WO2011128931A1 - Pulpitis diagnostic marker and pulpitis diagnostic system - Google Patents

Pulpitis diagnostic marker and pulpitis diagnostic system Download PDF

Info

Publication number
WO2011128931A1
WO2011128931A1 PCT/JP2010/002653 JP2010002653W WO2011128931A1 WO 2011128931 A1 WO2011128931 A1 WO 2011128931A1 JP 2010002653 W JP2010002653 W JP 2010002653W WO 2011128931 A1 WO2011128931 A1 WO 2011128931A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulpitis
antibody
light
liposome
fiber
Prior art date
Application number
PCT/JP2010/002653
Other languages
French (fr)
Japanese (ja)
Inventor
石田敬雄
中島美砂子
Original Assignee
財団法人ヒューマンサイエンス振興財団
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財団法人ヒューマンサイエンス振興財団 filed Critical 財団法人ヒューマンサイエンス振興財団
Priority to PCT/JP2010/002653 priority Critical patent/WO2011128931A1/en
Publication of WO2011128931A1 publication Critical patent/WO2011128931A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/0019Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
    • A61K49/0021Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules the fluorescent group being a small organic molecule
    • A61K49/0032Methine dyes, e.g. cyanine dyes
    • A61K49/0034Indocyanine green, i.e. ICG, cardiogreen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0088Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for oral or dental tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/005Fluorescence in vivo characterised by the carrier molecule carrying the fluorescent agent
    • A61K49/0058Antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0063Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres
    • A61K49/0069Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the agent being in a particular physical galenical form
    • A61K49/0076Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the agent being in a particular physical galenical form dispersion, suspension, e.g. particles in a liquid, colloid, emulsion
    • A61K49/0084Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the agent being in a particular physical galenical form dispersion, suspension, e.g. particles in a liquid, colloid, emulsion liposome, i.e. bilayered vesicular structure

Definitions

  • the present invention relates to a pulpitis diagnostic marker used for diagnosing the condition of a dental pulp to be examined, and a pulpitis diagnostic system using the pulpitis diagnostic marker.
  • Pulpitis is classified into acute pulpitis and chronic pulpitis, for example, and is often caused by touch.
  • initial symptoms of acute pulpitis degeneration of odontoblasts, hyperemia, serous exudation, etc. occur at the site of inflammation.
  • the dentin is destroyed almost before and after acute purulent pulpitis, and open total purulent pulpitis occurs, resulting in pulp necrosis. If you have pulpitis, if you leave it untreated, it may progress to periodontitis.
  • a pulpectomy is performed. Extraction is the action of removing the pulp present inside the tooth. Since all pulps that are infected or possibly infected are removed by extraction, the spread of inflammation to the periodontal tissue can be prevented, the affected tooth is made harmless to the periodontal tissue, and the chewing function is restored again It becomes possible.
  • thermodiagnosis As a conventional method for diagnosing pulpitis, there are thermodiagnosis described in Non-Patent Documents 1 to 3.
  • Thermodiagnosis is a method in which a cold stimulus or a thermal stimulus is applied to a tooth, and the inflammatory state of the pulp is judged based on the duration of pain after the removal of the temperature stimulus or the response to the cold stimulus after the temperature stimulus.
  • cold stimulation dry ice, dichlorodifluoromethane, ethyl chloride, ice, tetrafluoroethane, or the like is used.
  • a heating gutta percha is used for thermal stimulation.
  • thermodiagnosis is based solely on the patient's senses and cannot be diagnosed objectively.
  • the reaction varies depending on the condition of the tooth (the state of stenosis of the dental pulp cavity, the presence or absence of a restoration or prosthesis, and the type of the material), the stimulation time at the examination, and the temperature, and lesions occur in the pulp
  • the condition of the tooth the state of stenosis of the dental pulp cavity, the presence or absence of a restoration or prosthesis, and the type of the material
  • the stimulation time at the examination the stimulation time at the examination
  • the temperature, and lesions occur in the pulp
  • Non-patent document 4 describes electrodiagnosis as a method for diagnosing pulpitis.
  • Electrodiagnosis is a method of applying an electrical stimulus (dent tester, analytic pulp tester) to the tooth surface, and examining the life or death of the pulp or the condition of the pulp based on the occurrence of pain.
  • an electrical stimulus densitol tester
  • the electrical threshold value is increased or there is no reaction in the unfinished root tooth, the tooth in the middle of eruption, and the tooth immediately after the trauma.
  • the electrical threshold value is increased or there is no reaction in the unfinished root tooth, the tooth in the middle of eruption, and the tooth immediately after the trauma.
  • Even if one root is inactivated it reacts if another root is alive. Even if inactivated, there may be pain sensations if the root canal is filled with electrolyte liquid.
  • the pain occurrence threshold directly reflects the condition of the dental pulp.
  • the motion speed of red blood cells that is, the blood flow speed circulating in the tissue is vector-calculated and analyzed.
  • the laser Doppler blood flow measurement measures the presence or absence of dental pulp blood flow, so it can be applied even in cases where it is difficult to measure the nerve reaction. is there.
  • disadvantages such as an expensive apparatus, being susceptible to measurement errors, poor reproducibility of measurement values, and taking time for measurement techniques.
  • blood flow is derived from the surface of the tooth, it is doubtful whether the reflected light is derived from the pulp and the blood flow of the gingiva is also mixed. It often ends up.
  • Non-Patent Document 5 describes a device that analyzes transmitted light, not reflected light, and transmits laser light from the labial surface of the tooth and receives the transmitted light on a straight lingual tooth surface.
  • a device that can prevent misdiagnosis of inactivated teeth is described, and it is effective for the diagnosis of the anterior teeth of young people with a wide pulp cavity, but it is insufficient for the diagnosis of the teeth and molars of the elderly There is a point.
  • Non-Patent Document 6 there is a nuclear magnetic resonance imaging (MRI) method as a method for diagnosing pulpitis.
  • Nuclear magnetic resonance imaging uses a nuclear magnetic resonance phenomenon of hydrogen nuclei to create and diagnose an image, and is determined by an energy relaxation time T1 and a phase relaxation time T2. When the T1-weighted image is used, the vital dental pulp is emphasized brightly and the inactivated dental pulp is darkened.
  • the advantages of the nuclear magnetic resonance imaging (MRI) method are that it is less exposed to radiation, is non-invasive, takes cross-sectional images in any direction, and has good soft tissue contrast.
  • the apparatus is expensive and cannot be applied to a patient wearing magnetic metal (attachment or metal restoration).
  • Patent Document 1 a patient is asked whether or not the dental pain that has confirmed reversible pulp inflammation has been stopped by applying a solution of potassium oxalate dihydrate to the cavity surface of the interface of the dental restoration. A method for diagnosing pulpitis to be pointed out is described. However, the diagnostic method described in Patent Document 1 is based on the patient's senses and has a problem that cannot be objectively diagnosed.
  • the present invention has been made in view of the above problems, and provides a pulpitis diagnostic marker that can accurately indicate the inflammation site of pulpitis with high sensitivity and accurately uses the pulpitis diagnostic marker. It is another object of the present invention to provide a pulpitis diagnosis system that can objectively diagnose pulpitis.
  • a pulpitis diagnosis marker provides pulpitis on the outer surface of a liposome encapsulating a fluorescent drug containing at least one of indocyanine green and its derivatives.
  • a binding substance that specifically binds to the inflammatory site is bound.
  • the binding substance is CD62E antibody, CD54 antibody, CD50 antibody, CD106 antibody, MHC class II antibody, PAF antibody, IL-8 antibody, MIP-1B antibody, E-selectin ligand, and E- It preferably contains at least one derivative of a ligand of selectin.
  • binding substance is preferably bound to the outer surface of the liposome via a linker protein.
  • a pulpitis diagnosis system is provided on the outer surface of a liposome encapsulating a fluorescent agent containing at least one of indocyanine green and its derivative,
  • a pulpitis diagnosis marker characterized by binding a binding substance that specifically binds to an inflammation site of pulpitis, a light source unit that emits excitation light for exciting the fluorescent agent, and a light source unit
  • the excitation light is guided to the condensing lens through a filter, and the input optical system that makes the light condensed by the condensing lens enter the end of the image fiber, the light detection unit that detects the optical signal, and the imaging fiber
  • the fluorescence light of the pulpitis diagnostic marker attached to the affected part of pulpitis returning to the end is guided to a condenser lens through a filter, and the light collected by the condenser lens is
  • An output optical system for guiding the serial light detection section, and having an imaging fiber device having an image display unit for displaying the diagnosis target pulp image
  • a silicon tube that is pressed against the side of the tooth having the pulpitis inflammation site is attached to the fiber tip of the imaging fiber.
  • the wavelength of the excitation light is preferably 770 nm or more and 805 nm or less
  • the wavelength of the fluorescence light is 810 nm or more and 850 nm or less
  • the difference in wavelength between the excitation light and the fluorescence light is preferably 15 nm or more and 50 nm or less.
  • the tip of the silicon tube has a concave curved shape on the inside.
  • the pulpitis diagnosis marker of the present invention can indicate the inflammation site of pulpitis with high sensitivity and accuracy. Also, the pulpitis diagnosis system of the present invention can accurately and objectively diagnose pulpitis.
  • FIG. 1 is a schematic diagram of a pulpitis diagnosis marker 100 according to the present embodiment
  • FIG. 2 is an explanatory diagram for explaining how the pulpitis diagnosis marker 100 binds to a pulpitis inflammation site.
  • the binding substance 120 is bound to the outer surface of the liposome 110 encapsulating indocyanine green (ICG) 140 via the linker protein 130.
  • ICG indocyanine green
  • Indocyanine green 140 which is a kind of indocyanine compound, is a structural formula represented by Formula 1, and is a substance that emits dark green-blue fluorescence by exhibiting specific absorption by infrared irradiation.
  • indocyanine green 140 a derivative that modifies the mother nucleus of indocyanine green 140 or a compound into which a reactive group is introduced can be used.
  • Reactive indocyanine green derivatives into which reactive groups have been introduced may be sparingly soluble in water, but indocyanine green derivatives are not used after being dissolved in an organic solvent or the like, but are used in liposome 110. It can be used without difficulty.
  • the indocyanine green derivative is not particularly limited, but for example, the one represented by Formula 2 can be used.
  • R1 and R2 each independently represent a hydrogen atom, an alkyl group, an aryl group, a sulfonic acid group, or an alkoxy group
  • R3 represents an alkyl group, a sulfonic acid alkyl group, or an aminoalkyl group.
  • alkyl group linear or branched lower alkyl having 1 to 6 carbon atoms can be used.
  • the liposome 110 is a spherical particle (closed vesicle) in which a solvent is encapsulated inside a membrane composed of one or more lipid bilayers.
  • the lipid composition, charged state, density, weight, particle size and the like of the liposome 110 can be appropriately designed according to the properties of the binding substance and the like that bind to the outer surface of the liposome 110.
  • the components of the lipid bilayer membrane of the liposome 110 are not particularly limited, and are, for example, phospholipids and glycolipids.
  • Phospholipids include, for example, phosphatidylinositol, phosphatidylglycerol, phosphatidylethanolamine, lecithin, lysolecithin, phosphatidylcholine, phosphatidylserine, sphingomyelin, dipalmitoylphosphatidylcholine, distearoylphosphatidylcholine, dimyristolphosphatidylcholine, dioleylphosphatidylcholine, Distearoyl phosphatidylserine, distearoyl phosphatidylglycerol, and mixtures thereof.
  • the glycolipid is, for example, glycerolipid such as galactosylceramide, galactosylceramide sulfate, digalactosyl diglyceride, galactosyl diglyceride sulfate, lactosylceramide, sphingoglycolipid such as ganglioside G7, ganglioside G6, ganglioside G4, and the like. It is a mixture.
  • glycerolipid such as galactosylceramide, galactosylceramide sulfate, digalactosyl diglyceride, galactosyl diglyceride sulfate, lactosylceramide, sphingoglycolipid such as ganglioside G7, ganglioside G6, ganglioside G4, and the like. It is a mixture.
  • ⁇ -sterol glucoside 1-O-sterol maltoside, and mixtures thereof.
  • the liposome 110 can be positively charged, negatively charged, or electrically neutral as a whole.
  • a negative charge for example, dicetyl phosphate which is a negatively charged substance can be added, and when charging to a positive charge, an aliphatic amine such as stearylamine can be added.
  • the weight of the liposome 110 is not particularly limited, and can be increased by filling the liposome with a high-density solution such as cesium chloride.
  • the density of the liposome 110 can be increased by incorporating a polysaccharide such as dextran sulfate into the liposome.
  • the average inner diameter of the liposome 110 in the capsule can be appropriately adjusted in consideration of stability and the like, and can be, for example, 30 to 600 nm, preferably 50 to 500 nm, more preferably 60 nm to 400 nm.
  • the average inner diameter in the capsule of the liposome 110 is measured by the digital Coulter principle.
  • the binding substance 120 that specifically binds to the inflammation site of pulpitis is not particularly limited.
  • CD62E antibody is an antibody that binds to E-selectin.
  • E-selectin belongs to the selectin family of cell adhesion molecules, is specifically expressed in vascular endothelial cells (endothelium), is synthesized by inflammatory stimuli such as pulpitis, and is expressed on the cell surface.
  • the CD54 antibody is an antibody that binds to ICAM-1 (intercellular adhesion molecule-1), and ICAM-1 is an integrin ligand that appears on the surface of vascular endothelial cells upon inflammation stimulation such as pulpitis.
  • CD106 antibody is an antibody that binds to VCAM-1 (vascular cell adhesion molecule-1), and VCAM-1 is an integrin ligand that appears behind ICAM-1 on the surface of vascular endothelial cells due to inflammation stimulation such as pulpitis. is there.
  • the CD50 antibody is an antibody that binds to ICAM-3 (intercellular adhesion molecule-3).
  • MHC class II antibodies are antibodies against MHC class II molecules. There are two polymers of MHC class II molecules, ⁇ chain and ⁇ chain, each consisting of two extracellular region, transmembrane region and intracellular region. There are three types of MHC class II molecules in humans: HLA-DR, HLA-DQ, and HLA-DP.
  • PAF antibody is an antibody that specifically binds to PAF (Platelet-activating factor), which is one of inflammatory mediators.
  • IL-8 antibody is an antibody that specifically binds to interleukin-8.
  • Interleukin 8 is a basic polypeptide having a molecular weight of 8 KDa and is a chemotactic factor that acts on neutrophils and T lymphocytes during selection.
  • the MIP-1B antibody is an antibody that specifically binds to MIP-1B, which is a ligand of the chemokine receptor CCR5.
  • the ligand of E-selectin is a glycoprotein ligand such as PSGL-1, a glycolipid ligand, and a sugar chain ligand which is a terminal structure thereof.
  • examples of the sugar chain ligand include sialyl Lewis X (SLeX), Lewis X, sulfate sugar and the like.
  • SLeX is a sugar chain present at the sugar chain terminal of the above glycoprotein.
  • the ligand derivatives of E-selectin include glycoproteins, glycolipids and sugar chain derivatives which are selectin ligands.
  • the binding of the binding substance 120 that specifically binds to the inflammation site of pulpitis is not particularly limited.
  • the binding substance 120 binds via the linker protein 130. It is preferable to do.
  • linker protein for example, serum albumin is preferably used, and more specifically, human serum albumin, bovine serum albumin and the like are used.
  • Liquid carbon dioxide is added in the presence of membrane components such as phospholipids, sterols, and lecithins, and mixed with cationic substances, sterols, glycols, etc. at a pressure of 50 to 500 kg / cm 2 and a temperature of 31 to 200 ° C., for example. And dissolve. Subsequently, an aqueous solution containing indocyanine green is continuously added to form an aqueous / carbon dioxide emulsion. In this emulsion system, the lipid component is in the form of micelles and separates and collects.
  • the content of the fluorescent drug in the liposome 110 is 1 to 15, preferably 3 to 10, more preferably 5 to 8 with respect to the liposome membrane lipid weight. desirable. This is because if the weight ratio of the fluorescent drug in the liposome 110 is less than 1, the delivery efficiency of the fluorescent drug to the pulpitis inflammation site may deteriorate. On the other hand, if the weight ratio of the fluorescent agent in the liposome 110 exceeds 10, the liposome may be structurally unstable.
  • a crosslinking reagent such as bis (sulfosuccinimidyl) suberate (BS 3 ; Pierce Co., USA) is added and stirred to form a chemical bond between the lipid on the liposome membrane and BS 3 .
  • BS 3 bis (sulfosuccinimidyl) suberate
  • the liposome in which indocyanine green is encapsulated by completing the chemical bonding reaction between BS 3 bound to the lipid on the liposome membrane and tris (hydroxymethyl) aminomethane is completed. Hydrophilicity is achieved by the coordination of the hydroxyl group of tris (hydroxymethyl) aminomethane on the membrane lipid dipalmitoylphosphatidylethanolamine.
  • Linker protein binding Next, for example, sodium metaperiodate is added and stirred to oxidize the liposomes, human serum albumin is added to the oxidized liposomes and stirred, and human serum albumin is bound by a coupling reaction.
  • the glycosylamine compound of the above E-selectin antibody is added to this liposome solution and stirred for a certain period of time, and the E-selectin antibody is bound to DTSSP on the liposome membrane surface-bound human serum albumin.
  • a pulpitis diagnostic marker in which an E-selectin antibody is bound to the surface of a liposome encapsulating indocyanine green is obtained.
  • an aqueous solution in which the pulpitis diagnosis marker 100 is dispersed is injected into a subject by intravenous injection or the like.
  • the amount to be injected into the subject is not particularly limited.
  • the amount of indocyanine green per kilogram of the subject's body weight can be 0.2 to 1.0 mg.
  • E-selectin is synthesized in the body by stimulation based on pulpitis, and is expressed on the blood vessel surface of the inflammation site 190 of pulpitis.
  • the pulpitis diagnosis marker 100 Since the E-selectin antibody of the pulpitis diagnosis marker 100 has an action of specifically binding to E-selectin, the pulpitis diagnosis marker 100 is transferred from the blood vessel 180 near the pulpitis inflammation site 190 to the pulpitis inflammation site 190. Bind specifically. Thereafter, the indocyanine green 140 of the pulpitis diagnosis marker 100 emits fluorescence by irradiating the vicinity of the pulpitis inflammation site 190 with excitation light. Thereby, the pulpitis inflammation site 190 can be grasped with high sensitivity and accuracy.
  • the pulpitis diagnosis system 300 includes the above-described pulpitis diagnosis marker 100 and the imaging fiber device 200.
  • FIG. 3 is a schematic diagram of the imaging fiber device 200.
  • the imaging fiber device 200 includes a light source unit 260 that emits excitation light, an input optical system, an output optical system, a light detection unit 340 that detects an optical signal, and an image display unit 370.
  • the input optical system guides the excitation light from the light source unit 260 to the condensing lens 220 through the filter 240 and causes the light condensed by the condensing lens 220 to enter the end portion 211 of the image fiber 210.
  • the wavelength of the excitation light is, for example, 770 to 805 nm, preferably 780 to 795 nm.
  • the output optical system guides the fluorescent light returning to the end 211 of the imaging fiber 210 to the condenser lens 330 through the filter 310 and guides the light collected by the condenser lens 330 to the light detection unit 340.
  • the wavelength of the fluorescent light is, for example, 810 to 850 nm, preferably 820 to 840 nm.
  • the image display unit (monitor) 370 displays a dental pulp image to be diagnosed based on the fluorescent light detected by the light detection unit 340.
  • the imaging fiber device 200 includes a light source control unit 270, a control unit 280, an operation unit 360, a recording unit 380, and an outer box 390.
  • the diameter of this fiber bundle is, for example, 1.0 to 2.5 mm.
  • the fiber main body 213 has a certain elasticity and can be bent so as not to be less than a predetermined curvature.
  • the optical fiber 216 is not particularly limited, and is, for example, a quartz optical fiber, a plastic optical fiber, or the like.
  • the diameter of the optical fiber 216 is, for example, 2 to 4 ⁇ m.
  • the cylindrical member 214 has an inner diameter in which the objective lens 215 and the fiber bundle can be accommodated, the objective lens 215 is attached to one end side, and the fiber bundle is attached to the other end side, and the objective lens 215 and the fiber bundle are integrated. .
  • the tubular member 214 is covered with an elastic tube 420.
  • the control unit 280 sends a light source activation control signal to the light source control unit 270 based on an instruction from the operation unit 360.
  • the light source control unit 270 activates the light source unit 260 such as a xenon lamp.
  • the light from the light source unit 260 is collected by the condenser lens 250, excited by the excitation filter 240, condensed by the condenser lens 220, and guided to the end 211 of the imaging fiber 210.
  • the excitation light sent to the end 211 of the image fiber 210 is irradiated with evanescent light from the fiber tip 212.
  • the fluorescence from indocyanine green 140 is received by the fiber tip 212 of the image fiber 210, the fluorescence is emitted from the end 211 of the image fiber 210 and enters the condenser lens 220 and the dichroic mirror 230.
  • the dichroic mirror 230 reflects the wavelength band including fluorescence and is guided to the filter 310 through the convex lens 290.
  • the filter 310 removes noise portions other than the fluorescent region, and the fluorescence from which the noise has been removed enters the photodetector 340 via the reflecting mirror 320 and the condenser lens 330.
  • the difference in wavelength between the excitation light and the fluorescence light is, for example, 15 nm to 50 nm.
  • the photodetector 340 is in a state where fluorescence can be detected by receiving the start signal and the timing signal from the photodetector controller 350.
  • the fluorescence detected by the photodetector 340 is converted into an electrical signal and amplified by the photodetector controller 350.
  • the control unit 280 performs light source control and measurement operation by an arithmetic element such as a CPU based on a control program, A / D converts the received output of the photodetector control unit 350, and controls the indocyanine green 140 based on a predetermined formula. Calculate the fluorescence intensity. Then, the abundance of indocyanine green 140 is calculated based on the fluorescence intensity.
  • the monitor 370 displays a menu screen for measurement operation, and displays the measured fluorescence intensity and the amount of indocyanine green 140 present.
  • the recording unit 380 records changes in fluorescence intensity of indocyanine green 140 over time.
  • FIG. 6 is a schematic diagram of a usage mode of the pulpitis diagnosis system 300.
  • FIG. 7 is a flowchart showing how the pulpitis diagnosis system 300 is used.
  • FIG. 8A is an explanatory view showing another embodiment of the shape of the tip of the silicon tube.
  • FIG. 8B is an explanatory view showing another embodiment of the shape of the distal end portion of the silicon tube, and is an explanatory view showing a state of pressing against the side surface of a tooth having an inflammatory site.
  • FIG. 9A is a schematic diagram of partial serous pulpitis.
  • FIG. 9B is a schematic diagram of total suppurative pulpitis.
  • FIG. 9C is a schematic diagram of partial purulent pulpitis.
  • FIG. 9D is a schematic diagram of total serous pulpitis.
  • the elastic tube 420 attached to the fiber tip 212 is pressed against the side of the tooth 191 having a pulpitis inflammation site (S001). Since the elastic tube 420 has elasticity, the fiber tip 212 is fixed by being pressed against the teeth 191.
  • tip part 421 of the elastic tube 420 is a concave curved surface shape inside. With this configuration, as shown in FIG. 8B, the distal end portion 421 of the elastic tube 420 can be brought into contact with the side surface of the tooth 191 having the pulpitis inflammation site with a small gap.
  • the imaging fiber device 200 is turned on and irradiated with excitation light (S002). Then, the returning fluorescent light is detected by the photodetector 340 (S003), and this light output is confirmed by the monitor 370 to determine whether or not the excitation light output is stable (S004). If the excitation light output is not stable, the excitation light irradiation is appropriately adjusted.
  • the pulpitis diagnosis marker 100 is intravenously injected to the subject by injection 410 (S005).
  • injection 410 is performed on the gum where the tooth 191 having the inflamed site of pulpitis is located.
  • the injected pulpitis diagnostic marker 100 binds to the pulpitis inflammation site, and the fluorescent light intensity is displayed on the monitor 370 (S006).
  • the amount of insertion of the pulpitis diagnosis marker 100 is sufficient (S007). If it is determined to be insufficient, the pulpitis diagnosis marker 100 is appropriately supplemented and injected.
  • exudates mainly consist of exudate cells such as plasma cells, lymphocytes, leukocytes, etc. and serous components, and the pulpitis is weak in tissue destruction.
  • Pulpitis with strong tissue destruction consisting of neutrophils and concentrates that have undergone fat metamorphosis
  • purulent inflammatory parts with stronger tissue destruction than with serous inflammatory parts with weaker tissue destruction, such as E-selectin
  • the purulent inflammatory part has a stronger fluorescence intensity than the serous inflammatory part.
  • FIG. 9D purulent inflammation is present in the medullary horn in spite of all serous pulpitis. This is because secondary dentin is difficult to produce and bacteria are likely to invade, and purulent inflammation is likely to occur in the horn.
  • thermodiagnosis partial serous pulpitis if only cold water pain, all suppurative pulpitis if only warm water pain, cold water pain> all serous if warm water pain
  • pulpitis diagnosis system can make an objective and accurate judgment regardless of such a subjective judgment method. Or can be diagnosed.
  • the classification or diagnosis of pulpitis is not limited to such an embodiment. For example, whether pulp extraction is performed by observing whether the fluorescence intensity exists only in the crown pulp or even in the root pulp. It is possible to accurately determine whether or not. That is, when the inflammation is limited to only the crown pulp and does not reach the root pulp, only the crown pulp is removed and a spinal cord method is performed to preserve the root pulp tissue. However, if the inflammation has spread to the root pulp, the entire pulp tissue is removed and prevented from spreading to the periodontal tissue. Furthermore, with the pulpitis diagnosis system according to the present embodiment, when the inflammation extends to the root pulp, treatment can be performed after the patient is convinced by showing the fluorescence intensity image, which contributes to informed medicine. .
  • pulpitis generally spreads from the crown pulp to the root pulp, but the highly advanced marginal periodontitis of the lesion or the apical periodontal of the adjacent tooth.
  • pulpitis When purulent pulpitis such as inflammation develops near the root apex of a healthy tooth, inflammation spreads through the root apex of the healthy tooth or the side branch of the root canal into the root pulp tissue, and further, the crown pulp Spreads to tissues (ascending pulpitis).
  • the inflammation expands in the opposite direction to the general direction of pulpitis, it is called ascending pulpitis, but by using the pulpitis diagnosis system according to this embodiment, from the root pulp tissue.
  • pulpitis diagnosis system When strong fluorescence intensity is observed in the coronal pulp tissue, it can be determined as ascending pulpitis.
  • the pulpitis determination method in one specific example of the present invention described above is not uniquely determined by observing the fluorescence intensity, and the final determination is based on the experience of the dentist. However, it has tremendous benefits in that it helps
  • the pulpitis diagnosis system it is possible to objectively diagnose the pathology of pulpitis that has conventionally relied on the reaction of the nerve or the subjective sense of the patient, and directly in deep caries or pulpitis. Criteria for selection of pulp capping, vital pulp cutting, and pulp extraction can be obtained, and it is possible to accurately identify cases that can be left without removing the pulp, leading to the prolongation of the pulp and the life of the tooth. it can. It can also be used as a diagnostic criterion before, during, and after treatment when regenerating dental pulp.
  • Liposomes were prepared using a cholic acid dialysis method. That is, dipalmitoyl phosphatidylcholine, cholesterol, dicetyl phosphate, ganglioside and dipalmitoyl phosphatidylethanolamine are each in a molar ratio of 36: 40: 4: 15: 5 to give a total lipid amount of 45.6 mg. Then, 47.1 mg of sodium cholate was added and dissolved in 2.9 ml of chloroform / methanol solution.
  • the solution was evaporated and the precipitate was dried in vacuum to obtain a lipid membrane.
  • the obtained lipid membrane was suspended in 2.9 ml of TAPS buffer (pH 8.5) and sonicated to obtain 2.9 ml of a transparent micelle suspension.
  • PBS buffer pH 7.1
  • ICG completely dissolved with TAPS buffer pH 8.3
  • the ICG-containing micelle suspension was subjected to ultrafiltration using a PM10 membrane (Amicon Co., USA) and a TAPS buffer (pH 8.3) to obtain uniform ICG-encapsulated liposomes. 89 ml was prepared.
  • E-selectin antibody 48 ⁇ g was dissolved in 0.25 g NH 4 HCO 3 It was added to a 0.5 ml aqueous solution and stirred at 37 ° C. for 3 days, followed by filtration with a 0.45 ⁇ m filter to complete the amination reaction of the reducing end of the sugar chain to obtain 48 ⁇ g of a glycosylamine compound of an E-selectin antibody. .
  • E-selectin antibody glycosylamine compound 48 ⁇ g was added to the liposome solution, and the mixture was stirred at 25 ° C. for 2 hours and then stirred overnight at 7 ° C., and then XM300 membrane and PBS buffer (pH 8.0).
  • the E-selectin antibody was bound to DTSSP on liposome membrane surface-bound human serum albumin.
  • 2 ml of ICG-encapsulated liposomes obtained by hydrophilizing linker protein (HSA) in which E-selectin antibody, human serum albumin (HSA) and liposome were bound were obtained.
  • HSA hydrophilizing linker protein
  • pulpitis diagnostic marker 110 liposome 120: binding substance 130: linker protein 140: indocyanine green 190: pulpitis inflammation site 200: imaging fiber device 210: imaging fiber 213: fiber body 214: cylindrical member 215: objective Lens 216: Optical fiber 220: Condensing lens 230: Dichroic mirror 240: Filter 250: Condensing lens 260: Light source unit 270: Light source control unit 280: Control unit 290: Convex lens 300: Pulpitis diagnosis system 310: Filter 320: Reflection Mirror 330: Condensing lens 340: Light detection unit 350: Photo detector control unit 360: Operation unit 370: Image display unit (monitor) 380: Recording unit 390: Outer box 420: Elastic tube

Abstract

Provided is a pulpitis diagnostic system with which pulpitis can be diagnosed correctly and objectively. The pulpitis diagnostic system (300) includes an imaging fiber device (200) and a pulpitis diagnostic marker (100). The pulpitis diagnostic marker (100) includes an E-selectin antibody conjugated to the outer surface of a liposome which encapsulates indocyanine green. The imaging fiber (210) has a silicone tube (420) attached to the fiber tip. The silicone tube (420) is pressed against the lateral section of the tooth that has pulpitis. The pulpitis diagnostic marker (100) binds specifically with the inflammatory site caused by pulpitis. The fluorescent light emitted by indocyanine green is observed with a monitor (370). Thus, pulpitis can be diagnosed correctly and objectively.

Description

歯髄炎診断マーカー及び歯髄炎診断システムPulpitis diagnosis marker and pulpitis diagnosis system
 本発明は、被検歯髄の状態を診断するために用いられる歯髄炎診断マーカー、及び、その歯髄炎診断マーカーを使用する歯髄炎診断システムに関する。 The present invention relates to a pulpitis diagnostic marker used for diagnosing the condition of a dental pulp to be examined, and a pulpitis diagnostic system using the pulpitis diagnostic marker.
 歯髄炎は例えば急性歯髄炎と慢性歯髄炎とに分類され、う触が原因として生じることが多い。急性歯髄炎の初期症状では、炎症部位に象牙芽細胞の変成萎縮、充血、漿液の滲出等が生じる。う触の進行が早い乳歯及び若年者の場合は、急性化膿性歯髄炎が起こるのとほぼ前後して象牙質が破壊され、開放性全部性化膿性歯髄炎が起こり、歯髄壊死を起こす。歯髄炎にかかった場合、治療をしないで放置しておくと歯根膜炎等に進行することもある。 Pulpitis is classified into acute pulpitis and chronic pulpitis, for example, and is often caused by touch. In the initial symptoms of acute pulpitis, degeneration of odontoblasts, hyperemia, serous exudation, etc. occur at the site of inflammation. For deciduous teeth and young people who have a fast progress of touching, the dentin is destroyed almost before and after acute purulent pulpitis, and open total purulent pulpitis occurs, resulting in pulp necrosis. If you have pulpitis, if you leave it untreated, it may progress to periodontitis.
 細菌感染が根部歯髄まで波及し、不可逆的な全部性歯髓炎に陥った場合は、抜髄処置が行われる。抜髄とは歯牙の内部に存在する歯髄を除去する行為である。抜髄処置により感染又は感染の恐れのある歯髄を全部除去するので、歯周組織への炎症の波及を防ぐことができ、患歯を歯周組織に対し無害なものとし、再び咀嚼機能を回復させることが可能となる。 If a bacterial infection spreads to the root dental pulp and falls into irreversible total gingivitis, a pulpectomy is performed. Extraction is the action of removing the pulp present inside the tooth. Since all pulps that are infected or possibly infected are removed by extraction, the spread of inflammation to the periodontal tissue can be prevented, the affected tooth is made harmless to the periodontal tissue, and the chewing function is restored again It becomes possible.
 しかしながら、歯髄除去後は、血管による歯(象牙質・歯髄)の物質代謝が絶たれるため象牙質が脆弱化し割れやすくなる。また、痛みを伝える神経が無くなるので、再びう蝕が進行した場合に自覚症状が得られず、更に感染抵抗力もなくなるので、予期せぬ間にう蝕が悪化するという問題点がある。従って、近年では、歯の健康状態を維持し長持ちさせるためにはむしろ歯髄を保存するのが好ましいと考えられており、歯髄炎に感染している部位と健康な部位とを区別して、極力、健康部位を残存させる歯髄炎の診断手法が求められる。 However, after removal of the dental pulp, the substance metabolism of the teeth (dentin / dental pulp) by the blood vessels is cut off, so that the dentin becomes brittle and easily broken. In addition, since there is no nerve to convey pain, no subjective symptoms can be obtained when the caries progresses again, and there is also a problem that the caries deteriorates unexpectedly because there is no infection resistance. Therefore, in recent years, it is considered that it is preferable to preserve the pulp in order to maintain and maintain the health of the teeth, and it is preferable to distinguish between a site infected with pulpitis and a healthy site as much as possible, There is a need for a method for diagnosing pulpitis that leaves healthy sites.
 従来の歯髄炎の診断手法として、非特許文献1~3に記載されている温度診がある。温度診は、歯に冷刺激又は温熱刺激をあてて、温度刺激除去後の痛みの持続時間又は温度刺激後の冷刺激に対する反応で歯髄の炎症状態を判断する方法である。冷刺激にはドライアイス、ジクロロジフルオロメタン、エチルクロライド、氷、テトラフルオロエタン等が用いられる。温熱刺激は加熱ガッタパーチャが用いられる。しかしながら、温度診は、あくまでも患者の感覚に基づいており、客観的に診断することはできない。また、歯の条件(歯髄腔の狭窄の状態、修復物又は補綴物の有無、及びその材料の種類)、診査時の刺激を与える時間及びその温度によっても反応が異なり、また歯髄に病変が生じていても痛みを示さない場合がある等の問題点がある。 As a conventional method for diagnosing pulpitis, there are thermodiagnosis described in Non-Patent Documents 1 to 3. Thermodiagnosis is a method in which a cold stimulus or a thermal stimulus is applied to a tooth, and the inflammatory state of the pulp is judged based on the duration of pain after the removal of the temperature stimulus or the response to the cold stimulus after the temperature stimulus. For cold stimulation, dry ice, dichlorodifluoromethane, ethyl chloride, ice, tetrafluoroethane, or the like is used. A heating gutta percha is used for thermal stimulation. However, thermodiagnosis is based solely on the patient's senses and cannot be diagnosed objectively. In addition, the reaction varies depending on the condition of the tooth (the state of stenosis of the dental pulp cavity, the presence or absence of a restoration or prosthesis, and the type of the material), the stimulation time at the examination, and the temperature, and lesions occur in the pulp However, there is a problem that it may not show pain.
 また、非特許文献4には歯髄炎の診断方法として電気診が記載されている。電気診は、歯の表面に電気刺激(デントテスター、アナリティック・パルプテスター)を加え、痛みの発生により、歯髄の生死の判断又は歯髄の病態を診査する方法であり、歯髄の生死の判定の信頼度が高いという利点がある。しかしながら、電気診では、根未完成歯、萌出途中の歯及び外傷直後の歯では、電気的閾値が上昇したり反応がなかったりする。また、複根歯の場合、一根が失活していても、別の根が生活していれば反応する。失活していても根管内が電解質の液体で満たされていれば痛覚がある場合がある。更に、金属修復物がある場合、電流が歯肉に流れれば使用できず、特に全部鋳造冠では電気診は行えない等の欠点がある。更に、ペースメーカーを装着している人には禁忌である。また、痛覚発生閾値は歯髄の病態をそのまま反映しているとはいえない。 Non-patent document 4 describes electrodiagnosis as a method for diagnosing pulpitis. Electrodiagnosis is a method of applying an electrical stimulus (dent tester, analytic pulp tester) to the tooth surface, and examining the life or death of the pulp or the condition of the pulp based on the occurrence of pain. There is an advantage of high reliability. However, in electrodiagnosis, the electrical threshold value is increased or there is no reaction in the unfinished root tooth, the tooth in the middle of eruption, and the tooth immediately after the trauma. In the case of a multiple root tooth, even if one root is inactivated, it reacts if another root is alive. Even if inactivated, there may be pain sensations if the root canal is filled with electrolyte liquid. Furthermore, when there is a metal restoration, it cannot be used if an electric current flows through the gingiva. Furthermore, it is contraindicated for those who are wearing pacemakers. Moreover, it cannot be said that the pain occurrence threshold directly reflects the condition of the dental pulp.
 また、歯髄炎の診断方法として、レーザードップラー血流測定がある。歯内治療におけるレーザードップラー血流測定を用いた歯髄診断の試みは、Gazelius B.et al., 1986 やWilder-Smith PE. et al., 1988 に始まり、Matthews らのグループもさまざまな研究を行っている(Matthews B. et al., 1993; Soo-ampon S. et al., 2003)。測定原理は、組織に照射されたレーザー光が血管内を運動中の赤血球にあたるとドップラー効果により周波数偏位を生じて反射されることにある。周波数偏位を解析することにより、赤血球の運動速度、即ち組織を循環する血流速度をベクトル演算し、解析するものである。上述の温度診及び電気診の歯髄の神経反応をみるものとは異なり、レーザードップラー血流測定では、歯髄血流の有無を測定するため、神経反応の測定が困難な症例でも適応できるという利点がある。しかしながら、装置が高価であり、測定誤差を受けやすいうえ、測定値の再現性に乏しく、測定術式に手間がかかること等の欠点がある。また、歯の表面から血流が導出された場合、その反射光が歯髄由来ものであるかどうか疑わしく、歯肉の血流も混ざってしまうため、失活歯であっても血流がモニタされてしまうことが多い。非特許文献5には、反射光ではなく透過光を解析する装置が記載されており、歯の唇側表面からレーザー光を送光し、その透過光を直線上の舌側歯面で受光し、失活歯の誤診を防ぐことができる装置が記載されており、歯髄腔の広い若年者の前歯の診断には有効であるものの、高齢者の歯や臼歯の診断には不十分である問題点がある。 Also, there is laser Doppler blood flow measurement as a method for diagnosing pulpitis. Trial of dental pulp diagnosis using laser Doppler blood flow measurement in endodontic treatment began in Gazelius B. et al., 1986 and Wilder-Smith PE. Et al., 1988 、, and the group of Matthews et al. (Matthews B. et al., 1993; Soo-ampon S. et al., 2003). The measurement principle is that when a laser beam irradiated on a tissue hits an erythrocyte moving in a blood vessel, the laser beam is reflected with a frequency deviation due to the Doppler effect. By analyzing the frequency deviation, the motion speed of red blood cells, that is, the blood flow speed circulating in the tissue is vector-calculated and analyzed. Unlike the above-mentioned thermodiagnosis and electrodiagnosis of the nerve reaction of the dental pulp, the laser Doppler blood flow measurement measures the presence or absence of dental pulp blood flow, so it can be applied even in cases where it is difficult to measure the nerve reaction. is there. However, there are disadvantages such as an expensive apparatus, being susceptible to measurement errors, poor reproducibility of measurement values, and taking time for measurement techniques. In addition, when blood flow is derived from the surface of the tooth, it is doubtful whether the reflected light is derived from the pulp and the blood flow of the gingiva is also mixed. It often ends up. Non-Patent Document 5 describes a device that analyzes transmitted light, not reflected light, and transmits laser light from the labial surface of the tooth and receives the transmitted light on a straight lingual tooth surface. A device that can prevent misdiagnosis of inactivated teeth is described, and it is effective for the diagnosis of the anterior teeth of young people with a wide pulp cavity, but it is insufficient for the diagnosis of the teeth and molars of the elderly There is a point.
 また、歯髄炎の診断方法として、非特許文献6に記載されるように、核磁気共鳴画像(MRI)法がある。核磁気共鳴画像法は水素原子核の核磁気共鳴現象を利用して画像を作製し診断するもので、エネルギーの緩和時間T1と位相の緩和時間T2により決定される。T1強調画像を用いた場合、生活歯髄は明るく強調させ、失活歯髄は暗くなる。核磁気共鳴画像(MRI)法の利点として、放射線被爆が少なく、非侵襲性、任意方向の断面像が撮影、軟組織のコントラストが良いという長所がある。しかしながら、装置が高価であるうえに、磁気金属(アタッチメントや金属修復物)を装着した患者には適応できない問題点がある。 Also, as described in Non-Patent Document 6, there is a nuclear magnetic resonance imaging (MRI) method as a method for diagnosing pulpitis. Nuclear magnetic resonance imaging uses a nuclear magnetic resonance phenomenon of hydrogen nuclei to create and diagnose an image, and is determined by an energy relaxation time T1 and a phase relaxation time T2. When the T1-weighted image is used, the vital dental pulp is emphasized brightly and the inactivated dental pulp is darkened. The advantages of the nuclear magnetic resonance imaging (MRI) method are that it is less exposed to radiation, is non-invasive, takes cross-sectional images in any direction, and has good soft tissue contrast. However, there are problems that the apparatus is expensive and cannot be applied to a patient wearing magnetic metal (attachment or metal restoration).
 更に、特許文献1には、シュウ酸カリウム塩二水和物の溶液を歯の修復部のインターフェースの窩洞面等に適用し、可逆的歯髄炎症の確認となる歯科的苦痛が止まったかどうかを患者に指摘させる歯髄炎診断方法が記載されている。しかしながら、特許文献1記載の診断方法は、患者の感覚に基づくものであり、客観的に診断することはできない問題点がある。 Furthermore, in Patent Document 1, a patient is asked whether or not the dental pain that has confirmed reversible pulp inflammation has been stopped by applying a solution of potassium oxalate dihydrate to the cavity surface of the interface of the dental restoration. A method for diagnosing pulpitis to be pointed out is described. However, the diagnostic method described in Patent Document 1 is based on the patient's senses and has a problem that cannot be objectively diagnosed.
特表2003-528800号公報(第13頁)Japanese translation of PCT publication 2003-528800 (page 13)
 本発明はかかる問題点に鑑みてなされたものであって、高感度でしかも正確に歯髄炎の炎症箇所を示すことのできる歯髄炎診断マーカーを提供すると共に、その歯髄炎診断マーカーを用いて正確且つ客観的に歯髄炎の診断を行うことができる歯髄炎診断システムを提供することを目的とする。 The present invention has been made in view of the above problems, and provides a pulpitis diagnostic marker that can accurately indicate the inflammation site of pulpitis with high sensitivity and accurately uses the pulpitis diagnostic marker. It is another object of the present invention to provide a pulpitis diagnosis system that can objectively diagnose pulpitis.
 上記目的を達成するため、この発明の第1の観点に係る歯髄炎診断マーカーは、インドシアニングリーン及びその誘導体の内少なくとも何れか一方を含有する蛍光薬剤を内包するリポソームの外側表面に、歯髄炎の炎症箇所に特異的に結合する結合性物質が結合されていることを特徴とする。 In order to achieve the above object, a pulpitis diagnosis marker according to the first aspect of the present invention provides pulpitis on the outer surface of a liposome encapsulating a fluorescent drug containing at least one of indocyanine green and its derivatives. A binding substance that specifically binds to the inflammatory site is bound.
 上述の場合において、前記結合性物質は、CD62E抗体、CD54抗体、CD50抗体、CD106抗体、MHCクラスII抗体、PAF抗体、IL-8抗体、MIP-1B抗体、E-セレクチンのリガンド、及びE-セレクチンのリガンドの誘導体の少なくとも何れか一つを含むものであることが好ましい。 In the above case, the binding substance is CD62E antibody, CD54 antibody, CD50 antibody, CD106 antibody, MHC class II antibody, PAF antibody, IL-8 antibody, MIP-1B antibody, E-selectin ligand, and E- It preferably contains at least one derivative of a ligand of selectin.
 また、前記結合性物質は、リンカー蛋白質を介して前記リポソームの外側表面に結合していることが好ましい。 Further, the binding substance is preferably bound to the outer surface of the liposome via a linker protein.
 また、上記目的を達成するため、この発明の第2の観点に係る歯髄炎診断システムは、インドシアニングリーン及びその誘導体の内少なくとも何れか一方を含有する蛍光薬剤を内包するリポソームの外側表面に、歯髄炎の炎症箇所に特異的に結合する結合性物質が結合されていることを特徴とする歯髄炎診断マーカーと、前記蛍光薬剤を励起させるための励起光を発する光源部と、前記光源部からの励起光をフィルタを通して集光レンズに導き、前記集光レンズで集光された光をイメージファイバの端部に入射させる入力光学系と、光信号を検出する光検出部と、前記イメージングファイバの端部に戻ってくる歯髄炎患部に付着した前記歯髄炎診断マーカーの蛍光光をフィルタを通して集光レンズに導き、前記集光レンズで集光された光を前記光検出部に導く出力光学系と、前記光検出部で検出した蛍光光に基づき診断対象の歯髄画像を表示する画像表示部とを有するイメージングファイバ装置とを有することを特徴とする。 In order to achieve the above object, a pulpitis diagnosis system according to the second aspect of the present invention is provided on the outer surface of a liposome encapsulating a fluorescent agent containing at least one of indocyanine green and its derivative, A pulpitis diagnosis marker characterized by binding a binding substance that specifically binds to an inflammation site of pulpitis, a light source unit that emits excitation light for exciting the fluorescent agent, and a light source unit The excitation light is guided to the condensing lens through a filter, and the input optical system that makes the light condensed by the condensing lens enter the end of the image fiber, the light detection unit that detects the optical signal, and the imaging fiber The fluorescence light of the pulpitis diagnostic marker attached to the affected part of pulpitis returning to the end is guided to a condenser lens through a filter, and the light collected by the condenser lens is An output optical system for guiding the serial light detection section, and having an imaging fiber device having an image display unit for displaying the diagnosis target pulp image based on the fluorescence light detected by the light detecting unit.
 また、前記イメージングファイバのファイバ先端に、歯髄炎炎症部位を有する歯の側部に押し当てられるシリコンチューブが取り付けられていることが好ましい。 Further, it is preferable that a silicon tube that is pressed against the side of the tooth having the pulpitis inflammation site is attached to the fiber tip of the imaging fiber.
 また、前記励起光の波長は770nm以上805nm以下、且つ、前記蛍光光の波長は810nm以上850nm以下であり、前記励起光と前記蛍光光との波長の差は15nm以上50nm以下であることが好ましい。 The wavelength of the excitation light is preferably 770 nm or more and 805 nm or less, the wavelength of the fluorescence light is 810 nm or more and 850 nm or less, and the difference in wavelength between the excitation light and the fluorescence light is preferably 15 nm or more and 50 nm or less. .
 また、前記シリコンチューブの先端部は、内側に凹曲面形状であることが好ましい。 Moreover, it is preferable that the tip of the silicon tube has a concave curved shape on the inside.
 本発明の歯髄炎診断マーカーは、高感度でしかも正確に歯髄炎の炎症箇所を示すことができる。また、本発明の歯髄炎診断システムは、正確且つ客観的に歯髄炎の診断を行うことができる。 The pulpitis diagnosis marker of the present invention can indicate the inflammation site of pulpitis with high sensitivity and accuracy. Also, the pulpitis diagnosis system of the present invention can accurately and objectively diagnose pulpitis.
歯髄炎診断マーカーの概略を説明する説明図である。It is explanatory drawing explaining the outline of a pulpitis diagnostic marker. 歯髄炎診断マーカーが歯髄炎炎症部位に特異的に結合する状態を説明する説明図である。It is explanatory drawing explaining the state which a pulpitis diagnostic marker couple | bonds specifically with a pulpitis inflammation site | part. イメージングファイバ装置の概略を説明する説明図である。It is explanatory drawing explaining the outline of an imaging fiber apparatus. イメージングファイバの先端を説明する説明図であり、弾性チューブを取り付ける前の状態である。It is explanatory drawing explaining the front-end | tip of an imaging fiber, and is the state before attaching an elastic tube. イメージングファイバの先端を説明する説明図であり、対物レンズを弾性チューブで覆った状態である。It is explanatory drawing explaining the front-end | tip of an imaging fiber, and is a state which covered the objective lens with the elastic tube. イメージングファイバのファイバ本体の断面図である。It is sectional drawing of the fiber main body of an imaging fiber. 歯髄炎診断システムの概略を説明する全体図である。1 is an overall view illustrating an outline of a pulpitis diagnosis system. 歯髄炎診断システムの一使用態様例を説明するフローチャートである。It is a flowchart explaining the example of 1 use aspect of a pulpitis diagnosis system. シリコンチューブの先端部の形状の別実施形態を示す説明図である。It is explanatory drawing which shows another embodiment of the shape of the front-end | tip part of a silicon tube. シリコンチューブの先端部の形状の別実施形態を示す説明図であり、炎症箇所を有する歯の側面に押し当てる状態を示す説明図である。It is explanatory drawing which shows another embodiment of the shape of the front-end | tip part of a silicon tube, and is explanatory drawing which shows the state pressed against the side surface of the tooth which has an inflammation part. 一部性漿液性歯髄炎の模式図である。It is a schematic diagram of partial serous pulpitis. 全部性化膿性歯髄炎の模式図である。It is a schematic diagram of total suppurative pulpitis. 一部性化膿性歯髄炎の模式図である。It is a schematic diagram of partial suppurative pulpitis. 全部性漿液性歯髄炎の模式図である。It is a schematic diagram of total serous pulpitis.
 〔歯髄炎診断マーカー〕
 以下、添付の図面を参照して本発明の実施形態について具体的に説明する。図1は、本実施形態に係る歯髄炎診断マーカー100の概略図であり、図2は、歯髄炎診断マーカー100が歯髄炎炎症部位に結合する様子を説明する説明図である。
[Pulmonary pulpitis diagnostic marker]
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a schematic diagram of a pulpitis diagnosis marker 100 according to the present embodiment, and FIG. 2 is an explanatory diagram for explaining how the pulpitis diagnosis marker 100 binds to a pulpitis inflammation site.
 図1に示すように、歯髄炎診断マーカー100は、インドシアニングリーン(ICG)140を内包するリポソーム110の外側表面に結合性物質120がリンカー蛋白質130を介して結合している。 As shown in FIG. 1, in the pulpitis diagnostic marker 100, the binding substance 120 is bound to the outer surface of the liposome 110 encapsulating indocyanine green (ICG) 140 via the linker protein 130.
 インドシアニン化合物の一種であるインドシアニングリーン140は、式1に示される構造式であり、赤外線照射によって特異な吸収を示して暗緑青色の蛍光を発する物質である。 Indocyanine green 140, which is a kind of indocyanine compound, is a structural formula represented by Formula 1, and is a substance that emits dark green-blue fluorescence by exhibiting specific absorption by infrared irradiation.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 インドシアニングリーン140の誘導体としては、インドシアニングリーン140の母核を修飾するもの、又は反応活性基を導入したものを使用することができる。反応活性基を導入した反応性インドシアニングリーン誘導体は水に対して難溶の場合があるが、インドシアニングリーン誘導体は有機溶媒等に溶解させて使用するのではなく、リポソーム110に内包されて使用するものなので、難なく使用できる。インドシアニングリーン誘導体は、特に限定されるものではないが、例えば式2に示されるものを使用することができる。 As the derivative of indocyanine green 140, a derivative that modifies the mother nucleus of indocyanine green 140 or a compound into which a reactive group is introduced can be used. Reactive indocyanine green derivatives into which reactive groups have been introduced may be sparingly soluble in water, but indocyanine green derivatives are not used after being dissolved in an organic solvent or the like, but are used in liposome 110. It can be used without difficulty. The indocyanine green derivative is not particularly limited, but for example, the one represented by Formula 2 can be used.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 ここで、R1及びR2は、夫々独立に水素原子、アルキル基、アリール基、スルホン酸基、又はアルコキシ基を示し、R3は、アルキル基、スルホン酸アルキル基、又はアミノアルキル基を示す。アルキル基は、炭素数1~6の直鎖又は分枝鎖の低級アルキルを使用できる。 Here, R1 and R2 each independently represent a hydrogen atom, an alkyl group, an aryl group, a sulfonic acid group, or an alkoxy group, and R3 represents an alkyl group, a sulfonic acid alkyl group, or an aminoalkyl group. As the alkyl group, linear or branched lower alkyl having 1 to 6 carbon atoms can be used.
 リポソーム110は、一枚以上の脂質二重層からなる膜内部に溶媒がカプセル化されている球状粒子(閉鎖小胞)である。リポソーム110の脂質組成、帯電状態、密度、重量、粒子径等は、リポソーム110の外側表面に結合する結合性物質等の性質等に応じて適宜設計することができる。 The liposome 110 is a spherical particle (closed vesicle) in which a solvent is encapsulated inside a membrane composed of one or more lipid bilayers. The lipid composition, charged state, density, weight, particle size and the like of the liposome 110 can be appropriately designed according to the properties of the binding substance and the like that bind to the outer surface of the liposome 110.
 リポソーム110の脂質二重膜の成分は、特に限定されるものではないが、例えばリン脂質及び糖脂質である。リン脂質は、例えば、ホスファチジルイノシトール、ホスファチジルグリセロール、ホスファチジルエタノールアミン、レシチン、リゾレシチン、ホスファチジルコリン、ホスファチジルセリン、スフィンゴミエリン、ジパルミトイルホスファチジルコリン、ジステアロイルホスファチジルコリン、ジミリストリルホスファチジルコリン、ジオレイルホスファチジルコリン、ジパルミトイルホスファチジルグリセロール、ジステアロイルホスファチジルセリン、ジステアロイルホスファチジルグリセロール、及びこれらの混合物である。また、糖脂質は、例えば、ガラクトシルセラミド、ガラクトシルセラミド硫酸エステル、ジガラクトシルジグリセリド、ガラクトシルジグリセリド硫酸エステル等のグリセロ脂質、ラクトシルセラミド、ガングリオシドG7、ガングリオシドG6、ガングリオシドG4等のスフィンゴ糖脂質、及びこれらの混合物である。 The components of the lipid bilayer membrane of the liposome 110 are not particularly limited, and are, for example, phospholipids and glycolipids. Phospholipids include, for example, phosphatidylinositol, phosphatidylglycerol, phosphatidylethanolamine, lecithin, lysolecithin, phosphatidylcholine, phosphatidylserine, sphingomyelin, dipalmitoylphosphatidylcholine, distearoylphosphatidylcholine, dimyristolphosphatidylcholine, dioleylphosphatidylcholine, Distearoyl phosphatidylserine, distearoyl phosphatidylglycerol, and mixtures thereof. The glycolipid is, for example, glycerolipid such as galactosylceramide, galactosylceramide sulfate, digalactosyl diglyceride, galactosyl diglyceride sulfate, lactosylceramide, sphingoglycolipid such as ganglioside G7, ganglioside G6, ganglioside G4, and the like. It is a mixture.
 リポソーム110には、膜構成物質として必要に応じ他の物質を加えることもでき、例えば膜安定化剤としてシトステロール、コレステロール、ジヒドロコレステロール、コレステロールエステル、フィトステロール、スチグマステロール、カンペステロール、コレスタノール、ラノステロール、1-O-ステロールグルコシド、1-O-ステロールマルトシド、及びこれらの混合物を含有させることができる。 Other substances can be added to the liposome 110 as necessary as a membrane-constituting substance. For example, sitosterol, cholesterol, dihydrocholesterol, cholesterol ester, phytosterol, stigmasterol, campesterol, cholestanol, lanosterol as a membrane stabilizer. , 1-O-sterol glucoside, 1-O-sterol maltoside, and mixtures thereof.
 リポソーム110は、全体的に正荷電、負荷電、又は電気的中性のいずれものとすることができる。負電荷に帯電させる場合は例えば負荷電物質であるジセチルホスフェートを添加し、正電荷に帯電させる場合は例えばステアリルアミン等の脂肪族アミンを添加させることができる。 The liposome 110 can be positively charged, negatively charged, or electrically neutral as a whole. When charging to a negative charge, for example, dicetyl phosphate which is a negatively charged substance can be added, and when charging to a positive charge, an aliphatic amine such as stearylamine can be added.
 リポソーム110の重量は特に限定されるものでなく、リポソーム内部に塩化セシウム等の高密度な溶液を充填させることにより上昇させることができる。リポソーム110の密度は、リポソーム内部にデキストラン・サルフェート等の多糖類を含有させることにより上昇させることができる。 The weight of the liposome 110 is not particularly limited, and can be increased by filling the liposome with a high-density solution such as cesium chloride. The density of the liposome 110 can be increased by incorporating a polysaccharide such as dextran sulfate into the liposome.
 歯髄炎診断マーカー100を歯髄炎炎症部位に適切に到達させるためには、細胞内皮系組織の貪食細胞から捕捉されにくくすることが好ましい。細胞内皮系組織の貪食細胞から捕捉されにくくするために、不活性な親水性ポリマーであるポリアルキレンオキシド鎖(ポリオキシアルキレン鎖)又はPEG鎖をリポソーム表面に付けることが可能である。PEGは、オキシエチレン単位が10~3500のポリエチレングリコールが好適である。またPEGの使用量は、リポソームを構成する脂質に対して0.1~30質量%とすることができる。 In order for the pulpitis diagnostic marker 100 to appropriately reach the inflammation site of pulpitis, it is preferable that the pulpitis diagnosis marker 100 is not easily captured from the phagocytic cells of the cell endothelial tissue. A polyalkylene oxide chain (polyoxyalkylene chain) or PEG chain, which is an inert hydrophilic polymer, can be attached to the liposome surface in order to make it difficult to be captured from phagocytic cells of cell endothelial tissue. PEG is preferably polyethylene glycol having 10 to 3500 oxyethylene units. The amount of PEG used can be 0.1 to 30% by mass with respect to the lipid constituting the liposome.
 リポソーム110のカプセル内の平均内径は安定性等を考慮して適宜調整することができ、例えば30~600nm、好ましくは50~500nm、より好ましくは60nm~400nmとすることができる。ここで、リポソーム110のカプセル内の平均内径はデジタルコールター原理により測定するものである。 The average inner diameter of the liposome 110 in the capsule can be appropriately adjusted in consideration of stability and the like, and can be, for example, 30 to 600 nm, preferably 50 to 500 nm, more preferably 60 nm to 400 nm. Here, the average inner diameter in the capsule of the liposome 110 is measured by the digital Coulter principle.
 歯髄炎の炎症箇所に特異的に結合する結合性物質120は、特に限定されるものではないが、例えばCD62E抗体、CD54抗体、CD50抗体、CD106抗体、MHCクラスII抗体、PAF抗体、IL-8抗体、MIP-1B抗体、E-セレクチンのリガンド、E-セレクチンのリガンドの誘導体、及びこれらの混合物である。 The binding substance 120 that specifically binds to the inflammation site of pulpitis is not particularly limited. For example, CD62E antibody, CD54 antibody, CD50 antibody, CD106 antibody, MHC class II antibody, PAF antibody, IL-8 Antibodies, MIP-1B antibodies, ligands for E-selectin, derivatives of ligands for E-selectin, and mixtures thereof.
 CD62E抗体は、E-セレクチンと結合する抗体である。E-セレクチンは、細胞接着分子であるセレクチン(selectin)ファミリーに属し、血管内皮細胞(endothelium)に特異的に発現し、歯髄炎等の炎症刺激により合成されて細胞表面に表出される。CD54抗体は、ICAM-1(intercellular adhesion molecule-1)と結合する抗体であり、ICAM-1は歯髄炎等の炎症刺激により血管内皮細胞表面に出現するインテグリンリガンドである。CD106抗体は、VCAM-1(vascular cell adhesion molecule-1)と結合する抗体であり、VCAM-1は、歯髄炎等の炎症刺激により血管内皮細胞表面にICAM-1に遅れて出現するインテグリンリガンドである。CD50抗体は、ICAM-3(intercellular adhesion molecule-3)と結合する抗体である。MHCクラスII抗体は、MHCクラスII分子に対する抗体である。MHCクラスII分子には、α鎖とβ鎖の2つの重合体があり、それぞれ2つの細胞外領域及び膜貫通領域、細胞内領域からなる。MHCクラスII分子はヒトではHLA-DR、HLA-DQ、HLA-DPの3種類がある。 CD62E antibody is an antibody that binds to E-selectin. E-selectin belongs to the selectin family of cell adhesion molecules, is specifically expressed in vascular endothelial cells (endothelium), is synthesized by inflammatory stimuli such as pulpitis, and is expressed on the cell surface. The CD54 antibody is an antibody that binds to ICAM-1 (intercellular adhesion molecule-1), and ICAM-1 is an integrin ligand that appears on the surface of vascular endothelial cells upon inflammation stimulation such as pulpitis. CD106 antibody is an antibody that binds to VCAM-1 (vascular cell adhesion molecule-1), and VCAM-1 is an integrin ligand that appears behind ICAM-1 on the surface of vascular endothelial cells due to inflammation stimulation such as pulpitis. is there. The CD50 antibody is an antibody that binds to ICAM-3 (intercellular adhesion molecule-3). MHC class II antibodies are antibodies against MHC class II molecules. There are two polymers of MHC class II molecules, α chain and β chain, each consisting of two extracellular region, transmembrane region and intracellular region. There are three types of MHC class II molecules in humans: HLA-DR, HLA-DQ, and HLA-DP.
 PAF抗体は、炎症メディエーターの一つであるPAF(Platelet-activating factor:血小板活性化因子)に特異的に結びつく抗体である。IL-8抗体は、インターロイキン8に特異的に結びつく抗体である。インターロイキン8は、分子量8KDaの塩基性ポリペプチドで、好中球、Tリンパ球に選択時に働く走化性因子である。MIP-1B抗体は、ケモカイン受容体CCR5のリガンドであるMIP-1Bに特異的に結びつく抗体である。 PAF antibody is an antibody that specifically binds to PAF (Platelet-activating factor), which is one of inflammatory mediators. IL-8 antibody is an antibody that specifically binds to interleukin-8. Interleukin 8 is a basic polypeptide having a molecular weight of 8 KDa and is a chemotactic factor that acts on neutrophils and T lymphocytes during selection. The MIP-1B antibody is an antibody that specifically binds to MIP-1B, which is a ligand of the chemokine receptor CCR5.
 E-セレクチンのリガンドは、例えばPSGL-1等の糖蛋白質リガンド、糖脂質リガンド、及びそれらの末端構造である糖鎖リガンドである。糖鎖リガンドとして、シアリルルイスX(SLeX)、ルイスX、硫酸糖等が挙げられる。SLeXは上記の糖蛋白質の糖鎖末端に存在する糖鎖である。 The ligand of E-selectin is a glycoprotein ligand such as PSGL-1, a glycolipid ligand, and a sugar chain ligand which is a terminal structure thereof. Examples of the sugar chain ligand include sialyl Lewis X (SLeX), Lewis X, sulfate sugar and the like. SLeX is a sugar chain present at the sugar chain terminal of the above glycoprotein.
 E-セレクチンのリガンドの誘導体は、セレクチンのリガンドである糖蛋白、糖脂質ならびに糖鎖の誘導体が含まれる。 The ligand derivatives of E-selectin include glycoproteins, glycolipids and sugar chain derivatives which are selectin ligands.
 歯髄炎の炎症箇所に特異的に結合する結合性物質120のリポソーム110の外側表面への結合は、特に限定されるものではないが、例えば図1に示すように、リンカー蛋白質130を介して結合することが好適である。 The binding of the binding substance 120 that specifically binds to the inflammation site of pulpitis is not particularly limited. For example, as shown in FIG. 1, the binding substance 120 binds via the linker protein 130. It is preferable to do.
 リンカー蛋白質は、例えば血清アルブミンが好適に使用され、より具体的にはヒト血清アルブミン、ウシ血清アルブミン等が使用される。 As the linker protein, for example, serum albumin is preferably used, and more specifically, human serum albumin, bovine serum albumin and the like are used.
 次に上述した歯髄炎診断マーカー100の製造方法の一例について説明する。 Next, an example of a method for producing the above-described pulpitis diagnostic marker 100 will be described.
 (インドシアニングリーン内包リポソームの作製)
 リン脂質、ステロール、レシチン等の膜成分の存在下で、液体二酸化炭素を加え、例えば圧力50~500kg/cm、温度31~200℃にて、カチオン性物質、ステロール類及びグリコール類等とともに混合して溶解する。続いてインドシアニングリーンを含む水溶液を連続的に添加して、水相/二酸化炭素エマルジョンを形成する。このエマルジョン系において脂質成分はミセル状となり離合集散をしている。更に二酸化炭素相と水相とが分離するまで水溶液を連続的に添加する。水相の増大とともに系の相転移が起こる。系内を減圧して二酸化炭素を排出すると、インドシアニングリーン140を内包するリポソーム110が分散している水性分散液が生成する。その後、必要に応じて菌処理を施すことも可能である。
(Preparation of indocyanine green encapsulated liposomes)
Liquid carbon dioxide is added in the presence of membrane components such as phospholipids, sterols, and lecithins, and mixed with cationic substances, sterols, glycols, etc. at a pressure of 50 to 500 kg / cm 2 and a temperature of 31 to 200 ° C., for example. And dissolve. Subsequently, an aqueous solution containing indocyanine green is continuously added to form an aqueous / carbon dioxide emulsion. In this emulsion system, the lipid component is in the form of micelles and separates and collects. Further, the aqueous solution is continuously added until the carbon dioxide phase and the aqueous phase are separated. As the aqueous phase increases, the phase transition of the system occurs. When the system is depressurized and carbon dioxide is discharged, an aqueous dispersion in which the liposome 110 encapsulating indocyanine green 140 is dispersed is generated. Then, it is also possible to perform a microbial treatment as needed.
 なお、リポソーム110への蛍光薬剤の内包含有量については、リポソーム膜脂質重量に対して、1~15、好ましくは3~10、より好ましくは5~8の重量比で含有されていることが望ましい。リポソーム110内の蛍光薬剤の重量比が1未満であると、蛍光薬剤の歯髄炎炎症部位への送達効率が悪くなる可能性があるからである。一方、リポソーム110内の蛍光薬剤の重量比が10を超えると、リポソームが構造的に不安定となる可能性があるからである。 The content of the fluorescent drug in the liposome 110 is 1 to 15, preferably 3 to 10, more preferably 5 to 8 with respect to the liposome membrane lipid weight. desirable. This is because if the weight ratio of the fluorescent drug in the liposome 110 is less than 1, the delivery efficiency of the fluorescent drug to the pulpitis inflammation site may deteriorate. On the other hand, if the weight ratio of the fluorescent agent in the liposome 110 exceeds 10, the liposome may be structurally unstable.
 (リポソーム脂質膜表面上の親水性化)
 続いて、bis(sulfosuccinimidyl)suberate(BS;Pierce Co.,USA)等の架橋試薬を加えて攪拌し、リポソーム膜上の脂質とBSとの化学結合を形成する。次に、例えばtris(hydroxymethyl)aminomethaneを加えて攪拌後、リポソーム膜上の脂質に結合したBSとtris(hydroxymethyl)aminomethaneとの化学結合反応を完結させて、インドシアニングリーンが内包されているリポソーム膜の脂質ジパルミトイルフォスファチジルエタノールアミン上にtris(hydroxymethyl)aminomethaneの水酸基が配位して親水性化がなされる。
(Hydrophilization on the liposomal lipid membrane surface)
Subsequently, a crosslinking reagent such as bis (sulfosuccinimidyl) suberate (BS 3 ; Pierce Co., USA) is added and stirred to form a chemical bond between the lipid on the liposome membrane and BS 3 . Next, for example, after adding tris (hydroxymethyl) aminomethane and stirring, the liposome in which indocyanine green is encapsulated by completing the chemical bonding reaction between BS 3 bound to the lipid on the liposome membrane and tris (hydroxymethyl) aminomethane is completed. Hydrophilicity is achieved by the coordination of the hydroxyl group of tris (hydroxymethyl) aminomethane on the membrane lipid dipalmitoylphosphatidylethanolamine.
 (リンカー蛋白質の結合)
 次に、例えばメタ過ヨウ素酸ナトリウムを加えて攪拌してリポソームを酸化し、この酸化されたリポソームにヒト血清アルブミンを加えて攪拌し、カップリング反応によりヒト血清アルブミンを結合させる。
(Linker protein binding)
Next, for example, sodium metaperiodate is added and stirred to oxidize the liposomes, human serum albumin is added to the oxidized liposomes and stirred, and human serum albumin is bound by a coupling reaction.
 (歯髄炎の炎症箇所に特異的に結合する結合性物質の結合)
 続いて、E-セレクチン抗体をNHHCO水溶液に加えて攪拌した後、E-セレクチン抗体のグリコシルアミン化合物を得る。次に、ヒト血清アルブミンが結合しているリポソーム液に架橋試薬3,3’-dithiobis(sulfosuccinimidyl)propionate(DTSSP;Pierce Co.,USA)1mgを加えて攪拌し、DTSSPがリポソーム上のHSAに結合したリポソームを得る。次に、このリポソーム液に上記のE-セレクチン抗体のグリコシルアミン化合物を加えて一定時間攪拌し、リポソーム膜面結合ヒト血清アルブミン上のDTSSPにE-セレクチン抗体の結合を行う。このようにして、インドシアニングリーンを内包するリポソームの表面にE-セレクチン抗体が結合している歯髄炎診断マーカーが得られる。
(Binding of a binding substance that specifically binds to the inflammation site of pulpitis)
Subsequently, the E-selectin antibody is added to an NH 4 HCO 3 aqueous solution and stirred, and then a glycosylamine compound of the E-selectin antibody is obtained. Next, 1 mg of the crosslinking reagent 3,3′-dithiobis (sulfosuccinimidyl) propionate (DTSSP; Pierce Co., USA) is added to the liposome solution to which human serum albumin is bound, and the mixture is stirred to bind the DTSSP to the HSA on the liposome. Liposomes are obtained. Next, the glycosylamine compound of the above E-selectin antibody is added to this liposome solution and stirred for a certain period of time, and the E-selectin antibody is bound to DTSSP on the liposome membrane surface-bound human serum albumin. In this way, a pulpitis diagnostic marker in which an E-selectin antibody is bound to the surface of a liposome encapsulating indocyanine green is obtained.
 次に上述した歯髄炎診断マーカー100の一使用例について説明する。 Next, an example of use of the above-described pulpitis diagnosis marker 100 will be described.
 まず、歯髄炎診断マーカー100が分散されている水溶液を静脈注射等により被験者に注入する。被験者への注入量は特に限定されるものではないが、例えば被験者体重1キログラムあたりインドシアニングリーンの量で0.2~1.0mgとすることができる。一方、図2に示すように、被験者体内では、歯髄炎に基づく刺激によりE-セレクチンは体内で合成され、歯髄炎炎症部位190の血管表面に表出される。そして、歯髄炎診断マーカー100のE-セレクチン抗体がE-セレクチンと特異的に結合する作用を有することにより、歯髄炎診断マーカー100は歯髄炎炎症部位190近傍の血管180から歯髄炎炎症部位190に特異的に結合する。その後は、歯髄炎炎症部位190付近に励起光を照射することにより、歯髄炎診断マーカー100のインドシアニングリーン140が蛍光を発する。これにより歯髄炎炎症部位190を高感度且つ正確に把握することができる。 First, an aqueous solution in which the pulpitis diagnosis marker 100 is dispersed is injected into a subject by intravenous injection or the like. The amount to be injected into the subject is not particularly limited. For example, the amount of indocyanine green per kilogram of the subject's body weight can be 0.2 to 1.0 mg. On the other hand, as shown in FIG. 2, in the subject, E-selectin is synthesized in the body by stimulation based on pulpitis, and is expressed on the blood vessel surface of the inflammation site 190 of pulpitis. Since the E-selectin antibody of the pulpitis diagnosis marker 100 has an action of specifically binding to E-selectin, the pulpitis diagnosis marker 100 is transferred from the blood vessel 180 near the pulpitis inflammation site 190 to the pulpitis inflammation site 190. Bind specifically. Thereafter, the indocyanine green 140 of the pulpitis diagnosis marker 100 emits fluorescence by irradiating the vicinity of the pulpitis inflammation site 190 with excitation light. Thereby, the pulpitis inflammation site 190 can be grasped with high sensitivity and accuracy.
 〔歯髄炎診断システム〕
 次に、添付の図面を参照して本実施形態に係る歯髄炎診断システムの実施形態について具体的に説明する。歯髄炎診断システム300は、上述した歯髄炎診断マーカー100と、イメージングファイバ装置200とを有して構成される。
[Pulmonitis diagnosis system]
Next, an embodiment of a pulpitis diagnosis system according to the present embodiment will be specifically described with reference to the accompanying drawings. The pulpitis diagnosis system 300 includes the above-described pulpitis diagnosis marker 100 and the imaging fiber device 200.
 図3は、イメージングファイバ装置200の概略図である。イメージングファイバ装置200は、励起光を発する光源部260と、入力光学系と、出力光学系と、光信号を検出する光検出部340と、画像表示部370とを有する。入力光学系は、光源部260からの励起光をフィルタ240を通して集光レンズ220に導き、集光レンズ220で集光された光をイメージファイバ210の端部211に入射させる。励起光の波長は例えば770~805nmであり、好ましくは780~795nmである。出力光学系は、イメージングファイバ210の端部211に戻ってくる蛍光光をフィルタ310を通して集光レンズ330に導き、集光レンズ330で集光された光を光検出部340に導く。蛍光光の波長は例えば810~850nmであり、好ましくは820~840nmである。画像表示部(モニタ)370は、光検出部340で検出した蛍光光に基づき診断対象の歯髄画像を表示する。また、イメージングファイバ装置200は、光源制御部270、制御部280、操作部360、記録部380、外箱390とを有する。 FIG. 3 is a schematic diagram of the imaging fiber device 200. The imaging fiber device 200 includes a light source unit 260 that emits excitation light, an input optical system, an output optical system, a light detection unit 340 that detects an optical signal, and an image display unit 370. The input optical system guides the excitation light from the light source unit 260 to the condensing lens 220 through the filter 240 and causes the light condensed by the condensing lens 220 to enter the end portion 211 of the image fiber 210. The wavelength of the excitation light is, for example, 770 to 805 nm, preferably 780 to 795 nm. The output optical system guides the fluorescent light returning to the end 211 of the imaging fiber 210 to the condenser lens 330 through the filter 310 and guides the light collected by the condenser lens 330 to the light detection unit 340. The wavelength of the fluorescent light is, for example, 810 to 850 nm, preferably 820 to 840 nm. The image display unit (monitor) 370 displays a dental pulp image to be diagnosed based on the fluorescent light detected by the light detection unit 340. In addition, the imaging fiber device 200 includes a light source control unit 270, a control unit 280, an operation unit 360, a recording unit 380, and an outer box 390.
 イメージングファイバ210は、図4Aに示すように、ファイバ本体213と、対物レンズ215と、筒状部材214とを有し、先端に円筒形状の弾性チューブ420が取り付けられる。対物レンズ215は、両端面が研磨され鏡面仕上げが施された両凸レンズである。対物レンズ215は、筒状部材214の一端側に接着固定されている。対物レンズ215は外側から光を取込み、ファイバ束の受光端面に結像させる。ファイバ本体213は、図5に示すように、複数の光ファイバ216を例えば1万~3万本束ねて漏光防止用の被覆チューブに収めたファイバ束からなる。このファイバ束の直径は例えば1.0~2.5mmである。ファイバ本体213は一定の弾力性を有し、所定の曲率以下にならないように曲げることが可能である。光ファイバ216は、特に限定されるものではないが、例えば石英系光ファイバ、プラスチック系光ファイバ等である。光ファイバ216の直径は例えば2~4μmである。筒状部材214は対物レンズ215とファイバ束が収まる内径を有し、一端側に対物レンズ215が装着されると共に、他端側にファイバ束が装着され、対物レンズ215とファイバ束を一体としている。図4Bに示すように、筒状部材214には弾性チューブ420が被せられる。後述するように、弾性チューブ420は歯髄炎が発生している歯191の側部に押し当てられることにより、対物レンズ215を固定させるためのものである。弾性チューブ420は、弾力を有し且つ生体適合性を有する材質であることが好ましく、例えばシリコンチューブである。弾性チューブ420の長さ及び外径は、特に限定されるものではないが押し当てられる歯の大きさ等により適宜設計され、例えば長さ420Lは5~6mmである。 As shown in FIG. 4A, the imaging fiber 210 has a fiber main body 213, an objective lens 215, and a cylindrical member 214, and a cylindrical elastic tube 420 is attached to the tip. The objective lens 215 is a biconvex lens whose both end surfaces are polished and mirror-finished. The objective lens 215 is bonded and fixed to one end side of the cylindrical member 214. The objective lens 215 takes in light from the outside and forms an image on the light receiving end face of the fiber bundle. As shown in FIG. 5, the fiber main body 213 is formed of a fiber bundle in which a plurality of optical fibers 216 are bundled, for example, 10,000 to 30,000 and stored in a light leakage preventing coating tube. The diameter of this fiber bundle is, for example, 1.0 to 2.5 mm. The fiber main body 213 has a certain elasticity and can be bent so as not to be less than a predetermined curvature. The optical fiber 216 is not particularly limited, and is, for example, a quartz optical fiber, a plastic optical fiber, or the like. The diameter of the optical fiber 216 is, for example, 2 to 4 μm. The cylindrical member 214 has an inner diameter in which the objective lens 215 and the fiber bundle can be accommodated, the objective lens 215 is attached to one end side, and the fiber bundle is attached to the other end side, and the objective lens 215 and the fiber bundle are integrated. . As shown in FIG. 4B, the tubular member 214 is covered with an elastic tube 420. As will be described later, the elastic tube 420 is used to fix the objective lens 215 by being pressed against the side of the tooth 191 where the pulpitis has occurred. The elastic tube 420 is preferably made of a material having elasticity and biocompatibility, such as a silicon tube. The length and outer diameter of the elastic tube 420 are not particularly limited, but are appropriately designed depending on the size of the teeth to be pressed, and the length 420L is, for example, 5 to 6 mm.
 図3に戻り、イメージングファイバ装置200の動作について説明する。制御部280は操作部360からの指示に基づき光源制御部270に対し光源起動の制御信号を送る。光源制御部270はキセノンランプ等の光源部260を起動させる。光源部260の光は集光レンズ250で集光され励起フィルタ240によって励起され、集光レンズ220により集光されてイメージングファイバ210の端部211に導かれる。 3, the operation of the imaging fiber device 200 will be described. The control unit 280 sends a light source activation control signal to the light source control unit 270 based on an instruction from the operation unit 360. The light source control unit 270 activates the light source unit 260 such as a xenon lamp. The light from the light source unit 260 is collected by the condenser lens 250, excited by the excitation filter 240, condensed by the condenser lens 220, and guided to the end 211 of the imaging fiber 210.
 イメージファイバ210の端部211に送られた励起光は、ファイバ先端212からエバネッセント光が照射される。そして、インドシアニングリーン140からの蛍光をイメージファイバ210のファイバ先端212で受光すると、イメージファイバ210の端部211から蛍光が出射され、集光レンズ220、ダイクロイックミラー230に入射する。ダイクロイックミラー230では蛍光を含む波長帯は反射され、凸レンズ290を通ってフィルタ310に導かれる。フィルタ310は蛍光領域以外のノイズ部分を除去するもので、ノイズを除去された蛍光は反射鏡320、集光レンズ330を介して光検出器340に入射する。励起光と蛍光光との波長の差は、例えば15nm~50nmである。 The excitation light sent to the end 211 of the image fiber 210 is irradiated with evanescent light from the fiber tip 212. When the fluorescence from indocyanine green 140 is received by the fiber tip 212 of the image fiber 210, the fluorescence is emitted from the end 211 of the image fiber 210 and enters the condenser lens 220 and the dichroic mirror 230. The dichroic mirror 230 reflects the wavelength band including fluorescence and is guided to the filter 310 through the convex lens 290. The filter 310 removes noise portions other than the fluorescent region, and the fluorescence from which the noise has been removed enters the photodetector 340 via the reflecting mirror 320 and the condenser lens 330. The difference in wavelength between the excitation light and the fluorescence light is, for example, 15 nm to 50 nm.
 光検出器340は光検出器制御部350から起動信号及びタイミング信号を受けることにより蛍光が検出可能状態になる。光検出器340で検出した蛍光は電気信号に変換され、光検出器用制御部350で増幅される。制御部280は、制御プログラムに基づきCPU等の演算素子によって光源制御及び測定動作を行うとともに受信した光検出器用制御部350の出力をA/D変換して所定の式に基づきインドシアニングリーン140の蛍光強度を演算する。そして蛍光強度に基づきインドシアニングリーン140の存在量を算出する。モニタ370には測定動作のためのメニュー画面が表示されるとともに、測定した蛍光強度及びインドシアニングリーン140の存在量が表示される。記録部380は時間とともにインドシアニングリーン140の蛍光強度の変化が記録される。 The photodetector 340 is in a state where fluorescence can be detected by receiving the start signal and the timing signal from the photodetector controller 350. The fluorescence detected by the photodetector 340 is converted into an electrical signal and amplified by the photodetector controller 350. The control unit 280 performs light source control and measurement operation by an arithmetic element such as a CPU based on a control program, A / D converts the received output of the photodetector control unit 350, and controls the indocyanine green 140 based on a predetermined formula. Calculate the fluorescence intensity. Then, the abundance of indocyanine green 140 is calculated based on the fluorescence intensity. The monitor 370 displays a menu screen for measurement operation, and displays the measured fluorescence intensity and the amount of indocyanine green 140 present. The recording unit 380 records changes in fluorescence intensity of indocyanine green 140 over time.
 次に、本実施形態に係る歯髄炎診断システム300の使用態様について図6~図9を参照して説明する。図6は、歯髄炎診断システム300の使用態様の模式図である。図7は、歯髄炎診断システム300の使用態様フローチャートである。図8Aは、シリコンチューブの先端部の形状の別実施形態を示す説明図である。図8Bは、シリコンチューブの先端部の形状の別実施形態を示す説明図であり、炎症箇所を有する歯の側面に押し当てる状態を示す説明図である。図9Aは、一部性漿液性歯髄炎の模式図である。図9Bは、全部性化膿性歯髄炎の模式図である。図9Cは、一部性化膿性歯髄炎の模式図である。図9Dは、全部性漿液性歯髄炎の模式図である。 Next, how the pulpitis diagnosis system 300 according to this embodiment is used will be described with reference to FIGS. FIG. 6 is a schematic diagram of a usage mode of the pulpitis diagnosis system 300. FIG. 7 is a flowchart showing how the pulpitis diagnosis system 300 is used. FIG. 8A is an explanatory view showing another embodiment of the shape of the tip of the silicon tube. FIG. 8B is an explanatory view showing another embodiment of the shape of the distal end portion of the silicon tube, and is an explanatory view showing a state of pressing against the side surface of a tooth having an inflammatory site. FIG. 9A is a schematic diagram of partial serous pulpitis. FIG. 9B is a schematic diagram of total suppurative pulpitis. FIG. 9C is a schematic diagram of partial purulent pulpitis. FIG. 9D is a schematic diagram of total serous pulpitis.
 まずファイバ先端212に取り付けられている弾性チューブ420を歯髄炎炎症部位を有する歯191の側部に押し当てる(S001)。弾性チューブ420は弾力性を有するので、歯191に押し当てることにより、ファイバ先端212が固定される。なお、弾性チューブ420の形状は、図8Aに示すように、弾性チューブ420の先端部421が内側に凹曲面形状であることが好ましい。このように構成することで、図8Bに示すように、歯髄炎炎症部位を有する歯191の側面に、弾性チューブ420の先端部421を隙間を少なくして接することができる。 First, the elastic tube 420 attached to the fiber tip 212 is pressed against the side of the tooth 191 having a pulpitis inflammation site (S001). Since the elastic tube 420 has elasticity, the fiber tip 212 is fixed by being pressed against the teeth 191. In addition, as for the shape of the elastic tube 420, as shown to FIG. 8A, it is preferable that the front-end | tip part 421 of the elastic tube 420 is a concave curved surface shape inside. With this configuration, as shown in FIG. 8B, the distal end portion 421 of the elastic tube 420 can be brought into contact with the side surface of the tooth 191 having the pulpitis inflammation site with a small gap.
 次に、イメージングファイバ装置200の電源をONにして励起光を照射する(S002)。そして戻ってくる蛍光光を光検出器340で検知し(S003)、この光出力をモニタ370にて確認して励起光出力が安定したか否かを判別する(S004)。励起光出力が安定しない場合は励起光照射を適宜調整する。 Next, the imaging fiber device 200 is turned on and irradiated with excitation light (S002). Then, the returning fluorescent light is detected by the photodetector 340 (S003), and this light output is confirmed by the monitor 370 to determine whether or not the excitation light output is stable (S004). If the excitation light output is not stable, the excitation light irradiation is appropriately adjusted.
 出力が安定したことを確認してから、注射410により被験者に歯髄炎診断マーカー100を静注する(S005)。歯髄炎診断マーカー100を炎症部位に適切に到達させるため、注射410は歯髄炎炎症部位を有する歯191の位置する歯茎に行うことが望ましい。注射された歯髄炎診断マーカー100は歯髄炎炎症部位に結合し、蛍光光強度がモニタ370に映し出される(S006)。ここで歯髄炎診断マーカー100の投入量は充分であるか否かを判別する(S007)。仮に不十分であると判断される場合は歯髄炎診断マーカー100を適宜補充注射する。 After confirming that the output is stable, the pulpitis diagnosis marker 100 is intravenously injected to the subject by injection 410 (S005). In order to appropriately reach the pulpitis diagnostic marker 100 to the inflamed site, it is desirable that the injection 410 is performed on the gum where the tooth 191 having the inflamed site of pulpitis is located. The injected pulpitis diagnostic marker 100 binds to the pulpitis inflammation site, and the fluorescent light intensity is displayed on the monitor 370 (S006). Here, it is determined whether or not the amount of insertion of the pulpitis diagnosis marker 100 is sufficient (S007). If it is determined to be insufficient, the pulpitis diagnosis marker 100 is appropriately supplemented and injected.
 注射した後所定時間待機する(S008)。そして所定時間後に蛍光強度が観察されるか否かを判別する(S009)。蛍光強度が観察されない場合は歯髄炎に該当しない(S010)。被験者に炎症部位が存在しない場合は、インドシアニングリーンは血中のリポ蛋白と結合して肝臓に輸送され、類洞を通過する間に肝細胞に摂取され抱合を受けることなく胆汁に排泄されるからである。一方、蛍光強度が観察される場合は、更に蛍光強度の程度から歯髄炎の分類をすることにより細かい診断が可能であり、歯髄全体に蛍光が観察されるか否かを判別する(S011)。歯髄全体に蛍光が観察されず、一部に観察される場合は、図9Aに模式的に示される一部性漿液性歯髄炎と診断される(S012)。なお、Seは漿液性炎症部を示す。次に、歯髄全体に蛍光強度が観察されるものの、蛍光強度に部分的に差異があるか否かを判別し(S013)、蛍光強度に部分的に差異がなく全体的に均一な蛍光強度を有している場合は、図9Bに模式的に示すように全部性化膿性歯髄炎と診断される(S014)。なお、Suは化膿性炎症部を示す。次に、蛍光強度に部分的に差異がある場合は、髄角部のみに強い蛍光強度を有するか否かを判別し(S015)、髄角部のみに限定されない強い蛍光強度を有している場合は、図9Cに模式的に示すように一部性化膿性歯髄炎と診断される(S016)。一方、髄角部のみに強い蛍光強度を有している場合は、図9Dに模式的に示すように全部性漿液性歯髄炎と診断される(S017)。 Wait for a predetermined time after injection (S008). Then, it is determined whether or not the fluorescence intensity is observed after a predetermined time (S009). If the fluorescence intensity is not observed, it does not correspond to pulpitis (S010). If the subject does not have an inflammatory site, indocyanine green is bound to lipoproteins in the blood and transported to the liver, where it is ingested by hepatocytes while passing through the sinusoids and excreted in bile without being conjugated. Because. On the other hand, when the fluorescence intensity is observed, a further diagnosis can be made by further classifying the pulpitis from the degree of the fluorescence intensity, and it is determined whether or not the fluorescence is observed in the entire pulp (S011). When fluorescence is not observed in the entire pulp but partially observed, it is diagnosed as partial serous pulpitis schematically shown in FIG. 9A (S012). Se represents a serous inflammation part. Next, although fluorescence intensity is observed throughout the dental pulp, it is determined whether or not there is a difference in fluorescence intensity (S013). If so, all suppurative pulpitis is diagnosed as schematically shown in FIG. 9B (S014). In addition, Su shows a purulent inflammation part. Next, if there is a partial difference in the fluorescence intensity, it is determined whether or not there is a strong fluorescence intensity only in the medullary corner (S015), and the fluorescence intensity is not limited to only the medullary corner. In this case, as shown schematically in FIG. 9C, partial purulent pulpitis is diagnosed (S016). On the other hand, when only the medullary corner has a strong fluorescence intensity, as shown schematically in FIG. 9D, all serous pulpitis is diagnosed (S017).
 なお、漿液性歯髄炎は、滲出物は主として形質細胞、リンパ球、白血球等の滲出細胞と漿液成分とよりなり、組織破壊の弱い歯髄炎であるが、化膿性歯髄炎は、滲出物は膿(脂肪変成に陥った好中球と濃清とからなる)よりなり組織破壊の強い歯髄炎であり、組織破壊の弱い漿液性炎症部より組織破壊の強い化膿性炎症部のほうがE-セレクチン等の発生量が多いため、化膿性炎症部は漿液性炎症部より強い蛍光強度を有する。また、図9Dにおいて、全部性漿液性歯髄炎にも関わらず、髄角部に化膿性炎症部が存在するのは、裂溝からう触が始まることが多く象牙細管の走行より髄角部には二次象牙質が出来にくく、細菌が侵入しやすいので髄角部に化膿性炎症が発生しやすいからである。 In serous pulpitis, exudates mainly consist of exudate cells such as plasma cells, lymphocytes, leukocytes, etc. and serous components, and the pulpitis is weak in tissue destruction. Pulpitis with strong tissue destruction (consisting of neutrophils and concentrates that have undergone fat metamorphosis), and purulent inflammatory parts with stronger tissue destruction than with serous inflammatory parts with weaker tissue destruction, such as E-selectin Because of the large amount of occurrence, the purulent inflammatory part has a stronger fluorescence intensity than the serous inflammatory part. In FIG. 9D, purulent inflammation is present in the medullary horn in spite of all serous pulpitis. This is because secondary dentin is difficult to produce and bacteria are likely to invade, and purulent inflammation is likely to occur in the horn.
 従来は、これら歯髄炎の分類乃至診断は、温度診による判断(冷水痛のみなら一部性漿液性歯髄炎、温水痛のみなら全部性化膿性歯髄炎、冷水痛>温水痛なら全部性漿液性歯髄炎、冷水痛<温水痛なら一部性化膿性歯髄炎)等によっていたものの、本実施形態に係る歯髄炎診断システムならばこのような主観的判断手法によらず、客観的且つ正確に判断乃至診断することができる。 Conventionally, the classification or diagnosis of pulpitis is based on thermodiagnosis (partial serous pulpitis if only cold water pain, all suppurative pulpitis if only warm water pain, cold water pain> all serous if warm water pain) Although it was caused by pulpitis, cold water pain <partial purulent pulpitis if warm water pain), etc., the pulpitis diagnosis system according to this embodiment can make an objective and accurate judgment regardless of such a subjective judgment method. Or can be diagnosed.
 歯髄炎の分類乃至診断は、このような実施形態に限定されず、例えば蛍光強度が冠部歯髄のみに存在するか、それとも根部歯髄にまで存在するかを観察することにより、抜髄法を行うか否かを正確に判断できる。即ち、炎症が冠部歯髄のみに限局し、根部歯髄にまで及んでいない場合には、冠部歯髄のみを除去し、根部歯髄組織を保存する断髄法を施す。しかし、炎症が根部歯髄にまで広がっている場合には、全歯髄組織を摘出除去し、炎症が歯周組織に広がるのを防止する。更に本実施形態に係る歯髄炎診断システムならば、炎症が根部歯髄にまで及んでいる場合はその蛍光強度画像を患者に見せて納得させてから処置を施すことが出来、インフォームド医療に資する。 The classification or diagnosis of pulpitis is not limited to such an embodiment. For example, whether pulp extraction is performed by observing whether the fluorescence intensity exists only in the crown pulp or even in the root pulp. It is possible to accurately determine whether or not. That is, when the inflammation is limited to only the crown pulp and does not reach the root pulp, only the crown pulp is removed and a spinal cord method is performed to preserve the root pulp tissue. However, if the inflammation has spread to the root pulp, the entire pulp tissue is removed and prevented from spreading to the periodontal tissue. Furthermore, with the pulpitis diagnosis system according to the present embodiment, when the inflammation extends to the root pulp, treatment can be performed after the patient is convinced by showing the fluorescence intensity image, which contributes to informed medicine. .
 また、歯髄炎は冠部歯髄より根部歯髄へと波及拡大されるのが一般的な拡大方向であるが、病変の高度に進行した辺縁性歯周炎又は隣在歯の根尖性歯周炎等の化膿性歯髄炎が健全歯の根尖部付近に発症した場合には、健全歯の根尖孔或いは根管側枝を介して根部歯髄組織内へと炎症が波及し、更に冠部歯髄組織へと波及する(上行性歯髄炎)。このように、一般的な歯髄炎の拡大方向とは逆方向に炎症が拡大する場合を上行性歯髄炎と呼ぶが、本実施形態に係る歯髄炎診断システムを使用することにより、根部歯髄組織から冠部歯髄組織へと強くなる蛍光強度が観察される場合は上行性歯髄炎と判断することができる。なお、上述した本発明の一具体例における歯髄炎判断手法は、蛍光強度を観察することにより一義的に判断を行うものではなく、最終的判断は歯科医師の経験等も合わせて判断を行うものであるが、歯科医師が症例を正確に判別する際の優れた手助けとなる点において多大なる利益を有する。 In addition, pulpitis generally spreads from the crown pulp to the root pulp, but the highly advanced marginal periodontitis of the lesion or the apical periodontal of the adjacent tooth. When purulent pulpitis such as inflammation develops near the root apex of a healthy tooth, inflammation spreads through the root apex of the healthy tooth or the side branch of the root canal into the root pulp tissue, and further, the crown pulp Spreads to tissues (ascending pulpitis). Thus, when the inflammation expands in the opposite direction to the general direction of pulpitis, it is called ascending pulpitis, but by using the pulpitis diagnosis system according to this embodiment, from the root pulp tissue. When strong fluorescence intensity is observed in the coronal pulp tissue, it can be determined as ascending pulpitis. Note that the pulpitis determination method in one specific example of the present invention described above is not uniquely determined by observing the fluorescence intensity, and the final determination is based on the experience of the dentist. However, it has tremendous benefits in that it helps the dentist to accurately identify cases.
 以上、従来では神経の反応又は患者の主観的感覚に頼っていた歯髄炎の病態を本発明に係る歯髄炎診断システムによれば客観的に診断することができ、深い虫歯又は歯髄炎での直接覆髄法、生活歯髄切断法、抜髄法の治療の選択基準が得られ、歯髄を除去せずに、残すことが可能な症例を正確に判別でき、歯髄更には歯の延命化につなげることができる。また、歯髄の再生を行う際の、治療前、治療途中、治療後の診断基準とすることもできる。 As described above, according to the pulpitis diagnosis system according to the present invention, it is possible to objectively diagnose the pathology of pulpitis that has conventionally relied on the reaction of the nerve or the subjective sense of the patient, and directly in deep caries or pulpitis. Criteria for selection of pulp capping, vital pulp cutting, and pulp extraction can be obtained, and it is possible to accurately identify cases that can be left without removing the pulp, leading to the prolongation of the pulp and the life of the tooth. it can. It can also be used as a diagnostic criterion before, during, and after treatment when regenerating dental pulp.
 下記に、歯髄炎診断マーカー100の製造実験例を記載する。 Hereinafter, an example of manufacturing experiment of the pulpitis diagnostic marker 100 will be described.
 (1)リポソーム調製
 リポソームはコール酸透析法を用いて調製した。即ち、ジパルミトイルフォスファチジルコリン、コレステロール、ジセチルフォスフェート、ガングリオシド及びジパルミトイルフォスファチジルエタノールアミンをモル比でそれぞれ36:40:4:15:5の割合で合計脂質量45.6mgになるように混合し、コール酸ナトリウム47.1mg添加し、クロロホルム/メタノール溶液2.9mlに溶解した。
(1) Preparation of liposomes Liposomes were prepared using a cholic acid dialysis method. That is, dipalmitoyl phosphatidylcholine, cholesterol, dicetyl phosphate, ganglioside and dipalmitoyl phosphatidylethanolamine are each in a molar ratio of 36: 40: 4: 15: 5 to give a total lipid amount of 45.6 mg. Then, 47.1 mg of sodium cholate was added and dissolved in 2.9 ml of chloroform / methanol solution.
 この溶液を蒸発させ、沈殿物を真空中で乾燥させることによって脂質膜を得た。得られた脂質膜をTAPS緩衝液(pH8.5)2.9mlに懸濁、超音波処理し、透明なミセル懸濁液2.9mlを得た。このミセル懸濁液にPBS緩衝液(pH7.1)を加えて4.9mlにしてから、更にTAPS緩衝液(pH8.3)で2250mg/6mlになるよう完全に溶解したICGを攪拌しながらゆっくりと滴下して均一に混合した後、このICG入りミセル懸濁液をPM10膜(AmiconCo.,USA)とTAPS緩衝液(pH8.3)を用いた限外濾過にかけ、均一なICG封入リポソーム9.89mlを調製した。 The solution was evaporated and the precipitate was dried in vacuum to obtain a lipid membrane. The obtained lipid membrane was suspended in 2.9 ml of TAPS buffer (pH 8.5) and sonicated to obtain 2.9 ml of a transparent micelle suspension. To this micelle suspension, PBS buffer (pH 7.1) was added to make 4.9 ml, and then ICG completely dissolved with TAPS buffer (pH 8.3) to 2250 mg / 6 ml was slowly stirred with stirring. The ICG-containing micelle suspension was subjected to ultrafiltration using a PM10 membrane (Amicon Co., USA) and a TAPS buffer (pH 8.3) to obtain uniform ICG-encapsulated liposomes. 89 ml was prepared.
 (2)親水性化
 (1)で調製したICG封入リポソーム溶液9.89mlをXM300膜(Amicon Co.,USA)とCBS緩衝液(pH8.6)を用いた限外濾過にかけ溶液のpHを8.6にした。次に、架橋試薬bis(sulfosuccinimidyl)suberate(BS;Pierce Co.,USA)10mlを加え、25℃で2時間攪拌した。その後、更に6.7℃で一晩攪拌してリポソーム膜上の脂質ジパルミトイルフォスファチジルエタノールアミンとBSとの化学結合反応を完結した。そして、このリポソーム液をXM300膜とCBS緩衝液(pH8.6)で限外濾過にかけた。
(2) Hydrophilization 9.89 ml of the ICG-encapsulated liposome solution prepared in (1) was subjected to ultrafiltration using XM300 membrane (Amicon Co., USA) and CBS buffer (pH 8.6) to adjust the pH of the solution to 8 .6. Next, 10 ml of a crosslinking reagent bis (sulfosuccinimidyl) suberate (BS 3 ; Pierce Co., USA) was added, and the mixture was stirred at 25 ° C. for 2 hours. Thereafter, the mixture was further stirred overnight at 6.7 ° C. to complete the chemical binding reaction between the lipid dipalmitoylphosphatidylethanolamine and BS 3 on the liposome membrane. Then, this liposome solution was subjected to ultrafiltration with an XM300 membrane and a CBS buffer (pH 8.6).
 次に、CBS緩衝液(pH8.6)1mlに溶かしたtris(hydroxymethyl)aminomethane40mgをリポソーム液9.9mlに加えて、25℃で2時間攪拌後、6.8℃で一晩攪拌してリポソーム膜上の脂質に結合したBSとtris(hydroxymethyl)aminomethaneとの化学結合反応を完結した。これにより、ICG封入リポソーム膜の脂質ジパルミトイルフォスファチジルエタノールアミン上にtris(hydroxymethyl)aminomethaneの水酸基が配位して水和親水性化された。 Next, 40 mg of tris (hydroxymethyl) aminomethane dissolved in 1 ml of CBS buffer (pH 8.6) was added to 9.9 ml of liposome solution, stirred at 25 ° C. for 2 hours, and then stirred at 6.8 ° C. overnight to prepare liposome membrane. The chemical binding reaction between BS 3 bound to the above lipid and tris (hydroxymethyl) aminomethane was completed. As a result, the hydroxyl group of tris (hydroxymethyl) aminomethane was coordinated on the lipid dipalmitoylphosphatidylethanolamine of the ICG-encapsulated liposome membrane to make it hydrated and hydrophilic.
 (3)ICG封入リポソーム膜面上へのヒト血清アルブミン(HSA)の結合
 公知の手法(Yamazaki,N.,Kodama,M.andGabius,H.-J.(1994)Methods Enzymol.242,56-65)により、カップリング反応法を用いて行った。即ち、この反応は2段階化学反応で行い、まず始めに、(2)で得られた9.9mlのリポソーム膜面上に存在するガングリオシドを1mlのTAPS緩衝液(pH8.3)に溶かしたメタ過ヨウ素酸ナトリウム43mgを加えて室温で2時間攪拌して過ヨウ素酸酸化した後、XM300膜とPBS緩衝液(pH8.0)で限外濾過することにより酸化されたリポソーム9.9mlを得た。このリポソーム液に、20mgのヒト血清アルブミン(HSA)を加えて25℃で2時間攪拌し、次にPBS(pH8.0)に2M NaBHCN 100μlを加えて10℃で一晩攪拌してリポソーム上のガングリオシドとHSAとのカップリング反応でHSAを結合した。そして、XM300膜とCBS緩衝液(pH8.6)で限外濾過をした後、HSA結合ICG封入リポソーム液9.9mlを得た。
(3) Binding of human serum albumin (HSA) onto the surface of ICG-encapsulated liposome membranes Known methods (Yamazaki, N., Kodama, M. and Gabius, H.-J. (1994) Methods Enzymol. 242, 56-65 ) Using a coupling reaction method. That is, this reaction is performed in a two-step chemical reaction. First, a metabolite obtained by dissolving ganglioside obtained in (2) on the 9.9 ml liposome membrane surface in 1 ml of TAPS buffer (pH 8.3). After adding 43 mg of sodium periodate and stirring at room temperature for 2 hours to oxidize periodate, 9.9 ml of oxidized liposome was obtained by ultrafiltration with XM300 membrane and PBS buffer (pH 8.0). . To this liposome solution, 20 mg of human serum albumin (HSA) was added and stirred at 25 ° C. for 2 hours. Next, 100 μl of 2M NaBH 3 CN was added to PBS (pH 8.0) and stirred overnight at 10 ° C. HSA was bound by a coupling reaction between the above ganglioside and HSA. Then, after ultrafiltration with an XM300 membrane and a CBS buffer (pH 8.6), 9.9 ml of an HSA-conjugated ICG-encapsulated liposome solution was obtained.
 (4)ICG封入リポソーム膜面結合ヒト血清アルブミン(HSA)上へE-selectin抗体結合とリンカー蛋白質(HSA)の親水性化処理
 E-セレクチン抗体 48μgを0.25gのNHHCOを溶かした0.5ml水溶液に加え、37℃で3日間攪拌した後、0.45μmのフィルターで濾過して糖鎖の還元末端のアミノ化反応を完結してE-セレクチン抗体のグリコシルアミン化合物48μgを得た。次に、(3)で得たリン酸プレドニゾロン封入リポソーム液の一部分1mlに架橋試薬3,3’-dithiobis(sulfosuccinimidyl)propionate(DTSSP;Pierce Co.,USA)1mgを加えて25℃で2時間、続いて7℃で一晩攪拌し、XM300膜とCBS緩衝液(pH8.6)で限外濾過してDTSSPがリポソーム上のHSAに結合したリポソーム1mlを得た。
(4) E-selectin antibody binding and linker protein (HSA) hydrophilic treatment on ICG-encapsulated liposome membrane surface-bound human serum albumin (HSA) E-selectin antibody 48 μg was dissolved in 0.25 g NH 4 HCO 3 It was added to a 0.5 ml aqueous solution and stirred at 37 ° C. for 3 days, followed by filtration with a 0.45 μm filter to complete the amination reaction of the reducing end of the sugar chain to obtain 48 μg of a glycosylamine compound of an E-selectin antibody. . Next, 1 mg of a crosslinking reagent 3,3′-dithiobis (sulfosuccinimidyl) propionate (DTSP; Pierce Co., USA) was added to 1 ml of a portion of the prednisolone phosphate-encapsulated liposome solution obtained in (3) for 2 hours at 25 ° C. Subsequently, the mixture was stirred overnight at 7 ° C., and ultrafiltered with an XM300 membrane and a CBS buffer (pH 8.6) to obtain 1 ml of liposome in which DTSSP was bound to HSA on the liposome.
 次に、このリポソーム液に上記のE-セレクチン抗体のグリコシルアミン化合物48μgを加えて、25℃で2時間攪拌し、その後7℃で一晩攪拌し、XM300膜とPBS緩衝液(pH8.0)で限外濾過してリポソーム膜面結合ヒト血清アルブミン上のDTSSPにE-セレクチン抗体の結合を行った。その結果、E-セレクチン抗体とヒト血清アルブミン(HSA)とリポソームとが結合したリンカー蛋白質(HSA)の親水性化処理をしたICG封入リポソーム2mlが得られた。 Next, 48 μg of the above-mentioned E-selectin antibody glycosylamine compound was added to the liposome solution, and the mixture was stirred at 25 ° C. for 2 hours and then stirred overnight at 7 ° C., and then XM300 membrane and PBS buffer (pH 8.0). The E-selectin antibody was bound to DTSSP on liposome membrane surface-bound human serum albumin. As a result, 2 ml of ICG-encapsulated liposomes obtained by hydrophilizing linker protein (HSA) in which E-selectin antibody, human serum albumin (HSA) and liposome were bound were obtained.
 正確且つ客観的な歯髄炎の診断に利用することができるので、抜髄法の治療の選択基準が得られ、歯髄を除去せずに、残すことが可能な症例を正確に判別できる。 Since it can be used for accurate and objective diagnosis of pulpitis, criteria for selection of a pulpectomy method can be obtained, and the cases that can be left without removing the pulp can be accurately identified.
100:歯髄炎診断マーカー
110:リポソーム
120:結合性物質
130:リンカー蛋白質
140:インドシアニングリーン
190:歯髄炎炎症部位
200:イメージングファイバ装置
210:イメージングファイバ
213:ファイバ本体
214:筒状部材
215:対物レンズ
216:光ファイバ
220:集光レンズ
230:ダイクロイックミラー
240:フィルタ
250:集光レンズ
260:光源部
270:光源制御部
280:制御部
290:凸レンズ
300:歯髄炎診断システム
310:フィルタ
320:反射鏡
330:集光レンズ
340:光検出部
350:光検出器用制御部
360:操作部
370:画像表示部(モニタ)
380:記録部
390:外箱
420:弾性チューブ
100: pulpitis diagnostic marker 110: liposome 120: binding substance 130: linker protein 140: indocyanine green 190: pulpitis inflammation site 200: imaging fiber device 210: imaging fiber 213: fiber body 214: cylindrical member 215: objective Lens 216: Optical fiber 220: Condensing lens 230: Dichroic mirror 240: Filter 250: Condensing lens 260: Light source unit 270: Light source control unit 280: Control unit 290: Convex lens 300: Pulpitis diagnosis system 310: Filter 320: Reflection Mirror 330: Condensing lens 340: Light detection unit 350: Photo detector control unit 360: Operation unit 370: Image display unit (monitor)
380: Recording unit 390: Outer box 420: Elastic tube

Claims (7)

  1.  インドシアニングリーン及びその誘導体の内少なくとも何れか一方を含有する蛍光薬剤を内包するリポソームの外側表面に、歯髄炎の炎症箇所に特異的に結合する結合性物質が結合されていることを特徴とする歯髄炎診断マーカー。 A binding substance that specifically binds to an inflammation site of pulpitis is bound to the outer surface of a liposome encapsulating a fluorescent drug containing at least one of indocyanine green and its derivatives. Pulpitis diagnostic marker.
  2.  前記結合性物質は、CD62E抗体、CD54抗体、CD50抗体、CD106抗体、MHCクラスII抗体、PAF抗体、IL-8抗体、MIP-1B抗体、E-セレクチンのリガンド、及びE-セレクチンのリガンドの誘導体の少なくとも何れか一つを含むことを特徴とする請求項1記載の歯髄炎診断マーカー。 The binding substance includes CD62E antibody, CD54 antibody, CD50 antibody, CD106 antibody, MHC class II antibody, PAF antibody, IL-8 antibody, MIP-1B antibody, ligand of E-selectin, and derivative of ligand of E-selectin The pulpitis diagnostic marker according to claim 1, comprising at least one of the following.
  3.  前記結合性物質は、リンカー蛋白質を介して前記リポソームの外側表面に結合していることを特徴とする請求項1記載の歯髄炎診断マーカー。 The pulpitis diagnosis marker according to claim 1, wherein the binding substance is bound to the outer surface of the liposome via a linker protein.
  4.  インドシアニングリーン及びその誘導体の内少なくとも何れか一方を含有する蛍光薬剤を内包するリポソームの外側表面に、歯髄炎の炎症箇所に特異的に結合する結合性物質が結合されている歯髄炎診断マーカーと、前記蛍光薬剤を励起させるための励起光を発する光源部と、前記光源部からの励起光をフィルタを通して集光レンズに導き、前記集光レンズで集光された光をイメージファイバの端部に入射させる入力光学系と、光信号を検出する光検出部と、前記イメージングファイバの端部に戻ってくる歯髄炎炎症部位に結合した前記歯髄炎診断マーカーの蛍光光をフィルタを通して集光レンズに導き、前記集光レンズで集光された光を前記光検出部に導く出力光学系と、前記光検出部で検出した蛍光光に基づき診断対象の歯髄画像を表示する画像表示部とを有するイメージングファイバ装置とを有することを特徴とする歯髄炎診断システム。 A pulpitis diagnostic marker in which a binding substance that specifically binds to an inflammation site of pulpitis is bound to an outer surface of a liposome encapsulating a fluorescent agent containing at least one of indocyanine green and its derivatives A light source unit that emits excitation light for exciting the fluorescent agent, and the excitation light from the light source unit is guided to a condenser lens through a filter, and the light condensed by the condenser lens is applied to the end of the image fiber. Fluorescent light from the pulpitis diagnostic marker coupled to the pulpitis inflammation site that returns to the end of the imaging fiber is guided to the condenser lens through a filter. An output optical system for guiding the light collected by the condenser lens to the light detection unit, and a dental pulp image to be diagnosed based on the fluorescent light detected by the light detection unit. Pulpitis diagnosis system and having a imaging fiber device having an image display unit for.
  5.  前記イメージングファイバのファイバ先端に、歯髄炎炎症部位を有する歯の側部に押し当てられるシリコンチューブが取り付けられていることを特徴とする請求項4記載の歯髄炎診断システム。 5. The pulpitis diagnosis system according to claim 4, wherein a silicon tube pressed against the side of the tooth having a pulpitis inflammation site is attached to the fiber tip of the imaging fiber.
  6.  前記励起光の波長は770nm以上805nm以下、且つ、前記蛍光光の波長は810nm以上850nm以下であり、前記励起光と前記蛍光光との波長の差は15nm以上50nm以下であることを特徴とする請求項4記載の歯髄炎診断システム。 The wavelength of the excitation light is 770 nm or more and 805 nm or less, the wavelength of the fluorescence light is 810 nm or more and 850 nm or less, and the wavelength difference between the excitation light and the fluorescence light is 15 nm or more and 50 nm or less. The pulpitis diagnosis system according to claim 4.
  7.  前記シリコンチューブの先端部は、内側に凹曲面形状であることを特徴とする請求項5記載の歯髄炎診断システム。 6. The pulpitis diagnosis system according to claim 5, wherein the tip of the silicon tube has a concavely curved shape inside.
PCT/JP2010/002653 2010-04-12 2010-04-12 Pulpitis diagnostic marker and pulpitis diagnostic system WO2011128931A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/002653 WO2011128931A1 (en) 2010-04-12 2010-04-12 Pulpitis diagnostic marker and pulpitis diagnostic system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/002653 WO2011128931A1 (en) 2010-04-12 2010-04-12 Pulpitis diagnostic marker and pulpitis diagnostic system

Publications (1)

Publication Number Publication Date
WO2011128931A1 true WO2011128931A1 (en) 2011-10-20

Family

ID=44798328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002653 WO2011128931A1 (en) 2010-04-12 2010-04-12 Pulpitis diagnostic marker and pulpitis diagnostic system

Country Status (1)

Country Link
WO (1) WO2011128931A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010215572A (en) * 2009-03-17 2010-09-30 Japan Health Science Foundation Pulpitis diagnostic marker and pulpitis diagnostic system
CN114469863A (en) * 2021-11-26 2022-05-13 南方医科大学南方医院 Application of sterol liposome as dental pulp and dentin drug delivery system
EP4088744A1 (en) * 2015-10-21 2022-11-16 The Regents Of The University Of Michigan Detection and treatment of caries and microcavities with nanoparticles

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000024013A (en) * 1998-06-04 2000-01-25 Kaltenbach & Voigt Gmbh & Co Method and instrument for discrimination of decay, scale, nodule, or bacterial infection of tooth
WO2006030511A1 (en) * 2004-09-16 2006-03-23 Kazunori Kusano Exposed pulp inspection kit and probe syringe
WO2007091661A1 (en) * 2006-02-08 2007-08-16 National Institute Of Advanced Industrial Science And Technology Sugar chain-modified liposome suitable for molecular imaging and utilization and production of the same
WO2009008489A1 (en) * 2007-07-10 2009-01-15 Katayama Chemical Industries Co., Ltd. Antibody liposome
JP2009537624A (en) * 2006-05-25 2009-10-29 ジーイー・ヘルスケア・リミテッド New contrast agent
WO2009148044A1 (en) * 2008-06-06 2009-12-10 株式会社モリタ製作所 Image pickup device used for dental treatment and instrument for dental treatment equipped with image pickup device
JP2009297237A (en) * 2008-06-12 2009-12-24 Fujifilm Corp Imager, imaging method, and program

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000024013A (en) * 1998-06-04 2000-01-25 Kaltenbach & Voigt Gmbh & Co Method and instrument for discrimination of decay, scale, nodule, or bacterial infection of tooth
WO2006030511A1 (en) * 2004-09-16 2006-03-23 Kazunori Kusano Exposed pulp inspection kit and probe syringe
WO2007091661A1 (en) * 2006-02-08 2007-08-16 National Institute Of Advanced Industrial Science And Technology Sugar chain-modified liposome suitable for molecular imaging and utilization and production of the same
JP2009537624A (en) * 2006-05-25 2009-10-29 ジーイー・ヘルスケア・リミテッド New contrast agent
WO2009008489A1 (en) * 2007-07-10 2009-01-15 Katayama Chemical Industries Co., Ltd. Antibody liposome
WO2009148044A1 (en) * 2008-06-06 2009-12-10 株式会社モリタ製作所 Image pickup device used for dental treatment and instrument for dental treatment equipped with image pickup device
JP2009297237A (en) * 2008-06-12 2009-12-24 Fujifilm Corp Imager, imaging method, and program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Y. SAWA ET AL.: "Vascular endothelium of human dental pulp expresses diverse adhesion molecules for leukocyte emigration", TISSUE & CELL, vol. 30, no. 2, 1998, pages 281 - 291 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010215572A (en) * 2009-03-17 2010-09-30 Japan Health Science Foundation Pulpitis diagnostic marker and pulpitis diagnostic system
EP4088744A1 (en) * 2015-10-21 2022-11-16 The Regents Of The University Of Michigan Detection and treatment of caries and microcavities with nanoparticles
CN114469863A (en) * 2021-11-26 2022-05-13 南方医科大学南方医院 Application of sterol liposome as dental pulp and dentin drug delivery system
CN114469863B (en) * 2021-11-26 2023-09-26 南方医科大学南方医院 Use of sterol liposomes as drug delivery systems for dental pulp and dentin

Similar Documents

Publication Publication Date Title
EP1750671B1 (en) Liposomal assembly for therapeutic and/or diagnostic use
JP2010215572A (en) Pulpitis diagnostic marker and pulpitis diagnostic system
Harrington et al. Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled pegylated liposomes
US8097283B2 (en) Methods and compositions for imaging
ES2159280T5 (en) LIPOSOMAS FILLED WITH GAS AND ITS USE AS CONTRACTORS AGENTS OF ULTRASOUNDS.
JP5421096B2 (en) Early stage caries detection method and kit
AU611348B2 (en) Mucin directed liposome
US5672333A (en) Delta1,6 bicyclo 4,4,0! functional dyes for contrast enhancement in optical imaging
JP2001526650A (en) Optical contrast agent
KR20090023601A (en) Method and means for infiltrating enamel lesions
IE66709B1 (en) Steroidal liposomes
WO2011128931A1 (en) Pulpitis diagnostic marker and pulpitis diagnostic system
Swanson et al. Effect of adhesive systems and bevel on enamel margin integrity in primary and permanent teeth
JP3477616B2 (en) Liver function test
Karageorgou et al. Hemocompatibility of gallium-68 labeled iron oxide nanoparticles coated with 2, 3-dicarboxypropane-1, 1-diphosphonic acid
WO2001064743A1 (en) GPib-LIPID BOND CONSTRUCT AND USE THEREOF
US20200206369A1 (en) Imaging of tumor-associated macrophages
JP2020520393A (en) Dendrimer composition for use in angiography
TW201216992A (en) A kit for preparing a radiolabeled liposome and a method using the same
Novaes Jr et al. Gingival fluid fucose to protein ratios as indicators of the severity of periodontal disease
Tjen Cholescintigraphy
JP4038229B2 (en) Diagnostic kit and probe / syringe
TW200810782A (en) Use of perfluoroalkyl-containing metal complexes as contrast media for diagnosis of Alzheimer&#39;s disease
Bakhsh et al. Effect of bioglass on artificially induced enamel lesion around orthodontic brackets: OCT study
JP2018197208A (en) Nitrogen monoxide-containing bubble liposome, and use of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10849773

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10849773

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP