することにある。 A more detailed object of the present invention is to provide a cryogenic refrigerator that stabilizes the freezing process by preventing the displacer from rotating.
 この目的を達成するために、本発明は、冷媒ガスが供給されるシリンダと、
 該シリンダ内で往復移動するディスプレーサと、前記ディスプレーサを前記シリンダ内で往復移動させる駆動装置と、前記駆動装置と前記ディスプレーサを連結する連結機構とを有する極低温冷凍機であって、
 前記連結機構は、前記駆動装置から前記ディスプレーサに向け延出した出力軸と、前記ディスプレーサの往復移動方向と交差する方向に延出するよう前記出力軸を貫通して設けられた係合ピンと、前記ディスプレーサが回転する際に前記係合ピンと係合し、該ディスプレーサの回転を防止する回転防止機構と、前記ディスプレーサの前記一端部に固定されると共に前記出力軸と係合する蓋体とを有することを特徴とするものである。
To achieve this object, the present invention provides a cylinder to which a refrigerant gas is supplied,
A cryogenic refrigerator having a displacer that reciprocates in the cylinder, a drive device that reciprocates the displacer in the cylinder, and a connecting mechanism that connects the drive device and the displacer;
The coupling mechanism includes an output shaft extending from the driving device toward the displacer, an engagement pin provided through the output shaft so as to extend in a direction intersecting a reciprocating direction of the displacer, A rotation preventing mechanism that engages with the engaging pin when the displacer rotates to prevent the displacer from rotating; and a lid that is fixed to the one end of the displacer and engages with the output shaft. It is characterized by.
 また上記発明において、前記回転防止機構を、前記ディスプレーサに形成されると共に、前記出力軸が前記ディスプレーサに装着された際に前記係合ピンの両端部分が係合する一対の係合溝とを有する構成としてもよい。 Further, in the above invention, the rotation preventing mechanism includes a pair of engaging grooves that are formed in the displacer and that engage with both end portions of the engaging pin when the output shaft is attached to the displacer. It is good also as a structure.
 また上記発明において、前記回転防止機構を、前記ディスプレーサに立設されると共に、前記出力軸が前記ディスプレーサに装着された際に前記係合ピンの両端部分が係合する立設ピンを有する構成としてもよい。 Further, in the above invention, the rotation preventing mechanism has a standing pin that is erected on the displacer and that engages both end portions of the engaging pin when the output shaft is mounted on the displacer. Also good.
 また上記発明において、前記係合ピンを中実丸棒としてもよい。 In the above invention, the engagement pin may be a solid round bar.
 また上記発明において、前記立設ピンをボルトとし、下部に形成されたねじ部が前記ディスプレーサに螺合されると共に、上部が前記蓋体に形成された凹部と係合する構成としてもよい。 In the above invention, the standing pin may be a bolt, and a screw portion formed at a lower portion may be screwed into the displacer, and an upper portion may be engaged with a concave portion formed in the lid.
 本発明によれば、回転防止機構によりディスプレーサの回りが防止されるため、安定した冷却処理を行うことが可能となる。 According to the present invention, since the rotation of the displacer is prevented by the rotation prevention mechanism, a stable cooling process can be performed.
本発明の一実施形態である極低温冷凍機の断面図である。It is sectional drawing of the cryogenic refrigerator which is one Embodiment of this invention. 本発明の一実施形態である極低温冷凍機に設けられるロータリバルブの分解斜視図である。It is a disassembled perspective view of the rotary valve provided in the cryogenic refrigerator which is one Embodiment of this invention. 本発明の一実施形態である極低温冷凍機に設けられるディスプレーサ近傍を拡大して示す断面図である。It is sectional drawing which expands and shows the displacer vicinity provided in the cryogenic refrigerator which is one Embodiment of this invention. 図3におけるA-A線に沿う断面図である。FIG. 4 is a sectional view taken along line AA in FIG. 3. 本発明の変形例である極低温冷凍機に設けられるディスプレーサ近傍を拡大して示す断面図である。It is sectional drawing which expands and shows the displacer vicinity provided in the cryogenic refrigerator which is a modification of this invention. 図5におけるB-B線に沿う断面図である。FIG. 6 is a cross-sectional view taken along line BB in FIG. 従来の一例である極低温冷凍機に設けられるディスプレーサ近傍を拡大して示す断面図である。It is sectional drawing which expands and shows the displacer vicinity provided in the cryogenic refrigerator which is a conventional example. 図7におけるC-C線に沿う断面図である。FIG. 8 is a cross-sectional view taken along the line CC in FIG.
1  ガス圧縮機
2  コールドヘッド
3A  第1段目ディスプレーサ
3B  第2段目ディスプレーサ
4A,4B  蓄冷材
6,7  冷却ステージ
8  バルブ本体
9  バルブプレート
10  シリンダ部
10A  第1段目シリンダ
10B  第2段目シリンダ
11  第1段目膨張室
12  第2段目膨張室
13  上部室
14  クランク
15  モータ
16  回転軸受
22  スコッチヨーク
30  係合ピン
30a,30b  端部
31  ピンカラー
31a  貫通孔
32  軸孔
33  貫通孔
34  固定ボルト
35  ねじ孔
36A,36B  係合溝
37  アッパーカップ
40A,40B  係合ボルト
41  上端凹部
50  シール材
DESCRIPTION OF SYMBOLS 1 Gas compressor 2 Cold head 3A First stage displacer 3B Second stage displacer 4A, 4B Cool storage material 6, 7 Cooling stage 8 Valve body 9 Valve plate 10 Cylinder part 10A First stage cylinder 10B Second stage cylinder 11 First stage expansion chamber 12 Second stage expansion chamber 13 Upper chamber 14 Crank 15 Motor 16 Rotating bearing 22 Scotch yoke 30 Engagement pins 30a, 30b End portion 31 Pin collar 31a Through hole 32 Shaft hole 33 Through hole 34 Fixed Bolt 35 Screw hole 36A, 36B Engagement groove 37 Upper cup 40A, 40B Engagement bolt 41 Upper end recess 50 Sealing material
 以下、本発明の実施形態について図面を参照しつつ説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
  図1乃至図4は、本発明の一実施形態である極低温冷凍機を説明するための図である。なお、本実施形態では、極低温冷凍機としてギフォード・マクマホン型冷凍機(以下、GM冷凍機という)を例に挙げて説明するものとする。 1 to 4 are diagrams for explaining a cryogenic refrigerator that is an embodiment of the present invention. In the present embodiment, a Gifford McMahon refrigerator (hereinafter referred to as a GM refrigerator) will be described as an example of the cryogenic refrigerator.
 本実施形態によるGM型冷凍機は、ガス圧縮機1とコールドヘッド2とを有する。コールドヘッド2は、ハウジング23とシリンダ部10とを有する。ガス圧縮機1は、吸気口1aから冷媒ガスを吸い込み、圧縮して、吐出口1bから高圧の冷媒ガスとして吐出する。また、冷媒ガスとしては、ヘリウムガスを用いている。 The GM refrigerator according to the present embodiment includes a gas compressor 1 and a cold head 2. The cold head 2 has a housing 23 and a cylinder part 10. The gas compressor 1 draws in refrigerant gas from the intake port 1a, compresses it, and discharges it as high-pressure refrigerant gas from the discharge port 1b. Further, helium gas is used as the refrigerant gas.
 シリンダ部10は、第1段目シリンダ10Aと第2段目シリンダ10Bとの2段構成であり、第2段目シリンダ10Bは、第1段目シリンダ10Aよりも細く設定されている。また、第1段目シリンダ10Aの内部には第1段目ディスプレーサ3Aが、第2段目シリンダ10Bの内部には第2段目ディスプレーサ3Bが、各シリンダ10A,10Bの軸方向に往復運動可能に挿入されている。 The cylinder portion 10 has a two-stage configuration of a first-stage cylinder 10A and a second-stage cylinder 10B, and the second-stage cylinder 10B is set to be thinner than the first-stage cylinder 10A. Further, a first stage displacer 3A can be reciprocated in the first stage cylinder 10A, and a second stage displacer 3B can be reciprocated in the axial direction of each cylinder 10A, 10B inside the second stage cylinder 10B. Has been inserted.
 第1段目ディスプレーサ3Aと第2段目ディスプレーサ3Bは、図示を省略したジョイント機構により相互に連結されている。また、第1段目ディスプレーサ3Aの内部には蓄冷材4Aが設けられ、第2段目ディスプレーサ3Bには蓄冷材4Bが充填されている。更に、各第1段目ディスプレーサ3A,3Bには、冷媒ガスが通過するガス流路L1~L4が形成されている。 The first stage displacer 3A and the second stage displacer 3B are connected to each other by a joint mechanism (not shown). The first stage displacer 3A is provided with a cool storage material 4A, and the second stage displacer 3B is filled with the cool storage material 4B. Further, gas flow paths L1 to L4 through which the refrigerant gas passes are formed in the first stage displacers 3A and 3B.
 第1段目シリンダ10A内の、第2段目シリンダ10B側の端部には第1段目膨張室11が形成され、他方の端部には上部室13が形成されている。また、第2段目シリンダ10Bの第1段目シリンダ10A側とは反対側の端部には、第2段目膨張室12が形成されている。 The first stage expansion chamber 11 is formed at the end of the first stage cylinder 10A on the second stage cylinder 10B side, and the upper chamber 13 is formed at the other end. A second-stage expansion chamber 12 is formed at the end of the second-stage cylinder 10B opposite to the first-stage cylinder 10A side.
 上部室13と第1段目膨張室11とは、ガス流路L1、蓄冷材4が充填された第1段蓄冷材充填室、及びガス流路L2を介して接続されている。また、第1段目膨張室11と第2段目膨張室12とは、ガス流路L3、蓄冷材4Bが充填された第2段蓄冷材充填室、及びガス流路L4を介して接続されている。 The upper chamber 13 and the first stage expansion chamber 11 are connected to each other via a gas flow path L1, a first stage cold storage material filling chamber filled with the cold storage material 4, and a gas flow path L2. The first-stage expansion chamber 11 and the second-stage expansion chamber 12 are connected via the gas flow path L3, the second-stage cold storage material filling chamber filled with the cold storage material 4B, and the gas flow path L4. ing.
 第1段目シリンダ10Aの外周面の内、第1段目膨張室11にほぼ対応する位置には冷却ステージ6が配設されている。また、第2段目シリンダ10Bの外周面の内、第2段目膨張室12にほぼ対応する位置には冷却ステージ7が配設されている。 The cooling stage 6 is disposed at a position substantially corresponding to the first stage expansion chamber 11 in the outer peripheral surface of the first stage cylinder 10A. A cooling stage 7 is disposed at a position substantially corresponding to the second stage expansion chamber 12 in the outer peripheral surface of the second stage cylinder 10B.
 第1段目ディスプレーサ3Aの外周面のうち、上部室13側の端部近傍にシール材50が配置されている。このシール材50は、第1段目ディスプレーサ3Aの外周面とシリンダ10Aの内周面との間をシールする。 The sealing material 50 is disposed in the vicinity of the end on the upper chamber 13 side in the outer peripheral surface of the first stage displacer 3A. The sealing material 50 seals between the outer peripheral surface of the first stage displacer 3A and the inner peripheral surface of the cylinder 10A.
 前記のように、第1段目シリンダ10Aの内壁と第1段目ディスプレーサ3Aの外壁との間で冷媒ガスの吹き抜けが発生すると、GM冷凍機の冷却効率が低下してしまう。そこで、第1段目ディスプレーサ3Aの外側面に第1段目シリンダ10Aの内周面と摺接するシール材50を設け、冷媒ガスの吹き抜けの発生を抑制している。 As described above, when the refrigerant gas blows out between the inner wall of the first stage cylinder 10A and the outer wall of the first stage displacer 3A, the cooling efficiency of the GM refrigerator is lowered. Therefore, a seal member 50 that is in sliding contact with the inner peripheral surface of the first stage cylinder 10A is provided on the outer surface of the first stage displacer 3A to suppress the occurrence of refrigerant gas blow-through.
 第1段目ディスプレーサ3Aは、連結機構(これについては後に詳述する)を介して、回転・往復運動変換機構を構成するスコッチヨーク22の出力軸22aに連結されている。スコッチヨーク22は、ハウジング23に固定された一対の摺動軸受17a,17bにより、第1段目ディスプレーサ3A,3Bの軸方向に移動可能に支持されている。摺動軸受17bにおいては、摺動部の気密性が保たれており、ハウジング23内の空間と上部室13とが気密に画成されている。 The first stage displacer 3A is connected to an output shaft 22a of a scotch yoke 22 constituting a rotation / reciprocating motion conversion mechanism through a connection mechanism (which will be described in detail later). The scotch yoke 22 is supported by a pair of sliding bearings 17a and 17b fixed to the housing 23 so as to be movable in the axial direction of the first stage displacers 3A and 3B. In the sliding bearing 17b, the airtightness of the sliding portion is maintained, and the space in the housing 23 and the upper chamber 13 are airtightly defined.
 また、スコッチヨーク22にはモータ15が接続されている。モータ15の回転運動は、クランク14及びスコッチヨーク22により往復運動に変換される。この往復運動は出力軸22a及び連結機構を介して第1段目ディスプレーサ3Aに伝達され、これにより第1段目ディスプレーサ3Aは第1段目シリンダ10A内で、また第2段目ディスプレーサ3Bは第2段目シリンダ10B内で往復移動を行う。本実施形態では、このモータ15及びスコッチヨーク22(出力軸22aを含む)が、請求項に記載の駆動装置を構成する。 The motor 15 is connected to the scotch yoke 22. The rotational movement of the motor 15 is converted into a reciprocating movement by the crank 14 and the scotch yoke 22. This reciprocating motion is transmitted to the first stage displacer 3A via the output shaft 22a and the coupling mechanism, whereby the first stage displacer 3A is in the first stage cylinder 10A and the second stage displacer 3B is in the first stage. Reciprocal movement is performed in the second-stage cylinder 10B. In the present embodiment, the motor 15 and the scotch yoke 22 (including the output shaft 22a) constitute the drive device described in the claims.
 各第1段目ディスプレーサ3A,3Bが図中上方(Z1方向)に移動する時、上部室13の容積は減少し、逆に第1段目及び第2段目の膨張室11及び12の容積は増加する。また反対に、各第1段目ディスプレーサ3A,3Bが図中下方に移動する時、上部室13の容積は増大し、第1段目及び第2段目の膨張室11及び12の容積は減少する。この上部室13、膨張室11及び12の容積の変動に伴い、冷媒ガスがガス流路L1~L4を通って移動する。 When each first- stage displacer 3A, 3B moves upward (Z1 direction) in the figure, the volume of the upper chamber 13 decreases, and conversely, the volumes of the first-stage and second- stage expansion chambers 11 and 12 Will increase. Conversely, when the first stage displacers 3A and 3B move downward in the figure, the volume of the upper chamber 13 increases and the volumes of the first and second stage expansion chambers 11 and 12 decrease. To do. As the volumes of the upper chamber 13 and the expansion chambers 11 and 12 change, the refrigerant gas moves through the gas flow paths L1 to L4.
 また、冷媒ガスが各第1段目ディスプレーサ3A,3Bに充填された蓄冷材4A,4B内を通過する際、冷媒ガスと蓄冷材4A,4Bとの間で熱交換が行われる。これにより、蓄冷材4A,4Bは冷媒ガスにより冷却される。 Further, when the refrigerant gas passes through the regenerators 4A and 4B filled in the first stage displacers 3A and 3B, heat exchange is performed between the refrigerant gas and the regenerators 4A and 4B. Thereby, the cool storage materials 4A and 4B are cooled by the refrigerant gas.
 冷媒ガスの流路において、圧縮機1の吸気口1a及び吐出口1bと上部室13との間には、ロータリバルブRVが配置されている。ロータリバルブRVは、冷媒ガスの流路を切り換える機能を奏する。具体的には、ロータリバルブRVは、ガス圧縮機1の吐出口1bから吐出された冷媒ガスを上部室13内に導く第1の態様と、上部室13内の冷媒ガスをガス圧縮機1の吸気口1aに導く第2の態様との切り換え処理を行う。 In the refrigerant gas flow path, a rotary valve RV is disposed between the intake port 1 a and the discharge port 1 b of the compressor 1 and the upper chamber 13. The rotary valve RV has a function of switching the flow path of the refrigerant gas. Specifically, the rotary valve RV has a first mode for guiding the refrigerant gas discharged from the discharge port 1b of the gas compressor 1 into the upper chamber 13, and the refrigerant gas in the upper chamber 13 of the gas compressor 1. Switching processing to the second mode leading to the intake port 1a is performed.
 ロータリバルブRVは、バルブ本体8及びバルブプレート9を有する。バルブプレート9は、例えばアルミニウム合金で形成され、バルブ本体8は、例えば四フッ化エチレン(例えば、NTN社製のベアリーFL3000)で形成されている。バルブ本体8及びバルブプレート9は平坦な摺動面を有し、この平坦な摺動面同士が面接触している。両者の摺動面の少なくとも一方に、摩擦を低減して耐磨耗性を向上させるために、ダイヤモンドライクカーボン(DLC)等の硬質材からなる薄膜が形成されることが好ましい。 The rotary valve RV has a valve body 8 and a valve plate 9. The valve plate 9 is made of, for example, an aluminum alloy, and the valve body 8 is made of, for example, tetrafluoroethylene (for example, BEAREE FL3000 manufactured by NTN). The valve body 8 and the valve plate 9 have flat sliding surfaces, and the flat sliding surfaces are in surface contact with each other. A thin film made of a hard material such as diamond-like carbon (DLC) is preferably formed on at least one of both sliding surfaces in order to reduce friction and improve wear resistance.
 バルブプレート9は、回転軸受16により、ハウジング23内に回転可能に支持されている。スコッチヨーク22を駆動するクランク14の偏心ピン14aが回転軸を中心として公転することにより、バルブプレート9が回転する。バルブ本体8は、コイルバネ20によりバルブプレート9に押し付けられ、ピン19により回転しないように固定されている。 The valve plate 9 is rotatably supported in the housing 23 by a rotary bearing 16. When the eccentric pin 14a of the crank 14 that drives the scotch yoke 22 revolves around the rotation axis, the valve plate 9 rotates. The valve body 8 is pressed against the valve plate 9 by a coil spring 20 and fixed by a pin 19 so as not to rotate.
 コイルバネ20は、排気側の圧力が給気側の圧力より大きくなってしまった場合に、バルブ本体8がバルブプレート9から離れてしまわないようにバルブ本体8を押圧するために設けられた押圧手段である。作動時にバルブ本体8をバルブプレート9に押圧する力は、冷媒ガスの給気側の圧力と排気側の圧力の差圧がバルブ本体8に作用することにより生じるようになっている。 The coil spring 20 is provided with pressing means for pressing the valve body 8 so that the valve body 8 does not move away from the valve plate 9 when the pressure on the exhaust side becomes larger than the pressure on the supply side. It is. The force that presses the valve body 8 against the valve plate 9 during operation is generated by the pressure difference between the supply side pressure and the exhaust side pressure of the refrigerant gas acting on the valve body 8.
 図2は、ロータリバルブRVの分解斜視図である。円柱状のバルブ本体8の平坦な摺動面8aとバルブプレート9の平坦な摺動面9aとが面接触する。ガス供給路となるガス流路8bが、バルブ本体8の中心軸に沿ってバルブ本体8を貫通している。すなわち、ガス流路8bの一端が、摺動面8aに開口している。 FIG. 2 is an exploded perspective view of the rotary valve RV. The flat sliding surface 8a of the cylindrical valve body 8 and the flat sliding surface 9a of the valve plate 9 are in surface contact. A gas flow path 8 b serving as a gas supply path passes through the valve body 8 along the central axis of the valve body 8. That is, one end of the gas flow path 8b is open to the sliding surface 8a.
 ガス流路8bの他端は、図2に示したガス圧縮機1の吐出口1bに接続されている。圧縮機1の吐出口1bからバルブ本体8のガス流路8bまでがガス供給路に相当する。 The other end of the gas flow path 8b is connected to the discharge port 1b of the gas compressor 1 shown in FIG. From the discharge port 1b of the compressor 1 to the gas flow path 8b of the valve body 8 corresponds to a gas supply path.
 バルブ本体8の摺動面8aに、バルブ本体8の中心軸を中心とした円弧に沿った溝8cが形成されている。バルブ本体8の内部に形成されたガス流路8dの一端が、溝8cの底面に開口している。ガス流路8dの他端は、バルブ本体8の外周面に開口し、更に図2に示すハウジング23に形成されたガス流路21を経由して上部室13に連通している。 A groove 8c is formed on the sliding surface 8a of the valve body 8 along an arc centered on the central axis of the valve body 8. One end of the gas flow path 8d formed inside the valve body 8 is open to the bottom surface of the groove 8c. The other end of the gas flow path 8d opens to the outer peripheral surface of the valve body 8, and further communicates with the upper chamber 13 via a gas flow path 21 formed in the housing 23 shown in FIG.
 バルブプレート9の摺動面9aに、その中心から半径方向に伸びる溝9dが形成されている。バルブプレート9が回転し、溝9dの外周側の端部が溝8cに部分的に重なった時、ガス流路8bとガス流路8dとが溝9dを介して連通する。 A groove 9d extending in the radial direction from the center is formed on the sliding surface 9a of the valve plate 9. When the valve plate 9 rotates and the outer peripheral end of the groove 9d partially overlaps the groove 8c, the gas flow path 8b and the gas flow path 8d communicate with each other through the groove 9d.
 回転軸に平行なガス流路9bが、バルブプレート9を貫通して延在している。ガス流路9bは、摺動面9a内の半径方向に関して、バルブ本体8の摺動面8aに形成された溝8cとほぼ同じ位置に開口している。バルブプレート9が回転し、ガス流路9bの開口部が溝8cに部分的に重なった時、ガス流路8dとガス流路9bとが連通する。ガス流路9bの他端は、図2に示したハウジング23内の空洞を介してガス圧縮機1の吸気口1aに連通している。バルブプレート9のガス流路から圧縮機1の吸気口1aまでがガス排出路に相当する。 A gas flow path 9 b parallel to the rotation axis extends through the valve plate 9. The gas flow path 9b opens at substantially the same position as the groove 8c formed in the sliding surface 8a of the valve body 8 with respect to the radial direction in the sliding surface 9a. When the valve plate 9 rotates and the opening of the gas flow path 9b partially overlaps the groove 8c, the gas flow path 8d and the gas flow path 9b communicate with each other. The other end of the gas flow path 9b communicates with the intake port 1a of the gas compressor 1 through the cavity in the housing 23 shown in FIG. From the gas flow path of the valve plate 9 to the intake port 1a of the compressor 1 corresponds to the gas discharge path.
 ガス流路8bとガス流路8dとが溝8cを介して連通している時、圧縮機1から送られる冷媒ガスはロータリバルブRVを介して上部室13内に送り込まれる。ガス流路8dとガス流路9bとが連通している時、上部室13内の冷媒ガスがガス圧縮機1に回収される。従って、バルブプレート9を回転させると、上部室13への冷媒ガスの導入(給気)と、上部室13からの冷媒ガスの回収(排気)が繰り返される。 When the gas flow path 8b and the gas flow path 8d communicate with each other via the groove 8c, the refrigerant gas sent from the compressor 1 is sent into the upper chamber 13 via the rotary valve RV. When the gas flow path 8d and the gas flow path 9b are in communication, the refrigerant gas in the upper chamber 13 is recovered by the gas compressor 1. Therefore, when the valve plate 9 is rotated, introduction of refrigerant gas into the upper chamber 13 (supply) and recovery of refrigerant gas from the upper chamber 13 (exhaust) are repeated.
 次に、上記構成のGM冷凍機において、スコッチヨーク22の往復動部材である出力軸22aと第1段目ディスプレーサ3Aとを連結する連結機構について、主に図3及び図4を用いて説明する。図3は出力軸22aと第1段目ディスプレーサ3Aとの連結部分を拡大して示す図であり、図4は図3におけるA-A線に沿う断面を示している。 Next, in the GM refrigerator configured as described above, a connecting mechanism that connects the output shaft 22a, which is a reciprocating member of the scotch yoke 22, and the first stage displacer 3A will be described mainly with reference to FIGS. . FIG. 3 is an enlarged view showing a connecting portion between the output shaft 22a and the first stage displacer 3A, and FIG. 4 shows a cross section taken along line AA in FIG.
 出力軸22aと第1段目ディスプレーサ3A(以下、単にディスプレーサ3Aという)とを連結する連結機構は、大略すると出力軸22a、係合ピン30、ピンカラー31、軸孔32、アッパーカップ37、及び回転防止機構等により構成されている。本実施形態に係る回転防止機構は、係合溝36A,36Bを有した構成とされている。 The connecting mechanism for connecting the output shaft 22a and the first stage displacer 3A (hereinafter simply referred to as the “displacer 3A”) is roughly composed of the output shaft 22a, the engaging pin 30, the pin collar 31, the shaft hole 32, the upper cup 37, and the like. It is comprised by the rotation prevention mechanism etc. The rotation prevention mechanism according to the present embodiment is configured to have engagement grooves 36A and 36B.
 出力軸22aは、その下端近傍にディスプレーサ3Aの往復移動方向(図1,3に矢印Z1,Z2で示す方向)と直行する方向(図1,3に矢印X1,X2で示す方向)に延在するよう貫通孔33が形成されている。この係合ピン30は、この貫通孔33を貫通するよう取り付けられる。よってこの取り付け状態において、係合ピン30はディスプレーサ3Aの往復移動方向と直行する方向(X1,X2方向)に延出した状態となる。また、係合ピン30の長さは、出力軸22aの直径より長いため、係合ピン30の両端部30a,30bは出力軸22aを中心として外側に向けて延出した状態となる。 The output shaft 22a extends in the vicinity of its lower end in a direction (indicated by arrows X1 and X2 in FIGS. 1 and 3) perpendicular to the reciprocating direction of the displacer 3A (indicated by arrows Z1 and Z2 in FIGS. 1 and 3). A through hole 33 is formed so as to achieve this. The engagement pin 30 is attached so as to penetrate the through hole 33. Therefore, in this attached state, the engaging pin 30 extends in the direction (X1, X2 direction) perpendicular to the reciprocating direction of the displacer 3A. Further, since the length of the engagement pin 30 is longer than the diameter of the output shaft 22a, both end portions 30a and 30b of the engagement pin 30 are extended outward with the output shaft 22a as a center.
 出力軸22aの下端部には、ピンカラー31が設けられる。ピンカラー31は、中央に出力軸22aが挿入される挿通孔31aが形成された中空円柱形状を有している。このピンカラー31は、例えばステンレスにより形成されている。また、ピンカラー31には、ディスプレーサ3Aの往復移動方向と直行する方向に延在する挿通孔31aが形成されている。 A pin collar 31 is provided at the lower end of the output shaft 22a. The pin collar 31 has a hollow cylindrical shape in which an insertion hole 31a into which the output shaft 22a is inserted is formed at the center. The pin collar 31 is made of, for example, stainless steel. Further, the pin collar 31 is formed with an insertion hole 31a extending in a direction perpendicular to the reciprocating direction of the displacer 3A.
 ピンカラー31が出力軸22aの所定装着位置に装着された状態で、出力軸22aに形成された貫通孔33と、ピンカラー31に形成された挿通孔31aは一直線上に連通した状態となる。この連通状態において、係合ピン30は挿通孔31a及び貫通孔33に装着される。係合ピン30の長さは、ピンカラー31の直径よりも長く設定されている。よって、係合ピン30を出力軸22a及びピンカラー31に装着した状態においても、係合ピン30の両端部30a,30bはピンカラー31を中心として、その外周面より外側に向けて延出する。 In a state where the pin collar 31 is mounted at a predetermined mounting position of the output shaft 22a, the through hole 33 formed in the output shaft 22a and the insertion hole 31a formed in the pin collar 31 are in a state of communicating in a straight line. In this communication state, the engagement pin 30 is attached to the insertion hole 31 a and the through hole 33. The length of the engagement pin 30 is set longer than the diameter of the pin collar 31. Therefore, even when the engagement pin 30 is mounted on the output shaft 22a and the pin collar 31, both end portions 30a and 30b of the engagement pin 30 extend outward from the outer peripheral surface with the pin collar 31 as the center. .
 また、係合ピン30を出力軸22a及びピンカラー31に装着した状態において、ピンカラー31は出力軸22aに係合ピン30を介して保持された状態となる。よって、出力軸22aがディスプレーサ3Aの往復移動方向(Z1,Z2方向)に移動する際、ピンカラー31も一体的に往復移動方向(Z1,Z2方向)に移動する。 Further, in a state where the engagement pin 30 is mounted on the output shaft 22a and the pin collar 31, the pin collar 31 is held on the output shaft 22a via the engagement pin 30. Therefore, when the output shaft 22a moves in the reciprocating direction (Z1, Z2 direction) of the displacer 3A, the pin collar 31 also moves integrally in the reciprocating direction (Z1, Z2 direction).
 軸孔32及び係合溝36A,36Bは、ディスプレーサ3Aの上端部(Z1方向端部)に形成されている。軸孔32は、円柱形状とされたディスプレーサ3Aの中心軸と同軸的に形成されている。この軸孔32の直径は、ピンカラー31の直径よりも若干大きく設定されている。即ち、軸孔32は、その内部にピンカラー31が取り付けられた出力軸22aが挿入されうる構成とされている。また、前記した係合ピン30の長さは、この軸孔32の直径よりも長く設定されている。 The shaft hole 32 and the engagement grooves 36A and 36B are formed at the upper end (the end in the Z1 direction) of the displacer 3A. The shaft hole 32 is formed coaxially with the central axis of the displacer 3A having a cylindrical shape. The diameter of the shaft hole 32 is set to be slightly larger than the diameter of the pin collar 31. That is, the shaft hole 32 is configured such that the output shaft 22a having the pin collar 31 attached therein can be inserted therein. The length of the engagement pin 30 is set longer than the diameter of the shaft hole 32.
 係合溝36A,36Bは、軸孔32の側壁に形成されている。この係合溝36A,36Bは180°離間して形成されており、よって係合溝36Aと係合溝36Bは互いに対向するよう形成されている。また各係合溝36A,36Bは同一形状とされており、よってその長さ(図4に矢印L1で示す)及び幅(図4に矢印Wで示す)は同一寸法とされている。 The engaging grooves 36 </ b> A and 36 </ b> B are formed on the side wall of the shaft hole 32. The engagement grooves 36A and 36B are formed 180 degrees apart from each other, and thus the engagement groove 36A and the engagement groove 36B are formed to face each other. The engaging grooves 36A and 36B have the same shape, and therefore the length (indicated by an arrow L1 in FIG. 4) and the width (indicated by an arrow W in FIG. 4) have the same dimensions.
 また、各係合溝36A,36Bの長さL1は、係合ピン30の各端部30a,30bがピンカラー31の外周面から外側に突出する長さ(図4に矢印L2で示す)よりも大きくなるよう設定されている(L1>L2)。更に、各係合溝36A,36Bの幅Wは、係合ピン30の断面直径(図4に矢印Rで示す)よりも大きくなるよう設定されている(W>R)。従って、係合ピン30及びピンカラー31が取り付けられた出力軸22aを軸孔32に挿入装着することにより、係合ピン30の両端部30a,30bは係合溝36A,36Bに挿入されて係合した状態となる(図4参照)。 Further, the length L1 of each engagement groove 36A, 36B is longer than the length (indicated by arrow L2 in FIG. 4) in which each end 30a, 30b of the engagement pin 30 protrudes outward from the outer peripheral surface of the pin collar 31. (L1> L2). Further, the width W of each engagement groove 36A, 36B is set to be larger than the cross-sectional diameter of the engagement pin 30 (indicated by arrow R in FIG. 4) (W> R). Therefore, by inserting and mounting the output shaft 22a to which the engagement pin 30 and the pin collar 31 are attached into the shaft hole 32, both end portions 30a and 30b of the engagement pin 30 are inserted into the engagement grooves 36A and 36B. A combined state is obtained (see FIG. 4).
 アッパーカップ37は、ディスプレーサ3Aの上端部を塞ぐ蓋として機能するものである。このアッパーカップ37はアルミニウムからなり、中央に挿通孔37aが形成された円盤形状とされている。この挿通孔37aには、出力軸22aが挿通される。また、アッパーカップ37には、ガス流路L1を形成する孔と、固定ボルト34を装着する装着凹部が形成されている。 The upper cup 37 functions as a lid that closes the upper end of the displacer 3A. The upper cup 37 is made of aluminum and has a disk shape with an insertion hole 37a formed in the center. The output shaft 22a is inserted through the insertion hole 37a. Further, the upper cup 37 is formed with a hole for forming the gas flow path L1 and a mounting recess for mounting the fixing bolt 34.
 このアッパーカップ37は、固定ボルト34を装着凹部に挿入すると共に、ディスプレーサ3Aの上端部に形成されたねじ孔35に螺着することによりディスプレーサ3Aに固定される。この固定状態において、ピンカラー31はアッパーカップ37の下部に位置している。また、アッパーカップ37に形成された挿通孔37aの直径は、ピンカラー31の直径よりも小さく設定されている。よって、アッパーカップ37がディスプレーサ3Aに固定された状態おいて、ピンカラー31はアッパーカップ37に係合(当接)した状態となる。 The upper cup 37 is fixed to the displacer 3A by inserting the fixing bolt 34 into the mounting recess and screwing into the screw hole 35 formed in the upper end portion of the displacer 3A. In this fixed state, the pin collar 31 is located below the upper cup 37. Further, the diameter of the insertion hole 37 a formed in the upper cup 37 is set smaller than the diameter of the pin collar 31. Therefore, the pin collar 31 is engaged (contacted) with the upper cup 37 while the upper cup 37 is fixed to the displacer 3A.
 上記構成において、駆動装置が駆動することにより出力軸22aが上動(Z1方向に移動)すると、係合ピン30により出力軸22aに取り付けられているピンカラー31も上動する。この際、ピンカラー31はアッパーカップ37と係合しているため、ピンカラー31の上動に伴いアッパーカップ37も上動付勢される。 In the above configuration, when the output shaft 22a is moved upward (moved in the Z1 direction) by driving the drive device, the pin collar 31 attached to the output shaft 22a is also moved upward by the engagement pin 30. At this time, since the pin collar 31 is engaged with the upper cup 37, the upper cup 37 is also urged upward as the pin collar 31 moves upward.
 よって、出力軸22aが上動に伴いピンカラー31はアッパーカップ37と係合し、ディスプレーサ3Aを上方向に向け移動付勢する。即ち、アッパーカップ37は、ピンカラー31を介して出力軸22aと係合した状態となる。よって、出力軸22aの上動に伴い、ディスプレーサ3Aは上動する。 Therefore, as the output shaft 22a moves upward, the pin collar 31 engages with the upper cup 37 and urges the displacer 3A to move upward. That is, the upper cup 37 is engaged with the output shaft 22a via the pin collar 31. Accordingly, the displacer 3A moves upward as the output shaft 22a moves upward.
 また、出力軸22aが下動する場合も、上記と同様の理由によりディスプレーサ3Aは出力軸22aの下動に伴い下動する。よって、本実施形態に係る連結機構によれば、駆動装置の出力軸22aの上下動作により、ディスプレーサ3Aを上下方向に往復移動させることが可能となる。 Also, when the output shaft 22a moves down, the displacer 3A moves down as the output shaft 22a moves down for the same reason as described above. Therefore, according to the connection mechanism according to the present embodiment, the displacer 3A can be reciprocated in the vertical direction by the vertical movement of the output shaft 22a of the drive device.
 ここで、本実施形態に係る連結機構において、ディスプレーサ3Aに対して回転方向(図4に矢印C1,C2で示す)に力が作用したことを想定する。 Here, it is assumed that force is applied to the displacer 3A in the rotational direction (indicated by arrows C1 and C2 in FIG. 4) in the coupling mechanism according to the present embodiment.
 いま、ディスプレーサ3Aに対して図4に矢印C1で示す方向に回転させる力が作用したとすると、ディスプレーサ3AのC1方向の回転に伴い、係合溝36A,36Bも矢印C1方向に回転を行う。よって、C1方向の回転に伴い、係合溝36Aの一の内壁が係合ピン30の端部30aと係合(当接)し、係合溝36Bの一の内壁が係合ピン30の端部30bと係合した状態となる。 Now, assuming that a force for rotating the displacer 3A in the direction indicated by the arrow C1 in FIG. 4 is applied, the engaging grooves 36A and 36B also rotate in the direction of the arrow C1 as the displacer 3A rotates in the C1 direction. Therefore, with the rotation in the C1 direction, one inner wall of the engagement groove 36A engages (contacts) with the end 30a of the engagement pin 30 and one inner wall of the engagement groove 36B ends with the end of the engagement pin 30. It will be in the state engaged with the part 30b.
 しかしながら、出力軸22aは前記のように駆動装置を構成するスコッチヨーク機構に接続されているため回転不能な構成となっており、従って出力軸22aの貫通孔33に貫通された係合ピン30も回転不能な構成となっている。よって、各係合溝36A,36Bの内壁が係合ピン30の各端部30a,30bと係合した後は、ディスプレーサ3Aのそれ以上のC1方向の回転は規制される。 However, since the output shaft 22a is connected to the scotch yoke mechanism that constitutes the drive device as described above, the output shaft 22a is not rotatable, and therefore the engagement pin 30 penetrated through the through hole 33 of the output shaft 22a is also included. It cannot be rotated. Therefore, after the inner walls of the engagement grooves 36A and 36B are engaged with the end portions 30a and 30b of the engagement pin 30, further rotation of the displacer 3A in the C1 direction is restricted.
 また、ディスプレーサ3Aに対して図4に矢印C2で示す方向に回転させる力が作用した時も同様であり、C2方向の回転に伴い係合溝36Aの他の内壁が係合ピン30の端部30aと係合(当接)し、係合溝36Bの他の内壁が係合ピン30の端部30bと係合する。よって、各係合溝36A,36Bの内壁が係合ピン30の各端部30a,30bと係合した後は、ディスプレーサ3Aのそれ以上のC2方向の回転も規制される。 The same applies when a force for rotating the displacer 3A in the direction indicated by the arrow C2 in FIG. 4 is applied to the displacer 3A, and the other inner wall of the engaging groove 36A is the end of the engaging pin 30 along with the rotation in the C2 direction. The other inner wall of the engagement groove 36 </ b> B engages with the end 30 b of the engagement pin 30. Therefore, after the inner walls of the engagement grooves 36A and 36B are engaged with the end portions 30a and 30b of the engagement pin 30, further rotation of the displacer 3A in the C2 direction is also restricted.
 本実施形態では、ディスプレーサ3Aの回転の規制は、係合ピン30の両端部30a,30bが回転防止機構を構成する一対の係合溝36A,36Bに係合することにより行われる。即ち、従来ではスプリングピン107のみにより、換言すれば一箇所のみでディスプレーサ103の回転を規制していたのに対し、本実施形態では2箇所でディスプレーサ3Aの回転を規制することができる。 In this embodiment, the restriction of the rotation of the displacer 3A is performed by engaging both end portions 30a and 30b of the engagement pin 30 with a pair of engagement grooves 36A and 36B constituting the rotation prevention mechanism. That is, the rotation of the displacer 103 is conventionally restricted only by the spring pin 107, in other words, only at one place, whereas in this embodiment, the rotation of the displacer 3A can be restricted at two places.
 よって、ディスプレーサ3Aの回転規制時に係合ピン30の各端部30a,30bに印加される剪断力を従来に比べて小さくすることができるため、ディスプレーサ3Aの回転規制時に係合ピン30が破損することを防止できる。これにより、ディスプレーサ3Aに配設されたシール材50が第1段目シリンダ10Aから離間して冷媒ガスの吹き抜けが発生することが防止され、GM冷凍機の冷却処理の安定化を図ることができる。 Therefore, since the shearing force applied to the end portions 30a and 30b of the engagement pin 30 when the rotation of the displacer 3A is restricted can be made smaller than before, the engagement pin 30 is damaged when the rotation of the displacer 3A is restricted. Can be prevented. This prevents the sealing material 50 disposed in the displacer 3A from separating from the first-stage cylinder 10A and prevents the refrigerant gas from being blown out, thereby stabilizing the cooling process of the GM refrigerator. .
 また本実施形態では、係合ピン30として金属(例えば、ステンレス)製の中実丸棒を用いている。よって、係合ピン30の強度は、従来のスプリングピン107に比べて強く、これによっても係合ピン30の破損防止が図られている。 In this embodiment, a solid round bar made of metal (for example, stainless steel) is used as the engagement pin 30. Therefore, the strength of the engagement pin 30 is stronger than that of the conventional spring pin 107, and this also prevents damage to the engagement pin 30.
 また、本実施形態では従来では必要とされたスプリングピン107を不要とでき、またアッパーカップ105にスプリングピン107を固定するための固定孔の形成も不要となる。 Further, in the present embodiment, the conventionally required spring pin 107 can be omitted, and the formation of a fixing hole for fixing the spring pin 107 to the upper cup 105 is also unnecessary.
 更に本実施形態では、ディスプレーサ103に対して小さい部品であるピンカラー102に溝102aを形成する必要もなくなる。よって本実施形態に係るGM冷凍機によれば、従来構成の冷凍機に比べて部品点数の削減及び製造工程の簡単化を図ることが可能となる。 Furthermore, in this embodiment, it is not necessary to form the groove 102a in the pin collar 102 which is a small part with respect to the displacer 103. Therefore, according to the GM refrigerator according to the present embodiment, it is possible to reduce the number of parts and simplify the manufacturing process as compared with the refrigerator having the conventional configuration.
 図5及び図6は、上記した連結機構の変形例を示している。上記した実施形態に係る連結機構では、回転防止機構として係合溝36A,36Bを設け、第1段目ディスプレーサ3AがC1,C2方向に回転した際、係合ピン30と係合溝36A,36Bとが係合(当接)し、これにより第1段目ディスプレーサ3Aの回転を防止する構成としていた。 5 and 6 show a modification of the above-described coupling mechanism. In the connection mechanism according to the above-described embodiment, the engagement grooves 36A and 36B are provided as the rotation preventing mechanism, and when the first stage displacer 3A rotates in the C1 and C2 directions, the engagement pin 30 and the engagement grooves 36A and 36B are provided. Are engaged (contacted) to prevent the first-stage displacer 3A from rotating.
 これに対して本変形例では連結機構の回転防止機構として、第1段目ディスプレーサ3Aの上端部に立設された立設ピンを用いたことを特徴としている。また、本変形例ではこの立設ピンとしてボルト40A,40B(以下、係合ボルト40A,40Bという)を用いた構成としている。 On the other hand, this modification is characterized in that a standing pin standing on the upper end of the first stage displacer 3A is used as a rotation preventing mechanism of the coupling mechanism. In this modification, bolts 40A and 40B (hereinafter referred to as engagement bolts 40A and 40B) are used as the standing pins.
 この係合ボルト40Aは係合ピン30の一方の端部30aに2本配設されており、また係合ボルト40Bは係合ピン30の他方の端部30bに2本配設されている。よって本変形例では、合計4本のボルト40A,40Bが第1段目ディスプレーサ3Aの上端部に立設されている。 Two engagement bolts 40A are arranged at one end 30a of the engagement pin 30, and two engagement bolts 40B are arranged at the other end 30b of the engagement pin 30. Therefore, in this modification, a total of four bolts 40A, 40B are erected on the upper end of the first stage displacer 3A.
 なお、立設ピンはボルトに限定されるものではなく、第1段目ディスプレーサ3Aの上端部に立設できるものであれば、他の構成の部品を用いることも可能である。 It should be noted that the standing pins are not limited to bolts, and it is possible to use other components as long as they can stand upright at the upper end of the first stage displacer 3A.
 一方、第1段目ディスプレーサ3Aの上端部には、円形の凹部41(以下、上端凹部41という)が形成されている。この上端凹部41の中心位置には、出力軸22aが挿通される。また上端凹部41の直径は、係合ピン30の長さよりも長く設定されている。 On the other hand, a circular recess 41 (hereinafter referred to as an upper end recess 41) is formed at the upper end of the first stage displacer 3A. The output shaft 22 a is inserted through the center position of the upper end recess 41. The diameter of the upper end recess 41 is set to be longer than the length of the engagement pin 30.
 また、上端凹部41の底面には4個のねじ孔が形成されている。前記の4本のボルト40A,40Bはこのねじ孔に螺着することにより、第1段目ディスプレーサ3A(具体的には、上端凹部41の底面)に立設された状態となる。 Further, four screw holes are formed in the bottom surface of the upper end recess 41. When the four bolts 40A and 40B are screwed into the screw holes, the four bolts 40A and 40B are erected on the first stage displacer 3A (specifically, the bottom surface of the upper end recess 41).
 図6に示すように、一対の係合ボルト40Aは、出力軸22aを第1段目ディスプレーサ3Aに装着した際、係合ピン30の端部30aを挟む位置に立設される。同様に、一対の係合ボルト40Bは、出力軸22aを第1段目ディスプレーサ3Aに装着した際、係合ピン30の端部30bを挟む位置に立設される。 As shown in FIG. 6, the pair of engagement bolts 40 </ b> A is erected at a position sandwiching the end 30 a of the engagement pin 30 when the output shaft 22 a is attached to the first stage displacer 3 </ b> A. Similarly, the pair of engagement bolts 40B is erected at a position sandwiching the end 30b of the engagement pin 30 when the output shaft 22a is attached to the first stage displacer 3A.
 一方、アッパーカップ37の各係合ボルト40A,40Bの配設位置に対応する位置には、係合凹部42A,42Bが形成されている。この係合凹部42A,42Bは、アッパーカップ37を第1段目ディスプレーサ3Aに装着した際、ピンカラー31に立設された各係合ボルト40A,40Bの上端部と係合するよう構成されている(図5参照)。 On the other hand, engaging recesses 42A and 42B are formed at positions corresponding to the positions where the engaging bolts 40A and 40B of the upper cup 37 are disposed. The engaging recesses 42A and 42B are configured to engage with the upper ends of the engaging bolts 40A and 40B provided upright on the pin collar 31 when the upper cup 37 is mounted on the first stage displacer 3A. (See FIG. 5).
 このように、各係合ボルト40A,40Bはその下端が第1段目ディスプレーサ3Aにボルト締結されると共に、その上端部がアッパーカップ37の係合凹部42A,42Bに係合することにより固定される。このように、各係合ボルト40A,40Bはその上下両端部が固定されるため、その強度は高くなっている。 As described above, the lower ends of the respective engagement bolts 40A and 40B are bolted to the first stage displacer 3A and the upper ends thereof are fixed by engaging with the engagement recesses 42A and 42B of the upper cup 37. The As described above, the engaging bolts 40A and 40B have high strength because their upper and lower ends are fixed.
 上記構成とされた本変形例に係る連結機構において、ディスプレーサ3Aに対して回転方向(図6に矢印C1,C2で示す)に力が作用したことを想定する。 In the coupling mechanism according to this modification having the above-described configuration, it is assumed that a force is applied to the displacer 3A in the rotation direction (indicated by arrows C1 and C2 in FIG. 6).
 いま、ディスプレーサ3Aに対して図4に矢印C1で示す方向に回転させる力が作用したとすると、ディスプレーサ3AのC1方向の回転に伴い、各係合ボルト40A,40Bも矢印C1方向に回転を行う。よって、このC1方向の回転に伴い、一対の係合ボルト40Aの内一の係合ボルト40A(図6中、下に位置する係合ボルト40A)が係合ピン30の端部30aと係合(当接)する。同様に、一対の係合ボルト40Bの内一の係合ボルト40B(図6中、上に位置する係合ボルト40A)が端部30bと係合(当接)する。 Now, assuming that a force for rotating the displacer 3A in the direction indicated by the arrow C1 in FIG. 4 is applied, the engagement bolts 40A and 40B also rotate in the arrow C1 direction as the displacer 3A rotates in the C1 direction. . Therefore, with this rotation in the C1 direction, one engagement bolt 40A (the engagement bolt 40A positioned below in FIG. 6) of the pair of engagement bolts 40A is engaged with the end 30a of the engagement pin 30. (Contact). Similarly, one engagement bolt 40B (the engagement bolt 40A positioned on the upper side in FIG. 6) of the pair of engagement bolts 40B is engaged (contacted) with the end portion 30b.
 前記のように出力軸22aは、駆動装置を構成するスコッチヨーク機構に接続されているため回転不能な構成となっており、従って係合ピン30も回転不能な構成となっている。よって、上記のように係合ボルト40A,40Bが係合ピン30の各端部30a,30bと係合した後は、ディスプレーサ3Aはそれ以上のC1方向の回転が規制される。 As described above, since the output shaft 22a is connected to the scotch yoke mechanism that constitutes the drive device, the output shaft 22a cannot rotate, and the engagement pin 30 also cannot rotate. Therefore, after the engagement bolts 40A and 40B are engaged with the end portions 30a and 30b of the engagement pin 30 as described above, the displacer 3A is restricted from further rotation in the C1 direction.
 また、ディスプレーサ3Aに対して図6に矢印C2で示す方向に回転させる力が作用した時も同様であり、C1方向に回転した時に端部30a,30bに係合したものと異なる係合ボルト40A,40Bが端部30a,30bに係合(当接)することにより、ディスプレーサ3AのC2方向の回転が規制される。 The same applies when a force for rotating the displacer 3A in the direction indicated by the arrow C2 in FIG. 6 is applied, and the engagement bolt 40A is different from that engaged with the end portions 30a and 30b when rotated in the C1 direction. , 40B are engaged (contacted) with the end portions 30a, 30b, thereby restricting the rotation of the displacer 3A in the C2 direction.
 このように本変形例では、ディスプレーサ3Aの回転の規制は、係合ピン30の両端部30a,30bが回転防止機構を構成する係合ボルト40A,40Bに係合することにより行われる。 As described above, in this modification, the restriction of the rotation of the displacer 3A is performed by engaging both end portions 30a and 30b of the engagement pin 30 with the engagement bolts 40A and 40B constituting the rotation prevention mechanism.
 この際、前記のように各係合ボルト40A,40Bはその上下を第1段目ディスプレーサ3A及びアッパーカップ37に固定された強固な構成とされているため、第1段目ディスプレーサ3Aの回転を確実に防止することができる。また、各係合ボルト40A,40Bが強固な構成であることにより、係合ピン30と係合する際に係合ボルト40A,40Bが損傷することを防止することができる。 At this time, the engaging bolts 40A and 40B are firmly fixed to the first stage displacer 3A and the upper cup 37 at the upper and lower sides as described above, and therefore the first stage displacer 3A is rotated. It can be surely prevented. Moreover, when each engagement bolt 40A, 40B is a firm structure, when engaging with the engagement pin 30, it can prevent that engagement bolt 40A, 40B is damaged.
 ここで、本変形例では立設ピンとして係合ボルト40A,40Bを用い、これを上端凹部41の底面に形成されたねじ孔に螺着することにより固定する構成としたが、立設ピンを接着剤を用いて上端凹部41の底面に固定する構成としてもよい。 Here, in this modification, the engagement bolts 40A and 40B are used as the standing pins and are fixed by being screwed into the screw holes formed in the bottom surface of the upper end recess 41. It is good also as a structure fixed to the bottom face of the upper end recessed part 41 using an adhesive agent.
 また、本変形例では係合ピン30に対して4本の係合ボルト40A,40A,40B,40Bが係合する構成としたが、係合ピン30の一方の端部のみに2本の係合ボルトが係合する構成としてもよい。 In the present modification, the four engagement bolts 40A, 40A, 40B, and 40B are engaged with the engagement pin 30. However, two engagement bolts are provided only on one end of the engagement pin 30. It is good also as a structure which a joint bolt engages.
 具体的には、係合ピン30の一方の端部30aに2本の係合ボルト40A,40Aのみを設ける構成としてもよく、また係合ピン30の他方の端部30aに2本の係合ボルト40B,40Bのみを設ける構成としてもよい。 Specifically, only one of the two engagement bolts 40A and 40A may be provided on one end 30a of the engagement pin 30, and two engagement bolts 40A and 40A may be provided on the other end 30a of the engagement pin 30. It is good also as a structure which provides only volt | bolt 40B and 40B.
 更に、係合ピン30の両端部30a,30bにそれぞれ1本ずつ係合ボルト40A,40Bを配設し、この一対の係合ボルト40A,40Bが係合ピン30の同一側に共に配置される構成としてもよい。 Further, one engagement bolt 40A, 40B is disposed at each of both end portions 30a, 30b of the engagement pin 30, and the pair of engagement bolts 40A, 40B are disposed on the same side of the engagement pin 30 together. It is good also as a structure.
 具体的には、図6において係合ピン30の図中上側に位置する係合ボルト40A,40Bのみを残すと共に、下側に位置する係合ボルト40A,40Bを取り除いた構成としてもよい。逆に、図6において係合ピン30の図中下側に位置する係合ボルト40A,40Bのみを残すと共に、上側に位置する係合ボルト40A,40Bを取り除いた構成としてもよい。 Specifically, in FIG. 6, only the engagement bolts 40A and 40B located on the upper side of the engagement pin 30 in the drawing may be left, and the engagement bolts 40A and 40B located on the lower side may be removed. Conversely, in FIG. 6, only the engagement bolts 40 </ b> A and 40 </ b> B positioned on the lower side of the engagement pin 30 in the drawing may be left, and the engagement bolts 40 </ b> A and 40 </ b> B positioned on the upper side may be removed.
 以上、本発明の好ましい実施形態について詳述したが、本発明は上記した特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能なものである。 The preferred embodiments of the present invention have been described in detail above. However, the present invention is not limited to the specific embodiments described above, and various modifications are possible within the scope of the gist of the present invention described in the claims. It can be modified and changed.
 具体的には、本発明は2段式に限らず、1段式あるいは多段式のGM冷凍機にも適用することができる。また、本発明はスコッチヨーク機構により往復動を発生するものに限ることなく、例えばクランク機構などの往復動を発生する他の機構にも適用することが可能なものである。 Specifically, the present invention is not limited to the two-stage type, but can be applied to a single-stage or multi-stage GM refrigerator. Further, the present invention is not limited to the one that generates reciprocating motion by the Scotch yoke mechanism, and can be applied to other mechanisms that generate reciprocating motion, such as a crank mechanism.
 また、出力軸22aにディスプレーサ3Aを完全に固定することも考えられるが、ディスプレーサ3Aはシリンダ部10内を往復移動する構成であるため、冷媒ガスの吹き抜けが発生しない範囲内である程度回転を許容することが望ましい。本実施形態では、係合ピン30の直径Rに対して係合溝36A,36Bの幅Wを調整することにより、この回転許容範囲を容易に設定することができる。 Although it is conceivable that the displacer 3A is completely fixed to the output shaft 22a, the displacer 3A is configured to reciprocate in the cylinder portion 10, and thus allows rotation to some extent within a range in which refrigerant gas does not blow through. It is desirable. In this embodiment, by adjusting the width W of the engagement grooves 36A and 36B with respect to the diameter R of the engagement pin 30, this allowable rotation range can be easily set.
 本国際出願は2010年4月14日に出願された日本国特許出願2010-093281号に基づく優先権を主張するものであり、日本特許出願2010-093281号の全内容をここに本国際出願に援用する。 This international application claims priority based on Japanese Patent Application No. 2010-093281 filed on April 14, 2010. The entire contents of Japanese Patent Application No. 2010-093281 are incorporated herein by reference. Incorporate.

Claims (5)

  1.  冷媒ガスが供給されるシリンダと、
     該シリンダ内で往復移動するディスプレーサと、
     前記ディスプレーサを前記シリンダ内で往復移動させる駆動装置と、
     前記駆動装置と前記ディスプレーサを連結する連結機構とを有する極低温冷凍機であって、
     前記連結機構は、
     前記駆動装置から前記ディスプレーサに向け延出した出力軸と、
     前記ディスプレーサの往復移動方向と交差する方向に延出するよう前記出力軸を貫通して設けられた係合ピンと、
     前記ディスプレーサが回転する際に前記係合ピンと係合し、該ディスプレーサの回転を防止する回転防止機構と、
     前記ディスプレーサの前記一端部に固定されると共に前記出力軸と係合する蓋体とを有することを特徴とする極低温冷凍機。
    A cylinder to which refrigerant gas is supplied;
    A displacer that reciprocates in the cylinder;
    A drive device for reciprocating the displacer in the cylinder;
    A cryogenic refrigerator having a connecting mechanism for connecting the driving device and the displacer,
    The coupling mechanism is
    An output shaft extending from the drive device to the displacer;
    An engagement pin provided through the output shaft so as to extend in a direction intersecting the reciprocating direction of the displacer;
    An anti-rotation mechanism that engages with the engagement pin when the displacer rotates and prevents the displacer from rotating;
    A cryogenic refrigerator having a lid fixed to the one end of the displacer and engaged with the output shaft.
  2.  前記回転防止機構は、
     前記ディスプレーサに形成されると共に、前記出力軸が前記ディスプレーサに装着された際に前記係合ピンの端部が係合する係合溝を有することを特徴とする請求項1記載の極低温冷凍機。
    The rotation prevention mechanism is
    2. The cryogenic refrigerator according to claim 1, further comprising an engaging groove formed on the displacer and engaged with an end of the engaging pin when the output shaft is mounted on the displacer. .
  3.  前記回転防止機構は、
     前記ディスプレーサに立設されると共に、前記出力軸が前記ディスプレーサに装着された際に前記係合ピンの端部が係合する立設ピンを有することを特徴とする請求項1記載の極低温冷凍機。
    The rotation prevention mechanism is
    2. The cryogenic refrigeration according to claim 1, further comprising a standing pin that is erected on the displacer and that engages with an end of the engaging pin when the output shaft is mounted on the displacer. Machine.
  4.  前記係合ピンは中実丸棒である請求項1記載の極低温冷凍機。 The cryogenic refrigerator according to claim 1, wherein the engagement pin is a solid round bar.
  5.  前記立設ピンはボルトであり、下部に形成されたねじ部が前記ディスプレーサに螺合されると共に、上部が前記蓋体に形成された凹部と係合する構成であることを特徴とする請求項3記載の極低温冷凍機。 The upright pin is a bolt, and a screw part formed in a lower part is screwed into the displacer, and an upper part engages with a concave part formed in the lid. 3. The cryogenic refrigerator according to 3.
PCT/JP2011/059052 2010-04-14 2011-04-12 Cryogenic refrigerator WO2011129317A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020127029555A KR101440709B1 (en) 2010-04-14 2011-04-12 Cryogenic refrigerator
JP2012510654A JP5575880B2 (en) 2010-04-14 2011-04-12 Cryogenic refrigerator
CN201180019113.0A CN102844633B (en) 2010-04-14 2011-04-12 Ultralow temperature refrigerator
US13/649,328 US8899053B2 (en) 2010-04-14 2012-10-11 Cryogenic refrigerator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010093281 2010-04-14
JP2010-093281 2010-04-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/649,328 Continuation US8899053B2 (en) 2010-04-14 2012-10-11 Cryogenic refrigerator

Publications (1)

Publication Number Publication Date
WO2011129317A1 true WO2011129317A1 (en) 2011-10-20

Family

ID=44798689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059052 WO2011129317A1 (en) 2010-04-14 2011-04-12 Cryogenic refrigerator

Country Status (5)

Country Link
US (1) US8899053B2 (en)
JP (1) JP5575880B2 (en)
KR (1) KR101440709B1 (en)
CN (1) CN102844633B (en)
WO (1) WO2011129317A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016068039A1 (en) * 2014-10-30 2017-08-10 住友重機械工業株式会社 Cryogenic refrigerator
WO2023105964A1 (en) * 2021-12-09 2023-06-15 住友重機械工業株式会社 Method for disassembling cryogenic freezer
WO2023149130A1 (en) * 2022-02-04 2023-08-10 住友重機械工業株式会社 Gifford-mcmahon (gm) refrigerator first-stage displacer, first-stage displacer assembly, and gifford-mcmahon refrigerator

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6017327B2 (en) * 2013-01-21 2016-10-26 住友重機械工業株式会社 Cryogenic refrigerator
FR3004381B1 (en) 2013-04-15 2015-05-01 Sidel Participations MOBILE BACKGROUND BLOW MOLD AND HORIZONTAL JOINT PLAN
KR101384575B1 (en) * 2013-12-11 2014-04-11 지브이티 주식회사 Cryocooler for reducing noise and vibration and cryopump having the same
JP6147208B2 (en) * 2014-03-05 2017-06-14 住友重機械工業株式会社 Regenerative refrigerator
CN108507213B (en) * 2018-04-19 2024-03-01 中船重工鹏力(南京)超低温技术有限公司 Cylinder and cryogenic refrigerator adopting same
CN108825841B (en) * 2018-07-02 2019-08-30 广东省新材料研究所 A kind of G-M type Cryo Refrigerator rotary valve and preparation method thereof
JP7277166B2 (en) * 2019-02-19 2023-05-18 住友重機械工業株式会社 Displacer assembly and cryogenic refrigerator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5889644U (en) * 1981-12-14 1983-06-17 スズキ株式会社 Piston pin rotation prevention structure
JPH0171211U (en) * 1987-10-30 1989-05-12
JPH05157504A (en) * 1991-12-04 1993-06-22 Mitsutoyo Corp Driving/coupling device of measuring apparatus
JPH08303888A (en) * 1995-05-09 1996-11-22 Daikin Ind Ltd Cryogenic refrigerating machine
JP2004308944A (en) * 2003-04-02 2004-11-04 Daikin Ind Ltd Engagement structure of displacer with yoke of cryogenic refrigerating device
JP2007205582A (en) * 2006-01-30 2007-08-16 Sumitomo Heavy Ind Ltd Cold accumulator-type refrigerating machine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4391103A (en) * 1982-04-19 1983-07-05 Cvi Incorporated Fluidic cryogenic refrigerator
WO1993010407A1 (en) * 1991-11-18 1993-05-27 Sumitomo Heavy Industries, Ltd. Cryogenic refrigerating device
JPH0642568A (en) * 1992-07-20 1994-02-15 Tokico Ltd Cylinder device
JP5053949B2 (en) * 2008-07-23 2012-10-24 Ckd株式会社 Copying device
JP2010271029A (en) * 2009-04-23 2010-12-02 Sumitomo Heavy Ind Ltd Cooling storage type refrigerating machine, method of manufacturing rotary valve for the cooling storage type refrigerating machine and method of manufacturing the cooling storage type refrigerating machine
JP5551028B2 (en) * 2010-08-31 2014-07-16 住友重機械工業株式会社 Cryogenic refrigerator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5889644U (en) * 1981-12-14 1983-06-17 スズキ株式会社 Piston pin rotation prevention structure
JPH0171211U (en) * 1987-10-30 1989-05-12
JPH05157504A (en) * 1991-12-04 1993-06-22 Mitsutoyo Corp Driving/coupling device of measuring apparatus
JPH08303888A (en) * 1995-05-09 1996-11-22 Daikin Ind Ltd Cryogenic refrigerating machine
JP2004308944A (en) * 2003-04-02 2004-11-04 Daikin Ind Ltd Engagement structure of displacer with yoke of cryogenic refrigerating device
JP2007205582A (en) * 2006-01-30 2007-08-16 Sumitomo Heavy Ind Ltd Cold accumulator-type refrigerating machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016068039A1 (en) * 2014-10-30 2017-08-10 住友重機械工業株式会社 Cryogenic refrigerator
WO2023105964A1 (en) * 2021-12-09 2023-06-15 住友重機械工業株式会社 Method for disassembling cryogenic freezer
WO2023149130A1 (en) * 2022-02-04 2023-08-10 住友重機械工業株式会社 Gifford-mcmahon (gm) refrigerator first-stage displacer, first-stage displacer assembly, and gifford-mcmahon refrigerator

Also Published As

Publication number Publication date
KR101440709B1 (en) 2014-09-17
CN102844633A (en) 2012-12-26
US8899053B2 (en) 2014-12-02
JP5575880B2 (en) 2014-08-20
KR20130009840A (en) 2013-01-23
JPWO2011129317A1 (en) 2013-07-18
US20130031916A1 (en) 2013-02-07
CN102844633B (en) 2014-12-10

Similar Documents

Publication Publication Date Title
JP5575880B2 (en) Cryogenic refrigerator
JP5710602B2 (en) Rotary valve and cryogenic refrigerator using the same
TWI473956B (en) Cooler type freezer
JP5996483B2 (en) Cryogenic refrigerator
JP5913142B2 (en) Cryogenic refrigerator
US20140338367A1 (en) Cryogenic refrigerator
JP2659684B2 (en) Regenerator refrigerator
JP5877543B2 (en) Displacer, manufacturing method thereof, and regenerator type refrigerator
JP6117090B2 (en) Cryogenic refrigerator
JP2015055374A (en) Ultra-low temperature freezer
JP6001993B2 (en) Hermetic reciprocating compressor and refrigerator using the same
JP2017166746A (en) Cryogenic refrigerator and rotary valve mechanism
JP2007205582A (en) Cold accumulator-type refrigerating machine
JP4652985B2 (en) 2-cylinder rotary compressor and refrigeration cycle apparatus
US20120011858A1 (en) Displacer valve for cryogenic refrigerator
US11725854B2 (en) Cryocooler
JP2017207275A (en) Cryogenic refrigeration machine
JP7464398B2 (en) Cryogenic refrigerators and sealing parts
JP6532392B2 (en) Cryogenic refrigerator
WO2023149130A1 (en) Gifford-mcmahon (gm) refrigerator first-stage displacer, first-stage displacer assembly, and gifford-mcmahon refrigerator
JP2008002291A (en) Compressor and refrigerator having the compressor
JP2001116379A (en) Cryogenic refrigerator
JP2003120537A (en) Hermetically closed reciprocating compressor
JPH112465A (en) Reciprocating movement-type refrigerator

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180019113.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11768838

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012510654

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127029555

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11768838

Country of ref document: EP

Kind code of ref document: A1