WO2007091661A1 - Sugar chain-modified liposome suitable for molecular imaging and utilization and production of the same - Google Patents

Sugar chain-modified liposome suitable for molecular imaging and utilization and production of the same Download PDF

Info

Publication number
WO2007091661A1
WO2007091661A1 PCT/JP2007/052289 JP2007052289W WO2007091661A1 WO 2007091661 A1 WO2007091661 A1 WO 2007091661A1 JP 2007052289 W JP2007052289 W JP 2007052289W WO 2007091661 A1 WO2007091661 A1 WO 2007091661A1
Authority
WO
WIPO (PCT)
Prior art keywords
ribosome
solution
sugar chain
buffer
group
Prior art date
Application number
PCT/JP2007/052289
Other languages
French (fr)
Japanese (ja)
Inventor
Noboru Yamazaki
Kazunori Oie
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Katayama Chemical Industries Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology, Katayama Chemical Industries Co., Ltd. filed Critical National Institute Of Advanced Industrial Science And Technology
Priority to JP2007557899A priority Critical patent/JPWO2007091661A1/en
Publication of WO2007091661A1 publication Critical patent/WO2007091661A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0063Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres
    • A61K49/0069Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the agent being in a particular physical galenical form
    • A61K49/0076Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the agent being in a particular physical galenical form dispersion, suspension, e.g. particles in a liquid, colloid, emulsion
    • A61K49/0084Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the agent being in a particular physical galenical form dispersion, suspension, e.g. particles in a liquid, colloid, emulsion liposome, i.e. bilayered vesicular structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/549Sugars, nucleosides, nucleotides or nucleic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6905Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion
    • A61K47/6911Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion the form being a liposome
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1277Processes for preparing; Proliposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the present invention relates to a ribosome.
  • the ribosome of the present invention is a drug delivery system for recognizing target cells' tissues such as cancer and locally delivering drugs and genes to affected areas, which can be applied in bi-technology, particularly molecular imaging. It can be used as a cell / tissue sensing probe for diagnosis.
  • DDS drug and gene delivery system
  • the nanotechnology / materials promotion strategy of the Council for Science and Technology in Japan also includes “Nanobiology that uses and controls the mechanisms of materials and organisms” as an important area, and is one of the five years of research and development goals.
  • NNI National Nanotechnology Strategy
  • DDS drug and gene delivery system
  • the nanotechnology / materials promotion strategy of the Council for Science and Technology in Japan also includes “Nanobiology that uses and controls the mechanisms of materials and organisms” as an important area, and is one of the five years of research and development goals.
  • One example is “Establishment of basic seeds for biofunctional materials and pinpoint treatment technologies for extending health and life expectancy”.
  • the incidence and mortality of cancer has been increasing year by year as it becomes an aging society, and the development of target-oriented DDS, which is a novel therapeutic material, is awaited.
  • the importance of targeted DDS nanomaterials with no side effects in other diseases is drawing attention, and the scale of the field is expected to exceed 10 trillion yen in the near future.
  • glycolipids of glycolipids and glycoproteins are involved in various cell-to-cell communications such as the generation and morphogenesis of biological tissues, cell proliferation and differentiation, biological defense and fertilization mechanisms, canceration and its metastasis mechanism. It is becoming clear that it plays an important role as an information molecule.
  • peptidic drugs are generally water-soluble and have a high molecular weight, and the gastrointestinal tract has a low permeability to the small intestinal mucosa. Therefore, research on ligand-bound ribosomes is attracting attention as a DDS material for delivering these high molecular weight pharmaceuticals and genes into the blood of the intestinal tract (see Non-Patent Document 8).
  • Patent Document 1 discloses a pharmaceutical composition having a pharmaceutically acceptable carrier and a compound containing a component that selectively binds to a selectin receptor.
  • a sugar chain intended for oral administration is used as a pharmaceutical agent itself for inhibiting inflammatory diseases and other diseases mediated by cell adhesion. Is different.
  • the present inventors have developed a sugar chain-modified ribosome in which a sugar chain is bound to a ribosome via a linker protein (Patent Document 2). Furthermore, it was found that the type of sugar chain and the amount of sugar chain binding seem to be related to directivity to each target cell or target tissue (Patent Documents 3 to 4 and Non-Patent Documents 9 and 10). However, to date, no sugar chain-modified ribosome that is optimal for molecular imaging has been developed. In addition, there has been no systematic study on sugar chains useful in molecular imaging, and it has remained unclear what kind of sugar chains should be used.
  • Patent Literature 1 Japanese Patent Publication No. 5-507519
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-226638
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-226647
  • Patent Document 4 Pamphlet of International Publication No. 2005Z011632
  • Patent Document 5 Pamphlet of International Publication No. 2005Z011633
  • Non-patent literature l Yamazaki, N., Kojima, S., Bovin, ⁇ . V., Andre, S., Gabius, S. and Gabius, H. —J. (2000) Adv. Drug Delivery Rev. 43 , 225— 24
  • Non-Patent Document 2 Yamazaki, N., Jigami, ⁇ ., Gabius, ⁇ . —J., Kojima, S (200 1) Trends in Glycoscience and Glycotechnology 13, 319— 329. http: / / www. Gak. Co .jp / TIGG / 71PDF / yamazaki.pdf
  • Non-Patent Document 3 Forssen, E. and Willis, M. (1998) Adv. Drug Delivery Rev. 29, 249-271.
  • Non-Patent Document 4 DeFrees, S. A., Phillips, L., Guo, L. and Zalipsky, S. (19 96) J. Am. Chem. Soc. 118, 6101— 6104.
  • Non-Patent Document 5 Spevak, W., Foxall, C., Charych, D.H., Dasqupta, F. and
  • Non-Patent Document 6 Stahn, R., Schafer, H., Kernchen, F. and Schreiber, J. (1 998) Glycobiology 8, 311—319.
  • Non-Patent Document 7 Yamazaki, N., Jigami, Y., Gabius, H. —J., Kojima, S (200 1) Trends in Glycoscience and Glycotechnology 13, 319— 329. http: / / www. Gak. Co .jp / TIGG / 71PDF / yamazaki.pdf
  • Non-Patent Document 8 Lehr, C. — M. (2000) J. Controlled Release 65, 19—29
  • Non-Patent Document 9 Noboru Yamayose (2005), Development of Active 'Targeting DDS Nanoparticles, Journal of Nano Society, 3, 97- 102
  • Non-Patent Document 10 Noboru Yamayori (2006), Huarmasia, No. 42, No. 2, 2-6
  • an object of the present invention is to provide a sugar chain-modified ribosome useful for molecular imaging, and a drug delivery medium in which a drug or gene is encapsulated in the sugar chain-modified ribosome.
  • the present inventors have conducted intensive research and found that ribosomes whose ribosome surface has been modified with specific sugar chains are useful preparations for molecular imaging.
  • the present invention has been completed.
  • the present invention also provides a method for producing a sugar chain-modified ribosome useful for molecular imaging and a method for using the same.
  • the present invention provides, for example, the following means.
  • a sugar chain-modified ribosome the sugar chain-modified ribosome
  • the linker protein group binds to the outer surface of the ribosome
  • the sugar chain group binds to at least part of the linker protein group
  • the linker protein group binds to the outer surface of the ribosome or part of the linker protein group.
  • the sugar chain-modified ribosome includes structure I and structure ⁇ ,
  • X is capable of CH—NH binding with the linker protein contained in the ribosome.
  • R 1 is the linker protein group
  • R 2 is a linker-protein cross-linking group
  • R 3 is the sugar chain group
  • Y is a group in which the functional group b is removed from the structural unit force including the hydrophilic compound cross-linking group contained in the ribosome and the functional group b capable of peptide bonding;
  • R 4 is the hydrophilic compound crosslinking group
  • R 5 is the hydrophilic I ⁇ product groups, glycosylation ribosome of claim 1.
  • (Item 3) Item 2.
  • Item 4 The sugar chain-modified ribosome according to Item 3, wherein the fluorescence is imparted by a fluorescent dye compatible with the ribosome.
  • the fluorescent dye is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoe
  • the sugar chain-modified liposome according to Item 4 which is selected from the group consisting of 0, Alexa Fluor750 and fluorescein—4-isothiocyanate (FITC) and their combination.
  • the fluorescent dye is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoe
  • R 1 is a mammalian derived protein groups, glycosylation ribosome of claim 2. (Item 9)
  • R 1 is a human-derived protein groups, glycosylation ribosome of claim 8.
  • R 1 is a human-derived serum protein groups, glycosylation ribosome of claim 9. (Item 11)
  • R 1 is a sugar chain modification ribosome of claim 8, which is a serum albumin group.
  • R 2 is a 3, 3, 1 dithiobis (sulfosuccinimidyl propionate) group, bissulfo Succinimidyl suberate group, disuccinimidyl glutarate group, dithiobis succinimidyl propionate group, disuccinimidyl suberate group, ethylene glycol bis succinimidyl succinate group and ethylene Item 3.
  • the sugar chain-modified ribosome according to item 2 which is selected from the group consisting of glycol bissulfosuccinimidyl succinate group.
  • Item 13 The sugar chain-modified ribosome according to Item 12, wherein R 2 is a 3, 3, -dithiobis (sulfosuccinimidyl propionate) group.
  • R 3 is Shiariruruisu X group, N- ⁇ cetyl lactosamine group, alpha 1-6 mannobiose group is selected from the group consisting a combination force thereof, glycosylation liposome of claim 2.
  • R 3 is Shiariruruisu X groups include a modified bond density of said Shiariruruisu X groups force 0. OOOlmg sugar Zm g lipid ⁇ 500 mg sugar Zmg range of lipids, glycosylation ribosome of claim 14.
  • R 3 is an N-acetyllactosamine group, and the N-acetyllactosamine group has a modified bond density ranging from 0.0 OOlmg sugar chain Zmg lipid to 500 mg sugar chain Zmg lipid.
  • Item 14 is that wherein R 3 is an ⁇ 1-6 mannobiose group, and the ⁇ 1-6 mannobiose group has a modified bond density in the range of 0.0001 mg sugar chain Zmg lipid to 500 mg sugar chain Zmg lipid.
  • R 4 is a bis (sulfosuccinimidyl) suberate group, a disuccinimidyl glutarate group, a dithiobissuccinimidyl propionate group, a disuccinimidyl suberate group, 3 , 3, 1 dithiobis (sulfosuccinimidyl propionate) group, ethylene glycol bissuccinimidyl succinate group and ethylene glycol bissulfosuccinimid Item 3.
  • the sugar chain-modified ribosome according to Item 2 which is selected from a rusuccinate group.
  • R 4 is bis (sulfosuccinimidyl I succinimidyl) scan base rate group, glycosylation ribosome of claim 18.
  • Item 3 The sugar chain-modified ribosome according to Item 2, wherein R 5 is a tris (hydroxyalkyl) alkylamino group.
  • Tris (hydroxyalkyl) alkylamino group Hydroxyalkyl is C to C hydride
  • Item 24 The sugar chain-modified ribosome according to Item 23, wherein X is redesignoside.
  • Item 3 The sugar chain-modified ribosome according to Item 2, wherein the functional group b is an amino group.
  • Item 26 The sugar chain-modified liposome according to Item 25, wherein Y is phosphatidylethanolamine.
  • the sugar chain-modified ribosome according to item 1, comprising the ribosome force dipalmitoyl phosphatidylcholine, cholesterol, ganglioside, dicetyl phosphate, dipalmitoyl phosphatidylethanolamine and sodium cholate.
  • the item 27 comprising the ribosomal force dipalmitoyl phosphatidylcholine, cholesterol, ganglioside, dicetyl phosphate, dipalmitoyl phosphatidylethanolamine and sodium cholate in a molar ratio of 35: 40: 15: 5: 5: 167.
  • Sugar chain-modified ribosomes
  • R 2 is a 3, 3, 1 dithiobis (sulfosuccinimidyl propionate) group
  • R 3 is Shiariruruisu X group, N- ⁇ cetyl lactosamine group, alpha 1-6 mannobiose group is selected from the group consisting a combination force thereof, glycosylation liposome of claim 2.
  • R 3 is selected from the group consisting of a sialyl Lewis X group, a ⁇ -acetyl lactosamine group, an ⁇ 1-6 mannobiose group, and a combination force thereof, and
  • Item 3 The sugar chain-modified ribosome according to Item 2, wherein R 4 is a bis (sulfosuccinimidyl) suberate group.
  • R 2 is a 3,3,1 dithiobis (sulfosuccinimidylpropionate) group
  • R 3 is a sialyl Lewis X group, a ⁇ -acetyllactosamine group, an ⁇ 1-6 mannobiose group, and Selected from the group of their combination power
  • Item 3 The sugar chain-modified ribosome according to Item 2, wherein R 4 is a bis (sulfosuccinimidyl) suberate group.
  • the ribosomal strength includes dipalmitoyl phosphatidylcholine, cholesterol, ganglioside, dicetyl phosphate, dipalmitoyl phosphatidylethanolamine and sodium cholate,
  • R 2 is a 3,3,1-dithiobis (sulfosuccinimidylpropionate) group
  • R 3 is a sialyl Lewis X group, a ⁇ -acetyllactosamine group, ⁇ 1-6 mannobiose Selected from the group consisting of groups and their combination powers, and
  • Item 3 The sugar chain-modified ribosome according to Item 2, wherein R 4 is a bis (sulfosuccinimidyl) suberate group.
  • the ribosomal strength includes dipalmitoyl phosphatidylcholine, cholesterol, ganglioside, dicetyl phosphate, dipalmitoyl phosphatidylethanolamine and sodium cholate,
  • R 1 is a serum albumin group
  • R 2 is a 3,3,1 dithiobis (sulfosuccinimidylpropionate) group
  • R 3 is a sialyl Lewis X group, an N-acetyllactosamine group, an ⁇ 1-6 mannobiose group, and Selected from the group consisting of those combinations
  • R 4 is a bis (sulfosuccinimidyl) suberate group
  • R 5 is a tris (hydroxymethyl) Aminometan group, glycosylation liposome of claim 2.
  • the sugar chain-modified ribosome is
  • the ratio of protein to lipid is about 0.1 to about 0.5.
  • Item 38 An imaging agent comprising the sugar chain-modified ribosome according to any one of items 1 to 37. (Item 39)
  • composition for delivering a substance to a desired site comprising the sugar chain-modified ribosome according to any one of items 1 to 37 and a substance desired to be delivered.
  • composition of item 39, wherein the desired substance is a diagnostic agent or a research reagent.
  • composition according to item 40 wherein the diagnostic agent is selected from the group consisting of a DNA probe diagnostic agent, a tumor diagnostic agent, a hematological test reagent, and a microbiological test reagent.
  • composition of item 39 for use in molecular or in vivo imaging.
  • composition of item 39, wherein the substance comprises the biological agent comprises the biological agent.
  • a pharmaceutical composition further comprising the sugar chain-modified ribosome according to any one of items 1 to 37 and a pharmaceutically active ingredient.
  • Item 4 wherein the pharmaceutically active ingredient is an agent for treating a disease in the brain, liver, kidney, spleen, lung, spleen or heart, or an agent for treating inflammation or tumor. 4.
  • the desired site is selected from the group consisting of brain, liver, kidney, spleen, lung, spleen, heart, inflammatory site and tumor site force.
  • a method for labeling a desired site comprising:
  • the method includes the step of administering to the subject a composition for labeling the desired site, wherein the composition comprises the sugar chain-modified ribosome according to any one of items 1 to 37 and a pharmaceutically acceptable product.
  • the desired site is selected from the group consisting of brain, liver, kidney, spleen, lung, spleen, heart, inflammatory site and tumor site force.
  • a method for producing a sugar chain-modified ribosome comprising:
  • the fluorescent labeling solution of step (c) is [Chem. 10-5] Ku5. 5>
  • Item 52 The method according to Item 49, wherein the linker protein power in step (e) is human serum albumin.
  • a method for producing a sugar chain-modified ribosome for delivering a drug to a target delivery site comprising:
  • a method according to item 53 comprising the step of filter filtration subsequent to the step D).
  • the fluorescent dye solution in the step (A4) is a fluorescent dye standard labeled with a fluorescent dye.
  • Fluorescent labels can bind proteins ZN- tris (hydroxymethyl) 3 Aminobu port pan sulfonic acid buffer (P H8. 4) Fluorescent dyes ZN tris (hydroxymethyl) To a solution of 3- ⁇ amino propane sulfonic acid buffer mixing the (pH 8.4) solution and stirring at room temperature to about 37 ° C; and
  • step (2) A step of ultrafiltration of the mixed solution in step (1) with a molecular weight cut-off of 10,000 to remove the free fluorescent dye
  • Step B) includes the following:
  • (B2) Add bis (sulfosuccinimidyl) suberate to the solution in which the buffer solution has been converted to the carbonate buffer solution in the step (B1), and refrigerate to about 37 ° C. Agitation and ultrafiltration at a molecular weight cut off of 300,000 to remove the free bis (sulfosuccinimidyl) suberate;
  • step (B3) a solution obtained by removing the free bis (sulfosuccinimidyl) suberate is added to 330 mM Tris (hydroxymethyl) aminomethane Z carbonate buffer ( ⁇ 8. 5) Add the solution, stir at refrigeration to about 37 ° C, stir at refrigeration to room temperature overnight, and ultrafilter with a molecular weight cut off of 300,000 to remove free tris (hydroxymethyl) aminomethane. And replacing the carbonate buffer with N-tris (hydroxymethyl) -3-aminopropanesulfonate buffer (pH 8.4) to produce a solution containing ribosomes that have been hydrophilically treated;
  • Step B) includes the following:
  • step (B3,) In the step (B2,), in the solution from which the free bis (sulfosuccinimidyl) suberate was removed, 330 mM tris (hydroxymethyl) aminomethane / carbonate buffer (pH 8.5) was added. ) Add the solution, stir at refrigeration to approximately 37 ° C, stir at refrigeration to room temperature overnight, and centrifuge twice at a molecular weight cut off of 100,000, 2000 x g for 60 minutes. Ultrafiltration is performed to remove free tris (hydroxymethyl) aminomethane, and the carbonate buffer is replaced with N-tris (hydroxymethyl) -3-amaminopropanesulfonate buffer (pH 8.4). Producing a solution containing ribosomes that have been treated with hydrophilicity and hydrophilicity;
  • Step C) includes the following:
  • step (C2) the solution containing the ribosome whose surface is oxidized is ultrafiltered with a molecular weight cut off of 300,000 to remove the free sodium metaperiodate, and the N— Replacing tris (hydroxymethyl) -3-aminopropanesulfonate buffer with PBS buffer (pH 8.0);
  • step (C3) human serum albumin / PBS buffer (pH 8.0) is added to the solution in which the buffer is exchanged with the PBS buffer, and the reaction is performed at refrigeration to room temperature.
  • Step C) includes the following:
  • step (C2) the solution containing the ribosome whose surface is oxidized is ultrafiltered with a molecular weight cut off of 300,000 to remove the free sodium metaperiodate, and the N— Replacing tris (hydroxymethyl) -3-aminopropanesulfonate buffer with PBS buffer (pH 8.0);
  • step (C3) human serum albumin / PBS buffer (pH 8.0) is added to the solution in which the buffer is exchanged with the PBS buffer, and the reaction is performed at refrigeration to room temperature.
  • reaction solution is stirred at refrigeration to room temperature, ultrafiltered with a molecular weight cut off of 300,000 to remove free human serum albumin, and the buffer solution of the solution is changed to a carbonate buffer solution (pH 8). .5) Replacement process
  • Step C) includes the following:
  • the solution containing the ribosome with an oxidized surface of the particle is separated twice with a molecular weight cutoff of 100,000, 2000 ⁇ g for 60 minutes. Removing the free sodium metaperiodate and replacing the N-tris (hydroxymethyl) 3-aminopropanesulfonate buffer solution with PBS buffer (pH 8.0). ;
  • step (C3 ′) human serum albumin / PBS buffer (pH 8.0) was added to the solution in which the buffer was replaced with the PBS buffer, and the reaction was performed at refrigeration to room temperature. Producing a solution;
  • Step C) includes the following:
  • step (C3 ′) human serum albumin / PBS buffer (pH 8.0) was added to the solution in which the buffer was replaced with the PBS buffer, and the reaction was performed at refrigeration to room temperature. Producing a solution;
  • reaction solution was stirred at refrigeration to room temperature, ultrafiltered by centrifugation twice under conditions of a molecular weight cut off of 100,000 and 200 OX g for 60 minutes, and the human serum A 60.
  • Step D) includes the following:
  • (D1) a step of dissolving the sugar chain in purified water and reacting at room temperature to about 37 ° C. under saturated ammonium bicarbonate to prepare an amino sugar chain solution;
  • step (D3) the aminated sugar chain solution is added to the solution from which the free 3,3,4-dithiobis (sulfosuccinimidyl propionate) has been removed, and the mixture is refrigerated to about 37 ° C. React with C, add tris (hydroxymethyl) aminomethane Z carbonate buffer (PH8.5), stir overnight at refrigerated ⁇ 37 ° C, ultrafilter with molecular weight cut off 300,000, Removing the sugar chain and the tris (hydroxymethyl) aminomethane;
  • step (D4) a step of replacing the buffer solution of the solution from which the free sugar chain and tris (hydroxymethyl) aminomethane have been removed in the step (D3) with a HEPES buffer solution (pH 7.2),
  • a method for producing a fluorescent dye-containing sugar chain-modified ribosome comprising:
  • Step A) includes the following:
  • the fluorescent dye solution containing the fluorescent dye is mixed with the solution sonicated in step (A3), and the mixed solution is ultrafiltered with a molecular weight cut off of 10,000 to enclose the fluorescent dye.
  • the fluorescent dye solution is added to human serum albumin ZN—Tris (hydroxymethyl) -3-aminopropanesulfonic acid buffer (pH 8.4) solution with fluorescent dye / N-Tris ( Hydroxymethyl) -3-aminopropanesulfonic acid buffer (pH 8.4) solution was mixed, stirred at 37 ° C, and ultrafiltered with a molecular weight cut off of 10,000 to remove the free fluorescent dye.
  • Step B) includes the following:
  • step (B2) Add bis (sulfosuccinimidyl) suberate to the solution in which the buffer solution has been converted to the carbonate buffer solution in the step (B1), and refrigerate to about 37 ° C. And ultrafiltration with a molecular weight cut off of 300,000 to remove the free bis (sulfosuccinimidyl) suberate; and (B3) In the step (B2), a solution obtained by removing the free bis (sulfosuccinimidyl) suberate is added to 330 mM Tris (hydroxymethyl) aminomethane Z carbonate buffer ( ⁇ 8.
  • Step C) includes the following:
  • step (C2) the solution containing the ribosome whose surface is oxidized is ultrafiltered with a molecular weight cut off of 300,000 to remove the free sodium metaperiodate, and the N— Replacing tris (hydroxymethyl) -3-aminopropanesulfonate buffer with PBS buffer (pH 8.0);
  • step (C3) human serum albumin / PBS buffer (pH 8.0) is added to the solution in which the buffer is exchanged with the PBS buffer, and the reaction is performed at refrigeration to room temperature. Producing steps; and
  • Step D) includes the following:
  • (D1) a step of dissolving the sugar chain in purified water and reacting at room temperature to about 37 ° C under ammonium hydrogen carbonate saturation to prepare an amino sugar chain solution;
  • step (D3) the aminated sugar chain solution is added to the solution from which the free 3,3,4-dithiobis (sulfosuccinimidyl propionate) has been removed, and the mixture is refrigerated to about 37 ° C. React with C, add tris (hydroxymethyl) aminomethane Z carbonate buffer (PH8.5), stir overnight at refrigerated ⁇ 37 ° C, ultrafilter with molecular weight cut off 300,000, Removing sugar chains and the tris (hydroxymethyl) aminomethane; and
  • step (D4) In the step (D3), including the step of replacing the buffer solution of the solution from which the free sugar chain and the tris (hydroxymethyl) aminomethane have been removed with a HEPES buffer solution (pH 7.2), The manufacturing method as described.
  • Step A) includes the following:
  • step (A4) The fluorescent dye solution containing the fluorescent dye is mixed with the solution sonicated in step (A3), and the mixed solution is ultrafiltered with a molecular weight cut off of 10,000 to enclose the fluorescent dye.
  • the fluorescent dye solution is added to human serum albumin ZN—Tris (hydroxymethyl) -3-aminopropanesulfonic acid buffer (pH 8.4) solution with fluorescent dye / N-Tris ( Hydroxymethyl) -3-aminopropanesulfonic acid buffer (pH 8.4) solution was mixed, stirred at 37 ° C, and ultrafiltered with a molecular weight cut off of 10,000 to remove the free fluorescent dye.
  • a step prepared by the step of Step B) includes the following:
  • step (B3) a solution obtained by removing the free bis (sulfosuccinimidyl) suberate is added to 330 mM Tris (hydroxymethyl) aminomethane Z carbonate buffer ( ⁇ 8. 5) Add the solution, stir at refrigeration to about 37 ° C, stir at refrigeration to room temperature overnight, ultrafilter with a fractional fraction of 300,000, and free tris (hydroxymethyl) aminomethane. And removing the carbonate buffer with N-tris (hydroxymethyl) 3-aminopropanesulfonate buffer (PH8.4) to produce a solution containing ribosomes that have been treated with hydrophilic acid. And
  • Step C) includes the following:
  • step (C2) the solution containing the ribosome whose surface is oxidized is ultrafiltered with a molecular weight cut off of 300,000 to remove the free sodium metaperiodate, and the N— Replacing tris (hydroxymethyl) -3-aminopropanesulfonate buffer with PBS buffer (pH 8.0);
  • step (C3) human serum albumin / PBS buffer (pH 8.0) is added to the solution in which the buffer is exchanged with the PBS buffer, and the reaction is performed at refrigeration to room temperature. Producing steps; and
  • reaction solution was stirred at refrigeration to room temperature, and the molecular weight cutoff was 300,000. Filtering, removing the free human serum albumin and replacing the buffer of the solution with carbonate buffer (PH8.5),
  • Step D) includes the following:
  • (D1) a step of dissolving the sugar chain in purified water and reacting at room temperature to about 37 ° C under ammonium hydrogen carbonate saturation to prepare an amino sugar chain solution;
  • step (D3) the aminated sugar chain solution is added to the solution from which the free 3,3,4-dithiobis (sulfosuccinimidyl propionate) has been removed, and the mixture is refrigerated to about 37 ° C. React with C, add tris (hydroxymethyl) aminomethane Z carbonate buffer (PH8.5), stir overnight at refrigerated ⁇ 37 ° C, ultrafilter with molecular weight cut off 300,000, Removing sugar chains and the tris (hydroxymethyl) aminomethane; and
  • step (D4) In the step (D3), including the step of replacing the buffer solution of the solution from which the free sugar chain and the tris (hydroxymethyl) aminomethane have been removed with a HEPES buffer solution (pH 7.2), The manufacturing method as described.
  • Step A) includes the following:
  • step (A3) stirring the resuspension at 30-40 ° C, purging with nitrogen, and sonicating; and (A4)
  • the fluorescent dye solution containing the fluorescent dye is mixed with the solution sonicated in step (A3), and the mixed solution is ultrafiltered with a molecular weight cut off of 10,000 to enclose the fluorescent dye.
  • the fluorescent dye solution is added to human serum albumin ZN—Tris (hydroxymethyl) -3-aminopropanesulfonic acid buffer (pH 8.4) solution with fluorescent dye / N-Tris ( Hydroxymethyl) -3-aminopropanesulfonic acid buffer (pH 8.4) solution was mixed, stirred at 37 ° C, and ultrafiltered with a molecular weight cut off of 10,000 to remove the free fluorescent dye.
  • Step B) includes the following:
  • step (B3,) In the step (B2,), in the solution from which the free bis (sulfosuccinimidyl) suberate was removed, 330 mM tris (hydroxymethyl) aminomethane / carbonate buffer (pH 8.5) was added. ) Add the solution, stir at refrigeration to approximately 37 ° C, stir at refrigeration to room temperature overnight, and centrifuge twice at a molecular weight cut off of 100,000, 2000 x g for 60 minutes. Ultrafiltration is performed to remove free tris (hydroxymethyl) aminomethane, and the carbonate buffer is replaced with N-tris (hydroxymethyl) -3-amaminopropanesulfonate buffer (pH 8.4). And a step of producing a solution containing ribosome treated with hydrophilicity, wherein the step C) includes the following:
  • (D1) a step of dissolving the sugar chain in purified water and reacting at room temperature to about 37 ° C under ammonium hydrogen carbonate saturation to prepare an amino sugar chain solution;
  • step (D2) the aminated sugar chain solution is added to the solution from which the free 3, 3, 1 dithiobis (sulfosuccinimidyl propionate) has been removed, and the mixture is refrigerated to about 37 ° C. React with C, add tris (hydroxymethyl) aminomethane Z carbonate buffer (PH8.5), stir overnight at refrigerated ⁇ 37 ° C, ultrafilter with molecular weight cut off 300,000, Removing sugar chains and the tris (hydroxymethyl) aminomethane; and
  • step (D4) In the step (D3), including the step of replacing the buffer solution of the solution from which the free sugar chain and the tris (hydroxymethyl) aminomethane have been removed with a HEPES buffer solution (pH 7.2), The manufacturing method as described.
  • Step A) includes the following:
  • the fluorescent dye solution containing the fluorescent dye is mixed with the solution sonicated in step (A3), and the mixed solution is ultrafiltered with a molecular weight cut off of 10,000 to enclose the fluorescent dye.
  • the fluorescent dye solution is added to human serum albumin ZN—Tris (hydroxymethyl) -3-aminopropanesulfonic acid buffer (pH 8.4) solution with fluorescent dye / N-Tris ( Hydroxymethyl) -3-aminopropanesulfonic acid buffer (pH 8.4) solution was mixed, stirred at 37 ° C, and ultrafiltered with a molecular weight cut off of 10,000 to remove the free fluorescent dye.
  • Step B) includes the following:
  • step (B3,) In the step (B2,), in the solution from which the free bis (sulfosuccinimidyl) suberate was removed, 330 mM tris (hydroxymethyl) aminomethane / carbonate buffer (pH 8.5) was added. ) Add the solution, stir at refrigeration to approximately 37 ° C, stir at refrigeration to room temperature overnight, and centrifuge twice at a molecular weight cut off of 100,000, 2000 x g for 60 minutes.
  • step (C3 ′) human serum albumin / PBS buffer (pH 8.0) was added to the solution in which the buffer was replaced with the PBS buffer, and the reaction was performed at refrigeration to room temperature. Producing a solution;
  • reaction solution was stirred at refrigeration to room temperature, ultrafiltered by centrifugation twice under conditions of a molecular weight cut off of 100,000 and 200 OX g for 60 minutes, and the human serum Removing the albumin and replacing the buffer of the solution with carbonate buffer (pH 8.5);
  • Step D) includes the following:
  • (D1) a step of dissolving the sugar chain in purified water and reacting at room temperature to about 37 ° C under ammonium hydrogen carbonate saturation to prepare an amino sugar chain solution;
  • step (D2) the aminated sugar chain solution is added to the solution from which the free 3, 3, 1 dithiobis (sulfosuccinimidyl propionate) has been removed, and the mixture is refrigerated to about 37 ° C. React with C, add tris (hydroxymethyl) aminomethane Z carbonate buffer (PH8.5), Refrigerated to 37 ° C overnight, ultrafiltered with a molecular weight cut off of 300,000 to remove free sugar chains and the tris (hydroxymethyl) aminomethane; and
  • step (D4) In the step (D3), including the step of replacing the buffer solution of the solution from which the free sugar chain and the tris (hydroxymethyl) aminomethane have been removed with a HEPES buffer solution (pH 7.2), The manufacturing method as described.
  • composition according to item 39 wherein the sugar chain of the sugar chain-modified ribosome is sialyle Lewis X group, and the sialyle Lewis X group has a modified binding density of 0.025 mg sugar chain Z mg lipid.
  • composition according to item 75 for delivering the substance to an inflamed site or cancer tissue.
  • item 76 for delivering the substance to an inflamed site or cancer tissue.
  • the inflammatory site or cancer tissue comprises a parenchyma.
  • a carrier for use in molecular imaging or in vivo imaging wherein the carrier comprises a sugar chain-modified ribosome according to items 1-37.
  • the sugar chain of the sugar chain-modified ribosome is a sialyl Lewis X group, and the sialyl Lewis X group is contained at a modified binding density of 0.025 mg sugar chain Zmg lipid, and the carrier is a labeling substance at an inflammatory site or cancer tissue.
  • a system for molecular or in vivo imaging of a site of interest comprising:
  • the label After a sufficient time for the label to accumulate at the target site, the presence or absence of the label in the living body is examined, and the function or structure of the living body is imaged by the label.
  • a system according to item 81, wherein the means for checking for the presence of the marker includes a scanning microscope (item 87).
  • a system according to item 86, wherein the means for checking the presence of the sign further comprises a stick objective lens.
  • a method for producing a fluorescent dye-containing sugar chain-modified ribosome according to Item 53 wherein: a) a step of providing a ribosome encapsulating fluorescence to which a linker protein is bound; b) a step of hydrophilizing the ribosome ; c) binding 3, 3, 1 dithiobis (sulfosuccinimidyl propionate) to the ribosome; and
  • Step c) and step b) are performed in order after step a).
  • the c) step is as follows:
  • the step b) includes the following:
  • the step d) includes the following:
  • (dl) a step of completely dissolving a desired sugar chain in purified water, and 1 to: preparing a sugar chain solution having a LOmM concentration; (d2) If necessary, ammonium bicarbonate (pH 7-14) is added to the aqueous sugar chain solution at a concentration of about 0.2-1 Og / mL, and 3-20 at 20-40 ° C. Stirring for 7 days, incubating at 2-8 ° C for 20-60 minutes and filtering through a filter to prepare an aminated sugar chain solution;
  • Item 91 The manufacturing method according to Item 90.
  • a kit for producing a fluorescent dye-containing sugar chain-modified ribosome A kit for producing a fluorescent dye-containing sugar chain-modified ribosome
  • V Means for binding the sugar chain to the ribosome
  • a kit comprising:
  • a kit for producing a fluorescent dye-containing sugar chain-modified ribosome comprising:
  • the present invention provides a sugar chain-modified ribosome useful for molecular imaging, a method for producing the same, and a method for using the same.
  • the sugar chain-modified ribosome of the present invention greatly expands the scope of development of a DDS preparation capable of providing a desired drug at a target delivery site. According to the present invention, it becomes possible to develop and put into practical use a delivery system necessary for realizing new therapies in various fields such as cancer therapy, gene therapy, and regenerative medicine.
  • Various sugar chain-modified ribosomes useful for such molecular imaging are provided for the first time by the present invention.
  • the present invention provides a method for producing a ribosome containing a labeled sugar chain. By this method, it is possible to label a desired sugar chain and examine the distribution and locality of the sugar chain molecule. Furthermore, it is possible to screen sugar chains for lectins that are specifically expressed in pathological tissues using a disease model.
  • FIG. 1 shows image data in cancer-bearing mice using cy5.5-encapsulated sugar chain-modified ribosomes or cy5.5-encapsulated ribosomes.
  • Top row before ribosome administration
  • left and center 2nd row immediately after K1-3 ribosome administration
  • left and center 3rd row 1 day after administration of K1-3 ribosome
  • left and center 4th row 2 days after administration of K1-3 ribosome
  • Right 2nd stage Immediately after administration of ribosome without sugar chain
  • Right 3rd stage 1 day after administration of ribosome without sugar chain
  • Right 4th stage 2 days after administration of ribosome without sugar chain.
  • the rightmost bar shows the fluorescence signal intensity obtained by imaging.
  • the upper red color of the bar is the lower color with the strongest signal. , Indicating that the fluorescent signal is weak.
  • the fluorescence signal becomes weaker as the white color above the bar becomes stronger and the lower it becomes.
  • FIG. 2 shows image data in a tumor-bearing mouse using cy5.5-encapsulated sugar chain-modified ribosome or cy5.5-encapsulated ribosome.
  • Top row before ribosome administration
  • left 2nd row immediately after K1 3 liposome administration
  • left 3rd row 8 hours after administration of K1-3 ribosome
  • left 4th row 1 day after administration of K1-3 liposome
  • right 2 Stage Immediately after administration of ribosomes without sugar chains
  • right Third stage 8 hours after administration of liposomes without sugar chains
  • Right fourth stage one day after administration of ribosomes without sugar chains.
  • the rightmost bar shows the fluorescence signal intensity obtained by imaging.
  • the red color at the top of the bar is the lower color with the strongest signal, indicating that the fluorescence signal is weaker.
  • the whiter above the bar the stronger the fluorescent signal, the lower the fluorescent signal, the weaker the fluorescent signal.
  • the unit is photon count, photon / second (ph / s): the number of fluorescence signals photon counted per second.
  • FIG. 3 shows image data in cancer-bearing mice using cy5.5-encapsulated sugar chain-modified ribosomes or cy5.5-encapsulated ribosomes.
  • Top row before ribosome administration
  • left 2nd row immediately after K1 3 liposome administration
  • left 3rd row 1 day after administration of K1-3 ribosome
  • 4th row 2 days after administration of K1-3 liposome
  • 5th left Eye 3 days after K1-3 ribosome administration
  • left 6th stage 4 days after administration of K1-3 ribosome
  • 2nd stage Immediately after administration of ribosome without sugar chain
  • right 3rd stage 1 day after administration of ribosome without sugar chain
  • right 4th stage 2 days after administration of ribosome without sugar chain
  • right 5th stage 3 days after administration of ribosome without sugar chain
  • 6th stage 4 days after administration of ribosome without sugar chain.
  • the rightmost bar shows the fluorescence signal intensity obtained by imaging.
  • the red color above the bar shows the lower color with the strongest signal, indicating that the fluorescence signal is weaker.
  • the black-and-white imaging diagram the whiter above the bar, the weaker the fluorescent signal, the weaker the fluorescent signal.
  • the unit is photon count, photon / second (ph / s): represents the number of fluorescence signals photon counted per second.
  • FIG. 4 shows image data in cancer-bearing mice using cy5.5-encapsulated sugar chain-modified ribosomes or cy5.5-encapsulated ribosomes.
  • Top row before ribosome administration
  • left second row K3—3 lipo
  • left 3rd stage K3-3 ribosome administration 1 day
  • left 4th stage K3-3 liposome administration 2 days
  • left 5th stage K3-3 ribosome administration 3 days
  • right 2nd stage Immediately after administration of ribosomes without sugar chains
  • right third stage 1 day after administration of ribosomes without sugar chains
  • right 5th stage 3 days after administration of ribosomes without sugar chains.
  • the rightmost bar shows the fluorescence signal intensity obtained by imaging.
  • the red color above the bar shows the lower color with the strongest signal, indicating that the fluorescence signal is weaker.
  • the black-and-white imaging diagram the whiter above the bar, the weaker the fluorescent signal, the weaker the fluorescent signal.
  • the unit is photon count, photon / second (ph / s): represents the number of fluorescence signals photon counted per second.
  • FIG. 5 shows image data in arthritic mice using cy5.5-encapsulated sugar chain-modified ribosomes or cy5.5-encapsulated ribosomes.
  • Top row before ribosome administration
  • left 2nd row immediately after K1-3 liposome administration
  • left 3rd row 1 day after administration of K1-3 ribosome
  • 4th row 2 days after administration of K1-3 liposome
  • left 5 Stage K1—3 days after administration of 3 ribosomes
  • right 2nd stage right after administration of liposome without sugar chain
  • Right 3rd stage 1 day after administration of ribosome without sugar chain
  • right 4th stage 2 days after administration of ribosome without sugar chain
  • Right 5th row 3 days after administration of ribosome without sugar chain.
  • the rightmost bar shows the fluorescence signal intensity obtained by imaging.
  • the red color above the bar is the lower color with the strongest signal, indicating that the fluorescence signal is weaker.
  • the fluorescence signal is weaker as the white color above the bar becomes stronger and the lower the bar.
  • the unit is photon count, photon / secon nd (ph / s): represents the number of fluorescent signal photon counted per second.
  • FIG. 6 shows image data in arthritic mice using cy5.5-encapsulated sugar chain-modified ribosomes or cy5.5-encapsulated ribosomes.
  • Top row before ribosome administration
  • left 2nd row immediately after K1-3 liposome administration
  • left 3rd row 1 day after administration of K1-3 ribosome
  • 4th row 2 days after administration of K1-3 liposome
  • right 2 Stage Immediately after administration of ribosomes without sugar chains
  • right Third stage 1 day after administration of liposomes without sugar chains
  • Right 4th stage 2 days after administration of ribosomes without sugar chains.
  • the rightmost bar shows the fluorescence signal intensity obtained by imaging.
  • the red color above the bar is the lower color with the strongest signal, indicating that the fluorescence signal is weaker.
  • the fluorescent signal becomes stronger as the white color above the bar becomes lower. It shows that the fluorescence signal is weak.
  • the unit is photon count, photon / secon nd (ph / s): represents the number of fluorescent signal photon counted per second.
  • FIG. 7 shows image data in arthritic mice using cy5.5-encapsulated sugar chain-modified ribosomes or cy5.5-encapsulated ribosomes. From the left, the ribosome group without sugar chain, the K1-3 liposome administered group, the K1-4 ribosome administered group, the K1-5 ribosome administered group, and the K1-6 ribosome administered group are shown. In each group, the upper part shows before ribosome administration, the middle part shows immediately after ribosome administration, and the lower part shows one day after ribosome administration. The rightmost bar shows the fluorescence signal intensity obtained by imaging. In the color imaging diagram, the red color at the top of the bar indicates the weaker the fluorescent signal the lower the color with the strongest signal.
  • the fluorescent signal is weaker as the white color above the bar becomes stronger and the fluorescent signal becomes lower.
  • the unit is photon count, photon / second (ph / s): The number of fluorescence signals photon counted per second.
  • FIG. 8 shows image data in arthritic mice using cy5.5-encapsulated sugar chain-modified ribosomes or cy5.5-encapsulated ribosomes. From the left, the ribosome group without sugar chain, the K3-3 liposome administration group, the K3-4 ribosome administration group, the K3-5 ribosome administration group, and the K3-6 ribosome administration group are shown. In each group, the upper part shows before ribosome administration, the middle part shows immediately after ribosome administration, and the lower part shows one day after ribosome administration. The rightmost bar shows the fluorescence signal intensity obtained by imaging. In the color imaging diagram, the red color at the top of the bar indicates the weaker the fluorescent signal the lower the color with the strongest signal.
  • the fluorescent signal is weaker as the white color above the bar becomes stronger and the fluorescent signal becomes lower.
  • the unit is photon count, photon / second (ph / s): The number of fluorescence signals photon counted per second.
  • FIG. 9 shows image data in arthritic mice using cy5.5-encapsulated sugar chain-modified ribosomes or cy5.5-encapsulated ribosomes. From the left, the ribosome group without sugar chain, the K2-3 liposome administration group, the K2-4 ribosome administration group, the K2-5 ribosome administration group, and the K2-6 ribosome administration group are shown. In each group, the upper part shows before ribosome administration, the middle part shows immediately after ribosome administration, and the lower part shows one day after ribosome administration. The rightmost bar shows the fluorescence signal intensity obtained by imaging. In the color imaging diagram, the red color above the bar is the most signal The stronger the lower color, the weaker the fluorescent signal.
  • the fluorescent signal is weaker as the white color above the bar becomes stronger and the fluorescent signal becomes lower.
  • the unit is photon count, photon / second (ph / s): The number of fluorescence signals photon counted per second.
  • FIG. 10 shows image data in arthritic mice using cy5.5-encapsulated sugar chain-modified ribosomes or cy5.5-encapsulated ribosomes.
  • arthritis mouse Z sugar chain-free ribosome group From left, arthritis mouse Z sugar chain-free ribosome group, arthritis mouse ZK1-3 ribosome administration group, arthritis mouse ZK1-4 ribosome administration group, normal mouse Z sugar chain-free ribosome administration group, normal mouse ZK1-4 ribosome administration group .
  • the upper row shows before ribosome administration
  • the second row shows immediately after ribosome administration
  • the third row shows one day after ribosome administration
  • the fourth row shows two days after ribosome administration.
  • the rightmost bar shows the fluorescence signal intensity obtained by imaging.
  • the color imaging diagram shows that the fluorescent signal is weaker as the upper red color of the cell becomes the lower color with the strongest signal.
  • the whiter the bar the stronger the fluorescent signal
  • the lower the bar the weaker the fluorescent signal.
  • the unit is photon count, photo n / second (ph / s): represents the number of fluorescent signal photon counted per second.
  • FIG. 11 shows image data in arthritic mice using cy5.5-encapsulated sugar chain-modified ribosomes or cy5.5-encapsulated ribosomes.
  • Top row before ribosome administration
  • left 2nd row immediately after K1-3 ribosome administration
  • left 3rd row 1 day after K1-3 ribosome administration
  • right 2nd row immediately after administration of liposomal without glycans
  • right 3rd row 1 day after administration of ribosome without sugar chain.
  • the rightmost bar shows the fluorescence signal intensity obtained by imaging. In the color imaging diagram, the red color at the top of the bar shows the lower color with the strongest signal, indicating that the fluorescence signal is weaker.
  • the unit is photon count, photon / second (ph / s): the number of fluorescence signals photon counted per second.
  • FIG. 12 shows image data in arthritic mice using cy5.5-encapsulated sugar chain-modified ribosomes or cy5.5-encapsulated ribosomes.
  • Top row before ribosome administration
  • left 2nd row immediately after K1—2 ribosome administration
  • left 3rd row 1 day after administration of K1—2 ribosome
  • right 2nd row immediately after administration of liposomal without glycans
  • right 3rd row 1 day after administration of ribosome without sugar chain.
  • the bar on the right is an image
  • the fluorescence signal intensity obtained by ging is shown. In the color imaging diagram, the red color at the top of the bar shows the lower color with the strongest signal, indicating that the fluorescence signal is weaker.
  • the unit is photon count, photon / second (ph / s): the number of fluorescence signals photon counted per second.
  • FIG. 13 shows image data in arthritic mice using cy5.5-encapsulated sugar chain-modified ribosomes or cy5.5-encapsulated ribosomes.
  • Top row before ribosome administration
  • left 2nd row immediately after administration of K3-2 ribosome
  • left 3rd row 1 day after administration of K3-2 ribosome
  • 2nd row immediately after administration of K3-4 liposome
  • middle 3rd row K3—4 days after ribosome administration
  • right 2nd row immediately after liposome without sugar chain
  • right 3rd row 1 day after administration of ribosome without sugar chain.
  • the rightmost bar shows the fluorescence signal intensity obtained by imaging.
  • the red color at the top of the bar shows the lower color with the strongest signal, indicating that the fluorescence signal is weaker.
  • the whiter the bar the stronger the fluorescent signal, and the lower the bar, the weaker the fluorescent signal.
  • the unit is photon count, photon / second (ph / s): the number of fluorescence signals photon counted per second.
  • FIG. 14 shows brain image data in normal mice using cy5.5-encapsulated sugar chain-modified ribosomes or cy5.5-encapsulated ribosomes.
  • Upper left 1 hour after administration of K1 ribosome, administration of ribosome without sugar chain from left side, administration of K1-3 ribosome, no administration
  • upper center 1 hour after administration of K2 liposome, administration of ribosome without sugar chain, administration of K2-3 Ribosome administration, not administered
  • upper right 1 hour after administration of K3 ribosome, ribosome without glycan from left side, K3-3 liposome administration, not administered
  • lower left 1 day after administration of K1 ribosome, left side force ribosome without sugar chain Administration
  • K1—3 ribosome administration, K1—4 ribosome administration, K1—6 ribosome administration not administered
  • middle lower K2 ribosome administration 1 day later, left side force also without glycans
  • the rightmost bar shows the fluorescence signal intensity obtained by imaging.
  • the red color above the bar is the lower color with the strongest signal, indicating that the fluorescence signal is weaker.
  • White In the black imaging diagram, the fluorescent signal is weaker as the fluorescent signal becomes stronger and lower as the white color above the bar.
  • the unit is photon count, photon / second (ph / s): the number of fluorescence signals photon counted per second.
  • FIG. 15 shows liver image data in normal mice using cy5.5-encapsulated sugar chain-modified ribosomes or cy5.5-encapsulated ribosomes.
  • Left top 1 hour after administration of K1 ribosome, administration of ribosome without sugar chain from the left side, administration of K1 3 ribosome, unadministration
  • center top 1 hour after administration of K2 ribosome, administration of ribosome without sugar chain on the left side
  • K2-3 ribosome Administration not administered
  • top right 1 hour after administration of K3 ribosome, left-side force without glycosome administration, administration of K3-3 ribosome, no administration
  • left 2nd 1 hour after administration of K1 ribosome, no glycan from left side Ribosome administration, K1-4 ribosome administration, K1-6 ribosome administration, middle 2nd stage: K2 ribosome administration 1 hour later, glycosome without glycans from the left side, K2-4 ribosome administration, K2-6 ribo
  • the rightmost bar shows the fluorescence signal intensity obtained by imaging.
  • the upper red color of the bar shows the strongest signal, and the lower the color, the weaker the fluorescent signal.
  • the fluorescence signal becomes weaker as the white color above the node becomes stronger and the lower it becomes.
  • FIG. 16 shows kidney image data in normal mice using cy5.5-encapsulated sugar chain-modified ribosomes or cy5.5-encapsulated ribosomes.
  • Left top 1 hour after administration of K1 ribosome, administration of ribosome without sugar chain from the left side, administration of K1 3 ribosome, unadministration
  • center top 1 hour after administration of K2 ribosome, administration of ribosome without sugar chain on the left side
  • K2-3 ribosome Administration not administered
  • top right 1 hour after administration of K3 ribosome, left-side force without glycosome administration, administration of K3-3 ribosome, no administration
  • left 2nd 1 hour after administration of K1 ribosome, no glycan from left side Ribosome administration, K1-4 ribosome administration, K1-6 ribosome administration, middle 2nd stage: K2 ribosome administration 1 hour later, glycosome without glycans from the left side, K2-4 ribosome administration, K2-6 ribo
  • the rightmost bar shows the fluorescence signal intensity obtained by imaging.
  • the upper red color of the bar shows the strongest signal, and the lower the color, the weaker the fluorescent signal.
  • the fluorescence signal becomes weaker as the white color above the node becomes stronger and the lower it becomes.
  • the unit is photon count, photon / second (ph / s): The number of fluorescence signals photon counted per second.
  • Figure 17 shows the use of cy5.5-encapsulated sugar chain-modified ribosome or cy5.5-encapsulated ribosome.
  • the image data of the spleen in a normal mouse are shown.
  • Left top 1 hour after administration of K1 ribosome, administration of ribosome without sugar chain from the left side, administration of K1 3 ribosome, unadministration
  • center top 1 hour after administration of K2 ribosome, administration of ribosome without sugar chain on the left side
  • K2-3 ribosome Administration not administered
  • top right 1 hour after administration of K3 ribosome, left-side force without glycosome administration, administration of K3-3 ribosome, no administration
  • left 2nd 1 hour after administration of K1 ribosome, no glycan from left side Ribosome administration, K1-4 ribosome administration, K1-6 ribosome administration, middle 2nd stage: K2 ribosome administration 1 hour later, glycosome without glycans from the left side, K2-4
  • the rightmost bar shows the fluorescence signal intensity obtained by imaging.
  • the upper red color of the bar shows the strongest signal, and the lower the color, the weaker the fluorescent signal.
  • the fluorescence signal becomes weaker as the white color above the node becomes stronger and the lower it becomes.
  • the unit is photon count, photon / second (ph / s): The number of fluorescence signals photon counted per second.
  • FIG. 18 shows lung image data in normal mice using cy5.5-encapsulated sugar chain-modified ribosomes or cy5.5-encapsulated ribosomes.
  • Upper left 1 hour after administration of K1 ribosome, ribosome without glycan from left side, administration of K1 3 ribosome, not administered
  • upper center K2 1 hour after administration of posomes, administration of ribosome without sugar chain, administration of K2-3 ribosome, not administered
  • top right 1 hour after administration of K3 ribosome, administration of ribosome without sugar chain, administration of K3-3 ribosome, administration of untreated .
  • Left 2nd 1 hour after administration of K1 ribosome, administration of ribosome without sugar chain from left side, administration of K1-4 ribosome, administration of K1-6 ribosome
  • middle 2nd stage 1 hour after administration of K2 liposome, left side force is also sugar Unchained ribosome administration, K2—4 ribosome administration,
  • the rightmost bar shows the fluorescence signal intensity obtained by imaging.
  • the red color at the top of the bar indicates the weaker the fluorescent signal the lower the color with the strongest signal.
  • the fluorescence signal is weaker as the white color above the bar becomes stronger and the lower the bar.
  • the unit is photon count, photon / second (ph / s): The number of fluorescence signals photon counted per second.
  • FIG. 19 shows spleen image data in normal mice using cy5.5-encapsulated sugar chain-modified ribosomes or cy5.5-encapsulated ribosomes.
  • Left top 1 hour after administration of K1 ribosome, administration of ribosome without sugar chain from the left side, administration of K1 3 ribosome, unadministration
  • center top 1 hour after administration of K2 ribosome, administration of ribosome without sugar chain on the left side
  • K2-3 ribosome Administration non-administration
  • top right 1 hour after administration of K3 ribosome, administration of ribosome without sugar chain on the left side, K3-3 ribosome administration, unadministered
  • left 2nd stage 1 hour after K1 ribosome administration, glycosome-free ribosome administration, K1-4 ribosome administration, K1-6 ribosome administration, middle 2nd stage: ⁇ 2 ribosome administration 1 After time, administration of ribosome without sugar chain from the left side, ⁇ 2-4
  • the rightmost bar shows the fluorescence signal intensity obtained by imaging.
  • the upper red color of the bar shows the strongest signal, and the lower the color, the weaker the fluorescent signal.
  • the fluorescence signal becomes weaker as the white color above the node becomes stronger and the lower it becomes.
  • the unit is photon count, photon / second (ph / s): The number of fluorescence signals photon counted per second.
  • FIG. 20 shows heart image data in normal mice using cy5.5-encapsulated sugar chain-modified ribosomes or cy5.5-encapsulated ribosomes.
  • Left top 1 hour after administration of K1 ribosome, administration of ribosome without sugar chain from the left side, administration of K1 3 ribosome, unadministration
  • center top 1 hour after administration of K2 ribosome, administration of ribosome without sugar chain on the left side
  • K2-3 ribosome Administration not administered
  • top right 1 hour after administration of K3 ribosome, left-side force without glycosome administration, administration of K3-3 ribosome, no administration
  • left 2nd 1 hour after administration of K1 ribosome, no glycan from left side Ribosome administration, K1-4 ribosome administration, K1-6 ribosome administration, middle 2nd stage: 1 hour after administration of K2 ribosome, administration of ribosome without sugar chain from the left side, ⁇ 2-4 ribosome administration, ⁇ 2
  • the rightmost bar shows the fluorescence signal intensity obtained by imaging.
  • the upper red color of the bar shows the strongest signal, and the lower the color, the weaker the fluorescent signal.
  • the fluorescence signal becomes weaker as the white color above the node becomes stronger and the lower it becomes.
  • the unit is photon count, photon / second (ph / s): The number of fluorescence signals photon counted per second.
  • FIG. 21 shows whole body image data other than the head in a normal mouse using cy5.5-encapsulated sugar chain-modified ribosome or cy5.5-encapsulated ribosome.
  • Upper row administration of ribosome without sugar chain, from the left side before administration, immediately after administration, 5 minutes after administration, 10 minutes after administration, 15 minutes after administration, 20 minutes after administration, 25 minutes after administration
  • lower row administration of K1-3 ribosome, From left to right before administration, immediately after administration, 5 minutes after administration, 10 minutes after administration, 15 minutes after administration, 20 minutes after administration, and 25 minutes after administration.
  • the rightmost bar shows the fluorescence signal intensity obtained by imaging.
  • the red color above the bar shows the lower color with the strongest signal, indicating that the fluorescence signal is weaker.
  • the whiter the bar the stronger the fluorescent signal, and the lower the bar, the weaker the fluorescent signal.
  • Unit is photon count, ph oton / second (ph / s): Represents the number of fluorescent signal photon counted per second.
  • FIG. 22 shows whole body image data other than the head in normal mice using cy5.5-encapsulated sugar chain-modified ribosomes or cy5.5-encapsulated ribosomes.
  • Top Ribosome without sugar chain, from left side, before administration, immediately after administration, 5 minutes after administration, 10 minutes after administration, 15 minutes after administration, 20 minutes after administration, 25 minutes after administration
  • 2nd stage K1-4 Ribosome administration, from left side, before administration, immediately after administration, 5 minutes after administration, 10 minutes after administration, 15 minutes after administration, 20 minutes after administration, 25 minutes after administration.
  • Third stage K16 ribosome administration, from left side, before administration, immediately after administration, 5 minutes after administration, 10 minutes after administration, 15 minutes after administration, 20 minutes after administration, and 25 minutes after administration.
  • the rightmost bar shows the fluorescence signal intensity obtained by imaging.
  • the red color at the top of the bar indicates the lower the color with the strongest signal, the weaker the fluorescent signal.
  • the fluorescent signal is weaker as the white color above the bar becomes stronger and the fluorescent signal becomes lower.
  • the unit is photon count, photon / second (ph / s): The number of fluorescence signals photon counted per second.
  • FIG. 23 shows whole body image data other than the head in a normal mouse using cy5.5-encapsulated sugar chain-modified ribosome or cy5.5-encapsulated ribosome.
  • Upper row ribosome without sugar chain, before administration, right after administration, 5 minutes after administration, 10 minutes after administration, 15 minutes after administration, 20 minutes after administration, 25 minutes after administration
  • lower administration of K2-3 ribosome, From left to right before administration, immediately after administration, 5 minutes after administration, 10 minutes after administration, 15 minutes after administration, 20 minutes after administration, and 25 minutes after administration.
  • the rightmost bar shows the fluorescence signal intensity obtained by imaging. In the color imaging diagram, the red color above the bar shows the lower color with the strongest signal, indicating that the fluorescence signal is weaker.
  • the unit is photon count, photo / second (ph / s): the number of photon photon counted per second.
  • FIG. 24 shows whole body image data other than the head in normal mice using cy5.5-encapsulated sugar chain-modified ribosome or cy5.5-encapsulated ribosome.
  • Top row glycoside without glycan administration, from left side, before administration, immediately after administration, 5 minutes after administration, 10 minutes after administration, 15 minutes after administration, 20 minutes after administration, 25 minutes after administration
  • 2nd step K2-4 Ribosome administration, from left side, before administration, immediately after administration, 5 minutes after administration, 10 minutes after administration, 15 minutes after administration, 20 minutes after administration, 25 minutes after administration.
  • Third stage K2— 6 Ribosome administration, before administration, immediately after administration, 5 minutes after administration, 10 minutes after administration, 15 minutes after administration, 20 minutes after administration, and 25 minutes after administration.
  • the rightmost bar shows the fluorescence signal intensity obtained by imaging.
  • the red color at the top of the bar indicates the lower the color with the strongest signal, the weaker the fluorescent signal.
  • the fluorescent signal is weaker as the white color above the bar becomes stronger and the fluorescent signal becomes lower.
  • the unit is photon count, photon / second (ph / s): The number of fluorescence signals photon counted per second.
  • FIG. 25 shows whole body image data other than the head in a normal mouse using cy5.5-encapsulated sugar chain-modified ribosome or cy5.5-encapsulated ribosome.
  • Upper row ribosome without sugar chain, before administration, right after administration, 5 minutes after administration, 10 minutes after administration, 15 minutes after administration, 20 minutes after administration, 25 minutes after administration
  • lower row administration of K3-3 ribosome, From left to right before administration, immediately after administration, 5 minutes after administration, 10 minutes after administration, 15 minutes after administration, 20 minutes after administration, and 25 minutes after administration.
  • the rightmost bar shows the fluorescence signal intensity obtained by imaging. In the color imaging diagram, the red color above the bar shows the lower color with the strongest signal, indicating that the fluorescence signal is weaker.
  • the unit is photon count, photo / second (ph / s): the number of photon photon counted per second.
  • FIG. 26 shows whole body image data other than the head in a normal mouse using cy5.5-encapsulated sugar chain-modified ribosome or cy5.5-encapsulated ribosome.
  • Top row glycosome without glycans administered, from left side before administration, immediately after administration, 5 minutes after administration, 10 minutes after administration, 15 minutes after administration, 20 minutes after administration, 25 minutes after administration
  • 2nd step K3-4 Ribosome administration, from left side, before administration, immediately after administration, 5 minutes after administration, 10 minutes after administration, 15 minutes after administration, 20 minutes after administration, 25 minutes after administration.
  • Second stage K3-6 ribosome administration, from left side, before administration, immediately after administration, 5 minutes after administration, 10 minutes after administration, 15 minutes after administration, 20 minutes after administration, and 25 minutes after administration.
  • the rightmost bar shows the fluorescence signal intensity obtained by imaging.
  • the red color at the top of the bar indicates the lower the color with the strongest signal, the weaker the fluorescent signal.
  • the fluorescent signal is weaker as the white color above the bar becomes stronger and the fluorescent signal becomes lower.
  • the unit is photon count, photon / second (ph / s): 1 second Represents the number of fluorescence signals photon counted.
  • FIG. 27 shows image data of the whole body other than the head in normal mice using cy5.5-encapsulated ribosomes. From left to right before administration, immediately after administration, 30 minutes later, 1 day later, 2 days later. The rightmost bar indicates the fluorescence signal intensity obtained by imaging. In the color imaging diagram, the red color at the top of the bar indicates the weaker the fluorescent signal the lower the color with the strongest signal. In the black and white imaging diagram, the whiter color above the bar indicates that the fluorescence signal is weaker as the fluorescent signal is stronger and lower.
  • the unit is photon count, photonZsecond (phZs): Fluorescent signal photon count per second
  • FIG. 28 shows whole body image data other than the head in normal mice using cy5.5-encapsulating sugar chain-modified ribosome (K1-3). From the left side, before administration, immediately after administration, 30 minutes later, 1 day later. The rightmost bar shows the fluorescence signal intensity obtained by imaging. The color image shows that the red color above the bar is the lower color with the strongest signal, the weaker the fluorescent signal. In the black-and-white imaging diagram, the whiter above the bar, the stronger the fluorescent signal, and the lower the bar, the weaker the fluorescent signal.
  • the unit is phot on count, photonZsecond (phZs): Counted per second: 3 ⁇ 4: Represents the number of photon photon.
  • FIG. 29 shows whole body image data other than the head in normal mice using cy5.5-encapsulated sugar chain-modified ribosome (K1-4). From left to right before administration, immediately after administration, 30 minutes later, 1 day later, 2 days later. The rightmost bar shows the fluorescence signal intensity obtained by imaging. In the power error imaging diagram, the red color above the bar indicates the weaker fluorescent signal, as the lower color is the strongest signal. In the black-and-white imaging diagram, the whiter above the bar, the stronger the fluorescent signal, and the lower the bar, the weaker the fluorescent signal.
  • the unit is photon count, photon / second (ph / s): The number of fluorescent signal photons counted per second.
  • FIG. 30 shows whole body image data other than the head in normal mice using cy5.5-encapsulating sugar chain-modified ribosome (K1-6). From left to right before administration, immediately after administration, 30 minutes later, 1 day later, 2 days later. The rightmost bar shows the fluorescence signal intensity obtained by imaging. Power In the Ler image, the fluorescent signal is weaker as the red color above the bar is the lower color with the strongest signal. In the black-and-white imaging diagram, the whiter above the bar, the stronger the fluorescent signal, and the lower the bar, the weaker the fluorescent signal. The unit is photon count, photon / second (ph / s): The number of fluorescent signal photons counted per second.
  • FIG. 31 shows a schematic diagram of a sugar chain-modified ribosome encapsulating a fluorescent substance.
  • FIG. 32 shows an example of a calibration curve for measuring the amount of ribosome protein.
  • FIG. 33 shows an example of a calibration curve for measuring the lipid content of ribosome.
  • FIG. 34 shows an example of particle size distribution of ribosome.
  • FIG. 35 shows an example of a fluorescent substance.
  • FIG. 36 shows an example of a fluorescent substance.
  • FIG. 37 shows an example of a fluorescent substance.
  • FIG. 38 shows an example of a fluorescent substance.
  • FIG. 39 shows an example of a fluorescent substance.
  • FIG. 40 shows a schematic diagram for the preparation of sugar chain-modified ribosomes.
  • Tris, DTSSP and SLX are the following abbreviations.
  • HSA human serum albumin
  • BS human serum albumin
  • Tris bis (sulfosuccinimidyl) suberate group
  • Tris tris (hydroxymethyl) a
  • Minomethane group DTSSP; 3, 3, monodithiopis (sulfosuccinimidyl propionate), S LX; Siaryl Lewis X group.
  • FIG. 41 shows the particle size distribution of SLX—Lipo—Cy5.5 and Lipo—Cy5.5.
  • the ribosome solution was diluted 50 times with distilled water.
  • Vertical axis relative intensity of dynamic light scattering (%), horizontal axis: particle size (logarithm: diameter (nm)).
  • Solid line SLX—Lipo—Cy5.5.
  • Dashed line Lipo-Cy5.5.
  • the particle size was measured by Zetasizer Nano—S90.
  • FIG. 42 shows the stability of SLX-Lipo-Cy5.5 after 6 hours storage at 4 ° C.
  • the liposome solution was diluted 50 times with distilled water.
  • Vertical axis relative intensity of dynamic light scattering (%), horizontal axis: particle size (logarithm: diameter (nm)).
  • Solid line Immediately after preparation, dashed line: after storage at 4 ° C for 6 hours. The particle size was measured from Zetasizer Nano—S90.
  • FIG. 43 shows ribosome accumulation in the inflamed area in rheumatoid arthritis mice.
  • the SLX—Lipo—Cy5.5 or Lipo—Cy5.5 was administered via the tail vein (50 lZ mouse).
  • Inflamed areas (back of the hind paw) of the same mice were observed before administration, 0 hours after injection, and 24 hours after injection. Measured with explore Optix (Ex: 680 nm, Em: 700 nm). The data is correct.
  • FIG. 44 shows the accumulation of various sugar chain-modified ribosomes in the inflammatory region.
  • Lipo-Cy5.5, SLX-Lipo-Cy5.5 and G4GN-Lipo-Cy5.5 were also administered via tail vein force (50; ⁇ mice).
  • the inflamed area (back of the hind paw) was observed 24 hours after injection.
  • G4 GN N-acetyl lactosamine.
  • FIG. 45 shows the relationship between the sugar chain density on the ribosome surface and accumulation in the inflamed area.
  • Li po -Cy5.5 or SLX—Lipo—Cy5.5 (D1-D5) was administered via the tail vein (50 1Z mice).
  • the inflamed area (back of the hind paw) was observed 24 hours after injection. Measured with explore Optix (Ex: 680 nm, Em: 700 nm).
  • the density of each sugar chain indicates the concentration ( ⁇ g / ml) of the reaction mixture when the sugar chain is bound to the liposome surface.
  • FIG. 46 shows the accumulation of ribosomes in blood vessels and surrounding tissues in the inflamed area.
  • SLX Lipo—Cy5.5 or Lipo—Cy5.5 (100 1 / mouse) was administered via the tail vein.
  • AO 0.5%, w / v%) (150 1) was administered via the tail vein immediately before observation. Measured with IV-100. Cy5.5 is shown in red (Ex: 633 nm, Em: 69 3 nm), and ataridin orange is shown in green (Ex: 488 nm, Em: 526 nm). Bar: 20 ⁇ mo Arrow: Blood vessel.
  • FIG. 47 shows the accumulation of SLX-Lipo-Cy5.5 in the tumor area of tumor-bearing mice.
  • S LX-Lipo -Cy5.5 or Lipo—Cy5.5 was administered via the tail vein (200 lZ mice).
  • the tumor area (right thigh area) of the same mouse was observed before administration, 0 hours, 24 hours, 48 hours, 72 hours and 96 hours after administration.
  • FIG. 48 shows the fluorescence distribution in the body 96 hours after injection.
  • SLX—Lipo—Cy5.5 was also administered to the tail vein force (200 1Z mice). The whole body was observed 96 hours after the injection. Measured with explore Optix (Ex: 680 nm, Em: 700 nm).
  • FIG. 49 shows the movement of fluorescence from blood vessels to surrounding tissues in the tumor region.
  • SL X—Lipo—Cy5.5 or Lipo—Cy5.5 was administered via the tail vein (100 lZ mice). Forty-eight hours after injection, blood vessels and surrounding tissues in the tumor area (right thigh area) were observed.
  • AO 0.5%, w / v%) (150 / z l) was administered via tail vein force immediately before observation. Measured with IV-100. Cy5.5 is shown in red (Ex: 633 nm, Em: 693 nm) and atalidine orange is shown in green (EX: 488 nm, Em: 526 nm). Bar: 20 m.
  • Solid arrow Blood vessel. Striped arrows: tumor tissue (tumor cells). Triangle: White blood cell.
  • FIG. 50 is an image of cancer-bearing mice administered with Cy7-encapsulating sugar chain-modified ribosome (K-1) taken over time using a fluorescence imaging device eXplore Optix (GE Healthcare). .
  • a fluorescence imaging device eXplore Optix GE Healthcare.
  • FIG. 51 is a photograph of a tumor site of a tumor-bearing mouse administered with Cy 3 encapsulated sugar chain-modified ribosome (K-1) using a fluorescence microscope CKX41 (OLYMPUS). Six hours after administration, the tumor-bearing mice to which Cy3-encapsulated sugar chain-modified ribosome (K-1) was administered were found to have higher fluorescence intensity in the tumor tissue than the control.
  • FIG. 52 shows the particle size distribution of ribosomes produced by the conventional method and the centrifugal method.
  • A Conventional method
  • B Centrifugal method.
  • FIG. 53 shows absorption spectra for ribosomes produced by the conventional method and the centrifugal method. Thick line: Conventional method, Thin line: Centrifugal method.
  • the “sugar chain” refers to a compound formed by one or more unit sugars (monosaccharide and Z or a derivative thereof). When two or more unit sugars are connected, each unit sugar is linked by dehydration condensation using a glycosidic bond.
  • sugar chains examples include polysaccharides contained in the living body (glucose, galactose, mannose, fucose, xylose, N-acetylethyldarcosamine, N-acetylethylgalatosamine, sialic acid and In addition to their conjugates and derivatives), there are a wide range of sugar chains that are degraded or derived from complex biomolecules such as degraded polysaccharides, glycoproteins, proteoglycans, glycosaminodaricans, glycolipids, etc. It is not limited to them. Therefore, in the present specification, the sugar chain can be used interchangeably with “polysaccharide”, “sugar”, and “carbohydrate”.
  • sugar chain may include both sugar chains and sugar chain-containing substances.
  • monosaccharides such as dalcoose, galactose, mannose, fucose, xylose, N-acetylyldarcosamine, N-acetylgalatatosamine, sialic acid and their complexes and derivatives
  • the human body is expected to have several hundreds of sugar chains with various structures, and there are several useful structures in the human body.
  • sugar chain group is a name given when a sugar chain is bonded to another group.
  • the sugar chain group refers to a monovalent or divalent group depending on the case.
  • examples of the sugar chain group include sialyl Lewis X group, N-acetylyl lactosamine group, and ⁇ 1-6 mannobiose group.
  • sugar or “monosaccharide” refers to polyhydroxyaldehyde or polyhydroxyketone containing at least one hydroxyl group and at least one aldehyde group or ketone group, and constitutes a basic unit of a sugar chain. To do.
  • sugar is also referred to as a carbohydrate, and both are used interchangeably.
  • a sugar chain refers to a chain or a sequence in which one or more sugars are linked, and when referred to as a sugar or a monosaccharide, it refers to one unit constituting the sugar chain.
  • Ser is usually classified as a lipid, but in the present specification, it is treated as a saccharide unless otherwise specified because it also falls within the definition of a kind of saccharide constituting a glycan.
  • Ser is usually classified as an amino acid.
  • ⁇ and j8 since it also falls within the definition of a kind of sugar constituting a sugar chain, it is treated as a sugar unless otherwise mentioned.
  • the two cyclic anomers are denoted by ⁇ and j8. It may be expressed as a or b for display reasons. Therefore, in the present specification, ⁇ and a, j8 and b are used interchangeably for the anomeric notation.
  • galactose refers to any isomer, but typically 13 D It is galactose and is used to refer to j8-D-galactose unless otherwise stated.
  • acetylylgalatatosamine refers to any isomer, but is typically N-acetylyl-a-D galactosamine, and unless otherwise specified, N-acetylyl-a-D galactosamine. Used as a pointer.
  • mannose refers to any isomer, but is typically a-D-mannose, and is used to refer to ex D-mannose unless otherwise specified.
  • glucose refers to any isomer, typically j8-D.
  • Glucose unless otherwise mentioned, is used to refer to 13 D-glucose.
  • acetylyldarcosamine refers to any isomer, but is typically N-acetylenic ⁇ D darcosamine, and unless otherwise specified, refers to ⁇ acetylene ⁇ -D-darcosamine. Used as a thing.
  • fucose refers to any isomer, but is typically a L-fucose, and is used to refer to ⁇ L-fucose unless otherwise specified.
  • acetyl-neuraminic acid refers to any isomer, but is typically ⁇ - ⁇ acetylneuraminic acid, and ⁇ - ⁇ -acetylenuraminic acid is referred to unless otherwise specified. Used as a pointer.
  • serine refers to any isomer, but is typically L-serine, and is used to refer to L-serine unless otherwise specified.
  • the reducing end of the sugar is aminated, and the ability to bind to other components such as albumin via the amino group.
  • the reducing end hydroxyl group Note that refers to those substituted with amine groups.
  • Monosaccharides are generally joined by glycosidic bonds to form disaccharides and polysaccharides.
  • the direction of the bond with respect to the plane of the ring is indicated by ⁇ and j8.
  • Also described are specific carbon atoms that form a bond between two carbons.
  • a monosaccharide is represented by an anomaly-like A monosaccharide.
  • the e-glycosidic bond between C-1 in galactose and C-4 in glucose is represented by Gal
  • Siaryl Lewis X (SLX) is represented as Neu5Ac a 2,3Gal ⁇ 1,4 (Fuc ⁇ 1,3) GlcNAc.
  • N-acetyllactosamine (G4GN) is represented as Gal jS 1, 4GlcNAc.
  • ⁇ 1-6 Mannobiose (A6) is expressed as Man a 1, 6Man.
  • Branches of sugar chains are represented by parentheses, and are arranged immediately to the left of the unit sugar to be bound. For example,
  • sugar chain used in the present specification examples include sugar chains selected from the group having sialyl Lewis X, N-acetyllactosamine, ⁇ 1-6 mannobiose, and combinations of two or more thereof. However, it is not limited to these. The reason why two or more combinations can be used is not limited by theory, but each of the sugar chains has specificity for a lectin localized in the tissue or cell of the intended delivery site. This is because even if they are mixed, it is thought that their uniqueness will be exhibited.
  • the “ribosome” usually means a closed vesicle composed of a lipid layer assembled in a film form and an inner aqueous layer.
  • phospholipids typically used it is possible to incorporate cholesterol, glycolipids, and the like. Since ribosomes are closed vesicles containing water inside, it is possible to retain water-soluble drugs and the like in the vesicles. Therefore, these ribosomes are used to deliver drugs and genes that cannot pass through the cell membrane into the cell. In addition, its biocompatibility is good, so it is highly expected as a nanoparticulate carrier material for DDS.
  • the ribosome imparts a structural unit having a functional group that imparts an ester bond (for example, a glycolipid, redesignoside, phosphatidylglycerol, etc.) or a peptide bond in order to attach a modifying group. It may have a structural unit having a functional group (for example, phosphatidylethanolamine).
  • Ribosome can be prepared by any method known in the art. For example, among them, a method using a cholic acid dialysis method is exemplified. In the cholic acid dialysis method, production is carried out by a) preparation of mixed micelles of lipid and surfactant, and b) dialysis of mixed micelles. Next, in a preferred embodiment of the sugar chain ribosome of the present invention, the coupling of a glycoprotein having a sugar chain bound to a protein for which it is preferable to use a protein as a linker to the ribosome is the following two-step reaction. Can be done by.
  • An example of the reaction flow is shown in Fig. 31.
  • a glycoprotein containing a desired sugar chain can be bound to a liposome, and a wide variety of glycoprotein 'liposome conjugates having the desired sugar chain can be obtained. It is very important to examine the particle size distribution to see the purity and stability of ribosomes. Examples of such methods include gel filtration chromatography (GPC), scanning electron microscopy (SEM), and dynamic light scattering (DLS).
  • Ribosomes of the molar ratio 35: 45: 5: 15 of dipalmitoyl phosphatidylcholine, cholesterol, dicetyl phosphate, contoside can be produced. This ribosome is stable even when stored at 4 ° C for several months.
  • the in vivo stability of ribosomes can be examined using mice. The ribosome is intravenously injected into the mouse, blood is collected after 3 hours, serum is prepared, and the ribosome is purified and collected by ultrafiltration using a membrane with a pore size of 0.03 m. As a result of the SEM observation, it can be confirmed that the ribosome morphology does not change even before and after the recovery for 3 hours in vivo.
  • Lipids constituting the sugar chain-modified ribosome of the present invention include, for example, phosphatidylcholines, phosphatidylethanolamines, phosphatidic acids, long-chain alkyl phosphates, glycolipids (gandariosides, etc.), phosphatidylglycerols. , Sphingomyelins, cholesterols and the like.
  • phosphatidylcholines include dimyristoyl phosphatidylcholine, dipalmitoyl phosphatidylcholine, distearoyl phosphatidylcholine, and the like.
  • phosphatidylethanolamines include dimyristoyl phosphatidylethanol. And amine, dipalmitoylphosphatidylethanolamine, distearoylphosphatidylethanolamine and the like.
  • Examples of phosphatidic acids include dimyristoyl phosphatidic acid, dipalmitoyl phosphatidic acid, and distearoyl phosphatidic acid.
  • Examples of long-chain alkyl phosphates include dicetyl phosphate.
  • glycolipids examples include galactosylceramide, darcosylceramide, latatosylceramide, phosphatide, globoside, and contosides.
  • Gandriosides include ganglioside GMl (Gal j8 1, 3GalNA C j 8 1, 4 (NeuA a 2, 3) Gal j8 1, 4Gl C j 8 1, 1, Cer), gandarioside GDla, gandarioside GTlb, etc. It is done.
  • phosphatidylglycerols dimyristoyl phosphatidylglycerol, dipalmitoyl phosphatidylglycerol, distearoyl phosphatidylglycerol and the like are preferable.
  • phosphatidic acids, long-chain alkyl phosphates, glycolipids, and cholesterol have the effect of increasing the stability of ribosomes, so it is desirable to add them as constituent lipids.
  • phosphatidylcholines (molar ratio 0 to 70%), phosphatidylethanolamines (molar ratio 0 to 30%), phosphatidic acids, and long-chain alkyl phosphate groups
  • Power One or more lipids selected (molar ratio 0-30%)
  • glycolipids, phosphatidylglycerols and sphingomyelins also selected group power One or more lipids (molar ratio 0-40%)
  • those containing cholesterol miolar ratio 0 to 70%.
  • gandarioside glycolipid or phosphatidylglycerol. This is because the binding of a linker such as albumin becomes easy.
  • the ribosome according to the present invention contains gandarioside, glycolipid or phosphatidylglycerol, and can be linked with a linker such as a peptide to bind a sugar chain. .
  • the glycan-modified ribosome of the present invention containing the sugar chain contained in the glycolipid as a constituent component can be produced by combining gandarioside, glycolipid or phosphatidylglycerol. it can.
  • the ribosome in the present invention comprises phosphatidylethanolamine. By including phosphatidylethanolamine, it is easy to bond with a hydrophilic group (such as tris (hydroxyalkyl) aminoalkane).
  • the present invention provides a sugar chain-modified ribosome.
  • a sugar chain-modified ribosome Conventionally, in vivo, it has not been provided that sufficiently targets a desired target cell or tissue.
  • the present invention has the effect of enabling targeting that was impossible with conventional DDS materials by providing sugar chain-modified liposomes that are directed to desired target cells or tissues in the living body.
  • such a sugar chain-modified ribosome has a sugar chain having at least one structure selected from the group consisting of sialyl Lewis X, N-acetyllactosamine, ⁇ 1-6 mannobiose, and a combination force thereof. Are connected.
  • sugar chain-modified ribosome refers to a substance containing a sugar chain and a ribosome, and preferably a liposome modified by direct or indirect binding of sugar chains.
  • ribosomes One hour. Specifically describing the form of sugar chains bound to ribosomes,
  • the linker protein contained in the ribosome can bind to CH— ⁇
  • R 1 Linker protein group
  • R 2 Linker-protein cross-linking group
  • X and R 1 are CH—NH bonded, R 1 and R 2 are peptide bonded, and R 2 and R 3 are peptide
  • t can be represented by a structural formula.
  • the sugar chain-modified ribosome of the present invention is hydrophilicized by the following structure: Structure II Y-R 4 -R 5
  • Y a group in which the functional group b is removed from the structural unit force including the hydrophilic compound cross-linking group contained in the ribosome and the functional group b capable of peptide bonding
  • R 4 hydrophilic compound crosslinking group
  • R 5 hydrophilic compound group
  • Y and R 4 are peptide bonds
  • R 4 and R 5 are peptide bonds.
  • t can be represented by a structural formula.
  • the ribosome of the present invention has the above-described Structure I and Structure II, and is fluorescent.
  • the fluorescent property is that at least one of the components of the sugar chain-modified ribosome of the present invention has fluorescence, or the sugar chain-modified ribosome of the present invention has a new fluorescent property (for example, , A fluorescent dye).
  • Examples of the fluorescent element include, but are not limited to, a fluorescent dye, a fluorescent protein (eg, GFP, CFP, YFP, etc.), and a luminescent enzyme (eg, luciferase, etc.).
  • a fluorescent dye for example, cy5.5 (for example,
  • Alexa Fluor350 Alexa Fluor488, Alexa Fluor532, Alexa Fluor 546, Alexa Fluor555, Alexa Fluor 568 ⁇ Alexa Fluor 594 ⁇ Alexa Fluor633, Alexa
  • Forces including, but not limited to, Fluor 647, Alexa Fluor680, Alexa Fluor700, Alexa Fluor750, and FITC.
  • compatible with a ribosome is a substance that does not impair the stability of the ribosome when the substance is included in or bound to the ribosome.
  • the nature of Compatibility with ribosomes can be determined by measuring, for example, zeta potential, electromobility, particle size, lipid content, protein content, and the like.
  • the aggregation property of ribosome particles can be determined by the zeta potential.
  • the average particle size, the maximum range, the number of ribosomes in the maximum range, etc. can be analyzed based on the particle size and size distribution, and the homogeneity of the ribosome can be confirmed based on the analysis results.
  • Protein mass Lipid content: By measuring the ratio of protein content per lipid, it is possible to confirm whether the ribosome has an appropriate composition.
  • the sugar chain-modified ribosomes used herein can be included at a density suitable for delivery to the intended delivery site.
  • modified bond density is the amount of sugar chain used in producing a sugar chain-modified ribosome, and is the number of sugar chains bound per mg of lipid in the ribosome. Expressed as density (mg sugar chain Zmg lipid).
  • density mg sugar chain Zmg lipid.
  • the binding density of the sugar chain-modified ribosome of the present invention is not desired to be bound by theory, empirically, the amount of sugar chain used in the preparation is almost equal to the density of sugar chains bound to the ribosome. Proportionalness is a component. Therefore, in this specification, unless otherwise stated, the binding density is determined by the amount used at the time of preparation. In the in vitro mouth, for example, it can be determined indirectly using E-selectin.
  • the sugar chain-modified ribosome of the present invention can control the directivity to the target delivery site by selecting the type of sugar chain to be bound to the ribosome and the binding density.
  • Table 1 below shows ribosome numbers, sugar chain structures, and modified bond densities.
  • the preferred sugar chain-modified ribosome of the present invention as described in the above table can be produced by the following method. Specifically, this method comprises the steps of: (a) suspending lipids in methanol Z chloroform solution and stirring, evaporating the stirred solution, and drying the precipitate in vacuum to obtain a lipid membrane; b) Suspending the lipid membrane in a suspension buffer and sonicating; (c) mixing the sonicated solution with a fluorescent labeling solution to provide fluorescently labeled liposomes Step (d) Hydrophilic treatment of the ribosome with tris (hydroxyalkyl) aminoalkane; (e) Linker protein is bound to the hydrophilic ribosome and linked to the linker protein.
  • the fluorescent labeling solution in step (c) is 1, 1'-bis ( ⁇ -roxyruboxypentyl) 3, 3, 3 ', 3, -tetramethylindocarbocyanine 5, 5, -disulfonate potassium salt, di-hydroxy hydroxysuccinimide ester (cy5.5), the linker protein in step (e) is human serum albumin, and in step (f), the sugar chain and ribosome are Glycosylated liposomes are produced by conjugation under conditions suitable for delivery to the target delivery site.
  • ribosome and the linker, and the linker and the sugar chain are linked using a bifunctional cross-linking group (for example, 3, 3′-dithiopis (sulfosuccinimidyl propionate) (DTSSP)). It is preferable.
  • a bifunctional cross-linking group for example, 3, 3′-dithiopis (sulfosuccinimidyl propionate) (DTSSP)). It is preferable.
  • the sugar chain-modified ribosome of the present invention can encapsulate or bind a drug or gene.
  • the drugs include alkyl ⁇ anticancer agents, antimetabolites, plant-derived anticancer agents, anticancer antibiotics, biological response modifiers (BRM), cytodynamics, platinum complex anticancer agents, Immunotherapeutic agents, hormone anticancer agents, tumor drugs such as monoclonal antibodies, central nervous system drugs, peripheral nervous system, sensory organ drugs, respiratory disease drugs, cardiovascular drugs, digestive organ drugs, hormone drugs , Urogenital drugs, vitamins, nourishing tonics, metabolic drugs, antibiotics, chemotherapeutic drugs, testing drugs, anti-inflammatory drugs, eye disease drugs, central nervous system drugs, autoimmune drugs, cardiovascular system Drugs, lifestyle-related diseases such as diabetes, hyperlipidemia, corticosteroids, immunosuppressants, antibacterial agents, antiviral agents, angiogenesis inhibitors, cytoforce-in, chemokines, anti-site-forced antibodies, Chemokine antibodies, anti-cytokina, anti
  • linker is a molecule that mediates the binding between a sugar chain and the ribosome surface.
  • the sugar chain may be bound to the ribosome surface via a linker.
  • the linker can be appropriately selected by those skilled in the art, but those that are biocompatible are preferred, and are preferably pharmaceutically acceptable.
  • the “linker protein” refers to a protein, peptide, amino acid polymer of a linker molecule.
  • the linker protein used in the present specification can be, for example, a biological protein, preferably a human-derived protein, more preferably a human-derived serum protein, and still more preferably serum albumin. In particular, when human serum albumin is used, mice have a high uptake in each tissue.
  • the “linker group (protein) group” is a name given when the linker group (protein) is bound to another group.
  • the linker (protein) group is monovalent or divalent depending on the case. Examples thereof include a mammal-derived protein group, a human-derived protein group, a human serum protein group, and a serum albumin group.
  • the linker (protein) group is preferably derived from “human”. It is also the power that is considered highly compatible in human administration. Also, protein is preferred because it is not immunogenic!
  • the “crosslinking group” refers to a group that forms a chemical bond between molecules of a chain polymer so as to form a bridge. Typically, it acts between high molecules such as lipids, proteins, peptides, and sugar chains and other molecules (e.g., lipids, proteins, peptides, sugar chains), and is covalently linked within or between molecules. A group that forms a covalent bond that connects strong forces.
  • the crosslinking group varies depending on the target for crosslinking, and examples thereof include, but are not limited to, aldehydes (eg, dartal aldehyde), carpositimides, imide esters and the like. When the amino group-containing substance is crosslinked, an aldehyde-containing group such as dartal aldehyde can be used.
  • linker-protein cross-linking group refers to a group that forms a peptide bond between a ribosome and a sugar chain.
  • the linker protein cross-linking group varies depending on the target for cross-linking, such as bissulfosuccinimidyl suberate, disuccinimidyl glutarate, dithiobissuccinimidyl propionate, disuccinimidide.
  • Divalent reagents such as Rusberart, 3, 3, 1 dithiobis (sulfosuccinimidyl propionate), ethylene glycol bissuccinimidyl succinate, ethylene glycol bissulfosuccinimidyl succinate Etc. can be used.
  • linker protein crosslinking groups examples include 3, 3′-dithiopis (sulfosuccinimidyl). Propionate) group, bissulfosuccinimidyl suberate group, disuccinimidyl glutarate group, dithiobis succinimidyl propionate group, disuccinimidyl sulfate group, ethylene glycol bis succinimidyl group Mention may be made of a succinate group and an ethylene glycol bissulfosuccinimidyl succinate group.
  • the terms "protein”, “polypeptide”, “oligopeptide” and “peptide” are used interchangeably herein and refer to a polymer of amino acids of any length. .
  • the polymer may be linear or branched or cyclic.
  • the amino acid may be a modified amino acid, which may be natural or non-natural.
  • the term may also include those assembled into a complex of multiple polypeptide chains.
  • the term also encompasses natural or artificially modified amino acid polymers. Such modifications include, for example, disulfide bond formation, daricosylation, lipidation, acetylation, phosphorylation, or any other manipulation or modification (eg, conjugation with a labeling component).
  • This definition also includes, for example, polypeptides containing one or more analogs of amino acids (eg, including non-natural amino acids, etc.), peptidomimetic compounds (eg, peptoids), and the art! Other modifications are included
  • protein refers to a polymer of amino acids having a relatively large molecular weight or a variant thereof, and when referring to “peptide”, it has a relatively small molecular weight. It should be understood that it may refer to a polymer of amino acids or variants thereof. Examples of such molecular weight include, but are not limited to, about 30 kDa, preferably about 20 kDa, more preferably about 10 kDa.
  • biologically derived protein refers to a protein derived from an organism, including any organism (eg, any type of multicellular organism (eg, animal (eg, Vertebrates, invertebrates), plants (eg monocotyledonous plants, dicotyledonous plants, etc.))).
  • organism eg, any type of multicellular organism (eg, animal (eg, Vertebrates, invertebrates), plants (eg monocotyledonous plants, dicotyledonous plants, etc.)).
  • the protein is derived from a vertebrate (for example, metaraunagi, shark eel, cartilaginous fish, teleost, amphibian, reptile, bird, mammal, etc.), more preferably a mammal (for example, a single hole, marsupial) , Rodents, skin wings, wings, carnivores, carnivores, long noses, odd hoofs, even hoofs, rodents, scales, sea cattle, cetaceans, primates , Rodents, maggots, etc.) are used. More preferably, a protein derived from a primate (eg, chimpanzee, second monkey, human) is used. Most preferably, a biological protein for administration is used. In this specification, when a biological protein shows a state of binding to another substance, it is called a biological protein group.
  • a biological protein group for example, metaraunagi, shark eel, cartilaginous fish, teleost, amphibian, reptile,
  • human-derived serum protein refers to a protein contained in a liquid portion that remains when human blood naturally coagulates.
  • a human-derived protein group when a human-derived protein shows a state of being bound to another substance, it is referred to as a human-derived protein group.
  • serum albumin refers to albumin contained in serum. In the present specification, when serum albumin shows a state of being bound to another substance, it is referred to as serum albumin group.
  • At least one of the ribosome membrane and the linker is hydrophilicized by binding a hydrophilic compound, preferably, a tris (hydroxyalkyl) aminoalkane. Moyo.
  • hydrophilization refers to binding of a hydrophilic compound to the ribosome surface.
  • the compound used for the hydrophilic property is a low molecular weight hydrophilic compound, preferably a low molecular weight hydrophilic compound having at least one OH group, more preferably a low molecular weight hydrophilic compound having at least two OH groups. Is mentioned. Further, a low molecular weight hydrophilic compound having at least one amino group, that is, a hydrophilic compound having at least one OH group and at least one amino group in the molecule.
  • the hydrophilic compound Since the hydrophilic compound is a small molecule, it does not hinder the progress of the sugar chain molecule recognition reaction by the lectin on the surface of the target cell membrane because it becomes a steric hindrance to the sugar chain.
  • the hydrophilic compound does not include a sugar chain to which a lectin used for directing a specific target such as a lectin can be bound in the sugar chain-modified ribosome of the present invention.
  • examples of such hydrophilic compounds include amino alcohols such as tris (hydroxyalkyl) aminoalkane including tris (hydroxymethyl) aminomethane, and more specifically, tris (hydroxy).
  • Droxymethinole) aminoethane tris (hydroxyethyl) aminoethane, tris (hydroxypropyl) aminoethane, tris (hydroxymethyl) aminomethane, tris (hydroxyethyl) Examples include aminomethane, tris (hydroxypropyl) aminomethane, tris (hydroxymethyl) aminopropan, tris (hydroxyethyl) aminopropane, and tris (hydroxypropyl) aminopropan.
  • alkyl refers to the loss of one hydrogen atom from an aliphatic hydrocarbon such as methane, ethane, or propane (herein “alkane” t). The resulting monovalent group, generally represented by CH 1 (where n is a positive integer). Alkyl is n 2n + l
  • substituted alkyl refers to an alkyl in which H of the alkyl is substituted with a substituent as defined below. Specific examples of these include C1-C2 alkyl, C1-C3 alkyl, C1-C4 alkyl, C1-C5 alkyl, C1-C6 alkyl, C1-C7 alkyl, C1-C8 alkyl, C1-C9 alkyl, C1-C10 alkyl.
  • 1 to 11 alkyl or 1 to 12 alkyl C1-C2 substituted alkyl, C1-C3 substituted alkyl, C1-C4 substituted alkyl, C1-C5 substituted alkyl, C1-C6 Substituted alkyl, C1-C7 substituted alkyl, C1-C8 substituted alkyl, C1-C9 substituted alkyl, C1-C10 substituted alkyl, C1-C11 substituted alkyl or C1-C12 substituted Or alkyl.
  • alkanes these specific examples include C1-C2 alkanes, C1-C3 alkanes, C1-C4 alkanes, C1-C5 alkanes, C1-C6 alkanes, C1-C7 alkanes, C1-C8 alkanes, C1- C9 alkane, C1-C10 alkane, C1-C11 alkane or C1-C12 alkane, C1-C2-substituted alkane, C1-C3-substituted alkane, C1-C4-substituted alkane, C1-C5-substituted alkane C1-C6 substituted alkanes, C1-C7 substituted alkanes, C1-C8 substituted alkanes, C1-C9 substituted alkanes, C1-C10 substituted alkanes, C1-C11 substituted alkanes Or a C1-C12 substituted
  • C1-C10 substituted alkyl refers to C1-C10 alkyl, in which one or more hydrogen atoms are substituted with a substituent.
  • R C1-C6 alkyl is preferred, and C1-C6 alkyl is particularly preferred.
  • substituent R is present in one or more, and each independently represents hydrogen, alkyl, cycloalkyl. , Alcohol, cycloalkenyl, alkyl, alkoxy, carbocyclic group, heterocyclic group, halogen, hydroxy, thiol, silane-containing nitro, ami-containing carboxy, acyl, thiocarboxy, amide, substituted amide , Substituted carbo- yl, substituted thiocarbol, substituted sulfol, and substituted sulfiel.
  • a compound in which an amino group is introduced into a low molecular weight compound having an OH group can also be used as the hydrophilic compound of the present invention.
  • the compound is not limited, and examples thereof include a compound in which an amino group is introduced into a sugar chain without binding of a lectin such as cellopioose.
  • the ribosome surface is rendered hydrophilic using a divalent reagent for crosslinking and tris (hydroxymethyl) aminomethane on the lipid phosphatidylethanolamine of the ribosome membrane.
  • the general formula of the hydrophilic compound is represented by the following formula (1), formula (2), formula (3), and the like.
  • RR 3 and R 5 are C force C, preferably C to C, more preferably C force
  • z represents a reactive functional group that binds to the ribosomal lipid directly or to a divalent reagent for crosslinking, such as COOH, NH, NH, CHO, SH, NHS-ester, male
  • n represents a natural number.
  • the surface of the ribosome that has been rendered hydrophilic with such a hydrophilic compound is thinly covered with a hydrophilic compound.
  • the thickness of the cover of the hydrophilic compound is small, even when sugar chains are bound to ribosomes, the reactivity of sugar chains and the like cannot be suppressed.
  • hydrophilic compound group is a name when the above hydrophilic compound is bonded to another group.
  • the hydrophilic compound group can be monovalent or divalent depending on the case.
  • the "hydrophilic compound cross-linking group” is a group that is peptide-bonded to one chain protein and the other end is peptide-bonded to a sugar chain. A group that forms a peptide bond with a liposome or linker protein.
  • hydrophilic compound crosslinking groups include bis (sulfosuccinimidyl) suberate group, disuccinimidyl glutarate group, dithiobissuccinimidyl propionate group, disuccinimidyl suberate group, 3, 3, 1 dithiobis (sulfosuccinimidyl propionate) group, ethylene glycol bis succinimidyl succinate group and ethylene glycol bis sulfosuccinimidyl succinate group.
  • the hydrophilic compound crosslinking group is a bis (sulfosuccinimidyl) suberate group.
  • the hydrophilicity of the ribosome is a conventionally known method, for example, a method of producing a ribosome using a phospholipid obtained by covalently binding polyethylene glycol, polyvinyl alcohol, maleic anhydride copolymer or the like ( JP 2000-302685 (for example, CNDAC-containing ribosomal preparations dilauroyl phosphatidylcholine, dimyristoyl phosphatidylcholine, dipalmitoylphosphatidylcholine, distearoylphosphatidylcholine; dipalmitoylphosphatidylglycerol, distearoylphosphatidylglycerol; N monomethoxypolyethyleneglycol succinyl distearoylphosphatidylethanolamine (hereinafter referred to as PEG2000—DSPE) having a molecular weight of about 2000 CNDAC hydrochloride, aqueous glucose solution and aqueous tre
  • the method using tris (hydroxymethyl) aminomethane of the present invention is preferable in several respects as compared with the conventional hydrophilic method using polyethylene glycol or the like.
  • tris (hydroxymethyl) aminomethane is a low molecular weight substance, so that conventional polyethylene glycol or the like can be used.
  • the ribosome according to the present invention has a good particle size distribution, component composition, and dispersion characteristics even after the hydrophilization treatment, and is excellent in long-term storage and in vivo stability. It is preferred for use in To make the ribosome surface hydrophilic using tris (hydroxymethyl) aminomethane, lipids such as dimyristoyl phosphatidylethanolamine, dipalmitoyl phosphatidylethanolamine, and distearoyl phosphatidylethanolamine are used.
  • Zipalmitoilho By binding a divalent reagent to a fat such as fatidylethanolamine, and then reacting tris (hydroxymethyl) aminomethane with one of the bonds of the divalent reagent, tris (hydroxymethyl) amino on the ribosome surface. Combine methane.
  • the ribosome obtained by hydrophilizing the ribosome is extremely stable in the living body, and the half life in the living body can be obtained without binding a sugar chain having a target directivity as described later. Since it has a long V, it can be suitably used as a drug carrier in a drug delivery system.
  • the present invention also includes a ribosome whose surface is hydrophilic with a low molecular weight compound.
  • delivery vehicle refers to a carrier (vehicle) that mediates delivery of a desired substance. If the substance to be delivered is a drug, it is referred to as a “drug delivery vehicle”.
  • Drug delivery system D rug Delivery System (DDS), also called drug delivery system, is sometimes classified into absorption-controlled DDS, controlled-release DDS, and target-oriented DDS.
  • the ideal DDS is a system that delivers a drug “to the necessary part of the body”, “a necessary amount”, and “for the required time”.
  • Targeting DDS (written as Targeting DDS, translated into target-oriented DDS) is categorized as noisy 'targeting (passive and target-oriented) DDS and active' targeting (active 'target-oriented) DDS.
  • the former is a method for controlling the behavior in the body using the physicochemical properties such as the particle size of the carrier (drug carrier) or hydrophilicity.
  • the latter is a method in which a special mechanism is added to these to actively control the direction to the target tissue.For example, it has a specific molecular recognition function for the target molecules of specific cells that constitute the target tissue.
  • a carrier to which an antibody or a sugar chain is bound and it is sometimes called a “missile drug”.
  • drug delivery vehicle refers to a vehicle for delivering a desired drug.
  • the present invention relates to a molecular imaging agent.
  • the molecular imaging agent can further include a pharmaceutically acceptable carrier and the like.
  • Pharmaceutically acceptable carriers include, for example, antioxidants, preservatives, colorants, flavors, and diluents, emulsifying agents, suspending agents, solvents, fillers, bulking agents, buffering agents, delivery vehicles. , Diluents, excipients and Z or pharmaceutical adjuvants.
  • the molecular imaging agent of the present invention is administered in the form of a composition comprising a glycosylated ribosome together with one or more physiologically acceptable carriers, excipients or diluents.
  • a suitable vehicle can be water for injection, physiological solution, or artificial cerebrospinal fluid.
  • Acceptable carriers, excipients or stabilizers used herein are non-toxic to the recipient and are preferably inert at the dosages and concentrations used.
  • Such non-toxic and inert carriers include, for example, phosphate, citrate, or other organic acids; ascorbic acid, ⁇ -tocopherol; low molecular weight polypeptides; proteins (eg, serum albumin Hydrophilic polymers (eg, polyvinylpyrrolidone); amino acids (eg, glycine, glutamine, asnolaggin, arginine or lysine); monosaccharides, disaccharides and other carbohydrates (Including glucose, mannose, or dextrin); chelating agents (eg, EDTA); sugar alcohols (eg, mannitol or sorbitol); salt-forming counterions (eg, sodium); and Z or nonionic surface activation Examples include, but are not limited to, agents such as Tween, pluronic or polyethylene glycol (PEG), polyethylene
  • Exemplary suitable carriers include neutral buffered saline or saline mixed with serum albumin.
  • the product is formulated as a lyophilizer using a suitable excipient (eg, sucrose).
  • suitable excipient eg, sucrose
  • Other standard carriers, diluents and excipients may be included as desired.
  • Other exemplary compositions comprise tris (hydroxymethyl) aminomethane buffer at pH 7.0-8.5 or acetate buffer at pH 4.0-5.5, which further comprises sorbitol or suitable Alternatives can be included.
  • the present invention provides a molecular imaging agent containing a sugar chain-modified ribosome.
  • the drug delivery vehicle of the present invention is a sugar chain having at least one structure selected from the group consisting of Gal, GalNAc, Man, Glc, GlcNAc, Fuc and Neu5Ac, preferably a sugar chain shown in Table 1 above.
  • Including a sugar chain-modified ribosome linked with The sugar chain-modified liposome may encapsulate or bind a drug or gene.
  • the term "molecular imaging agent” refers to a drug or factor used for imaging a function or structure of a living body. Examples thereof include those used for imaging cancer tissues and inflamed sites in vivo.
  • the molecular imaging agent of the present invention is used for administering a biological factor to a subject in need of a biological factor, and for the respiratory system, circulatory system, digestive system, urinary organ, genital system, It can also be used to treat mammals with central or peripheral nervous system disorders.
  • the molecular imaging agent of the present invention can also enhance the absorption controllability in the intestinal tract by adjusting the type of sugar chain and the binding density of the sugar chain-modified ribosome.
  • the sugar chain may be a silyl Lewis X group. This sialyl Lewis X group can be included in the sugar chain-modified ribosome with a modified bond density of 0.
  • sugar chain modified ribosomes are included at a modified bond density of 0.0025 mg sugar chain Z mg lipid to 0.1 mg sugar chain Z mg lipid (preferably 0.025 mg sugar chain / mg lipid). It can be done.
  • sugar chain-modified ribosome it is preferably included in the sugar chain-modified ribosome at a modified bond density of 0.0025 mg sugar chain Z mg lipid to 0.1 mg sugar chain Z mg lipid (preferably 0.025 mg sugar chain Z mg lipid). obtain.
  • the sugar chain may be an N-acetylyl lactosamine group.
  • the N-acetyllactosamine group can be contained in the sugar chain-modified ribosome with a modified binding density of 0. OOOlmg sugar chain Zmg lipid to 500 mg sugar chain Zmg lipid, preferably 0.025 mg sugar chain Zmg lipid.
  • it is preferably included in the sugar chain-modified ribosome at a modified bond density of 0.0025 mg sugar chain Z mg lipid to 0.1 mg sugar chain Z mg lipid (preferably 0.025 mg sugar chain / mg lipid).
  • the glycosylation ribosome has a modified binding density of 0.0025 mg sugar chain Zmg lipid to 0.5 mg sugar chain Zmg lipid (preferably 0.1 mg sugar chain / mg lipid).
  • the sugar chain may be an a 1-6 mannobiose group.
  • This ⁇ 1-6 mannobiose group can be contained in a sugar chain-modified ribosome with a modified bond density of 0. OOOlmg sugar chain Z mg lipid to 500 mg sugar chain / mg lipid.
  • it is preferably included in the glycosylated liposome at a modified bond density of 0.0025 mg sugar chain Zmg lipid to 0.1 mg sugar chain Zmg lipid (preferably 0.025 mg sugar chain Zmg lipid). obtain.
  • the imaging agent of the present invention can be used to image an inflammatory site, cancer tissue, cerebral blood vessel, liver or the like. These organizations may contain substance.
  • the molecular imaging agent of the present invention can be easily prepared by those skilled in the art by considering pH, isotonicity, stability, and the like.
  • the molecular imaging agent of the present invention is blended with a pharmaceutically acceptable carrier, and is a solid preparation such as a tablet, capsule, granule, powder, powder, etc.
  • Oral administration as a liquid preparation such as syrup, suspension, solution and the like.
  • the molecular imaging agent of the present invention is a physiologically acceptable carrier, excipient or stabilizer as necessary (Japanese Pharmacopoeia 14th edition or its latest edition, Remington's Phar maceuticai sciences, 18th Edition, AR Gennaro, ed., Mack Publishing Company, 1990, etc.) and a glycan composition having the desired degree of purity, and prepared in the form of a lyophilized cake or aqueous solution. Can be preserved.
  • the fluorescent dye-containing sugar chain-modified ribosome of the present invention enables imaging with higher sensitivity than conventional imaging agents. Because it can be distinguished from autofluorescence derived from biological components by selecting fluorescent dyes with excitation and fluorescence detection wavelengths of 500-700 nm long wavelength, it is possible to realize highly sensitive imaging from outside the living body. This is possible.
  • the amount of the molecular imaging agent used in the treatment method of the present invention depends on the purpose of use, target disease (type, severity, etc.), patient age, weight, sex, medical history, cell morphology or type. It can be easily determined by those skilled in the art in consideration of the above.
  • the frequency with which the treatment method of the present invention is applied to a subject (or patient) also depends on the purpose of use, target disease (type, severity, etc.), patient age, weight, gender, medical history, treatment course, etc. In view of this, it can be easily determined by those skilled in the art. Examples of the frequency include administration once a few months every day (for example, once a week—once a month). 1 week—preferably given once a month, over time.
  • Molecular imaging agents can be formulated using pharmaceutically acceptable carriers well known in the art in dosage forms suitable for administration. Such carriers allow drug delivery vehicles to be formulated into liquids, gels, syrups, slurries, suspensions, etc. suitable for consumption by the patient.
  • the present invention provides a carrier for use in molecular or in vivo imaging.
  • This carrier may include a sugar chain-modified ribosome.
  • the sugar chain has a silyl Lewis X group. It can be.
  • This Siaryl Lewis X group can be included in the sugar chain-modified ribosome at a modified bond density of 0. OOOlmg sugar chain Zmg lipid to 500 mg sugar chain Zmg lipid.
  • it can be included in the glycan-modified ribosome with a modified binding density of preferably 0.0025 mg glycan Zmg lipid to 0.1 mg glycan Zmg lipid (preferably 0.025 mg glycan / mg lipid) .
  • the sugar chain-modified ribosome When imaging cancer tissue, it is preferably contained in the sugar chain-modified ribosome at a modified bond density of 0.0025 mg sugar chain Z mg lipid to 0.1 mg mg sugar chain Z mg lipid (preferably 0.025 mg sugar chain Z mg lipid). obtain.
  • the sugar chain may be an N-acetyllactosamine group.
  • the N-acetylyllactosamine group may be contained in the sugar chain-modified ribosome at a modified bond density of 0. OOOlmg sugar chain Zmg lipid to 5 OOmg sugar chain Zmg lipid, preferably 0.025 mg sugar chain Zmg lipid.
  • a modified bond density 0. OOOlmg sugar chain Zmg lipid to 5 OOmg sugar chain Zmg lipid, preferably 0.025 mg sugar chain Zmg lipid.
  • the sugar chain modified ribosome can preferably be included at a modified bond density of 0.0025 mg sugar chain Zmg lipid to 0.5 mg sugar chain Zmg lipid (preferably 0.1 mg sugar chain Zmg lipid).
  • the sugar chain may be a 1-6 mannobiose group.
  • This ⁇ 1-6 mannobiose group can be contained in a sugar chain-modified ribosome with a modified bond density of 0. OOOlmg sugar chain Zmg lipid to 500 mg sugar chain Zmg lipid.
  • it is preferably contained in the sugar chain-modified ribosome at a modified bond density of 0.0025 mg sugar chain Z mg lipid to 0.1 mg sugar chain Z mg lipid (preferably 0.025 mg sugar chain Z mg lipid). obtain.
  • the imaging agent of the present invention can be used to image an inflammatory site, cancer tissue, cerebral blood vessel, liver or the like. These organizations may contain substance.
  • the medium or composition of the present invention includes a composition in which the fluorescent dye, drug or biological agent is contained in the sugar chain-modified ribosome in an amount effective to achieve the intended purpose.
  • ⁇ Amount effective to treat '' is a term well recognized by those skilled in the art and refers to the amount of drug effective to produce the intended pharmacological result (e.g., prevention, treatment, prevention of recurrence).
  • a therapeutically effective amount is an amount sufficient to reduce the symptoms of the disease to be treated. is there.
  • One useful assay to ascertain an effective amount (eg, a therapeutically effective amount) for a given application is to measure the extent of recovery of the target disease.
  • the amount actually administered will depend on the individual to whom the treatment is to be applied, and is preferably an amount optimized to achieve the desired effect without significant side effects.
  • the determination of an effective dose is well within the ability of those skilled in the art.
  • Therapeutically effective doses, prophylactically effective doses, and the like and toxicity are standard pharmaceutical procedures in cell cultures or laboratory animals (e.g., ED, doses therapeutically effective in 50% of the population; and
  • the dose ratio between fruit and toxic effects is the therapeutic index, expressed as the ratio ED ZLD.
  • Drug delivery vehicles that exhibit large therapeutic indices are preferred.
  • Cell culture and animal experimentation power obtained Data used to formulate a range of quantities for human use.
  • the dosage of such compounds lies preferably within a range of circulating concentrations that include the ED with little or no toxicity. This dosage is the dosage form used,
  • the dose is appropriately selected depending on age and other patient conditions, the type of disease, the type of cells used, and the like.
  • composition, molecular imaging agent, medium and the like of the present invention can be produced in a manner similar to a manner known in the art (for example, mixing, dissolution, etc.).
  • the composition of the present invention for delivering a substance to a desired site may contain a sugar chain-modified ribosome modified with a sugar chain.
  • the sugar chain may be a sialyl Lewis X group. This sialyl Lewis X group can be contained in sugar chain-modified ribosomes with a modified bond density of 0. OOOlmg sugar chain Zmg lipid to 500 mg sugar chain / mg lipid.
  • the sugar chain-modified ribosome can preferably be included at a modified bond density of 0.0025 mg sugar chain Zmg lipid to 0.1 mg sugar chain Zmg lipid (preferably 0.025 mg sugar chain Zmg lipid).
  • the sugar chain-modified ribosome contained in the composition of the present invention has a sugar chain of N-acetyllactosami. It can be a group.
  • the N-acetylyllactosamine group may be contained in the sugar chain-modified ribosome at a modified bond density of 0. OOOlmg sugar chain Zmg lipid to 5 OOmg sugar chain Zmg lipid, preferably 0.025 mg sugar chain Zmg lipid.
  • When imaging cerebral blood vessels preferably included in the sugar chain-modified ribosome with a modified bond density of 0.002 mg mg sugar chain Zmg lipid to 0.1 mg sugar chain Zmg lipid (preferably 0.025 mg sugar chain Zmg lipid).
  • the sugar chain modified ribosome can preferably be included at a modified bond density of 0.0025 mg sugar chain Zmg lipid to 0.5 mg sugar chain Zmg lipid (preferably 0.1 mg sugar chain Zmg lipid). .
  • the sugar chain may be an a 1-6 mannobiose group.
  • This ⁇ 1-6 mannobiose group can be contained in a sugar chain-modified ribosome with a modified bond density of 0. OOOlmg sugar chain Zmg lipid to 500 mg sugar chain Zmg lipid.
  • it is preferably contained in the sugar chain-modified ribosome at a modified bond density of 0.0025 mg sugar chain Z mg lipid to 0.1 mg sugar chain Z mg lipid (preferably 0.025 mg sugar chain Z mg lipid). obtain.
  • the imaging agent of the present invention can be used to image an inflammatory site, cancer tissue, cerebral blood vessel, liver or the like. These organizations may contain substance.
  • the "instruction” refers to a method for administering the sugar chain-modified ribosome of the present invention or a molecular imaging agent, etc. To obtain).
  • This instruction manual describes a word for instructing a procedure for administering the sugar chain-modified liposome or the molecular imaging agent of the present invention.
  • This instruction is prepared according to the format prescribed by the national regulatory authority (for example, the Ministry of Health, Labor and Welfare in Japan and the Food and Drug Administration (FDA) in the United States) in the country where the present invention is implemented. It will be clearly stated that it has been approved.
  • the instructions are so-called package inserts and are usually provided in paper media, but are not limited thereto, for example, electronic media (for example, homepage (website) provided on the Internet, electronic (Child mail) can also be provided.
  • subject refers to an organism to which the treatment of the present invention is applied, and is also referred to as "patient”.
  • patient refers to an organism to which the treatment of the present invention is applied, and is also referred to as “patient”.
  • patient or subject may preferably be a human.
  • the present invention relates to a glycan for the manufacture of a medicament for treating disorders of the respiratory system, circulatory system, digestive system, urinary 'genital system, central nervous system, or peripheral nervous system.
  • a glycan for the manufacture of a medicament for treating disorders of the respiratory system, circulatory system, digestive system, urinary 'genital system, central nervous system, or peripheral nervous system.
  • modified ribosomes for treating disorders of the respiratory system, circulatory system, digestive system, urinary 'genital system, central nervous system, or peripheral nervous system.
  • any form described in the above can be used.
  • the present invention can also be used as a medicament.
  • the drugs encapsulated or bound to the sugar chain-modified ribosome of the present invention include, but are not limited to, for example, the following: alkylated anticancer agents, antimetabolites, plant-derived anticancer agents, Anticancer antibiotics, BRM, cytodynamics, platinum complex anticancer drugs, immunotherapy drugs, hormone anticancer drugs, tumor drugs such as monoclonal antibodies, central nervous system drugs, peripheral nervous system • sensory organ drugs, breathing Remedies for genital diseases, drugs for the cardiovascular system, drugs for the digestive organs, drugs for the hormonal system, drugs for the urinary organs, drugs for vitamins, nourishing tonics, metabolic drugs, antibiotics, chemotherapeutic drugs, testing drugs, anti-inflammatory Drugs, eye disease drugs, central nervous system drugs, self-immune drugs, cardiovascular drugs, lifestyle diseases such as diabetes and hyperlipidemia, corticosteroids, immunosuppressants, antibacterial drugs, antivirals
  • the present invention provides a method for imaging the respiratory system, circulatory system, digestive system, urinary 'genital system, central nervous system, or peripheral nervous system.
  • This method includes the step of administering a molecular imaging agent to a subject, the molecular imaging agent comprising a sugar chain-modified ribosome and a fluorescent dye, wherein the sugar chain-modified ribosome contains a sufficient amount of the fluorescent dye for detection.
  • a molecular imaging agent comprising a sugar chain-modified ribosome and a fluorescent dye, wherein the sugar chain-modified ribosome contains a sufficient amount of the fluorescent dye for detection.
  • the sugar chain-modified ribosome any form described in the above-mentioned (sugar chain-modified liposome) can be used.
  • the present invention provides a method for imaging inflammation or cancer.
  • This method comprises the step of administering a molecular imaging agent to a subject, the molecular imaging agent comprising a sugar chain-modified ribosome and a fluorescent dye, wherein the sugar chain-modified ribosome is Contains a sufficient amount of fluorescent dye for detection.
  • the sugar chain-modified ribosome any form described in the above (Sugar chain-modified ribosome) can be used.
  • the present invention provides a system for molecular imaging or in vivo imaging of a site of interest.
  • “molecular imaging” or “in vivo imaging” refers to imaging a function or structure of a living body.
  • the system for molecular imaging or in vivo imaging of the present invention is
  • the label includes, but is not limited to, a fluorescent substance, a radioactive substance, a coloring substance (for example, ⁇ gal), an issuing substance (for example, luciferase), and the like.
  • the sugar chain of the sugar chain-modified ribosome that can be used in the system of the present invention can be a silyl Lewis X group.
  • This sialyl Lewis X group can be included in a sugar chain-modified ribosome with a modified bond density of 0. OOOlmg sugar chain Z mg lipid to 500 mg sugar chain / mg lipid.
  • it is preferably contained in the sugar chain-modified ribosome at a modified bond density of 0.0025 mg sugar chain Z mg lipid to 0.1 mg sugar chain Z mg lipid (preferably 0.025 mg sugar chain / mg lipid).
  • the sugar chain modified ribosome may preferably be included at a modified binding density of 0.0025 mg sugar chain Z mg lipid to 0.1 mg sugar chain Z mg lipid (preferably 0.025 mg sugar chain Z mg lipid).
  • the sugar chain of the sugar chain-modified ribosome that can be used in the system of the present invention may be an N-acetyllactosamine group.
  • This N-acetyllactosamine group can be included in the sugar chain-modified ribosome at a modified binding density of 0. OOOlmg sugar chain / mg lipid to 500 mg sugar chain Z mg lipid, preferably 0.025 mg sugar chain Z mg lipid.
  • 0.0025 mg sugar chain Z mg lipid to 0.1 mg sugar chain Z mg lipid preferably 0.025 mg sugar It can be included in sugar chain modified ribosomes with a modified bond density of (chain Zmg lipid).
  • the sugar chain modified ribosome may preferably be included at a modified bond density of 0.0025 mg sugar chain Zmg lipid to 0.5 mg sugar chain Zmg lipid (preferably 0.1 mg sugar chain Zmg lipid).
  • the sugar chain of the sugar chain-modified ribosome that can be used in the system of the present invention may be a 1-6 mannobiose group.
  • This ⁇ 1-6 mannobiose group can be contained in the sugar chain-modified ribosome with a modified bond density of 0. OOOlmg sugar chain Zmg lipid to 500 mg sugar chain / mg lipid.
  • it is preferably contained in the sugar chain-modified ribosome at a modified bond density of 0.0025 mg sugar chain Z mg lipid to 0.1 mg mg sugar chain Z mg lipid (preferably 0.025 mg sugar chain Z mg lipid). obtain.
  • an inflamed site, cancer tissue, cerebral blood vessel, liver or the like can be imaged. These tissues may contain parenchyma.
  • the means for examining the presence or absence of the label used in the system of the present invention may be a scanning microscope.
  • the means for checking the presence or absence of the label further comprises a stick objective lens.
  • any substance for example, fluorescence, radiation, chromogenic substance (for example, ⁇ gal), issuing substance (for example, luciferase), etc.
  • Etc. This is because the function or structure of the living body can be imaged by detecting the label.
  • the present invention provides a method for treating a subject having a respiratory, circulatory, gastrointestinal, urinary 'genital, central or peripheral nervous system disorder.
  • This method comprises administering to a subject a molecular imaging agent for treating a disorder, the molecular imaging agent comprising a glycosylated ribosome and a pharmaceutically acceptable carrier, wherein the glycosylated ribosome comprises Contains an effective amount of the drug to treat the disorder.
  • a molecular imaging agent for treating a disorder the molecular imaging agent comprising a glycosylated ribosome and a pharmaceutically acceptable carrier, wherein the glycosylated ribosome comprises Contains an effective amount of the drug to treat the disorder.
  • the sugar chain-modified ribosome any form described in the above (Sugar chain-modified ribosome) can be used.
  • the present invention provides a method for treating a subject having inflammation or cancer.
  • This method comprises a molecular imaging agent for treating a disorder in a subject.
  • the molecular imaging agent comprises a glycosylated ribosome and a pharmaceutically acceptable carrier, and the glycosylated ribosome comprises an amount of an agent effective to treat the disorder.
  • the sugar chain-modified ribosome any form described in the above-mentioned (Sugar chain-modified ribosome) can be used.
  • the present invention provides a method for delivering a biological agent to a target site in a subject in need thereof.
  • This method includes the step of administering the sugar chain-modified ribosome of the present invention, wherein the sugar chain-modified ribosome contains an effective amount of the biological factor.
  • the sugar chain-modified ribosome any form described in the above (sugar chain-modified liposome) can be used.
  • the sugar chain-modified ribosome any form described in the above (Sugar chain-modified ribosome) can be used.
  • the present invention provides a method for producing a fluorescent dye-containing sugar chain-modified ribosome.
  • This production method includes: A) a step of forming a ribosome in which a fluorescent dye is encapsulated or bound; B) a step of hydrophilizing the ribosome; C) a step of binding the liposome to a linker protein. And D) a step of binding a sugar chain to the ribosome.
  • the sugar chain-modified ribosome any form described in the above-mentioned (Sugar chain-modified ribosome) can be used.
  • the present invention provides a method for producing a sugar chain-modified ribosome.
  • a lipid is suspended in methanol Z chloroform solution and stirred, the stirred solution is evaporated, and a precipitate is vacuum dried to obtain a lipid membrane; Suspending the lipid membrane in a suspension buffer and sonicating; (c) mixing the sonicated solution with a fluorescent labeling solution to provide fluorescently labeled ribosomes; (d) ) Hydrophilic treatment of the liposome with tris (hydroxyalkyl) aminoalkane; (e) Linker protein is bound to the hydrophile-treated ribosome to form a linker protein-bound ribosome.
  • the present invention provides a method for producing a sugar chain-modified ribosome for delivering a substance (eg, fluorescent dye, drug) to a target delivery site.
  • a substance eg, fluorescent dye, drug
  • This method comprises the steps of: (a) providing fluorescently labeled sugar chain-modified ribosomes having various sugar chain densities to achieve delivery to the target delivery site, comprising: (i) lipids Suspending in methanol Z chloroform solution and stirring, evaporating the stirred solution and drying the precipitate in vacuo to obtain a lipid membrane; (ii) the lipid membrane in suspension buffer Suspending and sonicating; (iii) mixing the sonicated solution with a fluorescent labeling solution; (b) glycan density on the glycan-modified ribosome; Determining the density to achieve optimal delivery to the delivery site; and (c) incorporating the substance (e.g., fluorescent dye, pharmaceutical) into the determined optimal glycosylated ribosome to contain the drug Including the step of generating ribosomes.
  • Incorporation of substances can include, for example, encapsulation, binding to the outer surface, and the like.
  • substances eg, fluorescent dyes, pharmaceuticals
  • sugar chain-modified ribosome any form described in the above (Sugar chain-modified ribosome) can be used.
  • any of those used to bind or encapsulate drugs in ribosomes is used.
  • DPPC dinormitoylphosphatidylcholine
  • DCP dicetylphosphate
  • DPPE dipalmitoylphosphatidylethanolamine
  • sodium cholate are weighed, Suspend in Tanol 'black mouth form solution (1: 1) and stir for 1 hour at 37 ° C; (2) Kuro mouth form' methanol is evaporated on a rotary evaporator and vacuum dried.
  • the ribosome itself can be produced according to a known method. Examples thereof include a thin film method, a reverse layer evaporation method, an ethanol injection method, and a dehydration-one rehydration method. [0153] It is also possible to adjust the particle size of ribosomes by using an ultrasonic irradiation method, an etrusion method, a French press method, a homogenization method, or the like.
  • the production method of the liposome itself of the present invention will be specifically described. For example, first, phosphatidylcholines, cholesterol, phosphatidylethanolamines, phosphatidic acids, gandariosides, glycolipids or phosphatidylglycerols are used as the ingredients.
  • lipid and surfactant sodium cholate Prepare mixed micelles of lipid and surfactant sodium cholate.
  • the combination of phosphatidic acids or long-chain alkyl phosphates such as dicetyl phosphate is essential to negatively charge the ribosome
  • the combination of phosphatidylethanolamines is a hydrophilic reaction site.
  • Formulation of favorosides or glycolipids or phosphatidylglycerols is essential as a binding site for the linker.
  • Group power consisting of redesignosides, glycolipids, phosphatidylglycerols, sphingomyelins, and cholesterols At least one selected lipid assembles in the ribosome and functions as a scaffold (raft) that binds the linker.
  • the ribosome of the present invention is further stabilized by the formation of rafts that can bind such proteins. That is, the liposome of the present invention has at least one lipid raft selected from the group power of gandarioside, glycolipid, phosphatidylglycerols, sphingomyelins and cholesterols for binding the linker. Contains the formed ribosome. And the ribosome is produced by carrying out ultrafiltration of the mixed micelle obtained by this.
  • the ribosome used in the present invention is a force that can be used even if it is a normal one.
  • the surface should be hydrophilic. After preparing the ribosome as described above, the ribosome surface is made hydrophilic.
  • the present invention also includes liposome itself by binding sugar chains that have been hydrophilicized using the above-mentioned hydrophilic compound.
  • hydrophilic ribosomes have the advantage that the stability of the ribosome itself is enhanced, and that the sugar chain is recognizable when the sugar chain is bound.
  • the ribosome of the present invention includes, for example, ribosomal constituent lipid strengths phosphatidylcholines (molar ratio 0 to 70%), phosphatidylethanolamines (molar ratio 0 to 30%), phosphatidic acids, long-chain alkyl phosphates and dicetyl.
  • Phosphate power group power selected One or more lipids selected (molar ratio 0-30%), gandariosides, glycolipids, phosphatases Tidyglycerols and Sphingomyelins Powerful group power Liposomes containing one or more selected lipids (molar ratio 0-40%) and cholesterols (molar ratio 0-70%).
  • the present invention further includes a method of rendering the ribosome hydrophilic by binding the above-described hydrophilic compound to the ribosome. It also includes hydrophilic liposomes with no sugar chains attached.
  • the target-directed ribosome or intestinal absorbable ribosome of the present invention can be produced by binding a sugar chain to a ribosome to which no sugar chain is bound.
  • the hydrophilic property can be performed as follows. (1) Carbonate buffer (50mM
  • the hydrophilic property can be carried out as follows. (1) To exchange the buffer with carbonate buffer (CB S buffer: 50 mM NaHCO 157 mM NaCl (pH 8.5)),
  • the production method of the present invention comprises: a) providing a ribosome encapsulating fluorescence to which a linker protein is bound; b) subjecting the ribosome to a hydrophilic treatment. C) a step of binding 3,3,1 dithiobis (sulfosuccimid-midylpropionate) to the ribosome; and d) binding a sugar chain to the linker protein in the ribosome, Including the step of generating chain-modified ribosomes, wherein the steps b) to c) can be performed in any order.
  • This embodiment further includes the step of e) hydrophilicizing the fluorescent dye-containing sugar chain-modified ribosome; f) filtering the solution containing the hydrophilic fluorescent dye-containing sugar chain-modified ribosome. obtain.
  • the sugar chain-modified ribosome any form described in the above-mentioned (Sugar chain-modified ribosome) can be used.
  • the production method of the present invention can be carried out by performing the step c) and the step b) in order after the step a).
  • the production method of the present invention is a powder wherein the step c) comprises (cl) a cross-linking agent (eg, 3, 3, -dithiobis (sulfosucci-midylpropionate)). Adding a solution A containing carbonate buffer to the body A to dissolve and preparing a mixed solution; and (c2) adding the mixed solution to the solution containing liposomes at room temperature for 16 to 20 hours Stirring, ultrafiltering with a molecular weight cut off of 30,000, desalting, and preparing a solution containing a fluorescently encapsulated ribosome bound with 3,3,1 dithiobis (sulfosuccinimidylpropionate).
  • a cross-linking agent eg, 3, 3, -dithiobis (sulfosucci-midylpropionate)
  • (Dl) a step of completely dissolving a desired sugar chain in purified water, and preparing a sugar chain solution having a concentration of 1 to LOmM (preferably 5 mM); (d2) if necessary, the sugar chain Add hydrogen carbonate (pH 7-14) to the aqueous solution at a concentration of about 0.2 to 1. Og / mL (preferably 0.6 g / mL), and 20 to 40 ° C.
  • the step e) includes (el) concentrating the solution containing the fluorescent dye-containing sugar chain-modified ribosome, and 2- [4- (2-hydroxyethyl) -1piperaduryl] ethanesulfonic acid.
  • Add solution C containing (HEPES) buffer, ultrafilter with a fraction of 30,000, concentrate, and contain the concentrated fluorescent dye-containing glycosylated liposomes Liquid was added to the C solution, the fluorescence-contained ribosomes sugar chains are bound may include the step of parent aqueous I spoon.
  • the step of preparing the aminated sugar chain solution of (d 2) can be omitted.
  • the buffer for dissolving the sugar chain may be any buffer as long as it does not have a primary amino group.
  • Refrigeration refers to a temperature in the range of about 1-12 ° C, preferably about 2-8 ° C, because the sugar chain is dissolved in a buffer containing a primary amino group, which prevents the sugar chain from binding to the ribosome.
  • the Tris buffer used in the present method is a buffer solution using Tris hydroxymethylammonium as a base component, for example, N tris (hydroxymethyl) 3-a.
  • a minopropanesulfonic acid buffer or the like can be used.
  • the sugar chains that can be used in the present method include, but are not limited to, sialic Lewis X, N-acetylyl lactosamine, ⁇ 1-6 mannobiose, and the like.
  • the sugar chain may preferably be Cialyl Lewis X.
  • the sugar chain that can be used by the method of the present invention can be a sugar chain capable of glycosylation reaction.
  • the amount of sugar chain added can range from about 1 to 250 L per mL of ribosome solution. Preferably, it can be about 2.5-125 / zL per mL of ribosome solution.
  • the sugar chain can be preferably added at a final concentration of 5 mM.
  • the present invention provides a kit for producing a fluorescent dye-containing sugar chain-modified ribosome.
  • This kit includes i) a force for encapsulating or binding a fluorescent dye (eg, cy5.5, cy3, cy7, etc.) into a liposome; ii) a hydrophilizing agent for the ribosome; iii) a linker for the ribosome A protein; and iv) a sugar chain; V) a means for binding the sugar chain to the ribosome.
  • a fluorescent dye eg, cy5.5, cy3, cy7, etc.
  • the present invention provides a kit for producing a fluorescent dye-containing sugar chain-modified ribosome.
  • This kit consists of (A) a solution containing a ribosome bound to a linker protein; (B) a powder A containing a cross-linking agent (eg, 3,3′-dithiobis (sulfosucci-midylpropionate), etc.) (C) Solution A containing carbonate buffer; (D) Solution B containing Tris buffer; and (E) Solution C containing HEPES buffer.
  • a cross-linking agent eg, 3,3′-dithiobis (sulfosucci-midylpropionate), etc.
  • C Solution A containing carbonate buffer
  • D Solution B containing Tris buffer
  • E Solution C containing HEPES buffer.
  • the sugar chain-modified ribosome any form described in the above (sugar chain-modified ribosome) can be used.
  • Tris buffer used in this kit is a buffer using Tris-hydroxyme thylammonium as a basic component, for example, N tris (hydroxymethyl) -3-amino.
  • Tris-hydroxyme thylammonium as a basic component
  • Propane sulfonate buffer or the like can be used.
  • “refrigerated (lower)” refers to a temperature ranging from about 1 ° C to about 12 ° C, preferably from about 2 ° C to about 8 ° C.
  • room temperature refers to a temperature in the range of about 15 ° C. to about 30 ° C., preferably about 20 ° C. to about 25 ° C.
  • the sugar chain that can be used in the sugar chain-modified ribosome of the present invention can be synthesized by a general sugar chain synthesis method. These methods include (1) chemical synthesis, (2) fermentation using genetically modified cells or microorganisms, (3) synthesis using a sugar hydrolase (glycosidase), (4) sugar transfer Examples of the synthesis method include an enzyme (glycosyltransferase).
  • a general sugar chain synthesis method include (1) chemical synthesis, (2) fermentation using genetically modified cells or microorganisms, (3) synthesis using a sugar hydrolase (glycosidase), (4) sugar transfer Examples of the synthesis method include an enzyme (glycosyltransferase).
  • the sugar chain used in the sugar chain-modified ribosome of the present invention may be a sugar chain synthesized by the above method or a commercially available sugar chain. [0170] (Sugar chain binding to ribosome)
  • any of the above-mentioned sugar chains may be directly bound to the ribosome prepared as described above, and further, a sugar chain may be bound via a linker.
  • the type of sugar chain to be bound to the ribosome is not limited to one, and a plurality of sugar chains may be bound.
  • the plurality of sugar chains may be a plurality of sugar chains having binding activity to different lectins existing in common on the cell surface of the same tissue or organ, and cells of different tissues or organs may be used. It may be a sugar chain having binding activity for different lectins present on the surface.
  • the sugar chain is mixed as a glycolipid to produce a ribosome, and the sugar chain is bound to the phosphosome of the ribosome after production and the sugar chain density is controlled.
  • a protein derived from a living body particularly a human-derived protein.
  • the protein derived from the living body is not limited, and examples include proteins existing in blood such as albumin, and other physiologically active substances existing in the living body.
  • animal serum albumin such as human serum albumin (HSA) and ushi serum albumin (BSA) to be raised, especially when human serum albumin is used, it has been shown by experiments on mice that there is a large uptake in each tissue. It has been confirmed.
  • the ribosome of the present invention is very stable, and can be subjected to post-treatments such as binding a protein, binding a linker, or binding a sugar chain after forming the ribosome. Therefore, a large amount of ribosome After the production, various ribosomes can be produced according to the purpose by binding different proteins according to the purpose or by linking a linker or sugar chain.
  • a sugar chain is directly bonded to a lipid constituting the ribosome via a linker.
  • the ribosome of the present invention has a complex carbohydrate type ligand such as glycolipid and glycoprotein, and is hydrophilized with a low molecular weight compound! It is a ribosome.
  • the liposome needs to contain a compound having a pharmaceutical effect.
  • the compound having a medicinal effect may be encapsulated in a ribosome or bound to the ribosome surface, but a protein having a medicinal effect may be used as a linker.
  • the protein may also serve as a linker for binding the ribosome and sugar chain and a protein having a medicinal effect.
  • the medicinal protein include physiologically active proteins.
  • a crosslinking group can be used when the ribosome and the linker are bound.
  • Ribosome NalO, Pb (0 CCH
  • Gandarioside present on the ribosome membrane surface is treated with an oxidizing agent such as NaBiO.
  • Gandarioside is coupled by a reductive amination reaction.
  • This linker is also preferably made hydrophilic, by binding a compound having a hydroxy group to Ringer protein, for example, bissulfosuccinimidyl suberate, disuccinimidyl glutarate.
  • a divalent reagent such as glycol bissulfosuccinimidyl succinate can be used to bind the above-mentioned hydrophilic compound such as tris (hydroxymethyl) aminomethane to a linker on the ribosome.
  • one end of a divalent reagent for crosslinking is bonded to all the amino groups of the linker.
  • a glycosylamine compound obtained by glycosylation of the reducing ends of various sugar chains is prepared, and the divalent cross-linked divalent conjugated glycans and amino groups of the sugar chain are bonded to each other as described above. Combine the other unreacted end of the reagent portion.
  • the covalent bond between the sugar chain and Z or hydrophilic compound and the ribosome, or the covalent bond between the sugar chain and Z or hydrophilic compound and the linker occurs when the ribosome is taken into the cell. It can also be cut.
  • a linker and a sugar chain are covalently bonded via a disulfide bond
  • the sugar chain is cleaved by reduction in the cell.
  • the surface of the liposome becomes hydrophobic, binds to the biological membrane, disturbs the membrane stability, and releases the drug contained in the ribosome.
  • the linker is bound to the ribosome as follows. (1) Add sodium metaperiodate / N-tris (hydroxymethyl) -3-aminopropanesulfonic acid buffer (pH 8.4) and stir overnight under refrigeration. To do. (2) Remove free sodium metaperiodate and perform ultrafiltration (molecular weight cut off: 300,000) to exchange the buffer with PBS buffer (pH 8.0). (3) To the solution that had been added with HSAZPBS buffer (pH 8.0) and reacted at room temperature for 2 hours, sodium cyanoborate ZPBS buffer (pH 8.0) was added, and after 2 hours at room temperature, Stir overnight under refrigeration. (4) Free cyanoboron Perform ultrafiltration (molecular weight cut off: 300,000) to remove sodium acid and HSA, and exchange the buffer with carbonate buffer ( PH 8.5). As a result, the linker can be bound to the ribosome.
  • the linker is bound to the ribosome as follows. (1) Add sodium metaperiodate / N tris (hydroxymethyl) -3-aminopropanesulfonic acid buffer (pH 8.4) and stir overnight under refrigeration to acidify the ribosome particle surface. . (2) Remove free sodium metaperiodate and perform ultrafiltration (molecular weight cut off: 300,000) to exchange the buffer with PBS buffer (pH 8.0). (3) After adding HSAZPBS buffer (pH 8.0) and reacting at room temperature for 2 hours, stir overnight under refrigeration. (4) Perform ultrafiltration (molecular weight cut off: 300, 000) for the purpose of removing free HSA and exchanging the buffer with carbonate buffer (PH8.5). As a result, the linker can be bound to the ribosome.
  • the linker is bound to the ribosome as follows. (1) Add sodium metaperiodate ZN tris (hydroxymethyl) 3-aminopropanesulfonic acid buffer (PH8.4) and stir overnight under refrigeration to acidify the ribosome particle surface. (2) To remove free sodium metaperiodate and replace the buffer with PBS buffer (pH 8.0), concentrate to 1/5 to 1/10 times the volume by ultrafiltration. Add pH 8.0 to the original volume. Repeat this operation twice. (3) After adding HSAZPBS buffer (pH 8.0) and reacting at room temperature for 2 hours, add sodium cyanoboronate ZPBS buffer (pH 8.0), and after 2 hours at room temperature, further refrigerate. Stir overnight under.
  • PBS buffer pH 8.0
  • the linker is bound to the ribosome as follows. (1) Add sodium metaperiodate ZN tris (hydroxymethyl) 3-aminopropanesulfonic acid buffer (PH8.4) and stir overnight under refrigeration to acidify the ribosome particle surface. (2) To remove free sodium metaperiodate and replace the buffer with PBS buffer (pH 8.0), concentrate to 1/5 to 1/10 times the volume by ultrafiltration. Add pH 8.0) To the capacity of Repeat this operation twice. (3) Add HSAZPBS buffer (pH 8.0), react at room temperature for 2 hours, and stir overnight under refrigeration.
  • PBS buffer pH 8.0
  • the sugar chain is bound to a linker on the ribosome.
  • the reducing end of the sugar constituting the sugar chain is glycosylated using ammonia salts such as NH HCO and NH COONH.
  • the sugar chain can be bound to the linker on the ribosome as follows. (1) Dissolve the sugar chain in purified water and react at 37 ° C for 3 days under ammonium hydrogen carbonate saturation. (Aminated sugar chain solution). (2) Add the crosslinking agent DTSSP (PIERCE) to the ribosome solution, and after 2 hours at room temperature, stir overnight under refrigeration. (3) Perform ultrafiltration (molecular weight cut off: 300,000) to remove free DTSSP. (4) Add aminated sugar chain solution and react at room temperature for 2 hours, then add tris (hydroxymethyl) aminomethane / carbonate buffer (pH 8.5) and stir overnight under refrigeration.
  • DTSSP crosslinking agent
  • Ribosome formation and fluorescence (eg, cy5.5, Cy3, Cy7, etc.) labeled HSA inclusion (step A); ribosome hydrophilic treatment (step B); ribosome-HSA binding (step C) and Finishing can be accomplished by 0.45 m filter filtration following glycosylation of liposomes (step D).
  • the amount of protein of the ribosome or sugar chain-modified ribosome of the present invention can be measured, for example, by the BCA method by measuring the amount of HSA encapsulated in the ribosome and the total amount of HSA coupled to the ribosome surface.
  • Micro BCA Protein Assay Reagent Kit Cat. No. 23235BN (PIERCE Co. LTD)
  • 2 mg Zml albumin BSA
  • the protein amount of the sugar chain-modified ribosome of the present invention can be, for example, in the range of 0.1 to: LmgZml.
  • the protein amount of the sugar chain-modified ribosome labeled with Cy3 can be, for example, 0.24 mg / ml or more.
  • Sugar-modified ribosomal protein labeled with Cy5.5 The mass can be, for example, 0.45 mgZml or more.
  • the protein amount of the sugar chain-modified liposome labeled with Cy7 can be, for example, 0.20 mgZml or more.
  • the amount of constituent lipids of the ribosome and sugar chain-modified ribosome of the present invention can be calculated, for example, by quantifying the amount of cholesterol.
  • FC Free cholesterol
  • the Detamina TC555 kit (catalog number UCCZEAN12 8) (KYOWA Co. LTD) can be used.
  • dilute the standard substance (50mgZml: cholesterol) with PBS buffer, 0, 0.1, 0.25, 0.5, 0.75, 1, 5, 10 g / 20 1 Prepare the solution.
  • the conversion formula for obtaining the lipid content is also expressed as follows, for example.
  • Lipid content ⁇ 50 / ⁇ 1) Cholesterol content 8 ⁇ 50 / ⁇ 1) ⁇ 4.51 (Conversion factor)
  • the ratio of protein to lipid in the ribosome can also lead to the results of protein quantification and lipid quantification described above, for example .
  • the sugar chain-modified ribosome of the present invention preferably has a ratio of protein to lipid of about 0.1 to about 0.5.
  • the lipid amount of the sugar chain-modified ribosome of the present invention can be, for example, in the range of 1 to 4 mgZml.
  • the amount of lipid of the sugar chain-modified ribosome labeled with Cy3 can be, for example, 1.2 mgZml or more.
  • the amount of lipid of the sugar chain-modified ribosome labeled with Cy5.5 can be, for example, 1.4 mgZml or more.
  • the amount of lipid of the sugar chain-modified ribosome labeled with Cy7 can be, for example, 2. lmgZml or more.
  • the particle size distribution and particle size of the ribosome and sugar chain-modified ribosome of the present invention can be determined by, for example, diluting ribosome particles 50-fold with purified water to produce a Zetasizer Nano (Nan-ZS: MAL VERN Co. LTD). Can be measured. An example of particle size distribution is shown in Fig. 34.
  • the ribosome and sugar chain-modified ribosome of the present invention preferably have a particle size of about 80 ⁇ m to about 165 nm in the maximum range of the particle size distribution. This is because a particle size of about 80 nm to about 165 nm can avoid the recognition of immune system cells such as macrophages, and can avoid the uptake of liver and spleen endothelial reticuloendothelial (RES) force to some extent.
  • RES liver and spleen endothelial reticuloendothelial
  • a sugar chain-modified ribosome having a particle size of about 80 nm to about 165 nm is suitable for encapsulating a drug and delivering the drug to a target organ or a diseased part.
  • the ribosome and sugar chain-modified ribosome of the present invention has an average particle size of about 50 nm to about 300 nm, preferably about 65 nm to about 165 nm, and more preferably about lOO nm. This is because if the particle size of the ribosome is too large, it enters the cell's endothelial system in the liver's spleen non-specifically, and if the particle size is too large, it tends to be phagocytosed by immune system cells such as macrophages. Moreover, it is desirable that the ribosome of the present invention is negatively charged. By being negatively charged, the interaction with negatively charged cells in the living body can be prevented.
  • the zeta potential of the ribosome surface of the present invention is 37 ° C in physiological saline. 50 to: LOmV, preferably 40 to 0 mV, more preferably 1 to 30 to 10 mV.
  • the zeta potential on the ribosome surface is not limited to forces that can be 120 mV to 30 mV at 25 ° C. Preferably, it is less than ⁇ 30 mV at 25 ° C.
  • the zeta potential on the ribosome surface may be less than ⁇ 120 mV (25 ° C.) or greater than 30 mV. This is because aggregation between ribosomes only has to occur.
  • Examples of the drug to be included in the sugar chain-modified ribosome of the present invention include alkyl-type anticancer agents, antimetabolites, plant-derived anticancer agents, anticancer antibiotics, BRM, cytodynamic ins, platinum complex anticancer agents, and immunotherapeutic agents.
  • Hormone anticancer agents tumor drugs such as monoclonal antibodies, central nervous system drugs, peripheral nervous system, sensory organ drugs, respiratory disease drugs, cardiovascular drugs, digestive organ drugs, hormone drugs, urogenital genitalia Drugs, vitamins' nourishing tonics, metabolic drugs, antibiotics, chemotherapeutic drugs, test drugs, anti-inflammatory drugs, eye disease drugs, central nervous system drugs, autoimmune drugs, cardiovascular drugs, diabetes, high Life-style related diseases such as lipemia, corticosteroids, immunosuppressants, antibacterial agents, antiviral agents, angiogenesis inhibitors, cytoforce-in, chemokines, anti-site force-in antibodies, anti-chemokine antibodies Anti-site power In'chemokine receptor antibody, siRNA, miRNA, smRNA, antisense Gene therapy-related nucleic acid preparation such as ODN or DNA, neuroprotective factor, antibody drug, molecular target drug, osteoporosis / bone metabolism improving drug, Examples include neuropeptides, bioactive peptides and proteins.
  • a tumor drug such as nitrogen mustard hydrochloride N-oxide, cyclophosphamide, ifosfamide, prusphan, hydrochloride-mustine, mitoblonitol, melphalan, dacarbazine, ramustine, estramustine phosphate sodium, etc.
  • Anti-metabolites such as alkylating agents, mercaptopurines, thioinosine (mercaptopurine riboside), methotrexate, enositabine, cytarabine, ancitabine hydrochloride (cyclocytidine hydrochloride), fluoruracil, 5-FU, tegafur, doxyfluridine, carmofur, etc.
  • Plant-derived anticancer agents such as alkaloids such as vinplastin sulfate, pinklistin sulfate, vindesine sulfate, paclitaxel, taxol, irinotecan hydrochloride, nogitecan hydrochloride, actinomycin D, Mitomycin C, chromomycin A3, bleomycin hydrochloride, bleomycin sulfate, pepromycin sulfate, daunorubicin hydrochloride, doxorubicin hydrochloride, aclarubicin hydrochloride (acracinomycin A), pirarubicin hydrochloride, epilubicin hydrochloride, ne Anticancer antibiotics such as ocarchinostatin, mitoxantrone hydrochloride, carboplatin, cisplatin, L-parasine, Laseparaton, procarbazine hydrochloride, tamoxifen citrate, ube-metas
  • the ribosome of the present invention can be used for the treatment of diseases such as cancer and inflammation.
  • cancer includes all neoplastic diseases such as tumor and leukemia.
  • these drugs are included in the sugar chain-modified ribosome of the present invention and administered, the drugs accumulate at cancer and inflammation sites compared to when the drug is administered alone. Compared to the case of single administration, it can accumulate 2 times or more, preferably 5 times or more, more preferably 10 times or more, and particularly preferably 50 times or more.
  • ribosome (reference ribosome) to which tris (hydroxymethyl) aminomethane is bound, it can accumulate 3 to 4 times, preferably 4 to 6 times.
  • the sugar chain-modified ribosome of the present invention can be used for treatment of various diseases by encapsulating a drug as described above.
  • the drug-encapsulated sugar chain-modified ribosome can be administered by intravenous injection or oral administration. Even when the sugar chain-modified ribosome of the present invention is delivered to an organ when orally administered, the medium transferred into the blood by oral administration shows a tendency similar to that of intravenous injection.
  • the compound having a medicinal effect may be encapsulated in a ribosome or bound to the surface of a liposome.
  • a protein can be bound to the surface in the same manner as the above-mentioned linker binding method, and other compounds can be bound by a known method by using a functional group of the compound. it can.
  • Encapsulation inside the ribosome is performed by the following method. In order to encapsulate drugs, etc.
  • the ribosome preparation obtained by encapsulating a drug or gene that can be used for treatment or diagnosis in the ribosome of the present invention selectively controls the migration to cancer tissues, inflammatory tissues, and various tissues. It is intended to increase the efficacy by concentrating therapeutic drugs or diagnostic agents on target cells and tissues, or to reduce side effects by reducing the uptake of drugs to other cells and tissues. .
  • a label compound such as a fluorescent dye or radioactive compound is bound to the ribosome.
  • the labeled compound-binding ribosome binds to the affected area, the labeled compound is taken into the affected cell, and the disease can be detected and diagnosed using the presence of the labeled compound as an indicator.
  • the present invention can also be used in the health 'food field.
  • the points to be noted when used as an oral medicine should be considered as necessary.
  • a functional food such as a specific health food or a “health food”
  • a functional food, nutritional supplement, or health supplement that is encapsulated or bound to the sugar chain-modified ribosome of the present invention can be used as a food composition.
  • Functional foods, nutritional supplements, or health supplements that can be used in the present invention are limited to those that have been designed to effectively express food functions and are processed and converted. It is.
  • nutraceutical or It can be illustrated as a health supplement. These may be included in the ribosome as they are, or processed products such as extracts may be included. Food compositions containing ribosomes are taken orally.
  • the ribosome used may not be bound to a sugar chain, or may be bound to a sugar chain that enhances intestinal absorption or a sugar chain targeted to a specific tissue or organ.
  • the ribosome of the present invention When the ribosome of the present invention is administered as a food composition, it may be processed into foods such as liquid beverages, gel foods, and solid foods. Moreover, you may process into a tablet, a granule, etc.
  • the food composition of the present invention can be used as a functional food, a nutritional supplement or a health supplement depending on the type of food contained in the ribosome.
  • a ribosome containing DHA can be used as a functional food, nutritional supplement, or health supplement effective for mild senile dementia and memory improvement.
  • the improved cholate dialysis method was used according to a previously reported method (Yamazaki, N., Kodama, M. and Gabius, H. —J. (1994) Methods Enzymol. 242, 56—65).
  • dipalmitoyl phosphatidylcholine, cholesterol, dicetyl phosphate, gandarioside and dipalmitoyl phosphatidylethanolamine were mixed in a molar ratio of 35: 40: 5: 15: 5 to give a total lipid content of 45.6 mg.
  • 46.9 mg of sodium cholate was added, and dissolved in 3 ml 1 of black mouth form Z methanol (1: 1) solution.
  • lipid membrane was resuspended in 3 ml of N tris (hydroxymethyl) 3-aminopropanesulfonic acid buffer (pH 8.4) and stirred at 37 ° C for 1 hour. The solution was then purged with nitrogen and sonicated to obtain a clear micelle suspension. Sarakoko, micelle suspension was ultrafiltered using PM10 membrane (Amicon Co., USA) and ⁇ Tris (hydroxymethyl) 3 aminopropane sulfonate buffer (pH 8.4) (fractionated molecular weight: 10 , 000) to prepare 10 ml of uniform ribosome (average particle size lOOnm).
  • this ribosome solution was subjected to ultrafiltration (fractionated molecular weight: 300,000) with an XM300 membrane and a carbonate buffer (pH 8.5).
  • 40 mg of tris (hydroxymethyl) aminomethane dissolved in 1 ml of carbonate buffer (pH 8.5) was added to 10 ml of ribosome solution.
  • the solution was then stirred at room temperature for 2 hours, then stirred overnight under refrigeration, ultrafiltered with a molecular weight cut off of 300,000 to remove free tris (hydroxymethyl) aminomethane, and the carbonate buffer solution.
  • Example 5 Binding of sugar chains onto ribosome membrane surface-bound human serum albumin (HSA) 2 mg of each sugar chain prepared in Example 4 was dissolved in purified water, and 0.25 g NH HCO was dissolved.
  • HSA human serum albumin
  • a 10 ml portion of the ribosome solution obtained in Example 3 was added to the cross-linking reagent 3, 3, 1 dithiobis (sulfosuccinimidyl propionate (DTS SP; Pierce Co.
  • DTS SP 1, 1 dithiobis (sulfosuccinimidyl propionate
  • Example 6 Hydrophilization treatment on ribosome membrane surface-bound human serum albumin (HSA)
  • HSA human serum albumin
  • the solution (2 mgZml) and (2.5 ml) were mixed and stirred at 37 ° C for 3 hours.
  • This mixed solution was ultrafiltered with a fractional molecular weight 10,000, N-tris (hydroxymethyl) 3 -aminopropanesulfonic acid buffer ( pH 8.4) solution to remove free cy5.5, and cy5.
  • a 5-labeled human serum albumin solution was prepared.
  • Ribosomes have been reported (Yamazaki, N., Kodama, M. and Gabius, H. —J.
  • the obtained lipid membrane was resuspended in 3 ml of TAPS buffered physiological saline (pH 8.4) and stirred at 37 ° C for 1 hour. The solution was then purged with nitrogen and sonicated to give 3 ml of a clear micelle suspension. To this sonicated micelle suspension, cy5.5-labeled HSA solution completely dissolved to 0.2 mgZlml with HSA buffer (pH 8.4) was slowly added dropwise with stirring and mixed uniformly.
  • Fluorescent dye-containing micelle suspension was subjected to ultrafiltration using PM10 membrane (Amicon Co., USA) and TAPS buffered saline ( ⁇ 8.4) (fractional molecular weight: 10 000) to obtain uniform fluorescence 10 ml of a ribosome particle suspension containing the dye was prepared.
  • the particle size and zeta potential of the ribosome particles encapsulating the fluorescent dye in the obtained physiological saline suspension (37 ° C) are converted into zeta potential ⁇ particle size ⁇ molecular weight measuring device (Model Nano ZS, Malvern Instruments Ltd. ,, UK), the particle size was about 65 nm to about 125 nm, and the zeta potential was 40 to 70 mV.
  • Liposomes containing the fluorescent dye prepared in Example 7 1 Oml was ultrafiltered using XM 300 membrane (Amic on Co., USA) and carbonate buffer (pH 8.5) (fractionated molecular weight: 300, The pH of the solution was 8.5. Next, 10 mg of a cross-linking reagent bis (sulfosuccinimidyl) sverley HBS 3 ; Pierce Co., USA) was added and stirred at room temperature for 2 hours. Then, to complete the further chemical binding reaction between 7 ° C De ⁇ lipid on the ribosome film dipalmitoylphosphatidyl E Tano Ruamin and BS 3.
  • this ribosome solution was subjected to ultrafiltration (fractionated molecular weight: 300,000) with an XM300 membrane and a carbonate buffer (pH 8.5).
  • 40 mg of tris (hydroxymethyl) aminomethane dissolved in 1 ml of carbonate buffer (pH 8.5) was added to 10 ml of liposome solution.
  • this solution was stirred at room temperature for 2 hours, then stirred under refrigeration, ultrafiltered with a molecular weight cut off of 300,000 to remove free tris (hydroxymethyl) aminomethane, and the carbonate buffer solution.
  • HSA human serum albumin
  • Free periodate sodium periodate was removed by ultrafiltration (fraction molecular weight: 300, 000) with XM300 membrane and PBS buffer (pH 8.0), and N-tris (hydroxymethyl) -3-a
  • the minopropane sulfonate buffer was replaced with PBS buffer (pH 8.0) to obtain 10 ml of oxidized ribosome.
  • PBS buffer pH 8.0
  • 20 mg of human serum albumin (HSA) / PBS buffer (pH 8.0) was added and reacted at room temperature for 2 hours, and then 2 M NaBH CNZPBS buffer (pH 8.0) 100 1 2 hours at room temperature
  • a sugar chain was prepared by the same procedure as in Example 4.
  • the particle size and zeta potential of the ribosome particles encapsulating the fluorescent dye in the obtained physiological saline suspension (37 ° C) are converted into zeta potential ⁇ particle size ⁇ molecular weight measuring device (Model Nano ZS, Malvern Instruments Ltd. ,, UK), the particle size was about 65 nm to about 125 nm, and the zeta potential was 40 to 70 mV.
  • Example 12 Hydrophilization treatment on ribosome membrane surface-bound human serum albumin (HSA)
  • HSA human serum albumin
  • Tumor (EAT) cells were transplanted 5 ⁇ 10 6 cells and used for experiments 7-10 days later.
  • Nembutal solution was administered 300 1 into the peritoneal cavity of cancer-bearing mice and anesthetized.
  • Pre-dose image data was taken with a fluorescence imaging device eXplore Optix (GE Healthcare). From the tail vein, cy5.5-encapsulated sugar chain-modified ribosome (K1) (2001: equivalent to 750 ⁇ g of lipid) was administered, and image data immediately after administration were collected.
  • K1 cy5.5-encapsulated sugar chain-modified ribosome (K1) (2001: equivalent to 750 ⁇ g of lipid) was administered, and image data immediately after administration were collected.
  • the sugar chain-modified ribosome ( ⁇ 3) showed a weak signal at the tumor site, even without the ability to accumulate at the tumor site. In addition, it gradually accumulated at the tumor site until 1 day later, but it changed without any change between 2 days and 3 days later. This result shows that K1-3 ribosome, not ⁇ 3-3 ribosome, is optimal for imaging the tumor site, and that the sugar chain is specific.
  • mice (BalbZc, female, 8 weeks old) were administered with 200 l (2 mg) of monoclonal antibody (Chondrex) for inducing arthritis in the tail vein.
  • monoclonal antibody Chondrex
  • LPS Lipopolysaccharide 100 1 (50 1) was intraperitoneally administered to mice. Mice developed arthritis 3-4 days after administration.
  • Anesthesia was performed by administering 1/10 Nembutal solution into the peritoneal cavity of arthritic mice.
  • Pre-dose image data was taken with a fluorescence imaging device eXplore Optix (GE Healthcare). From the tail vein, cy5.5-encapsulated sugar chain-modified ribosome (Kl, K2) (501: lipid amount 190 g) was administered, and image data immediately after administration were taken. As a control, The same amount of ribosome to which no sugar chain was bound was administered. The image data was collected over time. All image data were taken from the back foot from the back side.
  • sugar chain-modified ribosomes (K1) which have a low sugar chain-modified bond density, accumulate specifically at the inflammatory site (Fig. 10).
  • K1-3 from another lot sample also accumulated at the site of inflammation. This result showed imaging of the site of inflammation by K1-3 ribosome and reproducibility of the specificity (Fig. 11).
  • K1-2 was accumulated at the site of inflammation even if the sugar chain density was low. From these results, the sugar chain-modified ribosome (K1) has a higher sugar chain modification density, which is lower than the ribosome, and the ribosome is more suitable for imaging of inflammatory sites! (Fig. 12)
  • mice (Confirmation of pharmacokinetics of cy5.5 encapsulated sugar chain-modified ribosome in normal mice) As normal mice, BalbZc, female, 7-8 weeks old were used.
  • Nembutal solution was administered 100 1 into the abdominal cavity of normal mice and anesthetized.
  • Pre-dose image data was taken with a fluorescence imaging device eXplore Optix (GE Healthcare). From the tail vein, cy5.5-encapsulated sugar chain-modified ribosome (2001: lipid amount 750 g) was administered, and image data immediately after administration were taken. The image data was collected over time. All image data were taken from the ventral side.
  • FIG. 14 shows brain data. One hour after administration, it was confirmed that K1 3 and K2-3 were accumulated in the brain. One day after administration, K1-3 was clearly decreased with K2-3, which has a considerable amount of brain remaining. From this result, it was found that sugar chain-modified ribosome (K1) penetrates the blood-brain barrier (BBB) and penetrates into tissues. In addition, the sugar-modified ribosome (K2) decreased after one day, indicating that it cannot pass through the BBB force that enters the brain blood vessels and does not penetrate into the tissue. This proved that there was a specific dynamic in the brain depending on the type of sugar chain. [0244] FIG. 15 shows liver data. One day later, K2-6 showed a strong signal. From this result, it was proved that the specificity of accumulation in the liver due to the difference in sugar chain type and modified bond density can be seen as imaging.
  • BBB blood-brain barrier
  • FIG. 16 shows kidney data. Compared with the K1 and K3 sugar chains, the K2 sugar chain (K2-3) showed a strong signal 1 hour after administration. From this result, it was proved that K2-3 sugar chain can image the specificity of accumulation in the kidney.
  • FIG. 17 shows spleen data. K1-3, 4, 6 and K2-4, 6 were accumulated. This result showed that the specificity of accumulation in the spleen due to the difference in the type of sugar chain and the modified binding density can be seen as an image.
  • Figure 18 shows lung data. For K1-3, the signal persisted 1 hour and 1 day after administration. From this result, it was proved that the specificity of accumulation in the lung due to the difference in the type of sugar chain and the modified bond density can be seen as imaging.
  • FIG. 19 shows spleen data.
  • the signal is weak overall, but partially (K2—3, ⁇ 2
  • FIG. 20 shows cardiac data.
  • the signal without sugar chain showed a stronger signal. From this result, it was found that the specificity of accumulation in the heart due to the difference in the type of sugar chain and the modified binding density can be seen as imaging.
  • FIG. 21 shows K1-3 whole body scan data (other than the parietal region) immediately after administration.
  • K13 has a weaker liver signal than no sugar chain. These results indicate that immediately after administration, K1-3 liposomes are less likely to be taken into the liver than ribosomes without sugar chains.
  • FIG. 22 shows whole body scan data of K1-4, 6 (other than the parietal region) immediately after administration. Like K13, liver signal is weaker than without sugar chain. These results indicate that immediately after administration, sugar chain-modified liposomes (K1) are less likely to be taken up by the liver than ribosomes without sugar chains.
  • FIG. 23 shows whole body scan data of ⁇ 2-3 (other than the parietal region) immediately after administration. No sugar chain The liver signal is stronger than. From these results, it was proved that K2-3 ribosomes were more easily taken into the liver than ribosomes without sugar chains immediately after administration. This result was the same as that shown in FIG. Immediately after administration, specificity to the liver was shown by the type of sugar chain.
  • Fig. 24 shows whole body scan data for K2–4, 6 (except for the parietal region) immediately after administration. K2-4 and K2-6 have weaker liver signals than without sugar chains. These results indicate that immediately after administration, K2-4 and K2-6 ribosomes are less likely to be taken into the liver than ribosomes without sugar chains. Immediately after administration, specificity for the liver due to the difference in the modified binding density was shown.
  • FIG. 25 shows whole body scan data of K3-3 (except for the parietal region) immediately after administration.
  • the signal in the liver is the same as in the case of no sugar chain. From these results, it was found that K3-3 ribosomes were less likely to be taken into the liver immediately after administration compared to ribosomes without sugar chains.
  • FIG. 26 shows whole body scan data for K3-4 and 6 (other than the parietal region) immediately after administration. K3-4 and K3-6 have weaker liver signals than without sugar chains. From these results, it was found that immediately after administration, sugar chain-modified ribosome (K3) is less likely to be taken into the liver than ribosomes without sugar chain.
  • FIG. 27 shows whole body scan data without sugar chain (other than the parietal region) and changes with time. One day later, signals were detected in the liver and bladder. From this result, it was found that ribosomes can be observed by force imaging of metabolism and excretion into the liver and bladder.
  • FIG. 28 shows K13 whole body scan data (other than the parietal region) and time course. One day later, a signal was detected in the bladder. From this result, it was proved that ribosome can be observed by force imaging of metabolism and excretion into the liver and bladder.
  • FIG. 29 shows K 14 whole body scan data (other than the parietal region) and time course. One day later, signals were detected in the liver and bladder. Two days later, the signal in the liver decreased.
  • Figure 30 shows the time course of K1-6 whole body scan data (except for the parietal region). From this result, it was proved that ribosome can be observed by force imaging of metabolism and excretion into the liver and bladder.
  • Micro BCA TM Protein Assay Reagent kit (catalog number 23235BN) (PIERCE Co. LTD) was used for the measurement of protein amount.
  • As a standard substance 2 mg Zml albumin (BSA) attached to the kit was used.
  • a standard substance (2 mgZml: albumin) was diluted with PBS buffer solution to prepare 0, 0.25, 0.5, 1, 2, 3, 4, 5 g / 50 1 solutions.
  • Cy5.5-encapsulated sugar chain-modified ribosomes were diluted 20-fold with PBS buffer to prepare a sample solution.
  • the standard solution and the sample solution were each dispensed into a test tube for 50 minutes.
  • 100 1 of 3% sodium lauryl sulfate solution (SDS solution) was added to each test tube.
  • the test tube was allowed to stand at 60 ° C for 1 hour. After returning to room temperature, the absorbance was measured at 540 nm, a calibration curve was prepared with a standard solution, and the amount of ribosomal protein was measured. The following table shows the results.
  • the amount of ribosome component lipid was calculated by quantifying the amount of cholesterol.
  • Detamina TC555 kit Cat. No. UCCZEAN128, (KYOWA Co. LTD) was used for lipid quantification. 50mgZml attached to kit as standard
  • Lipid content ⁇ 5 ⁇ / ⁇ 1) Cholesterol content gZSO / zl) X 4.51 (Conversion factor) The quantitative results of lipid content are shown below.
  • Ribosome particles were diluted 50-fold with purified water and measured using a Zetasizer Nano (Nan-ZS: MA LVERN Co. LTD).
  • Human serum albumin ZN Tris (hydroxymethyl) 3-aminopropanesulfonic acid buffer (pH8.4) solution (10mgZml), (2ml) with cy5.5ZN-tris (hydroxymethyl) 3 aminopropanesulfonic acid buffer ( pH 8.4) solution (2mgZml) and (2.5ml) were mixed and stirred at 37 ° C for 3 hours.
  • This mixed solution is ultrafiltered with a molecular weight cut-off of 10,000 to remove free cy5.5 and prepare a cy5.5-labeled human serum albumin solution.
  • a sugar chain is prepared in the same manner as in Example 4.
  • Conjugate glycosylated amine compounds to DTSSP on the screen Free sugar chains and tris (hydroxymethyl) aminomethane are removed by ultrafiltration (fraction molecular weight: 300,000) with XM300 membrane and HEPES buffer (pH 7.2). As a result, a ribosome in which a sugar chain, cy5.5-labeled human serum albumin and ribosome are bound is obtained.
  • a fluorescent dye cy3 or cy5 is added to the S—S group in the HSA on the ribosome surface obtained in Example 6 for reaction and labeling.
  • CyX 5.5-encapsulated glycoside-modified ribosome (K1) was prepared using SLX as the sugar chain (see Fig. 40) o
  • the ribosome was isolated from Yamazaki, N. J. Membrance.
  • TAPS tris (hydroxymethyl) methylaminobutane sulfonic acid buffer
  • Cy5.5 was conjugated to HSA using the following labeling method. 20 mg of HSA and 2 mg of CY5.5-NHS ester (GE Healthcare CO., LTD) were dissolved in 3 ml of TAPS (pH 8.4.4) and stirred at 37 ° C for 3 hours. This solution was ultrafiltered with TAPS ( ⁇ 8.4) using an ultrafiltration cell (Model 8010; Amicon CO., LTD) fitted with an Amicon Diaflo PM 10 membrane (Amicon CO., LTD) and remained. Cy5.5.—NHS ester was removed.
  • DTSSP 3,3 dithiobis (sulfosuccinimidylpropionate)
  • PIER CE 3,3 dithiobis (sulfosuccinimidylpropionate)
  • DTSSP was used as a cross-linking agent. 10 mg of DTSSP was added to 10 ml of the ribosome solution, stirred at 20-25 ° C. for 2 hours, and further stirred at 4 ° C. overnight. This solution was ultrafiltered through XM300 (Amicon CO., LTD) to remove the remaining DTSSP. Amination of the reducing group terminal of the sugar chain was performed by glycosylamination reaction. 2 mg of SLX (Calbiochem CO., LTD) was dissolved in 0.5 mL of distilled water. Add 25 g NH HCO and 37

Abstract

It is intended to provide a molecular imaging agent. Namely, there is provided a sugar chain-modified liposome comprising a liposome, a sugar chain group, a linker protein group and a hydrophilic compound group, wherein the linker protein group attaches to the outer face of the liposome, the sugar chain group attaches to at least a part of the linker protein group, and the hydrophilic compound group attaches to the outer face of the liposome or a part of the linker protein group. In another aspect, a medicinal composition which comprises the sugar chain-modified liposome together with a pharmaceutically active ingredient is provided. In a still another aspect, a sugar chain-modified liposome to be used as a molecular imaging agent is provided. In a still another aspect, a method of producing a liposome containing a labeled sugar chain is provided.

Description

明 細 書  Specification
分子イメージングに適した糖鎖修飾リボソームならびにその利用および製 造  Glycosylated ribosomes suitable for molecular imaging and their use and production
技術分野  Technical field
[0001] 本発明は、リボソームに関する。詳細には、本発明のリボソームは、バイ才テクノロジ 一、特に分子イメージングにおいて応用し得る、癌などの標的細胞'組織を認識し局 所的に薬剤や遺伝子を患部に送り込むためのドラッグデリバリーシステムや診断用の 細胞 ·組織センシングプローブとして利用できる。  [0001] The present invention relates to a ribosome. Specifically, the ribosome of the present invention is a drug delivery system for recognizing target cells' tissues such as cancer and locally delivering drugs and genes to affected areas, which can be applied in bi-technology, particularly molecular imaging. It can be used as a cell / tissue sensing probe for diagnosis.
背景技術  Background art
[0002] 米国の国家ナノテク戦略 (NNI)によって実現を目指す具体的目標の一例として、「 癌細胞や標的組織を狙 ヽ撃ちする薬物や遺伝子送達システム (DDS:ドラッグデリ バリーシステム)」を掲げた。 日本の総合科学技術会議のナノテクノロジー ·材料分野 推進戦略でも、重点領域として「医療用極小システム '材料、生物のメカニズムを活用 し制御するナノバイオロジー」があり、その 5年間の研究開発目標の 1つとして「健康 寿命延伸のための生体機能材料 ·ピンポイント治療等技術の基本シーズ確立」が掲 げられている。一方、高齢ィ匕社会となるに伴い癌の発症率 ·死亡率は年々増えており 、新規な治療材料である標的指向 DDSの開発が待望されている。その他の病気に おいても副作用のない標的指向 DDSナノ材料の重要性が注目されており、その巿 場規模は近い将来に 10兆円を超えると予測されている。また、これらの材料は治療と ともに診断への利用にお 、ても期待されて 、る。  [0002] As an example of a specific goal to be realized by the US National Nanotechnology Strategy (NNI), “Drug and gene delivery system (DDS: drug delivery system) targeting and targeting cancer cells and target tissues” . The nanotechnology / materials promotion strategy of the Council for Science and Technology in Japan also includes “Nanobiology that uses and controls the mechanisms of materials and organisms” as an important area, and is one of the five years of research and development goals. One example is “Establishment of basic seeds for biofunctional materials and pinpoint treatment technologies for extending health and life expectancy”. On the other hand, the incidence and mortality of cancer has been increasing year by year as it becomes an aging society, and the development of target-oriented DDS, which is a novel therapeutic material, is awaited. The importance of targeted DDS nanomaterials with no side effects in other diseases is drawing attention, and the scale of the field is expected to exceed 10 trillion yen in the near future. These materials are also expected to be used for diagnosis as well as treatment.
[0003] 医薬品の治療効果は、薬物が特定の標的部位に到達し、そこで作用することにより 発現される。その一方で、医薬品による副作用とは、薬物が不必要な部位に作用し てしまうことである。従って、薬物を有効かつ安全に使用するためにもドラッグデリバリ 一システムの開発が求められている。その中でも特に標的指向(ターゲティング) DD Sとは、薬物を「体内の必要な部位に」、「必要な量を」、「必要な時間だけ」送り込むと V、つた概念である。そのための代表的な材料としての微粒子性キャリアであるリポソ ームが注目されている。この粒子に標的指向機能をもたせるために、リボソームの脂 質の種類、組成比、粒子径、表面電荷を変化させるなどの受動的ターゲティング法 が試みられているが、いまだ本法は不十分であり更なる改良が求められている。 [0003] The therapeutic effect of a drug is expressed by the drug reaching a specific target site and acting there. On the other hand, the side effect of drugs is that the drug acts on unnecessary parts. Therefore, the development of a drug delivery system is required for effective and safe use of drugs. In particular, targeting DD (targeting) DD S is the concept of V when drug is delivered "to the necessary site in the body", "necessary amount", "only for the required time". Liposome, which is a fine particle carrier as a representative material for that purpose, has attracted attention. In order to give this particle a targeting function, Passive targeting methods such as changing the quality type, composition ratio, particle size, and surface charge have been tried, but this method is still insufficient and further improvement is required.
[0004] 一方、高機能のターゲティングを可能にするために、能動的ターゲティング法も試 みられて!/、る。これは「ミサイルドラッグ」ともよばれ理想的なターゲティング法であるが 、国内外にお 、て 、まだ完成されたものはなく今後の発展が大 、に期待されて 、る ものである。本法は、リボソーム膜面上にリガンドを結合させ、標的組織の細胞膜面 上に存在するレセプターに特異的に認識させることによって、積極的にターゲティン グを可能にさせる方法である。この能動的ターゲティング法での標的となる細胞膜面 上に存在するレセプターのリガンドとしては、抗原、抗体、ペプチド、糖脂質や糖タン ノ ク質などが考えられる。これらのうち、糖脂質や糖タンパク質の糖鎖は、生体組織 の発生や形態形成、細胞の増殖や分化、生体防御や受精機構、癌化とその転移機 構などの様々な細胞間コミュニケーションにお 、て情報分子としての重要な役割を果 たしていることが明らかにされつつある。  [0004] On the other hand, active targeting methods have also been tried to enable highly functional targeting! This is called an “missile drug” and is an ideal targeting method, but it has not been completed in Japan and overseas, and future development is expected greatly. In this method, ligands are bound on the surface of the ribosome membrane and are specifically recognized by the receptors present on the cell membrane surface of the target tissue, thereby enabling targeting actively. As a ligand of a receptor present on the cell membrane surface as a target in this active targeting method, an antigen, an antibody, a peptide, a glycolipid, a glycoprotein, or the like can be considered. Among these, glycolipids of glycolipids and glycoproteins are involved in various cell-to-cell communications such as the generation and morphogenesis of biological tissues, cell proliferation and differentiation, biological defense and fertilization mechanisms, canceration and its metastasis mechanism. It is becoming clear that it plays an important role as an information molecule.
[0005] また、その標的となる各組織の細胞膜面上に存在するレセプターとしてのセレクチ ン、シグレック、ガレクチンなどの各種のレクチン (糖鎖認識タンパク質)についての研 究も進んできたことから、各種の分子構造を有する糖鎖は新 U、DDSリガンドとして 注目されてきて ヽる(非特許文献 1および非特許文献 2を参照のこと)。  [0005] In addition, since research on various lectins (sugar chain recognition proteins) such as selectin, siglec, and galectin as receptors existing on the cell membrane surface of each target tissue has progressed, The sugar chain having the molecular structure has attracted attention as a new U and DDS ligand (see Non-Patent Document 1 and Non-Patent Document 2).
[0006] 外膜表面にリガンドを結合したリボソームについては、癌などの標的部位に選択的 に薬物や遺伝子などを送達するための DDS材料として多くの研究がなされてきた。 しかしながら、それらは、生体外では標的細胞に結合するが、生体内では期待される 標的細胞や組織にターゲティングされな 、ものがほとんどである(非特許文献 3を参 照のこと)。糖鎖の分子認識機能を利用した DDS材料の研究開発においても、糖鎖 を有する糖脂質を導入したリボソームにつ 、て若干の研究が知られて 、るが、それら の機能評価は生体外 (インビトロ)によるもののみであり、糖鎖を有する糖タンパク質 を導入したリボソームの研究はほとんど進んで 、な ヽ (非特許文献 4、非特許文献 5、 非特許文献 6および非特許文献 7)を参照のこと)。したがって、糖脂質や糖タンパク 質の多種多様な糖鎖を結合したリボソームについての調製法と生体内動態 (in viv o)解析を含めた体系的な研究は、これまで未開発で今後の進展が期待される重要 課題である。さらに新しいタイプの DDS材料研究として、投与が最も簡便 '安価に行 える経口投与で使用可能な DDS材料開発も重要課題である。例えば、ペプチド性 医薬品などは一般的に水溶性で高分子量であり消化管の小腸粘膜透過性が低いた め酵素分解を受けるなどにより経口投与してもほとんど腸管吸収されない。そこでこ れらの高分子量の医薬品や遺伝子などを腸管力 血液中へ送達するための DDS材 料としてリガンド結合リボソームの研究が注目されつつある(非特許文献 8を参照のこ と)。 [0006] With regard to ribosomes having a ligand bound to the outer membrane surface, much research has been conducted as a DDS material for selectively delivering drugs, genes, and the like to target sites such as cancer. However, most of them bind to target cells in vitro but are not targeted to target cells or tissues expected in vivo (see Non-Patent Document 3). In the research and development of DDS materials that utilize the molecular recognition function of sugar chains, some studies have been made on ribosomes into which glycolipids with sugar chains have been introduced. In vitro), and research on ribosomes that have introduced glycoproteins with sugar chains is almost advanced, see Nada (Non-patent document 4, Non-patent document 5, Non-patent document 6 and Non-patent document 7). ) Therefore, systematic research including preparation methods and in vivo analysis of ribosomes bound to a wide variety of sugar chains of glycolipids and glycoproteins has not been developed so far, and future progress has been made. Expected important It is a problem. Furthermore, as a new type of DDS material research, the development of DDS materials that can be used by oral administration, which is the simplest and cheapest to administer, is also an important issue. For example, peptidic drugs are generally water-soluble and have a high molecular weight, and the gastrointestinal tract has a low permeability to the small intestinal mucosa. Therefore, research on ligand-bound ribosomes is attracting attention as a DDS material for delivering these high molecular weight pharmaceuticals and genes into the blood of the intestinal tract (see Non-Patent Document 8).
[0007] 特許文献 1は、医薬として許容される担体と、セレクチンレセプターに選択的に結合 する成分を含む化合物とを有する医薬組成物を開示している。しかし、この医薬組成 物は、炎症性疾患および細胞の付着により媒介される他の病気を阻害するための医 薬自体として、経口投与を目的とした糖鎖が用いられており、糖鎖修飾リボソームと は異なる。  [0007] Patent Document 1 discloses a pharmaceutical composition having a pharmaceutically acceptable carrier and a compound containing a component that selectively binds to a selectin receptor. However, in this pharmaceutical composition, a sugar chain intended for oral administration is used as a pharmaceutical agent itself for inhibiting inflammatory diseases and other diseases mediated by cell adhesion. Is different.
[0008] 本発明者らは、糖鎖をリンカ一タンパク質を介してリボソームに結合させた糖鎖修飾 リボソームを開発した (特許文献 2)。さらに、糖鎖の種類および糖鎖結合量が各標的 細胞または標的組織への指向性に関連するようであることを見出した (特許文献 3〜 4ならびに非特許文献 9および 10)。しかし、現在までに、分子イメージングに最適な 糖鎖修飾リボソームは開発されていない。また、分子イメージングにおいて有用な糖 鎖について体系的な研究はなされておらず、具体的にどのような糖鎖を用いればよ いかは不明のままであった。  [0008] The present inventors have developed a sugar chain-modified ribosome in which a sugar chain is bound to a ribosome via a linker protein (Patent Document 2). Furthermore, it was found that the type of sugar chain and the amount of sugar chain binding seem to be related to directivity to each target cell or target tissue (Patent Documents 3 to 4 and Non-Patent Documents 9 and 10). However, to date, no sugar chain-modified ribosome that is optimal for molecular imaging has been developed. In addition, there has been no systematic study on sugar chains useful in molecular imaging, and it has remained unclear what kind of sugar chains should be used.
[0009] 従って、分子イメージングに最適な糖鎖修飾リボソームを効率よく設計し、提供する ことに対して需要がある。  [0009] Therefore, there is a demand for efficiently designing and providing sugar chain-modified ribosomes that are optimal for molecular imaging.
特許文献 1:特表平 5 - 507519公報  Patent Literature 1: Japanese Patent Publication No. 5-507519
特許文献 2:特開 2003 - 226638公報  Patent Document 2: Japanese Patent Laid-Open No. 2003-226638
特許文献 3:特開 2003 - 226647公報  Patent Document 3: Japanese Patent Laid-Open No. 2003-226647
特許文献 4:国際公開第 2005Z011632号パンフレット  Patent Document 4: Pamphlet of International Publication No. 2005Z011632
特許文献 5:国際公開第 2005Z011633号パンフレット  Patent Document 5: Pamphlet of International Publication No. 2005Z011633
非特許文献 l :Yamazaki, N. , Kojima, S. , Bovin, Ν. V. , Andre, S. , Gabiu s, S. and Gabius, H. —J. (2000) Adv. Drug Delivery Rev. 43, 225— 24 非特許文献 2 :Yamazaki, N. , Jigami, Υ. , Gabius, Η. —J. , Kojima, S (200 1) Trends in Glycoscience and Glycotechnology 13, 319— 329. http : / / www. gak. co. jp/TIGG/ 71PDF/ yamazaki. pdf Non-patent literature l: Yamazaki, N., Kojima, S., Bovin, Ν. V., Andre, S., Gabius, S. and Gabius, H. —J. (2000) Adv. Drug Delivery Rev. 43 , 225— 24 Non-Patent Document 2: Yamazaki, N., Jigami, Υ., Gabius, Η. —J., Kojima, S (200 1) Trends in Glycoscience and Glycotechnology 13, 319— 329. http: / / www. Gak. Co .jp / TIGG / 71PDF / yamazaki.pdf
非特許文献 3 : Forssen, E. and Willis, M. (1998) Adv. Drug Delivery Rev . 29, 249 - 271.  Non-Patent Document 3: Forssen, E. and Willis, M. (1998) Adv. Drug Delivery Rev. 29, 249-271.
非特許文献 4 : DeFrees, S. A. , Phillips, L. , Guo, L. and Zalipsky, S. (19 96)J. Am. Chem. Soc. 118, 6101— 6104.  Non-Patent Document 4: DeFrees, S. A., Phillips, L., Guo, L. and Zalipsky, S. (19 96) J. Am. Chem. Soc. 118, 6101— 6104.
非特許文献 5 : Spevak, W. , Foxall, C. , Charych, D. H. , Dasqupta, F. and Non-Patent Document 5: Spevak, W., Foxall, C., Charych, D.H., Dasqupta, F. and
Nagy, J. O. (1996)J. Med. Chem. 39, 1018— 1020. Nagy, J. O. (1996) J. Med. Chem. 39, 1018—1020.
非特許文献 6 : Stahn, R. , Schafer, H. , Kernchen, F. and Schreiber, J. (1 998) Glycobiology 8, 311— 319.  Non-Patent Document 6: Stahn, R., Schafer, H., Kernchen, F. and Schreiber, J. (1 998) Glycobiology 8, 311—319.
非特許文献 7 : Yamazaki, N. , Jigami, Y. , Gabius, H. —J. , Kojima, S (200 1) Trends in Glycoscience and Glycotechnology 13, 319— 329. http : / / www. gak. co. jp/TIGG/ 71PDF/ yamazaki. pdf  Non-Patent Document 7: Yamazaki, N., Jigami, Y., Gabius, H. —J., Kojima, S (200 1) Trends in Glycoscience and Glycotechnology 13, 319— 329. http: / / www. Gak. Co .jp / TIGG / 71PDF / yamazaki.pdf
非特許文献 8 : Lehr, C. — M. (2000) J. Controlled Release 65, 19— 29 非特許文献 9 :山寄登(2005)、アクティブ 'ターゲティング DDSナノ粒子の開発、ナ ノ学会会報、 3, 97- 102  Non-Patent Document 8: Lehr, C. — M. (2000) J. Controlled Release 65, 19—29 Non-Patent Document 9: Noboru Yamayose (2005), Development of Active 'Targeting DDS Nanoparticles, Journal of Nano Society, 3, 97- 102
非特許文献 10 :山寄登(2006)、フアルマシア、第 42卷、 2号、 2— 6  Non-Patent Document 10: Noboru Yamayori (2006), Huarmasia, No. 42, No. 2, 2-6
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0010] そこで、本発明の課題は、分子イメージングに有用な糖鎖修飾リボソーム、および 糖鎖修飾リボソームに薬剤や遺伝子を封入した薬物送達媒体を提供することにある 課題を解決するための手段 Accordingly, an object of the present invention is to provide a sugar chain-modified ribosome useful for molecular imaging, and a drug delivery medium in which a drug or gene is encapsulated in the sugar chain-modified ribosome. Means for Solving the Problems
[0011] 上記の課題を解決するために、本発明者等は鋭意研究の結果、リボソーム表面が 特定の糖鎖で修飾されたリボソームが、分子イメージングにお ヽて有用な製剤となる ことを見いだし、本発明を完成させるに至ったものである。 [0012] 本発明はまた、分子イメージングに有用な糖鎖修飾リボソームの製造法およびその 利用法を提供する。 [0011] In order to solve the above-mentioned problems, the present inventors have conducted intensive research and found that ribosomes whose ribosome surface has been modified with specific sugar chains are useful preparations for molecular imaging. The present invention has been completed. [0012] The present invention also provides a method for producing a sugar chain-modified ribosome useful for molecular imaging and a method for using the same.
[0013] 上記目的を達成するために、本発明は、例えば、以下の手段を提供する。  In order to achieve the above object, the present invention provides, for example, the following means.
[0014] (項目 1) [0014] (Item 1)
糖鎖修飾リボソームであって、該糖鎖修飾リボソームは、  A sugar chain-modified ribosome, the sugar chain-modified ribosome,
リボソームと  Ribosome and
糖鎖基と  Sugar chain and
リンカ一タンパク質基と  Linker with protein group
親水性化合物基とを含み、  A hydrophilic compound group,
該リンカ一タンパク質基は該リボソームの外表面に結合し、該リンカ一タンパク質基の 少なくとも一部に該糖鎖基が結合し、該リボソームの外表面または該リンカ一タンパク 質基の一部に該親水性ィ匕合物基が結合している、糖鎖修飾リボソーム。  The linker protein group binds to the outer surface of the ribosome, the sugar chain group binds to at least part of the linker protein group, and the linker protein group binds to the outer surface of the ribosome or part of the linker protein group. A sugar chain-modified ribosome to which a hydrophilic compound group is bound.
(項目 2)  (Item 2)
前記糖鎖修飾リボソームは、構造 Iと構造 Πとを含み、  The sugar chain-modified ribosome includes structure I and structure Π,
該構造 Iは、  The structure I is
X-CH NH— R1— NH— C ( = 0)— R2— C ( = 0)— NH— R3で表され、 X-CH NH— R 1 — NH— C (= 0) — R 2 — C (= 0) — NH— R 3
2  2
Xは、前記リボソームに含まれる前記リンカ一タンパク質と CH—NH結合可能な  X is capable of CH—NH binding with the linker protein contained in the ribosome.
2  2
官能基 aを含む構成単位から、該官能基 aがとれた基であり、  A group in which the functional group a is removed from the structural unit containing the functional group a,
R1は、前記リンカ一タンパク質基であり、 R 1 is the linker protein group,
R2は、リンカ一タンパク質架橋基であり、 R 2 is a linker-protein cross-linking group,
R3は、前記糖鎖基であり;および R 3 is the sugar chain group; and
該構造 IIは、  The structure II is
Y - NH - C ( = 0) - R4 - C ( = 0) - NH - R5で表され、 Y-NH-C (= 0)-R 4 -C (= 0)-NH-R 5
Yは、前記リボソームに含まれる親水性ィ匕合物架橋基とペプチド結合可能な官能 基 bを含む構成単位力ゝら該官能基 bがとれた基であり、  Y is a group in which the functional group b is removed from the structural unit force including the hydrophilic compound cross-linking group contained in the ribosome and the functional group b capable of peptide bonding;
R4は、該親水性化合物架橋基であり、 R 4 is the hydrophilic compound crosslinking group,
R5は、前記親水性ィ匕合物基である、項目 1に記載の糖鎖修飾リボソーム。 R 5 is the hydrophilic I匕合product groups, glycosylation ribosome of claim 1.
(項目 3) 前記リボソームが蛍光性を有する、項目 1に記載の糖鎖修飾リボソーム。 (Item 3) Item 2. The sugar chain-modified ribosome according to Item 1, wherein the ribosome has fluorescence.
(項目 4) (Item 4)
前記蛍光性が、前記リボソームと適合性の蛍光色素によって付与される、項目 3に記 載の糖鎖修飾リボソーム。 Item 4. The sugar chain-modified ribosome according to Item 3, wherein the fluorescence is imparted by a fluorescent dye compatible with the ribosome.
(項目 5) (Item 5)
前記蛍光色素が、 The fluorescent dye is
[化 10- 1] く Cy5. 5> [Chemical 10-1] Cy5. 5>
Figure imgf000007_0001
[化 10- 2]
Figure imgf000007_0001
[Chemical 10-2]
<cy3>  <cy3>
Figure imgf000007_0002
Figure imgf000007_0002
cy5、 cy ,、 cydB、 cy3. 5、 Alexa Fmor350、 Alexa Fluor488、 Alexa Fluor 532、 Alexa Fluor 546、 Alexa Fluor555、 Alexa Fluor568、 Alexa Fluor 5 94、 Alexa Fluor633、 Alexa Fluor647、 Alexa Fluor680、 Alexa Fluor70 0、 Alexa Fluor750およびフルォレセイン— 4—イソチオシァネート(FITC)ならび にそれらの組み合わせ力 なる群より選択される、項目 4に記載の糖鎖修飾リポソ一 ム。 cy5, cy ,, cydB, cy3.5, Alexa Fmor350, Alexa Fluor488, Alexa Fluor 532, Alexa Fluor 546, Alexa Fluor555, Alexa Fluor568, Alexa Fluor 5 94, Alexa Fluor633, Alexa Fluor647, Alexa Fluor680, Alexa Fluor70 Item 5. The sugar chain-modified liposome according to Item 4, which is selected from the group consisting of 0, Alexa Fluor750 and fluorescein—4-isothiocyanate (FITC) and their combination.
(項目 6)  (Item 6)
前記蛍光色素が、 The fluorescent dye is
[化 10- 3] く Cy5. 5>[Chem 10-3] Ku5. 5>
Figure imgf000008_0001
である、項目 5に記載の糖鎖修飾リボソーム。
Figure imgf000008_0001
The sugar chain-modified ribosome according to item 5, wherein
(項目 7) (Item 7)
前記蛍光色素が、リボソームに内包されている、項目 4に記載の糖鎖修飾リボソーム (項目 8) The sugar chain-modified ribosome according to Item 4, wherein the fluorescent dye is encapsulated in ribosome (Item 8)
前記 R1が、哺乳動物由来タンパク質基である、項目 2に記載の糖鎖修飾リボソーム。 (項目 9) Wherein R 1 is a mammalian derived protein groups, glycosylation ribosome of claim 2. (Item 9)
前記 R1が、ヒト由来タンパク質基である、項目 8に記載の糖鎖修飾リボソーム。 Wherein R 1 is a human-derived protein groups, glycosylation ribosome of claim 8.
(項目 10) (Item 10)
前記 R1が、ヒト由来血清タンパク質基である、項目 9に記載の糖鎖修飾リボソーム。 (項目 11) Wherein R 1 is a human-derived serum protein groups, glycosylation ribosome of claim 9. (Item 11)
前記 R1が、血清アルブミン基である項目 8に記載の糖鎖修飾リボソーム。 Wherein R 1 is a sugar chain modification ribosome of claim 8, which is a serum albumin group.
(項目 12) (Item 12)
前記 R2が、 3, 3,一ジチォビス(スルホスクシンィミジルプロピオネート)基、ビススルホ スクシンイミジルスべレート基、ジスクシンィミジルグルタレート基、ジチオビススクシン ィミジルプロピオネート基、ジスクシンイミジルスべレート基、エチレングリコールビスス クシンィミジルスクシネート基およびエチレングリコールビススルホスクシンィミジルスク シネート基力もなる群より選択される、項目 2に記載の糖鎖修飾リボソーム。 R 2 is a 3, 3, 1 dithiobis (sulfosuccinimidyl propionate) group, bissulfo Succinimidyl suberate group, disuccinimidyl glutarate group, dithiobis succinimidyl propionate group, disuccinimidyl suberate group, ethylene glycol bis succinimidyl succinate group and ethylene Item 3. The sugar chain-modified ribosome according to item 2, which is selected from the group consisting of glycol bissulfosuccinimidyl succinate group.
(項目 13) (Item 13)
前記 R2が、 3, 3,—ジチォビス (スルホスクシンィミジルプロピオネート)基である、項 目 12に記載の糖鎖修飾リボソーム。 Item 13. The sugar chain-modified ribosome according to Item 12, wherein R 2 is a 3, 3, -dithiobis (sulfosuccinimidyl propionate) group.
(項目 14) (Item 14)
前記 R3が、シァリルルイス X基、 N—ァセチルラクトサミン基、 α 1—6マンノビオース 基およびそれらの組み合わせ力 なる群より選択される、項目 2に記載の糖鎖修飾リ ポソーム。 Wherein R 3 is Shiariruruisu X group, N- § cetyl lactosamine group, alpha 1-6 mannobiose group is selected from the group consisting a combination force thereof, glycosylation liposome of claim 2.
(項目 15) (Item 15)
前記 R3が、シァリルルイス X基であり、該シァリルルイス X基力 0. OOOlmg糖鎖 Zm g脂質〜 500mg糖鎖 Zmg脂質の範囲の修飾結合密度で含まれる、項目 14に記載 の糖鎖修飾リボソーム。 Wherein R 3 is Shiariruruisu X groups include a modified bond density of said Shiariruruisu X groups force 0. OOOlmg sugar Zm g lipid ~ 500 mg sugar Zmg range of lipids, glycosylation ribosome of claim 14.
(項目 16) (Item 16)
前記 R3が、 N—ァセチルラクトサミン基であり、該 N—ァセチルラクトサミン基力 0. 0 OOlmg糖鎖 Zmg脂質〜 500mg糖鎖 Zmg脂質の範囲の修飾結合密度で含まれる 、項目 14に記載の糖鎖修飾リボソーム。 Item 14 wherein R 3 is an N-acetyllactosamine group, and the N-acetyllactosamine group has a modified bond density ranging from 0.0 OOlmg sugar chain Zmg lipid to 500 mg sugar chain Zmg lipid. The sugar chain-modified ribosome described in 1.
(項目 17) (Item 17)
前記 R3が、 α 1—6マンノビオース基であり、該 α 1—6マンノビオース基力 0. 0001 mg糖鎖 Zmg脂質〜 500mg糖鎖 Zmg脂質の範囲の修飾結合密度で含まれる、項 目 14に記載の糖鎖修飾リボソーム。 Item 14 is that wherein R 3 is an α 1-6 mannobiose group, and the α 1-6 mannobiose group has a modified bond density in the range of 0.0001 mg sugar chain Zmg lipid to 500 mg sugar chain Zmg lipid. The sugar chain-modified ribosome described.
(項目 18) (Item 18)
前記 R4が、ビス(スルホスクシンィミジル)スべレート基、ジスクシンィミジルグルタレ一 ト基、ジチオビススクシンィミジルプロピオネート基、ジスクシンイミジルスべレート基、 3, 3,一ジチォビス(スルホスクシンィミジルプロピオネート)基、エチレングリコールビ ススクシンイミジルスクシネート基およびエチレングリコールビススルホスクシンイミジ ルスクシネート基カゝら選択される、項目 2に記載の糖鎖修飾リボソーム。 R 4 is a bis (sulfosuccinimidyl) suberate group, a disuccinimidyl glutarate group, a dithiobissuccinimidyl propionate group, a disuccinimidyl suberate group, 3 , 3, 1 dithiobis (sulfosuccinimidyl propionate) group, ethylene glycol bissuccinimidyl succinate group and ethylene glycol bissulfosuccinimid Item 3. The sugar chain-modified ribosome according to Item 2, which is selected from a rusuccinate group.
(項目 19) (Item 19)
前記 R4が、ビス (スルホスクシンィミジル)スべレート基である、項目 18に記載の糖鎖 修飾リボソーム。 Wherein R 4 is bis (sulfosuccinimidyl I succinimidyl) scan base rate group, glycosylation ribosome of claim 18.
(項目 20) (Item 20)
前記 R5が、トリス (ヒドロキシアルキル)アルキルアミノ基である、項目 2に記載の糖鎖 修飾リボソーム。 Item 3. The sugar chain-modified ribosome according to Item 2, wherein R 5 is a tris (hydroxyalkyl) alkylamino group.
(項目 21) (Item 21)
前記トリス(ヒドロキシアルキル)アルキルアミノ基力 ヒドロキシアルキルが C〜Cヒド Tris (hydroxyalkyl) alkylamino group Hydroxyalkyl is C to C hydride
1 6 ロキシアルキルであり、アルキルァミノが C〜Cアルキルァミノである、項目 20〖こ記  1 6 Roxyalkyl, where alkylamino is a C to C alkylamino.
1 6  1 6
載の糖鎖修飾リボソーム。 The sugar chain-modified ribosome listed.
(項目 22) ノ基である、項目 21に記載の糖鎖修飾リボソーム。  (Item 22) The sugar chain-modified ribosome according to Item 21, which is a no-group.
(項目 23) (Item 23)
前記官能基 aが、 -CH -C ( = 0) -CH一基を有する、項目 2に記載の糖鎖修飾 The sugar chain modification according to Item 2, wherein the functional group a has one —CH 2 —C (= 0) —CH group.
2 2  twenty two
リボソーム。 Ribosome.
(項目 24)  (Item 24)
前記 Xが、ガンダリオシドである、項目 23に記載の糖鎖修飾リボソーム。 Item 24. The sugar chain-modified ribosome according to Item 23, wherein X is gandioside.
(項目 25) (Item 25)
前記官能基 bが、アミノ基である、項目 2に記載の糖鎖修飾リボソーム。 Item 3. The sugar chain-modified ribosome according to Item 2, wherein the functional group b is an amino group.
(項目 26) (Item 26)
前記 Yが、ホスファチジルエタノールァミンである、項目 25に記載の糖鎖修飾リポソ ーム。 Item 26. The sugar chain-modified liposome according to Item 25, wherein Y is phosphatidylethanolamine.
(項目 27) (Item 27)
前記リボソーム力 ジパルミトイルホスファチジルコリン、コレステロール、ガングリオシ ド、ジセチルホスフェート、ジパルミトイルホスファチジルエタノールァミンおよびコー ル酸ナトリウムを含む、項目 1に記載の糖鎖修飾リボソーム。 (項目 28) 2. The sugar chain-modified ribosome according to item 1, comprising the ribosome force dipalmitoyl phosphatidylcholine, cholesterol, ganglioside, dicetyl phosphate, dipalmitoyl phosphatidylethanolamine and sodium cholate. (Item 28)
前記リボソーム力 ジパルミトイルホスファチジルコリン、コレステロール、ガングリオシ ド、ジセチルホスフェート、ジパルミトイルホスファチジルエタノールァミンおよびコー ル酸ナトリウムを、 35 :40 : 15 : 5 : 5 : 167のモル比で含む、項目 27に記載の糖鎖修 飾リボソーム。 28. The item 27 comprising the ribosomal force dipalmitoyl phosphatidylcholine, cholesterol, ganglioside, dicetyl phosphate, dipalmitoyl phosphatidylethanolamine and sodium cholate in a molar ratio of 35: 40: 15: 5: 5: 167. Sugar chain-modified ribosomes.
(項目 29) (Item 29)
前記 R2が、 3, 3,一ジチォビス(スルホスクシンィミジルプロピオネート)基であり、力 つ R 2 is a 3, 3, 1 dithiobis (sulfosuccinimidyl propionate) group,
前記 R3が、シァリルルイス X基、 N—ァセチルラクトサミン基、 α 1—6マンノビオース 基およびそれらの組み合わせ力 なる群より選択される、項目 2に記載の糖鎖修飾リ ポソーム。 Wherein R 3 is Shiariruruisu X group, N- § cetyl lactosamine group, alpha 1-6 mannobiose group is selected from the group consisting a combination force thereof, glycosylation liposome of claim 2.
(項目 30) (Item 30)
前記 R3が、シァリルルイス X基、 Ν—ァセチルラクトサミン基、 α 1—6マンノビオース 基およびそれらの組み合わせ力 なる群より選択され、かつ R 3 is selected from the group consisting of a sialyl Lewis X group, a Ν-acetyl lactosamine group, an α 1-6 mannobiose group, and a combination force thereof, and
前記 R4が、ビス (スルホスクシンィミジル)スべレート基である、項目 2に記載の糖鎖修 飾リボソーム。 Item 3. The sugar chain-modified ribosome according to Item 2, wherein R 4 is a bis (sulfosuccinimidyl) suberate group.
(項目 31) (Item 31)
前記 R2が、 3, 3,一ジチォビス(スルホスクシンィミジルプロピオネート)基であり、 前記 R3が、シァリルルイス X基、 Ν—ァセチルラクトサミン基、 α 1—6マンノビオース 基およびそれらの組み合わせ力 なる群より選択され、かつ R 2 is a 3,3,1 dithiobis (sulfosuccinimidylpropionate) group, and R 3 is a sialyl Lewis X group, a ァ -acetyllactosamine group, an α 1-6 mannobiose group, and Selected from the group of their combination power, and
前記 R4が、ビス (スルホスクシンィミジル)スべレート基である、項目 2に記載の糖鎖修 飾リボソーム。 Item 3. The sugar chain-modified ribosome according to Item 2, wherein R 4 is a bis (sulfosuccinimidyl) suberate group.
(項目 32) (Item 32)
前記リボソーム力 ジパルミトイルホスファチジルコリン、コレステロール、ガングリオシ ド、ジセチルホスフェート、ジパルミトイルホスファチジルエタノールァミンおよびコー ル酸ナトリウムを含み、 The ribosomal strength includes dipalmitoyl phosphatidylcholine, cholesterol, ganglioside, dicetyl phosphate, dipalmitoyl phosphatidylethanolamine and sodium cholate,
前記 R2が、 3, 3,一ジチォビス(スルホスクシンィミジルプロピオネート)基であり、 前記 R3が、シァリルルイス X基、 Ν—ァセチルラクトサミン基、 α 1—6マンノビオース 基およびそれらの組み合わせ力 なる群より選択され、かつ R 2 is a 3,3,1-dithiobis (sulfosuccinimidylpropionate) group, and R 3 is a sialyl Lewis X group, a ァ -acetyllactosamine group, α 1-6 mannobiose Selected from the group consisting of groups and their combination powers, and
前記 R4が、ビス (スルホスクシンィミジル)スべレート基である、項目 2に記載の糖鎖修 飾リボソーム。 Item 3. The sugar chain-modified ribosome according to Item 2, wherein R 4 is a bis (sulfosuccinimidyl) suberate group.
(項目 33) (Item 33)
前記リボソーム力 ジパルミトイルホスファチジルコリン、コレステロール、ガングリオシ ド、ジセチルホスフェート、ジパルミトイルホスファチジルエタノールァミンおよびコー ル酸ナトリウムを含み、 The ribosomal strength includes dipalmitoyl phosphatidylcholine, cholesterol, ganglioside, dicetyl phosphate, dipalmitoyl phosphatidylethanolamine and sodium cholate,
前記 R1が血清アルブミン基であり、 R 1 is a serum albumin group,
前記 R2が、 3, 3,一ジチォビス(スルホスクシンィミジルプロピオネート)基であり、 前記 R3が、シァリルルイス X基、 N—ァセチルラクトサミン基、 α 1—6マンノビオース 基およびそれらの組み合わせからなる群より選択され、 R 2 is a 3,3,1 dithiobis (sulfosuccinimidylpropionate) group, and R 3 is a sialyl Lewis X group, an N-acetyllactosamine group, an α 1-6 mannobiose group, and Selected from the group consisting of those combinations,
前記 R4が、ビス (スルホスクシンィミジル)スべレート基であり、かつ R 4 is a bis (sulfosuccinimidyl) suberate group, and
前記 R5が、トリス (ヒドロキシメチル)ァミノメタン基である、項目 2に記載の糖鎖修飾リ ポソーム。 Wherein R 5 is a tris (hydroxymethyl) Aminometan group, glycosylation liposome of claim 2.
(項目 34)  (Item 34)
前記糖鎖修飾リボソームが、 The sugar chain-modified ribosome is
[化 10- 4] [Chemical 10-4]
<Cy5. 5> <Cy5. 5>
Figure imgf000012_0001
によって標識されている、項目 33に記載の糖鎖修飾リボソーム。
Figure imgf000012_0001
34. The sugar chain-modified ribosome according to item 33, which is labeled with
(項目 35) (Item 35)
前記リボソームにおいて、脂質に対するタンパク質の割合力 約 0. 1から約 0. 5であ る、項目 1に記載の糖鎖修飾リボソーム。 In the ribosome, the ratio of protein to lipid is about 0.1 to about 0.5. The sugar chain-modified ribosome according to Item 1.
(項目 36) (Item 36)
前記糖鎖修飾リボソーム力 該リボソームの粒度分布の最大域において、約 80nm 〜約 165nmの粒子径を有する、項目 1に記載の糖鎖修飾リボソーム。 2. The sugar chain-modified ribosome force according to item 1, wherein the sugar chain-modified ribosome has a particle diameter of about 80 nm to about 165 nm in the maximum range of the particle size distribution of the ribosome.
(項目 37) (Item 37)
前記糖鎖修飾リボソーム力 約 50nm〜約 300nmの平均粒子径を有する、項目 1に 記載の糖鎖修飾リボソーム。 The sugar chain-modified ribosome according to Item 1, wherein the sugar chain-modified ribosome has an average particle size of about 50 nm to about 300 nm.
(項目 38) (Item 38)
項目 1〜37のいずれか 1項に記載の糖鎖修飾リボソームを含む、イメージング剤。 (項目 39) Item 38. An imaging agent comprising the sugar chain-modified ribosome according to any one of items 1 to 37. (Item 39)
項目 1〜37のいずれか 1項に記載の糖鎖修飾リボソームと送達が所望される物質と を含む、該物質を所望の部位に送達するための組成物。 40. A composition for delivering a substance to a desired site, comprising the sugar chain-modified ribosome according to any one of items 1 to 37 and a substance desired to be delivered.
(項目 40) (Item 40)
前記所望される物質が、診断薬または研究試薬である、項目 39に記載の組成物。 (項目 41) 40. The composition of item 39, wherein the desired substance is a diagnostic agent or a research reagent. (Item 41)
前記診断薬が、 DNAプローブ診断薬、腫瘍診断薬、血液学的検査用試薬および微 生物検査用試薬からなる群より選択される、項目 40に記載の組成物。 41. The composition according to item 40, wherein the diagnostic agent is selected from the group consisting of a DNA probe diagnostic agent, a tumor diagnostic agent, a hematological test reagent, and a microbiological test reagent.
(項目 42) (Item 42)
分子イメージングまたはインビボイメージングにおいて使用するための、項目 39に記 載の組成物。 40. The composition of item 39, for use in molecular or in vivo imaging.
(項目 43) (Item 43)
前記物質が該生物学的因子を含む、項目 39に記載の組成物。 40. The composition of item 39, wherein the substance comprises the biological agent.
(項目 44) (Item 44)
項目 1〜37のいずれか 1項に記載の糖鎖修飾リボソームと医薬活性成分をさらに含 む、薬学的組成物。 38. A pharmaceutical composition further comprising the sugar chain-modified ribosome according to any one of items 1 to 37 and a pharmaceutically active ingredient.
(項目 45) (Item 45)
前記医薬活性成分が、脳、肝臓、腎臓、脾臓、肺、脾臓もしくは心臓における疾患を 処置するための薬剤、または炎症もしくは腫瘍を処置するための薬剤である、項目 4 4に記載の薬学的組成物。 Item 4 wherein the pharmaceutically active ingredient is an agent for treating a disease in the brain, liver, kidney, spleen, lung, spleen or heart, or an agent for treating inflammation or tumor. 4. The pharmaceutical composition according to 4.
(項目 46) (Item 46)
所望の部位を標識するための組成物の製造のための、項目 1〜37のいずれか 1項 に記載の糖鎖修飾リボソームの使用。 38. Use of the sugar chain-modified ribosome according to any one of items 1 to 37 for the production of a composition for labeling a desired site.
(項目 47) (Item 47)
前記所望の部位が、脳、肝臓、腎臓、脾臓、肺、脾臓、心臓、炎症部位および腫瘍 部位力もなる群より選択される、項目 46に記載の使用。 49. Use according to item 46, wherein the desired site is selected from the group consisting of brain, liver, kidney, spleen, lung, spleen, heart, inflammatory site and tumor site force.
(項目 48) (Item 48)
所望の部位を標識するための方法であって、 A method for labeling a desired site, comprising:
該被験体に、該所望の部位を標識するための組成物を投与する工程を包含し、該組 成物は項目 1〜37のいずれか 1項に記載の糖鎖修飾リボソームおよび薬学的受容 可能なキャリアを含み、該所望の部位が、脳、肝臓、腎臓、脾臓、肺、脾臓、心臓、炎 症部位および腫瘍部位力 なる群より選択される、方法。 The method includes the step of administering to the subject a composition for labeling the desired site, wherein the composition comprises the sugar chain-modified ribosome according to any one of items 1 to 37 and a pharmaceutically acceptable product. And the desired site is selected from the group consisting of brain, liver, kidney, spleen, lung, spleen, heart, inflammatory site and tumor site force.
(項目 49) (Item 49)
糖鎖修飾リボソームを製造する方法であって、該方法は、以下: A method for producing a sugar chain-modified ribosome, the method comprising:
(a)脂質を、メタノール Zクロ口ホルム溶液に懸濁して攪拌し、該攪拌した溶液を蒸 発させ、沈殿物を真空乾燥させることにより脂質膜を得る工程;  (a) a step of obtaining a lipid membrane by suspending lipids in a methanol Z chloroform solution and stirring, evaporating the stirred solution, and drying the precipitate in vacuo;
(b)該脂質膜を、懸濁緩衝液に懸濁し、超音波処理する工程;  (b) suspending the lipid membrane in a suspension buffer and sonicating;
(c)該超音波処理した溶液と蛍光標識溶液とを混合して、蛍光標識されたリポソ一 ムを提供する工程;  (c) providing the fluorescently labeled liposome by mixing the sonicated solution and the fluorescently labeled solution;
(d)該リボソームをトリス (ヒドロキシアルキル)アミノアルカンにより親水性ィ匕処理する 工程;  (d) a step of hydrophilic treatment of the ribosome with tris (hydroxyalkyl) aminoalkane;
(e)該親水性ィ匕処理されたリボソームにリンカ一タンパク質を結合させて、リンカ一 タンパク質結合リボソームを生成する工程;および  (e) binding a linker protein to the hydrophilic ribosome treated to produce a linker protein-binding ribosome; and
(f)該リボソームに、糖鎖を結合させて糖鎖修飾リボソームを生成する工程 を包含する、方法。  (f) A method comprising a step of binding a sugar chain to the ribosome to produce a sugar chain-modified ribosome.
(項目 50)  (Item 50)
前記 (c)工程の蛍光標識溶液が、 [化 10- 5] く Cy5. 5> The fluorescent labeling solution of step (c) is [Chem. 10-5] Ku5. 5>
Figure imgf000015_0001
を含む、項目 49に記載の糖鎖修飾リボソームを製造する方法。
Figure imgf000015_0001
50. A method for producing a sugar chain-modified ribosome according to item 49, comprising:
(項目 51) (Item 51)
前記 (e)工程のリンカ一タンパク質力 ヒト血清アルブミンである、項目 49に記載の方 法。 Item 52. The method according to Item 49, wherein the linker protein power in step (e) is human serum albumin.
(項目 52)  (Item 52)
目的の送達部位に薬物を送達するための糖鎖修飾リボソームの製造方法であって、 該方法は、以下: A method for producing a sugar chain-modified ribosome for delivering a drug to a target delivery site, the method comprising:
(a)種々の糖鎖密度を有する、該目的の送達部位への送達を達成する蛍光標識さ れた糖鎖修飾リボソームを提供する工程であって、以下:  (a) providing fluorescently labeled sugar chain-modified ribosomes having various sugar chain densities to achieve delivery to the target delivery site, comprising:
(i)脂質を、メタノール Zクロ口ホルム溶液に懸濁して攪拌し、該攪拌した溶液を 蒸発させ、沈殿物を真空乾燥させることにより脂質膜を得る工程;  (i) a step of obtaining a lipid membrane by suspending lipids in methanol Z chloroform solution and stirring, evaporating the stirred solution, and drying the precipitate in vacuum;
(ii)該脂質膜を、懸濁緩衝液に懸濁し、超音波処理する工程;  (ii) suspending the lipid membrane in a suspension buffer and sonicating;
(iii)該超音波処理した溶液と蛍光標識溶液とを混合する工程を包含する、工程  (iii) a step comprising mixing the sonicated solution and the fluorescent labeling solution
(b)該糖鎖修飾リボソーム上の糖鎖密度にっ 、て、該送達部位への最適な送達を 達成する密度を決定する工程;および (b) determining the density of the sugar chain on the sugar chain-modified ribosome to achieve optimal delivery to the delivery site; and
(c)該薬物を決定された最適な糖鎖修飾リボソームに組み込んで薬物含有リポソ一 ムを生成する工程  (c) a step of producing a drug-containing liposome by incorporating the drug into the determined optimal sugar chain-modified ribosome
を包含する、方法。 (項目 53) Including the method. (Item 53)
蛍光色素含有糖鎖修飾リボソームの製造方法であって、 A method for producing a fluorescent dye-containing sugar chain-modified ribosome,
A)蛍光色素をリボソームに内包した力、または結合させたリボソームを形成させる 工程;  A) the step of forming a force that encapsulates the fluorescent dye in the ribosome or a bound ribosome;
B)該リボソームを親水性化処理する工程;  B) Hydrophilizing the ribosome;
C)該リボソームとリンカ一タンパク質を結合させる工程、および  C) binding the ribosome and linker protein; and
D)該リボソームへ糖鎖を結合させる工程  D) Step of binding a sugar chain to the ribosome
を包含する、方法。 Including the method.
(項目 54)  (Item 54)
前記 D)工程に引き続きフィルター濾過をする工程を包含する、項目 53に記載の方 法。 54. A method according to item 53, comprising the step of filter filtration subsequent to the step D).
(項目 55)  (Item 55)
前記 A)工程が、 Step A)
(A1)ジパルミトイルホスファチジルコリン、コレステロール、ガンダリオシド、ジセチ ルホスフェート、ジパルミトイルホスファチジルエタノールァミンおよびコール酸ナトリウ ムを、 35: 40: 15: 5: 5: 167のモル比で混合させ、メタノール 'クロ口ホルム(1: 1)溶 液に懸濁させる工程;  (A1) Dipalmitoyl phosphatidylcholine, cholesterol, gandarioside, dicetyl phosphate, dipalmitoyl phosphatidylethanolamine and sodium cholate are mixed at a molar ratio of 35: 40: 15: 5: 5: 167 Suspending in form (1: 1) solution;
(A2)該クロロホルム'メタノール溶液を蒸発させ、真空乾燥させ、 N—トリス (ヒドロキ シメチル) 3—ァミノプロパンスルホン酸緩衝液 (pH8. 4)に再懸濁させて再懸濁液 を生成する工程;  (A2) Evaporate the chloroform'methanol solution, vacuum dry, and resuspend in N-tris (hydroxymethyl) 3-aminopropanesulfonate buffer (pH 8.4) to form a resuspension Process;
(A3)該再懸濁液を 30°C〜40°Cで攪拌させ、窒素置換し、超音波処理する工程; (A4) (A3)工程において超音波処理した溶液に、前記蛍光色素を含む蛍光色素 溶液を混合し、混合した溶液を分画分子量 10, 000で限外濾過し、該蛍光色素を内 包するリボソームを調製する工程、  (A3) The resuspension is stirred at 30 ° C. to 40 ° C., purged with nitrogen, and sonicated; (A4) The fluorescent dye is contained in the solution sonicated in (A3) A step of mixing a fluorescent dye solution, ultrafiltering the mixed solution with a molecular weight cut-off of 10,000, and preparing a ribosome containing the fluorescent dye;
を包含する、項目 53または 54に記載の蛍光色素含有糖鎖修飾リボソームの製造方 法。 55. A method for producing a fluorescent dye-containing sugar chain-modified ribosome according to Item 53 or 54, comprising
(項目 56)  (Item 56)
前記 (A4)工程における前記蛍光色素溶液が、蛍光色素で標識された蛍光色素標 識タンパク質を含む溶液であり、以下: The fluorescent dye solution in the step (A4) is a fluorescent dye standard labeled with a fluorescent dye. Is a solution containing a protein, the following:
(1)蛍光標識が結合し得るタンパク質 ZN—トリス (ヒドロキシメチル) 3 アミノブ 口パンスルホン酸緩衝液 (PH8. 4)溶液に蛍光色素 ZN トリス(ヒドロキシメチル) 3—ァミノプロパンスルホン酸緩衝液 (pH8. 4)溶液を混合して、室温〜約 37°Cで撹 拌する工程;および (1) Fluorescent labels can bind proteins ZN- tris (hydroxymethyl) 3 Aminobu port pan sulfonic acid buffer (P H8. 4) Fluorescent dyes ZN tris (hydroxymethyl) To a solution of 3-§ amino propane sulfonic acid buffer mixing the (pH 8.4) solution and stirring at room temperature to about 37 ° C; and
(2) (1)工程の混合溶液を、分画分子量 10, 000で限外濾過し、遊離の該蛍光色 素を除去する工程、  (2) A step of ultrafiltration of the mixed solution in step (1) with a molecular weight cut-off of 10,000 to remove the free fluorescent dye,
を包含する工程により調製される、項目 55に記載の方法。 56. The method of item 55, which is prepared by a process comprising:
(項目 57) (Item 57)
蛍光色素含有糖鎖修飾リボソームの製造方法であって、 A method for producing a fluorescent dye-containing sugar chain-modified ribosome,
前記 B)工程が、以下: Step B) includes the following:
(B1)前記蛍光色素を内包した力または結合したリボソームを含む溶液を、分画分 子量 300, 000で限外濾過し、該溶液中に含まれる緩衝液を炭酸緩衝液 (pH8. 5) に交換する工程;  (B1) The solution containing force or bound ribosome encapsulating the fluorescent dye is ultrafiltered with a fractionation amount of 300,000, and the buffer contained in the solution is carbonate buffer (pH 8.5) Replacing with
(B2)該 (B1)工程にお ヽて該緩衝液が該炭酸緩衝液に変換された溶液にビス (ス ルホスクシンィミジル)スべレートを添加して、冷蔵〜約 37°Cで攪拌し、分画分子量 3 00, 000で限外濾過し、遊離の該ビス(スルホスクシンィミジル)スべレートを除去する 工程;  (B2) Add bis (sulfosuccinimidyl) suberate to the solution in which the buffer solution has been converted to the carbonate buffer solution in the step (B1), and refrigerate to about 37 ° C. Agitation and ultrafiltration at a molecular weight cut off of 300,000 to remove the free bis (sulfosuccinimidyl) suberate;
(B3)該(B2)工程にお!、て、該遊離の該ビス (スルホスクシンィミジル)スべレートを 除去した溶液に、 330mM トリス(ヒドロキシメチル)ァミノメタン Z炭酸緩衝液 (ρΗ8 . 5)溶液を添加して、冷蔵〜約 37°Cで攪拌し、さらに冷蔵〜室温で一晩撹拌し、分 画分子量 300, 000で限外濾過し、遊離のトリス(ヒドロキシメチル)ァミノメタンを除去 し、該炭酸緩衝液を N トリス(ヒドロキシメチル)—3—ァミノプロパンスルホン酸緩衝 液 (pH8. 4)に交換して親水性ィ匕処理されたリボソームを含む溶液を生成させるェ 程;  (B3) In the step (B2), a solution obtained by removing the free bis (sulfosuccinimidyl) suberate is added to 330 mM Tris (hydroxymethyl) aminomethane Z carbonate buffer (ρΗ8. 5) Add the solution, stir at refrigeration to about 37 ° C, stir at refrigeration to room temperature overnight, and ultrafilter with a molecular weight cut off of 300,000 to remove free tris (hydroxymethyl) aminomethane. And replacing the carbonate buffer with N-tris (hydroxymethyl) -3-aminopropanesulfonate buffer (pH 8.4) to produce a solution containing ribosomes that have been hydrophilically treated;
を包含する、項目 53〜56のいずれ力 1項に記載の蛍光色素含有糖鎖修飾リポソ一 ムの製造方法。 The method for producing a fluorescent dye-containing sugar chain-modified liposome according to any one of items 53 to 56, comprising:
(項目 58) 前記 B)工程が、以下: (Item 58) Step B) includes the following:
(Bl ' )前記蛍光色素を内包した力または結合したリボソームを含む溶液を、分画分 子量 100, 000、 2000 X g、 60分間の条件で 2回、遠'、分離に力、けることにより限外 濾過し、該溶液中に含まれる緩衝液を炭酸緩衝液 (PH8. 5)に交換する工程; (Bl ') The solution containing the fluorescent dye or the solution containing the bound ribosome should be separated and dissociated twice under the conditions of a fractional amount of 100,000, 2000 X g and 60 minutes. A step of exchanging the buffer contained in the solution with a carbonate buffer (PH8.5);
(B2' )該 (B1 ' )工程にぉ ヽて該緩衝液が該炭酸緩衝液に変換された溶液にビス ( スルホスクシンィミジル)スべレートを添カ卩して、冷蔵〜約 37°Cで攪拌し、分画分子量 100, 000、 2000 X g、 60分間の条件で 2回、遠'、分離に力、けることにより限外據過 し、遊離の該ビス (スルホスクシンィミジル)スべレートを除去する工程; (B2 ′) Addition of bis (sulfosuccinimidyl) suberate to the solution in which the buffer solution is converted to the carbonate buffer solution in the step (B1 ′) After stirring at 37 ° C, the mixture was subjected to ultrafiltration by separating twice, with a molecular weight cut off of 100,000, 2000 X g, 60 minutes, by force, and free bis (sulfosuccin Imidyl) suberate removal;
(B3,)該(B2,)工程において、該遊離の該ビス (スルホスクシンィミジル)スべレート を除去した溶液に、 330mM トリス(ヒドロキシメチル)ァミノメタン/炭酸緩衝液 (pH 8. 5)溶液を添加して、冷蔵〜約 37°Cで攪拌し、さらに冷蔵〜室温で一晩撹拌し、 分画分子量 100, 000、 2000 X g 60分間の条件で 2回、遠心分離にかけることに より限外濾過し、遊離のトリス (ヒドロキシメチル)ァミノメタンを除去し、該炭酸緩衝液 を N—トリス(ヒドロキシメチル)—3—ァミノプロパンスルホン酸緩衝液 (pH8. 4)に交 換して親水性ィ匕処理されたリボソームを含む溶液を生成させる工程;  (B3,) In the step (B2,), in the solution from which the free bis (sulfosuccinimidyl) suberate was removed, 330 mM tris (hydroxymethyl) aminomethane / carbonate buffer (pH 8.5) was added. ) Add the solution, stir at refrigeration to approximately 37 ° C, stir at refrigeration to room temperature overnight, and centrifuge twice at a molecular weight cut off of 100,000, 2000 x g for 60 minutes. Ultrafiltration is performed to remove free tris (hydroxymethyl) aminomethane, and the carbonate buffer is replaced with N-tris (hydroxymethyl) -3-amaminopropanesulfonate buffer (pH 8.4). Producing a solution containing ribosomes that have been treated with hydrophilicity and hydrophilicity;
を包含する、項目 53〜57に記載の製造方法。 58. The production method according to items 53 to 57, comprising:
(項目 59) (Item 59)
前記 C)工程が、以下: Step C) includes the following:
(C1)前記蛍光色素を内包した力または結合したリボソームを含む溶液に、メタ過ョ ゥ素酸ナトリウム ZN—トリス(ヒドロキシメチル)—3—ァミノプロパンスルホン酸緩衝 液 (pH8. 4)溶液を添加し、冷蔵〜室温で一晩撹拌して、リボソーム粒子表面を酸ィ匕 する工程;  (C1) Add a solution of sodium metaperoxide ZN-tris (hydroxymethyl) -3-aminopropanesulfonic acid buffer (pH 8.4) to a solution containing force or bound ribosome containing the fluorescent dye. Adding and acidifying the surface of the ribosome particles by refrigeration to stirring at room temperature overnight;
(C2) (C1)工程において、粒子表面が酸ィ匕されたリボソームを含む溶液を、分画 分子量 300, 000で限外濾過し、遊離の該メタ過ヨウ素酸ナトリウムを除去し、該 N— トリス(ヒドロキシメチル)— 3—ァミノプロパンスルホン酸緩衝液を PBS緩衝液 (pH8. 0)に交換する工程;  (C2) In the step (C1), the solution containing the ribosome whose surface is oxidized is ultrafiltered with a molecular weight cut off of 300,000 to remove the free sodium metaperiodate, and the N— Replacing tris (hydroxymethyl) -3-aminopropanesulfonate buffer with PBS buffer (pH 8.0);
(C3) (C2)工程において、該緩衝液が該 PBS緩衝液に交換された溶液に、ヒト血 清アルブミン/ PBS緩衝液 (pH8. 0)を添加して冷蔵〜室温で反応させて反応溶液 を生成する工程; (C3) In the step (C2), human serum albumin / PBS buffer (pH 8.0) is added to the solution in which the buffer is exchanged with the PBS buffer, and the reaction is performed at refrigeration to room temperature. Producing
(C4)さらに、該反応溶液に、シァノホウ素酸ナトリウム ZPBS緩衝液 (pH8. 0)を 添加して、冷蔵〜室温で攪拌し、分画分子量 300, 000で限外濾過し、遊離の該シ ァノホウ素酸ナトリウムおよび該ヒト血清アルブミンを除去し、該溶液の緩衝液を炭酸 緩衝液 (PH8. 5)に交換する工程  (C4) Further, sodium cyanoboronate ZPBS buffer (pH 8.0) was added to the reaction solution, stirred at refrigeration to room temperature, ultrafiltered with a molecular weight cut off of 300,000, and free Removing sodium boroborate and human serum albumin, and replacing the buffer of the solution with carbonate buffer (PH8.5)
を包含する、項目 53〜58に記載の製造方法。 59. The production method according to items 53 to 58, comprising:
(項目 60) (Item 60)
前記 C)工程が、以下: Step C) includes the following:
(C1)前記蛍光色素を内包した力または結合したリボソームを含む溶液に、メタ過ョ ゥ素酸ナトリウム ZN—トリス(ヒドロキシメチル)—3—ァミノプロパンスルホン酸緩衝 液 (pH8. 4)溶液を添加し、冷蔵〜室温で一晩撹拌して、リボソーム粒子表面を酸ィ匕 する工程;  (C1) Add a solution of sodium metaperoxide ZN-tris (hydroxymethyl) -3-aminopropanesulfonic acid buffer (pH 8.4) to a solution containing force or bound ribosome containing the fluorescent dye. Adding and acidifying the surface of the ribosome particles by refrigeration to stirring at room temperature overnight;
(C2) (C1)工程において、粒子表面が酸ィ匕されたリボソームを含む溶液を、分画 分子量 300, 000で限外濾過し、遊離の該メタ過ヨウ素酸ナトリウムを除去し、該 N— トリス(ヒドロキシメチル)— 3—ァミノプロパンスルホン酸緩衝液を PBS緩衝液 (pH8. 0)に交換する工程;  (C2) In the step (C1), the solution containing the ribosome whose surface is oxidized is ultrafiltered with a molecular weight cut off of 300,000 to remove the free sodium metaperiodate, and the N— Replacing tris (hydroxymethyl) -3-aminopropanesulfonate buffer with PBS buffer (pH 8.0);
(C3) (C2)工程において、該緩衝液が該 PBS緩衝液に交換された溶液に、ヒト血 清アルブミン/ PBS緩衝液 (pH8. 0)を添加して冷蔵〜室温で反応させて反応溶液 を生成する工程;  (C3) In the step (C2), human serum albumin / PBS buffer (pH 8.0) is added to the solution in which the buffer is exchanged with the PBS buffer, and the reaction is performed at refrigeration to room temperature. Producing
(C4)さらに、該反応溶液を、冷蔵〜室温で攪拌し、分画分子量 300, 000で限外 濾過し、遊離の該ヒト血清アルブミンを除去し、該溶液の緩衝液を炭酸緩衝液 (pH8 . 5)に交換する工程  (C4) Further, the reaction solution is stirred at refrigeration to room temperature, ultrafiltered with a molecular weight cut off of 300,000 to remove free human serum albumin, and the buffer solution of the solution is changed to a carbonate buffer solution (pH 8). .5) Replacement process
を包含する、項目 53〜59に記載の製造方法。 The manufacturing method of item 53-59 including this.
(項目 61) (Item 61)
前記 C)工程が、以下: Step C) includes the following:
(C1 ' )前記蛍光色素を内包した力または結合したリボソームを含む溶液に、メタ過 ヨウ素酸ナトリウム ZN—トリス(ヒドロキシメチル)— 3—ァミノプロパンスルホン酸緩衝 液 (pH8. 4)溶液を添加し、冷蔵〜室温で一晩撹拌して、リボソーム粒子表面を酸ィ匕 する工程; (C1 ') Add a solution of sodium metaperiodate ZN-tris (hydroxymethyl) -3-aminopropanesulfonate buffer (pH 8.4) to the solution containing the force or bound ribosome containing the fluorescent dye. And stir overnight at refrigerated to room temperature to oxidize the ribosome particle surface. The step of:
(C2' ) (CI ' )工程において、粒子表面が酸ィ匕されたリボソームを含む溶液を、分 画分子量 100, 000、 2000 X g 60分間の条件で 2回、遠'、分離に力、けることにより 限外濾過し、遊離の該メタ過ヨウ素酸ナトリウムを除去し、該 N トリス (ヒドロキシメチ ル) 3—ァミノプロパンスルホン酸緩衝液を PBS緩衝液 (pH8. 0)に交換する工程; In the (C2 ′) (CI ′) step, the solution containing the ribosome with an oxidized surface of the particle is separated twice with a molecular weight cutoff of 100,000, 2000 × g for 60 minutes. Removing the free sodium metaperiodate and replacing the N-tris (hydroxymethyl) 3-aminopropanesulfonate buffer solution with PBS buffer (pH 8.0). ;
(C3' ) (C2' )工程において、該緩衝液が該 PBS緩衝液に交換された溶液に、ヒト 血清アルブミン/ PBS緩衝液 (pH8. 0)を添加して冷蔵〜室温で反応させて反応溶 液を生成する工程; (C3 ′) In the step (C2 ′), human serum albumin / PBS buffer (pH 8.0) was added to the solution in which the buffer was replaced with the PBS buffer, and the reaction was performed at refrigeration to room temperature. Producing a solution;
(C4,)さらに、該反応溶液に、シァノホウ素酸ナトリウム ZPBS緩衝液 (pH8. 0)を 添カロして、分画分子量 100, 000、 2000 X g 60分 f¾の条件で 2回、遠 、分離に力 けることにより限外濾過し、遊離のシァノホウ素酸ナトリウムおよび該ヒト血清アルブミ ンを除去し、該溶液の緩衝液を炭酸緩衝液 (pH8. 5)に交換する工程  (C4) Further, sodium cyanoborate ZPBS buffer (pH 8.0) was added to the reaction solution, and the mixture was separated twice under the conditions of a molecular weight cutoff of 100,000, 2000 × g for 60 minutes f¾, Ultrafiltration by force of separation to remove free sodium cyanoboronate and human serum albumin, and exchange the buffer of the solution with carbonate buffer (pH 8.5)
を包含する、項目 53〜59に記載の製造方法。 The manufacturing method of item 53-59 including this.
(項目 62) (Item 62)
前記 C)工程が、以下: Step C) includes the following:
(C1 ' )前記蛍光色素を内包した力または結合したリボソームを含む溶液に、メタ過 ヨウ素酸ナトリウム ZN—トリス(ヒドロキシメチル)— 3—ァミノプロパンスルホン酸緩衝 液 (pH8. 4)溶液を添加し、冷蔵〜室温で一晩撹拌して、リボソーム粒子表面を酸ィ匕 する工程;  (C1 ') Add a solution of sodium metaperiodate ZN-tris (hydroxymethyl) -3-aminopropanesulfonate buffer (pH 8.4) to the solution containing the force or bound ribosome containing the fluorescent dye. And acidifying the surface of the ribosome particles by stirring overnight at refrigerated to room temperature;
(C2' ) (C1 ' )工程において、粒子表面が酸ィ匕されたリボソームを含む溶液を、分 画分子量 100, 000、 2000 X g 60分間の条件で 2回、遠'、分離に力、けることにより 限外濾過し、遊離の該メタ過ヨウ素酸ナトリウムを除去し、該 N トリス (ヒドロキシメチ ル) 3—ァミノプロパンスルホン酸緩衝液を PBS緩衝液 (pH8. 0)に交換する工程; (C2 ′) In the (C1 ′) step, the solution containing the ribosome whose surface is oxidized is subjected to two separations under the conditions of a molecular weight cutoff of 100,000 and 2000 × g for 60 minutes. Removing the free sodium metaperiodate and replacing the N-tris (hydroxymethyl) 3-aminopropanesulfonate buffer solution with PBS buffer (pH 8.0). ;
(C3' ) (C2' )工程において、該緩衝液が該 PBS緩衝液に交換された溶液に、ヒト 血清アルブミン/ PBS緩衝液 (pH8. 0)を添加して冷蔵〜室温で反応させて反応溶 液を生成する工程; (C3 ′) In the step (C2 ′), human serum albumin / PBS buffer (pH 8.0) was added to the solution in which the buffer was replaced with the PBS buffer, and the reaction was performed at refrigeration to room temperature. Producing a solution;
(C4' )さらに、該反応溶液を、冷蔵〜室温で攪拌し、分画分子量 100, 000、 200 O X g 60分間の条件で 2回、遠心分離にかけることにより限外濾過し、該ヒト血清ァ ルブミンを除去し、該溶液の緩衝液を炭酸緩衝液 (pH8. 5)に交換する工程 を包含する、項目 53〜59に記載の製造方法。 (C4 ′) Further, the reaction solution was stirred at refrigeration to room temperature, ultrafiltered by centrifugation twice under conditions of a molecular weight cut off of 100,000 and 200 OX g for 60 minutes, and the human serum A 60. The production method according to items 53 to 59, comprising a step of removing rubumin and exchanging the buffer solution of the solution with a carbonate buffer solution (pH 8.5).
(項目 63) (Item 63)
前記 D)工程が、以下: Step D) includes the following:
(D1)前記糖鎖を精製水に溶解して、炭酸水素アンモ-ゥム飽和下で室温〜約 37 °Cで反応させて、アミノィ匕糖鎖溶液を調製する工程;  (D1) a step of dissolving the sugar chain in purified water and reacting at room temperature to about 37 ° C. under saturated ammonium bicarbonate to prepare an amino sugar chain solution;
(D2)前記蛍光色素を内包した力または結合したリボソームを含む溶液に、 3, 3' ジチォビス(スルホスクシンィミジルプロピオネート)を添カ卩して、冷蔵〜約 37°Cで 攪拌し、分画分子量 300, 000で限外濾過し、遊離の該 3, 3'—ジチオピス (スルホ スクシンィミジルプロピオネート)を除去する工程;および  (D2) Add 3, 3 'dithiobis (sulfosuccinimidyl propionate) to the solution containing the force or bound ribosome containing the fluorescent dye, and stir at refrigeration to approximately 37 ° C. And ultrafiltering with a molecular weight cut off of 300,000 to remove the free 3,3′-dithiopis (sulfosuccinimidyl propionate); and
(D3) (D2)工程において、該遊離の該 3, 3,一ジチォビス(スルホスクシンィミジル プロピオネート)を除去した溶液に、該ァミノ化糖鎖溶液を添加して、冷蔵〜約 37°C で反応させ、トリス (ヒドロキシメチル)ァミノメタン Z炭酸緩衝液 (PH8. 5)を添加し、 冷蔵〜 37°Cで一晩撹拌し、分画分子量 300, 000で限外濾過し、遊離の該糖鎖と 該トリス (ヒドロキシメチル)ァミノメタンを除去する工程;  (D3) In the step (D2), the aminated sugar chain solution is added to the solution from which the free 3,3,4-dithiobis (sulfosuccinimidyl propionate) has been removed, and the mixture is refrigerated to about 37 ° C. React with C, add tris (hydroxymethyl) aminomethane Z carbonate buffer (PH8.5), stir overnight at refrigerated ~ 37 ° C, ultrafilter with molecular weight cut off 300,000, Removing the sugar chain and the tris (hydroxymethyl) aminomethane;
(D4) (D3)工程において、遊離の該糖鎖と該トリス (ヒドロキシメチル)ァミノメタンを 除去した溶液の緩衝液を、 HEPES緩衝液 (pH7. 2)に交換する工程、  (D4) a step of replacing the buffer solution of the solution from which the free sugar chain and tris (hydroxymethyl) aminomethane have been removed in the step (D3) with a HEPES buffer solution (pH 7.2),
を包含する、項目 53〜62に記載の製造方法。 63. The production method according to items 53 to 62, which comprises
(項目 64) (Item 64)
前記 D)工程に引き続き前記糖鎖が結合したリボソームを親水性ィ匕する工程を包含 する、項目 53〜63に記載の製造方法。 64. The production method according to items 53 to 63, further comprising the step of hydrophilicizing the ribosome to which the sugar chain is bound following the step D).
(項目 65) (Item 65)
蛍光色素含有糖鎖修飾リボソームの製造方法であって、該製造方法が、 A method for producing a fluorescent dye-containing sugar chain-modified ribosome, the production method comprising:
A)蛍光色素をリボソームに内包させたリボソームを形成させる工程;  A) forming a ribosome in which a fluorescent dye is encapsulated in the ribosome;
B)該リボソームを親水性化処理する工程;  B) Hydrophilizing the ribosome;
C)該リボソームとリンカ一タンパク質を結合させる工程;  C) binding the ribosome to a linker protein;
D)該リボソームへ糖鎖を結合させる工程;  D) a step of binding a sugar chain to the ribosome;
E)該糖鎖が結合したリボソームを親水性ィ匕する工程;ならびに F)該親水性ィ匕したリボソームを含む溶液をフィルター濾過する工程 E) Hydrophilizing the ribosome to which the sugar chain is bound; and F) Filtering the solution containing the hydrophilic ribosome
を包含する、製造方法。 Manufacturing method.
(項目 66) (Item 66)
前記 A)工程が、以下: Step A) includes the following:
(A1)ジパルミトイルホスファチジルコリン、コレステロール、ガンダリオシド、ジセチ ルホスフェート、ジパルミトイルホスファチジルエタノールァミンおよびコール酸ナトリウ ムを、 35: 40: 15: 5: 5: 167のモル比で混合させ、メタノール 'クロ口ホルム(1: 1)溶 液に懸濁させる工程;  (A1) Dipalmitoyl phosphatidylcholine, cholesterol, gandarioside, dicetyl phosphate, dipalmitoyl phosphatidylethanolamine and sodium cholate are mixed at a molar ratio of 35: 40: 15: 5: 5: 167 Suspending in form (1: 1) solution;
(A2)該クロロホルム'メタノール溶液を蒸発させ、真空乾燥させ、 N—トリス (ヒドロキ シメチル) 3—ァミノプロパンスルホン酸緩衝液 (pH8. 4)に再懸濁させて再懸濁液 を生成する工程;  (A2) Evaporate the chloroform'methanol solution, vacuum dry, and resuspend in N-tris (hydroxymethyl) 3-aminopropanesulfonate buffer (pH 8.4) to form a resuspension Process;
(A3)該再懸濁液を 30〜40°Cで攪拌させ、窒素置換し、超音波処理する工程;お よび  (A3) stirring the resuspension at 30-40 ° C, purging with nitrogen, and sonicating; and
(A4) (A3)工程において超音波処理した溶液に、該蛍光色素を含む蛍光色素溶 液を混合し、混合した溶液を分画分子量 10, 000で限外濾過し、該蛍光色素を内包 するリボソームを調製する工程であって、該蛍光色素溶液は、ヒト血清アルブミン ZN —トリス(ヒドロキシメチル)—3—ァミノプロパンスルホン酸緩衝液 (pH8. 4)溶液に蛍 光色素/ N—トリス(ヒドロキシメチル)— 3—ァミノプロパンスルホン酸緩衝液 (pH8. 4)溶液を混合して、 37°Cで撹拌し、分画分子量 10, 000で限外濾過し、遊離の該 蛍光色素を除去する工程によって調製される工程を包含し、  (A4) The fluorescent dye solution containing the fluorescent dye is mixed with the solution sonicated in step (A3), and the mixed solution is ultrafiltered with a molecular weight cut off of 10,000 to enclose the fluorescent dye. In the step of preparing ribosome, the fluorescent dye solution is added to human serum albumin ZN—Tris (hydroxymethyl) -3-aminopropanesulfonic acid buffer (pH 8.4) solution with fluorescent dye / N-Tris ( Hydroxymethyl) -3-aminopropanesulfonic acid buffer (pH 8.4) solution was mixed, stirred at 37 ° C, and ultrafiltered with a molecular weight cut off of 10,000 to remove the free fluorescent dye. Comprising a step prepared by the step of
前記 B)工程が、以下: Step B) includes the following:
(B1)該蛍光色素を内包したか、または結合したリボソームを含む溶液を、分画分 子量 300, 000で限外濾過し、該溶液中に含まれる緩衝液を炭酸緩衝液 (pH8. 5) に交換する工程;  (B1) The solution containing the ribosome encapsulating or binding the fluorescent dye is ultrafiltered at a fractional fraction of 300,000, and the buffer contained in the solution is carbonate buffer (pH 8.5). ) To replace with;
(B2)該 (B1)工程にお ヽて該緩衝液が該炭酸緩衝液に変換された溶液にビス (ス ルホスクシンィミジル)スべレートを添加して、冷蔵〜約 37°Cで攪拌し、分画分子量 3 00, 000で限外濾過し、遊離の該ビス(スルホスクシンィミジル)スべレートを除去する 工程;および (B3)該(B2)工程にお!、て、該遊離の該ビス (スルホスクシンィミジル)スべレートを 除去した溶液に、 330mM トリス(ヒドロキシメチル)ァミノメタン Z炭酸緩衝液 (ρΗ8 . 5)溶液を添加して、冷蔵〜約 37°Cで攪拌し、冷蔵〜室温で一晩撹拌し、分画分 子量 300, 000で限外濾過し、遊離のトリス(ヒドロキシメチル)ァミノメタンを除去し、 該炭酸緩衝液を N—トリス(ヒドロキシメチル) 3—ァミノプロパンスルホン酸緩衝液 ( PH8. 4)に交換して親水性ィ匕処理されたリボソームを含む溶液を生成させる工程を 包含し、 (B2) Add bis (sulfosuccinimidyl) suberate to the solution in which the buffer solution has been converted to the carbonate buffer solution in the step (B1), and refrigerate to about 37 ° C. And ultrafiltration with a molecular weight cut off of 300,000 to remove the free bis (sulfosuccinimidyl) suberate; and (B3) In the step (B2), a solution obtained by removing the free bis (sulfosuccinimidyl) suberate is added to 330 mM Tris (hydroxymethyl) aminomethane Z carbonate buffer (ρΗ8. 5) Add the solution, stir at refrigeration to about 37 ° C, stir at refrigeration to room temperature overnight, ultrafilter with a fractional fraction of 300,000, and free tris (hydroxymethyl) aminomethane. And removing the carbonate buffer with N-tris (hydroxymethyl) 3-aminopropanesulfonate buffer (PH8.4) to produce a solution containing ribosomes that have been treated with hydrophilic acid. And
前記 C)工程が、以下: Step C) includes the following:
(C1)該蛍光色素を内包した力または結合したリボソームを含む溶液に、メタ過ヨウ 素酸ナトリウム ZN トリス(ヒドロキシメチル) 3—ァミノプロパンスルホン酸緩衝液 ( PH8. 4)溶液を添加し、冷蔵下で一晩撹拌して、リボソーム粒子表面を酸ィ匕するェ 程;  (C1) A solution containing sodium phosphoperiodate ZN tris (hydroxymethyl) 3-aminopropanesulfonate buffer solution (PH8.4) is added to a solution containing force or bound ribosome encapsulating the fluorescent dye, Stir overnight under refrigeration to acidify the ribosome particle surface;
(C2) (C1)工程において、粒子表面が酸ィ匕されたリボソームを含む溶液を、分画 分子量 300, 000で限外濾過し、遊離の該メタ過ヨウ素酸ナトリウムを除去し、該 N— トリス(ヒドロキシメチル)— 3—ァミノプロパンスルホン酸緩衝液を PBS緩衝液 (pH8. 0)に交換する工程;  (C2) In the step (C1), the solution containing the ribosome whose surface is oxidized is ultrafiltered with a molecular weight cut off of 300,000 to remove the free sodium metaperiodate, and the N— Replacing tris (hydroxymethyl) -3-aminopropanesulfonate buffer with PBS buffer (pH 8.0);
(C3) (C2)工程において、該緩衝液が該 PBS緩衝液に交換された溶液に、ヒト血 清アルブミン/ PBS緩衝液 (pH8. 0)を添加して冷蔵〜室温で反応させて反応溶液 を生成する工程;および  (C3) In the step (C2), human serum albumin / PBS buffer (pH 8.0) is added to the solution in which the buffer is exchanged with the PBS buffer, and the reaction is performed at refrigeration to room temperature. Producing steps; and
(C4)該反応溶液に、シァノホウ素酸ナトリウム ZPBS緩衝液 (pH8. 0)を添加して 、冷蔵〜室温で攪拌し、分画分子量 300, 000で限外濾過し、遊離の該シァノホウ素 酸ナトリウムおよび該ヒト血清アルブミンを除去し、該溶液の緩衝液を炭酸緩衝液 (P H8. 5)に交換する工程を包含し、  (C4) To the reaction solution was added sodium cyanoboronate ZPBS buffer (pH 8.0), stirred at refrigeration to room temperature, ultrafiltered with a molecular weight cut off of 300,000, and free cyanoboronic acid. Removing sodium and the human serum albumin and replacing the buffer of the solution with carbonate buffer (PH 8.5),
前記 D)工程が、以下: Step D) includes the following:
(D1)該糖鎖を精製水に溶解して、炭酸水素アンモ -ゥム飽和下で、室温〜約 37 °Cで反応させて、アミノィ匕糖鎖溶液を調製する工程;  (D1) a step of dissolving the sugar chain in purified water and reacting at room temperature to about 37 ° C under ammonium hydrogen carbonate saturation to prepare an amino sugar chain solution;
(D2)該蛍光色素を内包したかまたは結合したリボソームを含む溶液に、 3, 3'—ジ チォビス (スルホスクシンィミジルプロピオネート)を添カ卩して、冷蔵〜約 37°Cで攪拌 し、分画分子量 300, 000で限外濾過し、遊離の該 3, 3,—ジチオピス(スルホスクシ ンィミジルプロピオネート)を除去する工程;および (D2) 3, 3′-dithiobis (sulfosuccinimidyl propionate) is added to a solution containing a ribosome containing or bound to the fluorescent dye, and refrigerated to about 37 ° C. Stir with And ultrafiltering with a molecular weight cut off of 300,000 to remove the free 3, 3, -dithiopis (sulfosuccinimidyl propionate); and
(D3) (D2)工程において、該遊離の該 3, 3,一ジチォビス(スルホスクシンィミジル プロピオネート)を除去した溶液に、該ァミノ化糖鎖溶液を添加して、冷蔵〜約 37°C で反応させ、トリス (ヒドロキシメチル)ァミノメタン Z炭酸緩衝液 (PH8. 5)を添加し、 冷蔵〜 37°Cで一晩撹拌し、分画分子量 300, 000で限外濾過し、遊離の該糖鎖と 該トリス (ヒドロキシメチル)ァミノメタンを除去する工程;および  (D3) In the step (D2), the aminated sugar chain solution is added to the solution from which the free 3,3,4-dithiobis (sulfosuccinimidyl propionate) has been removed, and the mixture is refrigerated to about 37 ° C. React with C, add tris (hydroxymethyl) aminomethane Z carbonate buffer (PH8.5), stir overnight at refrigerated ~ 37 ° C, ultrafilter with molecular weight cut off 300,000, Removing sugar chains and the tris (hydroxymethyl) aminomethane; and
(D4) (D3)工程において、遊離の該糖鎖と該トリス (ヒドロキシメチル)ァミノメタンを 除去した溶液の緩衝液を、 HEPES緩衝液 (pH7. 2)に交換する工程を包含する、 項目 65に記載の製造方法。  (D4) In the step (D3), including the step of replacing the buffer solution of the solution from which the free sugar chain and the tris (hydroxymethyl) aminomethane have been removed with a HEPES buffer solution (pH 7.2), The manufacturing method as described.
(項目 67) (Item 67)
前記 A)工程が、以下: Step A) includes the following:
(A1)ジパルミトイルホスファチジルコリン、コレステロール、ガンダリオシド、ジセチ ルホスフェート、ジパルミトイルホスファチジルエタノールァミンおよびコール酸ナトリウ ムを、 35: 40: 15: 5: 5: 167のモル比で混合させ、メタノール 'クロ口ホルム(1: 1)溶 液に懸濁させる工程;  (A1) Dipalmitoyl phosphatidylcholine, cholesterol, gandarioside, dicetyl phosphate, dipalmitoyl phosphatidylethanolamine and sodium cholate are mixed at a molar ratio of 35: 40: 15: 5: 5: 167 Suspending in form (1: 1) solution;
(A2)該クロロホルム'メタノール溶液を蒸発させ、真空乾燥させ、 N—トリス (ヒドロキ シメチル) 3—ァミノプロパンスルホン酸緩衝液 (pH8. 4)に再懸濁させて再懸濁液 を生成する工程;  (A2) Evaporate the chloroform'methanol solution, vacuum dry, and resuspend in N-tris (hydroxymethyl) 3-aminopropanesulfonate buffer (pH 8.4) to form a resuspension Process;
(A3)該再懸濁液を 30〜40°Cで攪拌させ、窒素置換し、超音波処理する工程;お よび  (A3) stirring the resuspension at 30-40 ° C, purging with nitrogen, and sonicating; and
(A4) (A3)工程において超音波処理した溶液に、該蛍光色素を含む蛍光色素溶 液を混合し、混合した溶液を分画分子量 10, 000で限外濾過し、該蛍光色素を内包 するリボソームを調製する工程であって、該蛍光色素溶液は、ヒト血清アルブミン ZN —トリス(ヒドロキシメチル)—3—ァミノプロパンスルホン酸緩衝液 (pH8. 4)溶液に蛍 光色素/ N—トリス(ヒドロキシメチル)— 3—ァミノプロパンスルホン酸緩衝液 (pH8. 4)溶液を混合して、 37°Cで撹拌し、分画分子量 10, 000で限外濾過し、遊離の該 蛍光色素を除去する工程によって調製される工程を包含し、 前記 B)工程が、以下: (A4) The fluorescent dye solution containing the fluorescent dye is mixed with the solution sonicated in step (A3), and the mixed solution is ultrafiltered with a molecular weight cut off of 10,000 to enclose the fluorescent dye. In the step of preparing ribosome, the fluorescent dye solution is added to human serum albumin ZN—Tris (hydroxymethyl) -3-aminopropanesulfonic acid buffer (pH 8.4) solution with fluorescent dye / N-Tris ( Hydroxymethyl) -3-aminopropanesulfonic acid buffer (pH 8.4) solution was mixed, stirred at 37 ° C, and ultrafiltered with a molecular weight cut off of 10,000 to remove the free fluorescent dye. Comprising a step prepared by the step of Step B) includes the following:
(B1)該蛍光色素を内包したか、または結合したリボソームを含む溶液を、分画分 子量 300, 000で限外濾過し、該溶液中に含まれる緩衝液を炭酸緩衝液 (pH8. 5) に交換する工程;  (B1) The solution containing the ribosome encapsulating or binding the fluorescent dye is ultrafiltered at a fractional fraction of 300,000, and the buffer contained in the solution is carbonate buffer (pH 8.5). ) To replace with;
(B2)該 (B1)工程にお ヽて該緩衝液が該炭酸緩衝液に変換された溶液にビス (ス ルホスクシンィミジル)スべレートを添加して、冷蔵〜約 37°Cで攪拌し、分画分子量 3 00, 000で限外濾過し、遊離の該ビス(スルホスクシンィミジル)スべレートを除去する 工程;および  (B2) Add bis (sulfosuccinimidyl) suberate to the solution in which the buffer solution has been converted to the carbonate buffer solution in the step (B1), and refrigerate to about 37 ° C. And ultrafiltration with a molecular weight cut off of 300,000 to remove the free bis (sulfosuccinimidyl) suberate; and
(B3)該(B2)工程にお!、て、該遊離の該ビス (スルホスクシンィミジル)スべレートを 除去した溶液に、 330mM トリス(ヒドロキシメチル)ァミノメタン Z炭酸緩衝液 (ρΗ8 . 5)溶液を添加して、冷蔵〜約 37°Cで攪拌し、冷蔵〜室温で一晩撹拌し、分画分 子量 300, 000で限外濾過し、遊離のトリス(ヒドロキシメチル)ァミノメタンを除去し、 該炭酸緩衝液を N—トリス(ヒドロキシメチル) 3—ァミノプロパンスルホン酸緩衝液 ( PH8. 4)に交換して親水性ィ匕処理されたリボソームを含む溶液を生成させる工程を 包含し、  (B3) In the step (B2), a solution obtained by removing the free bis (sulfosuccinimidyl) suberate is added to 330 mM Tris (hydroxymethyl) aminomethane Z carbonate buffer (ρΗ8. 5) Add the solution, stir at refrigeration to about 37 ° C, stir at refrigeration to room temperature overnight, ultrafilter with a fractional fraction of 300,000, and free tris (hydroxymethyl) aminomethane. And removing the carbonate buffer with N-tris (hydroxymethyl) 3-aminopropanesulfonate buffer (PH8.4) to produce a solution containing ribosomes that have been treated with hydrophilic acid. And
前記 C)工程が、以下: Step C) includes the following:
(C1)該蛍光色素を内包した力または結合したリボソームを含む溶液に、メタ過ヨウ 素酸ナトリウム ZN トリス(ヒドロキシメチル) 3—ァミノプロパンスルホン酸緩衝液 ( PH8. 4)溶液を添加し、冷蔵下で一晩撹拌して、リボソーム粒子表面を酸ィ匕するェ 程;  (C1) A solution containing sodium phosphoperiodate ZN tris (hydroxymethyl) 3-aminopropanesulfonate buffer solution (PH8.4) is added to a solution containing force or bound ribosome encapsulating the fluorescent dye, Stir overnight under refrigeration to acidify the ribosome particle surface;
(C2) (C1)工程において、粒子表面が酸ィ匕されたリボソームを含む溶液を、分画 分子量 300, 000で限外濾過し、遊離の該メタ過ヨウ素酸ナトリウムを除去し、該 N— トリス(ヒドロキシメチル)— 3—ァミノプロパンスルホン酸緩衝液を PBS緩衝液 (pH8. 0)に交換する工程;  (C2) In the step (C1), the solution containing the ribosome whose surface is oxidized is ultrafiltered with a molecular weight cut off of 300,000 to remove the free sodium metaperiodate, and the N— Replacing tris (hydroxymethyl) -3-aminopropanesulfonate buffer with PBS buffer (pH 8.0);
(C3) (C2)工程において、該緩衝液が該 PBS緩衝液に交換された溶液に、ヒト血 清アルブミン/ PBS緩衝液 (pH8. 0)を添加して冷蔵〜室温で反応させて反応溶液 を生成する工程;および  (C3) In the step (C2), human serum albumin / PBS buffer (pH 8.0) is added to the solution in which the buffer is exchanged with the PBS buffer, and the reaction is performed at refrigeration to room temperature. Producing steps; and
(C4)さらに、該反応溶液を、冷蔵〜室温で攪拌し、分画分子量 300, 000で限外 濾過し、遊離の該ヒト血清アルブミンを除去し、該溶液の緩衝液を炭酸緩衝液 (PH8 . 5)に交換する工程を包含し、 (C4) Further, the reaction solution was stirred at refrigeration to room temperature, and the molecular weight cutoff was 300,000. Filtering, removing the free human serum albumin and replacing the buffer of the solution with carbonate buffer (PH8.5),
前記 D)工程が、以下: Step D) includes the following:
(D1)該糖鎖を精製水に溶解して、炭酸水素アンモ -ゥム飽和下で、室温〜約 37 °Cで反応させて、アミノィ匕糖鎖溶液を調製する工程;  (D1) a step of dissolving the sugar chain in purified water and reacting at room temperature to about 37 ° C under ammonium hydrogen carbonate saturation to prepare an amino sugar chain solution;
(D2)該蛍光色素を内包したかまたは結合したリボソームを含む溶液に、 3, 3'—ジ チォビス (スルホスクシンィミジルプロピオネート)を添カ卩して、冷蔵〜約 37°Cで攪拌 し、分画分子量 300, 000で限外濾過し、遊離の該 3, 3,—ジチオピス(スルホスクシ ンィミジルプロピオネート)を除去する工程;および  (D2) 3, 3′-dithiobis (sulfosuccinimidyl propionate) is added to a solution containing a ribosome containing or bound to the fluorescent dye, and refrigerated to about 37 ° C. And removing the free 3, 3, -dithiopis (sulfosuccinimidyl propionate) by ultrafiltration with a molecular weight cut off of 300,000; and
(D3) (D2)工程において、該遊離の該 3, 3,一ジチォビス(スルホスクシンィミジル プロピオネート)を除去した溶液に、該ァミノ化糖鎖溶液を添加して、冷蔵〜約 37°C で反応させ、トリス (ヒドロキシメチル)ァミノメタン Z炭酸緩衝液 (PH8. 5)を添加し、 冷蔵〜 37°Cで一晩撹拌し、分画分子量 300, 000で限外濾過し、遊離の該糖鎖と 該トリス (ヒドロキシメチル)ァミノメタンを除去する工程;および  (D3) In the step (D2), the aminated sugar chain solution is added to the solution from which the free 3,3,4-dithiobis (sulfosuccinimidyl propionate) has been removed, and the mixture is refrigerated to about 37 ° C. React with C, add tris (hydroxymethyl) aminomethane Z carbonate buffer (PH8.5), stir overnight at refrigerated ~ 37 ° C, ultrafilter with molecular weight cut off 300,000, Removing sugar chains and the tris (hydroxymethyl) aminomethane; and
(D4) (D3)工程において、遊離の該糖鎖と該トリス (ヒドロキシメチル)ァミノメタンを 除去した溶液の緩衝液を、 HEPES緩衝液 (pH7. 2)に交換する工程を包含する、 項目 65に記載の製造方法。  (D4) In the step (D3), including the step of replacing the buffer solution of the solution from which the free sugar chain and the tris (hydroxymethyl) aminomethane have been removed with a HEPES buffer solution (pH 7.2), The manufacturing method as described.
(項目 68) (Item 68)
前記 A)工程が、以下: Step A) includes the following:
(A1)ジパルミトイルホスファチジルコリン、コレステロール、ガンダリオシド、ジセチ ルホスフェート、ジパルミトイルホスファチジルエタノールァミンおよびコール酸ナトリウ ムを、 35: 40: 15: 5: 5: 167のモル比で混合させ、メタノール 'クロ口ホルム(1: 1)溶 液に懸濁させる工程;  (A1) Dipalmitoyl phosphatidylcholine, cholesterol, gandarioside, dicetyl phosphate, dipalmitoyl phosphatidylethanolamine and sodium cholate are mixed at a molar ratio of 35: 40: 15: 5: 5: 167 Suspending in form (1: 1) solution;
(A2)該クロロホルム'メタノール溶液を蒸発させ、減圧乾燥させ、 N—トリス (ヒドロキ シメチル) 3—ァミノプロパンスルホン酸緩衝液 (pH8. 4)に再懸濁させて再懸濁液 を生成する工程;  (A2) The chloroform'methanol solution is evaporated, dried under reduced pressure, and resuspended in N-tris (hydroxymethyl) 3-aminopropanesulfonate buffer (pH 8.4) to form a resuspension. Process;
(A3)該再懸濁液を 30〜40°Cで攪拌させ、窒素置換し、超音波処理する工程;お よび (A4) (A3)工程において超音波処理した溶液に、該蛍光色素を含む蛍光色素溶 液を混合し、混合した溶液を分画分子量 10, 000で限外濾過し、該蛍光色素を内包 するリボソームを調製する工程であって、該蛍光色素溶液は、ヒト血清アルブミン ZN —トリス(ヒドロキシメチル)—3—ァミノプロパンスルホン酸緩衝液 (pH8. 4)溶液に蛍 光色素/ N—トリス(ヒドロキシメチル)— 3—ァミノプロパンスルホン酸緩衝液 (pH8. 4)溶液を混合して、 37°Cで撹拌し、分画分子量 10, 000で限外濾過し、遊離の該 蛍光色素を除去する工程によって調製される工程を包含し、 (A3) stirring the resuspension at 30-40 ° C, purging with nitrogen, and sonicating; and (A4) The fluorescent dye solution containing the fluorescent dye is mixed with the solution sonicated in step (A3), and the mixed solution is ultrafiltered with a molecular weight cut off of 10,000 to enclose the fluorescent dye. In the step of preparing ribosome, the fluorescent dye solution is added to human serum albumin ZN—Tris (hydroxymethyl) -3-aminopropanesulfonic acid buffer (pH 8.4) solution with fluorescent dye / N-Tris ( Hydroxymethyl) -3-aminopropanesulfonic acid buffer (pH 8.4) solution was mixed, stirred at 37 ° C, and ultrafiltered with a molecular weight cut off of 10,000 to remove the free fluorescent dye. Comprising a step prepared by the step of
前記 B)工程が、以下: Step B) includes the following:
(B1 ' )該蛍光色素を内包した力または結合したリボソームを含む溶液を、分画分子 量 100, 000、 2000 X g 60分間の条件で 2回、遠'、分離に力、けることにより限外據 過し、該溶液中に含まれる緩衝液を炭酸緩衝液 (pH8. 5)に交換する工程;  (B1 ′) The solution containing the fluorescent dye or the solution containing the bound ribosome is limited by separating and separating the solution twice under conditions of a molecular weight cutoff of 100,000, 2000 × g for 60 minutes. A step of filtering and replacing the buffer contained in the solution with carbonate buffer (pH 8.5);
(B2' )該 (B1 ' )工程にぉ ヽて該緩衝液が該炭酸緩衝液に変換された溶液にビス ( スルホスクシンィミジル)スべレートを添カ卩して、冷蔵〜約 37°Cで攪拌し、分画分子量 100, 000、 2000 X g 60分間の条件で 2回、遠'、分離に力、けることにより限外據過 し、遊離の該ビス (スルホスクシンィミジル)スべレートを除去する工程;  (B2 ′) Addition of bis (sulfosuccinimidyl) suberate to the solution in which the buffer solution is converted to the carbonate buffer solution in the step (B1 ′) After stirring at 37 ° C, the mixture was subjected to ultrafiltration by detaching it twice under conditions of a molecular weight cut off of 100,000, 2000 xg for 60 minutes, and the free bis (sulfosuccinic acid). A step of removing (midyl) suberate;
(B3,)該(B2,)工程において、該遊離の該ビス (スルホスクシンィミジル)スべレート を除去した溶液に、 330mM トリス(ヒドロキシメチル)ァミノメタン/炭酸緩衝液 (pH 8. 5)溶液を添加して、冷蔵〜約 37°Cで攪拌し、さらに冷蔵〜室温で一晩撹拌し、 分画分子量 100, 000、 2000 X g 60分間の条件で 2回、遠心分離にかけることに より限外濾過し、遊離のトリス (ヒドロキシメチル)ァミノメタンを除去し、該炭酸緩衝液 を N—トリス(ヒドロキシメチル)—3—ァミノプロパンスルホン酸緩衝液 (pH8. 4)に交 換して親水性ィ匕処理されたリボソームを含む溶液を生成させる工程を包含し、 前記 C)工程が、以下:  (B3,) In the step (B2,), in the solution from which the free bis (sulfosuccinimidyl) suberate was removed, 330 mM tris (hydroxymethyl) aminomethane / carbonate buffer (pH 8.5) was added. ) Add the solution, stir at refrigeration to approximately 37 ° C, stir at refrigeration to room temperature overnight, and centrifuge twice at a molecular weight cut off of 100,000, 2000 x g for 60 minutes. Ultrafiltration is performed to remove free tris (hydroxymethyl) aminomethane, and the carbonate buffer is replaced with N-tris (hydroxymethyl) -3-amaminopropanesulfonate buffer (pH 8.4). And a step of producing a solution containing ribosome treated with hydrophilicity, wherein the step C) includes the following:
(C1 ' )前記蛍光色素を内包した力または結合したリボソームを含む溶液に、メタ過 ヨウ素酸ナトリウム ZN—トリス(ヒドロキシメチル)— 3—ァミノプロパンスルホン酸緩衝 液 (pH8. 4)溶液を添加し、冷蔵〜室温で一晩撹拌して、リボソーム粒子表面を酸ィ匕 する工程;  (C1 ') Add a solution of sodium metaperiodate ZN-tris (hydroxymethyl) -3-aminopropanesulfonate buffer (pH 8.4) to the solution containing the force or bound ribosome containing the fluorescent dye. And acidifying the surface of the ribosome particles by stirring overnight at refrigerated to room temperature;
(C2' ) (C1 ' )工程において、粒子表面が酸ィ匕されたリボソームを含む溶液を、分 画分子量 100, 000、 2000 X g 60分間の条件で 2回、遠'、分離に力、けることにより 限外濾過し、遊離の該メタ過ヨウ素酸ナトリウムを除去し、該 N トリス (ヒドロキシメチ ル) 3—ァミノプロパンスルホン酸緩衝液を PBS緩衝液 (pH8. 0)に交換する工程; (C3' ) (C2' )工程において、該緩衝液が該 PBS緩衝液に交換された溶液に、ヒト 血清アルブミン/ PBS緩衝液 (pH8. 0)を添加して冷蔵〜室温で反応させて反応溶 液を生成する工程; (C2 ′) In the (C1 ′) step, a solution containing ribosomes whose surface is oxidized is separated. Molecular weight 100,000, 2000 x g Twice under conditions of 60 min for 60 minutes, ultrafiltration is carried out to remove the separation, the free sodium metaperiodate is removed, and the N tris (hydroxymethyl) E) Step of exchanging 3-aminopropanesulfonic acid buffer with PBS buffer (pH 8.0); (C3 ′) In step (C2 ′), the buffer solution is replaced with the PBS buffer solution. Adding human serum albumin / PBS buffer (pH 8.0) and reacting at refrigeration to room temperature to form a reaction solution;
(C4,)さらに、該反応溶液に、シァノホウ素酸ナトリウム ZPBS緩衝液 (pH8. 0)を 添カロして、分画分子量 100, 000、 2000 X g 60分 f¾の条件で 2回、遠 、分離に力 けることにより限外濾過し、遊離のシァノホウ素酸ナトリウムおよび該ヒト血清アルブミ ンを除去し、該溶液の緩衝液を炭酸緩衝液 (pH8. 5)に交換する工程を包含し、 前記 D)工程が、以下:  (C4) Further, sodium cyanoborate ZPBS buffer (pH 8.0) was added to the reaction solution, and the mixture was separated twice under the conditions of a molecular weight cutoff of 100,000, 2000 × g for 60 minutes f¾, Including ultrafiltration by forcing separation, removing free sodium cyanoborate and human serum albumin, and replacing the buffer of the solution with carbonate buffer (pH 8.5), D) The process is as follows:
(D1)該糖鎖を精製水に溶解して、炭酸水素アンモ -ゥム飽和下で、室温〜約 37 °Cで反応させて、アミノィ匕糖鎖溶液を調製する工程;  (D1) a step of dissolving the sugar chain in purified water and reacting at room temperature to about 37 ° C under ammonium hydrogen carbonate saturation to prepare an amino sugar chain solution;
(D2)該蛍光色素を内包したかまたは結合したリボソームを含む溶液に、 3, 3'—ジ チォビス (スルホスクシンィミジルプロピオネート)を添カ卩して、冷蔵〜約 37°Cで攪拌 し、分画分子量 300, 000で限外濾過し、遊離の該 3, 3,—ジチオピス(スルホスクシ ンィミジルプロピオネート)を除去する工程;および  (D2) 3, 3′-dithiobis (sulfosuccinimidyl propionate) is added to a solution containing a ribosome containing or bound to the fluorescent dye, and refrigerated to about 37 ° C. And removing the free 3, 3, -dithiopis (sulfosuccinimidyl propionate) by ultrafiltration with a molecular weight cut off of 300,000; and
(D3) (D2)工程において、該遊離の該 3, 3, 一ジチォビス(スルホスクシンィミジル プロピオネート)を除去した溶液に、該ァミノ化糖鎖溶液を添加して、冷蔵〜約 37°C で反応させ、トリス (ヒドロキシメチル)ァミノメタン Z炭酸緩衝液 (PH8. 5)を添加し、 冷蔵〜 37°Cで一晩撹拌し、分画分子量 300, 000で限外濾過し、遊離の該糖鎖と 該トリス (ヒドロキシメチル)ァミノメタンを除去する工程;および  (D3) In step (D2), the aminated sugar chain solution is added to the solution from which the free 3, 3, 1 dithiobis (sulfosuccinimidyl propionate) has been removed, and the mixture is refrigerated to about 37 ° C. React with C, add tris (hydroxymethyl) aminomethane Z carbonate buffer (PH8.5), stir overnight at refrigerated ~ 37 ° C, ultrafilter with molecular weight cut off 300,000, Removing sugar chains and the tris (hydroxymethyl) aminomethane; and
(D4) (D3)工程において、遊離の該糖鎖と該トリス (ヒドロキシメチル)ァミノメタンを 除去した溶液の緩衝液を、 HEPES緩衝液 (pH7. 2)に交換する工程を包含する、 項目 65に記載の製造方法。  (D4) In the step (D3), including the step of replacing the buffer solution of the solution from which the free sugar chain and the tris (hydroxymethyl) aminomethane have been removed with a HEPES buffer solution (pH 7.2), The manufacturing method as described.
(項目 69) (Item 69)
前記 A)工程が、以下: Step A) includes the following:
(A1)ジパルミトイルホスファチジルコリン、コレステロール、ガンダリオシド、ジセチ ルホスフェート、ジパルミトイルホスファチジルエタノールァミンおよびコール酸ナトリウ ムを、 35: 40: 15: 5: 5: 167のモル比で混合させ、メタノール 'クロ口ホルム(1: 1)溶 液に懸濁させる工程; (A1) Dipalmitoyl phosphatidylcholine, cholesterol, gandioside, disetti Ruphosphate, dipalmitoyl phosphatidylethanolamine and sodium cholate are mixed in a molar ratio of 35: 40: 15: 5: 5: 167 and suspended in a methanol 'black form (1: 1) solution. Process;
(A2)該クロロホルム'メタノール溶液を蒸発させ、減圧乾燥させ、 N—トリス (ヒドロキ シメチル) 3—ァミノプロパンスルホン酸緩衝液 (pH8. 4)に再懸濁させて再懸濁液 を生成する工程;  (A2) The chloroform'methanol solution is evaporated, dried under reduced pressure, and resuspended in N-tris (hydroxymethyl) 3-aminopropanesulfonate buffer (pH 8.4) to form a resuspension. Process;
(A3)該再懸濁液を 30〜40°Cで攪拌させ、窒素置換し、超音波処理する工程;お よび  (A3) stirring the resuspension at 30-40 ° C, purging with nitrogen, and sonicating; and
(A4) (A3)工程において超音波処理した溶液に、該蛍光色素を含む蛍光色素溶 液を混合し、混合した溶液を分画分子量 10, 000で限外濾過し、該蛍光色素を内包 するリボソームを調製する工程であって、該蛍光色素溶液は、ヒト血清アルブミン ZN —トリス(ヒドロキシメチル)—3—ァミノプロパンスルホン酸緩衝液 (pH8. 4)溶液に蛍 光色素/ N—トリス(ヒドロキシメチル)— 3—ァミノプロパンスルホン酸緩衝液 (pH8. 4)溶液を混合して、 37°Cで撹拌し、分画分子量 10, 000で限外濾過し、遊離の該 蛍光色素を除去する工程によって調製される工程を包含し、  (A4) The fluorescent dye solution containing the fluorescent dye is mixed with the solution sonicated in step (A3), and the mixed solution is ultrafiltered with a molecular weight cut off of 10,000 to enclose the fluorescent dye. In the step of preparing ribosome, the fluorescent dye solution is added to human serum albumin ZN—Tris (hydroxymethyl) -3-aminopropanesulfonic acid buffer (pH 8.4) solution with fluorescent dye / N-Tris ( Hydroxymethyl) -3-aminopropanesulfonic acid buffer (pH 8.4) solution was mixed, stirred at 37 ° C, and ultrafiltered with a molecular weight cut off of 10,000 to remove the free fluorescent dye. Comprising a step prepared by the step of
前記 B)工程が、以下: Step B) includes the following:
(B1 ' )該蛍光色素を内包した力または結合したリボソームを含む溶液を、分画分子 量 100, 000、 2000 X g 60分間の条件で 2回、遠'、分離に力、けることにより限外據 過し、該溶液中に含まれる緩衝液を炭酸緩衝液 (pH8. 5)に交換する工程;  (B1 ′) The solution containing the fluorescent dye or the solution containing the bound ribosome is limited by separating and separating the solution twice under conditions of a molecular weight cutoff of 100,000, 2000 × g for 60 minutes. A step of filtering and replacing the buffer contained in the solution with carbonate buffer (pH 8.5);
(B2' )該 (B1 ' )工程にぉ ヽて該緩衝液が該炭酸緩衝液に変換された溶液にビス ( スルホスクシンィミジル)スべレートを添カ卩して、冷蔵〜約 37°Cで攪拌し、分画分子量 100, 000、 2000 X g 60分間の条件で 2回、遠'、分離に力、けることにより限外據過 し、遊離の該ビス (スルホスクシンィミジル)スべレートを除去する工程;  (B2 ′) Addition of bis (sulfosuccinimidyl) suberate to the solution in which the buffer solution is converted to the carbonate buffer solution in the step (B1 ′) After stirring at 37 ° C, the mixture was subjected to ultrafiltration by detaching it twice under conditions of a molecular weight cut off of 100,000, 2000 xg for 60 minutes, and the free bis (sulfosuccinic acid). A step of removing (midyl) suberate;
(B3,)該(B2,)工程において、該遊離の該ビス (スルホスクシンィミジル)スべレート を除去した溶液に、 330mM トリス(ヒドロキシメチル)ァミノメタン/炭酸緩衝液 (pH 8. 5)溶液を添加して、冷蔵〜約 37°Cで攪拌し、さらに冷蔵〜室温で一晩撹拌し、 分画分子量 100, 000、 2000 X g 60分間の条件で 2回、遠心分離にかけることに より限外濾過し、遊離のトリス (ヒドロキシメチル)ァミノメタンを除去し、該炭酸緩衝液 を N トリス(ヒドロキシメチル)—3—ァミノプロパンスルホン酸緩衝液 (pH8. 4)に交 換して親水性ィ匕処理されたリボソームを含む溶液を生成させる工程を包含し、 前記 C)工程が、以下: (B3,) In the step (B2,), in the solution from which the free bis (sulfosuccinimidyl) suberate was removed, 330 mM tris (hydroxymethyl) aminomethane / carbonate buffer (pH 8.5) was added. ) Add the solution, stir at refrigeration to approximately 37 ° C, stir at refrigeration to room temperature overnight, and centrifuge twice at a molecular weight cut off of 100,000, 2000 x g for 60 minutes. Ultrafiltration to remove free tris (hydroxymethyl) aminomethane, and the carbonate buffer Including the step of replacing N tris (hydroxymethyl) -3-aminopropanesulfonic acid buffer (pH 8.4) to produce a solution containing ribosomes that have been treated with hydrophilicity, and the step C). But the following:
(C1 ' )前記蛍光色素を内包した力または結合したリボソームを含む溶液に、メタ過 ヨウ素酸ナトリウム ZN—トリス(ヒドロキシメチル)— 3—ァミノプロパンスルホン酸緩衝 液 (pH8. 4)溶液を添加し、冷蔵〜室温で一晩撹拌して、リボソーム粒子表面を酸ィ匕 する工程;  (C1 ') Add a solution of sodium metaperiodate ZN-tris (hydroxymethyl) -3-aminopropanesulfonate buffer (pH 8.4) to the solution containing the force or bound ribosome containing the fluorescent dye. And acidifying the surface of the ribosome particles by stirring overnight at refrigerated to room temperature;
(C2' ) (C1 ' )工程において、粒子表面が酸ィ匕されたリボソームを含む溶液を、分 画分子量 100, 000、 2000 X g 60分間の条件で 2回、遠'、分離に力、けることにより 限外濾過し、遊離の該メタ過ヨウ素酸ナトリウムを除去し、該 N トリス (ヒドロキシメチ ル) 3—ァミノプロパンスルホン酸緩衝液を PBS緩衝液 (pH8. 0)に交換する工程; (C2 ′) In the (C1 ′) step, the solution containing the ribosome whose surface is oxidized is subjected to two separations under the conditions of a molecular weight cutoff of 100,000 and 2000 × g for 60 minutes. Removing the free sodium metaperiodate and replacing the N-tris (hydroxymethyl) 3-aminopropanesulfonate buffer solution with PBS buffer (pH 8.0). ;
(C3' ) (C2' )工程において、該緩衝液が該 PBS緩衝液に交換された溶液に、ヒト 血清アルブミン/ PBS緩衝液 (pH8. 0)を添加して冷蔵〜室温で反応させて反応溶 液を生成する工程; (C3 ′) In the step (C2 ′), human serum albumin / PBS buffer (pH 8.0) was added to the solution in which the buffer was replaced with the PBS buffer, and the reaction was performed at refrigeration to room temperature. Producing a solution;
(C4' )さらに、該反応溶液を、冷蔵〜室温で攪拌し、分画分子量 100, 000、 200 O X g 60分間の条件で 2回、遠心分離にかけることにより限外濾過し、該ヒト血清ァ ルブミンを除去し、該溶液の緩衝液を炭酸緩衝液 (pH8. 5)に交換する工程を包含 し、  (C4 ′) Further, the reaction solution was stirred at refrigeration to room temperature, ultrafiltered by centrifugation twice under conditions of a molecular weight cut off of 100,000 and 200 OX g for 60 minutes, and the human serum Removing the albumin and replacing the buffer of the solution with carbonate buffer (pH 8.5);
前記 D)工程が、以下: Step D) includes the following:
(D1)該糖鎖を精製水に溶解して、炭酸水素アンモ -ゥム飽和下で、室温〜約 37 °Cで反応させて、アミノィ匕糖鎖溶液を調製する工程;  (D1) a step of dissolving the sugar chain in purified water and reacting at room temperature to about 37 ° C under ammonium hydrogen carbonate saturation to prepare an amino sugar chain solution;
(D2)該蛍光色素を内包したかまたは結合したリボソームを含む溶液に、 3, 3'—ジ チォビス (スルホスクシンィミジルプロピオネート)を添カ卩して、冷蔵〜約 37°Cで攪拌 し、分画分子量 300, 000で限外濾過し、遊離の該 3, 3,—ジチオピス(スルホスクシ ンィミジルプロピオネート)を除去する工程;および  (D2) 3, 3′-dithiobis (sulfosuccinimidyl propionate) is added to a solution containing a ribosome containing or bound to the fluorescent dye, and refrigerated to about 37 ° C. And removing the free 3, 3, -dithiopis (sulfosuccinimidyl propionate) by ultrafiltration with a molecular weight cut off of 300,000; and
(D3) (D2)工程において、該遊離の該 3, 3, 一ジチォビス(スルホスクシンィミジル プロピオネート)を除去した溶液に、該ァミノ化糖鎖溶液を添加して、冷蔵〜約 37°C で反応させ、トリス (ヒドロキシメチル)ァミノメタン Z炭酸緩衝液 (PH8. 5)を添加し、 冷蔵〜 37°Cで一晩撹拌し、分画分子量 300, 000で限外濾過し、遊離の該糖鎖と 該トリス (ヒドロキシメチル)ァミノメタンを除去する工程;および (D3) In step (D2), the aminated sugar chain solution is added to the solution from which the free 3, 3, 1 dithiobis (sulfosuccinimidyl propionate) has been removed, and the mixture is refrigerated to about 37 ° C. React with C, add tris (hydroxymethyl) aminomethane Z carbonate buffer (PH8.5), Refrigerated to 37 ° C overnight, ultrafiltered with a molecular weight cut off of 300,000 to remove free sugar chains and the tris (hydroxymethyl) aminomethane; and
(D4) (D3)工程において、遊離の該糖鎖と該トリス (ヒドロキシメチル)ァミノメタンを 除去した溶液の緩衝液を、 HEPES緩衝液 (pH7. 2)に交換する工程を包含する、 項目 65に記載の製造方法。  (D4) In the step (D3), including the step of replacing the buffer solution of the solution from which the free sugar chain and the tris (hydroxymethyl) aminomethane have been removed with a HEPES buffer solution (pH 7.2), The manufacturing method as described.
(項目 70) (Item 70)
蛍光色素含有糖鎖修飾リボソームの製造方法であって、 A method for producing a fluorescent dye-containing sugar chain-modified ribosome,
A)リボソームを形成させる工程;  A) forming ribosomes;
B)該リボソームを親水性化処理する工程;  B) Hydrophilizing the ribosome;
C)該リボソームとリンカ一タンパク質を結合させる工程であって、該リンカ一タンパク 質が蛍光色素により標識されている工程、および  C) a step of binding the ribosome and a linker protein, wherein the linker protein is labeled with a fluorescent dye; and
D)該リボソームへ糖鎖を結合させる工程  D) Step of binding a sugar chain to the ribosome
を包含する、方法。 Including the method.
(項目 71)  (Item 71)
前記糖鎖修飾リボソームの糖鎖が、シァリルルイス X基であり、該シァリルルイス X基 力 0. 025mg糖鎖 Zmg脂質の修飾結合密度で含まれる、項目 38に記載のィメー ジング剤。 39. The imaging agent according to Item 38, wherein the sugar chain of the sugar chain-modified ribosome is a sialyl Lewis X group, and the sialyl Lewis X group has a modified binding density of 0.025 mg sugar chain Z mg lipid.
(項目 72) (Item 72)
炎症部位または癌組織をイメージングするための、項目 71に記載のイメージング剤。 (項目 73) 72. The imaging agent according to item 71, for imaging an inflamed site or cancer tissue. (Item 73)
前記炎症部位または癌組織が実質を含む、項目 72に記載のイメージング剤。 73. The imaging agent according to item 72, wherein the inflammatory site or cancer tissue contains a parenchyma.
(項目 74) (Item 74)
前記糖鎖修飾リボソームの糖鎖が、シァリルルイス X基であり、該シァリルルイス X基 力 0. 025mg糖鎖 Zmg脂質の修飾結合密度で含まれる、項目 39に記載の組成物 40. The composition according to item 39, wherein the sugar chain of the sugar chain-modified ribosome is sialyle Lewis X group, and the sialyle Lewis X group has a modified binding density of 0.025 mg sugar chain Z mg lipid.
(項目 75) (Item 75)
前記物質を、炎症部位または癌組織に送達するための、項目 74に記載の組成物。 (項目 76) 前記炎症部位または癌組織が実質を含む、項目 75に記載の組成物。 75. A composition according to item 74, for delivering the substance to an inflamed site or cancer tissue. (Item 76) 76. A composition according to item 75, wherein the inflammatory site or cancer tissue comprises a parenchyma.
(項目 77) (Item 77)
分子イメージングまたはインビボイメージングにおいて使用するためのキャリアであつ て、該キャリアは、項目 1〜37に記載の糖鎖修飾リボソームを含む、キャリア。 A carrier for use in molecular imaging or in vivo imaging, wherein the carrier comprises a sugar chain-modified ribosome according to items 1-37.
(項目 78) (Item 78)
前記糖鎖修飾リボソームの糖鎖が、シァリルルイス X基であり、該シァリルルイス X基 が、 0. 025mg糖鎖 Zmg脂質の修飾結合密度で含まれ、前記キャリアは炎症部位ま たは癌組織に標識物質を送達するための、項目 77に記載のキャリア。 The sugar chain of the sugar chain-modified ribosome is a sialyl Lewis X group, and the sialyl Lewis X group is contained at a modified binding density of 0.025 mg sugar chain Zmg lipid, and the carrier is a labeling substance at an inflammatory site or cancer tissue. 80. The carrier according to item 77, for delivering a drug.
(項目 79) (Item 79)
前記炎症部位または癌組織が実質を含む、項目 77に記載のキャリア。 80. A carrier according to item 77, wherein the inflammatory site or cancer tissue comprises a parenchyma.
(項目 80) (Item 80)
前記標識物質が蛍光性である、項目 79に記載のキャリア。 80. The carrier according to item 79, wherein the labeling substance is fluorescent.
(項目 81) (Item 81)
目的の部位を分子イメージングまたはインビボイメージングするためのシステムであつ て、該システムは: A system for molecular or in vivo imaging of a site of interest comprising:
A)該目的の部位に特異的な糖鎖修飾リボソーム;  A) a sugar chain-modified ribosome specific to the target site;
B)標識;および  B) sign; and
C)該標識の有無を調べる手段;  C) means for examining the presence or absence of the label;
を備え、ここで、 Where, where
該標識が目的の部位に集積するのに十分な時間たつた後、該生体における該標 識の有無を調べ、該標識により該生体の機能または構造を画像化することを特徴と する、  After a sufficient time for the label to accumulate at the target site, the presence or absence of the label in the living body is examined, and the function or structure of the living body is imaged by the label.
システム。 system.
(項目 82)  (Item 82)
前記標識が蛍光物質である、項目 81に記載のシステム。 82. A system according to item 81, wherein the label is a fluorescent substance.
(項目 83) (Item 83)
前記糖鎖修飾リボソームの糖鎖が、シァリルルイス X基であり、該シァリルルイス X基 が、 0. 025mg糖鎖 Zmg脂質の修飾結合密度で含まれる、項目 82に記載のシステ ム。 83. The system according to Item 82, wherein the sugar chain of the sugar chain-modified ribosome is a sialyl Lewis X group, and the sialyl Lewis X group is contained at a modified binding density of 0.025 mg sugar chain Z mg lipid. Mu.
(項目 84)  (Item 84)
炎症部位または癌組織をイメージングするための、項目 81に記載のシステム。 84. A system according to item 81, for imaging an inflamed site or cancer tissue.
(項目 85) (Item 85)
前記炎症部位または癌組織が実質を含む、項目 84に記載のシステム。 85. The system of item 84, wherein the inflammatory site or cancer tissue comprises parenchyma.
(項目 86) (Item 86)
前記標識の有無を調べる手段が、走査型顕微鏡を含む、項目 81に記載のシステム (項目 87) 84. A system according to item 81, wherein the means for checking for the presence of the marker includes a scanning microscope (item 87).
前記標識の有無を調べる手段が、さらにスティック対物レンズを備える、項目 86に記 載のシステム。 89. A system according to item 86, wherein the means for checking the presence of the sign further comprises a stick objective lens.
(項目 88) (Item 88)
前記標識の有無を調べる手段が、蛍光を検出する手段である、項目 81に記載のシ ステム。 84. The system according to Item 81, wherein the means for examining the presence or absence of the label is a means for detecting fluorescence.
(項目 89) (Item 89)
項目 53に記載の蛍光色素含有糖鎖修飾リボソームの製造方法であって、以下: a)リンカ一タンパク質が結合した蛍光を内包したリボソームを提供する工程; b)該リボソームを親水性化処理する工程; 54. A method for producing a fluorescent dye-containing sugar chain-modified ribosome according to Item 53, wherein: a) a step of providing a ribosome encapsulating fluorescence to which a linker protein is bound; b) a step of hydrophilizing the ribosome ;
c) 3, 3,一ジチォビス(スルホスクシ-ミジルプロピオネート)を該リボソームに結合さ せる工程;および  c) binding 3, 3, 1 dithiobis (sulfosuccinimidyl propionate) to the ribosome; and
d)該リボソームにおける該リンカ一タンパク質へ糖鎖を結合させて、該蛍光色素含 有糖鎖修飾リボソームを生じさせる工程  d) A step of binding a sugar chain to the linker protein in the ribosome to produce the fluorescent dye-containing sugar chain-modified ribosome
を包含し、 Including
該 b)〜c)工程は任意の順で実施される、製造方法。 The production method, wherein the steps b) to c) are performed in an arbitrary order.
(項目 90) (Item 90)
項目 53に記載の蛍光色素含有糖鎖修飾リボソームの製造方法であって、以下: a)リンカ一タンパク質が結合した蛍光を内包したリボソームを提供する工程; b)該リボソームを親水性化処理する工程; c) 3, 3,一ジチォビス(スルホスクシ-ミジルプロピオネート)を該リボソームに結合さ せる工程;および 54. A method for producing a fluorescent dye-containing sugar chain-modified ribosome according to Item 53, wherein: a) a step of providing a ribosome encapsulating fluorescence to which a linker protein is bound; b) a step of hydrophilizing the ribosome ; c) binding 3, 3, 1 dithiobis (sulfosuccinimidyl propionate) to the ribosome; and
d)該リボソームにおける該リンカ一タンパク質へ糖鎖を結合させて、該蛍光色素含 有糖鎖修飾リボソームを生じさせる工程  d) A step of binding a sugar chain to the linker protein in the ribosome to produce the fluorescent dye-containing sugar chain-modified ribosome
e)該蛍光色素含有糖鎖修飾リボソームを親水性化する工程;および  e) hydrophilizing the fluorescent dye-containing sugar chain-modified ribosome; and
f)該親水性ィ匕した該蛍光色素含有糖鎖修飾リボソームを含む溶液をフィルター濾 過する工程  f) A step of filtering the solution containing the hydrophilic dye-containing sugar chain-modified ribosome containing the fluorescent dye
を包含し、 Including
該 b)〜c)工程は任意の順で実施される、製造方法。 The production method, wherein the steps b) to c) are performed in an arbitrary order.
(項目 91) (Item 91)
前記 a)工程の次に順に前記 c)工程および前記 b)工程を行!ヽ、  Step c) and step b) are performed in order after step a).
該 c)工程が、以下: The c) step is as follows:
(cl) 3, 3,一ジチォビス(スルホスクシ-ミジルプロピオネート)を含む粉体 Aに、 炭酸緩衝液を含む溶液 Aを添加して溶解し、混合溶液を調製する工程;および  (cl) adding powder A containing carbonate buffer solution to powder A containing 3,3,1 dithiobis (sulfosucci-midylpropionate) to prepare a mixed solution; and
(c2)リボソームを含む溶液に、該混合溶液を添加し、室温で、 16〜20時間攪拌 し、分画分子量 30, 000で限外濾過し、脱塩して、 3, 3,—ジチオピス(スルホスクシ 二ミジルプロピオネート)の結合した蛍光内包型リボソームを含む溶液を調製するェ 程を包含し、  (c2) The mixed solution is added to a solution containing ribosome, stirred at room temperature for 16 to 20 hours, ultrafiltered with a molecular weight cut off of 30,000, desalted, and 3, 3, -dithiopis ( Including a step of preparing a solution containing a fluorescently encapsulated ribosome bound with sulfosuccinimidylpropionate)
該 b)工程が、以下: The step b) includes the following:
(bl)該蛍光内包型リボソームを含む溶液を濃縮し、濃縮された該蛍光内包型リ ポソームを含む溶液に、該溶液 Aを添加する工程;および  (bl) concentrating the solution containing the fluorescently encapsulated ribosome and adding the solution A to the concentrated solution containing the fluorescently encapsulated liposome;
(b2)該溶液 Aが添加された該蛍光内包型リボソームを含む混合溶液を、分画分 子量 300, 000で遠心分離にかけて限外濾過し、濃縮し、該濃縮させた混合溶液に 該溶液 Aを添加して、親水性化された該蛍光内包型リボソームを調製する工程を包 含し、  (b2) The mixed solution containing the fluorescently encapsulated ribosome to which the solution A is added is centrifuged at a fractional molecular weight of 300,000, ultrafiltered and concentrated, and the concentrated mixed solution is mixed with the solution. A step of adding A to prepare the fluorescently encapsulated ribosome that has been made hydrophilic;
前記 d)工程が、以下: The step d) includes the following:
(dl)所望の糖鎖を精製水に完全に溶解し、 1〜: LOmM濃度の糖鎖溶液を調製 する工程; (d2)必要に応じて、該糖鎖水溶液に、炭酸水素アンモ-ゥム (pH 7〜14)を約 0. 2〜1. Og/mL濃度で添加し、 20〜40°Cで 3〜7日間攪拌させて、 2〜8°C下で 20〜60分間インキュベートし、濾過フィルターで濾過して、アミノ化糖鎖溶液を調製 する工程; (dl) a step of completely dissolving a desired sugar chain in purified water, and 1 to: preparing a sugar chain solution having a LOmM concentration; (d2) If necessary, ammonium bicarbonate (pH 7-14) is added to the aqueous sugar chain solution at a concentration of about 0.2-1 Og / mL, and 3-20 at 20-40 ° C. Stirring for 7 days, incubating at 2-8 ° C for 20-60 minutes and filtering through a filter to prepare an aminated sugar chain solution;
(d3)該親水性化された蛍光内包型リボソームを含む溶液に、該ァミノ化糖鎖溶 液を添加して、混合した後、室温下で 2〜6時間反応させて反応溶液工程;および (d3) The aminated sugar chain solution is added to the solution containing the hydrophilicized fluorescently encapsulated ribosome, mixed, and then reacted at room temperature for 2 to 6 hours; and a reaction solution step; and
(d4)該 (d3)工程によって得られた該反応溶液に、トリス緩衝液を含む溶液 Bを添 加し、室温下で 2〜6時間攪拌し、さらに、冷蔵下で 16〜48時間攪拌し、分画分子 量 30, 000で限外濾過し、脱塩させて、前記蛍光色素含有糖鎖修飾リボソームを生 じさせる工程を包含し、 (d4) Solution B containing Tris buffer is added to the reaction solution obtained in the step (d3), and the mixture is stirred at room temperature for 2 to 6 hours, and further stirred for 16 to 48 hours under refrigeration. And a step of ultrafiltration with a molecular weight cut off of 30,000, desalting to produce the fluorescent dye-containing sugar chain-modified ribosome,
前記 e)工程が、 Step e)
(el)該蛍光色素含有糖鎖修飾リボソームを含む溶液を濃縮し、 2- [4- (2—ヒ ドロキシェチル)— 1—ピぺラジュル]エタンスルホン酸 (HEPES)緩衝液を含む溶液 Cを添加し、分画分子量 30, 000で限外濾過し、濃縮し、該濃縮させた蛍光色素含 有糖鎖修飾リボソームを含む溶液に該 C溶液を添加して、該糖鎖が結合した蛍光内 包型リボソームを親水性化する工程を包含する、  (el) Concentrate the solution containing the fluorescent dye-containing sugar chain-modified ribosome and add solution C containing 2- [4- (2-hydroxyxetyl) -1-piperajuryl] ethanesulfonic acid (HEPES) buffer Then, ultrafilter with a molecular weight cut off of 30,000, concentrate, add the solution C to the concentrated solution containing the fluorescent dye-containing sugar chain-modified ribosome, and add the fluorescent endothelium to which the sugar chain is bound. Comprising hydrophilizing the type ribosome,
項目 90に記載の製造方法。 Item 91. The manufacturing method according to Item 90.
(項目 92) (Item 92)
蛍光色素含有糖鎖修飾リボソームを製造するためのキットであって、 A kit for producing a fluorescent dye-containing sugar chain-modified ribosome,
i)蛍光色素をリボソームに内包させるか、または結合させる手段;  i) a means for encapsulating or binding the fluorescent dye in the ribosome;
ii)該リボソームの親水性化剤;  ii) a hydrophilizing agent for the ribosome;
iii)該リボソームのリンカ一タンパク質、および  iii) the ribosomal linker protein, and
iv)糖鎖;  iv) sugar chains;
V)該糖鎖を該リボソームに結合させる手段  V) Means for binding the sugar chain to the ribosome
を備える、キット。 A kit comprising:
(項目 93) (Item 93)
蛍光色素含有糖鎖修飾リボソームを製造するためのキットであって、以下: A kit for producing a fluorescent dye-containing sugar chain-modified ribosome comprising:
A)リンカ一タンパク質を結合したリボソームを含む溶液; B) 3, 3,一ジチォビス(スルホスクシ-ミジルプロピオネート)を含む粉体 AとA) a solution containing a ribosome bound to a linker protein; B) Powder A containing 3, 3, 1 dithiobis (sulfosuccimid-midylpropionate) and
C)炭酸緩衝液を含む溶液 Aと C) Solution A containing carbonate buffer and
D)トリス緩衝液を含む溶液 Bと  D) solution B containing Tris buffer and
E) 2— [4一(2 ヒドロキシェチル) 1—ピペラジ -ル]エタンスルホン酸(HEPES )緩衝液を含む溶液 Cとを備える、キット。  E) A kit comprising 2- [4 (2-hydroxyethyl) 1-piperazyl] ethanesulfonic acid (HEPES) buffer solution C.
発明の効果  The invention's effect
[0020] 本発明によって、分子イメージングに有用な糖鎖修飾リボソームならびにその製造 法およびその利用法が提供される。本発明の糖鎖修飾リボソームは、目的送達部位 に所望の薬物を提供することが可能な DDS製剤開発の幅を大いに広げるものであ る。本発明により、癌治療、遺伝子治療、再生医療などの各分野での新しい治療を 実現させるために必要なデリバリーシステムの開発 ·実用化が可能となる。このような 分子イメージングに有用な種々の糖鎖修飾リボソームは、本発明によって初めて提 供されるものである。本発明により、標識された糖鎖を含むリボソームを生産する方法 が提供される。この方法により、所望の糖鎖を標識し、糖鎖分子の体内分布および局 在性を調べることが可能となる。さらに、疾患モデル用いて、病態組織に特異的に発 現するレクチンに対する糖鎖のスクリーニングをすることも可能となる。  [0020] The present invention provides a sugar chain-modified ribosome useful for molecular imaging, a method for producing the same, and a method for using the same. The sugar chain-modified ribosome of the present invention greatly expands the scope of development of a DDS preparation capable of providing a desired drug at a target delivery site. According to the present invention, it becomes possible to develop and put into practical use a delivery system necessary for realizing new therapies in various fields such as cancer therapy, gene therapy, and regenerative medicine. Various sugar chain-modified ribosomes useful for such molecular imaging are provided for the first time by the present invention. The present invention provides a method for producing a ribosome containing a labeled sugar chain. By this method, it is possible to label a desired sugar chain and examine the distribution and locality of the sugar chain molecule. Furthermore, it is possible to screen sugar chains for lectins that are specifically expressed in pathological tissues using a disease model.
以下に、本発明の好ましい実施形態を示すが、当業者は本発明の説明および当該 分野における周知慣用技術力もその実施形態などを適宜実施することができ、本発 明が奏する作用および効果を容易に理解することが認識されるべきである。  Hereinafter, preferred embodiments of the present invention will be described. However, those skilled in the art can appropriately implement the embodiments of the present invention and the well-known technical skills in the field, and the effects and advantages of the present invention can be easily achieved. It should be recognized that you understand.
以下、各発明について、実施形態を詳しく説明する。  Hereinafter, embodiments of the present invention will be described in detail.
図面の簡単な説明  Brief Description of Drawings
[0021] [図 1]図 1は、 cy5. 5内包糖鎖修飾リボソームまたは cy5. 5内包リボソームを用いた 担癌マウスでの画像データを示す。最上段:リボソーム投与前、左および中央 2段目: K1— 3リボソーム投与直後、左および中央 3段目: K1— 3リボソーム投与 1日後、左 および中央 4段目: K1— 3リボソーム投与 2日後、右 2段目:糖鎖なしリボソーム投与 直後、右 3段目:糖鎖なしリボソーム投与 1日後、右 4段目:糖鎖なしリボソーム投与 2 日後。右端のバーは、イメージングによって得られた蛍光シグナル強度を示す。カラ 一イメージング図では、バーの上方赤色が最もシグナルが強ぐ下方の色になるほど 、蛍光シグナルが弱いことを示す。 白黒イメージング図では、バーの上方の白色にな るほど蛍光シグナルが強ぐ下方になるほど蛍光シグナルが弱いことを示す。単位は[0021] FIG. 1 shows image data in cancer-bearing mice using cy5.5-encapsulated sugar chain-modified ribosomes or cy5.5-encapsulated ribosomes. Top row: before ribosome administration, left and center 2nd row: immediately after K1-3 ribosome administration, left and center 3rd row: 1 day after administration of K1-3 ribosome, left and center 4th row: 2 days after administration of K1-3 ribosome Right 2nd stage: Immediately after administration of ribosome without sugar chain, Right 3rd stage: 1 day after administration of ribosome without sugar chain, Right 4th stage: 2 days after administration of ribosome without sugar chain. The rightmost bar shows the fluorescence signal intensity obtained by imaging. In the color imaging diagram, the upper red color of the bar is the lower color with the strongest signal. , Indicating that the fluorescent signal is weak. In the black-and-white imaging diagram, the fluorescence signal becomes weaker as the white color above the bar becomes stronger and the lower it becomes. Units
、 photon count, photon/second (ph/s): 1秒間にカウントされる: ¾:光シグナル photon数)を表す。 , Photon count, photon / second (ph / s): Counted per second: ¾: number of photon photons).
[図 2]図 2は、 cy5. 5内包糖鎖修飾リボソームまたは cy5. 5内包リボソームを用いた 担癌マウスでの画像データを示す。最上段:リボソーム投与前、左 2段目: K1 3リポ ソーム投与直後、左 3段目: K1— 3リボソーム投与 8時間後、左 4段目: K1— 3リポソ ーム投与 1日後、右 2段目:糖鎖なしリボソーム投与直後、右 3段目:糖鎖なしリポソ一 ム投与 8時間後、右 4段目:糖鎖なしリボソーム投与 1日後。右端のバーは、イメージ ングによって得られた蛍光シグナル強度を示す。カラーイメージング図では、バーの 上方赤色が最もシグナルが強ぐ下方の色になるほど、蛍光シグナルが弱いことを示 す。 白黒イメージング図では、バーの上方の白色になるほど蛍光シグナルが強ぐ下 方になるほど蛍光シグナルが弱いことを示す。単位は、 photon count, photon/ second (ph/s): 1秒間にカウントされる蛍光シグナル photon数を表す。  FIG. 2 shows image data in a tumor-bearing mouse using cy5.5-encapsulated sugar chain-modified ribosome or cy5.5-encapsulated ribosome. Top row: before ribosome administration, left 2nd row: immediately after K1 3 liposome administration, left 3rd row: 8 hours after administration of K1-3 ribosome, left 4th row: 1 day after administration of K1-3 liposome, right 2 Stage: Immediately after administration of ribosomes without sugar chains, right Third stage: 8 hours after administration of liposomes without sugar chains, Right fourth stage: one day after administration of ribosomes without sugar chains. The rightmost bar shows the fluorescence signal intensity obtained by imaging. In the color imaging diagram, the red color at the top of the bar is the lower color with the strongest signal, indicating that the fluorescence signal is weaker. In the black-and-white imaging diagram, the whiter above the bar, the stronger the fluorescent signal, the lower the fluorescent signal, the weaker the fluorescent signal. The unit is photon count, photon / second (ph / s): the number of fluorescence signals photon counted per second.
[図 3]図 3は、 cy5. 5内包糖鎖修飾リボソームまたは cy5. 5内包リボソームを用いた 担癌マウスでの画像データを示す。最上段:リボソーム投与前、左 2段目: K1 3リポ ソーム投与直後、左 3段目: K1— 3リボソーム投与 1日後、左 4段目: K1— 3リポソ一 ム投与 2日後、左 5段目: K1— 3リボソーム投与 3日後、左 6段目: K1— 3リボソーム 投与 4日後、右 2段目:糖鎖なしリボソーム投与直後、右 3段目:糖鎖なしリボソーム投 与 1日後、右 4段目糖鎖なしリボソーム投与 2日後、右 5段目:糖鎖なしリボソーム投 与 3日後、右 6段目:糖鎖なしリボソーム投与 4日後。右端のバーは、イメージングによ つて得られた蛍光シグナル強度を示す。カラーイメージング図では、バーの上方赤色 が最もシグナルが強ぐ下方の色になるほど、蛍光シグナルが弱いことを示す。白黒 イメージング図では、バーの上方の白色になるほど蛍光シグナルが強ぐ下方になる ほど蛍光シグナノレが弱いことを示す。単位は、 photon count, photon/second ( ph/s): 1秒間にカウントされる蛍光シグナル photon数を表す。 FIG. 3 shows image data in cancer-bearing mice using cy5.5-encapsulated sugar chain-modified ribosomes or cy5.5-encapsulated ribosomes. Top row: before ribosome administration, left 2nd row: immediately after K1 3 liposome administration, left 3rd row: 1 day after administration of K1-3 ribosome, 4th row: 2 days after administration of K1-3 liposome, 5th left Eye: 3 days after K1-3 ribosome administration, left 6th stage: 4 days after administration of K1-3 ribosome, 2nd stage: Immediately after administration of ribosome without sugar chain, right 3rd stage: 1 day after administration of ribosome without sugar chain, right 4th stage 2 days after administration of ribosome without sugar chain, right 5th stage: 3 days after administration of ribosome without sugar chain, 6th stage: 4 days after administration of ribosome without sugar chain. The rightmost bar shows the fluorescence signal intensity obtained by imaging. In the color imaging diagram, the red color above the bar shows the lower color with the strongest signal, indicating that the fluorescence signal is weaker. In the black-and-white imaging diagram, the whiter above the bar, the weaker the fluorescent signal, the weaker the fluorescent signal. The unit is photon count, photon / second (ph / s): represents the number of fluorescence signals photon counted per second.
[図 4]図 4は、 cy5. 5内包糖鎖修飾リボソームまたは cy5. 5内包リボソームを用いた 担癌マウスでの画像データを示す。最上段:リボソーム投与前、左 2段目: K3— 3リポ ソーム投与直後、左 3段目: K3— 3リボソーム投与 1日後、左 4段目: K3— 3リポソ一 ム投与 2日後、左 5段目: K3— 3リボソーム投与 3日後、右 2段目:糖鎖なしリボソーム 投与直後、右 3段目:糖鎖なしリボソーム投与 1日後、右 4段目糖鎖なしリボソーム投 与 2日後、右 5段目:糖鎖なしリボソーム投与 3日後。右端のバーは、イメージングによ つて得られた蛍光シグナル強度を示す。カラーイメージング図では、バーの上方赤色 が最もシグナルが強ぐ下方の色になるほど、蛍光シグナルが弱いことを示す。白黒 イメージング図では、バーの上方の白色になるほど蛍光シグナルが強ぐ下方になる ほど蛍光シグナノレが弱いことを示す。単位は、 photon count, photon/second ( ph/s): 1秒間にカウントされる蛍光シグナル photon数を表す。 FIG. 4 shows image data in cancer-bearing mice using cy5.5-encapsulated sugar chain-modified ribosomes or cy5.5-encapsulated ribosomes. Top row: before ribosome administration, left second row: K3—3 lipo Immediately after somal administration, left 3rd stage: K3-3 ribosome administration 1 day, left 4th stage: K3-3 liposome administration 2 days, left 5th stage: K3-3 ribosome administration 3 days, right 2nd stage: Immediately after administration of ribosomes without sugar chains, right third stage: 1 day after administration of ribosomes without sugar chains, right 4th stage after administration of ribosomes without sugar chains 2 days, right 5th stage: 3 days after administration of ribosomes without sugar chains. The rightmost bar shows the fluorescence signal intensity obtained by imaging. In the color imaging diagram, the red color above the bar shows the lower color with the strongest signal, indicating that the fluorescence signal is weaker. In the black-and-white imaging diagram, the whiter above the bar, the weaker the fluorescent signal, the weaker the fluorescent signal. The unit is photon count, photon / second (ph / s): represents the number of fluorescence signals photon counted per second.
[図 5]図 5は、 cy5. 5内包糖鎖修飾リボソームまたは cy5. 5内包リボソームを用いた 関節炎マウスでの画像データを示す。最上段:リボソーム投与前、左 2段目: K1— 3リ ポソーム投与直後、左 3段目: K1— 3リボソーム投与 1日後、左 4段目: K1— 3リポソ ーム投与 2日後、左 5段目: K1— 3リボソーム投与 3日後、右 2段目:糖鎖なしリポソ一 ム投与直後、右 3段目:糖鎖なしリボソーム投与 1日後、右 4段目糖鎖なしリボソーム 投与 2日後、右 5段目:糖鎖なしリボソーム投与 3日後。右端のバーは、イメージング によって得られた蛍光シグナル強度を示す。カラーイメージング図では、バーの上方 赤色が最もシグナルが強ぐ下方の色になるほど、蛍光シグナルが弱いことを示す。 白黒イメージング図では、バーの上方の白色になるほど蛍光シグナルが強ぐ下方に なるほど蛍光シグナルが弱いことを示す。単位は、 photon count, photon/seco nd (ph/s): 1秒間にカウントされる蛍光シグナル photon数を表す。 FIG. 5 shows image data in arthritic mice using cy5.5-encapsulated sugar chain-modified ribosomes or cy5.5-encapsulated ribosomes. Top row: before ribosome administration, left 2nd row: immediately after K1-3 liposome administration, left 3rd row: 1 day after administration of K1-3 ribosome, 4th row: 2 days after administration of K1-3 liposome, left 5 Stage: K1—3 days after administration of 3 ribosomes, right 2nd stage: right after administration of liposome without sugar chain, Right 3rd stage: 1 day after administration of ribosome without sugar chain, right 4th stage, 2 days after administration of ribosome without sugar chain Right 5th row: 3 days after administration of ribosome without sugar chain. The rightmost bar shows the fluorescence signal intensity obtained by imaging. In the color imaging diagram, the red color above the bar is the lower color with the strongest signal, indicating that the fluorescence signal is weaker. In the black-and-white imaging diagram, the fluorescence signal is weaker as the white color above the bar becomes stronger and the lower the bar. The unit is photon count, photon / secon nd (ph / s): represents the number of fluorescent signal photon counted per second.
[図 6]図 6は、 cy5. 5内包糖鎖修飾リボソームまたは cy5. 5内包リボソームを用いた 関節炎マウスでの画像データを示す。最上段:リボソーム投与前、左 2段目: K1— 3リ ポソーム投与直後、左 3段目: K1— 3リボソーム投与 1日後、左 4段目: K1— 3リポソ ーム投与 2日後、右 2段目:糖鎖なしリボソーム投与直後、右 3段目:糖鎖なしリポソ一 ム投与 1日後、右 4段目糖鎖なしリボソーム投与 2日後。右端のバーは、イメージング によって得られた蛍光シグナル強度を示す。カラーイメージング図では、バーの上方 赤色が最もシグナルが強ぐ下方の色になるほど、蛍光シグナルが弱いことを示す。 白黒イメージング図では、バーの上方の白色になるほど蛍光シグナルが強ぐ下方に なるほど蛍光シグナルが弱いことを示す。単位は、 photon count, photon/seco nd (ph/s): 1秒間にカウントされる蛍光シグナル photon数を表す。 FIG. 6 shows image data in arthritic mice using cy5.5-encapsulated sugar chain-modified ribosomes or cy5.5-encapsulated ribosomes. Top row: before ribosome administration, left 2nd row: immediately after K1-3 liposome administration, left 3rd row: 1 day after administration of K1-3 ribosome, 4th row: 2 days after administration of K1-3 liposome, right 2 Stage: Immediately after administration of ribosomes without sugar chains, right Third stage: 1 day after administration of liposomes without sugar chains, Right 4th stage, 2 days after administration of ribosomes without sugar chains. The rightmost bar shows the fluorescence signal intensity obtained by imaging. In the color imaging diagram, the red color above the bar is the lower color with the strongest signal, indicating that the fluorescence signal is weaker. In the black-and-white imaging diagram, the fluorescent signal becomes stronger as the white color above the bar becomes lower. It shows that the fluorescence signal is weak. The unit is photon count, photon / secon nd (ph / s): represents the number of fluorescent signal photon counted per second.
[図 7]図 7は、 cy5. 5内包糖鎖修飾リボソームまたは cy5. 5内包リボソームを用いた 関節炎マウスでの画像データを示す。左から、糖鎖なしリボソーム群、 K1— 3リポソ一 ム投与群、 K1— 4リボソーム投与群、 K1— 5リボソーム投与群、 K1— 6リボソーム投 与群を示す。各々の群は、上段はリボソーム投与前、中段はリボソーム投与直後、下 段はリボソーム投与 1日後を示す。右端のバーは、イメージングによって得られた蛍 光シグナル強度を示す。カラーイメージング図では、バーの上方赤色が最もシグナル が強ぐ下方の色になるほど、蛍光シグナルが弱いことを示す。 白黒イメージング図で は、バーの上方の白色になるほど蛍光シグナルが強ぐ下方になるほど蛍光シグナ ノレが弱いことを示す。単位は、 photon count, photon/second (ph/s): 1秒間 にカウントされる蛍光シグナル photon数を表す。 FIG. 7 shows image data in arthritic mice using cy5.5-encapsulated sugar chain-modified ribosomes or cy5.5-encapsulated ribosomes. From the left, the ribosome group without sugar chain, the K1-3 liposome administered group, the K1-4 ribosome administered group, the K1-5 ribosome administered group, and the K1-6 ribosome administered group are shown. In each group, the upper part shows before ribosome administration, the middle part shows immediately after ribosome administration, and the lower part shows one day after ribosome administration. The rightmost bar shows the fluorescence signal intensity obtained by imaging. In the color imaging diagram, the red color at the top of the bar indicates the weaker the fluorescent signal the lower the color with the strongest signal. In the black-and-white imaging diagram, the fluorescent signal is weaker as the white color above the bar becomes stronger and the fluorescent signal becomes lower. The unit is photon count, photon / second (ph / s): The number of fluorescence signals photon counted per second.
[図 8]図 8は、 cy5. 5内包糖鎖修飾リボソームまたは cy5. 5内包リボソームを用いた 関節炎マウスでの画像データを示す。左から、糖鎖なしリボソーム群、 K3— 3リポソ一 ム投与群、 K3— 4リボソーム投与群、 K3— 5リボソーム投与群、 K3— 6リボソーム投 与群を示す。各々の群は、上段はリボソーム投与前、中段はリボソーム投与直後、下 段はリボソーム投与 1日後を示す。右端のバーは、イメージングによって得られた蛍 光シグナル強度を示す。カラーイメージング図では、バーの上方赤色が最もシグナル が強ぐ下方の色になるほど、蛍光シグナルが弱いことを示す。 白黒イメージング図で は、バーの上方の白色になるほど蛍光シグナルが強ぐ下方になるほど蛍光シグナ ノレが弱いことを示す。単位は、 photon count, photon/second (ph/s): 1秒間 にカウントされる蛍光シグナル photon数を表す。  FIG. 8 shows image data in arthritic mice using cy5.5-encapsulated sugar chain-modified ribosomes or cy5.5-encapsulated ribosomes. From the left, the ribosome group without sugar chain, the K3-3 liposome administration group, the K3-4 ribosome administration group, the K3-5 ribosome administration group, and the K3-6 ribosome administration group are shown. In each group, the upper part shows before ribosome administration, the middle part shows immediately after ribosome administration, and the lower part shows one day after ribosome administration. The rightmost bar shows the fluorescence signal intensity obtained by imaging. In the color imaging diagram, the red color at the top of the bar indicates the weaker the fluorescent signal the lower the color with the strongest signal. In the black-and-white imaging diagram, the fluorescent signal is weaker as the white color above the bar becomes stronger and the fluorescent signal becomes lower. The unit is photon count, photon / second (ph / s): The number of fluorescence signals photon counted per second.
[図 9]図 9は、 cy5. 5内包糖鎖修飾リボソームまたは cy5. 5内包リボソームを用いた 関節炎マウスでの画像データを示す。左から、糖鎖なしリボソーム群、 K2— 3リポソ一 ム投与群、 K2— 4リボソーム投与群、 K2— 5リボソーム投与群、 K2— 6リボソーム投 与群を示す。各々の群は、上段はリボソーム投与前、中段はリボソーム投与直後、下 段はリボソーム投与 1日後を示す。右端のバーは、イメージングによって得られた蛍 光シグナル強度を示す。カラーイメージング図では、バーの上方赤色が最もシグナル が強ぐ下方の色になるほど、蛍光シグナルが弱いことを示す。 白黒イメージング図で は、バーの上方の白色になるほど蛍光シグナルが強ぐ下方になるほど蛍光シグナ ノレが弱いことを示す。単位は、 photon count, photon/second (ph/s): 1秒間 にカウントされる蛍光シグナル photon数を表す。 FIG. 9 shows image data in arthritic mice using cy5.5-encapsulated sugar chain-modified ribosomes or cy5.5-encapsulated ribosomes. From the left, the ribosome group without sugar chain, the K2-3 liposome administration group, the K2-4 ribosome administration group, the K2-5 ribosome administration group, and the K2-6 ribosome administration group are shown. In each group, the upper part shows before ribosome administration, the middle part shows immediately after ribosome administration, and the lower part shows one day after ribosome administration. The rightmost bar shows the fluorescence signal intensity obtained by imaging. In the color imaging diagram, the red color above the bar is the most signal The stronger the lower color, the weaker the fluorescent signal. In the black-and-white imaging diagram, the fluorescent signal is weaker as the white color above the bar becomes stronger and the fluorescent signal becomes lower. The unit is photon count, photon / second (ph / s): The number of fluorescence signals photon counted per second.
[図 10]図 10は、 cy5. 5内包糖鎖修飾リボソームまたは cy5. 5内包リボソームを用い た関節炎マウスでの画像データを示す。左から、関節炎マウス Z糖鎖なしリボソーム 群、関節炎マウス ZK1— 3リボソーム投与群、関節炎マウス ZK1— 4リボソーム投与 群、正常マウス Z糖鎖なしリボソーム投与群、正常マウス ZK1— 4リボソーム投与群 を示す。各々の群は、上段はリボソーム投与前、 2段目はリボソーム投与直後、 3段目 はリボソーム投与 1日後、 4段目はリボソーム投与 2日後を示す。右端のバーは、ィメ 一ジングによって得られた蛍光シグナル強度を示す。カラーイメージング図では、ノ 一の上方赤色が最もシグナルが強ぐ下方の色になるほど、蛍光シグナルが弱いこと を示す。白黒イメージング図では、バーの上方の白色になるほど蛍光シグナルが強く 、下方になるほど蛍光シグナルが弱いことを示す。単位は、 photon count, photo n/second(ph/s): 1秒間にカウントされる蛍光シグナル photon数を表す。  FIG. 10 shows image data in arthritic mice using cy5.5-encapsulated sugar chain-modified ribosomes or cy5.5-encapsulated ribosomes. From left, arthritis mouse Z sugar chain-free ribosome group, arthritis mouse ZK1-3 ribosome administration group, arthritis mouse ZK1-4 ribosome administration group, normal mouse Z sugar chain-free ribosome administration group, normal mouse ZK1-4 ribosome administration group . In each group, the upper row shows before ribosome administration, the second row shows immediately after ribosome administration, the third row shows one day after ribosome administration, and the fourth row shows two days after ribosome administration. The rightmost bar shows the fluorescence signal intensity obtained by imaging. The color imaging diagram shows that the fluorescent signal is weaker as the upper red color of the cell becomes the lower color with the strongest signal. In the black and white imaging diagram, the whiter the bar, the stronger the fluorescent signal, and the lower the bar, the weaker the fluorescent signal. The unit is photon count, photo n / second (ph / s): represents the number of fluorescent signal photon counted per second.
[図 11]図 11は、 cy5. 5内包糖鎖修飾リボソームまたは cy5. 5内包リボソームを用い た関節炎マウスでの画像データを示す。最上段:リボソーム投与前、左 2段目: K1— 3リボソーム投与直後、左 3段目: K1— 3リボソーム投与 1日後、右 2段目:糖鎖なしリ ポソーム投与直後、右 3段目:糖鎖なしリボソーム投与 1日後。右端のバーは、ィメー ジングによって得られた蛍光シグナル強度を示す。カラーイメージング図では、バー の上方赤色が最もシグナルが強ぐ下方の色になるほど、蛍光シグナルが弱いことを 示す。 白黒イメージング図では、バーの上方の白色になるほど蛍光シグナルが強ぐ 下方になるほど蛍光シグナルが弱いことを示す。単位は、 photon count, photon /second (ph/s): 1秒間にカウントされる蛍光シグナル photon数を表す。 FIG. 11 shows image data in arthritic mice using cy5.5-encapsulated sugar chain-modified ribosomes or cy5.5-encapsulated ribosomes. Top row: before ribosome administration, left 2nd row: immediately after K1-3 ribosome administration, left 3rd row: 1 day after K1-3 ribosome administration, right 2nd row: immediately after administration of liposomal without glycans, right 3rd row: 1 day after administration of ribosome without sugar chain. The rightmost bar shows the fluorescence signal intensity obtained by imaging. In the color imaging diagram, the red color at the top of the bar shows the lower color with the strongest signal, indicating that the fluorescence signal is weaker. In the black-and-white imaging diagram, the whiter the bar, the stronger the fluorescent signal, and the lower the bar, the weaker the fluorescent signal. The unit is photon count, photon / second (ph / s): the number of fluorescence signals photon counted per second.
[図 12]図 12は、 cy5. 5内包糖鎖修飾リボソームまたは cy5. 5内包リボソームを用い た関節炎マウスでの画像データを示す。最上段:リボソーム投与前、左 2段目: K1— 2リボソーム投与直後、左 3段目: K1— 2リボソーム投与 1日後、右 2段目:糖鎖なしリ ポソーム投与直後、右 3段目:糖鎖なしリボソーム投与 1日後。右端のバーは、ィメー ジングによって得られた蛍光シグナル強度を示す。カラーイメージング図では、バー の上方赤色が最もシグナルが強ぐ下方の色になるほど、蛍光シグナルが弱いことを 示す。 白黒イメージング図では、バーの上方の白色になるほど蛍光シグナルが強ぐ 下方になるほど蛍光シグナルが弱いことを示す。単位は、 photon count, photon /second (ph/s): 1秒間にカウントされる蛍光シグナル photon数を表す。 FIG. 12 shows image data in arthritic mice using cy5.5-encapsulated sugar chain-modified ribosomes or cy5.5-encapsulated ribosomes. Top row: before ribosome administration, left 2nd row: immediately after K1—2 ribosome administration, left 3rd row: 1 day after administration of K1—2 ribosome, right 2nd row: immediately after administration of liposomal without glycans, right 3rd row: 1 day after administration of ribosome without sugar chain. The bar on the right is an image The fluorescence signal intensity obtained by ging is shown. In the color imaging diagram, the red color at the top of the bar shows the lower color with the strongest signal, indicating that the fluorescence signal is weaker. In the black-and-white imaging diagram, the whiter the bar, the stronger the fluorescent signal, and the lower the bar, the weaker the fluorescent signal. The unit is photon count, photon / second (ph / s): the number of fluorescence signals photon counted per second.
[図 13]図 13は、 cy5. 5内包糖鎖修飾リボソームまたは cy5. 5内包リボソームを用い た関節炎マウスでの画像データを示す。最上段:リボソーム投与前、左 2段目: K3— 2リボソーム投与直後、左 3段目: K3— 2リボソーム投与 1日後、中央 2段目: K3— 4リ ポソーム投与直後、中央 3段目: K3— 4リボソーム投与 1日後、右 2段目:糖鎖なしリ ポソーム投与直後、右 3段目:糖鎖なしリボソーム投与 1日後。右端のバーは、ィメー ジングによって得られた蛍光シグナル強度を示す。カラーイメージング図では、バー の上方赤色が最もシグナルが強ぐ下方の色になるほど、蛍光シグナルが弱いことを 示す。 白黒イメージング図では、バーの上方の白色になるほど蛍光シグナルが強ぐ 下方になるほど蛍光シグナルが弱いことを示す。単位は、 photon count, photon /second (ph/s): 1秒間にカウントされる蛍光シグナル photon数を表す。 FIG. 13 shows image data in arthritic mice using cy5.5-encapsulated sugar chain-modified ribosomes or cy5.5-encapsulated ribosomes. Top row: before ribosome administration, left 2nd row: immediately after administration of K3-2 ribosome, left 3rd row: 1 day after administration of K3-2 ribosome, 2nd row: immediately after administration of K3-4 liposome, middle 3rd row: K3—4 days after ribosome administration, right 2nd row: immediately after liposome without sugar chain, right 3rd row: 1 day after administration of ribosome without sugar chain. The rightmost bar shows the fluorescence signal intensity obtained by imaging. In the color imaging diagram, the red color at the top of the bar shows the lower color with the strongest signal, indicating that the fluorescence signal is weaker. In the black-and-white imaging diagram, the whiter the bar, the stronger the fluorescent signal, and the lower the bar, the weaker the fluorescent signal. The unit is photon count, photon / second (ph / s): the number of fluorescence signals photon counted per second.
[図 14]図 14は、 cy5. 5内包糖鎖修飾リボソームまたは cy5. 5内包リボソームを用い た正常マウスでの脳の画像データを示す。左上段: K1リボソーム投与 1時間後、左側 から糖鎖なしリボソーム投与、 K1— 3リボソーム投与、未投与、中央上段: K2リポソ一 ム投与 1時間後、左側力も糖鎖なしリボソーム投与、 K2— 3リボソーム投与、未投与、 右上段: K3リボソーム投与 1時間後、左側から糖鎖なしリボソーム投与、 K3— 3リポソ ーム投与、未投与、左下段: K1リボソーム投与 1日後、左側力 糖鎖なしリボソーム 投与、 K1— 3リボソーム投与、 K1— 4リボソーム投与、 K1— 6リボソーム投与、未投 与、中央下段: K2リボソーム投与 1日後、左側力も糖鎖なしリボソーム投与、 K2— 3リ ポソーム投与、 K2— 4リボソーム投与、 K2— 6リボソーム投与、未投与、右下段: K3 リボソーム投与 1日後、左側力も糖鎖なしリボソーム投与、 K3— 3リボソーム投与、 K3 —4リボソーム投与、 K3— 6リボソーム投与、未投与。右端のバーは、イメージングに よって得られた蛍光シグナル強度を示す。カラーイメージング図では、バーの上方赤 色が最もシグナルが強ぐ下方の色になるほど、蛍光シグナルが弱いことを示す。白 黒イメージング図では、バーの上方の白色になるほど蛍光シグナルが強ぐ下方にな るほど蛍光シグナノレが弱いことを示す。単位は、 photon count, photon/second (ph/s): 1秒間にカウントされる蛍光シグナル photon数を表す。 FIG. 14 shows brain image data in normal mice using cy5.5-encapsulated sugar chain-modified ribosomes or cy5.5-encapsulated ribosomes. Upper left: 1 hour after administration of K1 ribosome, administration of ribosome without sugar chain from left side, administration of K1-3 ribosome, no administration, upper center: 1 hour after administration of K2 liposome, administration of ribosome without sugar chain, administration of K2-3 Ribosome administration, not administered, upper right: 1 hour after administration of K3 ribosome, ribosome without glycan from left side, K3-3 liposome administration, not administered, lower left: 1 day after administration of K1 ribosome, left side force ribosome without sugar chain Administration, K1—3 ribosome administration, K1—4 ribosome administration, K1—6 ribosome administration, not administered, middle lower: K2 ribosome administration 1 day later, left side force also without glycans, K2—3 liposome administration, K2— 4 ribosome administration, K2-6 ribosome administration, unadministered, lower right: K3 ribosome administration 1 day later, left side force is also without glycans, K3-3 ribosome administration, K3 -4 ribosome administration, K3-6 Ribosome administration, untreated. The rightmost bar shows the fluorescence signal intensity obtained by imaging. In the color imaging diagram, the red color above the bar is the lower color with the strongest signal, indicating that the fluorescence signal is weaker. White In the black imaging diagram, the fluorescent signal is weaker as the fluorescent signal becomes stronger and lower as the white color above the bar. The unit is photon count, photon / second (ph / s): the number of fluorescence signals photon counted per second.
[図 15]図 15は、 cy5. 5内包糖鎖修飾リボソームまたは cy5. 5内包リボソームを用い た正常マウスでの肝臓の画像データを示す。左最上段: K1リボソーム投与 1時間後、 左側から糖鎖なしリボソーム投与、 K1 3リボソーム投与、未投与、中央最上段: K2 リボソーム投与 1時間後、左側力も糖鎖なしリボソーム投与、 K2— 3リボソーム投与、 未投与、右最上段: K3リボソーム投与 1時間後、左側力も糖鎖なしリボソーム投与、 K3— 3リボソーム投与、未投与、左 2段目: K1リボソーム投与 1時間後、左側から糖 鎖なしリボソーム投与、 K1— 4リボソーム投与、 K1— 6リボソーム投与、中央 2段目: K2リボソーム投与 1時間後、左側から糖鎖なしリボソーム投与、 K2— 4リボソーム投 与、 K2— 6リボソーム投与、右 2段目: K3リボソーム投与 1時間後、左側から糖鎖なし リボソーム投与、 K3— 4リボソーム投与、 K3— 6リボソーム投与、左 3段目: K1リポソ ーム投与 1日後、左側力も糖鎖なしリボソーム投与、 K1— 3リボソーム投与、 K1— 4リ ポソーム投与、 K1— 6リボソーム投与、未投与、中央 3段目: K2リボソーム投与 1日 後、左側力も糖鎖なしリボソーム投与、 K2— 3リボソーム投与、 K2— 4リボソーム投与 、 K2— 6リボソーム投与、未投与、右 3段目: K3リボソーム投与 1日後、左側から糖鎖 なしリボソーム投与、 K3— 3リボソーム投与、 K3— 4リボソーム投与、 K3— 6リポソ一 ム投与、未投与、左 4段目: K1リボソーム投与 2日後、左側力 糖鎖なしリボソーム投 与、 K1— 3リボソーム投与、 K1— 4リボソーム投与、 K1— 6リボソーム投与、中央 4段 目: K2リボソーム投与 2日後、左側から糖鎖なしリボソーム投与、 K2— 3リボソーム投 与、 K2— 4リボソーム投与、 K2— 6リボソーム投与、右 4段目: K3リボソーム投与 2日 後、左側力も糖鎖なしリボソーム投与、 K3— 3リボソーム投与、 K3— 4リボソーム投与 、 K3— 6リボソーム投与。右端のバーは、イメージングによって得られた蛍光シグナ ル強度を示す。カラーイメージング図では、バーの上方赤色が最もシグナルが強ぐ 下方の色になるほど、蛍光シグナルが弱いことを示す。 白黒イメージング図では、ノ 一の上方の白色になるほど蛍光シグナルが強ぐ下方になるほど蛍光シグナルが弱 いことを示す。単位は、 photon count, photon/second (ph/s) : 1秒間にカウン トされる蛍光シグナル photon数を表す。 FIG. 15 shows liver image data in normal mice using cy5.5-encapsulated sugar chain-modified ribosomes or cy5.5-encapsulated ribosomes. Left top: 1 hour after administration of K1 ribosome, administration of ribosome without sugar chain from the left side, administration of K1 3 ribosome, unadministration, center top: 1 hour after administration of K2 ribosome, administration of ribosome without sugar chain on the left side, K2-3 ribosome Administration, not administered, top right: 1 hour after administration of K3 ribosome, left-side force without glycosome administration, administration of K3-3 ribosome, no administration, left 2nd: 1 hour after administration of K1 ribosome, no glycan from left side Ribosome administration, K1-4 ribosome administration, K1-6 ribosome administration, middle 2nd stage: K2 ribosome administration 1 hour later, glycosome without glycans from the left side, K2-4 ribosome administration, K2-6 ribosome administration, right 2 Stage: 1 hour after administration of K3 ribosome, no sugar chain from left side Ribosome administration, K3-4 ribosome administration, K3-6 ribosome administration, left 3rd stage: K1 liposome administration 1 day later, left side force is also sugar chain Ribosome administration, K1-3 ribosome administration, K1-4 liposome administration, K1-6 ribosome administration, unadministration, middle 3rd stage: K2 ribosome administration 1 day later, left side force is also glycoside-free ribosome administration, K2-3 ribosome Administration, K2—4 ribosome administration, K2—6 ribosome administration, not administered, right third stage: K3 ribosome administration 1 day later, no glycans from the left side, K3—3 ribosome administration, K3—4 ribosome administration, K3— 6 Liposome administration, no administration, left 4th stage: K1 ribosome administration 2 days later, left side force No sugar chain ribosome administration, K1-3 ribosome administration, K1-4 ribosome administration, K1-6 ribosome administration, central 4th stage Eye: 2 days after administration of K2 ribosome, administration of ribosome without sugar chain, administration of K2-3 ribosome, administration of K2-4 ribosome, administration of K2-6 ribosome, right 4th stage: 2 days after administration of K3 ribosome Administration of ribosome without sugar chain, administration of K3-3 ribosome, administration of K3-4 ribosome, administration of K3-6 ribosome. The rightmost bar shows the fluorescence signal intensity obtained by imaging. In the color imaging diagram, the upper red color of the bar shows the strongest signal, and the lower the color, the weaker the fluorescent signal. In the black-and-white imaging diagram, the fluorescence signal becomes weaker as the white color above the node becomes stronger and the lower it becomes. Unit: photon count, photon / second (ph / s): Count per second The number of fluorescent signals photon to be transmitted.
[図 16]図 16は、 cy5. 5内包糖鎖修飾リボソームまたは cy5. 5内包リボソームを用い た正常マウスでの腎臓の画像データを示す。左最上段: K1リボソーム投与 1時間後、 左側から糖鎖なしリボソーム投与、 K1 3リボソーム投与、未投与、中央最上段: K2 リボソーム投与 1時間後、左側力も糖鎖なしリボソーム投与、 K2— 3リボソーム投与、 未投与、右最上段: K3リボソーム投与 1時間後、左側力も糖鎖なしリボソーム投与、 K3— 3リボソーム投与、未投与、左 2段目: K1リボソーム投与 1時間後、左側から糖 鎖なしリボソーム投与、 K1— 4リボソーム投与、 K1— 6リボソーム投与、中央 2段目: K2リボソーム投与 1時間後、左側から糖鎖なしリボソーム投与、 K2— 4リボソーム投 与、 K2— 6リボソーム投与、右 2段目: K3リボソーム投与 1時間後、左側から糖鎖なし リボソーム投与、 K3— 4リボソーム投与、 K3— 6リボソーム投与、左 3段目: K1リポソ ーム投与 1日後、左側力も糖鎖なしリボソーム投与、 K1— 3リボソーム投与、 K1— 4リ ポソーム投与、 K1— 6リボソーム投与、未投与、中央 3段目: K2リボソーム投与 1日 後、左側力も糖鎖なしリボソーム投与、 K2— 3リボソーム投与、 K2— 4リボソーム投与 、 K2— 6リボソーム投与、未投与、右 3段目: K3リボソーム投与 1日後、左側から糖鎖 なしリボソーム投与、 K3— 3リボソーム投与、 K3— 4リボソーム投与、 K3— 6リポソ一 ム投与、未投与、左 4段目: K1リボソーム投与 2日後、左側力 糖鎖なしリボソーム投 与、 K1— 3リボソーム投与、 K1— 4リボソーム投与、 K1— 6リボソーム投与、中央 4段 目: K2リボソーム投与 2日後、左側から糖鎖なしリボソーム投与、 K2— 3リボソーム投 与、 K2— 4リボソーム投与、 K2— 6リボソーム投与、右 4段目: K3リボソーム投与 2日 後、左側力も糖鎖なしリボソーム投与、 K3— 3リボソーム投与、 K3— 4リボソーム投与 、 K3— 6リボソーム投与。右端のバーは、イメージングによって得られた蛍光シグナ ル強度を示す。カラーイメージング図では、バーの上方赤色が最もシグナルが強ぐ 下方の色になるほど、蛍光シグナルが弱いことを示す。 白黒イメージング図では、ノ 一の上方の白色になるほど蛍光シグナルが強ぐ下方になるほど蛍光シグナルが弱 いことを示す。単位は、 photon count, photon/second (ph/s) : 1秒間にカウン トされる蛍光シグナル photon数を表す。  FIG. 16 shows kidney image data in normal mice using cy5.5-encapsulated sugar chain-modified ribosomes or cy5.5-encapsulated ribosomes. Left top: 1 hour after administration of K1 ribosome, administration of ribosome without sugar chain from the left side, administration of K1 3 ribosome, unadministration, center top: 1 hour after administration of K2 ribosome, administration of ribosome without sugar chain on the left side, K2-3 ribosome Administration, not administered, top right: 1 hour after administration of K3 ribosome, left-side force without glycosome administration, administration of K3-3 ribosome, no administration, left 2nd: 1 hour after administration of K1 ribosome, no glycan from left side Ribosome administration, K1-4 ribosome administration, K1-6 ribosome administration, middle 2nd stage: K2 ribosome administration 1 hour later, glycosome without glycans from the left side, K2-4 ribosome administration, K2-6 ribosome administration, right 2 Stage: 1 hour after administration of K3 ribosome, no sugar chain from left side Ribosome administration, K3-4 ribosome administration, K3-6 ribosome administration, left 3rd stage: K1 liposome administration 1 day later, left side force is also sugar chain Ribosome administration, K1-3 ribosome administration, K1-4 liposome administration, K1-6 ribosome administration, unadministration, middle 3rd stage: K2 ribosome administration 1 day later, left side force is also glycoside-free ribosome administration, K2-3 ribosome Administration, K2—4 ribosome administration, K2—6 ribosome administration, not administered, right third stage: K3 ribosome administration 1 day later, no glycans from the left side, K3—3 ribosome administration, K3—4 ribosome administration, K3— 6 Liposome administration, no administration, left 4th stage: K1 ribosome administration 2 days later, left side force No sugar chain ribosome administration, K1-3 ribosome administration, K1-4 ribosome administration, K1-6 ribosome administration, central 4th stage Eye: 2 days after administration of K2 ribosome, administration of ribosome without sugar chain, administration of K2-3 ribosome, administration of K2-4 ribosome, administration of K2-6 ribosome, right 4th stage: 2 days after administration of K3 ribosome Administration of ribosome without sugar chain, administration of K3-3 ribosome, administration of K3-4 ribosome, administration of K3-6 ribosome. The rightmost bar shows the fluorescence signal intensity obtained by imaging. In the color imaging diagram, the upper red color of the bar shows the strongest signal, and the lower the color, the weaker the fluorescent signal. In the black-and-white imaging diagram, the fluorescence signal becomes weaker as the white color above the node becomes stronger and the lower it becomes. The unit is photon count, photon / second (ph / s): The number of fluorescence signals photon counted per second.
[図 17]図 17は、 cy5. 5内包糖鎖修飾リボソームまたは cy5. 5内包リボソームを用い た正常マウスでの脾臓の画像データを示す。左最上段: K1リボソーム投与 1時間後、 左側から糖鎖なしリボソーム投与、 K1 3リボソーム投与、未投与、中央最上段: K2 リボソーム投与 1時間後、左側力も糖鎖なしリボソーム投与、 K2— 3リボソーム投与、 未投与、右最上段: K3リボソーム投与 1時間後、左側力も糖鎖なしリボソーム投与、 K3— 3リボソーム投与、未投与、左 2段目: K1リボソーム投与 1時間後、左側から糖 鎖なしリボソーム投与、 K1— 4リボソーム投与、 K1— 6リボソーム投与、中央 2段目: K2リボソーム投与 1時間後、左側から糖鎖なしリボソーム投与、 K2— 4リボソーム投 与、 K2— 6リボソーム投与、右 2段目: K3リボソーム投与 1時間後、左側から糖鎖なし リボソーム投与、 K3— 4リボソーム投与、 K3— 6リボソーム投与、左 3段目: K1リポソ ーム投与 1日後、左側力も糖鎖なしリボソーム投与、 K1— 3リボソーム投与、 K1— 4リ ポソーム投与、 K1— 6リボソーム投与、未投与、中央 3段目: K2リボソーム投与 1日 後、左側力も糖鎖なしリボソーム投与、 K2— 3リボソーム投与、 K2— 4リボソーム投与 、 K2— 6リボソーム投与、未投与、右 3段目: K3リボソーム投与 1日後、左側から糖鎖 なしリボソーム投与、 K3— 3リボソーム投与、 K3— 4リボソーム投与、 K3— 6リポソ一 ム投与、未投与、左 4段目: K1リボソーム投与 2日後、左側力 糖鎖なしリボソーム投 与、 K1— 3リボソーム投与、 K1— 4リボソーム投与、 K1— 6リボソーム投与、中央 4段 目: K2リボソーム投与 2日後、左側から糖鎖なしリボソーム投与、 K2— 3リボソーム投 与、 K2— 4リボソーム投与、 K2— 6リボソーム投与、右 4段目: K3リボソーム投与 2日 後、左側力も糖鎖なしリボソーム投与、 K3— 3リボソーム投与、 K3— 4リボソーム投与 、 K3— 6リボソーム投与。右端のバーは、イメージングによって得られた蛍光シグナ ル強度を示す。カラーイメージング図では、バーの上方赤色が最もシグナルが強ぐ 下方の色になるほど、蛍光シグナルが弱いことを示す。 白黒イメージング図では、ノ 一の上方の白色になるほど蛍光シグナルが強ぐ下方になるほど蛍光シグナルが弱 いことを示す。単位は、 photon count, photon/second (ph/s) : 1秒間にカウン トされる蛍光シグナル photon数を表す。 [Figure 17] Figure 17 shows the use of cy5.5-encapsulated sugar chain-modified ribosome or cy5.5-encapsulated ribosome. The image data of the spleen in a normal mouse are shown. Left top: 1 hour after administration of K1 ribosome, administration of ribosome without sugar chain from the left side, administration of K1 3 ribosome, unadministration, center top: 1 hour after administration of K2 ribosome, administration of ribosome without sugar chain on the left side, K2-3 ribosome Administration, not administered, top right: 1 hour after administration of K3 ribosome, left-side force without glycosome administration, administration of K3-3 ribosome, no administration, left 2nd: 1 hour after administration of K1 ribosome, no glycan from left side Ribosome administration, K1-4 ribosome administration, K1-6 ribosome administration, middle 2nd stage: K2 ribosome administration 1 hour later, glycosome without glycans from the left side, K2-4 ribosome administration, K2-6 ribosome administration, right 2 Stage: 1 hour after administration of K3 ribosome, no sugar chain from left side Ribosome administration, K3-4 ribosome administration, K3-6 ribosome administration, left 3rd stage: K1 liposome administration 1 day later, left side force is also sugar chain Ribosome administration, K1-3 ribosome administration, K1-4 liposome administration, K1-6 ribosome administration, unadministration, middle 3rd stage: K2 ribosome administration 1 day later, left side force is also glycoside-free ribosome administration, K2-3 ribosome Administration, K2—4 ribosome administration, K2—6 ribosome administration, not administered, right third stage: K3 ribosome administration 1 day later, no glycans from the left side, K3—3 ribosome administration, K3—4 ribosome administration, K3— 6 Liposome administration, no administration, left 4th stage: K1 ribosome administration 2 days later, left side force No sugar chain ribosome administration, K1-3 ribosome administration, K1-4 ribosome administration, K1-6 ribosome administration, central 4th stage Eye: 2 days after administration of K2 ribosome, administration of ribosome without sugar chain, administration of K2-3 ribosome, administration of K2-4 ribosome, administration of K2-6 ribosome, right 4th stage: 2 days after administration of K3 ribosome Administration of ribosome without sugar chain, administration of K3-3 ribosome, administration of K3-4 ribosome, administration of K3-6 ribosome. The rightmost bar shows the fluorescence signal intensity obtained by imaging. In the color imaging diagram, the upper red color of the bar shows the strongest signal, and the lower the color, the weaker the fluorescent signal. In the black-and-white imaging diagram, the fluorescence signal becomes weaker as the white color above the node becomes stronger and the lower it becomes. The unit is photon count, photon / second (ph / s): The number of fluorescence signals photon counted per second.
[図 18]図 18は、 cy5. 5内包糖鎖修飾リボソームまたは cy5. 5内包リボソームを用い た正常マウスでの肺の画像データを示す。左最上段: K1リボソーム投与 1時間後、左 側から糖鎖なしリボソーム投与、 K1 3リボソーム投与、未投与、中央最上段: K2リ ポソーム投与 1時間後、左側力も糖鎖なしリボソーム投与、 K2— 3リボソーム投与、未 投与、右最上段: K3リボソーム投与 1時間後、左側力も糖鎖なしリボソーム投与、 K3 —3リボソーム投与、未投与、左 2段目: K1リボソーム投与 1時間後、左側から糖鎖な しリボソーム投与、 K1— 4リボソーム投与、 K1— 6リボソーム投与、中央 2段目: K2リ ポソーム投与 1時間後、左側力も糖鎖なしリボソーム投与、 K2— 4リボソーム投与、 KFIG. 18 shows lung image data in normal mice using cy5.5-encapsulated sugar chain-modified ribosomes or cy5.5-encapsulated ribosomes. Upper left: 1 hour after administration of K1 ribosome, ribosome without glycan from left side, administration of K1 3 ribosome, not administered, upper center: K2 1 hour after administration of posomes, administration of ribosome without sugar chain, administration of K2-3 ribosome, not administered, top right: 1 hour after administration of K3 ribosome, administration of ribosome without sugar chain, administration of K3-3 ribosome, administration of untreated , Left 2nd: 1 hour after administration of K1 ribosome, administration of ribosome without sugar chain from left side, administration of K1-4 ribosome, administration of K1-6 ribosome, middle 2nd stage: 1 hour after administration of K2 liposome, left side force is also sugar Unchained ribosome administration, K2—4 ribosome administration, K
2— 6リボソーム投与、右 2段目: K3リボソーム投与 1時間後、左側力も糖鎖なしリポソ ーム投与、 K3— 4リボソーム投与、 K3— 6リボソーム投与、左 3段目: K1リボソーム投 与 1日後、左側力も糖鎖なしリボソーム投与、 K1— 3リボソーム投与、 K1— 4リポソ一 ム投与、 K1— 6リボソーム投与、未投与、中央 3段目: K2リボソーム投与 1日後、左 側から糖鎖なしリボソーム投与、 K2— 3リボソーム投与、 K2— 4リボソーム投与、 K2 —6リボソーム投与、未投与、右 3段目: K3リボソーム投与 1日後、左側から糖鎖なし リボソーム投与、 K3— 3リボソーム投与、 K3— 4リボソーム投与、 K3— 6リボソーム投 与、未投与、左 4段目: K1リボソーム投与 2日後、左側力も糖鎖なしリボソーム投与、 K1— 3リボソーム投与、 K1— 4リボソーム投与、 K1— 6リボソーム投与、中央 4段目: K2リボソーム投与 2日後、左側から糖鎖なしリボソーム投与、 K2— 3リボソーム投与、 K2— 4リボソーム投与、 K2— 6リボソーム投与、右 4段目: K3リボソーム投与 2日後、 左側から糖鎖なしリボソーム投与、 K3— 3リボソーム投与、 K3— 4リボソーム投与、 K2-6 ribosome administration, right 2nd row: 1 hour after K3 ribosome administration, left side force is also without liposomes, K3-4 ribosome administration, K3-6 ribosome administration, left 3rd row: K1 ribosome administration 1 One day later, left-side force is also administered without glycans, K1-3 ribosome administration, K1-4 liposome administration, K1-6 ribosome administration, not administered, middle third stage: K2 ribosome administration 1 day later, no glycans from left side Ribosome administration, K2-3 ribosome administration, K2-4 ribosome administration, K2-6 ribosome administration, no administration, right third stage: K3 ribosome administration 1 day later, no sugar chain from left side ribosome administration, K3-3 ribosome administration, K3 — 4 ribosome administration, K3—6 ribosome administration, non-administration, left 4th stage: K1 ribosome administration 2 days later, left side force is also without glycans, K1—3 ribosome administration, K1—4 ribosome administration, K1—6 riboso Administration, middle 4th stage: 2 days after administration of K2 ribosome, ribosome without sugar chain administration from the left side, administration of K2-3 ribosome, administration of K2-4 ribosome, administration of K2-6 ribosome, right 4th stage: 2 days after administration of K3 ribosome, Administration of ribosome without sugar chain from the left side, administration of K3-3 ribosome, administration of K3-4 ribosome, K
3— 6リボソーム投与。右端のバーは、イメージングによって得られた蛍光シグナル強 度を示す。カラーイメージング図では、バーの上方赤色が最もシグナルが強ぐ下方 の色になるほど、蛍光シグナルが弱いことを示す。 白黒イメージング図では、バーの 上方の白色になるほど蛍光シグナルが強ぐ下方になるほど蛍光シグナルが弱いこと を示す。単位は、 photon count, photon/second (ph/s) : 1秒間にカウントされ る蛍光シグナル photon数を表す。 3-6 Ribosome administration. The rightmost bar shows the fluorescence signal intensity obtained by imaging. In the color imaging diagram, the red color at the top of the bar indicates the weaker the fluorescent signal the lower the color with the strongest signal. In the black-and-white imaging diagram, the fluorescence signal is weaker as the white color above the bar becomes stronger and the lower the bar. The unit is photon count, photon / second (ph / s): The number of fluorescence signals photon counted per second.
[図 19]図 19は、 cy5. 5内包糖鎖修飾リボソームまたは cy5. 5内包リボソームを用い た正常マウスでの脾臓の画像データを示す。左最上段: K1リボソーム投与 1時間後、 左側から糖鎖なしリボソーム投与、 K1 3リボソーム投与、未投与、中央最上段: K2 リボソーム投与 1時間後、左側力も糖鎖なしリボソーム投与、 K2— 3リボソーム投与、 未投与、右最上段: K3リボソーム投与 1時間後、左側力も糖鎖なしリボソーム投与、 K3— 3リボソーム投与、未投与、左 2段目: K1リボソーム投与 1時間後、左側から糖 鎖なしリボソーム投与、 K1— 4リボソーム投与、 K1— 6リボソーム投与、中央 2段目: Κ2リボソーム投与 1時間後、左側から糖鎖なしリボソーム投与、 Κ2— 4リボソーム投 与、 Κ2— 6リボソーム投与、右 2段目: Κ3リボソーム投与 1時間後、左側から糖鎖なし リボソーム投与、 Κ3— 4リボソーム投与、 Κ3— 6リボソーム投与、左 3段目: K1リポソ ーム投与 1日後、左側力も糖鎖なしリボソーム投与、 K1— 3リボソーム投与、 K1— 4リ ポソーム投与、 K1— 6リボソーム投与、未投与、中央 3段目: Κ2リボソーム投与 1日 後、左側力も糖鎖なしリボソーム投与、 Κ2— 3リボソーム投与、 Κ2— 4リボソーム投与 、 Κ2— 6リボソーム投与、未投与、右 3段目: Κ3リボソーム投与 1日後、左側から糖鎖 なしリボソーム投与、 Κ3— 3リボソーム投与、 Κ3— 4リボソーム投与、 Κ3— 6リポソ一 ム投与、未投与、左 4段目: K1リボソーム投与 2日後、左側力 糖鎖なしリボソーム投 与、 K1— 3リボソーム投与、 K1— 4リボソーム投与、 K1— 6リボソーム投与、中央 4段 目: Κ2リボソーム投与 2日後、左側から糖鎖なしリボソーム投与、 Κ2— 3リボソーム投 与、 Κ2— 4リボソーム投与、 Κ2— 6リボソーム投与、右 4段目: Κ3リボソーム投与 2日 後、左側力も糖鎖なしリボソーム投与、 Κ3— 3リボソーム投与、 Κ3— 4リボソーム投与 、 Κ3— 6リボソーム投与。右端のバーは、イメージングによって得られた蛍光シグナ ル強度を示す。カラーイメージング図では、バーの上方赤色が最もシグナルが強ぐ 下方の色になるほど、蛍光シグナルが弱いことを示す。 白黒イメージング図では、ノ 一の上方の白色になるほど蛍光シグナルが強ぐ下方になるほど蛍光シグナルが弱 いことを示す。単位は、 photon count, photon/second (ph/s) : 1秒間にカウン トされる蛍光シグナル photon数を表す。 FIG. 19 shows spleen image data in normal mice using cy5.5-encapsulated sugar chain-modified ribosomes or cy5.5-encapsulated ribosomes. Left top: 1 hour after administration of K1 ribosome, administration of ribosome without sugar chain from the left side, administration of K1 3 ribosome, unadministration, center top: 1 hour after administration of K2 ribosome, administration of ribosome without sugar chain on the left side, K2-3 ribosome Administration, non-administration, top right: 1 hour after administration of K3 ribosome, administration of ribosome without sugar chain on the left side, K3-3 ribosome administration, unadministered, left 2nd stage: 1 hour after K1 ribosome administration, glycosome-free ribosome administration, K1-4 ribosome administration, K1-6 ribosome administration, middle 2nd stage: Κ2 ribosome administration 1 After time, administration of ribosome without sugar chain from the left side, Κ2-4 ribosome administration, Κ2-6 ribosome administration, right second stage: Κ3 ribosome administration 1 hour later, no sugar chain from the left side ribosome administration, Κ3-4 ribosome administration, Κ3-6 ribosome administration, left 3rd stage: K1 liposomal administration 1 day later, left side force is also glycosomal without glycans, K1-3 ribosome administration, K1-4 ribosome administration, K1-6 ribosome administration, unadministered, center 3rd stage: Κ2 ribosome administration 1 day later, left side force is also without glycans, Κ2-3 ribosome administration, Κ2-4 ribosome administration, Κ2-6 ribosome administration, unadministered, right 3rd stage: Κ3 riboso 1 day after administration, no glycans from left side, ribosome administration, Κ3-3 ribosome administration, Κ3-4 ribosome administration, Κ3-6 liposome administration, no administration, left 4th stage: K1 ribosome administration 2 days, left side sugar chain None Ribosome administration, K1—3 ribosome administration, K1—4 ribosome administration, K1—6 ribosome administration, middle 4th stage: Κ2 ribosome administration 2 days later, glycoside-free ribosome administration from the left side, Κ2-3 ribosome administration, Κ2 — 4 ribosome administration, Κ2—6 ribosome administration, right 4th stage: Κ3 ribosome administration 2 days later, left side force is also glycoside-free ribosome administration, Κ3-3 ribosome administration, Κ3-4 ribosome administration, Κ3-6 ribosome administration. The rightmost bar shows the fluorescence signal intensity obtained by imaging. In the color imaging diagram, the upper red color of the bar shows the strongest signal, and the lower the color, the weaker the fluorescent signal. In the black-and-white imaging diagram, the fluorescence signal becomes weaker as the white color above the node becomes stronger and the lower it becomes. The unit is photon count, photon / second (ph / s): The number of fluorescence signals photon counted per second.
[図 20]図 20は、 cy5. 5内包糖鎖修飾リボソームまたは cy5. 5内包リボソームを用い た正常マウスでの心臓の画像データを示す。左最上段: K1リボソーム投与 1時間後、 左側から糖鎖なしリボソーム投与、 K1 3リボソーム投与、未投与、中央最上段: K2 リボソーム投与 1時間後、左側力も糖鎖なしリボソーム投与、 K2— 3リボソーム投与、 未投与、右最上段: K3リボソーム投与 1時間後、左側力も糖鎖なしリボソーム投与、 K3— 3リボソーム投与、未投与、左 2段目: K1リボソーム投与 1時間後、左側から糖 鎖なしリボソーム投与、 K1— 4リボソーム投与、 K1— 6リボソーム投与、中央 2段目: K2リボソーム投与 1時間後、左側から糖鎖なしリボソーム投与、 Κ2— 4リボソーム投 与、 Κ2— 6リボソーム投与、右 2段目: Κ3リボソーム投与 1時間後、左側から糖鎖なし リボソーム投与、 Κ3— 4リボソーム投与、 Κ3— 6リボソーム投与、左 3段目: K1リポソ ーム投与 1日後、左側力も糖鎖なしリボソーム投与、 K1— 3リボソーム投与、 K1— 4リ ポソーム投与、 K1— 6リボソーム投与、未投与、中央 3段目: Κ2リボソーム投与 1日 後、左側力も糖鎖なしリボソーム投与、 Κ2— 3リボソーム投与、 Κ2— 4リボソーム投与 、 Κ2— 6リボソーム投与、未投与、右 3段目: Κ3リボソーム投与 1日後、左側から糖鎖 なしリボソーム投与、 Κ3— 3リボソーム投与、 Κ3— 4リボソーム投与、 Κ3— 6リポソ一 ム投与、未投与、左 4段目: K1リボソーム投与 2日後、左側力 糖鎖なしリボソーム投 与、 K1— 3リボソーム投与、 K1— 4リボソーム投与、 K1— 6リボソーム投与、中央 4段 目: Κ2リボソーム投与 2日後、左側から糖鎖なしリボソーム投与、 Κ2— 3リボソーム投 与、 Κ2— 4リボソーム投与、 Κ2— 6リボソーム投与、右 4段目: Κ3リボソーム投与 2日 後、左側力も糖鎖なしリボソーム投与、 Κ3— 3リボソーム投与、 Κ3— 4リボソーム投与 、 Κ3— 6リボソーム投与。右端のバーは、イメージングによって得られた蛍光シグナ ル強度を示す。カラーイメージング図では、バーの上方赤色が最もシグナルが強ぐ 下方の色になるほど、蛍光シグナルが弱いことを示す。 白黒イメージング図では、ノ 一の上方の白色になるほど蛍光シグナルが強ぐ下方になるほど蛍光シグナルが弱 いことを示す。単位は、 photon count, photon/second (ph/s) : 1秒間にカウン トされる蛍光シグナル photon数を表す。 FIG. 20 shows heart image data in normal mice using cy5.5-encapsulated sugar chain-modified ribosomes or cy5.5-encapsulated ribosomes. Left top: 1 hour after administration of K1 ribosome, administration of ribosome without sugar chain from the left side, administration of K1 3 ribosome, unadministration, center top: 1 hour after administration of K2 ribosome, administration of ribosome without sugar chain on the left side, K2-3 ribosome Administration, not administered, top right: 1 hour after administration of K3 ribosome, left-side force without glycosome administration, administration of K3-3 ribosome, no administration, left 2nd: 1 hour after administration of K1 ribosome, no glycan from left side Ribosome administration, K1-4 ribosome administration, K1-6 ribosome administration, middle 2nd stage: 1 hour after administration of K2 ribosome, administration of ribosome without sugar chain from the left side, Κ2-4 ribosome administration, Κ2-6 ribosome administration, right 2nd stage: Κ3 ribosome administration 1 hour later, no glycan administration from the left side, Κ3— 4 ribosome administration, Κ3-6 ribosome administration, left 3rd stage: K1 liposome administration 1 day later, left side force also without glycans, K1-3 ribosome administration, K1-4 liposome administration, K1-6 ribosome administration, No administration, middle 3rd stage: Κ2 ribosome administration 1 day later, left side force also glycosome without glycan administration, Κ2-3 ribosome administration, Κ2-4 ribosome administration, Κ2-6 ribosome administration, no administration, right 3rd step: Κ3 1 day after ribosome administration, ribosome administration without sugar chain from left side, Κ3-3 ribosome administration, Κ3-4 ribosome administration, Κ3-6 liposome administration, no administration, left 4th stage: K1 ribosome administration 2 days later Left-side force No-glycan ribosome administration, K1-3 ribosome administration, K1-4 ribosome administration, K1-6 ribosome administration, center 4th stage: Κ2 ribosome administration 2 days later, glycoside-free ribosome administration from the left side, Κ2-3 ribosome Administration, Κ2-4 ribosome administration, Κ2-6 ribosome administration, right 4th stage: Κ3 ribosome administration 2 days later, left side force is also without glycans, Κ3-3 ribosome administration, Κ3-4 ribosome administration, Κ3-6 Ribosome administration. The rightmost bar shows the fluorescence signal intensity obtained by imaging. In the color imaging diagram, the upper red color of the bar shows the strongest signal, and the lower the color, the weaker the fluorescent signal. In the black-and-white imaging diagram, the fluorescence signal becomes weaker as the white color above the node becomes stronger and the lower it becomes. The unit is photon count, photon / second (ph / s): The number of fluorescence signals photon counted per second.
[図 21]図 21は、 cy5. 5内包糖鎖修飾リボソームまたは cy5. 5内包リボソームを用い た正常マウスでの頭部以外の全身の画像データを示す。上段:糖鎖なしリボソーム投 与、左側から投与前、投与直後、投与 5分後、投与 10分後、投与 15分後、投与 20 分後、投与 25分後、下段: K1— 3リボソーム投与、左側から投与前、投与直後、投 与 5分後、投与 10分後、投与 15分後、投与 20分後、投与 25分後。右端のバーは、 イメージングによって得られた蛍光シグナル強度を示す。カラーイメージング図では、 バーの上方赤色が最もシグナルが強ぐ下方の色になるほど、蛍光シグナルが弱い ことを示す。白黒イメージング図では、バーの上方の白色になるほど蛍光シグナルが 強ぐ下方になるほど蛍光シグナルが弱いことを示す。単位は、 photon count, ph oton/second (ph/s): 1秒間にカウントされる蛍光シグナル photon数を表す。 FIG. 21 shows whole body image data other than the head in a normal mouse using cy5.5-encapsulated sugar chain-modified ribosome or cy5.5-encapsulated ribosome. Upper row: administration of ribosome without sugar chain, from the left side before administration, immediately after administration, 5 minutes after administration, 10 minutes after administration, 15 minutes after administration, 20 minutes after administration, 25 minutes after administration, lower row: administration of K1-3 ribosome, From left to right before administration, immediately after administration, 5 minutes after administration, 10 minutes after administration, 15 minutes after administration, 20 minutes after administration, and 25 minutes after administration. The rightmost bar shows the fluorescence signal intensity obtained by imaging. In the color imaging diagram, the red color above the bar shows the lower color with the strongest signal, indicating that the fluorescence signal is weaker. In the black and white imaging diagram, the whiter the bar, the stronger the fluorescent signal, and the lower the bar, the weaker the fluorescent signal. Unit is photon count, ph oton / second (ph / s): Represents the number of fluorescent signal photon counted per second.
[図 22]図 22は、 cy5. 5内包糖鎖修飾リボソームまたは cy5. 5内包リボソームを用い た正常マウスでの頭部以外の全身の画像データを示す。最上段:糖鎖なしリボソーム 投与、左側から投与前、投与直後、投与 5分後、投与 10分後、投与 15分後、投与 2 0分後、投与 25分後、 2段目: K1— 4リボソーム投与、左側から投与前、投与直後、 投与 5分後、投与 10分後、投与 15分後、投与 20分後、投与 25分後。 3段目: K1 6リボソーム投与、左側から投与前、投与直後、投与 5分後、投与 10分後、投与 15分 後、投与 20分後、投与 25分後。右端のバーは、イメージングによって得られた蛍光 シグナル強度を示す。カラーイメージング図では、バーの上方赤色が最もシグナルが 強ぐ下方の色になるほど、蛍光シグナルが弱いことを示す。白黒イメージング図で は、バーの上方の白色になるほど蛍光シグナルが強ぐ下方になるほど蛍光シグナ ノレが弱いことを示す。単位は、 photon count, photon/second (ph/s): 1秒間 にカウントされる蛍光シグナル photon数を表す。 FIG. 22 shows whole body image data other than the head in normal mice using cy5.5-encapsulated sugar chain-modified ribosomes or cy5.5-encapsulated ribosomes. Top: Ribosome without sugar chain, from left side, before administration, immediately after administration, 5 minutes after administration, 10 minutes after administration, 15 minutes after administration, 20 minutes after administration, 25 minutes after administration, 2nd stage: K1-4 Ribosome administration, from left side, before administration, immediately after administration, 5 minutes after administration, 10 minutes after administration, 15 minutes after administration, 20 minutes after administration, 25 minutes after administration. Third stage: K16 ribosome administration, from left side, before administration, immediately after administration, 5 minutes after administration, 10 minutes after administration, 15 minutes after administration, 20 minutes after administration, and 25 minutes after administration. The rightmost bar shows the fluorescence signal intensity obtained by imaging. In the color imaging diagram, the red color at the top of the bar indicates the lower the color with the strongest signal, the weaker the fluorescent signal. In the black-and-white imaging diagram, the fluorescent signal is weaker as the white color above the bar becomes stronger and the fluorescent signal becomes lower. The unit is photon count, photon / second (ph / s): The number of fluorescence signals photon counted per second.
[図 23]図 23は、 cy5. 5内包糖鎖修飾リボソームまたは cy5. 5内包リボソームを用い た正常マウスでの頭部以外の全身の画像データを示す。上段:糖鎖なしリボソーム投 与、左側から投与前、投与直後、投与 5分後、投与 10分後、投与 15分後、投与 20 分後、投与 25分後、下段: K2— 3リボソーム投与、左側から投与前、投与直後、投 与 5分後、投与 10分後、投与 15分後、投与 20分後、投与 25分後。右端のバーは、 イメージングによって得られた蛍光シグナル強度を示す。カラーイメージング図では、 バーの上方赤色が最もシグナルが強ぐ下方の色になるほど、蛍光シグナルが弱い ことを示す。白黒イメージング図では、バーの上方の白色になるほど蛍光シグナルが 強ぐ下方になるほど蛍光シグナルが弱いことを示す。単位は、 photon count, ph oton/second (ph/s): 1秒間にカウントされる蛍光シグナル photon数を表す。  FIG. 23 shows whole body image data other than the head in a normal mouse using cy5.5-encapsulated sugar chain-modified ribosome or cy5.5-encapsulated ribosome. Upper row: ribosome without sugar chain, before administration, right after administration, 5 minutes after administration, 10 minutes after administration, 15 minutes after administration, 20 minutes after administration, 25 minutes after administration, lower: administration of K2-3 ribosome, From left to right before administration, immediately after administration, 5 minutes after administration, 10 minutes after administration, 15 minutes after administration, 20 minutes after administration, and 25 minutes after administration. The rightmost bar shows the fluorescence signal intensity obtained by imaging. In the color imaging diagram, the red color above the bar shows the lower color with the strongest signal, indicating that the fluorescence signal is weaker. In the black and white imaging diagram, the whiter the bar, the stronger the fluorescent signal, and the lower the bar, the weaker the fluorescent signal. The unit is photon count, photo / second (ph / s): the number of photon photon counted per second.
[図 24]図 24は、 cy5. 5内包糖鎖修飾リボソームまたは cy5. 5内包リボソームを用い た正常マウスでの頭部以外の全身の画像データを示す。最上段:糖鎖なしリボソーム 投与、左側から投与前、投与直後、投与 5分後、投与 10分後、投与 15分後、投与 2 0分後、投与 25分後、 2段目: K2— 4リボソーム投与、左側から投与前、投与直後、 投与 5分後、投与 10分後、投与 15分後、投与 20分後、投与 25分後。 3段目: K2— 6リボソーム投与、左側から投与前、投与直後、投与 5分後、投与 10分後、投与 15分 後、投与 20分後、投与 25分後。右端のバーは、イメージングによって得られた蛍光 シグナル強度を示す。カラーイメージング図では、バーの上方赤色が最もシグナルが 強ぐ下方の色になるほど、蛍光シグナルが弱いことを示す。白黒イメージング図で は、バーの上方の白色になるほど蛍光シグナルが強ぐ下方になるほど蛍光シグナ ノレが弱いことを示す。単位は、 photon count, photon/second (ph/s): 1秒間 にカウントされる蛍光シグナル photon数を表す。 FIG. 24 shows whole body image data other than the head in normal mice using cy5.5-encapsulated sugar chain-modified ribosome or cy5.5-encapsulated ribosome. Top row: glycoside without glycan administration, from left side, before administration, immediately after administration, 5 minutes after administration, 10 minutes after administration, 15 minutes after administration, 20 minutes after administration, 25 minutes after administration, 2nd step: K2-4 Ribosome administration, from left side, before administration, immediately after administration, 5 minutes after administration, 10 minutes after administration, 15 minutes after administration, 20 minutes after administration, 25 minutes after administration. Third stage: K2— 6 Ribosome administration, before administration, immediately after administration, 5 minutes after administration, 10 minutes after administration, 15 minutes after administration, 20 minutes after administration, and 25 minutes after administration. The rightmost bar shows the fluorescence signal intensity obtained by imaging. In the color imaging diagram, the red color at the top of the bar indicates the lower the color with the strongest signal, the weaker the fluorescent signal. In the black-and-white imaging diagram, the fluorescent signal is weaker as the white color above the bar becomes stronger and the fluorescent signal becomes lower. The unit is photon count, photon / second (ph / s): The number of fluorescence signals photon counted per second.
[図 25]図 25は、 cy5. 5内包糖鎖修飾リボソームまたは cy5. 5内包リボソームを用い た正常マウスでの頭部以外の全身の画像データを示す。上段:糖鎖なしリボソーム投 与、左側から投与前、投与直後、投与 5分後、投与 10分後、投与 15分後、投与 20 分後、投与 25分後、下段: K3— 3リボソーム投与、左側から投与前、投与直後、投 与 5分後、投与 10分後、投与 15分後、投与 20分後、投与 25分後。右端のバーは、 イメージングによって得られた蛍光シグナル強度を示す。カラーイメージング図では、 バーの上方赤色が最もシグナルが強ぐ下方の色になるほど、蛍光シグナルが弱い ことを示す。白黒イメージング図では、バーの上方の白色になるほど蛍光シグナルが 強ぐ下方になるほど蛍光シグナルが弱いことを示す。単位は、 photon count, ph oton/second (ph/s): 1秒間にカウントされる蛍光シグナル photon数を表す。  FIG. 25 shows whole body image data other than the head in a normal mouse using cy5.5-encapsulated sugar chain-modified ribosome or cy5.5-encapsulated ribosome. Upper row: ribosome without sugar chain, before administration, right after administration, 5 minutes after administration, 10 minutes after administration, 15 minutes after administration, 20 minutes after administration, 25 minutes after administration, lower row: administration of K3-3 ribosome, From left to right before administration, immediately after administration, 5 minutes after administration, 10 minutes after administration, 15 minutes after administration, 20 minutes after administration, and 25 minutes after administration. The rightmost bar shows the fluorescence signal intensity obtained by imaging. In the color imaging diagram, the red color above the bar shows the lower color with the strongest signal, indicating that the fluorescence signal is weaker. In the black and white imaging diagram, the whiter the bar, the stronger the fluorescent signal, and the lower the bar, the weaker the fluorescent signal. The unit is photon count, photo / second (ph / s): the number of photon photon counted per second.
[図 26]図 26は、 cy5. 5内包糖鎖修飾リボソームまたは cy5. 5内包リボソームを用い た正常マウスでの頭部以外の全身の画像データを示す。最上段:糖鎖なしリボソーム 投与、左側から投与前、投与直後、投与 5分後、投与 10分後、投与 15分後、投与 2 0分後、投与 25分後、 2段目: K3— 4リボソーム投与、左側から投与前、投与直後、 投与 5分後、投与 10分後、投与 15分後、投与 20分後、投与 25分後。 3段目: K3— 6リボソーム投与、左側から投与前、投与直後、投与 5分後、投与 10分後、投与 15分 後、投与 20分後、投与 25分後。右端のバーは、イメージングによって得られた蛍光 シグナル強度を示す。カラーイメージング図では、バーの上方赤色が最もシグナルが 強ぐ下方の色になるほど、蛍光シグナルが弱いことを示す。白黒イメージング図で は、バーの上方の白色になるほど蛍光シグナルが強ぐ下方になるほど蛍光シグナ ノレが弱いことを示す。単位は、 photon count, photon/second (ph/s): 1秒間 にカウントされる蛍光シグナル photon数を表す。 FIG. 26 shows whole body image data other than the head in a normal mouse using cy5.5-encapsulated sugar chain-modified ribosome or cy5.5-encapsulated ribosome. Top row: glycosome without glycans administered, from left side before administration, immediately after administration, 5 minutes after administration, 10 minutes after administration, 15 minutes after administration, 20 minutes after administration, 25 minutes after administration, 2nd step: K3-4 Ribosome administration, from left side, before administration, immediately after administration, 5 minutes after administration, 10 minutes after administration, 15 minutes after administration, 20 minutes after administration, 25 minutes after administration. Third stage: K3-6 ribosome administration, from left side, before administration, immediately after administration, 5 minutes after administration, 10 minutes after administration, 15 minutes after administration, 20 minutes after administration, and 25 minutes after administration. The rightmost bar shows the fluorescence signal intensity obtained by imaging. In the color imaging diagram, the red color at the top of the bar indicates the lower the color with the strongest signal, the weaker the fluorescent signal. In the black-and-white imaging diagram, the fluorescent signal is weaker as the white color above the bar becomes stronger and the fluorescent signal becomes lower. The unit is photon count, photon / second (ph / s): 1 second Represents the number of fluorescence signals photon counted.
[図 27]図 27は、 cy5. 5内包リボソームを用いた正常マウスでの頭部以外の全身の画 像データを示す。左側から投与前、投与直後、 30分後、 1日後、 2日後。右端のバー は、イメージングによって得られた蛍光シグナル強度を示す。カラーイメージング図で は、バーの上方赤色が最もシグナルが強ぐ下方の色になるほど、蛍光シグナルが 弱いことを示す。白黒イメージング図では、バーの上方の白色になるほど蛍光シグナ ルが強ぐ下方になるほど蛍光シグナルが弱いことを示す。単位は、 photon count , photonZsecond(phZs) : 1秒間にカウントされる蛍光シグナル photon数を表す  FIG. 27 shows image data of the whole body other than the head in normal mice using cy5.5-encapsulated ribosomes. From left to right before administration, immediately after administration, 30 minutes later, 1 day later, 2 days later. The rightmost bar indicates the fluorescence signal intensity obtained by imaging. In the color imaging diagram, the red color at the top of the bar indicates the weaker the fluorescent signal the lower the color with the strongest signal. In the black and white imaging diagram, the whiter color above the bar indicates that the fluorescence signal is weaker as the fluorescent signal is stronger and lower. The unit is photon count, photonZsecond (phZs): Fluorescent signal photon count per second
[図 28]図 28は、 cy5. 5内包糖鎖修飾リボソーム (K1— 3)を用いた正常マウスでの頭 部以外の全身の画像データを示す。左側から投与前、投与直後、 30分後、 1日後。 右端のバーは、イメージングによって得られた蛍光シグナル強度を示す。カラーィメ 一ジング図では、バーの上方赤色が最もシグナルが強ぐ下方の色になるほど、蛍光 シグナルが弱いことを示す。白黒イメージング図では、バーの上方の白色になるほど 蛍光シグナルが強ぐ下方になるほど蛍光シグナルが弱いことを示す。単位は、 phot on count, photonZsecond (phZs): 1秒間にカウントされる: ¾:光シグナル photo n数を表す。 FIG. 28 shows whole body image data other than the head in normal mice using cy5.5-encapsulating sugar chain-modified ribosome (K1-3). From the left side, before administration, immediately after administration, 30 minutes later, 1 day later. The rightmost bar shows the fluorescence signal intensity obtained by imaging. The color image shows that the red color above the bar is the lower color with the strongest signal, the weaker the fluorescent signal. In the black-and-white imaging diagram, the whiter above the bar, the stronger the fluorescent signal, and the lower the bar, the weaker the fluorescent signal. The unit is phot on count, photonZsecond (phZs): Counted per second: ¾: Represents the number of photon photon.
[図 29]図 29は、 cy5. 5内包糖鎖修飾リボソーム (K1— 4)を用いた正常マウスでの頭 部以外の全身の画像データを示す。左側から投与前、投与直後、 30分後、 1日後、 2日後。右端のバーは、イメージングによって得られた蛍光シグナル強度を示す。力 ラーイメージング図では、バーの上方赤色が最もシグナルが強ぐ下方の色になるほ ど、蛍光シグナルが弱いことを示す。 白黒イメージング図では、バーの上方の白色に なるほど蛍光シグナルが強ぐ下方になるほど蛍光シグナルが弱いことを示す。単位 は、 photon count, photon/second (ph/s): 1秒間にカウントされる蛍光シグナ ノレ photon数を表す。  FIG. 29 shows whole body image data other than the head in normal mice using cy5.5-encapsulated sugar chain-modified ribosome (K1-4). From left to right before administration, immediately after administration, 30 minutes later, 1 day later, 2 days later. The rightmost bar shows the fluorescence signal intensity obtained by imaging. In the power error imaging diagram, the red color above the bar indicates the weaker fluorescent signal, as the lower color is the strongest signal. In the black-and-white imaging diagram, the whiter above the bar, the stronger the fluorescent signal, and the lower the bar, the weaker the fluorescent signal. The unit is photon count, photon / second (ph / s): The number of fluorescent signal photons counted per second.
[図 30]図 30は、 cy5. 5内包糖鎖修飾リボソーム (K1— 6)を用いた正常マウスでの頭 部以外の全身の画像データを示す。左側から投与前、投与直後、 30分後、 1日後、 2日後。右端のバーは、イメージングによって得られた蛍光シグナル強度を示す。力 ラーイメージング図では、バーの上方赤色が最もシグナルが強ぐ下方の色になるほ ど、蛍光シグナルが弱いことを示す。 白黒イメージング図では、バーの上方の白色に なるほど蛍光シグナルが強ぐ下方になるほど蛍光シグナルが弱いことを示す。単位 は、 photon count, photon/second (ph/s): 1秒間にカウントされる蛍光シグナ ノレ photon数を表す。 FIG. 30 shows whole body image data other than the head in normal mice using cy5.5-encapsulating sugar chain-modified ribosome (K1-6). From left to right before administration, immediately after administration, 30 minutes later, 1 day later, 2 days later. The rightmost bar shows the fluorescence signal intensity obtained by imaging. Power In the Ler image, the fluorescent signal is weaker as the red color above the bar is the lower color with the strongest signal. In the black-and-white imaging diagram, the whiter above the bar, the stronger the fluorescent signal, and the lower the bar, the weaker the fluorescent signal. The unit is photon count, photon / second (ph / s): The number of fluorescent signal photons counted per second.
[図 31]図 31は、蛍光物質を内包した糖鎖修飾リボソームの模式図を示す。  FIG. 31 shows a schematic diagram of a sugar chain-modified ribosome encapsulating a fluorescent substance.
[図 32]図 32は、リボソームのタンパク質量を測定するための検量線の一例を示す。  FIG. 32 shows an example of a calibration curve for measuring the amount of ribosome protein.
[図 33]図 33は、リボソームの脂質量を測定するための検量線の一例を示す。  FIG. 33 shows an example of a calibration curve for measuring the lipid content of ribosome.
[図 34]図 34は、リボソームの粒子径分布の一例を示す。  FIG. 34 shows an example of particle size distribution of ribosome.
[図 35]図 35は、蛍光物質の一例を示す。  FIG. 35 shows an example of a fluorescent substance.
[図 36]図 36は、蛍光物質の一例を示す。  FIG. 36 shows an example of a fluorescent substance.
[図 37]図 37は、蛍光物質の一例を示す。  FIG. 37 shows an example of a fluorescent substance.
[図 38]図 38は、蛍光物質の一例を示す。  FIG. 38 shows an example of a fluorescent substance.
[図 39]図 39は、蛍光物質の一例を示す。  FIG. 39 shows an example of a fluorescent substance.
[図 40]図 40は、糖鎖修飾リボソームの調製についての模式図を示す。 HSA、 BS、  FIG. 40 shows a schematic diagram for the preparation of sugar chain-modified ribosomes. HSA, BS,
3 Three
Tris、 DTSSPおよび SLXは、それぞれ以下の略号である。 HSA;ヒト血清アルブミ ン、 BS ;ビス(スルホスクシンィミジル)スべレート基、 Tris;トリス(ヒドロキシメチル)ァTris, DTSSP and SLX are the following abbreviations. HSA; human serum albumin, BS; bis (sulfosuccinimidyl) suberate group, Tris; tris (hydroxymethyl) a
3 Three
ミノメタン基、 DTSSP ; 3, 3,一ジチオピス(スルホスクシンィミジルプロピオネート)、 S LX;シァリルルイス X基。 Minomethane group, DTSSP; 3, 3, monodithiopis (sulfosuccinimidyl propionate), S LX; Siaryl Lewis X group.
[図 41]図 41は、 SLX— Lipo— Cy5. 5および Lipo— Cy5. 5の粒子サイズ分布を示 す。リボソーム溶液を、蒸留水で 50倍に希釈した。縦軸:動的光散乱の相対強度(% )、横軸:粒子サイズ (対数:直径 (nm) )。実線: SLX— Lipo— Cy5. 5、破線: Lipo -Cy5. 5。粒子サイズは、 Zetasizer Nano— S90により測定した。  [FIG. 41] FIG. 41 shows the particle size distribution of SLX—Lipo—Cy5.5 and Lipo—Cy5.5. The ribosome solution was diluted 50 times with distilled water. Vertical axis: relative intensity of dynamic light scattering (%), horizontal axis: particle size (logarithm: diameter (nm)). Solid line: SLX—Lipo—Cy5.5. Dashed line: Lipo-Cy5.5. The particle size was measured by Zetasizer Nano—S90.
[図 42]図 42は、 4°Cで 6時間保存した後の SLX— Lipo— Cy5. 5の安定性を示す。リ ポソーム溶液を、蒸留水で 50倍に希釈した。縦軸:動的光散乱の相対強度 (%)、横 軸:粒子サイズ (対数:直径 (nm) )。実線:調製の直後、破線 :4°Cで 6時間保存した 後。粒子サイズは、 Zetasizer Nano— S90〖こより測定した。 FIG. 42 shows the stability of SLX-Lipo-Cy5.5 after 6 hours storage at 4 ° C. The liposome solution was diluted 50 times with distilled water. Vertical axis: relative intensity of dynamic light scattering (%), horizontal axis: particle size (logarithm: diameter (nm)). Solid line: Immediately after preparation, dashed line: after storage at 4 ° C for 6 hours. The particle size was measured from Zetasizer Nano—S90.
[図 43]図 43は、慢性関節リウマチマウスにおける炎症領域へのリボソームの集積を示 す。 SLX— Lipo— Cy5. 5または Lipo— Cy5. 5を尾静脈から投与した(50 lZマ ウス)。同一マウスの炎症領域 (後ろ足の裏側)を、投与前、注射 0時間後、注射 24時 間後に観察した。 explore Optix (Ex: 680nm、 Em : 700nm)により測定した。デ ータは正規ィ匕した。 FIG. 43 shows ribosome accumulation in the inflamed area in rheumatoid arthritis mice. The SLX—Lipo—Cy5.5 or Lipo—Cy5.5 was administered via the tail vein (50 lZ mouse). Inflamed areas (back of the hind paw) of the same mice were observed before administration, 0 hours after injection, and 24 hours after injection. Measured with explore Optix (Ex: 680 nm, Em: 700 nm). The data is correct.
[図 44]図 44は、炎症領域における種々の糖鎖修飾リボソームの集積を示す。 Lipo— Cy5. 5、 SLX— Lipo— Cy5. 5および G4GN— Lipo— Cy5. 5を尾静脈力も投与し た(50 ;ζ ΐΖマウス)。炎症領域 (後ろ足の裏側)を、注射 24時間後に観察した。 eXpl ore Optix (Ex: 680nm、 Em: 700nm)により測定した。データは正規化した。 G4 GN: N—ァセチルラクトサミン。  FIG. 44 shows the accumulation of various sugar chain-modified ribosomes in the inflammatory region. Lipo-Cy5.5, SLX-Lipo-Cy5.5 and G4GN-Lipo-Cy5.5 were also administered via tail vein force (50; ζΐΖ mice). The inflamed area (back of the hind paw) was observed 24 hours after injection. Measured by eXpl ore Optix (Ex: 680 nm, Em: 700 nm). Data were normalized. G4 GN: N-acetyl lactosamine.
[図 45]図 45は、リボソーム表面の糖鎖密度と炎症領域への集積との関係を示す。 Li po -Cy5. 5または SLX— Lipo— Cy5. 5 (D1〜D5)を、尾静脈から投与した(50 1Zマウス)。炎症領域 (後ろ足の裏側)を、注射 24時間後に観察した。 explore Optix (Ex : 680nm、 Em: 700nm)により測定した。各糖鎖密度は、糖鎖がリポソ一 ム表面へ結合される際の反応混合物の濃度( μ g/ml)を示す。 (ΌΙ Ο μ g/ml, Ό2 : 50 μ gZml、 D3: 100 μ g/ml, D4: 200 μ g/ml, D5: 500 μ g/ml)。デー タは正規ィ匕した。  FIG. 45 shows the relationship between the sugar chain density on the ribosome surface and accumulation in the inflamed area. Li po -Cy5.5 or SLX—Lipo—Cy5.5 (D1-D5) was administered via the tail vein (50 1Z mice). The inflamed area (back of the hind paw) was observed 24 hours after injection. Measured with explore Optix (Ex: 680 nm, Em: 700 nm). The density of each sugar chain indicates the concentration (μg / ml) of the reaction mixture when the sugar chain is bound to the liposome surface. (ΌΙ Ο μg / ml, Ό2: 50 μg Zml, D3: 100 μg / ml, D4: 200 μg / ml, D5: 500 μg / ml). The data was entered correctly.
[図 46]図 46は、炎症領域における血管および周囲の組織へのリボソームの集積を示 す。 SLX— Lipo— Cy5. 5または Lipo— Cy5. 5 (100 1/マウス)を、尾静脈から 投与した。同じマウスの炎症領域 (後ろ足の裏側)を、注射の 10分後、 30分後、 6時 間後、 24時間後および 48時間後に観察した。血流内の白血球および血管内皮細 胞を染色するために、観察の直前に、 AO (0. 5%, w/v%) ( 150 1)を尾静脈から 投与した。 IV— 100により測定した。 Cy5. 5は赤色で示され(Ex : 633nm、 Em : 69 3nm)、アタリジンオレンジは緑色で示される(Ex: 488nm、 Em : 526nm)。バー: 20 ^ mo矢印:血管。  [FIG. 46] FIG. 46 shows the accumulation of ribosomes in blood vessels and surrounding tissues in the inflamed area. SLX—Lipo—Cy5.5 or Lipo—Cy5.5 (100 1 / mouse) was administered via the tail vein. The same mouse area of inflammation (back of the hind paw) was observed at 10 minutes, 30 minutes, 6 hours, 24 hours and 48 hours after injection. To stain leukocytes and vascular endothelial cells in the bloodstream, AO (0.5%, w / v%) (150 1) was administered via the tail vein immediately before observation. Measured with IV-100. Cy5.5 is shown in red (Ex: 633 nm, Em: 69 3 nm), and ataridin orange is shown in green (Ex: 488 nm, Em: 526 nm). Bar: 20 ^ mo Arrow: Blood vessel.
[図 47]図 47は、担癌マウスの腫瘍領域への SLX— Lipo— Cy5. 5の集積を示す。 S LX-Lipo -Cy5. 5または Lipo— Cy5. 5を、尾静脈から投与し(200 lZマウス) した。同一マウスの腫瘍領域 (右大腿領域)を、投与前、投与の 0時間後、 24時間後 、 48時間後、 72時間後および 96時間後に観察した。 explore Optix (Ex: 680nm 、 Em: 700nm)により測定した。データを正規化した。 FIG. 47 shows the accumulation of SLX-Lipo-Cy5.5 in the tumor area of tumor-bearing mice. S LX-Lipo -Cy5.5 or Lipo—Cy5.5 was administered via the tail vein (200 lZ mice). The tumor area (right thigh area) of the same mouse was observed before administration, 0 hours, 24 hours, 48 hours, 72 hours and 96 hours after administration. explore Optix (Ex: 680nm , Em: 700 nm). Data was normalized.
[図 48]図 48は、注射の 96時間後における体内の蛍光分布を示す。 SLX— Lipo— C y5. 5を、尾静脈力も投与した(200 1Zマウス)。注射の 96時間後に全身を観察し た。 explore Optix (Ex: 680nm、 Em: 700nm)により測定した。  FIG. 48 shows the fluorescence distribution in the body 96 hours after injection. SLX—Lipo—Cy5.5 was also administered to the tail vein force (200 1Z mice). The whole body was observed 96 hours after the injection. Measured with explore Optix (Ex: 680 nm, Em: 700 nm).
[図 49]図 49は、腫瘍領域における、血管から周辺組織への蛍光の移動を示す。 SL X— Lipo— Cy5. 5または Lipo— Cy5. 5を、尾静脈から投与した(100 lZマウス) 。注射の 48時間後に、腫瘍領域 (右大腿領域)の血管および周辺組織を観察した。 血流内の白血球および血管内皮細胞を染色するために、観察の直前に、 AO (0. 5 %, w/v%) (150 /z l)を尾静脈力ら投与した。 IV— 100により測定した。 Cy5. 5は 赤色で示され (Ex: 633nm、 Em : 693nm)、アタリジンオレンジは緑色で示される(E X: 488nm、 Em: 526nm)。バー: 20 m。無地矢印:血管。縞矢印:腫瘍組織 (腫 瘍細胞)。三角:白血球。 FIG. 49 shows the movement of fluorescence from blood vessels to surrounding tissues in the tumor region. SL X—Lipo—Cy5.5 or Lipo—Cy5.5 was administered via the tail vein (100 lZ mice). Forty-eight hours after injection, blood vessels and surrounding tissues in the tumor area (right thigh area) were observed. To stain leukocytes and vascular endothelial cells in the bloodstream, AO (0.5%, w / v%) (150 / z l) was administered via tail vein force immediately before observation. Measured with IV-100. Cy5.5 is shown in red (Ex: 633 nm, Em: 693 nm) and atalidine orange is shown in green (EX: 488 nm, Em: 526 nm). Bar: 20 m. Solid arrow: Blood vessel. Striped arrows: tumor tissue (tumor cells). Triangle: White blood cell.
[図 50]図 50は、 Cy7内包型糖鎖修飾リボソーム (K—1)を投与した担癌マウスを、蛍 光イメージング装置 eXplore Optix (GE Healthcare)を用いて経時的に撮影し た画像である。投与 6時間後、 Cy7内包型糖鎖修飾リボソーム (K—1)を投与した担 癌マウスは、コントロールに比べて腫瘍部位において蛍光強度が高かった。投与 24 時間後においては、ほとんどシグナルが検出されな力つた。  FIG. 50 is an image of cancer-bearing mice administered with Cy7-encapsulating sugar chain-modified ribosome (K-1) taken over time using a fluorescence imaging device eXplore Optix (GE Healthcare). . Six hours after administration, tumor-bearing mice to which Cy7-encapsulated sugar chain-modified ribosome (K-1) was administered had higher fluorescence intensity at the tumor site than the control. At 24 hours after administration, almost no signal was detected.
[図 51]図 51は、 Cy 3内包型糖鎖修飾リボソーム (K— 1)を投与した担癌マウスの腫 瘍部位を、蛍光顕微鏡 CKX41 (OLYMPUS)を用いて撮影した写真である。投与 6 時間後、 Cy3内包型糖鎖修飾リボソーム (K—1)を投与した担癌マウスは、コントロー ルに比べて腫瘍組織における蛍光強度が高いことが判明した。  FIG. 51 is a photograph of a tumor site of a tumor-bearing mouse administered with Cy 3 encapsulated sugar chain-modified ribosome (K-1) using a fluorescence microscope CKX41 (OLYMPUS). Six hours after administration, the tumor-bearing mice to which Cy3-encapsulated sugar chain-modified ribosome (K-1) was administered were found to have higher fluorescence intensity in the tumor tissue than the control.
[図 52]図 52は、従来法および遠心法により製造したリボソームについての粒子径分 布を示す。 A:従来法、 B :遠心法。 FIG. 52 shows the particle size distribution of ribosomes produced by the conventional method and the centrifugal method. A: Conventional method, B: Centrifugal method.
[図 53]図 53は、従来法および遠心法により製造したリボソームについての吸収スぺク トルを示す。太線:従来法、細線:遠心法。  FIG. 53 shows absorption spectra for ribosomes produced by the conventional method and the centrifugal method. Thick line: Conventional method, Thin line: Centrifugal method.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、本発明を最良の形態を示しながら説明する。本明細書の全体にわたり、単数 形の表現は、特に言及しない限り、その複数形の概念をも含むことが理解されるべき である。従って、単数形の冠詞 (例えば、英語の場合は「a」、 「an」、 「the」など)は、 特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。また、 本明細書において使用される用語は、特に言及しない限り、当上記分野で通常用い られる意味で用いられることが理解されるべきである。したがって、他に定義されない 限り、本明細書中で使用される全ての専門用語および科学技術用語は、本発明の 属する分野の当業者によって一般的に理解されるのと同じ意味を有する。矛盾する 場合、本明細書 (定義を含めて)が優先する。 The present invention will be described below with reference to the best mode. Throughout this specification, it should be understood that the singular forms also include the plural concept unless otherwise stated. It is. Therefore, it should be understood that singular articles (eg, “a”, “an”, “the”, etc. in the English language) also include the plural concept unless otherwise stated. In addition, it should be understood that the terms used in the present specification are used in the meaning normally used in the above field unless otherwise specified. Thus, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In case of conflict, the present specification, including definitions, will control.
[0023] 以下に提供される実施形態は、本発明のよりよい理解のために提供されるものであ り、本発明の範囲は以下の記載に限定されるべきでないことが理解される。従って、 当業者は、本明細書中の記載を参酌して、本発明の範囲内で適宜改変を行うことが できることは明らかである。 [0023] It is understood that the embodiments provided below are provided for a better understanding of the present invention, and the scope of the present invention should not be limited to the following description. Therefore, it is obvious that those skilled in the art can make appropriate modifications within the scope of the present invention in consideration of the description in the present specification.
[0024] 以下に本明細書において特に使用される用語の定義を適宜説明する。 [0024] Definitions of terms particularly used in the present specification will be described below as appropriate.
[0025] 本明細書において「糖鎖」とは、単位糖 (単糖および Zまたはその誘導体)が 1っ以 上連なってできたィ匕合物をいう。単位糖が 2つ以上連なる場合は、各々の単位糖同 士の間は、グリコシド結合による脱水縮合によって結合する。このような糖鎖としては 、例えば、生体中に含有される多糖類 (グルコース、ガラクトース、マンノース、フコー ス、キシロース、 N—ァセチルダルコサミン、 N—ァセチルガラタトサミン、シアル酸な らびにそれらの複合体および誘導体)の他、分解された多糖、糖タンパク質、プロテ ォグリカン、グリコサミノダリカン、糖脂質などの複合生体分子から分解または誘導さ れた糖鎖など広範囲なものが挙げられるがそれらに限定されない。したがって、本明 細書では、糖鎖は、「多糖 (ポリサッカリド)」、「糖質」、「炭水化物」と互換可能に使用 され得る。また、特に言及しない場合、本明細書において「糖鎖」は、糖鎖および糖 鎖含有物質の両方を包含することがある。代表的には、約 20種類の単糖 (ダルコ一 ス、ガラクトース、マンノース、フコース、キシロース、 N—ァセチルダルコサミン、 N— ァセチルガラタトサミン、シアル酸ならびにそれらの複合体および誘導体など)が鎖状 につながった物質で、生体の細胞内外のタンパク質や脂質に付いている。単糖の配 列によって機能が異なり、通常は複雑に枝分かれしていて、人体には数百種類以上 の多様な構造の糖鎖があると予想されており、さらに、人体において有用な構造は数 万種類以上あると考えられている。細胞間での分子 ·細胞認識機能などタンパク質や 脂質が生体内で果たす高次機能に関係して 、ると見られて 、るが、そのメカニズムは 未解明の部分が多い。核酸、タンパク質に次ぐ第 3の生命鎖として現在のライフサイ エンスで注目されている。とりわけ、細胞認識におけるリガンド (情報分子)としての糖 鎖の機能が期待され、その高機能材料開発への応用が研究されて 、る。 In the present specification, the “sugar chain” refers to a compound formed by one or more unit sugars (monosaccharide and Z or a derivative thereof). When two or more unit sugars are connected, each unit sugar is linked by dehydration condensation using a glycosidic bond. Examples of such sugar chains include polysaccharides contained in the living body (glucose, galactose, mannose, fucose, xylose, N-acetylethyldarcosamine, N-acetylethylgalatosamine, sialic acid and In addition to their conjugates and derivatives), there are a wide range of sugar chains that are degraded or derived from complex biomolecules such as degraded polysaccharides, glycoproteins, proteoglycans, glycosaminodaricans, glycolipids, etc. It is not limited to them. Therefore, in the present specification, the sugar chain can be used interchangeably with “polysaccharide”, “sugar”, and “carbohydrate”. Further, unless otherwise specified, in this specification, “sugar chain” may include both sugar chains and sugar chain-containing substances. Typically about 20 monosaccharides (such as dalcoose, galactose, mannose, fucose, xylose, N-acetylyldarcosamine, N-acetylgalatatosamine, sialic acid and their complexes and derivatives) Is a chain-linked substance that is attached to proteins and lipids inside and outside the body of cells. Functions differ depending on the arrangement of monosaccharides, and they are usually branched in a complex manner. The human body is expected to have several hundreds of sugar chains with various structures, and there are several useful structures in the human body. It is believed that there are over 10,000 types. It seems to be related to higher-order functions that proteins and lipids perform in vivo, such as intercellular molecular / cell recognition functions, but the mechanism is still unclear. It is attracting attention in the current life science as the third life chain after nucleic acid and protein. In particular, the function of a sugar chain as a ligand (information molecule) in cell recognition is expected, and its application to the development of highly functional materials is being studied.
[0026] 本明細書において「糖鎖基」とは、糖鎖が別の基と結合したときに付される名称であ る。糖鎖基は場合に応じて一価または二価のものを指す。例えば、糖鎖基としては、 シァリルルイス X基、 N ァセチルラクトサミン基、 α 1—6マンノビオース基が挙げら れる。 In this specification, “sugar chain group” is a name given when a sugar chain is bonded to another group. The sugar chain group refers to a monovalent or divalent group depending on the case. For example, examples of the sugar chain group include sialyl Lewis X group, N-acetylyl lactosamine group, and α 1-6 mannobiose group.
[0027] 本明細書において「糖」または「単糖」とは、少なくとも 1つの水酸基および少なくとも 1つのアルデヒド基またはケトン基を含む、ポリヒドロキシアルデヒドまたはポリヒドロキ シケトンをいい、糖鎖の基本単位を構成する。本明細書において、糖はまた、炭水化 物ともいい、両者は互換的に用いられる。本明細書において、特に言及するときは、 糖鎖は、 1つ以上糖が連なった鎖または配列をいい、糖または単糖というときは、糖 鎖を構成する 1つの単位をいう。  In the present specification, “sugar” or “monosaccharide” refers to polyhydroxyaldehyde or polyhydroxyketone containing at least one hydroxyl group and at least one aldehyde group or ketone group, and constitutes a basic unit of a sugar chain. To do. In this specification, sugar is also referred to as a carbohydrate, and both are used interchangeably. In the present specification, when specifically mentioned, a sugar chain refers to a chain or a sequence in which one or more sugars are linked, and when referred to as a sugar or a monosaccharide, it refers to one unit constituting the sugar chain.
ここで、 η= 2、 3、 4、 5、 6、 7、 8、 9および 10であるものを、それぞれジオース、トリオ ース、テトロース、ペントース、へキソース、ヘプトース、オタトース、ノノースおよびデコ ースという。一般に鎖式多価アルコールのアルデヒドまたはケトンに相当するもので、 前者をアルドース,後者をケトースという。本発明では、いずれの形式のものでも使用 され得る。  Where η = 2, 3, 4, 5, 6, 7, 8, 9 and 10 are diose, triose, tetrose, pentose, hexose, heptose, otatose, nonose and decouse, respectively. That's it. It is generally equivalent to an aldehyde or ketone of a chain polyhydric alcohol. The former is called aldose and the latter is called ketose. In the present invention, any type can be used.
[0028] 本発明において糖を記載するために使用する命名法および略称は、通常の命名 法に従う。例えば、 β D ガラクトース  [0028] The nomenclature and abbreviations used to describe sugars in the present invention follow normal nomenclature. For example, β D galactose
[0029] [化 11] [0029] [Chemical 11]
β-D-Galactose
Figure imgf000055_0001
β-D-Galactose
Figure imgf000055_0001
は、 Gal ;  The Gal;
N ァセチノレー a D ガラクトサミン [0030] [化 12] N Acetinore a D Galactosamine [0030] [Chemical 12]
N-Acety[-a-D-galactosamine
Figure imgf000056_0001
は、 GalNAc ;
N-Acety [-aD-galactosamine
Figure imgf000056_0001
The GalNAc;
D マンノ  D Manno
[0031] [化 13]  [0031] [Chemical 13]
α-D-Mannose  α-D-Mannose
Figure imgf000056_0002
Figure imgf000056_0002
p-D-Glucose
Figure imgf000056_0003
は、 Glc ;
pD-Glucose
Figure imgf000056_0003
Glc;
N ァセチノレー β D ダルコサミン N acetyleno β D darcosamine
[0033] [化 15] [0033] [Chemical 15]
N-Acetvl-p-D-glucosamine
Figure imgf000056_0004
は、 GlcNAc ;
N-Acetvl-pD-glucosamine
Figure imgf000056_0004
GlcNAc;
: Lーフコース  : L course
[0034] [化 16]
Figure imgf000057_0001
は、 Fuc ;
[0034] [Chemical 16]
Figure imgf000057_0001
Fuc;
a—N ァセチルノイラミン酸  a—N acetylneuraminic acid
[化 17]  [Chemical 17]
α-Ν-Acet l neuraminic acid  α-Ν-Acet l neuraminic acid
Figure imgf000057_0002
Figure imgf000057_0002
は、 Neu5Ac;  Is Neu5Ac;
セラミド  Ceramide
[0036] [化 18] [0036] [Chemical 18]
Ceramide  Ceramide
Figure imgf000057_0003
Figure imgf000057_0003
は、 Cer ;  Cer;
Lーセリン  L-Serine
CH (OH) CH (COOH) NH  CH (OH) CH (COOH) NH
2 2  twenty two
は、 Serにより表す。なお、 Cerは通常脂質に分類されるが、本明細書では、糖鎖を 構成する糖の一種の定義にも入ることから特に言及しない限り、糖として扱う。また、 Serは通常アミノ酸に分類される力 本明細書では、糖鎖を構成する糖の一種の定 義にも入ることから特に言及しない限り、糖として扱う。環状の 2つのァノマーは、 ひお よび j8により表す。表示上の理由により、 aまたは bと表すことがある。従って、本明細 書において、 αと a、 j8と bは、ァノマー表記については交換可能に使用される。  Is represented by Ser. Cer is usually classified as a lipid, but in the present specification, it is treated as a saccharide unless otherwise specified because it also falls within the definition of a kind of saccharide constituting a glycan. In addition, Ser is usually classified as an amino acid. In this specification, since it also falls within the definition of a kind of sugar constituting a sugar chain, it is treated as a sugar unless otherwise mentioned. The two cyclic anomers are denoted by ひ and j8. It may be expressed as a or b for display reasons. Therefore, in the present specification, α and a, j8 and b are used interchangeably for the anomeric notation.
[0037] 本明細書において、ガラクトースとは、任意の異性体を指すが、代表的には 13 D ガラクトースであり、特に言及しないときには、 j8— D—ガラクトースを指すものとし て使用される。 [0037] As used herein, galactose refers to any isomer, but typically 13 D It is galactose and is used to refer to j8-D-galactose unless otherwise stated.
[0038] 本明細書において、ァセチルガラタトサミンとは、任意の異性体を指すが、代表的 には N ァセチルー a—D ガラクトサミンであり、特に言及しないときには、 N ァ セチルー a—D ガラクトサミンを指すものとして使用される。  [0038] In this specification, acetylylgalatatosamine refers to any isomer, but is typically N-acetylyl-a-D galactosamine, and unless otherwise specified, N-acetylyl-a-D galactosamine. Used as a pointer.
[0039] 本明細書において、マンノースとは、任意の異性体を指すが、代表的には a - D - マンノースであり、特に言及しないときには、 ex D—マンノースを指すものとして使 用される。 In the present specification, mannose refers to any isomer, but is typically a-D-mannose, and is used to refer to ex D-mannose unless otherwise specified.
[0040] 本明細書において、グルコースとは、任意の異性体を指すが、代表的には j8— D  [0040] In the present specification, glucose refers to any isomer, typically j8-D.
グルコースであり、特に言及しないときには、 13 D—グルコースを指すものとして 使用される。  Glucose, unless otherwise mentioned, is used to refer to 13 D-glucose.
[0041] 本明細書において、ァセチルダルコサミンとは、任意の異性体を指すが、代表的に は N ァセチノレー β D ダルコサミンであり、特に言及しないときには、 Ν ァセチ ルー β—D—ダルコサミンを指すものとして使用される。  [0041] As used herein, acetylyldarcosamine refers to any isomer, but is typically N-acetylenic β D darcosamine, and unless otherwise specified, refers to ァ acetylene β-D-darcosamine. Used as a thing.
[0042] 本明細書において、フコースとは、任意の異性体を指すが、代表的には a Lーフ コースであり、特に言及しないときには、 α Lーフコースを指すものとして使用され る。 In the present specification, fucose refers to any isomer, but is typically a L-fucose, and is used to refer to α L-fucose unless otherwise specified.
[0043] 本明細書において、ァセチルノイラミン酸とは、任意の異性体を指すが、代表的に は α—Ν ァセチルノイラミン酸であり、特に言及しないときには α—Ν ァセチルノ イラミン酸を指すものとして使用される。  [0043] In the present specification, acetyl-neuraminic acid refers to any isomer, but is typically α-Ν acetylneuraminic acid, and α-Ν-acetylenuraminic acid is referred to unless otherwise specified. Used as a pointer.
[0044] 本明細書において、セリンとは、任意の異性体を指すが、代表的には Lーセリンで あり、特に言及しないときには L セリンを指すものとして使用される。  [0044] In this specification, serine refers to any isomer, but is typically L-serine, and is used to refer to L-serine unless otherwise specified.
[0045] 本明細書にぉ 、て、糖の表示記号、呼称、略称 (Glcなど)などは、単糖を表すとき と、糖鎖中で使用されるときとは、異なることに留意する。糖鎖中、単位糖は、結合先 の別の単位糖との間に脱水縮合があるので、相方力も水素または水酸基を除いた形 で存在することになる。従って、これらの糖の略号は、単糖を表すときに使用されると きは、すべての水酸基が存在するが、糖鎖中で使用されるときは、水酸基が結合先 の糖の水酸基とが脱水縮合されて酸素のみが残存した状態を示していることが理解 される。 [0045] In the present specification, it should be noted that the symbol, designation, abbreviation (Glc, etc.), etc. of sugars are different from those used when representing a monosaccharide and when used in a sugar chain. In the sugar chain, the unit sugar has a dehydration condensation with another unit sugar to which it is bonded, so that the mutual force also exists in a form excluding hydrogen or hydroxyl group. Therefore, when these abbreviations for sugars are used to represent monosaccharides, all hydroxyl groups are present, but when used in a sugar chain, the hydroxyl groups are bound to the hydroxyl groups of the sugars to which they are attached. It is understood that only oxygen remains after dehydration condensation Is done.
[0046] 糖が、アルブミンと共有結合されるときには、糖の還元末端がァミノ化され、そのアミ ン基を介してアルブミンなどの他の成分に結合することができる力 その場合は還元 末端の水酸基がァミン基に置換されたものを指すことに留意する。  [0046] When a sugar is covalently bonded to albumin, the reducing end of the sugar is aminated, and the ability to bind to other components such as albumin via the amino group. In that case, the reducing end hydroxyl group Note that refers to those substituted with amine groups.
[0047] 単糖は一般に、グリコシド結合により結合されて二糖および多糖を形成する。環の 平面に関する結合の向きは、 αおよび j8により示す。 2つの炭素の間の結合を形成 する特定の炭素原子も記載する。  [0047] Monosaccharides are generally joined by glycosidic bonds to form disaccharides and polysaccharides. The direction of the bond with respect to the plane of the ring is indicated by α and j8. Also described are specific carbon atoms that form a bond between two carbons.
[0048] 本明細書において糖鎖は、  [0048] In the present specification, the sugar chain is
[0049] [化 19] 単糖 ァノマ一 結口'様 A 単糖 により表される。従って、例えば、ガラクトースの C—1とグルコースの C— 4との間の e グリコシド結合は、 Gal |8 1, 4Glcにより表される。従って、例えば、シァリルルイス X( SLX)は、 Neu5Ac a 2, 3Gal β 1, 4 (Fuc α 1, 3) GlcNAcと表される。 N-ァセチ ルラクトサミン(G4GN)は、 Gal jS 1, 4GlcNAcと表される。 α 1-6マンノビオース(A6 )は、 Man a 1, 6Manと表される。 [0049] [Chemical Formula 19] A monosaccharide is represented by an anomaly-like A monosaccharide. Thus, for example, the e-glycosidic bond between C-1 in galactose and C-4 in glucose is represented by Gal | 8 1,4Glc. Thus, for example, Siaryl Lewis X (SLX) is represented as Neu5Ac a 2,3Gal β 1,4 (Fuc α 1,3) GlcNAc. N-acetyllactosamine (G4GN) is represented as Gal jS 1, 4GlcNAc. α 1-6 Mannobiose (A6) is expressed as Man a 1, 6Man.
[0050] 糖鎖の分岐は、括弧により表し、結合する単位糖のすぐ左に配置して表記する。例 えば、  [0050] Branches of sugar chains are represented by parentheses, and are arranged immediately to the left of the unit sugar to be bound. For example,
[0051] [化 20] 単糖 ァノマー 結□■様:! £ 単糖 と表され、括弧の中は、  [0051] [Chemical Formula 20] Monosaccharide Anomer £ is expressed as a simple sugar,
[化 21] 単糖 ァノマー 結 ι=様 A と表記される。従って、例えば、ガラクトースの C 1とグルコースの C 4との間が |8 グリコシド結合し、さらにこのグルコースの C— 3がフコースの C—1と αグリコシド結合 している場合、 Gal jS 1, 4 (Fuc α 1, 3) Glcと表される。単糖は、(潜在)カルボ-ル 原子団になるだけ小さい番号を付けることを基本にして表される。有機化学命名法の 一般基準では (潜在)カルボ-ル原子団より優位な原子団が分子中に導入されたとき でも、通常上記の番号付けで表される。 [Chemical Formula 21] Monosaccharide anomeric ι = Like A Thus, for example, if a galactose C 1 and a glucose C 4 have a | 8 glycosidic bond, and the glucose C-3 has an α-glycoside bond with a fucose C-1 then Gal jS 1, 4 It is expressed as (Fuc α 1, 3) Glc. Monosaccharides are represented on the basis of the lowest possible number of (latent) carbo groups. Of organic chemistry nomenclature In general standards, even when a group superior to a (latent) carbo group is introduced into a molecule, it is usually represented by the above numbering.
[0053] [化 22]  [0053] [Chemical 22]
Figure imgf000060_0001
Figure imgf000060_0001
[0054] [化 23]  [0054] [Chemical 23]
Figure imgf000060_0002
Figure imgf000060_0002
[0055] 本明細書において使用される糖鎖としては、例えば、シァリルルイス X、 N—ァセチ ルラクトサミン、 α 1—6マンノビオースならびにそれらの 2つ以上の組み合わせ力もな る群より選択される糖鎖が挙げられるが、これらに限定されない。 2つ以上の組み合 わせが使用可能な理由としては、理論に束縛されないが、上記糖鎖の各々が目的の 送達部位の組織または細胞に局在するレクチンに対して特異性を有しており、混在 してもその特異性を発揮すると考えられるからである。  [0055] Examples of the sugar chain used in the present specification include sugar chains selected from the group having sialyl Lewis X, N-acetyllactosamine, α 1-6 mannobiose, and combinations of two or more thereof. However, it is not limited to these. The reason why two or more combinations can be used is not limited by theory, but each of the sugar chains has specificity for a lectin localized in the tissue or cell of the intended delivery site. This is because even if they are mixed, it is thought that their uniqueness will be exhibited.
[0056] (リボソーム)  [0056] (Ribosome)
本明細書において「リボソーム」とは、通常、膜状に集合した脂質層および内部の 水層から構成される閉鎖小胞を意味する。代表的に使用されるリン脂質のほか、コレ ステロール、糖脂質などを組み込ませることも可能である。リボソームは内部に水を含 んだ閉鎖小胞であるため、水溶性の薬剤などを小胞内に保持させることも可能である 。したがって、このようなリボソームによって、細胞膜を通過しえない薬物や遺伝子な どを細胞内に送達するのに使われる。また、生体適合性も良いので DDS用のナノ粒 子性キャリアー材料としての期待が大きい。本発明において、リボソームは、修飾基 を付するために、エステル結合を付与する官能基を有する構成単位 (例えば、糖脂 質、ガンダリオシド、ホスファチジルグリセロールなど)またはペプチド結合を付与する 官能基を有する構成単位 (例えば、ホスファチジルエタノールァミン)を有し得る。 In the present specification, the “ribosome” usually means a closed vesicle composed of a lipid layer assembled in a film form and an inner aqueous layer. In addition to phospholipids typically used, it is possible to incorporate cholesterol, glycolipids, and the like. Since ribosomes are closed vesicles containing water inside, it is possible to retain water-soluble drugs and the like in the vesicles. Therefore, these ribosomes are used to deliver drugs and genes that cannot pass through the cell membrane into the cell. In addition, its biocompatibility is good, so it is highly expected as a nanoparticulate carrier material for DDS. In the present invention, the ribosome imparts a structural unit having a functional group that imparts an ester bond (for example, a glycolipid, gandioside, phosphatidylglycerol, etc.) or a peptide bond in order to attach a modifying group. It may have a structural unit having a functional group (for example, phosphatidylethanolamine).
[0057] リボソームの調製は、当該分野において公知の任意の手法により製造することがで きる。例えば、その中でもコール酸透析法による方法が挙げられる。コール酸透析法 では、 a)脂質と界面活性剤の混合ミセルの調製、および b)混合ミセルの透析により 製造を実施する。次に本発明の糖鎖リボソームにおいて好ましい実施形態では、リン カーとしてタンパク質を使用することが好ましぐタンパク質に糖鎖が結合した糖タン パク質のリボソームへのカップリングは、以下の 2段階反応によって行うことができる。 a)リボソーム膜上のガンダリオシド部分の過ヨウ素酸酸化、および b)還元的アミノィ匕 反応による酸化リボソームへの糖タンパク質のカップリングである。その反応フローの 一例を図 31に示す。このような手法によって望ましい糖鎖を含む糖タンパク質をリポ ノームに結合することができ、所望の糖鎖を有する多種多様な糖タンパク質'リポソ一 ムコンジュゲートを得ることができる。リボソームの純度や安定性を見るために粒子径 サイズ分布を調べることが非常に重要である。その方法として、ゲル濾過クロマト法( GPC)および走査型電顕 (SEM)や動的光散乱法 (DLS)などを使うことができる。ジ パルミトイルホスファチジルコリン、コレステロール、ジセチルホスフェート、ガンダリオ シドのモル比 35 :45: 5: 15のタイプのリボソームを製造することができる。なお、こ のリボソームは 4°Cで数ケ月保存しても安定である。リボソームの in vivoでの安定性 は、マウスを使って調べることができる。リボソームをマウスに静注し、 3時間後に採血 して血清を調製し、孔径 0. 03 mの膜を用いて限外濾過を行いリボソームを精製し 回収する。その SEM観察の結果、このリボソームの形態は in vivoでの 3時間処理' 回収前後にお 、ても変化がな 、ことを確認することができる。 [0057] Ribosome can be prepared by any method known in the art. For example, among them, a method using a cholic acid dialysis method is exemplified. In the cholic acid dialysis method, production is carried out by a) preparation of mixed micelles of lipid and surfactant, and b) dialysis of mixed micelles. Next, in a preferred embodiment of the sugar chain ribosome of the present invention, the coupling of a glycoprotein having a sugar chain bound to a protein for which it is preferable to use a protein as a linker to the ribosome is the following two-step reaction. Can be done by. a) Periodate oxidation of the gandioside moiety on the ribosome membrane, and b) Coupling of the glycoprotein to the oxidized ribosome by a reductive amino acid reaction. An example of the reaction flow is shown in Fig. 31. By such a technique, a glycoprotein containing a desired sugar chain can be bound to a liposome, and a wide variety of glycoprotein 'liposome conjugates having the desired sugar chain can be obtained. It is very important to examine the particle size distribution to see the purity and stability of ribosomes. Examples of such methods include gel filtration chromatography (GPC), scanning electron microscopy (SEM), and dynamic light scattering (DLS). Ribosomes of the molar ratio 35: 45: 5: 15 of dipalmitoyl phosphatidylcholine, cholesterol, dicetyl phosphate, gandioside can be produced. This ribosome is stable even when stored at 4 ° C for several months. The in vivo stability of ribosomes can be examined using mice. The ribosome is intravenously injected into the mouse, blood is collected after 3 hours, serum is prepared, and the ribosome is purified and collected by ultrafiltration using a membrane with a pore size of 0.03 m. As a result of the SEM observation, it can be confirmed that the ribosome morphology does not change even before and after the recovery for 3 hours in vivo.
[0058] 本発明の糖鎖修飾リボソームを構成する脂質としては、例えば、ホスファチジルコリ ン類、ホスファチジルエタノールアミン類、ホスファチジン酸類、長鎖アルキルリン酸 塩類、糖脂質類 (ガンダリオシド類など)、ホスファチジルグリセロール類、スフインゴミ エリン類、コレステロール類等が挙げられる。 [0058] Lipids constituting the sugar chain-modified ribosome of the present invention include, for example, phosphatidylcholines, phosphatidylethanolamines, phosphatidic acids, long-chain alkyl phosphates, glycolipids (gandariosides, etc.), phosphatidylglycerols. , Sphingomyelins, cholesterols and the like.
[0059] ホスファチジルコリン類としては、ジミリストイルホスファチジルコリン、ジパルミトイル ホスファチジルコリン、ジステアロイルホスファチジルコリン等が挙げられる。  [0059] Examples of phosphatidylcholines include dimyristoyl phosphatidylcholine, dipalmitoyl phosphatidylcholine, distearoyl phosphatidylcholine, and the like.
[0060] ホスファチジルエタノールアミン類としては、ジミリストイルホスファチジルエタノール ァミン、ジパルミトイルホスファチジルエタノールァミン、ジステアロイルホスファチジル エタノールァミン等が挙げられる。 [0060] Examples of phosphatidylethanolamines include dimyristoyl phosphatidylethanol. And amine, dipalmitoylphosphatidylethanolamine, distearoylphosphatidylethanolamine and the like.
[0061] ホスファチジン酸類としては、ジミリストイルホスファチジン酸、ジパルミトイルホスファ チジン酸、ジステアロイルホスファチジン酸が挙げられる。長鎖アルキルリン酸塩類と してはジセチルホスフェート等が挙げられる。  [0061] Examples of phosphatidic acids include dimyristoyl phosphatidic acid, dipalmitoyl phosphatidic acid, and distearoyl phosphatidic acid. Examples of long-chain alkyl phosphates include dicetyl phosphate.
[0062] 糖脂質類としては、ガラクトシルセラミド、ダルコシルセラミド、ラタトシルセラミド、ホス フナチド、グロボシド、ガンダリオシド類等が挙げられる。ガンダリオシド類としては、ガ ングリオシド GMl (Gal j8 1, 3GalNAC j8 1, 4 (NeuA a 2, 3) Gal j8 1, 4GlC j8 1, 1 ,Cer)、ガンダリオシド GDla、ガンダリオシド GTlb等が挙げられる。 [0062] Examples of the glycolipids include galactosylceramide, darcosylceramide, latatosylceramide, phosphatide, globoside, and gandiosides. Gandriosides include ganglioside GMl (Gal j8 1, 3GalNA C j 8 1, 4 (NeuA a 2, 3) Gal j8 1, 4Gl C j 8 1, 1, Cer), gandarioside GDla, gandarioside GTlb, etc. It is done.
[0063] ホスファチジルグリセロール類としては、ジミリストイルホスファチジルグリセロール、 ジパルミトイルホスファチジルグリセロール、ジステアロイルホスファチジルグリセロー ル等が好ましい。  [0063] As the phosphatidylglycerols, dimyristoyl phosphatidylglycerol, dipalmitoyl phosphatidylglycerol, distearoyl phosphatidylglycerol and the like are preferable.
[0064] このうち、ホスファチジン酸類、長鎖アルキルリン酸塩類、糖脂質類、およびコレステ ロール類はリボソームの安定性を上昇させる効果を有するので、構成脂質として添加 するのが望ましい。例えば、本発明のリボソームを構成する脂質として、ホスファチジ ルコリン類(モル比 0〜70%)、ホスファチジルエタノールアミン類(モル比 0〜30%) 、ホスファチジン酸類、および長鎖アルキルリン酸塩力 なる群力 選択される 1種以 上の脂質 (モル比 0〜30%)、糖脂質類、ホスファチジルグリセロール類およびスフィ ンゴミエリン類力もなる群力も選択される 1種以上の脂質 (モル比 0〜40%)、ならび にコレステロール類 (モル比 0〜70%)を含むものが挙げられる。ガンダリオシド、糖 脂質またはホスファチジルグリセロールを含むことが好まし 、。アルブミンのようなリン カーの結合が容易になるからである。  [0064] Of these, phosphatidic acids, long-chain alkyl phosphates, glycolipids, and cholesterol have the effect of increasing the stability of ribosomes, so it is desirable to add them as constituent lipids. For example, as the lipid constituting the ribosome of the present invention, phosphatidylcholines (molar ratio 0 to 70%), phosphatidylethanolamines (molar ratio 0 to 30%), phosphatidic acids, and long-chain alkyl phosphate groups Power One or more lipids selected (molar ratio 0-30%), glycolipids, phosphatidylglycerols and sphingomyelins also selected group power One or more lipids (molar ratio 0-40%) And those containing cholesterol (molar ratio 0 to 70%). Preferably, containing gandarioside, glycolipid or phosphatidylglycerol. This is because the binding of a linker such as albumin becomes easy.
[0065] 好ま 、実施形態にぉ 、て、本発明におけるリボソームは、ガンダリオシド、糖脂質 またはホスファチジルグリセロールを含ませてそれにペプチドなどのリンカ一を結合さ せ、糖鎖を結合させることが可能である。  [0065] Preferably, according to the embodiment, the ribosome according to the present invention contains gandarioside, glycolipid or phosphatidylglycerol, and can be linked with a linker such as a peptide to bind a sugar chain. .
[0066] リボソームを作製するときにガンダリオシド、糖脂質またはホスファチジルグリセロー ルを合わせることによって、この糖脂質中に含まれる糖鎖を構成成分として含む、本 発明の糖鎖修飾リボソームを作製することができる。 [0067] 別の好まし 、実施形態では、本発明におけるリボソームは、ホスファチジルエタノー ルァミンを含むことが好まし 、。ホスファチジルエタノールアミンを含むことによって、 親水性付与基(トリス (ヒドロキシアルキル)アミノアルカンなど)との結合が容易になる 力 である。 [0066] When the ribosome is produced, the glycan-modified ribosome of the present invention containing the sugar chain contained in the glycolipid as a constituent component can be produced by combining gandarioside, glycolipid or phosphatidylglycerol. it can. [0067] In another preferred embodiment, it is preferred that the ribosome in the present invention comprises phosphatidylethanolamine. By including phosphatidylethanolamine, it is easy to bond with a hydrophilic group (such as tris (hydroxyalkyl) aminoalkane).
[0068] (糖鎖修飾リボソーム)  [0068] (Sugar chain-modified ribosome)
1つの局面において、本発明は、糖鎖修飾リボソームを提供する。従来、生体内で は所望の標的細胞または組織に十分にターゲティングするものは提供されてこなか つた。本発明は、生体内の所望の標的細胞または組織に指向性有する糖鎖修飾リポ ソームを提供することにより、従来 DDS材料では不可能であったターゲテイングが可 能になるという効果を有する。具体的な実施形態では、このような糖鎖修飾リボソーム は、シァリルルイス X、 N ァセチルラクトサミン、 α 1—6マンノビオースおよびそれら の組み合わせ力 なる群より選択される少なくとも 1つの構造を有する糖鎖が結合さ れている。  In one aspect, the present invention provides a sugar chain-modified ribosome. Conventionally, in vivo, it has not been provided that sufficiently targets a desired target cell or tissue. The present invention has the effect of enabling targeting that was impossible with conventional DDS materials by providing sugar chain-modified liposomes that are directed to desired target cells or tissues in the living body. In a specific embodiment, such a sugar chain-modified ribosome has a sugar chain having at least one structure selected from the group consisting of sialyl Lewis X, N-acetyllactosamine, α 1-6 mannobiose, and a combination force thereof. Are connected.
[0069] 本明細書にぉ ヽて「糖鎖修飾リボソーム」とは、糖鎖とリボソームとを含む物質を ヽ い、好ましくは、糖鎖が直接または間接的に結合することによって修飾されたリポソ一 ムをいう。糖鎖がリボソームに結合した形態を具体的に表すと、  [0069] As used herein, the term "sugar chain-modified ribosome" refers to a substance containing a sugar chain and a ribosome, and preferably a liposome modified by direct or indirect binding of sugar chains. One hour. Specifically describing the form of sugar chains bound to ribosomes,
構造 I X - R1 - R2 - R3 Structure IX-R 1 -R 2 -R 3
X:前記リボソームに含まれる前記リンカータンパク質と CH— ΝΗ結合可能な官  X: The linker protein contained in the ribosome can bind to CH—ΝΗ
2  2
能基 aを含む構成単位から、該官能基 aがとれた基  A group in which the functional group a is removed from the structural unit containing the functional group a
R1 :リンカ一タンパク質基 R 1 : Linker protein group
R2:リンカ一タンパク質架橋基 R 2 : Linker-protein cross-linking group
R3R 3
であり、 Xと R1とは CH— NH結合し、 R1と R2とはペプチド結合し、 R2と R3とはぺプチ X and R 1 are CH—NH bonded, R 1 and R 2 are peptide bonded, and R 2 and R 3 are peptide
2  2
ド結合している。  Are connected.
従って、より詳細には、構造 Iは、  Thus, in more detail, structure I is
X-CH NH— R1— NH— C ( = 0)— R2— C ( = 0)— NH— R3 X-CH NH— R 1 — NH— C (= 0) — R 2 — C (= 0) — NH— R 3
2  2
t 、う構造式で表すことができる。  t can be represented by a structural formula.
[0070] 本発明の糖鎖修飾リボソームは、以下の構造により親水性ィ匕されている: 構造 II Y - R4 - R5 [0070] The sugar chain-modified ribosome of the present invention is hydrophilicized by the following structure: Structure II Y-R 4 -R 5
Y:前記リボソームに含まれる親水性ィ匕合物架橋基とペプチド結合可能な官能基 bを含む構成単位力ゝら該官能基 bがとれた基  Y: a group in which the functional group b is removed from the structural unit force including the hydrophilic compound cross-linking group contained in the ribosome and the functional group b capable of peptide bonding
R4:親水性化合物架橋基 R 4 : hydrophilic compound crosslinking group
R5:親水性化合物基 R 5 : hydrophilic compound group
Yと R4はペプチド結合し、 R4と R5はペプチド結合して 、る。 Y and R 4 are peptide bonds, and R 4 and R 5 are peptide bonds.
従って、より詳細には、構造 IIは、  Thus, in more detail, structure II is
Y - NH - C ( = 0) - R4 - C ( = 0) -NH-R5 Y-NH-C (= 0)-R 4 -C (= 0) -NH-R 5
t 、う構造式で表すことができる。  t can be represented by a structural formula.
[0071] 1つの実施形態では、本発明のリボソームは、上述の構造 Iおよび構造 IIを有し、さ らに、蛍光性である。 [0071] In one embodiment, the ribosome of the present invention has the above-described Structure I and Structure II, and is fluorescent.
[0072] 本発明において、蛍光性は、本発明の糖鎖修飾リボソームの構成要素の少なくとも 1つが蛍光性を有すること、または本発明の糖鎖修飾リボソームが新たに蛍光性を有 する要素(例えば、蛍光色素)をさらに有することによって付与される。  [0072] In the present invention, the fluorescent property is that at least one of the components of the sugar chain-modified ribosome of the present invention has fluorescence, or the sugar chain-modified ribosome of the present invention has a new fluorescent property (for example, , A fluorescent dye).
[0073] 蛍光性を有する要素としては、例えば、蛍光色素、蛍光タンパク質 (例えば、 GFP、 CFP、 YFPなど)、発光酵素(例えば、ルシフ ラーゼなど)が挙げられるが、これらに 限定されない。蛍光色素としては、例えば、 cy5. 5 (例えば、  [0073] Examples of the fluorescent element include, but are not limited to, a fluorescent dye, a fluorescent protein (eg, GFP, CFP, YFP, etc.), and a luminescent enzyme (eg, luciferase, etc.). As the fluorescent dye, for example, cy5.5 (for example,
[0074] [化 24]  [0074] [Chemical 24]
<Cy5. 5> <Cy5. 5>
Figure imgf000064_0001
Figure imgf000064_0001
、 1, 1 '—ビス( ε —カルボキシペンチル)— 3, 3, 3' , 3 '—テトラメチル— 3Η—ベン ズインドジカルボシァニン一 5, 5' , 7, 7'—テトラスルホネート三カリウム塩一 Ν—ヒド ロキシスクシンイミドエステルなど)、 1, 1'-bis (ε-carboxypentyl) -3, 3, 3 ', 3'-tetramethyl-3Η-benzindodicarbocyanine 5,5', 7, 7'-tetrasulfonate Potassium salt Roxisuccinimide ester),
cy3 (例えば、 cy3 (for example,
[化 25] [Chemical 25]
<cy3>  <cy3>
Figure imgf000065_0001
Figure imgf000065_0001
、 1一( ε カルボキシペンチル) 1 'ーェチルー 3, 3, 3 ' , 3,ーテトラメチルインド カルボシァニン一 5, 5,一ジスルホネートカリウム塩一 Ν—ヒドロキシスクシンイミドエス テル(cy3)など)、 cy5、 cy7、 cy3B、 cy3. 5、 Alexa , 1 (ε carboxypentyl) 1'-ethyl 3, 3, 3 ', 3, -tetramethylindocarbocyanin 1,5,1 disulfonate potassium salt 1-hydroxysuccinimide ester (cy3) etc.), cy5, cy7, cy3B, cy3.5, Alexa
Fluor350、 Alexa Fluor488、 Alexa Fluor532、 Alexa Fluor 546, Alexa Fluor555、 Alexa Fluor 568 ^ Alexa Fluor 594 ^ Alexa Fluor633、 Alexa Fluor350, Alexa Fluor488, Alexa Fluor532, Alexa Fluor 546, Alexa Fluor555, Alexa Fluor 568 ^ Alexa Fluor 594 ^ Alexa Fluor633, Alexa
Fluor 647, Alexa Fluor680、 Alexa Fluor700、 Alexa Fluor750、 FITCな どが挙げられる力 これらに限定されない。 Forces including, but not limited to, Fluor 647, Alexa Fluor680, Alexa Fluor700, Alexa Fluor750, and FITC.
本明細書において使用する場合、リボソームと「適合性 (である)」とは、ある物質をリ ポソームに含めた場合、またはリボソームに結合させた場合に、リボソームの安定性 を損なわない、その物質の性質をいう。リボソームとの適合性は、例えば、ゼータ電位 、電気移動度、粒子径、脂質量、タンパク質量などを測定することによって判断され 得る。例えば、ゼータ電位により、リボソーム粒子の凝集性を判断することができる。 粒子径、粒度分布により、平均粒子径、最大域、最大域におけるリボソームの数など を分析し、その分析結果によりリボソームの均一性を確認することができる。タンパク 質量:脂質量:脂質あたりのタンパク質量の割合を測定することにより、リボソームが適 切な組成を有しているかどうかを確認することができる。 [0077] 本明細書において使用される糖鎖修飾リボソームは、目的の送達部位への送達の ために適切な密度で含まれ得る。 As used herein, “compatible” with a ribosome is a substance that does not impair the stability of the ribosome when the substance is included in or bound to the ribosome. The nature of Compatibility with ribosomes can be determined by measuring, for example, zeta potential, electromobility, particle size, lipid content, protein content, and the like. For example, the aggregation property of ribosome particles can be determined by the zeta potential. The average particle size, the maximum range, the number of ribosomes in the maximum range, etc. can be analyzed based on the particle size and size distribution, and the homogeneity of the ribosome can be confirmed based on the analysis results. Protein mass: Lipid content: By measuring the ratio of protein content per lipid, it is possible to confirm whether the ribosome has an appropriate composition. [0077] The sugar chain-modified ribosomes used herein can be included at a density suitable for delivery to the intended delivery site.
[0078] 本明細書において使用する場合、「修飾結合密度」とは、糖鎖修飾リボソームを作 製する際に使用される糖鎖の量であり、リボソームの脂質 lmgあたりに結合した糖鎖 の密度 (mg糖鎖 Zmg脂質)として表される。本発明の糖鎖修飾リボソームの結合密 度は、理論に束縛されることを望まないが、経験的に、調製するときに使用した糖鎖 の量は、リボソームに結合した糖鎖の密度にほぼ比例していることが分力つている。 従って、本明細書では、特に言及しない限り、調製時に使用した量によって結合密 度が確定される。インビト口において、例えば、 E—セレクチンを用いて間接的に決定 することができる。本発明の糖鎖修飾リボソームは、リボソームに結合される糖鎖の種 類と結合密度を選択することにより、目的の送達部位に対する指向性を制御すること ができる。以下、表 1にリボソーム番号、糖鎖の構造、および修飾結合密度を示す。  [0078] As used herein, "modified bond density" is the amount of sugar chain used in producing a sugar chain-modified ribosome, and is the number of sugar chains bound per mg of lipid in the ribosome. Expressed as density (mg sugar chain Zmg lipid). Although the binding density of the sugar chain-modified ribosome of the present invention is not desired to be bound by theory, empirically, the amount of sugar chain used in the preparation is almost equal to the density of sugar chains bound to the ribosome. Proportionalness is a component. Therefore, in this specification, unless otherwise stated, the binding density is determined by the amount used at the time of preparation. In the in vitro mouth, for example, it can be determined indirectly using E-selectin. The sugar chain-modified ribosome of the present invention can control the directivity to the target delivery site by selecting the type of sugar chain to be bound to the ribosome and the binding density. Table 1 below shows ribosome numbers, sugar chain structures, and modified bond densities.
[0079] [表 1] [0079] [Table 1]
(表 1 ) (table 1 )
Figure imgf000067_0001
Figure imgf000067_0001
上記の表に記載されるような本発明の好ましい糖鎖修飾リボソームは、以下の方法 によって製造され得る。具体的には、この方法は、(a)脂質を、メタノール Zクロロホ ルム溶液に懸濁して攪拌し、該攪拌した溶液を蒸発させ、沈殿物を真空乾燥させる ことにより脂質膜を得る工程;(b)該脂質膜を、懸濁緩衝液に懸濁し、超音波処理す る工程;(c)該超音波処理した溶液と蛍光標識溶液とを混合して、蛍光標識されたリ ポソームを提供する工程;(d)該リボソームをトリス(ヒドロキシアルキル)アミノアルカン により親水性ィ匕処理する工程;(e)該親水性ィ匕処理されたリボソームにリンカ一タンパ ク質を結合させて、リンカ一タンパク質結合リボソームを生成する工程;および (f)該リ ポソームに、上記表に記載される糖鎖を結合させて糖鎖修飾リボソームを生成するェ 程を包含する。 [0081] 好ましくは、この方法において、工程 (c)の蛍光標識溶液は、 1, 1 '—ビス( ε一力 ルボキシペンチル) 3, 3, 3 ' , 3,ーテトラメチルインドカルボシァニン 5, 5,ージ スルホネートカリウム塩,ジ一 Ν ヒドロキシスクシンイミドエステル(cy5. 5)を含み、 工程 (e)のリンカ一タンパク質は、ヒト血清アルブミンであり、工程 (f)において、糖鎖 とリボソームを、目的の送達部位への送達に適切な条件で結合させて糖鎖修飾リポ ソームを生成する。 The preferred sugar chain-modified ribosome of the present invention as described in the above table can be produced by the following method. Specifically, this method comprises the steps of: (a) suspending lipids in methanol Z chloroform solution and stirring, evaporating the stirred solution, and drying the precipitate in vacuum to obtain a lipid membrane; b) Suspending the lipid membrane in a suspension buffer and sonicating; (c) mixing the sonicated solution with a fluorescent labeling solution to provide fluorescently labeled liposomes Step (d) Hydrophilic treatment of the ribosome with tris (hydroxyalkyl) aminoalkane; (e) Linker protein is bound to the hydrophilic ribosome and linked to the linker protein. A step of producing a bound ribosome; and (f) a step of binding a sugar chain described in the above table to the liposome to produce a sugar chain-modified ribosome. [0081] Preferably, in this method, the fluorescent labeling solution in step (c) is 1, 1'-bis (ε-roxyruboxypentyl) 3, 3, 3 ', 3, -tetramethylindocarbocyanine 5, 5, -disulfonate potassium salt, di-hydroxy hydroxysuccinimide ester (cy5.5), the linker protein in step (e) is human serum albumin, and in step (f), the sugar chain and ribosome are Glycosylated liposomes are produced by conjugation under conditions suitable for delivery to the target delivery site.
[0082] リボソームとリンカ一、リンカ一と糖鎖とは、二官能性架橋基 (例えば、 3, 3 'ージチ オピス(スルホスクシ-ミジルプロピオネート) (DTSSP) )などを利用して結合されるこ とが好ましい。  [0082] The ribosome and the linker, and the linker and the sugar chain are linked using a bifunctional cross-linking group (for example, 3, 3′-dithiopis (sulfosuccinimidyl propionate) (DTSSP)). It is preferable.
[0083] 本発明の糖鎖修飾リボソームは、薬剤または遺伝子を封入または結合し得る。薬剤 としては、例えば、アルキルィ匕系抗癌剤、代謝拮抗剤、植物由来抗癌剤、抗癌性抗 生物質、生物学的応答調節剤(biological response modifiers: BRM) ·サイト力 イン類、白金錯体系抗癌剤、免疫療法剤、ホルモン系抗癌剤、モノクローナル抗体 等の腫瘍用薬剤、中枢神経用薬剤、末梢神経系,感覚器官用薬剤、呼吸器疾患治 療薬剤、循環器用薬剤、消化器官用薬剤、ホルモン系用薬剤、泌尿器'生殖器用薬 剤、ビタミン ·滋養強壮剤、代謝性医薬品、抗生物質 ·化学療法薬剤、検査用薬剤、 抗炎症剤、眼疾患薬剤、中枢神経系薬剤、自己免疫系薬剤、循環器系薬剤、糖尿 病、高脂血症のような生活習慣病薬剤、副腎皮質ホルモン、免疫抑制剤、抗菌薬、 抗ウィルス薬、血管新生抑制剤、サイト力イン、ケモカイン、抗サイト力イン抗体、抗ケ モカイン抗体、抗サイト力イン 'ケモカイン受容体抗体、 siRNA、 miRNA、 smRNA、 アンチセンスオリゴデォキシヌクレオチド(Oligodeoxynucleotide: ODN)または D NAのような遺伝子治療関連の核酸製剤、神経保護因子、抗体医薬、分子標的薬、 骨粗鬆症 ·骨代謝改善薬、神経ペプチド、生理活性ペプチド ·タンパク質が挙げられ る力 これらに限定されない。  [0083] The sugar chain-modified ribosome of the present invention can encapsulate or bind a drug or gene. Examples of the drugs include alkyl 匕 anticancer agents, antimetabolites, plant-derived anticancer agents, anticancer antibiotics, biological response modifiers (BRM), cytodynamics, platinum complex anticancer agents, Immunotherapeutic agents, hormone anticancer agents, tumor drugs such as monoclonal antibodies, central nervous system drugs, peripheral nervous system, sensory organ drugs, respiratory disease drugs, cardiovascular drugs, digestive organ drugs, hormone drugs , Urogenital drugs, vitamins, nourishing tonics, metabolic drugs, antibiotics, chemotherapeutic drugs, testing drugs, anti-inflammatory drugs, eye disease drugs, central nervous system drugs, autoimmune drugs, cardiovascular system Drugs, lifestyle-related diseases such as diabetes, hyperlipidemia, corticosteroids, immunosuppressants, antibacterial agents, antiviral agents, angiogenesis inhibitors, cytoforce-in, chemokines, anti-site-forced antibodies, Chemokine antibodies, anti-cytokinin receptors' chemokine receptor antibodies, siRNA, miRNA, smRNA, antisense oligodeoxynucleotide (ODN) or DNA therapy-related nucleic acid preparations such as DNA, neuroprotective factors, antibodies Drugs, molecular targeted drugs, osteoporosis / bone metabolism-improving drugs, neuropeptides, bioactive peptides / proteins, but not limited to these.
[0084] 本明細書において使用される場合、「リンカ一」とは、糖鎖とリボソーム表面との結合 を介在する分子である。本発明の糖鎖修飾リボソームにおいて、糖鎖はリンカ一を介 してリボソーム表面に結合してもよい。リンカ一は、当業者が適宜選択することができ るが、生体適合性であるものが好ましぐより好ましくは、薬学的に受容可能である。 本明細書において「リンカ一タンパク質」とは、リンカ一分子のうち、タンパク質、ぺプ チド、アミノ酸のポリマーをいう。本明細書において使用されるリンカ一タンパク質とし ては、例えば、生体由来タンパク質、好ましくは、ヒト由来タンパク質、より好ましくは、 ヒト由来血清タンパク質、さらにより好ましくは、血清アルブミンであり得る。特に、ヒト 血清アルブミンを使用する場合は、各組織に対する取り込みが多いことがマウスにつ[0084] As used herein, "linker" is a molecule that mediates the binding between a sugar chain and the ribosome surface. In the sugar chain-modified ribosome of the present invention, the sugar chain may be bound to the ribosome surface via a linker. The linker can be appropriately selected by those skilled in the art, but those that are biocompatible are preferred, and are preferably pharmaceutically acceptable. In the present specification, the “linker protein” refers to a protein, peptide, amino acid polymer of a linker molecule. The linker protein used in the present specification can be, for example, a biological protein, preferably a human-derived protein, more preferably a human-derived serum protein, and still more preferably serum albumin. In particular, when human serum albumin is used, mice have a high uptake in each tissue.
V、ての実験により確かめられて!/、る。 V, confirmed by previous experiments!
[0085] 本明細書にぉ 、て「リンカ一(タンパク質)基」とは、リンカ一(タンパク質)が別の基と 結合したときに付される名称である。リンカ一(タンパク質)基は場合に応じて一価ま たは二価のものを指す。例えば、哺乳動物由来タンパク質基、ヒト由来タンパク質基、 ヒト血清タンパク質基、血清アルブミン基が挙げられる。リンカ一(タンパク質)基は「ヒ ト」由来が好ましい。ヒト投与において適合性が高いと考えられる力もである。また、免 疫原性がな 、タンパク質が好まし!/、。  In the present specification, the “linker group (protein) group” is a name given when the linker group (protein) is bound to another group. The linker (protein) group is monovalent or divalent depending on the case. Examples thereof include a mammal-derived protein group, a human-derived protein group, a human serum protein group, and a serum albumin group. The linker (protein) group is preferably derived from “human”. It is also the power that is considered highly compatible in human administration. Also, protein is preferred because it is not immunogenic!
[0086] 本明細書にぉ 、て「架橋基」とは、橋をかけるように,鎖式高分子の分子間で化学 結合を形成させる基をいう。代表的には、脂質、タンパク質、ペプチド、糖鎖などの高 分子と他の分子 (例えば、脂質、タンパク質、ペプチド、糖鎖)との間に作用し、分子 内または分子間で、共有結合のな力つたところを結ぶ共有結合を形成させる基を 、う 。本明細書において架橋基は、架橋を目的とする標的によって変動し、例えば、アル デヒド類 (例えば、ダルタルアルデヒド)、カルポジイミド類、イミドエステル類など挙げ ることができるがそれらに限定されない。アミノ基含有物質を架橋する場合、アルデヒ ド含有基、例えば、ダルタルアルデヒドを用いることができる。  In the present specification, the “crosslinking group” refers to a group that forms a chemical bond between molecules of a chain polymer so as to form a bridge. Typically, it acts between high molecules such as lipids, proteins, peptides, and sugar chains and other molecules (e.g., lipids, proteins, peptides, sugar chains), and is covalently linked within or between molecules. A group that forms a covalent bond that connects strong forces. In the present specification, the crosslinking group varies depending on the target for crosslinking, and examples thereof include, but are not limited to, aldehydes (eg, dartal aldehyde), carpositimides, imide esters and the like. When the amino group-containing substance is crosslinked, an aldehyde-containing group such as dartal aldehyde can be used.
[0087] 本明細書において、「リンカ一タンパク質架橋基」とは、リボソームと糖鎖との間にべ プチド結合を形成させる基をいう。リンカ一タンパク質架橋基は、架橋を目的とする標 的によって変動し、例えば、ビススルホスクシンイミジルスべラート、ジスクシンィミジル グルタレート、ジチオビススクシンィミジルプロピオネート、ジスクシンイミジルスべラー ト、 3, 3,一ジチォビス(スルホスクシンィミジルプロピオネート)、エチレングリコールビ ススクシンイミジルスクシネート、エチレングリコールビススルホスクシンィミジルスクシ ネート等の 2価試薬などを使用することができる。本明細書において使用され得るリン カータンパク質架橋基としては、例えば、 3, 3 '—ジチオピス (スルホスクシンィミジル プロピオネート)基、ビススルホスクシンイミジルスべレート基、ジスクシンィミジルグル タレート基、ジチオビススクシンィミジルプロピオネート基、ジスクシンィミジルスベレー ト基、エチレングリコールビススクシンイミジルスクシネート基およびエチレングリコー ルビススルホスクシンィミジルスクシネート基などが挙げられ得る。 In this specification, “linker-protein cross-linking group” refers to a group that forms a peptide bond between a ribosome and a sugar chain. The linker protein cross-linking group varies depending on the target for cross-linking, such as bissulfosuccinimidyl suberate, disuccinimidyl glutarate, dithiobissuccinimidyl propionate, disuccinimidide. Divalent reagents such as Rusberart, 3, 3, 1 dithiobis (sulfosuccinimidyl propionate), ethylene glycol bissuccinimidyl succinate, ethylene glycol bissulfosuccinimidyl succinate Etc. can be used. Examples of linker protein crosslinking groups that can be used herein include 3, 3′-dithiopis (sulfosuccinimidyl). Propionate) group, bissulfosuccinimidyl suberate group, disuccinimidyl glutarate group, dithiobis succinimidyl propionate group, disuccinimidyl sulfate group, ethylene glycol bis succinimidyl group Mention may be made of a succinate group and an ethylene glycol bissulfosuccinimidyl succinate group.
[0088] 本明細書において使用される用語「タンパク質」、「ポリペプチド」、「オリゴペプチド」 および「ペプチド」は、本明細書において同じ意味で使用され、任意の長さのアミノ酸 のポリマーをいう。このポリマーは、直鎖であっても分岐していてもよぐ環状であって もよい。アミノ酸は、天然のものであっても非天然のものであってもよぐ改変されたァ ミノ酸であってもよい。この用語はまた、複数のポリペプチド鎖の複合体へとァセンブ ルされたものを包含し得る。この用語はまた、天然または人工的に改変されたァミノ 酸ポリマーも包含する。そのような改変としては、例えば、ジスルフイド結合形成、ダリ コシル化、脂質化、ァセチル化、リン酸ィ匕または任意の他の操作もしくは改変(例え ば、標識成分との結合体化)。この定義にはまた、例えば、アミノ酸の 1または 2以上 のアナログを含むポリペプチド (例えば、非天然のアミノ酸などを含む)、ペプチド様 化合物(例えば、ぺプトイド)および当該分野にお!、て公知の他の改変が包含される  [0088] As used herein, the terms "protein", "polypeptide", "oligopeptide" and "peptide" are used interchangeably herein and refer to a polymer of amino acids of any length. . The polymer may be linear or branched or cyclic. The amino acid may be a modified amino acid, which may be natural or non-natural. The term may also include those assembled into a complex of multiple polypeptide chains. The term also encompasses natural or artificially modified amino acid polymers. Such modifications include, for example, disulfide bond formation, daricosylation, lipidation, acetylation, phosphorylation, or any other manipulation or modification (eg, conjugation with a labeling component). This definition also includes, for example, polypeptides containing one or more analogs of amino acids (eg, including non-natural amino acids, etc.), peptidomimetic compounds (eg, peptoids), and the art! Other modifications are included
[0089] 本明細書では、特に言及するときは、「タンパク質」は、比較的大きな分子量を有す るアミノ酸のポリマーまたはその改変体を指し、「ペプチド」というときは、比較的小さな 分子量を有するアミノ酸のポリマーまたはその改変体を指すことがあることが理解され るべきである。そのような分子量としては、例えば、約 30kDa、好ましくは約 20kDa、 より好ましくは約 lOkDaなどを挙げることができるがそれらに限定されない。 [0089] As used herein, "protein" refers to a polymer of amino acids having a relatively large molecular weight or a variant thereof, and when referring to "peptide", it has a relatively small molecular weight. It should be understood that it may refer to a polymer of amino acids or variants thereof. Examples of such molecular weight include, but are not limited to, about 30 kDa, preferably about 20 kDa, more preferably about 10 kDa.
[0090] 本明細書中で使用される場合、「生体由来タンパク質」とは、生物に由来するタンパ ク質をいい、どの生物(例えば、任意の種類の多細胞生物(例えば、動物(例えば、 脊椎動物、無脊椎動物)、植物 (例えば、単子葉植物、双子葉植物など)など))由来 のタンパク質でもよい。好ましくは、脊椎動物(例えば、メタラウナギ類、ャッメゥナギ 類、軟骨魚類、硬骨魚類、両生類、爬虫類、鳥類、哺乳動物など)由来のタンパク質 、より好ましくは、哺乳動物 (例えば、単孔類、有袋類、貧歯類、皮翼類、翼手類、食 肉類、食虫類、長鼻類、奇蹄類、偶蹄類、管歯類、有鱗類、海牛類、クジラ目、霊長 類、齧歯類、ゥサギ目など)由来のタンパク質が用いられる。さらに好ましくは、霊長 類 (例えば、チンパンジー、二ホンザル、ヒト)由来のタンパク質が用いられる。最も好 ましくは投与を目的とする生体由来のタンパク質が用いられる。本明細書において、 生体由来タンパク質が別の物質と結合した状態を示す場合、生体由来タンパク質基 と称される。 [0090] As used herein, "biologically derived protein" refers to a protein derived from an organism, including any organism (eg, any type of multicellular organism (eg, animal (eg, Vertebrates, invertebrates), plants (eg monocotyledonous plants, dicotyledonous plants, etc.))). Preferably, the protein is derived from a vertebrate (for example, metaraunagi, shark eel, cartilaginous fish, teleost, amphibian, reptile, bird, mammal, etc.), more preferably a mammal (for example, a single hole, marsupial) , Rodents, skin wings, wings, carnivores, carnivores, long noses, odd hoofs, even hoofs, rodents, scales, sea cattle, cetaceans, primates , Rodents, maggots, etc.) are used. More preferably, a protein derived from a primate (eg, chimpanzee, second monkey, human) is used. Most preferably, a biological protein for administration is used. In this specification, when a biological protein shows a state of binding to another substance, it is called a biological protein group.
[0091] 本明細書で使用される場合「ヒト由来血清タンパク質」は、ヒトの血液が自然に凝固 したときに残る液体部分に含まれるタンパク質をいう。本明細書において、ヒト由来タ ンパク質が別の物質と結合した状態を示す場合、ヒト由来タンパク質基と称される。  [0091] As used herein, "human-derived serum protein" refers to a protein contained in a liquid portion that remains when human blood naturally coagulates. In this specification, when a human-derived protein shows a state of being bound to another substance, it is referred to as a human-derived protein group.
[0092] 本明細書で使用される場合、「血清アルブミン」は、血清中に含まれるアルブミンを いう。本明細書において、血清アルブミンが別の物質と結合した状態を示す場合、血 清アルブミン基と称される。  [0092] As used herein, "serum albumin" refers to albumin contained in serum. In the present specification, when serum albumin shows a state of being bound to another substance, it is referred to as serum albumin group.
[0093] 本発明における糖鎖修飾リボソームは、リボソーム膜またはリンカ一の少なくとも一 方が親水性化合物、好ましくは、トリス (ヒドロキシアルキル)アミノアルカンを結合させ ることにより親水性ィ匕されて 、てもよ 、。  [0093] In the sugar chain-modified ribosome according to the present invention, at least one of the ribosome membrane and the linker is hydrophilicized by binding a hydrophilic compound, preferably, a tris (hydroxyalkyl) aminoalkane. Moyo.
[0094] 本明細書中で使用される場合、「親水性化」は、リボソーム表面に親水性ィ匕合物を 結合させることをいう。親水性ィ匕に用いる化合物としては、低分子の親水性化合物、 好ましくは少なくとも 1つの OH基を有する低分子の親水性化合物、さらに好ましくは 、少なくとも 2つの OH基を有する低分子の親水性化合物が挙げられる。また、さらに 少なくとも 1つのアミノ基を有する低分子の親水性ィ匕合物、すなわち分子中に少なく とも 1つの OH基と少なくとも 1つのアミノ基を有する親水性化合物が挙げられる。親 水性ィ匕合物は、低分子なので、糖鎖に対する立体障害となりに《標的細胞膜面上 のレクチンによる糖鎖分子認識反応の進行を妨げることはない。また、親水性化合物 には、本発明の糖鎖修飾リボソームにおいて、レクチン等の特定の標的を指向する ために用いられるレクチンが結合し得る糖鎖は含まれない。このような親水性ィ匕合物 として、例えば、トリス (ヒドロキシメチル)ァミノメタンなどを含むトリス (ヒドロキシアルキ ル)アミノアルカン等のァミノアルコール類等が挙げられ、さらに具体的には、トリス(ヒ ドロキシメチノレ)アミノエタン、トリス(ヒドロキシェチル)アミノエタン、トリス(ヒドロキシ プロピル)アミノエタン、トリス(ヒドロキシメチル)ァミノメタン、トリス(ヒドロキシェチル) ァミノメタン、トリス(ヒドロキシプロピル)ァミノメタン、トリス(ヒドロキシメチル)ァミノプロ パン、トリス(ヒドロキシェチル)ァミノプロパン、トリス(ヒドロキシプロピル)ァミノプロパ ン等が挙げられる。 [0094] As used herein, "hydrophilization" refers to binding of a hydrophilic compound to the ribosome surface. The compound used for the hydrophilic property is a low molecular weight hydrophilic compound, preferably a low molecular weight hydrophilic compound having at least one OH group, more preferably a low molecular weight hydrophilic compound having at least two OH groups. Is mentioned. Further, a low molecular weight hydrophilic compound having at least one amino group, that is, a hydrophilic compound having at least one OH group and at least one amino group in the molecule. Since the hydrophilic compound is a small molecule, it does not hinder the progress of the sugar chain molecule recognition reaction by the lectin on the surface of the target cell membrane because it becomes a steric hindrance to the sugar chain. In addition, the hydrophilic compound does not include a sugar chain to which a lectin used for directing a specific target such as a lectin can be bound in the sugar chain-modified ribosome of the present invention. Examples of such hydrophilic compounds include amino alcohols such as tris (hydroxyalkyl) aminoalkane including tris (hydroxymethyl) aminomethane, and more specifically, tris (hydroxy). Droxymethinole) aminoethane, tris (hydroxyethyl) aminoethane, tris (hydroxypropyl) aminoethane, tris (hydroxymethyl) aminomethane, tris (hydroxyethyl) Examples include aminomethane, tris (hydroxypropyl) aminomethane, tris (hydroxymethyl) aminopropan, tris (hydroxyethyl) aminopropane, and tris (hydroxypropyl) aminopropan.
本明細書にぉ 、て「アルキル」とは、メタン、ェタン、プロパンのような脂肪族炭化水 素 (本明細書にぉ 、て「アルカン」 t 、う)から水素原子が一つ失われて生ずる 1価の 基をいい、一般に C H 一で表される(ここで、 nは正の整数である)。アルキルは、 n 2n+ l  As used herein, “alkyl” refers to the loss of one hydrogen atom from an aliphatic hydrocarbon such as methane, ethane, or propane (herein “alkane” t). The resulting monovalent group, generally represented by CH 1 (where n is a positive integer). Alkyl is n 2n + l
直鎖または分枝鎖であり得る。本明細書において「置換されたアルキル」とは、以下 に規定する置換基によってアルキルの Hが置換されたアルキルを!、う。これらの具体 例は、 C1〜C2アルキル、 C1〜C3アルキル、 C1〜C4アルキル、 C1〜C5アルキル 、 C1〜C6アルキル、 C1〜C7アルキル、 C1〜C8アルキル、 C1〜C9アルキル、 C1 〜C10アルキル、じ1〜じ11ァルキルまたはじ1〜じ12ァルキル、 C1〜C2置換され たアルキル、 C1〜C3置換されたアルキル、 C1〜C4置換されたアルキル、 C1〜C5 置換されたアルキル、 C1〜C6置換されたアルキル、 C1〜C7置換されたアルキル、 C1〜C8置換されたアルキル、 C1〜C9置換されたアルキル、 C1〜C10置換された アルキル、 C1〜C11置換されたアルキルまたは C1〜C12置換されたアルキルであ り得る。アルカンについては、これらの具体例は、 C1〜C2アルカン、 C1〜C3アル力 ン、 C1〜C4アルカン、 C1〜C5アルカン、 C1〜C6アルカン、 C1〜C7アルカン、 C 1〜C8アルカン、 C1〜C9アルカン、 C1〜C10アルカン、 C1〜C11アルカンまたは C1〜C12アルカン、 C1〜C2置換されたアルカン、 C1〜C3置換されたアルカン、 C 1〜C4置換されたアルカン、 C1〜C5置換されたアルカン、 C1〜C6置換されたアル カン、 C1〜C7置換されたアルカン、 C1〜C8置換されたアルカン、 C1〜C9置換さ れたアルカン、 C1〜C10置換されたアルカン、 C1〜C11置換されたアルカンまたは C1〜C12置換されたアルカンであり得る。ここで、例えば C1〜C10アルキルとは、 炭素原子を 1〜10個有する直鎖または分枝状のアルキルを意味し、メチル (CH—) It can be linear or branched. In the present specification, the “substituted alkyl” refers to an alkyl in which H of the alkyl is substituted with a substituent as defined below. Specific examples of these include C1-C2 alkyl, C1-C3 alkyl, C1-C4 alkyl, C1-C5 alkyl, C1-C6 alkyl, C1-C7 alkyl, C1-C8 alkyl, C1-C9 alkyl, C1-C10 alkyl. 1 to 11 alkyl or 1 to 12 alkyl, C1-C2 substituted alkyl, C1-C3 substituted alkyl, C1-C4 substituted alkyl, C1-C5 substituted alkyl, C1-C6 Substituted alkyl, C1-C7 substituted alkyl, C1-C8 substituted alkyl, C1-C9 substituted alkyl, C1-C10 substituted alkyl, C1-C11 substituted alkyl or C1-C12 substituted Or alkyl. For alkanes, these specific examples include C1-C2 alkanes, C1-C3 alkanes, C1-C4 alkanes, C1-C5 alkanes, C1-C6 alkanes, C1-C7 alkanes, C1-C8 alkanes, C1- C9 alkane, C1-C10 alkane, C1-C11 alkane or C1-C12 alkane, C1-C2-substituted alkane, C1-C3-substituted alkane, C1-C4-substituted alkane, C1-C5-substituted alkane C1-C6 substituted alkanes, C1-C7 substituted alkanes, C1-C8 substituted alkanes, C1-C9 substituted alkanes, C1-C10 substituted alkanes, C1-C11 substituted alkanes Or a C1-C12 substituted alkane. Here, for example, C1-C10 alkyl means linear or branched alkyl having 1 to 10 carbon atoms, and methyl (CH—)
3 Three
、ェチル(C H —)、 n—プロピル(CH CH CH 一)、イソプロピル((CH ) CH-) , Ethyl (C H —), n-propyl (CH 2 CH 2 CH 1), isopropyl ((CH 2) CH—)
2 5 3 2 2 3 2 2 5 3 2 2 3 2
、 n—ブチル(CH CH CH CH 一)、 n—ペンチル(CH CH CH CH CH —)、 n , N-butyl (CH CH CH CH 1), n-pentyl (CH CH CH CH CH —), n
3 2 2 2 3 2 2 2 2 一へキシル(CH CH CH CH CH CH 一)、 n—へプチル(CH CH CH CH CH  3 2 2 2 3 2 2 2 2 Monohexyl (CH CH CH CH CH CH One), n-heptyl (CH CH CH CH CH
3 2 2 2 2 2 3 2 2 2 3 2 2 2 2 2 3 2 2 2
CH CH 一)、 n—才クチノレ(CH CH CH CH CH CH CH CH 一)、 n—ノニノレ( CH CH CH CH CH CH CH CH CH 一)、 n—デシル(CH CH CH CH CHCH CH 1), n-year-old cutinore (CH CH CH CH CH CH CH CH 1), n-noninore ( CH CH CH CH CH CH CH CH CH 1), n-decyl (CH CH CH CH CH
3 2 2 2 2 2 2 2 2 3 2 2 2 23 2 2 2 2 2 2 2 2 3 2 2 2 2
CH CH CH CH CH 一)、一 C (CH ) CH CH CH (CH ) 、 一 CH CH (CH )CH CH CH CH CH 1), 1 C (CH) CH CH CH (CH), 1 CH CH (CH)
2 2 2 2 2 3 2 2 2 3 2 2 3 2 などが例示される。また、例えば、 C1〜C10置換されたアルキルとは、 C1〜C10ァ ルキルであって、そのうち 1または複数の水素原子が置換基により置換されているも のをいう。 Rとしては、 C1〜C6アルキルが好ましぐ特に C1〜C6アルキルが好まし い。 Examples are 2 2 2 2 2 3 2 2 2 3 2 2 3 2 and the like. In addition, for example, C1-C10 substituted alkyl refers to C1-C10 alkyl, in which one or more hydrogen atoms are substituted with a substituent. As R, C1-C6 alkyl is preferred, and C1-C6 alkyl is particularly preferred.
[0096] 本発明の物質または上で定義した官能基が置換基 Rによって置換されている場合 、そのような置換基 Rは、単数または複数存在し、それぞれ独立して、水素、アルキル 、シクロアルキル、ァルケ-ル、シクロアルケ-ル、アルキ -ル、アルコキシ、炭素環 基、ヘテロ環基、ハロゲン、ヒドロキシ、チォ—ル、シァ入ニトロ、アミ入カルボキシ、 ァシル、チォカルボキシ、アミド、置換されたアミド、置換されたカルボ-ル、置換され たチォカルボ-ル、置換されたスルホ-ルおよび置換されたスルフィエルからなる群 より選択される。  [0096] When the substance of the present invention or the functional group defined above is substituted by a substituent R, such substituent R is present in one or more, and each independently represents hydrogen, alkyl, cycloalkyl. , Alcohol, cycloalkenyl, alkyl, alkoxy, carbocyclic group, heterocyclic group, halogen, hydroxy, thiol, silane-containing nitro, ami-containing carboxy, acyl, thiocarboxy, amide, substituted amide , Substituted carbo- yl, substituted thiocarbol, substituted sulfol, and substituted sulfiel.
[0097] さらに、 OH基を有する低分子化合物にアミノ基を導入した化合物も本発明の親水 性ィ匕合物として用いることができる。該化合物は限定されないが、例えば、セロピオ ース等のレクチンが結合しな 、糖鎖にアミノ基を導入した化合物が挙げられる。例え ば、リボソーム膜の脂質ホスファチジルエタノールァミン上に架橋用の 2価試薬とトリス (ヒドロキシメチル)ァミノメタンとを用いてリボソーム表面を親水性ィ匕する。親水性化合 物の一般式は、下記式(1)、式(2)、式(3)等で示される。  [0097] Furthermore, a compound in which an amino group is introduced into a low molecular weight compound having an OH group can also be used as the hydrophilic compound of the present invention. The compound is not limited, and examples thereof include a compound in which an amino group is introduced into a sugar chain without binding of a lectin such as cellopioose. For example, the ribosome surface is rendered hydrophilic using a divalent reagent for crosslinking and tris (hydroxymethyl) aminomethane on the lipid phosphatidylethanolamine of the ribosome membrane. The general formula of the hydrophilic compound is represented by the following formula (1), formula (2), formula (3), and the like.
[0098] Z-R1 (R2OH) 式(1) [0098] ZR 1 (R 2 OH) Formula (1)
H N-R3- (R4OH) 式(2) H NR 3- (R 4 OH) Formula (2)
2 n  2 n
H N-R5 (OH) 式(3) H NR 5 (OH) Formula (3)
2 n  2 n
ここで、 R R3および R5は、 C力 C 、好ましくは Cから C 、さらに好ましくは C力 Where RR 3 and R 5 are C force C, preferably C to C, more preferably C force
1 40 1 20 1 ら C の直鎖または分岐鎖の炭化水素鎖を示し、 R2、 R4は存在しないかもしくは Cか1 40 1 20 1 to C represents a straight or branched hydrocarbon chain, and R 2 and R 4 are absent or C
10 1 ら C 、好ましくは C力 C 、さらに好ましくは C力 C の直鎖または分岐鎖の炭化10 1 et al C, preferably C-force C, more preferably C-force C linear or branched carbonization
40 1 20 1 10 40 1 20 1 10
水素鎖を示す。 zはリボソーム脂質と直接または架橋用の二価試薬と結合する反応 性官能基を示し、例えば、 COOH、 NH、 NH、 CHO、 SH、 NHS—エステル、マレ  Indicates a hydrogen chain. z represents a reactive functional group that binds to the ribosomal lipid directly or to a divalent reagent for crosslinking, such as COOH, NH, NH, CHO, SH, NHS-ester, male
2  2
イミド、イミドエステル、活性ハロゲン、 EDC、ピリジルジスルフイド、アジドフヱ-ル、ヒ ドラジド等が挙げられる。 nは自然数を示す。このような親水性化合物で親水性化を 行ったリボソームの表面は、薄く親水性ィ匕合物で覆われている。但し、その親水性ィ匕 合物の覆いの厚みは小さいので、リボソームに糖鎖を結合させた場合であっても、糖 鎖等の反応性を抑制することはな 、。 Imide, imide ester, active halogen, EDC, pyridyl disulfide, azido file, hydrogen And dolazide. n represents a natural number. The surface of the ribosome that has been rendered hydrophilic with such a hydrophilic compound is thinly covered with a hydrophilic compound. However, since the thickness of the cover of the hydrophilic compound is small, even when sugar chains are bound to ribosomes, the reactivity of sugar chains and the like cannot be suppressed.
[0099] 本明細書にぉ 、て「親水性化合物基」とは、上記のような親水性化合物が他の基と 結合したときの呼称である。親水性ィ匕合物基は場合に応じて一価または二価であり 得る。 In the present specification, the “hydrophilic compound group” is a name when the above hydrophilic compound is bonded to another group. The hydrophilic compound group can be monovalent or divalent depending on the case.
[0100] 本明細書において、「親水性化合物架橋基」とは、一端カ^ンカ一タンパク質とぺプ チド結合し、他の一端が糖鎖とペプチド結合する基であり、親水性化合物基とリポソ ームまたはリンカ一タンパク質との間にペプチド結合を形成させる基をいう。親水性 化合物架橋基としては、例えば、ビス (スルホスクシンィミジル)スべレート基、ジスクシ ンィミジルグルタレート基、ジチオビススクシンィミジルプロピオネート基、ジスクシンィ ミジルスべレート基、 3, 3,一ジチォビス(スルホスクシンィミジルプロピオネート)基、 エチレングリコールビススクシンイミジルスクシネート基およびエチレングリコールビス スルホスクシンィミジルスクシネート基などを挙げることができる。好ましくは、親水性 化合物架橋基は、ビス (スルホスクシンィミジル)スべレート基である。  [0100] In the present specification, the "hydrophilic compound cross-linking group" is a group that is peptide-bonded to one chain protein and the other end is peptide-bonded to a sugar chain. A group that forms a peptide bond with a liposome or linker protein. Examples of hydrophilic compound crosslinking groups include bis (sulfosuccinimidyl) suberate group, disuccinimidyl glutarate group, dithiobissuccinimidyl propionate group, disuccinimidyl suberate group, 3, 3, 1 dithiobis (sulfosuccinimidyl propionate) group, ethylene glycol bis succinimidyl succinate group and ethylene glycol bis sulfosuccinimidyl succinate group. Preferably, the hydrophilic compound crosslinking group is a bis (sulfosuccinimidyl) suberate group.
[0101] リボソームの親水性ィ匕は、従来公知の方法、例えば、ポリエチレングリコール、ポリ ビニルアルコール、無水マレイン酸共重合体等を共有結合により結合させたリン脂質 を用いてリボソームを作成する方法 (特開 2000— 302685号 (例えば、 CNDAC含 有リボソーム製剤ジラウロイルホスファチジルコリン、ジミリストイルホスファチジルコリン 、ジパルミトイルホスファチジルコリン、ジステアロイルホスファチジルコリン;ジパルミト ィルホスファチジルグリセロール、ジステアロイルホスファチジルグリセロール;スフイン ゴミエリン;コレステロール;ポリエチレングリコール部分の分子量が約 2000である N モノメトキシポリエチレングリコールサクシ二ルージステアロイルホスファチジルエタ ノールァミン(以下、 PEG2000— DSPEとする。); CNDAC塩酸塩、グルコース水 溶液およびトレハロース水溶液を使用し、 Banghamら (J. Mol. Biol. 8、 660— 668 (1964)参照。)の方法により、多重層リボソームの粗分散液を得た。」と記載されてい る。;))等の方法を採用することによつても行うことができる。このうち、トリス (ヒドロキシ メチル)ァミノメタンを用いてリボソーム表面を親水性ィ匕することが特に好ま ヽ。本発 明のトリス(ヒドロキシメチル)ァミノメタンを用いる手法は、ポリエチレングリコールなど を用いる従来の親水性ィ匕方法と比較していくつかの点で好ましい。例えば、本発明 のように糖鎖をリボソーム上に結合してその分子認識機能を標的指向性に利用する ものでは、トリス(ヒドロキシメチル)ァミノメタンは低分子量物質であるので従来のポリ エチレングリコールなどの高分子量物質を用いる方法に比べて、糖鎖に対する立体 障害となりに《標的細胞膜面上のレクチン (糖鎖認識タンパク質)による糖鎖分子認 識反応の進行を妨げな 、ので特に好ま 、。 [0101] The hydrophilicity of the ribosome is a conventionally known method, for example, a method of producing a ribosome using a phospholipid obtained by covalently binding polyethylene glycol, polyvinyl alcohol, maleic anhydride copolymer or the like ( JP 2000-302685 (for example, CNDAC-containing ribosomal preparations dilauroyl phosphatidylcholine, dimyristoyl phosphatidylcholine, dipalmitoylphosphatidylcholine, distearoylphosphatidylcholine; dipalmitoylphosphatidylglycerol, distearoylphosphatidylglycerol; N monomethoxypolyethyleneglycol succinyl distearoylphosphatidylethanolamine (hereinafter referred to as PEG2000—DSPE) having a molecular weight of about 2000 CNDAC hydrochloride, aqueous glucose solution and aqueous trehalose solution were used, and a crude dispersion of multilayer ribosomes was prepared by the method of Bangham et al. (See J. Mol. Biol. 8, 660-668 (1964)). It can also be done by adopting a method such as;)). Of these, Tris (hydroxy It is particularly preferred to make the ribosome surface hydrophilic with methyl) aminomethane. The method using tris (hydroxymethyl) aminomethane of the present invention is preferable in several respects as compared with the conventional hydrophilic method using polyethylene glycol or the like. For example, in the case where a sugar chain is bound on a ribosome and its molecular recognition function is used for target orientation as in the present invention, tris (hydroxymethyl) aminomethane is a low molecular weight substance, so that conventional polyethylene glycol or the like can be used. Compared to the method using a high molecular weight substance, it is a steric hindrance to the sugar chain and is particularly preferred because it does not prevent the progress of the sugar chain molecule recognition reaction by the lectin (sugar chain recognition protein) on the target cell membrane surface.
[0102] また、本発明によるリボソームは該親水化処理後においても粒子径分布や成分組 成、分散特性が良好であり、長時間の保存性や生体内安定性も優れているのでリポ ソーム製剤化して利用するために好まし ヽ。トリス (ヒドロキシメチル)ァミノメタンを用 いてリボソーム表面を親水性ィ匕するには、例えばジミリストイルホスファチジルェタノ ールァミン、ジパルミトイルホスファチジルエタノールァミン、ジステアロイルホスファチ ジルエタノールァミン等の脂質を用いて、常法により得たリボソーム溶液にビススルホ スクシンイミジルスべラート、ジスクシンィミジルグルタレート、ジチオビススクシンイミジ ノレプロピオネート、ジスクシンイミジノレスべラート、 3, 3 '—ジチオピス(スノレホスクシン ィミジルプロピオネート)、エチレングリコールビススクシンイミジルスクシネート、ェチ レングリコールビススルホスクシンィミジルスクシネート等の 2価試薬をカ卩えて反応させ ることにより、リボソーム膜上のジパルミトイルホスファチジルエタノールァミン等の脂 質に 2価試薬を結合させ、次いでトリス (ヒドロキシメチル)ァミノメタンを、該 2価試薬の 一方の結合手と反応させることにより、リボソーム表面にトリス (ヒドロキシメチル)ァミノ メタンを結合せしめる。 [0102] Further, the ribosome according to the present invention has a good particle size distribution, component composition, and dispersion characteristics even after the hydrophilization treatment, and is excellent in long-term storage and in vivo stability. It is preferred for use in To make the ribosome surface hydrophilic using tris (hydroxymethyl) aminomethane, lipids such as dimyristoyl phosphatidylethanolamine, dipalmitoyl phosphatidylethanolamine, and distearoyl phosphatidylethanolamine are used. Bissulfosuccinimidyl suberate, disuccinimidyl glutarate, dithiobis succinimidinorepropionate, disuccinimidino resberate, 3, 3'-dithiopis (sunophosxin Imidyl propionate), ethylene glycol bissuccinimidyl succinate, ethylene glycol bissulfosuccinimidyl succinate, etc. Zipalmitoilho By binding a divalent reagent to a fat such as fatidylethanolamine, and then reacting tris (hydroxymethyl) aminomethane with one of the bonds of the divalent reagent, tris (hydroxymethyl) amino on the ribosome surface. Combine methane.
[0103] このように、リボソームを親水性化処理したリボソームは、生体内で極めて安定であ り、後述のように標的指向性を有する糖鎖を結合しなくても、生体内での半減期が長 V、ためドラッグデリバリーシステムにおけるドラッグ担体として好適に用いることができ る。本発明は、表面を低分子化合物で親水性ィ匕したリボソームをも包含する。  [0103] Thus, the ribosome obtained by hydrophilizing the ribosome is extremely stable in the living body, and the half life in the living body can be obtained without binding a sugar chain having a target directivity as described later. Since it has a long V, it can be suitably used as a drug carrier in a drug delivery system. The present invention also includes a ribosome whose surface is hydrophilic with a low molecular weight compound.
[0104] 本明細書にぉ 、て「送達媒体」は、所望の物質の送達を媒介する担体 (ビヒクル)を いう。送達される物質が薬物であれば、「薬物送達媒体」という。薬物送達システム (D rug Delivery System, DDS)とは、ドラッグデリバリーシステムとも呼ばれ、吸収 制御型 DDS、放出制御型 DDS、標的指向型 DDSに分類することもある。理想的な DDSは、薬物を「体内の必要な部位に」、「必要な量を」、「必要な時間だけ」送り込 むシステムである。ターゲティング DDS (Targeting DDSと書き、和訳は標的指向 性 DDSである。)は、ノッシブ 'ターゲティング (受動的 ·標的指向性) DDSとァクティ ブ 'ターゲティング (能動的'標的指向性) DDSとに分類される。前者はキャリアー (薬 物運搬体)の粒子径ゃ親水性など物理化学的性質を利用して体内挙動を制御する 方法である。後者はこれらに特殊な仕組みを付け加えて積極的に標的組織への指 向性を制御しょうとする方法であり、例えば標的組織を構成する特定細胞の標的分 子への特異的分子認識機能を有する抗体や糖鎖などを結合したキャリアーを利用す る方法があり"ミサイルドラッグ"と呼ばれることもある。 [0104] As used herein, "delivery vehicle" refers to a carrier (vehicle) that mediates delivery of a desired substance. If the substance to be delivered is a drug, it is referred to as a “drug delivery vehicle”. Drug delivery system (D rug Delivery System (DDS), also called drug delivery system, is sometimes classified into absorption-controlled DDS, controlled-release DDS, and target-oriented DDS. The ideal DDS is a system that delivers a drug “to the necessary part of the body”, “a necessary amount”, and “for the required time”. Targeting DDS (written as Targeting DDS, translated into target-oriented DDS) is categorized as noisy 'targeting (passive and target-oriented) DDS and active' targeting (active 'target-oriented) DDS. The The former is a method for controlling the behavior in the body using the physicochemical properties such as the particle size of the carrier (drug carrier) or hydrophilicity. The latter is a method in which a special mechanism is added to these to actively control the direction to the target tissue.For example, it has a specific molecular recognition function for the target molecules of specific cells that constitute the target tissue. There is a method using a carrier to which an antibody or a sugar chain is bound, and it is sometimes called a “missile drug”.
[0105] 本明細書にぉ 、て「薬物送達媒体」は、所望の薬物を送達するためのビヒクルを ヽ [0105] As used herein, "drug delivery vehicle" refers to a vehicle for delivering a desired drug.
[0106] 別の局面において、本発明は、分子イメージング剤に関する。この分子イメージン グ剤は、薬学的に受容可能なキャリアなどをさらに含み得る。薬学的に受容可能なキ ャリアとしては、例えば、抗酸化剤、保存剤、着色料、風味料、および希釈剤、乳化 剤、懸濁化剤、溶媒、フィラー、増量剤、緩衝剤、送達ビヒクル、希釈剤、賦形剤およ び Zまたは薬学的アジュバントが挙げられるがそれらに限定されない。代表的には、 本発明の分子イメージング剤は、糖鎖修飾リボソームを、 1つ以上の生理的に受容可 能なキャリア、賦形剤または希釈剤とともに含む組成物の形態で投与される。例えば 、適切なビヒクルは、注射用水、生理的溶液、または人工脳脊髄液であり得る。 [0106] In another aspect, the present invention relates to a molecular imaging agent. The molecular imaging agent can further include a pharmaceutically acceptable carrier and the like. Pharmaceutically acceptable carriers include, for example, antioxidants, preservatives, colorants, flavors, and diluents, emulsifying agents, suspending agents, solvents, fillers, bulking agents, buffering agents, delivery vehicles. , Diluents, excipients and Z or pharmaceutical adjuvants. Typically, the molecular imaging agent of the present invention is administered in the form of a composition comprising a glycosylated ribosome together with one or more physiologically acceptable carriers, excipients or diluents. For example, a suitable vehicle can be water for injection, physiological solution, or artificial cerebrospinal fluid.
[0107] 本明細書で使用される受容可能なキャリア、賦形剤または安定化剤は、レシピエン トに対して非毒性であり、そして好ましくは、使用される投薬量および濃度において不 活性である。そのような非毒性および不活性のキャリアとしては、例えば、リン酸塩、ク ェン酸塩、または他の有機酸;ァスコルビン酸、 α—トコフエロール;低分子量ポリべ プチド;タンパク質 (例えば、血清アルブミン、ゼラチンまたは免疫グロブリン);親水性 ポリマー(例えば、ポリビニルピロリドン);アミノ酸 (例えば、グリシン、グルタミン、ァス ノ ラギン、アルギニンまたはリジン);モノサッカリド、ジサッカリドおよび他の炭水化物 (グルコース、マンノース、またはデキストリンを含む);キレート剤(例えば、 EDTA); 糖アルコール (例えば、マン-トールまたはソルビトール);塩形成対イオン (例えば、 ナトリウム);ならびに Zあるいは非イオン性表面活性化剤(例えば、 Tween、プル口 ニック (pluronic)またはポリエチレングリコール (PEG) )などが挙げられるがそれらに 限定されない。 [0107] Acceptable carriers, excipients or stabilizers used herein are non-toxic to the recipient and are preferably inert at the dosages and concentrations used. . Such non-toxic and inert carriers include, for example, phosphate, citrate, or other organic acids; ascorbic acid, α-tocopherol; low molecular weight polypeptides; proteins (eg, serum albumin Hydrophilic polymers (eg, polyvinylpyrrolidone); amino acids (eg, glycine, glutamine, asnolaggin, arginine or lysine); monosaccharides, disaccharides and other carbohydrates (Including glucose, mannose, or dextrin); chelating agents (eg, EDTA); sugar alcohols (eg, mannitol or sorbitol); salt-forming counterions (eg, sodium); and Z or nonionic surface activation Examples include, but are not limited to, agents such as Tween, pluronic or polyethylene glycol (PEG).
[0108] 例示の適切なキャリアとしては、中性緩衝化生理食塩水、または血清アルブミンと 混合された生理食塩水が挙げられる。好ましくは、その生成物は、適切な賦形剤 (例 えば、スクロース)を用いて凍結乾燥剤として処方される。他の標準的なキャリア、希 釈剤および賦形剤は所望に応じて含まれ得る。他の例示的な組成物は、 pH7. 0〜 8. 5のトリス(ヒドロキシメチル)ァミノメタン緩衝剤または pH4. 0〜5. 5の酢酸緩衝剤 を含み、これらは、さらに、ソルビトールまたはその適切な代替物を含み得る。  [0108] Exemplary suitable carriers include neutral buffered saline or saline mixed with serum albumin. Preferably, the product is formulated as a lyophilizer using a suitable excipient (eg, sucrose). Other standard carriers, diluents and excipients may be included as desired. Other exemplary compositions comprise tris (hydroxymethyl) aminomethane buffer at pH 7.0-8.5 or acetate buffer at pH 4.0-5.5, which further comprises sorbitol or suitable Alternatives can be included.
[0109] 1つの局面において、本発明は、糖鎖修飾リボソームを含む分子イメージング剤を 提供する。本発明の薬物送達媒体は、 Gal、 GalNAc、 Man, Glc、 GlcNAc、 Fuc および Neu5Acからなる群より選択される少なくとも 1つの構造を有する糖鎖、好まし くは、上記表 1に示される糖鎖を結合した糖鎖修飾リボソームを含む。この糖鎖修飾リ ポソームは、薬剤または遺伝子を封入していても、結合していてもよい。  [0109] In one aspect, the present invention provides a molecular imaging agent containing a sugar chain-modified ribosome. The drug delivery vehicle of the present invention is a sugar chain having at least one structure selected from the group consisting of Gal, GalNAc, Man, Glc, GlcNAc, Fuc and Neu5Ac, preferably a sugar chain shown in Table 1 above. Including a sugar chain-modified ribosome linked with The sugar chain-modified liposome may encapsulate or bind a drug or gene.
[0110] 本明細書にぉ 、て「分子イメージング剤」とは、生体の機能または構造を画像化す るために用いられる薬剤または因子をいう。例えば、生体内の癌組織および炎症部 位を画像化するために用いられるものが挙げられる。  [0110] As used herein, the term "molecular imaging agent" refers to a drug or factor used for imaging a function or structure of a living body. Examples thereof include those used for imaging cancer tissues and inflamed sites in vivo.
[0111] 本発明の分子イメージング剤は、生物学的因子を必要とする被験体へ生物学的因 子を投与するため、および呼吸器系、循環器系、消化器系、泌尿器,生殖器系、中 枢神経系または末梢神経系の障害を有する哺乳動物を処置するためにも使用され 得る。  [0111] The molecular imaging agent of the present invention is used for administering a biological factor to a subject in need of a biological factor, and for the respiratory system, circulatory system, digestive system, urinary organ, genital system, It can also be used to treat mammals with central or peripheral nervous system disorders.
[0112] 本発明の分子イメージング剤は、糖鎖修飾リボソームの糖鎖の種類と結合密度を調 節することによって、腸管での吸収制御性を高めることもできる。腸管吸収制御性を 高める糖鎖と特定の組織または器官への指向性を有する糖鎖の両方をリボソームに 結合させることにより、特定組織または器官への指向性と腸管吸収制御性の両方の 特性を併せ持ったリボソームを作製することも可能である。 [0113] 本発明のイメージング剤に含まれる糖鎖修飾リボソームは、糖鎖がシァリルルイス X 基であり得る。このシァリルルイス X基は、 0. OOOlmg糖鎖/ mg脂質〜 500mg糖鎖 /mg脂質の修飾結合密度で糖鎖修飾リボソームに含まれ得る。炎症をイメージング する場合、好ましくは、 0. 0025mg糖鎖 Zmg脂質〜 0. lmg糖鎖 Zmg脂質 (好まし くは、 0. 025mg糖鎖/ mg脂質)の修飾結合密度で糖鎖修飾リボソームに含まれ得 る。癌組織をイメージングする場合、好ましくは、 0. 0025mg糖鎖 Zmg脂質〜 0. 1 mg糖鎖 Zmg脂質 (好ましくは、 0. 025mg糖鎖 Zmg脂質)の修飾結合密度で糖鎖 修飾リボソームに含まれ得る。 [0112] The molecular imaging agent of the present invention can also enhance the absorption controllability in the intestinal tract by adjusting the type of sugar chain and the binding density of the sugar chain-modified ribosome. By binding both glycans that enhance intestinal absorption control and sugar chains that are directed to specific tissues or organs to ribosomes, the characteristics of both directivity to specific tissues or organs and intestinal absorption control can be achieved. It is also possible to produce ribosomes that have both. [0113] In the sugar chain-modified ribosome contained in the imaging agent of the present invention, the sugar chain may be a silyl Lewis X group. This sialyl Lewis X group can be included in the sugar chain-modified ribosome with a modified bond density of 0. OOOlmg sugar chain / mg lipid to 500 mg sugar chain / mg lipid. When imaging inflammation, it is preferable that sugar chain modified ribosomes are included at a modified bond density of 0.0025 mg sugar chain Z mg lipid to 0.1 mg sugar chain Z mg lipid (preferably 0.025 mg sugar chain / mg lipid). It can be done. When imaging cancer tissue, it is preferably included in the sugar chain-modified ribosome at a modified bond density of 0.0025 mg sugar chain Z mg lipid to 0.1 mg sugar chain Z mg lipid (preferably 0.025 mg sugar chain Z mg lipid). obtain.
[0114] 本発明のイメージング剤に含まれる糖鎖修飾リボソームは、糖鎖が N—ァセチルラ クトサミン基であり得る。この N—ァセチルラクトサミン基は、 0. OOOlmg糖鎖 Zmg脂 質〜 500mg糖鎖 Zmg脂質、好ましくは、 0. 025mg糖鎖 Zmg脂質の修飾結合密 度で糖鎖修飾リボソームに含まれ得る。脳血管をイメージングする場合、好ましくは、 0. 0025mg糖鎖 Zmg脂質〜 0. lmg糖鎖 Zmg脂質 (好ましくは、 0. 025mg糖鎖 /mg脂質)の修飾結合密度で糖鎖修飾リボソームに含まれ得る。肝臓をイメージン グする場合、好ましくは、 0. 0025mg糖鎖 Zmg脂質〜 0. 5mg糖鎖 Zmg脂質 (好ま しくは、 0. lmg糖鎖/ mg脂質)の修飾結合密度で糖鎖修飾リボソームに含まれ得る  [0114] In the sugar chain-modified ribosome contained in the imaging agent of the present invention, the sugar chain may be an N-acetylyl lactosamine group. The N-acetyllactosamine group can be contained in the sugar chain-modified ribosome with a modified binding density of 0. OOOlmg sugar chain Zmg lipid to 500 mg sugar chain Zmg lipid, preferably 0.025 mg sugar chain Zmg lipid. When imaging cerebral blood vessels, it is preferably included in the sugar chain-modified ribosome at a modified bond density of 0.0025 mg sugar chain Z mg lipid to 0.1 mg sugar chain Z mg lipid (preferably 0.025 mg sugar chain / mg lipid). obtain. When imaging the liver, it is preferred that the glycosylation ribosome has a modified binding density of 0.0025 mg sugar chain Zmg lipid to 0.5 mg sugar chain Zmg lipid (preferably 0.1 mg sugar chain / mg lipid). Can be included
[0115] 本発明のイメージング剤に含まれる糖鎖修飾リボソームは、糖鎖が a 1—6マンノビ オース基であり得る。この α 1—6マンノビオース基は、 0. OOOlmg糖鎖 Zmg脂質 〜500mg糖鎖/ mg脂質の修飾結合密度で糖鎖修飾リボソームに含まれ得る。癌 組織をイメージングする場合、好ましくは、 0. 0025mg糖鎖 Zmg脂質〜 0. lmg糖 鎖 Zmg脂質 (好ましくは、 0. 025mg糖鎖 Zmg脂質)の修飾結合密度で糖鎖修飾リ ポソームに含まれ得る。 [0115] In the sugar chain-modified ribosome contained in the imaging agent of the present invention, the sugar chain may be an a 1-6 mannobiose group. This α 1-6 mannobiose group can be contained in a sugar chain-modified ribosome with a modified bond density of 0. OOOlmg sugar chain Z mg lipid to 500 mg sugar chain / mg lipid. When imaging cancer tissue, it is preferably included in the glycosylated liposome at a modified bond density of 0.0025 mg sugar chain Zmg lipid to 0.1 mg sugar chain Zmg lipid (preferably 0.025 mg sugar chain Zmg lipid). obtain.
[0116] 本発明のイメージング剤は、炎症部位、癌組織、脳血管または肝臓等をイメージン グするために使用され得る。これらの組織は実質を含んで 、てもよ 、。  [0116] The imaging agent of the present invention can be used to image an inflammatory site, cancer tissue, cerebral blood vessel, liver or the like. These organizations may contain substance.
[0117] 本発明の分子イメージング剤の調製は、 pH、等張性、安定性などを考慮することに より、当業者は、容易に行うことができる。本発明の分子イメージング剤は、薬学的に 受容可能なキャリアと配合し、錠剤、カプセル剤、顆粒剤、散剤、粉剤等の固形製剤 、シロップ剤、懸濁剤、溶液剤等の液状製剤として経口的に投与することができる。 [0117] The molecular imaging agent of the present invention can be easily prepared by those skilled in the art by considering pH, isotonicity, stability, and the like. The molecular imaging agent of the present invention is blended with a pharmaceutically acceptable carrier, and is a solid preparation such as a tablet, capsule, granule, powder, powder, etc. Oral administration as a liquid preparation such as syrup, suspension, solution and the like.
[0118] 本発明の分子イメージング剤は、必要に応じて生理学的に受容可能なキャリア、賦 型剤または安定化剤 (日本薬局方第 14版またはその最新版、 Remington' s Phar maceuticai sciences, 18th Edition, A. R. Gennaro, ed. , Mack Publishi ng Company, 1990などを参照)と、所望の程度の純度を有する糖鎖組成物とを 混合することによって、凍結乾燥されたケーキまたは水溶液の形態で調製され保存さ れ得る。  [0118] The molecular imaging agent of the present invention is a physiologically acceptable carrier, excipient or stabilizer as necessary (Japanese Pharmacopoeia 14th edition or its latest edition, Remington's Phar maceuticai sciences, 18th Edition, AR Gennaro, ed., Mack Publishing Company, 1990, etc.) and a glycan composition having the desired degree of purity, and prepared in the form of a lyophilized cake or aqueous solution. Can be preserved.
[0119] 本発明の蛍光色素含有糖鎖修飾リボソームは、従来のイメージング剤よりも高感度 なイメージングを可能にする。なぜなら、励起および蛍光検出波長が、長波長 500〜 700nmの蛍光色素を選択することにより、生体成分由来の自家蛍光と区別すること ができるため、生体外からの高感度なイメージングを実現することが可能となるからで ある。  [0119] The fluorescent dye-containing sugar chain-modified ribosome of the present invention enables imaging with higher sensitivity than conventional imaging agents. Because it can be distinguished from autofluorescence derived from biological components by selecting fluorescent dyes with excitation and fluorescence detection wavelengths of 500-700 nm long wavelength, it is possible to realize highly sensitive imaging from outside the living body. This is possible.
[0120] 本発明の処置方法において使用される分子イメージング剤の量は、使用目的、対 象疾患 (種類、重篤度など)、患者の年齢、体重、性別、既往歴、細胞の形態または 種類などを考慮して、当業者が容易に決定することができる。本発明の処置方法を 被検体 (または患者)に対して施す頻度もまた、使用目的、対象疾患 (種類、重篤度 など)、患者の年齢、体重、性別、既往歴、および治療経過などを考慮して、当業者 が容易に決定することができる。頻度としては、例えば、毎日 数ケ月に 1回(例えば 、 1週間に 1回— 1ヶ月に 1回)の投与が挙げられる。 1週間— 1ヶ月に 1回の投与を、 経過を見ながら施すことが好ま U、。  [0120] The amount of the molecular imaging agent used in the treatment method of the present invention depends on the purpose of use, target disease (type, severity, etc.), patient age, weight, sex, medical history, cell morphology or type. It can be easily determined by those skilled in the art in consideration of the above. The frequency with which the treatment method of the present invention is applied to a subject (or patient) also depends on the purpose of use, target disease (type, severity, etc.), patient age, weight, gender, medical history, treatment course, etc. In view of this, it can be easily determined by those skilled in the art. Examples of the frequency include administration once a few months every day (for example, once a week—once a month). 1 week—preferably given once a month, over time.
[0121] 分子イメージング剤は、投与に適した投与形において当該分野で周知の薬学的に 受容可能なキャリアを用いて処方され得る。このようなキャリアは、薬物送達媒体が患 者による摂取に適した液体、ゲル、シロップ、スラリー、懸濁物などに処方されることを 可能とする。  [0121] Molecular imaging agents can be formulated using pharmaceutically acceptable carriers well known in the art in dosage forms suitable for administration. Such carriers allow drug delivery vehicles to be formulated into liquids, gels, syrups, slurries, suspensions, etc. suitable for consumption by the patient.
[0122] 一つの局面において、本発明は、分子イメージングまたはインビボイメージングに おいて使用するためのキャリアを提供する。このキャリアは、糖鎖修飾リボソーム含み 得る。  [0122] In one aspect, the present invention provides a carrier for use in molecular or in vivo imaging. This carrier may include a sugar chain-modified ribosome.
[0123] 本発明のキャリアに含まれる糖鎖修飾リボソームは、糖鎖がシァリルルイス X基であ り得る。このシァリルルイス X基は、 0. OOOlmg糖鎖 Zmg脂質〜 500mg糖鎖 Zmg 脂質の修飾結合密度で糖鎖修飾リボソームに含まれ得る。炎症をイメージングする 場合、好ましくは、 0. 0025mg糖鎖 Zmg脂質〜 0. lmg糖鎖 Zmg脂質 (好ましくは 、 0. 025mg糖鎖/ mg脂質)の修飾結合密度で糖鎖修飾リボソームに含まれ得る。 癌組織をイメージングする場合、好ましくは、 0. 0025mg糖鎖 Zmg脂質〜 0. lmg 糖鎖 Zmg脂質 (好ましくは、 0. 025mg糖鎖 Zmg脂質)の修飾結合密度で糖鎖修 飾リボソームに含まれ得る。 [0123] In the sugar chain-modified ribosome contained in the carrier of the present invention, the sugar chain has a silyl Lewis X group. It can be. This Siaryl Lewis X group can be included in the sugar chain-modified ribosome at a modified bond density of 0. OOOlmg sugar chain Zmg lipid to 500 mg sugar chain Zmg lipid. When imaging inflammation, it can be included in the glycan-modified ribosome with a modified binding density of preferably 0.0025 mg glycan Zmg lipid to 0.1 mg glycan Zmg lipid (preferably 0.025 mg glycan / mg lipid) . When imaging cancer tissue, it is preferably contained in the sugar chain-modified ribosome at a modified bond density of 0.0025 mg sugar chain Z mg lipid to 0.1 mg mg sugar chain Z mg lipid (preferably 0.025 mg sugar chain Z mg lipid). obtain.
[0124] 本発明のキャリアに含まれる糖鎖修飾リボソームは、糖鎖が N—ァセチルラクトサミ ン基であり得る。この N—ァセチルラクトサミン基は、 0. OOOlmg糖鎖 Zmg脂質〜 5 OOmg糖鎖 Zmg脂質、好ましくは、 0. 025mg糖鎖 Zmg脂質の修飾結合密度で糖 鎖修飾リボソームに含まれ得る。脳血管をイメージングする場合、好ましくは、 0. 002 5mg糖鎖 Zmg脂質〜 0. lmg糖鎖 Zmg脂質 (好ましくは、 0. 025mg糖鎖 Zmg脂 質)の修飾結合密度で糖鎖修飾リボソームに含まれ得る。肝臓をイメージングする場 合、好ましくは、 0. 0025mg糖鎖 Zmg脂質〜 0. 5mg糖鎖 Zmg脂質 (好ましくは、 0 . lmg糖鎖 Zmg脂質)の修飾結合密度で糖鎖修飾リボソームに含まれ得る。  [0124] In the sugar chain-modified ribosome contained in the carrier of the present invention, the sugar chain may be an N-acetyllactosamine group. The N-acetylyllactosamine group may be contained in the sugar chain-modified ribosome at a modified bond density of 0. OOOlmg sugar chain Zmg lipid to 5 OOmg sugar chain Zmg lipid, preferably 0.025 mg sugar chain Zmg lipid. When imaging cerebral blood vessels, preferably included in the sugar chain-modified ribosome with a modified bond density of 0.002 mg mg sugar chain Zmg lipid to 0.1 mg sugar chain Zmg lipid (preferably 0.025 mg sugar chain Zmg lipid). Can be. When imaging the liver, the sugar chain modified ribosome can preferably be included at a modified bond density of 0.0025 mg sugar chain Zmg lipid to 0.5 mg sugar chain Zmg lipid (preferably 0.1 mg sugar chain Zmg lipid). .
[0125] 本発明のキャリアに含まれる糖鎖修飾リボソームは、糖鎖がひ 1—6マンノビオース 基であり得る。この α 1—6マンノビオース基は、 0. OOOlmg糖鎖 Zmg脂質〜 500 mg糖鎖 Zmg脂質の修飾結合密度で糖鎖修飾リボソームに含まれ得る。癌組織をィ メージングする場合、好ましくは、 0. 0025mg糖鎖 Zmg脂質〜 0. lmg糖鎖 Zmg 脂質 (好ましくは、 0. 025mg糖鎖 Zmg脂質)の修飾結合密度で糖鎖修飾リボソーム に含まれ得る。  [0125] In the sugar chain-modified ribosome contained in the carrier of the present invention, the sugar chain may be a 1-6 mannobiose group. This α 1-6 mannobiose group can be contained in a sugar chain-modified ribosome with a modified bond density of 0. OOOlmg sugar chain Zmg lipid to 500 mg sugar chain Zmg lipid. When imaging cancer tissue, it is preferably contained in the sugar chain-modified ribosome at a modified bond density of 0.0025 mg sugar chain Z mg lipid to 0.1 mg sugar chain Z mg lipid (preferably 0.025 mg sugar chain Z mg lipid). obtain.
[0126] 本発明のイメージング剤は、炎症部位、癌組織、脳血管または肝臓等をイメージン グするために使用され得る。これらの組織は実質を含んで 、てもよ 、。  [0126] The imaging agent of the present invention can be used to image an inflammatory site, cancer tissue, cerebral blood vessel, liver or the like. These organizations may contain substance.
[0127] 本発明の媒体または組成物は、蛍光色素、薬剤または生物学的因子が意図される 目的を達成するのに有効な量で、糖鎖修飾リボソーム中に含有される組成物を含む 。「処置するのに有効な量」は当業者に十分に認識される用語であり、意図される薬 理学的結果 (例えば、予防、治療、再発防止など)を生じるために有効な薬剤の量を いう。従って、処置有効量は、処置されるべき疾患の徴候を軽減するのに十分な量で ある。所定の適用のための有効量 (例えば、処置有効量)を確認する 1つの有用なァ ッセィは、標的疾患の回復の程度を測定することである。実際に投与される量は、処 置が適用されるべき個体に依存し、好ましくは、所望の効果が顕著な副作用をともな うことなく達成されるように最適化された量である。有効用量の決定は十分に当業者 の能力内にある。 [0127] The medium or composition of the present invention includes a composition in which the fluorescent dye, drug or biological agent is contained in the sugar chain-modified ribosome in an amount effective to achieve the intended purpose. `` Amount effective to treat '' is a term well recognized by those skilled in the art and refers to the amount of drug effective to produce the intended pharmacological result (e.g., prevention, treatment, prevention of recurrence). Say. Thus, a therapeutically effective amount is an amount sufficient to reduce the symptoms of the disease to be treated. is there. One useful assay to ascertain an effective amount (eg, a therapeutically effective amount) for a given application is to measure the extent of recovery of the target disease. The amount actually administered will depend on the individual to whom the treatment is to be applied, and is preferably an amount optimized to achieve the desired effect without significant side effects. The determination of an effective dose is well within the ability of those skilled in the art.
[0128] 治療有効量、予防有効量などおよび毒性は、細胞培養または実験動物における標 準的な薬学的手順 (例えば、 ED 、集団の 50%において治療的に有効な用量;お  [0128] Therapeutically effective doses, prophylactically effective doses, and the like and toxicity are standard pharmaceutical procedures in cell cultures or laboratory animals (e.g., ED, doses therapeutically effective in 50% of the population; and
50  50
よび LD 、集団の 50%に対して致死的である用量)によって決定され得る。治療効 And LD, doses that are lethal to 50% of the population). Therapeutic effect
50 50
果と毒性効果との間の用量比は治療係数であり、それは比率 ED ZLD として表さ  The dose ratio between fruit and toxic effects is the therapeutic index, expressed as the ratio ED ZLD.
50 50 れ得る。大きな治療係数を呈する薬物送達媒体が好ましい。細胞培養アツセィおよ び動物実験力 得られたデータ力 ヒトでの使用のための量の範囲を公式ィ匕するの に使用される。このような化合物の用量は、好ましくは、毒性をほとんどまたは全くとも なわな 、ED を含む循環濃度の範囲内にある。この用量は、使用される投与形態、  50 50 Drug delivery vehicles that exhibit large therapeutic indices are preferred. Cell culture and animal experimentation power obtained Data used to formulate a range of quantities for human use. The dosage of such compounds lies preferably within a range of circulating concentrations that include the ED with little or no toxicity. This dosage is the dosage form used,
50  50
患者の感受性、および投与経路に依存してこの範囲内で変化する。一例として、投 与量は、年齢その他の患者の条件、疾患の種類、使用する細胞の種類等により適宜 選択される。  It will vary within this range depending on the sensitivity of the patient and the route of administration. As an example, the dose is appropriately selected depending on age and other patient conditions, the type of disease, the type of cells used, and the like.
[0129] 本発明の組成物、分子イメージング剤、媒体などは、当該分野で公知の様式と同 様の様式 (例えば、混合、溶解など)で製造され得る。  [0129] The composition, molecular imaging agent, medium and the like of the present invention can be produced in a manner similar to a manner known in the art (for example, mixing, dissolution, etc.).
[0130] 本発明の、物質を所望の部位に送達するための組成物は、糖鎖で修飾された糖鎖 修飾リボソームを含み得る。本発明の組成物に含まれる糖鎖修飾リボソームは、糖鎖 がシァリルルイス X基であり得る。このシァリルルイス X基は、 0. OOOlmg糖鎖 Zmg 脂質〜 500mg糖鎖/ mg脂質の修飾結合密度で糖鎖修飾リボソームに含まれ得る 。炎症をイメージングする場合、好ましくは、 0. 0025mg糖鎖 Zmg脂質〜 0. lmg糖 鎖 Zmg脂質 (好ましくは、 0. 025mg糖鎖 Zmg脂質)の修飾結合密度で糖鎖修飾リ ポソームに含まれ得る。癌組織をイメージングする場合、好ましくは、 0. 0025mg糖 鎖 Zmg脂質〜 0. lmg糖鎖 Zmg脂質 (好ましくは、 0. 025mg糖鎖 Zmg脂質)の 修飾結合密度で糖鎖修飾リボソームに含まれ得る。  [0130] The composition of the present invention for delivering a substance to a desired site may contain a sugar chain-modified ribosome modified with a sugar chain. In the sugar chain-modified ribosome contained in the composition of the present invention, the sugar chain may be a sialyl Lewis X group. This sialyl Lewis X group can be contained in sugar chain-modified ribosomes with a modified bond density of 0. OOOlmg sugar chain Zmg lipid to 500 mg sugar chain / mg lipid. When imaging inflammation, it may preferably be included in a glycosylated liposome with a modified binding density of 0.0025 mg sugar chain Zmg lipid to 0.1 mg sugar chain Zmg lipid (preferably 0.025 mg sugar chain Zmg lipid). . When imaging cancer tissue, the sugar chain-modified ribosome can preferably be included at a modified bond density of 0.0025 mg sugar chain Zmg lipid to 0.1 mg sugar chain Zmg lipid (preferably 0.025 mg sugar chain Zmg lipid). .
[0131] 本発明の組成物に含まれる糖鎖修飾リボソームは、糖鎖が N—ァセチルラクトサミ ン基であり得る。この N—ァセチルラクトサミン基は、 0. OOOlmg糖鎖 Zmg脂質〜 5 OOmg糖鎖 Zmg脂質、好ましくは、 0. 025mg糖鎖 Zmg脂質の修飾結合密度で糖 鎖修飾リボソームに含まれ得る。脳血管をイメージングする場合、好ましくは、 0. 002 5mg糖鎖 Zmg脂質〜 0. lmg糖鎖 Zmg脂質 (好ましくは、 0. 025mg糖鎖 Zmg脂 質)の修飾結合密度で糖鎖修飾リボソームに含まれ得る。肝臓をイメージングする場 合、好ましくは、 0. 0025mg糖鎖 Zmg脂質〜 0. 5mg糖鎖 Zmg脂質 (好ましくは、 0 . lmg糖鎖 Zmg脂質)の修飾結合密度で糖鎖修飾リボソームに含まれ得る。 [0131] The sugar chain-modified ribosome contained in the composition of the present invention has a sugar chain of N-acetyllactosami. It can be a group. The N-acetylyllactosamine group may be contained in the sugar chain-modified ribosome at a modified bond density of 0. OOOlmg sugar chain Zmg lipid to 5 OOmg sugar chain Zmg lipid, preferably 0.025 mg sugar chain Zmg lipid. When imaging cerebral blood vessels, preferably included in the sugar chain-modified ribosome with a modified bond density of 0.002 mg mg sugar chain Zmg lipid to 0.1 mg sugar chain Zmg lipid (preferably 0.025 mg sugar chain Zmg lipid). Can be. When imaging the liver, the sugar chain modified ribosome can preferably be included at a modified bond density of 0.0025 mg sugar chain Zmg lipid to 0.5 mg sugar chain Zmg lipid (preferably 0.1 mg sugar chain Zmg lipid). .
[0132] 本発明の組成物に含まれる糖鎖修飾リボソームは、糖鎖が a 1—6マンノビオース 基であり得る。この α 1—6マンノビオース基は、 0. OOOlmg糖鎖 Zmg脂質〜 500 mg糖鎖 Zmg脂質の修飾結合密度で糖鎖修飾リボソームに含まれ得る。癌組織をィ メージングする場合、好ましくは、 0. 0025mg糖鎖 Zmg脂質〜 0. lmg糖鎖 Zmg 脂質 (好ましくは、 0. 025mg糖鎖 Zmg脂質)の修飾結合密度で糖鎖修飾リボソーム に含まれ得る。 [0132] In the sugar chain-modified ribosome contained in the composition of the present invention, the sugar chain may be an a 1-6 mannobiose group. This α 1-6 mannobiose group can be contained in a sugar chain-modified ribosome with a modified bond density of 0. OOOlmg sugar chain Zmg lipid to 500 mg sugar chain Zmg lipid. When imaging cancer tissue, it is preferably contained in the sugar chain-modified ribosome at a modified bond density of 0.0025 mg sugar chain Z mg lipid to 0.1 mg sugar chain Z mg lipid (preferably 0.025 mg sugar chain Z mg lipid). obtain.
[0133] 本発明のイメージング剤は、炎症部位、癌組織、脳血管または肝臓等をイメージン グするために使用され得る。これらの組織は実質を含んで 、てもよ 、。  [0133] The imaging agent of the present invention can be used to image an inflammatory site, cancer tissue, cerebral blood vessel, liver or the like. These organizations may contain substance.
[0134] 本明細書において「指示書」は、本発明の糖鎖修飾リボソームまたは分子イメージ ング剤などを投与する方法などを医師、患者など投与を行う人、診断する人 (患者本 人であり得る)に対して記載したものである。この指示書は、本発明の糖鎖修飾リポソ ームまたは分子イメージング剤などを投与する手順を指示する文言が記載されてい る。この指示書は、本発明が実施される国の監督官庁 (例えば、 日本であれば厚生 労働省、米国であれば食品医薬品局 (FDA)など)が規定した様式に従って作成さ れ、その監督官庁により承認を受けた旨が明記される。指示書は、いわゆる添付文 書 (package insert)であり、通常は紙媒体で提供されるが、それに限定されず、例 えば、電子媒体 (例えば、インターネットで提供されるホームページ (ウェブサイト)、電 子メール)のような形態でも提供され得る。  [0134] In the present specification, the "instruction" refers to a method for administering the sugar chain-modified ribosome of the present invention or a molecular imaging agent, etc. To obtain). This instruction manual describes a word for instructing a procedure for administering the sugar chain-modified liposome or the molecular imaging agent of the present invention. This instruction is prepared according to the format prescribed by the national regulatory authority (for example, the Ministry of Health, Labor and Welfare in Japan and the Food and Drug Administration (FDA) in the United States) in the country where the present invention is implemented. It will be clearly stated that it has been approved. The instructions are so-called package inserts and are usually provided in paper media, but are not limited thereto, for example, electronic media (for example, homepage (website) provided on the Internet, electronic (Child mail) can also be provided.
[0135] 本明細書において「被験体」とは、本発明の処置が適用される生物をいい、「患者」 ともいわれる。患者または被験体は好ましくは、ヒトであり得る。  [0135] As used herein, "subject" refers to an organism to which the treatment of the present invention is applied, and is also referred to as "patient". The patient or subject may preferably be a human.
[0136] (糖鎖修飾リボソームの医薬としての使用) 他の局面において、本発明は、呼吸器系、循環器系、消化器系、泌尿器 '生殖器 系、中枢神経系、または末梢神経系の障害を処置するための医薬の製造のための、 糖鎖修飾リボソームの使用を提供する。ここで糖鎖修飾リボソームは、上述の(糖鎖 修飾リボソーム)に記載される任意の形態が使用され得る。 [0136] (Use of sugar chain-modified ribosome as a medicine) In another aspect, the present invention relates to a glycan for the manufacture of a medicament for treating disorders of the respiratory system, circulatory system, digestive system, urinary 'genital system, central nervous system, or peripheral nervous system. Provide the use of modified ribosomes. Here, as the sugar chain-modified ribosome, any form described in the above (Sugar chain-modified ribosome) can be used.
[0137] 別の局面において、本発明は、医薬としても用いられ得る。このような場合、本発明 の糖鎖修飾リボソームに、封入または結合される薬剤としては、例えば、以下が挙げ られる力 これらに限定されない:アルキル化系抗癌剤、代謝拮抗剤、植物由来抗癌 剤、抗癌性抗生物質、 BRM,サイト力イン類、白金錯体系抗癌剤、免疫療法剤、ホル モン系抗癌剤、モノクローナル抗体等の腫瘍用薬剤、中枢神経用薬剤、末梢神経系 •感覚器官用薬剤、呼吸器疾患治療薬剤、循環器用薬剤、消化器官用薬剤、ホルモ ン系用薬剤、泌尿器'生殖器用薬剤、ビタミン '滋養強壮剤、代謝性医薬品、抗生物 質,化学療法薬剤、検査用薬剤、抗炎症剤、眼疾患薬剤、中枢神経系薬剤、自己免 疫系薬剤、循環器系薬剤、糖尿病、高脂血症のような生活習慣病薬剤、副腎皮質ホ ルモン、免疫抑制剤、抗菌薬、抗ウィルス薬、血管新生抑制剤、サイト力イン、ケモカ イン、抗サイト力イン抗体、抗ケモカイン抗体、抗サイト力イン'ケモカイン受容体抗体 、 siRNA、 miRNA、 smRNA、アンチセンス ODNまたは DNAのような遺伝子治療 関連の核酸製剤、神経保護因子、抗体医薬、分子標的薬、骨粗鬆症,骨代謝改善 薬、神経ペプチド、生理活性ペプチド 'タンパク質のような薬剤。  [0137] In another aspect, the present invention can also be used as a medicament. In such a case, the drugs encapsulated or bound to the sugar chain-modified ribosome of the present invention include, but are not limited to, for example, the following: alkylated anticancer agents, antimetabolites, plant-derived anticancer agents, Anticancer antibiotics, BRM, cytodynamics, platinum complex anticancer drugs, immunotherapy drugs, hormone anticancer drugs, tumor drugs such as monoclonal antibodies, central nervous system drugs, peripheral nervous system • sensory organ drugs, breathing Remedies for genital diseases, drugs for the cardiovascular system, drugs for the digestive organs, drugs for the hormonal system, drugs for the urinary organs, drugs for vitamins, nourishing tonics, metabolic drugs, antibiotics, chemotherapeutic drugs, testing drugs, anti-inflammatory Drugs, eye disease drugs, central nervous system drugs, self-immune drugs, cardiovascular drugs, lifestyle diseases such as diabetes and hyperlipidemia, corticosteroids, immunosuppressants, antibacterial drugs, antivirals Medicine, blood Gene therapy-related nucleic acids such as anti-neoplastic agents, cytoforce-in, chemokines, anti-site-force-in antibodies, anti-chemokine antibodies, anti-site-force-in chemokine receptor antibodies, siRNA, miRNA, smRNA, antisense ODN or DNA Drugs such as pharmaceuticals, neuroprotective factors, antibody drugs, molecular targeted drugs, osteoporosis, bone metabolism improving drugs, neuropeptides, bioactive peptides' proteins.
[0138] (画像化方法)  [0138] (Imaging method)
別の局面において、本発明は、呼吸器系、循環器系、消化器系、泌尿器 '生殖器 系、中枢神経系、または末梢神経系を画像化するための方法を提供する。この方法 は、被験体に、分子イメージング剤を投与する工程を包含し、該分子イメージング剤 は糖鎖修飾リボソームおよび蛍光色素を含み、該糖鎖修飾リボソームは検出に十分 な量の蛍光色素を含有する。ここで糖鎖修飾リボソームは、上述の(糖鎖修飾リポソ ーム)に記載される任意の形態が使用され得る。  In another aspect, the present invention provides a method for imaging the respiratory system, circulatory system, digestive system, urinary 'genital system, central nervous system, or peripheral nervous system. This method includes the step of administering a molecular imaging agent to a subject, the molecular imaging agent comprising a sugar chain-modified ribosome and a fluorescent dye, wherein the sugar chain-modified ribosome contains a sufficient amount of the fluorescent dye for detection. To do. Here, as the sugar chain-modified ribosome, any form described in the above-mentioned (sugar chain-modified liposome) can be used.
[0139] 別の局面において、本発明は、炎症またはがんを画像ィ匕するための方法を提供す る。この方法は、被験体に、分子イメージング剤を投与する工程を包含し、該分子ィメ 一ジング剤は糖鎖修飾リボソームおよび蛍光色素を含み、該糖鎖修飾リボソームは 検出に十分な量の蛍光色素を含有する。ここで糖鎖修飾リボソームは、上述の (糖鎖 修飾リボソーム)に記載される任意の形態が使用され得る。 [0139] In another aspect, the present invention provides a method for imaging inflammation or cancer. This method comprises the step of administering a molecular imaging agent to a subject, the molecular imaging agent comprising a sugar chain-modified ribosome and a fluorescent dye, wherein the sugar chain-modified ribosome is Contains a sufficient amount of fluorescent dye for detection. Here, as the sugar chain-modified ribosome, any form described in the above (Sugar chain-modified ribosome) can be used.
[0140] (イメージングシステム)  [0140] (Imaging system)
別の局面において、本発明は、 目的の部位を分子イメージングまたはインビボイメ 一ジングするためのシステムを提供する。本明細書において、「分子イメージング」ま たは「インビボイメージング」とは、生体の機能または構造を画像化するこという。本発 明の分子イメージングまたはインビボイメージングするためのシステムは、  In another aspect, the present invention provides a system for molecular imaging or in vivo imaging of a site of interest. As used herein, “molecular imaging” or “in vivo imaging” refers to imaging a function or structure of a living body. The system for molecular imaging or in vivo imaging of the present invention is
A)該目的の部位に特異的な糖鎖修飾リボソーム;  A) a sugar chain-modified ribosome specific to the target site;
B)標識;および  B) sign; and
C)該標識の有無を調べる手段;  C) means for examining the presence or absence of the label;
を備え、ここで、  Where, where
該標識が目的の部位に集積するのに十分な時間たつた後、該生体における該標 識の有無を調べ、該標識により該生体の機能または構造を画像ィ匕することができる。 標識としては、蛍光物質、放射性物質、発色物質 (例えば、 β gal)、発行物質 (例え ば、ルシフェラーゼ)などが挙げられる力 これらに限定されない。  After a sufficient time for the label to accumulate at the target site, the presence or absence of the label in the living body is examined, and the function or structure of the living body can be imaged by the label. The label includes, but is not limited to, a fluorescent substance, a radioactive substance, a coloring substance (for example, β gal), an issuing substance (for example, luciferase), and the like.
[0141] 本発明のシステムにおいて使用され得る糖鎖修飾リボソームの糖鎖は、シァリルル イス X基であり得る。このシァリルルイス X基は、 0. OOOlmg糖鎖 Zmg脂質〜 500m g糖鎖/ mg脂質の修飾結合密度で糖鎖修飾リボソームに含まれ得る。炎症をィメー ジングする場合、好ましくは、 0. 0025mg糖鎖 Zmg脂質〜 0. Img糖鎖 Zmg脂質( 好ましくは、 0. 025mg糖鎖/ mg脂質)の修飾結合密度で糖鎖修飾リボソームに含 まれ得る。癌組織をイメージングする場合、好ましくは、 0. 0025mg糖鎖 Zmg脂質 〜0. lmg糖鎖 Zmg脂質 (好ましくは、 0. 025mg糖鎖 Zmg脂質)の修飾結合密度 で糖鎖修飾リボソームに含まれ得る。  [0141] The sugar chain of the sugar chain-modified ribosome that can be used in the system of the present invention can be a silyl Lewis X group. This sialyl Lewis X group can be included in a sugar chain-modified ribosome with a modified bond density of 0. OOOlmg sugar chain Z mg lipid to 500 mg sugar chain / mg lipid. When imaging inflammation, it is preferably contained in the sugar chain-modified ribosome at a modified bond density of 0.0025 mg sugar chain Z mg lipid to 0.1 mg sugar chain Z mg lipid (preferably 0.025 mg sugar chain / mg lipid). obtain. When imaging cancer tissue, the sugar chain modified ribosome may preferably be included at a modified binding density of 0.0025 mg sugar chain Z mg lipid to 0.1 mg sugar chain Z mg lipid (preferably 0.025 mg sugar chain Z mg lipid). .
[0142] 本発明のシステムにおいて使用され得る糖鎖修飾リボソームの糖鎖は、 N—ァセチ ルラクトサミン基であり得る。この N—ァセチルラクトサミン基は、 0. OOOlmg糖鎖/ m g脂質〜 500mg糖鎖 Zmg脂質、好ましくは、 0. 025mg糖鎖 Zmg脂質の修飾結合 密度で糖鎖修飾リボソームに含まれ得る。脳血管をイメージングする場合、好ましくは 、 0. 0025mg糖鎖 Zmg脂質〜 0. lmg糖鎖 Zmg脂質 (好ましくは、 0. 025mg糖 鎖 Zmg脂質)の修飾結合密度で糖鎖修飾リボソームに含まれ得る。肝臓をイメージ ングする場合、好ましくは、 0. 0025mg糖鎖 Zmg脂質〜 0. 5mg糖鎖 Zmg脂質( 好ましくは、 0. lmg糖鎖 Zmg脂質)の修飾結合密度で糖鎖修飾リボソームに含まれ 得る。 [0142] The sugar chain of the sugar chain-modified ribosome that can be used in the system of the present invention may be an N-acetyllactosamine group. This N-acetyllactosamine group can be included in the sugar chain-modified ribosome at a modified binding density of 0. OOOlmg sugar chain / mg lipid to 500 mg sugar chain Z mg lipid, preferably 0.025 mg sugar chain Z mg lipid. When imaging cerebral blood vessels, preferably, 0.0025 mg sugar chain Z mg lipid to 0.1 mg sugar chain Z mg lipid (preferably 0.025 mg sugar It can be included in sugar chain modified ribosomes with a modified bond density of (chain Zmg lipid). When imaging the liver, the sugar chain modified ribosome may preferably be included at a modified bond density of 0.0025 mg sugar chain Zmg lipid to 0.5 mg sugar chain Zmg lipid (preferably 0.1 mg sugar chain Zmg lipid). .
[0143] 本発明のシステムにおいて使用され得る糖鎖修飾リボソームの糖鎖は、ひ 1—6マ ンノビオース基であり得る。この α 1—6マンノビオース基は、 0. OOOlmg糖鎖 Zmg 脂質〜 500mg糖鎖/ mg脂質の修飾結合密度で糖鎖修飾リボソームに含まれ得る 。癌組織をイメージングする場合、好ましくは、 0. 0025mg糖鎖 Zmg脂質〜 0. lmg 糖鎖 Zmg脂質 (好ましくは、 0. 025mg糖鎖 Zmg脂質)の修飾結合密度で糖鎖修 飾リボソームに含まれ得る。  [0143] The sugar chain of the sugar chain-modified ribosome that can be used in the system of the present invention may be a 1-6 mannobiose group. This α 1-6 mannobiose group can be contained in the sugar chain-modified ribosome with a modified bond density of 0. OOOlmg sugar chain Zmg lipid to 500 mg sugar chain / mg lipid. When imaging cancer tissue, it is preferably contained in the sugar chain-modified ribosome at a modified bond density of 0.0025 mg sugar chain Z mg lipid to 0.1 mg mg sugar chain Z mg lipid (preferably 0.025 mg sugar chain Z mg lipid). obtain.
[0144] 本発明のシステムにより、炎症部位、癌組織、脳血管または肝臓等をイメージング することができる。これらの組織は実質を含んでいてもよい。本発明のシステムにおい て使用される、標識の有無を調べる手段は、走査型顕微鏡であり得る。好ましくは、こ の標識の有無を調べる手段は、さらにスティック対物レンズを備える。標識の有無を 調べる手段は、標識を検出可能であれば、どのような物質 (例えば、蛍光、放射線、 発色物質 (例えば、 β gal)、発行物質 (例えば、ルシフェラーゼ)など)を検出する手 段など)であってもよい。なぜなら、標識を検出することにより、生体の機能または構 造を画像ィ匕することが可能であるからである。  [0144] With the system of the present invention, an inflamed site, cancer tissue, cerebral blood vessel, liver or the like can be imaged. These tissues may contain parenchyma. The means for examining the presence or absence of the label used in the system of the present invention may be a scanning microscope. Preferably, the means for checking the presence or absence of the label further comprises a stick objective lens. As a means for examining the presence or absence of a label, any substance (for example, fluorescence, radiation, chromogenic substance (for example, βgal), issuing substance (for example, luciferase), etc.) can be detected as long as the label can be detected. Etc.). This is because the function or structure of the living body can be imaged by detecting the label.
[0145] (処置方法)  [0145] (Treatment method)
別の局面において、本発明は、呼吸器系、循環器系、消化器系、泌尿器 '生殖器 系、中枢神経系、または末梢神経系の障害を有する被験体を処置するための方法を 提供する。この方法は、被験体に、障害を処置するための分子イメージング剤を投与 する工程を包含し、該分子イメージング剤は糖鎖修飾リボソームおよび薬学的受容 可能なキャリアを含み、該糖鎖修飾リボソームは該障害を処置するのに有効な量の 薬剤を含有する。ここで糖鎖修飾リボソームは、上述の (糖鎖修飾リボソーム)に記載 される任意の形態が使用され得る。  In another aspect, the present invention provides a method for treating a subject having a respiratory, circulatory, gastrointestinal, urinary 'genital, central or peripheral nervous system disorder. This method comprises administering to a subject a molecular imaging agent for treating a disorder, the molecular imaging agent comprising a glycosylated ribosome and a pharmaceutically acceptable carrier, wherein the glycosylated ribosome comprises Contains an effective amount of the drug to treat the disorder. Here, as the sugar chain-modified ribosome, any form described in the above (Sugar chain-modified ribosome) can be used.
[0146] 別の局面において、本発明は、炎症またはがんを有する被験体を処置するための 方法を提供する。この方法は、被験体に、障害を処置するための分子イメージング剤 を投与する工程を包含し、該分子イメージング剤は糖鎖修飾リボソームおよび薬学的 受容可能なキャリアを含み、該糖鎖修飾リボソームは該障害を処置するのに有効な 量の薬剤を含有する。ここで糖鎖修飾リボソームは、上述の(糖鎖修飾リボソーム)に 記載される任意の形態が使用され得る。 [0146] In another aspect, the present invention provides a method for treating a subject having inflammation or cancer. This method comprises a molecular imaging agent for treating a disorder in a subject. The molecular imaging agent comprises a glycosylated ribosome and a pharmaceutically acceptable carrier, and the glycosylated ribosome comprises an amount of an agent effective to treat the disorder. Here, as the sugar chain-modified ribosome, any form described in the above-mentioned (Sugar chain-modified ribosome) can be used.
[0147] (送達方法)  [0147] (Delivery method)
別の局面において、本発明は、生物学的因子を必要とする被験体において、標的 部位に該生物学的因子を送達するための方法を提供する。この方法は、本発明の 糖鎖修飾リボソームを投与する工程を包含し、該糖鎖修飾リボソームは該生物学的 因子の有効量を含有する。ここで糖鎖修飾リボソームは、上述の(糖鎖修飾リポソ一 ム)に記載される任意の形態が使用され得る。ここで糖鎖修飾リボソームは、上述の( 糖鎖修飾リボソーム)に記載される任意の形態が使用され得る。  In another aspect, the present invention provides a method for delivering a biological agent to a target site in a subject in need thereof. This method includes the step of administering the sugar chain-modified ribosome of the present invention, wherein the sugar chain-modified ribosome contains an effective amount of the biological factor. Here, as the sugar chain-modified ribosome, any form described in the above (sugar chain-modified liposome) can be used. Here, as the sugar chain-modified ribosome, any form described in the above (Sugar chain-modified ribosome) can be used.
[0148] (製造方法)  [0148] (Production method)
一つの局面において、本発明は、蛍光色素含有糖鎖修飾リボソームの製造方法を 提供する。この製造方法は、 A)蛍光色素をリボソームに内包したか、または結合させ たリボソームを形成させる工程; B)該リボソームを親水性化処理する工程; C)該リポ ノームとリンカ一タンパク質を結合させる工程、および D)該リボソームへ糖鎖を結合さ せる工程を包含する。ここで糖鎖修飾リボソームは、上述の(糖鎖修飾リボソーム)に 記載される任意の形態が使用され得る。  In one aspect, the present invention provides a method for producing a fluorescent dye-containing sugar chain-modified ribosome. This production method includes: A) a step of forming a ribosome in which a fluorescent dye is encapsulated or bound; B) a step of hydrophilizing the ribosome; C) a step of binding the liposome to a linker protein. And D) a step of binding a sugar chain to the ribosome. Here, as the sugar chain-modified ribosome, any form described in the above-mentioned (Sugar chain-modified ribosome) can be used.
[0149] 別の局面において、本発明は、糖鎖修飾リボソームを製造する方法を提供する。こ の方法は、(a)脂質を、メタノール Zクロ口ホルム溶液に懸濁して攪拌し、該攪拌した 溶液を蒸発させ、沈殿物を真空乾燥させることにより脂質膜を得る工程;(b)該脂質 膜を、懸濁緩衝液に懸濁し、超音波処理する工程;(c)該超音波処理した溶液と蛍 光標識溶液とを混合して、蛍光標識されたリボソームを提供する工程;(d)該リポソ一 ムをトリス (ヒドロキシアルキル)アミノアルカンにより親水性ィ匕処理する工程; (e)該親 水性ィ匕処理されたリボソームにリンカ一タンパク質を結合させて、リンカ一タンパク質 結合リボソームを生成する工程;および (f)該リボソームに、糖鎖を結合させて糖鎖修 飾リボソームを生成する工程を包含する。ここで糖鎖修飾リボソームは、上述の(糖鎖 修飾リボソーム)に記載される任意の形態が使用され得る。 [0150] 別の局面において、本発明は、目的の送達部位に物質 (たとえば、蛍光色素、医薬 )を送達するための糖鎖修飾リボソームの製造方法を提供する。この方法は、(a)種 々の糖鎖密度を有する、該目的の送達部位への送達を達成する蛍光標識された糖 鎖修飾リボソームを提供する工程であって、以下:(i)脂質を、メタノール Zクロ口ホル ム溶液に懸濁して攪拌し、該攪拌した溶液を蒸発させ、沈殿物を真空乾燥させること により脂質膜を得る工程;(ii)該脂質膜を、懸濁緩衝液に懸濁し、超音波処理するェ 程;(iii)該超音波処理した溶液と蛍光標識溶液とを混合する工程を包含する、工程; (b)該糖鎖修飾リボソーム上の糖鎖密度にっ 、て、該送達部位への最適な送達を達 成する密度を決定する工程;および (c)該物質 (たとえば、蛍光色素、医薬)を決定さ れた最適な糖鎖修飾リボソームに組み込んで薬物含有リボソームを生成する工程を 包含する。物質 (たとえば、蛍光色素、医薬)の組み込みは、例えば、封入、外表面 への結合などを挙げることができる。ここで糖鎖修飾リボソームは、上述の(糖鎖修飾 リボソーム)に記載される任意の形態が使用され得る。 [0149] In another aspect, the present invention provides a method for producing a sugar chain-modified ribosome. In this method, (a) a lipid is suspended in methanol Z chloroform solution and stirred, the stirred solution is evaporated, and a precipitate is vacuum dried to obtain a lipid membrane; Suspending the lipid membrane in a suspension buffer and sonicating; (c) mixing the sonicated solution with a fluorescent labeling solution to provide fluorescently labeled ribosomes; (d) ) Hydrophilic treatment of the liposome with tris (hydroxyalkyl) aminoalkane; (e) Linker protein is bound to the hydrophile-treated ribosome to form a linker protein-bound ribosome. And (f) binding a sugar chain to the ribosome to produce a sugar chain-modified ribosome. Here, as the sugar chain-modified ribosome, any form described in the above (Sugar chain-modified ribosome) can be used. [0150] In another aspect, the present invention provides a method for producing a sugar chain-modified ribosome for delivering a substance (eg, fluorescent dye, drug) to a target delivery site. This method comprises the steps of: (a) providing fluorescently labeled sugar chain-modified ribosomes having various sugar chain densities to achieve delivery to the target delivery site, comprising: (i) lipids Suspending in methanol Z chloroform solution and stirring, evaporating the stirred solution and drying the precipitate in vacuo to obtain a lipid membrane; (ii) the lipid membrane in suspension buffer Suspending and sonicating; (iii) mixing the sonicated solution with a fluorescent labeling solution; (b) glycan density on the glycan-modified ribosome; Determining the density to achieve optimal delivery to the delivery site; and (c) incorporating the substance (e.g., fluorescent dye, pharmaceutical) into the determined optimal glycosylated ribosome to contain the drug Including the step of generating ribosomes. Incorporation of substances (eg, fluorescent dyes, pharmaceuticals) can include, for example, encapsulation, binding to the outer surface, and the like. Here, as the sugar chain-modified ribosome, any form described in the above (Sugar chain-modified ribosome) can be used.
[0151] (蛍光色素の結合または封入)  [0151] (Bind or encapsulate fluorescent dye)
蛍光色素の結合または封入は、薬物をリボソーム中に結合または封入するために 用いられる任意のものが使用される。例えば、(1)ジノルミトイルフォスファチジルコリ ン(DPPC)、コレステロール、ガンダリオシド、ジセチルフォスフェート(DCP)、ジパ ルミトイルフォスファチジルエタノールァミン(DPPE)、コール酸ナトリウムを秤量し、メ タノール'クロ口ホルム溶液(1 : 1)に懸濁させ、 37°C、 1時間撹拌し;(2)クロ口ホルム 'メタノールをロータリーエバポレーターで蒸発させ、真空乾燥させる。 N—トリス(ヒド ロキシメチル) 3—ァミノプロパンスルホン酸緩衝液(pH8. 4)に再懸濁させ、 37°C 、 1時間撹拌後、窒素置換し超音波処理をし、(3)超音波処理溶液と蛍光色素 (例え ば、 cy5. 5、 cy3、 cy7)標識ヒト血清アルブミン溶液 (蛍光色素標識 HSA溶液)を混 合して、限外濾過(分画分子量: 10, 000)をすることによって、蛍光色素(例えば、 c y5. 5、 cy3、 cy7)標識 HSAを内包したリボソーム粒子が得られる。  For the binding or encapsulation of the fluorescent dye, any of those used to bind or encapsulate drugs in ribosomes is used. For example, (1) dinormitoylphosphatidylcholine (DPPC), cholesterol, gandarioside, dicetylphosphate (DCP), dipalmitoylphosphatidylethanolamine (DPPE), sodium cholate are weighed, Suspend in Tanol 'black mouth form solution (1: 1) and stir for 1 hour at 37 ° C; (2) Kuro mouth form' methanol is evaporated on a rotary evaporator and vacuum dried. Resuspended in N-tris (hydroxymethyl) 3-aminopropanesulfonate buffer (pH 8.4), stirred at 37 ° C for 1 hour, purged with nitrogen, and sonicated. (3) Ultrasonic Mix the treatment solution and fluorescent dye (eg, cy5.5, cy3, cy7) labeled human serum albumin solution (fluorescent dye labeled HSA solution) and perform ultrafiltration (fractional molecular weight: 10,000). To obtain a ribosome particle encapsulating a fluorescent dye (eg, cy5.5, cy3, cy7) labeled HSA.
[0152] (リボソームの製造)  [0152] (Production of ribosome)
リボソーム自体は、周知の方法に従い製造することができる力 これには、薄膜法、逆 層蒸発法、エタノール注入法、脱水一再水和法等を挙げることができる。 [0153] また、超音波照射法、エタストルージョン法、フレンチプレス法、ホモジナイゼーショ ン法等を用いて、リボソームの粒子径を調節することも可能である。本発明のリポソ一 ム自体の製法について、具体的に述べると、例えば、まず、ホスファチジルコリン類、 コレステロール、ホスファチジルエタノールアミン類、ホスファチジン酸類、ガンダリオ シド類、糖脂質類もしくはホスファチジルグリセロール類を配合成分とする脂質と界面 活性剤コール酸ナトリウムとの混合ミセルを調製する。とりわけ、ホスファチジン酸類も しくはジセチルホスフェート等の長鎖アルキルリン酸塩類の配合は、リボソームを負に 荷電させるために必須であり、ホスファチジルエタノールァミン類の配合は親水性ィ匕 反応部位として、ガンダリオシド類または糖脂質類またはホスファチジルグリセロール 類の配合はリンカ一の結合部位として必須のものである。ガンダリオシド類、糖脂質 類、ホスファチジルグリセロール類、スフインゴミエリン類およびコレステロール類から なる群力 選択される少なくとも 1種の脂質はリボソーム中で集合し、リンカ一を結合 させる足場 (ラフト)として機能する。本発明のリボソームは、このようなタンパク質を結 合させうるラフトが形成されることによりさらに安定化される。すなわち、本発明のリポ ソームは、リンカ一を結合させるためのガンダリオシド、糖脂質、ホスファチジルグリセ ロール類、スフインゴミエリン類およびコレステロール類力もなる群力も選択される少な くとも、 1種の脂質のラフトが形成されたリボソームを含む。そして、これにより得られる 混合ミセルの限外濾過を行うことによりリボソームを作製する。本発明において使用 するリボソームは、通常のものでも使用できる力 その表面は親水性ィ匕されていること が望ま 、。上述のようにしてリボソームを作製した後にリボソーム表面を親水性化す る。 The ribosome itself can be produced according to a known method. Examples thereof include a thin film method, a reverse layer evaporation method, an ethanol injection method, and a dehydration-one rehydration method. [0153] It is also possible to adjust the particle size of ribosomes by using an ultrasonic irradiation method, an etrusion method, a French press method, a homogenization method, or the like. The production method of the liposome itself of the present invention will be specifically described. For example, first, phosphatidylcholines, cholesterol, phosphatidylethanolamines, phosphatidic acids, gandariosides, glycolipids or phosphatidylglycerols are used as the ingredients. Prepare mixed micelles of lipid and surfactant sodium cholate. In particular, the combination of phosphatidic acids or long-chain alkyl phosphates such as dicetyl phosphate is essential to negatively charge the ribosome, and the combination of phosphatidylethanolamines is a hydrophilic reaction site. Formulation of gandiosides or glycolipids or phosphatidylglycerols is essential as a binding site for the linker. Group power consisting of gandiosides, glycolipids, phosphatidylglycerols, sphingomyelins, and cholesterols At least one selected lipid assembles in the ribosome and functions as a scaffold (raft) that binds the linker. The ribosome of the present invention is further stabilized by the formation of rafts that can bind such proteins. That is, the liposome of the present invention has at least one lipid raft selected from the group power of gandarioside, glycolipid, phosphatidylglycerols, sphingomyelins and cholesterols for binding the linker. Contains the formed ribosome. And the ribosome is produced by carrying out ultrafiltration of the mixed micelle obtained by this. The ribosome used in the present invention is a force that can be used even if it is a normal one. The surface should be hydrophilic. After preparing the ribosome as described above, the ribosome surface is made hydrophilic.
[0154] 本発明は、上記の親水性ィ匕化合物を用いて親水性ィ匕した糖鎖の結合して!/、な!/、リ ポソームそのものをも包含する。このような親水性ィ匕したリボソームは、リボソーム自体 の安定性が高まり、また糖鎖を結合したときに糖鎖の認識性が高まるという利点があ る。本発明のリボソームは、例えば、リボソームの構成脂質力 ホスファチジルコリン類 (モル比 0〜70%)、ホスファチジルエタノールアミン類(モル比 0〜30%)、ホスファ チジン酸類、長鎖アルキルリン酸塩およびジセチルホスフェート類力 なる群力 選 択される 1種以上の脂質 (モル比 0〜30%)、ガンダリオシド類、糖脂質類、ホスファ チジルグリセロール類およびスフインゴミエリン類力 なる群力 選択される 1種以上 の脂質(モル比 0〜40%)、ならびにコレステロール類(モル比 0〜70%)を含む、リポ ソームである。 [0154] The present invention also includes liposome itself by binding sugar chains that have been hydrophilicized using the above-mentioned hydrophilic compound. Such hydrophilic ribosomes have the advantage that the stability of the ribosome itself is enhanced, and that the sugar chain is recognizable when the sugar chain is bound. The ribosome of the present invention includes, for example, ribosomal constituent lipid strengths phosphatidylcholines (molar ratio 0 to 70%), phosphatidylethanolamines (molar ratio 0 to 30%), phosphatidic acids, long-chain alkyl phosphates and dicetyl. Phosphate power group power selected One or more lipids selected (molar ratio 0-30%), gandariosides, glycolipids, phosphatases Tidyglycerols and Sphingomyelins Powerful group power Liposomes containing one or more selected lipids (molar ratio 0-40%) and cholesterols (molar ratio 0-70%).
[0155] 本発明は、さらにリボソームに上記に親水性ィ匕化合物を結合させて、リボソームを 親水性化する方法をも包含する。また、糖鎖の結合していない親水性ィ匕したリポソ一 ムをも包含する。糖鎖の結合していないリボソームに糖鎖を結合することにより、本発 明の標的指向性リボソームまたは腸管吸収性リボソームを製造することができる。  [0155] The present invention further includes a method of rendering the ribosome hydrophilic by binding the above-described hydrophilic compound to the ribosome. It also includes hydrophilic liposomes with no sugar chains attached. The target-directed ribosome or intestinal absorbable ribosome of the present invention can be produced by binding a sugar chain to a ribosome to which no sugar chain is bound.
[0156] 好ましくは、親水性ィ匕は以下のようにして行うことができる。(1)炭酸緩衝液(50mM  [0156] Preferably, the hydrophilic property can be performed as follows. (1) Carbonate buffer (50mM
NaHCO , 157mM NaCl  NaHCO, 157 mM NaCl
3 、 pH8. 5)にバッファー交換する為、限外濾過(分画 分子量: 300, 000)をする。 (2)架橋剤 BS3 (PIERCE)を添カ卩して、室温で 2時間の 後、冷蔵下、一晩撹拌する。(3)遊離の BS3を除去するため、限外濾過 (分画分子量 : 300, 000)をする。 (4)トリス(ヒドロキシメチル)ァミノメタン Z炭酸緩衝液 (PH8. 5) 溶液を添加して、室温で 2時間の後、冷蔵下、一晩撹拌する。(5)遊離のトリス (ヒドロ キシメチル)ァミノメタンを除去し、 N トリス(ヒドロキシメチル) 3—ァミノプロパンス ルホン酸緩衝液 (pH8. 4)にバッファー交換する為に限外濾過(分画分子量: 300, 000)をする。 3. Perform ultrafiltration (molecular weight cut off: 300,000) for buffer exchange to pH 8.5). (2) Add the cross-linking agent BS 3 (PIERCE), stir at room temperature for 2 hours, and then stir overnight under refrigeration. (3) Perform ultrafiltration (molecular weight cut off: 300, 000) to remove free BS 3 . (4) Add tris (hydroxymethyl) aminomethane Z carbonate buffer (PH8.5) solution, stir at room temperature for 2 hours and then refrigerate overnight. (5) Ultrafiltration (molecular weight cut off: 300, 000) to remove free tris (hydroxymethyl) aminomethane and exchange the buffer with N-tris (hydroxymethyl) 3-aminopropanesulfonic acid buffer (pH 8.4). )do.
[0157] より好ましくは、親水性ィ匕は以下のようにして行うことができる。(1)炭酸緩衝液 (CB S緩衝液: 50mM NaHCO 157mM NaCl(pH8. 5) )にバッファー交換する為、  [0157] More preferably, the hydrophilic property can be carried out as follows. (1) To exchange the buffer with carbonate buffer (CB S buffer: 50 mM NaHCO 157 mM NaCl (pH 8.5)),
3,  3,
限外濾過(分画分子量: 100, 000、 2000 X gで 60分間)を 2回実施する。(2)架橋 剤 BS3 (PIERCE)を添加して、室温で 2時間の後、冷蔵下、一晩撹拌する。(3)遊離 の BS3を除去するため、限外濾過(分画分子量: 100, 000、 2000 X gで 60分間)を 2回実施する。(4)トリス (ヒドロキシメチル)ァミノメタン/ CBS緩衝液 (pH8. 5)溶液 を添加して、室温で 2時間の後、冷蔵下、一晩撹拌する。(5)遊離のトリス (ヒドロキシ メチル)ァミノメタンを除去し、 N—トリス(ヒドロキシメチル) 3—ァミノプロパンスルホ ン酸緩衝液 (PH8. 4)にバッファー交換する為に限外濾過(分画分子量: 100, 000 、 2000 X gで 60分間)を 2回実施する。 Perform ultrafiltration twice (fractionated molecular weight: 100,000, 2000 X g for 60 minutes). (2) Add cross-linking agent BS 3 (PIERCE), and after 2 hours at room temperature, stir overnight under refrigeration. (3) Perform ultrafiltration (fractionated molecular weight: 100,000, 2000 X g for 60 minutes) twice to remove free BS 3 (4) Add tris (hydroxymethyl) aminomethane / CBS buffer (pH 8.5) solution, and after 2 hours at room temperature, stir overnight under refrigeration. (5) Ultrafiltration (fractionated molecular weight) to remove free tris (hydroxymethyl) aminomethane and exchange the buffer with N-tris (hydroxymethyl) 3-aminopropanesulfonate buffer solution (PH8.4) : 100,000, 2000 X g for 60 minutes) twice.
[0158] 1つの実施形態において、本発明の製造方法は、 a)リンカ一タンパク質が結合した 蛍光を内包したリボソームを提供する工程; b)該リボソームを親水性ィ匕処理する工程 ; c) 3, 3, 一ジチォビス(スルホスクシ-ミジルプロピオネート)を該リボソームに結合さ せる工程;および d)該リボソームにおける該リンカ一タンパク質へ糖鎖を結合させて、 該蛍光色素含有糖鎖修飾リボソームを生じさせる工程を包含し、該 b)〜c)工程は任 意の順で実施され得る。この実施形態は、 e)該蛍光色素含有糖鎖修飾リボソームを 親水性化する工程; f)該親水性化した該蛍光色素含有糖鎖修飾リボソームを含む溶 液をフィルター濾過する工程をさらに包含し得る。ここで糖鎖修飾リボソームは、上述 の(糖鎖修飾リボソーム)に記載される任意の形態が使用され得る。 [0158] In one embodiment, the production method of the present invention comprises: a) providing a ribosome encapsulating fluorescence to which a linker protein is bound; b) subjecting the ribosome to a hydrophilic treatment. C) a step of binding 3,3,1 dithiobis (sulfosuccimid-midylpropionate) to the ribosome; and d) binding a sugar chain to the linker protein in the ribosome, Including the step of generating chain-modified ribosomes, wherein the steps b) to c) can be performed in any order. This embodiment further includes the step of e) hydrophilicizing the fluorescent dye-containing sugar chain-modified ribosome; f) filtering the solution containing the hydrophilic fluorescent dye-containing sugar chain-modified ribosome. obtain. Here, as the sugar chain-modified ribosome, any form described in the above-mentioned (Sugar chain-modified ribosome) can be used.
[0159] 好ましい実施形態において、本発明の製造方法は、前記 a)工程の次に順に前記 c )工程および前記 b)工程を行うことによって実施され得る。  [0159] In a preferred embodiment, the production method of the present invention can be carried out by performing the step c) and the step b) in order after the step a).
[0160] 1つの実施形態において、本発明の製造方法は、該 c)工程が、(cl)架橋剤 (例え ば、 3, 3,—ジチォビス (スルホスクシ-ミジルプロピオネート))を含む粉体 Aに、炭酸 緩衝液を含む溶液 Aを添加して溶解し、混合溶液を調製する工程;および (c2)リポ ソームを含む溶液に、該混合溶液を添加し、室温で、 16〜20時間攪拌し、分画分子 量 30, 000で限外濾過し、脱塩して、 3, 3, 一ジチォビス(スルホスクシ-ミジルプロ ピオネート)の結合した蛍光内包型リボソームを含む溶液を調製する工程を包含し、 該 b)工程が、(bl)該蛍光内包型リボソームを含む溶液を濃縮し、濃縮された該蛍光 内包型リボソームを含む溶液に、該溶液 Aを添加する工程;および (b2)該溶液 Aが 添加された該蛍光内包型リボソームを含む混合溶液を、分画分子量 300, 000で遠 心分離にかけて限外濾過し、濃縮し、該濃縮させた混合溶液に該溶液 Aを添加して 、親水性化された該蛍光内包型リボソームを調製する工程を包含し、前記 d)工程が 、(dl)所望の糖鎖を精製水に完全に溶解し、 1〜: LOmM濃度 (好ましくは、 5mM濃 度)の糖鎖溶液を調製する工程;(d2)必要に応じて、該糖鎖水溶液に、炭酸水素ァ ンモ-ゥム (pH 7〜14)を約 0. 2〜1. Og/mL濃度 (好ましくは、 0. 6g/mL濃度 )で添カ卩し、 20〜40°C (好ましくは、 37°C)で 3〜7日間(好ましくは、 3日間)攪拌させ て、冷蔵 (例えば、約 2〜8°C)下で、 20〜60分間(好ましくは、 30分間)インキュベー トし、濾過フィルターで濾過して、アミノ化糖鎖溶液を調製する工程;(d3)該親水性 化された蛍光内包型リボソームを含む溶液に、該ァミノィ匕糖鎖溶液を添加して、混合 した後、室温 (例えば、約 15〜30°C、好ましくは 20〜25°Cの範囲)で 2〜6時間(好 ましくは、 2 時間)反応させて反応溶液工程;および (d4)該 (d3)工程によって得ら れた該反応溶液に、トリス緩衝液を含む溶液 Bを添加し、室温 (例えば、約 15〜30°C 、好ましくは 20〜25°Cの範囲)下で、 2〜6時間(好ましくは、 2時間)攪拌し、さらに、 冷蔵(例えば、 1〜10°C、好ましくは 2〜8°C)下で、 16〜48時間(好ましくは、 16〜2 0時間)攪拌し、分画分子量 30, 000で限外濾過し、脱塩させて、前記蛍光色素含 有糖鎖修飾リボソームを生じさせる工程を包含し、前記 e)工程が、(el)該蛍光色素 含有糖鎖修飾リボソームを含む溶液を濃縮し、 2— [4— (2 ヒドロキシェチル)—1 ピぺラジュル]エタンスルホン酸 (HEPES)緩衝液を含む溶液 Cを添加し、分画分 子量 30, 000で限外濾過し、濃縮し、該濃縮させた蛍光色素含有糖鎖修飾リポソ一 ムを含む溶液に該 C溶液を添加して、該糖鎖が結合した蛍光内包型リボソームを親 水性ィ匕する工程を包含し得る。糖鎖に既に一級アミノ基が存在する場合には、該 (d 2)のアミノ化糖鎖溶液を調製する工程は省略され得る。アミノ化反応を行う場合、糖 鎖を溶解させる緩衝液は、一級アミノ基を有しさえしなければ、どのような緩衝液であ つてもよい。一級アミノ基を含む緩衝液に糖鎖を溶解すると、リボソームに対する糖鎖 の結合が妨げられるからである「冷蔵」とは約 1〜12°C、好ましくは約 2〜8°Cの範囲 の温度をいう。 [0160] In one embodiment, the production method of the present invention is a powder wherein the step c) comprises (cl) a cross-linking agent (eg, 3, 3, -dithiobis (sulfosucci-midylpropionate)). Adding a solution A containing carbonate buffer to the body A to dissolve and preparing a mixed solution; and (c2) adding the mixed solution to the solution containing liposomes at room temperature for 16 to 20 hours Stirring, ultrafiltering with a molecular weight cut off of 30,000, desalting, and preparing a solution containing a fluorescently encapsulated ribosome bound with 3,3,1 dithiobis (sulfosuccinimidylpropionate). And b) concentrating the solution containing the fluorescently encapsulated ribosome and adding the solution A to the concentrated solution containing the fluorescently encapsulated ribosome; and (b2) the solution A The mixed solution containing the fluorescently encapsulated ribosome to which is added a fractional molecular weight of 300,000 And c) concentrating, concentrating, and adding the solution A to the concentrated mixed solution to prepare the fluorescently encapsulated ribosome that has been made hydrophilic. (Dl) a step of completely dissolving a desired sugar chain in purified water, and preparing a sugar chain solution having a concentration of 1 to LOmM (preferably 5 mM); (d2) if necessary, the sugar chain Add hydrogen carbonate (pH 7-14) to the aqueous solution at a concentration of about 0.2 to 1. Og / mL (preferably 0.6 g / mL), and 20 to 40 ° C. (Preferably 37 ° C) for 3-7 days (preferably 3 days) and incubate under refrigeration (eg about 2-8 ° C) for 20-60 minutes (preferably 30 minutes) And a filtration filter to prepare an aminated sugar chain solution; (d3) adding the aminosaccharide chain solution to the solution containing the hydrophilically encapsulated fluorescent encapsulated ribosome and mixing Shi After, at room temperature (e.g., about 15 to 30 ° C, preferably in the range of 20-25 ° C is) 2-6 hours (good Preferably, the reaction solution step obtained by reacting for 2 hours; and (d4) solution B containing Tris buffer is added to the reaction solution obtained by step (d3), and room temperature (for example, about 15 -30 ° C, preferably 20-25 ° C) and stirred for 2-6 hours (preferably 2 hours) and refrigerated (eg 1-10 ° C, preferably 2-8 ° C) under stirring for 16 to 48 hours (preferably 16 to 20 hours), ultrafiltered with a molecular weight cut off of 30,000, and desalted to produce the fluorescent dye-containing sugar chain-modified ribosome. The step e) includes (el) concentrating the solution containing the fluorescent dye-containing sugar chain-modified ribosome, and 2- [4- (2-hydroxyethyl) -1piperaduryl] ethanesulfonic acid. Add solution C containing (HEPES) buffer, ultrafilter with a fraction of 30,000, concentrate, and contain the concentrated fluorescent dye-containing glycosylated liposomes Liquid was added to the C solution, the fluorescence-contained ribosomes sugar chains are bound may include the step of parent aqueous I spoon. When the primary amino group already exists in the sugar chain, the step of preparing the aminated sugar chain solution of (d 2) can be omitted. When carrying out the amination reaction, the buffer for dissolving the sugar chain may be any buffer as long as it does not have a primary amino group. Refrigeration refers to a temperature in the range of about 1-12 ° C, preferably about 2-8 ° C, because the sugar chain is dissolved in a buffer containing a primary amino group, which prevents the sugar chain from binding to the ribosome. Say.
[0161] 本方法において使用されるトリス緩衝液は、トリスヒドロキシメチルアンモ -ゥム (Tris hydroxymethylammonium)を塩基成分に用 V、た緩衝液であり、例えば、 N ト リス(ヒドロキシメチル) 3—ァミノプロパンスルホン酸緩衝液等が使用され得る。  [0161] The Tris buffer used in the present method is a buffer solution using Tris hydroxymethylammonium as a base component, for example, N tris (hydroxymethyl) 3-a. A minopropanesulfonic acid buffer or the like can be used.
[0162] 本方法にお!ヽて使用され得る糖鎖は、例えば、シァリルルイス X、 N ァセチルラク トサミン、 α 1—6マンノビオースなどが挙げられる力 これらに限定されない。糖鎖は 、好ましくは、シァリルルイス Xであり得る。  [0162] The sugar chains that can be used in the present method include, but are not limited to, sialic Lewis X, N-acetylyl lactosamine, α 1-6 mannobiose, and the like. The sugar chain may preferably be Cialyl Lewis X.
[0163] 別の実施形態において、本発明の方法により使用され得る糖鎖は、グリコシルァミノ 化反応の可能な糖鎖であり得る。  [0163] In another embodiment, the sugar chain that can be used by the method of the present invention can be a sugar chain capable of glycosylation reaction.
[0164] 糖鎖の添カ卩量は、リボソーム溶液 lmLあたり約 1〜250 Lの範囲であり得る。好ま しくは、リボソーム溶液 lmLあたり約 2. 5〜125 /z Lであり得る。炎症系に特異的な 糖鎖を用いる場合、好ましくは、糖鎖は、終濃度 5mMで添加され得る。  [0164] The amount of sugar chain added can range from about 1 to 250 L per mL of ribosome solution. Preferably, it can be about 2.5-125 / zL per mL of ribosome solution. When a sugar chain specific to the inflammatory system is used, the sugar chain can be preferably added at a final concentration of 5 mM.
[0165] (蛍光色素含有糖鎖修飾リボソームを製造するためのキット) 一つの局面において、本発明は、蛍光色素含有糖鎖修飾リボソームを製造するた めのキットを提供する。このキットは、 i)蛍光色素(例えば、 cy5. 5、 cy3、 cy7等)をリ ポソームに内包させる力、または結合させる手段; ii)該リボソームの親水性化剤; iii) 該リボソームのリンカ一タンパク質、および iv)糖鎖; V)該糖鎖を該リボソームに結合さ せる手段を備える。ここで糖鎖修飾リボソームは、上述の(糖鎖修飾リボソーム)に記 載される任意の形態が使用され得る。 [0165] (kit for producing sugar chain-modified ribosomes containing fluorescent dyes) In one aspect, the present invention provides a kit for producing a fluorescent dye-containing sugar chain-modified ribosome. This kit includes i) a force for encapsulating or binding a fluorescent dye (eg, cy5.5, cy3, cy7, etc.) into a liposome; ii) a hydrophilizing agent for the ribosome; iii) a linker for the ribosome A protein; and iv) a sugar chain; V) a means for binding the sugar chain to the ribosome. Here, as the sugar chain-modified ribosome, any form described in the above (sugar chain-modified ribosome) can be used.
[0166] 別の局面において、本発明は、蛍光色素含有糖鎖修飾リボソームを製造するため のキットを提供する。このキットは、(A)リンカ一タンパク質を結合したリボソームを含 む溶液;(B)架橋剤(例えば、 3, 3'—ジチォビス (スルホスクシ-ミジルプロピオネー ト)等)を含む粉体 Aと; (C)炭酸緩衝液を含む溶液 Aと;(D)トリス緩衝液を含む溶液 Bと;(E) HEPES緩衝液を含む溶液 Cとを備える。ここで糖鎖修飾リボソームは、上 述の(糖鎖修飾リボソーム)に記載される任意の形態が使用され得る。本キットにおい て使用されるトリス緩衝液は、トリスヒドロキシメチルアンモ -ゥム(Tris— hydroxyme thylammonium)を塩基成分に用いた緩衝液であり、例えば、 N トリス(ヒドロキシメ チル)— 3—ァミノプロパンスルホン酸緩衝液等が使用され得る。  [0166] In another aspect, the present invention provides a kit for producing a fluorescent dye-containing sugar chain-modified ribosome. This kit consists of (A) a solution containing a ribosome bound to a linker protein; (B) a powder A containing a cross-linking agent (eg, 3,3′-dithiobis (sulfosucci-midylpropionate), etc.) (C) Solution A containing carbonate buffer; (D) Solution B containing Tris buffer; and (E) Solution C containing HEPES buffer. Here, as the sugar chain-modified ribosome, any form described in the above (sugar chain-modified ribosome) can be used. The Tris buffer used in this kit is a buffer using Tris-hydroxyme thylammonium as a basic component, for example, N tris (hydroxymethyl) -3-amino. Propane sulfonate buffer or the like can be used.
[0167] 本発明において使用される場合、「冷蔵(下)」とは、約 1°C〜約 12°C、好ましくは約 2°C〜約 8°Cの範囲の温度をいう。本発明において使用される場合、「室温」とは、約 15°C〜約 30°C、好ましくは約 20°C〜約 25°Cの範囲の温度をいう。  [0167] As used in the present invention, "refrigerated (lower)" refers to a temperature ranging from about 1 ° C to about 12 ° C, preferably from about 2 ° C to about 8 ° C. As used herein, “room temperature” refers to a temperature in the range of about 15 ° C. to about 30 ° C., preferably about 20 ° C. to about 25 ° C.
[0168] (糖鎖の合成)  [0168] (Synthesis of sugar chains)
本発明の糖鎖修飾リボソームに使用され得る糖鎖は、一般的な糖鎖合成方法によ つて合成され得る。これらの方法としては、(1)化学合成による方法、(2)遺伝子組換 え細胞あるいは微生物による発酵法、(3)糖加水分解酵素(グリコシダーゼ)を用い て合成する方法、(4)糖転移酵素(グリコシルトランスフェラーゼ)を用いて合成する 方法が挙げられる。 (WO2002/081723,特開平 9 31095公報、特開平 11— 4 2096公報、特開 2004— 180676公報、畑中研一、西村紳一郎、大内辰郎および 小林一清(1997)糖質の科学と工業、講談社、東京などを参照のこと)。  The sugar chain that can be used in the sugar chain-modified ribosome of the present invention can be synthesized by a general sugar chain synthesis method. These methods include (1) chemical synthesis, (2) fermentation using genetically modified cells or microorganisms, (3) synthesis using a sugar hydrolase (glycosidase), (4) sugar transfer Examples of the synthesis method include an enzyme (glycosyltransferase). (WO2002 / 081723, JP-A-9 31095, JP-A-11-4 2096, JP-A-2004-180676, Kenichi Hatanaka, Shinichiro Nishimura, Goro Ouchi and Kazuyoshi Kobayashi (1997) Carbohydrate Science and Industry, Kodansha See Tokyo etc.).
[0169] 本発明の糖鎖修飾リボソームにおいて使用される糖鎖は、上記の方法により合成さ れた糖鎖であっても、市販の糖鎖であってもよい。 [0170] (リボソームへの糖鎖の結合) [0169] The sugar chain used in the sugar chain-modified ribosome of the present invention may be a sugar chain synthesized by the above method or a commercially available sugar chain. [0170] (Sugar chain binding to ribosome)
本発明においては、上記のようにして作製したリボソームに、上記の糖鎖のいずれ 力を直接結合させてもよいし、さらに、リンカ一を介して糖鎖を結合させてもよい。この 際、リボソームに結合させる糖鎖の種類は 1種類に限らず、複数の糖鎖を結合させて もよい。この場合の複数の糖鎖は同じ組織または器官の細胞表面に共通して存在す る異なるレクチンに対して結合活性を有する複数の糖鎖であってもよ 、し、異なる組 織または器官の細胞表面に存在する異なるレクチンに対して結合活性を有する糖鎖 であってもよい。前者のような複数の糖鎖を選択することにより、特定の標的組織また は器官を確実に指向することができ、後者のような複数の糖鎖を選択することにより、 1種類のリボソームに複数の標的を指向させることができ、マルチパーパスな標的指 向性リボソームを得ることができる。  In the present invention, any of the above-mentioned sugar chains may be directly bound to the ribosome prepared as described above, and further, a sugar chain may be bound via a linker. At this time, the type of sugar chain to be bound to the ribosome is not limited to one, and a plurality of sugar chains may be bound. In this case, the plurality of sugar chains may be a plurality of sugar chains having binding activity to different lectins existing in common on the cell surface of the same tissue or organ, and cells of different tissues or organs may be used. It may be a sugar chain having binding activity for different lectins present on the surface. By selecting multiple sugar chains such as the former, it is possible to reliably target a specific target tissue or organ. By selecting multiple sugar chains such as the latter, multiple sugar chains can be selected for one type of ribosome. Target can be directed and multipurpose target-directed ribosomes can be obtained.
[0171] なお、糖鎖をリボソームに結合させるには、リボソームの製造時にリンカ一および/ または糖鎖を混合し、リボソームを製造させつつ糖鎖をその表面に結合させることも 可能であるが、あら力じめリボソーム、リンカ一および糖鎖を別途準備し、製造が完了 したリボソームにリンカ一および zまたは糖鎖を結合させたほうが望ましい。これは、リ ポソームにリンカ一および Zまたは糖鎖を結合させることにより、結合させる糖鎖の密 度を制御できるからである。糖鎖のリボソームへの直接結合は、以下に述べるような 方法で行うことができる。  [0171] In order to bind the sugar chain to the ribosome, it is possible to mix the linker and / or sugar chain during the production of the ribosome, and to bind the sugar chain to the surface while producing the ribosome. It is desirable to prepare ribosomes, linkers and sugar chains separately, and link the linkers and z or sugar chains to the completed ribosomes. This is because the density of the sugar chain to be bound can be controlled by binding the linker and Z or sugar chain to the liposome. Direct binding of sugar chains to ribosomes can be performed by the methods described below.
[0172] 糖鎖を糖脂質として混合してリボソームを製造するカゝ、製造後のリボソームのリン脂 質に糖鎖を結合するとともに糖鎖密度を制御する。リンカ一を用いて糖鎖を結合させ る場合、リンカ一としては、生体由来のタンパク質、特にヒト由来タンパク質を用いるの が好ましい。生体由来のタンパク質は限定されないが、アルブミン等の血液中に存在 するタンパク質、その他生体に存在する生理活性物質等が挙げられる。例えば、ヒト 血清アルブミン (HSA)、ゥシ血清アルブミン(BSA)等の動物の血清アルブミンが挙 げられる力 特にヒト血清アルブミンを使用する場合は、各組織に対する取り込みが 多いことがマウスについての実験により確かめられている。本発明のリボソームは、非 常に安定であり、リボソームを形成した後にタンパク質を結合させたり、リンカ一を結 合させたり、糖鎖を結合させるという後処理が可能である。従って、リボソームを大量 に製造した後に、 目的に応じてそれぞれ異なるタンパク質を結合させたり、リンカ一や 糖鎖を結合させることにより、 目的に応じた種々のリボソームを製造することが可能で ある。 [0172] The sugar chain is mixed as a glycolipid to produce a ribosome, and the sugar chain is bound to the phosphosome of the ribosome after production and the sugar chain density is controlled. When linking sugar chains using a linker, it is preferable to use a protein derived from a living body, particularly a human-derived protein. The protein derived from the living body is not limited, and examples include proteins existing in blood such as albumin, and other physiologically active substances existing in the living body. For example, the ability of animal serum albumin such as human serum albumin (HSA) and ushi serum albumin (BSA) to be raised, especially when human serum albumin is used, it has been shown by experiments on mice that there is a large uptake in each tissue. It has been confirmed. The ribosome of the present invention is very stable, and can be subjected to post-treatments such as binding a protein, binding a linker, or binding a sugar chain after forming the ribosome. Therefore, a large amount of ribosome After the production, various ribosomes can be produced according to the purpose by binding different proteins according to the purpose or by linking a linker or sugar chain.
[0173] 本発明のリボソームには、糖鎖がリンカ一を介して、あるいはリボソームを構成する 脂質に直接結合している。本発明のリボソームは、糖脂質や糖タンパク質等の複合 糖質型リガンドを有し、低分子化合物で親水化処理されて!ヽるリボソームである。  [0173] In the ribosome of the present invention, a sugar chain is directly bonded to a lipid constituting the ribosome via a linker. The ribosome of the present invention has a complex carbohydrate type ligand such as glycolipid and glycoprotein, and is hydrophilized with a low molecular weight compound! It is a ribosome.
[0174] また、後述のように、本発明の標的指向性リボソームを医薬として用いる場合、該リ ポソームは医薬効果を有する化合物を含んで 、る必要がある。該医薬効果を有する 化合物は、リボソーム中に封入させるか、あるいはリボソーム表面に結合させればよ いが、リンカ一として、医薬効果を有するタンパク質を用いてもよい。この場合、タンパ ク質がリボソームと糖鎖を結合させるためのリンカ一および医薬効果を有するタンパク 質を兼ねることもある。薬効を有するタンパク質としては、生理活性タンパク質等が挙 げられる。  [0174] As described later, when the target-directed ribosome of the present invention is used as a medicine, the liposome needs to contain a compound having a pharmaceutical effect. The compound having a medicinal effect may be encapsulated in a ribosome or bound to the ribosome surface, but a protein having a medicinal effect may be used as a linker. In this case, the protein may also serve as a linker for binding the ribosome and sugar chain and a protein having a medicinal effect. Examples of the medicinal protein include physiologically active proteins.
[0175] 本発明の糖鎖修飾リボソームの作製において、リボソームとリンカ一とを結合させる 際には、架橋基が使用され得る。  [0175] In the production of the sugar chain-modified ribosome of the present invention, a crosslinking group can be used when the ribosome and the linker are bound.
[0176] リンカ一を介して糖鎖をリボソームへ結合させるには以下に述べる方法で行えばよ い。 [0176] In order to bind a sugar chain to a ribosome via a linker, the following method may be used.
[0177] まずリボソーム表面にタンパク質を結合させる。リボソームを、 NalO 、 Pb (0 CCH  [0177] First, a protein is bound to the ribosome surface. Ribosome, NalO, Pb (0 CCH
4 2 3 4 2 3
) 、 NaBiO等の酸化剤で処理して、リボソーム膜面に存在するガンダリオシドを酸ィ匕) Gandarioside present on the ribosome membrane surface is treated with an oxidizing agent such as NaBiO.
4 3 4 3
し、次いで、 NaBH CN  And then NaBH CN
3 、 NaBH等の試乗を用いて、リンカ一とリボソーム膜面上の  3 Using the test drive of NaBH, etc., on the linker and ribosome membrane surface
4  Four
ガンダリオシドを、還元的ァミノ化反応により結合させる。このリンカ一も、親水性化す るのが好ましぐこれにはリンガータンパク質にヒドロキシ基を有する化合物を結合さ せるが、例えば、ビススルホスクシンイミジルスべラート、ジスクシンィミジルグルタレ一 ト、ジチオビススクシンィミジルプロピオネート、ジスクシンイミジノレスべラート、 3, 3, 一 ジチォビス(スルホスクシンィミジルプロピオネート)、エチレングリコーノレビススクシン イミジルスクシネート、エチレングリコールビススルホスクシンィミジルスクシネート等の 2価試薬を用いて、トリス (ヒドロキシメチル)ァミノメタン等の上述の親水性ィ匕に用いる 化合物をリボソーム上のリンカ一と結合させればょ 、。 [0178] これを具体的に述べると、まず、リンカ一のすべてのァミノ基に架橋用 2価試薬の一 端を結合する。そして、各種糖鎖の還元末端をグリコシルァミノ化反応して得られる 糖鎖グリコシルァミンィ匕合物を調製し、この糖鎖のアミノ基とリボソーム上の上記で結 合された架橋 2価試薬の一部分の他の未反応末端とを結合する。糖鎖および Zまた は親水性ィ匕合物とリボソームとの共有結合、または糖鎖および Zまたは親水性ィ匕合 物とリンカ一との共有結合は、リボソームが細胞内に取り込まれたときに切断すること も可能である。例えば、リンカ一と糖鎖がジスルフイド結合を介して共有結合されてい る場合、細胞内で還元されて糖鎖が切断される。糖鎖が切断されることによりリポソ一 ム表面が疎水性になり、生体膜と結合し膜安定性が乱れリボソーム中に含まれる薬 剤が放出される。 Gandarioside is coupled by a reductive amination reaction. This linker is also preferably made hydrophilic, by binding a compound having a hydroxy group to Ringer protein, for example, bissulfosuccinimidyl suberate, disuccinimidyl glutarate. , Dithiobissuccinimidyl propionate, disuccinimidino resverate, 3, 3, 1 dithiobis (sulfosuccinimidyl propionate), ethylene glycolenobisbiscin imidyl succinate, ethylene A divalent reagent such as glycol bissulfosuccinimidyl succinate can be used to bind the above-mentioned hydrophilic compound such as tris (hydroxymethyl) aminomethane to a linker on the ribosome. [0178] Specifically, first, one end of a divalent reagent for crosslinking is bonded to all the amino groups of the linker. Then, a glycosylamine compound obtained by glycosylation of the reducing ends of various sugar chains is prepared, and the divalent cross-linked divalent conjugated glycans and amino groups of the sugar chain are bonded to each other as described above. Combine the other unreacted end of the reagent portion. The covalent bond between the sugar chain and Z or hydrophilic compound and the ribosome, or the covalent bond between the sugar chain and Z or hydrophilic compound and the linker, occurs when the ribosome is taken into the cell. It can also be cut. For example, when a linker and a sugar chain are covalently bonded via a disulfide bond, the sugar chain is cleaved by reduction in the cell. When the sugar chain is cleaved, the surface of the liposome becomes hydrophobic, binds to the biological membrane, disturbs the membrane stability, and releases the drug contained in the ribosome.
[0179] 次に、このようにして得られる糖鎖修飾リボソーム膜面上タンパク質の表面に糖鎖が 結合して!/ヽな!ヽ未反応で残って!/ヽる大部分の 2価試薬未反応末端を用いて親水性 化処理を行う。つまり、このリボソーム上タンパク質に結合している 2価試薬の未反応 末端とトリス (ヒドロキシメチル)ァミノメタン等の上述の親水性ィ匕に用いる化合物との 結合反応を行い、リボソーム表面全体を親水性化する。リボソーム表面およびリンカ 一の親水性ィ匕は、各種組織への移行性、および血中における滞留性および各種糸且 織への移行性を向上させる。これは、リボソーム表面およびリンカ一表面が親水性ィ匕 されることによって、糖鎖以外の部分が、各組織等においてはあた力も生体内水分で あるかのようにみえ、これにより、標的以外の組織等に認識されず、糖鎖のみがその 標的組織のレクチン (糖鎖認識タンパク質)〖こより認識されること〖こ起因するものと思 われる。  [0179] Next, most of the divalent reagents that bind to the surface of the protein on the sugar chain-modified ribosome membrane thus obtained! Perform hydrophilic treatment using unreacted ends. In other words, the unreacted end of the divalent reagent bound to the protein on the ribosome and the compound used for the above hydrophilic property such as tris (hydroxymethyl) aminomethane are subjected to a binding reaction to make the entire ribosome surface hydrophilic. To do. The hydrophilic property of the ribosome surface and the linker improves transferability to various tissues, retention in blood, and transferability to various yarns and tissues. This is because the surface of the ribosome and the surface of the linker are made hydrophilic, so that the parts other than the sugar chain appear to be the moisture in the body in each tissue. This is probably due to the fact that only the sugar chain is recognized by the target tissue lectin (sugar chain recognition protein).
[0180] 好ましくは、リンカ一は以下のようにしてリボソームに結合させる。(1)メタ過ヨウ素酸 ナトリウム/ N—トリス(ヒドロキシメチル)— 3—ァミノプロパンスルホン酸緩衝液 (pH8 . 4)を添加し、冷蔵下、一晩撹拌し、リボソーム粒子表面を酸ィ匕する。(2)遊離のメタ 過ヨウ素酸ナトリウムを除去し、 PBS緩衝液 (pH8. 0)にバッファー交換する為に、限 外濾過(分画分子量: 300, 000)をする。 (3) HSAZPBS緩衝液 (pH8. 0)を添カロ して室温で 2時間反応させた溶液に、シァノホウ素酸ナトリウム ZPBS緩衝液 (pH8. 0)を添加して、室温で 2時間の後、冷蔵下、一晩撹拌する。(4)遊離のシァノホウ素 酸ナトリウム、 HSAを除去し、炭酸緩衝液 (PH8. 5)にバッファー交換する目的で、 限外濾過(分画分子量: 300, 000)をする。これにより、リンカ一をリボソーム結合さ せることができる。 [0180] Preferably, the linker is bound to the ribosome as follows. (1) Add sodium metaperiodate / N-tris (hydroxymethyl) -3-aminopropanesulfonic acid buffer (pH 8.4) and stir overnight under refrigeration. To do. (2) Remove free sodium metaperiodate and perform ultrafiltration (molecular weight cut off: 300,000) to exchange the buffer with PBS buffer (pH 8.0). (3) To the solution that had been added with HSAZPBS buffer (pH 8.0) and reacted at room temperature for 2 hours, sodium cyanoborate ZPBS buffer (pH 8.0) was added, and after 2 hours at room temperature, Stir overnight under refrigeration. (4) Free cyanoboron Perform ultrafiltration (molecular weight cut off: 300,000) to remove sodium acid and HSA, and exchange the buffer with carbonate buffer ( PH 8.5). As a result, the linker can be bound to the ribosome.
[0181] 好ましくは、リンカ一は以下のようにしてリボソームに結合させる。(1)メタ過ヨウ素酸 ナトリウム/ N トリス(ヒドロキシメチル)— 3—ァミノプロパンスルホン酸緩衝液 (pH8 . 4)を添加し、冷蔵下、一晩撹拌し、リボソーム粒子表面を酸ィ匕する。(2)遊離のメタ 過ヨウ素酸ナトリウムを除去し、 PBS緩衝液 (pH8. 0)にバッファー交換する為に、限 外濾過(分画分子量: 300, 000)をする。(3) HSAZPBS緩衝液 (pH8. 0)を添カロ して室温で 2時間反応させた後、冷蔵下、一晩撹拌する。(4)遊離の HSAを除去し、 炭酸緩衝液 (PH8. 5)にバッファー交換する目的で、限外濾過(分画分子量: 300, 000)をする。これにより、リンカ一をリボソーム結合させることができる。  [0181] Preferably, the linker is bound to the ribosome as follows. (1) Add sodium metaperiodate / N tris (hydroxymethyl) -3-aminopropanesulfonic acid buffer (pH 8.4) and stir overnight under refrigeration to acidify the ribosome particle surface. . (2) Remove free sodium metaperiodate and perform ultrafiltration (molecular weight cut off: 300,000) to exchange the buffer with PBS buffer (pH 8.0). (3) After adding HSAZPBS buffer (pH 8.0) and reacting at room temperature for 2 hours, stir overnight under refrigeration. (4) Perform ultrafiltration (molecular weight cut off: 300, 000) for the purpose of removing free HSA and exchanging the buffer with carbonate buffer (PH8.5). As a result, the linker can be bound to the ribosome.
[0182] より好ましくは、リンカ一は以下のようにしてリボソームに結合させる。(1)メタ過ヨウ 素酸ナトリウム ZN トリス(ヒドロキシメチル) 3—ァミノプロパンスルホン酸緩衝液 ( PH8. 4)を添加し、冷蔵下、一晩撹拌し、リボソーム粒子表面を酸ィ匕する。(2)遊離 のメタ過ヨウ素酸ナトリウムを除去し、 PBS緩衝液 (pH8. 0)にバッファー交換する為 に、限外濾過により 1/5〜1/10倍量まで濃縮し、 PBS緩衝液 (pH8. 0)を加え元 の容量に合わせる。この操作を 2回繰り返す。(3) HSAZPBS緩衝液 (pH8. 0)を 添加して室温で 2時間反応させた後、シァノホウ素酸ナトリウム ZPBS緩衝液 (pH8. 0)を添加して、室温で 2時間の後、さらに冷蔵下で、一晩撹拌する。(4)遊離のシァ ノホウ素酸ナトリウム、 HSAを除去し、炭酸緩衝液 (PH8. 5)にバッファー交換する目 的で、限外濾過により 1/5〜1/10倍量まで濃縮し、炭酸緩衝液 (pH8. 5)を加え 元の容量に合わせる。この操作を 2回繰り返す。これにより、リンカ一をリボソーム結合 させることがでさる。 [0182] More preferably, the linker is bound to the ribosome as follows. (1) Add sodium metaperiodate ZN tris (hydroxymethyl) 3-aminopropanesulfonic acid buffer (PH8.4) and stir overnight under refrigeration to acidify the ribosome particle surface. (2) To remove free sodium metaperiodate and replace the buffer with PBS buffer (pH 8.0), concentrate to 1/5 to 1/10 times the volume by ultrafiltration. Add pH 8.0 to the original volume. Repeat this operation twice. (3) After adding HSAZPBS buffer (pH 8.0) and reacting at room temperature for 2 hours, add sodium cyanoboronate ZPBS buffer (pH 8.0), and after 2 hours at room temperature, further refrigerate. Stir overnight under. (4) free Xia Nohou sodium periodate to remove the HSA, carbonate buffer (P H8. 5) in a purpose to buffer exchange, and concentrated to 1 / 5-1 / 10 times by ultrafiltration, Add carbonate buffer (pH 8.5) to the original volume. Repeat this operation twice. This allows the linker to bind to the ribosome.
[0183] より好ましくは、リンカ一は以下のようにしてリボソームに結合させる。(1)メタ過ヨウ 素酸ナトリウム ZN トリス(ヒドロキシメチル) 3—ァミノプロパンスルホン酸緩衝液 ( PH8. 4)を添加し、冷蔵下、一晩撹拌し、リボソーム粒子表面を酸ィ匕する。(2)遊離 のメタ過ヨウ素酸ナトリウムを除去し、 PBS緩衝液 (pH8. 0)にバッファー交換する為 に、限外濾過により 1/5〜1/10倍量まで濃縮し、 PBS緩衝液 (pH8. 0)を加え元 の容量に合わせる。この操作を 2回繰り返す。(3) HSAZPBS緩衝液 (pH8. 0)を 添加して室温で 2時間反応させ、さらに冷蔵下で、一晩撹拌する。(4)炭酸緩衝液 (p H8. 5)にバッファー交換する目的で、限外濾過により 1Z5〜1Z10倍量まで濃縮し 、炭酸緩衝液 (PH8. 5)を加え元の容量に合わせる。この操作を 2回繰り返す。これ により、リンカ一をリボソーム結合させることができる。 [0183] More preferably, the linker is bound to the ribosome as follows. (1) Add sodium metaperiodate ZN tris (hydroxymethyl) 3-aminopropanesulfonic acid buffer (PH8.4) and stir overnight under refrigeration to acidify the ribosome particle surface. (2) To remove free sodium metaperiodate and replace the buffer with PBS buffer (pH 8.0), concentrate to 1/5 to 1/10 times the volume by ultrafiltration. Add pH 8.0) To the capacity of Repeat this operation twice. (3) Add HSAZPBS buffer (pH 8.0), react at room temperature for 2 hours, and stir overnight under refrigeration. (4) For the purpose of exchanging the buffer with carbonate buffer (pH 8.5), concentrate to 1Z5 to 1Z10 times by ultrafiltration, and add carbonate buffer (PH8.5) to the original volume. Repeat this operation twice. As a result, the linker can be bound to the ribosome.
[0184] 次いで、糖鎖をリボソーム上のリンカ一に結合させる。これには、糖鎖を構成する糖 類の還元末端を、 NH HCO 、 NH COONH等のアンモ-ゥム塩を用いてグリコシ [0184] Next, the sugar chain is bound to a linker on the ribosome. For this purpose, the reducing end of the sugar constituting the sugar chain is glycosylated using ammonia salts such as NH HCO and NH COONH.
4 3 2 4  4 3 2 4
ノレアミノィ匕し、次いで、ビススノレホスクシンイミジノレスべラート、ジスクシンイミジノレグノレ タレート、ジチオビススクシンィミジルプロピオネート、ジスクシンイミジノレスべラート、 3 , 3, 一ジチォビス(スルホスクシンィミジルプロピオネート)、エチレングリコーノレビスス クシンィミジルスクシネート、エチレングリコールビススルホスクシンィミジルスクシネー ト等の 2価試薬を用いて、リボソーム膜面上に結合したリンカ一と、上記グリコシルアミ ノ化された糖類とを結合させてリボソームを得る。なお、これらの糖鎖は市販されてい る。  And then bis-sunophossuccinimidinores belate, disuccinimidino regaleate, dithiobissuccinimidyl propionate, disuccinimidino resverate, 3, 3, 1 dithiobis ( Bind on the ribosome membrane surface using a bivalent reagent such as sulfosuccinimidyl propionate), ethyleneglycololebissuccinimidyl succinate, ethylene glycol bissulfosuccinimidyl succinate The obtained linker and the glycosylated amino sugar are bound to obtain a ribosome. These sugar chains are commercially available.
[0185] 好ましくは、糖鎖のリボソーム上のリンカ一への結合は以下のように行うことができる 。 (1)糖鎖を精製水に溶解し、炭酸水素アンモ-ゥム飽和下で 37°C、 3日間反応さ せる。(アミノ化糖鎖溶液)。(2)リボソーム溶液に架橋剤 DTSSP (PIERCE)を添 カロして、室温で 2時間の後、冷蔵下、一晩撹拌する。(3)遊離の DTSSPを除去する ため、限外濾過(分画分子量: 300, 000)をする。(4)アミノ化糖鎖溶液を添加して、 室温で 2時間反応させた後、トリス (ヒドロキシメチル)ァミノメタン/炭酸緩衝液 (pH8 . 5)を添加し、冷蔵下、一晩撹拌する。 (5)遊離の糖鎖とトリス (ヒドロキシメチル)アミ ノメタンを除去し、 HEPES緩衝液 (pH7. 2)にバッファー交換するため、限外濾過( 分画分子量: 300, 000)をする。これにより、糖鎖のリボソーム上のリンカ一への結合 が達成され得る。  [0185] Preferably, the sugar chain can be bound to the linker on the ribosome as follows. (1) Dissolve the sugar chain in purified water and react at 37 ° C for 3 days under ammonium hydrogen carbonate saturation. (Aminated sugar chain solution). (2) Add the crosslinking agent DTSSP (PIERCE) to the ribosome solution, and after 2 hours at room temperature, stir overnight under refrigeration. (3) Perform ultrafiltration (molecular weight cut off: 300,000) to remove free DTSSP. (4) Add aminated sugar chain solution and react at room temperature for 2 hours, then add tris (hydroxymethyl) aminomethane / carbonate buffer (pH 8.5) and stir overnight under refrigeration. (5) Perform ultrafiltration (molecular weight cut off: 300,000) to remove free sugar chains and tris (hydroxymethyl) aminomethane and exchange the buffer with HEPES buffer (pH 7.2). Thereby, the binding of the sugar chain to the linker on the ribosome can be achieved.
[0186] リボソーム形成と蛍光(例えば、 cy5. 5、 Cy3、 Cy7など)標識 HSAの内包(工程 A );リボソームの親水性ィ匕処理(工程 B);リボソームと HSAの結合(工程 C)およびリポ ノームへの糖鎖の結合(工程 D)に引き続いて 0. 45 mフィルター濾過をすることに よって、仕上げることができる。 [0187] 本発明のリボソーム、糖鎖修飾リボソームのタンパク質量は、例えば、リボソームに 内包された HSA量とリボソーム表面にカップリングした HSAの総タンパク質量を BC A法により測定することができる。 [0186] Ribosome formation and fluorescence (eg, cy5.5, Cy3, Cy7, etc.) labeled HSA inclusion (step A); ribosome hydrophilic treatment (step B); ribosome-HSA binding (step C) and Finishing can be accomplished by 0.45 m filter filtration following glycosylation of liposomes (step D). [0187] The amount of protein of the ribosome or sugar chain-modified ribosome of the present invention can be measured, for example, by the BCA method by measuring the amount of HSA encapsulated in the ribosome and the total amount of HSA coupled to the ribosome surface.
[0188] [化 26] く BCA法の原理 >  [0188] [Chemical 26] <Principle of BCA method>
工程 1. タンパク質 + GU+2 Process 1. Protein + GU + 2
Figure imgf000098_0001
Figure imgf000098_0001
[0189] タンパク質量の測定は、例えば、 Micro BCA Protein Assay Reagentキッ ト(カタログ番号 23235BN) (PIERCE Co. LTD)などを用いることができる。標準 物質として、 2mgZmlアルブミン (BSA)を使用し得る。(1)スタンダード溶液として、 標準物質(2mgZml :アルブミン)を PBS緩衝液で希釈し、 0、 0. 25、 0. 5、 1、 2、 3 、4、 5 g/50 1溶液を調製する。 (2) Cy5. 5内包糖鎖修飾リボソームを PBS緩衝 液で 20倍希釈し、検体溶液を調製する。(3)スタンダード溶液、検体溶液をそれぞ れ試験管に 50 1分注する。(4)各試験管に 3%ラウリル硫酸ナトリウム溶液 (SDS溶 液)を 100 1添加する。(5)キットに添付された試薬 A、 B、 Cを、試薬 A:試薬 B :試 薬 C= 48 : 2 : 50となるように混合し、各試験管に 150 1添加する。(6)この試験管を 、 60°Cで 1時間、静置する。(7)室温に戻ってから、吸光度 540nmを測定し、スタン ダード溶液により検量線を作成して、リボソームのタンパク質量を測定する。検量線の 一例を図 32に示す。 [0189] For the measurement of the amount of protein, for example, Micro BCA Protein Assay Reagent Kit (Cat. No. 23235BN) (PIERCE Co. LTD) can be used. As a standard, 2 mg Zml albumin (BSA) can be used. (1) As a standard solution, dilute the standard substance (2mgZml: albumin) with PBS buffer solution to prepare 0, 0.25, 0.5, 1, 2, 3, 4, 5 g / 50 1 solution. (2) Dilute the Cy5.5-encapsulated sugar chain-modified ribosome 20-fold with PBS buffer to prepare a sample solution. (3) Dispense the standard solution and sample solution into test tubes for 50 1 minutes. (4) Add 100 1 of 3% sodium lauryl sulfate solution (SDS solution) to each test tube. (5) Mix reagents A, B, and C attached to the kit so that reagent A: reagent B: reagent C = 48: 2: 50, and add 1501 to each test tube. (6) Leave the test tube at 60 ° C for 1 hour. (7) After returning to room temperature, measure the absorbance at 540 nm, create a calibration curve with a standard solution, and measure the amount of ribosomal protein. Figure 32 shows an example of a calibration curve.
[0190] 本発明の糖鎖修飾リボソームのタンパク質量は、例えば、 0. 1〜: LmgZmlの範囲 であり得る。 Cy3により標識された糖鎖修飾リボソームのタンパク質量は、例えば、 0. 24mg/ml以上であり得る。 Cy5. 5により標識された糖鎖修飾リボソームのタンパク 質量は、例えば、 0. 45mgZml以上であり得る。 Cy7により標識された糖鎖修飾リポ ノームのタンパク質量は、例えば、 0. 20mgZml以上であり得る。 [0190] The protein amount of the sugar chain-modified ribosome of the present invention can be, for example, in the range of 0.1 to: LmgZml. The protein amount of the sugar chain-modified ribosome labeled with Cy3 can be, for example, 0.24 mg / ml or more. Sugar-modified ribosomal protein labeled with Cy5.5 The mass can be, for example, 0.45 mgZml or more. The protein amount of the sugar chain-modified liposome labeled with Cy7 can be, for example, 0.20 mgZml or more.
[0191] 本発明のリボソーム、糖鎖修飾リボソームの構成脂質量は、例えば、コレステロール 量を定量することにより算出することができる。  [0191] The amount of constituent lipids of the ribosome and sugar chain-modified ribosome of the present invention can be calculated, for example, by quantifying the amount of cholesterol.
[0192] <脂質定量の原理 >  [0192] <Principle of lipid quantification>
[0193] [化 27]
Figure imgf000099_0001
[0193] [Chemical 27]
Figure imgf000099_0001
エステル ¾コレステロール(EC) ¾鶴型コレステロール (FC) 脂肪酸
Figure imgf000099_0002
Esters ¾ Cholesterol (EC) ¾ Crane Cholesterol (FC) Fatty Acid
Figure imgf000099_0002
遊離型コレステロール(FC) 厶 コレステノン 過酸化水素
Figure imgf000099_0003
Free cholesterol (FC) 厶 Cholestenone Hydrogen peroxide
Figure imgf000099_0003
[0194] 脂質の定量には、例えば、デタミナ一 TC555キット(カタログ番号 UCCZEAN12 8) (KYOWA Co. LTD)を用いることができる。標準物質として、キットに添付され ている 50mgZml コレステロールを使用する。(1)スタンダード溶液として、標準物 質(50mgZml :コレステロール)を PBS緩衝液で希釈し、 0、 0. 1、 0. 25、 0. 5、 0. 75、 1、 5、 10 g/20 1溶液を調製する。 (2) Cy5. 5内包糖鎖修飾リボソームを P BS緩衝液で 5倍希釈し、検体溶液を調製する。(3)スタンダード溶液、検体溶液をそ れぞれ試験管に 20 μ 1分注する。(4)各試験管に、 TritonX- 100 (10%溶液)を 1 7 1添加して撹拌し、その後、 37°C、 40分間、静置する。(5)デタミナ一 TC555キッ トの酵素試薬を 300 1添加して撹拌し、その後、 37°C、 20分間、静置する。(6)吸 光度 540nmを測定し、スタンダード溶液により検量線 (検定線の一例を図 33に示す 。)を作成して、リボソームのコレステロール量を測定し、脂質量を求める。 [0194] For the quantification of lipids, for example, the Detamina TC555 kit (catalog number UCCZEAN12 8) (KYOWA Co. LTD) can be used. Use 50 mg Zml cholesterol attached to the kit as a standard substance. (1) As a standard solution, dilute the standard substance (50mgZml: cholesterol) with PBS buffer, 0, 0.1, 0.25, 0.5, 0.75, 1, 5, 10 g / 20 1 Prepare the solution. (2) Dilute Cy5.5-encapsulated sugar chain-modified ribosome 5 times with PBS buffer to prepare a sample solution. (3) Dispense 20 μ1 each of the standard solution and the sample solution into test tubes. (4) Add 1 7 1 TritonX-100 (10% solution) to each test tube, stir, and then allow to stand at 37 ° C for 40 minutes. (5) Add 3001 enzyme reagent of Detamina TC555 Kit, stir, and then let stand at 37 ° C for 20 minutes. (6) Absorbance was measured at 540 nm, and a calibration curve (an example of a calibration line is shown in Figure 33) using a standard solution. . ) To measure the amount of cholesterol in the ribosome and determine the amount of lipid.
[0195] コレステロール量力も脂質量を求める換算式は、例えば、以下のように表される。  [0195] The conversion formula for obtaining the lipid content is also expressed as follows, for example.
脂質量 Ζ50 /ζ 1) =コレステロール量 8Ζ50 /ζ 1) Χ 4. 51 (換算係数) リボソーム中の脂質に対するタンパク質の割合は、例えば、上述のタンパク質定量 および脂質定量の結果力も導くことができる。本発明の糖鎖修飾リボソームは、好ま しくは、脂質に対するタンパク質の割合力 約 0. 1から約 0. 5である。 Lipid content Ζ50 / ζ 1) = Cholesterol content 8 Ζ50 / ζ 1) Χ4.51 (Conversion factor) The ratio of protein to lipid in the ribosome can also lead to the results of protein quantification and lipid quantification described above, for example . The sugar chain-modified ribosome of the present invention preferably has a ratio of protein to lipid of about 0.1 to about 0.5.
[0196] 本発明の糖鎖修飾リボソームの脂質量は、例えば、 l〜4mgZmlの範囲であり得る 。 Cy3により標識された糖鎖修飾リボソームの脂質量は、例えば、 1. 2mgZml以上 であり得る。 Cy5. 5により標識された糖鎖修飾リボソームの脂質量は、例えば、 1. 4 mgZml以上であり得る。 Cy7により標識された糖鎖修飾リボソームの脂質量は、例 えば、 2. lmgZml以上であり得る。  [0196] The lipid amount of the sugar chain-modified ribosome of the present invention can be, for example, in the range of 1 to 4 mgZml. The amount of lipid of the sugar chain-modified ribosome labeled with Cy3 can be, for example, 1.2 mgZml or more. The amount of lipid of the sugar chain-modified ribosome labeled with Cy5.5 can be, for example, 1.4 mgZml or more. The amount of lipid of the sugar chain-modified ribosome labeled with Cy7 can be, for example, 2. lmgZml or more.
[0197] 本発明のリボソーム、糖鎖修飾リボソームの粒子径分布および粒子径は、例えば、 リボソーム粒子を精製水で 50倍に希釈して、ゼータサイザ一ナノ (Nan— ZS: MAL VERN Co. LTD)を用いて測定することができる。粒子径分布の一例を図 34に示 す。  [0197] The particle size distribution and particle size of the ribosome and sugar chain-modified ribosome of the present invention can be determined by, for example, diluting ribosome particles 50-fold with purified water to produce a Zetasizer Nano (Nan-ZS: MAL VERN Co. LTD). Can be measured. An example of particle size distribution is shown in Fig. 34.
[0198] 本発明のリボソーム、糖鎖修飾リボソームは、粒度分布の最大域において、約 80η m〜約 165nmの粒子径を有することが好ましい。なぜなら、約 80nm〜約 165nmの 粒子径は、マクロファージなどの免疫系細胞の認識を回避でき、そして肝臓や脾臓 の内皮細網系(RES)力もの取り込みをある程度回避することができるからである。約 80nm〜約 165nmの粒子径の糖鎖修飾リボソームは、薬物を内包させ、その薬物を 標的臓器、疾患部分に送達させるのに適している。  [0198] The ribosome and sugar chain-modified ribosome of the present invention preferably have a particle size of about 80 ηm to about 165 nm in the maximum range of the particle size distribution. This is because a particle size of about 80 nm to about 165 nm can avoid the recognition of immune system cells such as macrophages, and can avoid the uptake of liver and spleen endothelial reticuloendothelial (RES) force to some extent. A sugar chain-modified ribosome having a particle size of about 80 nm to about 165 nm is suitable for encapsulating a drug and delivering the drug to a target organ or a diseased part.
[0199] 本発明のリボソーム、糖鎖修飾リボソームは、約 50nm〜約 300nmの平均粒子径 を有し、好ましくは、約 65nm〜約 165nm、より好ましくは、約 lOOnmの粒子径を有 する。なぜなら、リボソームの粒子径カ 、さすぎると、肝臓'脾臓の細胞内皮系に非特 異的に入り、粒子径が大きすぎると、マクロファージなどの免疫系細胞に貪食されや すくなるからである。また、本発明のリボソームは、負に荷電していることが望ましい。 負に荷電して 、ることにより、生体中の負に荷電して 、る細胞との相互作用を防ぐこと ができる。本発明のリボソーム表面のゼ―タ電位は、生理食塩水中において、 37°C で、 50〜: LOmV、好ましくは 40〜0mV、さらに好ましくは一 30〜一 10mVであ る。リボソーム表面のゼータ電位は、 25°Cで、 120mV〜一 30mVであり得る力 こ れらに限定されない。好ましくは、 25°Cで、—30mV未満である。リボソーム表面のゼ ータ電位は、—120mV (25°C)未満であっても、 30mV以上であってもよい。なぜ なら、リボソーム間の凝集が生じさえしなければよいからである。 [0199] The ribosome and sugar chain-modified ribosome of the present invention has an average particle size of about 50 nm to about 300 nm, preferably about 65 nm to about 165 nm, and more preferably about lOO nm. This is because if the particle size of the ribosome is too large, it enters the cell's endothelial system in the liver's spleen non-specifically, and if the particle size is too large, it tends to be phagocytosed by immune system cells such as macrophages. Moreover, it is desirable that the ribosome of the present invention is negatively charged. By being negatively charged, the interaction with negatively charged cells in the living body can be prevented. The zeta potential of the ribosome surface of the present invention is 37 ° C in physiological saline. 50 to: LOmV, preferably 40 to 0 mV, more preferably 1 to 30 to 10 mV. The zeta potential on the ribosome surface is not limited to forces that can be 120 mV to 30 mV at 25 ° C. Preferably, it is less than −30 mV at 25 ° C. The zeta potential on the ribosome surface may be less than −120 mV (25 ° C.) or greater than 30 mV. This is because aggregation between ribosomes only has to occur.
本発明の糖鎖修飾リボソームに含ませる薬剤としては、アルキルィ匕系抗癌剤、代謝 拮抗剤、植物由来抗癌剤、抗癌性抗生物質、 BRM,サイト力イン類、白金錯体系抗 癌剤、免疫療法剤、ホルモン系抗癌剤、モノクローナル抗体等の腫瘍用薬剤、中枢 神経用薬剤、末梢神経系,感覚器官用薬剤、呼吸器疾患治療薬剤、循環器用薬剤 、消化器官用薬剤、ホルモン系用薬剤、泌尿器'生殖器用薬剤、ビタミン '滋養強壮 剤、代謝性医薬品、抗生物質,化学療法薬剤、検査用薬剤、抗炎症剤、眼疾患薬剤 、中枢神経系薬剤、自己免疫系薬剤、循環器系薬剤、糖尿病、高脂血症のような生 活習慣病薬剤、副腎皮質ホルモン、免疫抑制剤、抗菌薬、抗ウィルス薬、血管新生 抑制剤、サイト力イン、ケモカイン、抗サイト力イン抗体、抗ケモカイン抗体、抗サイト力 イン'ケモカイン受容体抗体、 siRNA、 miRNA、 smRNA、アンチセンス ODNまた は DNAのような遺伝子治療関連の核酸製剤、神経保護因子、抗体医薬、分子標的 薬、骨粗鬆症 ·骨代謝改善薬、神経ペプチド、生理活性ペプチド ·タンパク質等が挙 げられる。例えば、腫瘍用薬剤として、塩酸ナイトロジェンマスタード一 N ォキシド、 シクロホスフアミド、ィホスフアミド、プルスファン、塩酸-ムスチン、ミトブロニートール、 メルファラン、ダカルバジン、ラ-ムスチン、リン酸エストラムスチンナトリウムなどのァ ルキル化剤、メルカプトプリン、チォイノシン (メルカプトプリンリボシド)、メトトレキサー ト、エノシタビン、シタラビン、塩酸アンシタビン(塩酸サイクロシチジン)、フルォロゥラ シル、 5— FU、テガフール、ドキシフルリジン、カルモフールなどの代謝拮抗剤、エト ポシド、硫酸ビンプラスチン、硫酸ピンクリスチン、硫酸ビンデシン、パクリタキセル、タ キソール、塩酸イリノテカン、塩酸ノギテカンなどのアルカロイド等の植物由来抗癌剤 、ァクチノマイシン D、マイトマイシン C、クロモマイシン A3、塩酸ブレオマイシン、硫 酸ブレオマイシン、硫酸ぺプロマイシン、塩酸ダウノルビシン、塩酸ドキソルビシン、 塩酸アクラルビシン(アクラシノマイシン A)、塩酸ピラルビシン、塩酸ェピルビシン、ネ ォカルチノスタチンなどの抗癌性抗生物質、その他、塩酸ミトキサントロン、カルボプ ラチン、シスプラチン、 Lーァスパラギナーゼ、ァセグラトン、塩酸プロカルバジン、ク ェン酸タモキシフェン、ウベ-メタス、レンチナン、シゾフィラン、酢酸メドロキシプロゲ ステロン、ホスフェストロール、メピチォスタン、ェピチォスタノール等がある。本発明 において、上述の薬剤にはその誘導体も包含される。 Examples of the drug to be included in the sugar chain-modified ribosome of the present invention include alkyl-type anticancer agents, antimetabolites, plant-derived anticancer agents, anticancer antibiotics, BRM, cytodynamic ins, platinum complex anticancer agents, and immunotherapeutic agents. , Hormone anticancer agents, tumor drugs such as monoclonal antibodies, central nervous system drugs, peripheral nervous system, sensory organ drugs, respiratory disease drugs, cardiovascular drugs, digestive organ drugs, hormone drugs, urogenital genitalia Drugs, vitamins' nourishing tonics, metabolic drugs, antibiotics, chemotherapeutic drugs, test drugs, anti-inflammatory drugs, eye disease drugs, central nervous system drugs, autoimmune drugs, cardiovascular drugs, diabetes, high Life-style related diseases such as lipemia, corticosteroids, immunosuppressants, antibacterial agents, antiviral agents, angiogenesis inhibitors, cytoforce-in, chemokines, anti-site force-in antibodies, anti-chemokine antibodies Anti-site power In'chemokine receptor antibody, siRNA, miRNA, smRNA, antisense Gene therapy-related nucleic acid preparation such as ODN or DNA, neuroprotective factor, antibody drug, molecular target drug, osteoporosis / bone metabolism improving drug, Examples include neuropeptides, bioactive peptides and proteins. For example, a tumor drug such as nitrogen mustard hydrochloride N-oxide, cyclophosphamide, ifosfamide, prusphan, hydrochloride-mustine, mitoblonitol, melphalan, dacarbazine, ramustine, estramustine phosphate sodium, etc. Anti-metabolites such as alkylating agents, mercaptopurines, thioinosine (mercaptopurine riboside), methotrexate, enositabine, cytarabine, ancitabine hydrochloride (cyclocytidine hydrochloride), fluoruracil, 5-FU, tegafur, doxyfluridine, carmofur, etc. Plant-derived anticancer agents such as alkaloids such as vinplastin sulfate, pinklistin sulfate, vindesine sulfate, paclitaxel, taxol, irinotecan hydrochloride, nogitecan hydrochloride, actinomycin D, Mitomycin C, chromomycin A3, bleomycin hydrochloride, bleomycin sulfate, pepromycin sulfate, daunorubicin hydrochloride, doxorubicin hydrochloride, aclarubicin hydrochloride (acracinomycin A), pirarubicin hydrochloride, epilubicin hydrochloride, ne Anticancer antibiotics such as ocarchinostatin, mitoxantrone hydrochloride, carboplatin, cisplatin, L-parasine, Laseparaton, procarbazine hydrochloride, tamoxifen citrate, ube-metas, lentinan, schizophyllan, Examples include medroxyprogesterone acetate, phosfestol, mepitiostan, and epitiostanol. In the present invention, the above-mentioned drugs include derivatives thereof.
[0201] 上述のような薬剤を含ませることにより、本発明のリボソームを、癌、炎症等の疾患 の治療に用いることができる。ここで、癌は、腫瘍や白血病等のあらゆる新生物による 疾患を含む。本発明の糖鎖修飾リボソームにこれらの薬剤を含ませて投与した場合、 薬剤を単独で投与した場合に比較し、薬剤が癌、炎症部位に集積する。単独投与の 場合に比べ、 2倍以上、好ましくは 5倍以上、さらに好ましくは 10倍以上、特に好まし くは 50倍以上集積し得る。トリス (ヒドロキシメチル)ァミノメタンを結合させたリボソーム (基準リボソーム)を投与した場合と比較すると、 3〜4倍、好ましくは 4〜6倍集積し得 る。 [0201] By including a drug as described above, the ribosome of the present invention can be used for the treatment of diseases such as cancer and inflammation. Here, cancer includes all neoplastic diseases such as tumor and leukemia. When these drugs are included in the sugar chain-modified ribosome of the present invention and administered, the drugs accumulate at cancer and inflammation sites compared to when the drug is administered alone. Compared to the case of single administration, it can accumulate 2 times or more, preferably 5 times or more, more preferably 10 times or more, and particularly preferably 50 times or more. Compared with the administration of ribosome (reference ribosome) to which tris (hydroxymethyl) aminomethane is bound, it can accumulate 3 to 4 times, preferably 4 to 6 times.
[0202] 本発明の糖鎖修飾リボソームは、上述のように薬剤を封入することにより様々な疾 患の治療に用いることができる。薬剤封入糖鎖修飾リボソームは、静脈注射によって も、経口投与によっても投与することができる。本発明の糖鎖修飾リボソームは、経口 投与した場合の臓器への送達にっ 、ても、経口投与により血中に移行した媒体は静 脈注射と同様の傾向を示す。  [0202] The sugar chain-modified ribosome of the present invention can be used for treatment of various diseases by encapsulating a drug as described above. The drug-encapsulated sugar chain-modified ribosome can be administered by intravenous injection or oral administration. Even when the sugar chain-modified ribosome of the present invention is delivered to an organ when orally administered, the medium transferred into the blood by oral administration shows a tendency similar to that of intravenous injection.
[0203] なお、医薬効果を有する化合物は、リボソームの中に封入させてもょ 、し、リポソ一 ム表面に結合させてもよい。例えば、タンパク質は上記のリンカ一の結合方法と同じ 方法で表面に結合させることが可能であり、他の化合物もその化合物が有する官能 基を利用することにより、公知の方法で、結合させることができる。また、リボソーム内 部への封入は、以下の方法により行う。リボソームへ薬剤等を封入するには、周知の 方法を用いればよぐ例えば、薬剤等の含有溶液とホスファチジルコリン類、ホスファ チジルエタノールアミン類、ホスファチジン酸類もしくは長鎖アルキルリン酸塩類、ガ ングリオシド類、糖脂質類もしくはホスファチジルグリセロール類およびコレステロール 類を含む脂質を用いてリボソームを形成することにより、薬剤等はリボソーム内に封入 される。 [0204] したがって、本発明のリボソームに、治療あるいは診断に供しうる薬剤あるいは遺伝 子を封入することによって得られるリボソーム製剤は、ガン組織、炎症組織、各種組 織への移行性が選択的に制御されたものであり、治療薬剤あるいは診断剤の標的細 胞、組織への集中による効力の増強あるいは他の細胞、組織に対する薬剤の取り込 みの減少による副作用の軽減ィ匕等を図れるものである。 [0203] The compound having a medicinal effect may be encapsulated in a ribosome or bound to the surface of a liposome. For example, a protein can be bound to the surface in the same manner as the above-mentioned linker binding method, and other compounds can be bound by a known method by using a functional group of the compound. it can. Encapsulation inside the ribosome is performed by the following method. In order to encapsulate drugs, etc. in ribosomes, a well-known method can be used.For example, solutions containing drugs and phosphatidylcholines, phosphatidylethanolamines, phosphatidic acids or long-chain alkyl phosphates, gangliosides, By forming ribosomes using glycolipids or lipids containing phosphatidylglycerols and cholesterols, drugs and the like are encapsulated in ribosomes. [0204] Therefore, the ribosome preparation obtained by encapsulating a drug or gene that can be used for treatment or diagnosis in the ribosome of the present invention selectively controls the migration to cancer tissues, inflammatory tissues, and various tissues. It is intended to increase the efficacy by concentrating therapeutic drugs or diagnostic agents on target cells and tissues, or to reduce side effects by reducing the uptake of drugs to other cells and tissues. .
[0205] また、本発明の分子イメージング剤を診断用に用いる場合は、リボソームに蛍光色 素、放射性ィ匕合物等の標識ィ匕合物を結合させる。該標識化合物結合リボソームが患 部に結合し、標識ィ匕合物が患部細胞に取り込まれ、該標識化合物の存在を指標に 疾患を検出'診断することができる。  [0205] When the molecular imaging agent of the present invention is used for diagnosis, a label compound such as a fluorescent dye or radioactive compound is bound to the ribosome. The labeled compound-binding ribosome binds to the affected area, the labeled compound is taken into the affected cell, and the disease can be detected and diagnosed using the presence of the labeled compound as an indicator.
[0206] (保健'食品)  [0206] (Health 'food)
本発明はまた、保健'食品分野においても利用することができる。このような場合、 上述の経口医薬として用いられる場合の留意点を必要に応じて考慮すべきである。 特に、特定保健食品のような機能性食品'健康食品などとして使用される場合には、 医薬に準じた扱いを行うことが好ましい。好ましくは、本発明の糖鎖修飾リボソームに 機能性食品、栄養補助食品または健康補助食品を封入または結合させたものを食 品組成物として用いることができる。本発明で用い得る機能性食品、栄養補助食品ま たは健康補助食品に限定はなぐ摂取されて食品機能を有効に発現するように設計 され、加工変換された食品ならば ヽずれのものも含まれる。  The present invention can also be used in the health 'food field. In such a case, the points to be noted when used as an oral medicine should be considered as necessary. In particular, when it is used as a functional food such as a specific health food or a “health food”, it is preferable to treat it according to a pharmaceutical. Preferably, a functional food, nutritional supplement, or health supplement that is encapsulated or bound to the sugar chain-modified ribosome of the present invention can be used as a food composition. Functional foods, nutritional supplements, or health supplements that can be used in the present invention are limited to those that have been designed to effectively express food functions and are processed and converted. It is.
[0207] 例えば、イチヨウ葉、ェキナシァ、ノコギリヤシ、セントジヨーンズワート、ノ レリアン、 ブラックコホッシュ、ミルクシスル、月見草、ブドウ種子エキス、ビルペリー、ナツシロギ ク、当帰、大豆、フランス海岸松、ガーリック、高麗ニンジン、茶、ショウガ、ァガリタス、 メシマコブ、紫ィぺ、アクティブへミセルロースコンパウンド (Active— Hemi—Cellul ose— Compound :AHCC)、酵母べ一タグルカン、マイタケ、プロポリス、ビール酵 母、穀類、梅、クロレラ、大麦若葉、青汁、ビタミン類、コラーゲン、ダルコサミン、桑葉 、ルイボス茶、アミノ酸、ローヤルゼリー、シィタケ菌糸体エキス、スピルリナ、田七ニン ジン、タレソン、植物発酵食品、ドコサへキサェン酸(DHA)、エイコサペンタエン酸( EPA)、ァラキドン酸 (ARA)、昆布、キャベツ、アロエ、メグスリノ木、ホップ、力キ肉ェ キス、ピクジェノール、ゴマ等が本発明に用い得る機能性食品、栄養補助食品または 健康補助食品として例示できる。これらは、そのままリボソームに含ませてもよいし、 抽出物等の処理物を含ませてもよい。リボソームを含む食品組成物は、経口摂取さ れる。用いるリボソームは、糖鎖が結合していなくてもよぐまた腸管吸収を高める糖 鎖または特定の組織もしくは器官を標的とした糖鎖が結合して 、てもよ 、。本発明の リボソームを食品組成物として投与する場合は、液体飲料、ゲル状食品、固形食品 等の食品に加工すればよい。また、錠剤、顆粒等に加工してもよい。本発明の食品 組成物は、リボソームが含む食品の種類に応じた機能性食品、栄養補助食品または 健康補助食品として用いることができる。 [0207] For example, yew, leaves, saw palmetto, St. John's wort, Norrelian, black cohosh, milk thistle, evening primrose, grape seed extract, bill perry, feverfew, homecoming, soybean, French coastal pine, garlic, ginseng , Tea, ginger, agaritas, mesimacob, purple ipe, active hemicellulose compound (Active— Hemi—Cellulose— Compound: AHCC), yeast betaglecan, maitake, propolis, beer fermentation mother, cereal, plum, chlorella, Barley young leaves, green juice, vitamins, collagen, darcosamine, mulberry leaves, rooibos tea, amino acids, royal jelly, shiitake mycelium extract, spirulina, tannin carrot, taleson, plant fermented food, docosahexaenoic acid (DHA), D Eicosapentaenoic acid (EPA), arachidonic acid (ARA), kelp Cabbage, aloe, Megusurino trees, hops, Chikaraki meat E kissing, Pikujenoru, functional foods sesame, etc. may used in the present invention, nutraceutical or It can be illustrated as a health supplement. These may be included in the ribosome as they are, or processed products such as extracts may be included. Food compositions containing ribosomes are taken orally. The ribosome used may not be bound to a sugar chain, or may be bound to a sugar chain that enhances intestinal absorption or a sugar chain targeted to a specific tissue or organ. When the ribosome of the present invention is administered as a food composition, it may be processed into foods such as liquid beverages, gel foods, and solid foods. Moreover, you may process into a tablet, a granule, etc. The food composition of the present invention can be used as a functional food, a nutritional supplement or a health supplement depending on the type of food contained in the ribosome.
[0208] 例えば、 DHAを含むリボソームは、軽度老人性痴呆症や記憶改善に効果のある機 能性食品、栄養補助食品または健康補助食品として用いることができる。  [0208] For example, a ribosome containing DHA can be used as a functional food, nutritional supplement, or health supplement effective for mild senile dementia and memory improvement.
[0209] 本明細書において引用された、科学文献、特許、特許出願などの参考文献は、そ の全体が、各々具体的に記載されたのと同じ程度に本明細書において参考として援 用される。  [0209] References such as scientific literature, patents, and patent applications cited herein are incorporated herein by reference in their entirety to the same extent as if each was specifically described. The
[0210] 以上のように、本発明の好ましい実施形態を用いて本発明を例示してきた力 本発 明は、この実施形態に限定して解釈されるべきものではない。本発明は、特許請求 の範囲によってのみその範囲が解釈されるべきであることが理解される。当業者は、 本発明の具体的な好ましい実施形態の記載から、本発明の記載および技術常識に 基づいて等価な範囲を実施することができることが理解される。本明細書において引 用した特許、特許出願および文献は、その内容自体が具体的に本明細書に記載さ れているのと同様にその内容が本明細書に対する参考として援用されるべきであるこ とが理解される。  [0210] As described above, the power of the present invention exemplified by the preferred embodiment of the present invention. The present invention should not be construed as being limited to this embodiment. It is understood that the scope of the present invention should be construed only by the claims. It is understood that those skilled in the art can implement an equivalent range based on the description of the present invention and the common general technical knowledge from the description of specific preferred embodiments of the present invention. Patents, patent applications, and literature references cited in this specification should be incorporated by reference as if the contents themselves were specifically described in the present specification. Is understood.
[0211] 以下、実施例により、本発明の構成をより詳細に説明するが、本発明はこれに限定 されるものではない。以下において使用した試薬類は、特に言及した場合を除いて、 市販されているものを使用した。  [0211] Hereinafter, the configuration of the present invention will be described in more detail by way of examples, but the present invention is not limited thereto. The reagents used in the following were commercially available unless otherwise specified.
実施例  Example
[0212] (実施例 1.リボソームの調製)  [0212] (Example 1. Preparation of ribosome)
リボソームは既報の手法(Yamazaki, N. , Kodama, M. and Gabius, H. —J. (1994) Methods Enzymol. 242, 56— 65)により、改良型コール酸透析法を用 いて調製した。すなわち、ジパルミトイルホスファチジルコリン、コレステロール、ジセ チルホスフェート、ガンダリオシドおよびジパルミトイルホスファチジルエタノールァミン をモル比でそれぞれ 35 :40 : 5 : 15 : 5の割合で合計脂質量 45. 6mgになるように混 合し、コール酸ナトリウム 46. 9mgを添カ卩し、クロ口ホルム Zメタノール(1 : 1)溶液 3m 1に溶解した。この溶液を蒸発させ、沈殿物を真空中で乾燥させることによって脂質膜 を得た。得られた脂質膜を N トリス (ヒドロキシメチル) 3—ァミノプロパンスルホン 酸緩衝液 (pH 8. 4) 3mlに再懸濁し、 37°Cで 1時間攪拌した。次いで、この溶液を 窒素置換し、超音波処理して、透明なミセル懸濁液を得た。さら〖こ、ミセル懸濁液を P M10膜 (Amicon Co. , USA)と Ν トリス(ヒドロキシメチル) 3 ァミノプロパンス ルホン酸緩衝液 (pH 8. 4)を用いた限外濾過(分画分子量: 10, 000)にかけ均一 リボソーム(平均粒子径 lOOnm) 10mlを調製した。 For ribosomes, the improved cholate dialysis method was used according to a previously reported method (Yamazaki, N., Kodama, M. and Gabius, H. —J. (1994) Methods Enzymol. 242, 56—65). Prepared. In other words, dipalmitoyl phosphatidylcholine, cholesterol, dicetyl phosphate, gandarioside and dipalmitoyl phosphatidylethanolamine were mixed in a molar ratio of 35: 40: 5: 15: 5 to give a total lipid content of 45.6 mg. Then, 46.9 mg of sodium cholate was added, and dissolved in 3 ml 1 of black mouth form Z methanol (1: 1) solution. The solution was evaporated and the precipitate was dried in vacuo to obtain a lipid membrane. The obtained lipid membrane was resuspended in 3 ml of N tris (hydroxymethyl) 3-aminopropanesulfonic acid buffer (pH 8.4) and stirred at 37 ° C for 1 hour. The solution was then purged with nitrogen and sonicated to obtain a clear micelle suspension. Sarakoko, micelle suspension was ultrafiltered using PM10 membrane (Amicon Co., USA) and Ν Tris (hydroxymethyl) 3 aminopropane sulfonate buffer (pH 8.4) (fractionated molecular weight: 10 , 000) to prepare 10 ml of uniform ribosome (average particle size lOOnm).
[0213] (実施例 2.リボソーム脂質膜面上の親水性化処理)  [0213] (Example 2. Hydrophilization treatment on ribosomal lipid membrane surface)
実施例 1で調製したリボソーム溶液 10mlを XM300膜 (Amicon Co. , USA)と 炭酸緩衝液 (pH 8. 5)を用いた限外濾過(分画分子量: 300, 000)にかけ溶液の p Hを 8. 5にした。次に、架橋試薬ビス(スルホスクシンィミジル)スべレート(BS3;Pierc e Co. , USA) 10mgをカ卩え、室温で 2時間攪拌した。その後、さらに冷蔵下で一晩 攪拌してリボソーム膜上の脂質ジパルミトイルフォスファチジルエタノールァミンと BS3 との化学結合反応を完結した。そして、このリボソーム液を XM300膜と炭酸緩衝液( pH 8. 5)で限外濾過(分画分子量: 300, 000)にかけた。次に、炭酸緩衝液 (pH 8. 5) 1mlに溶かしたトリス(ヒドロキシメチル)ァミノメタン 40mgをリボソーム液 10mlに 加えた。次いで、この溶液を、室温で 2時間攪拌後、冷蔵下で一晩攪拌し、分画分子 量 300, 000で限外濾過し、遊離のトリス(ヒドロキシメチル)ァミノメタンを除去し、該 炭酸緩衝液を N—トリス(ヒドロキシメチル) 3—ァミノプロパンスルホン酸緩衝液 (p H8. 4)に交換し、リボソーム膜上の脂質に結合した BS3とトリス (ヒドロキシメチル)アミ ノメタンとの化学結合反応を完結した。これにより、リボソーム膜の脂質ジパルミトイル フォスファチジルエタノールァミン上にトリス(ヒドロキシメチル)ァミノメタンの水酸基が 配位して水和親水性化された。 10 ml of the ribosome solution prepared in Example 1 was subjected to ultrafiltration (fractionated molecular weight: 300,000) using XM300 membrane (Amicon Co., USA) and carbonate buffer (pH 8.5), and the pH of the solution was adjusted. 8.5. Next, 10 mg of the crosslinking reagent bis (sulfosuccinimidyl) suberate (BS 3 ; Pierce Co., USA) was added and stirred at room temperature for 2 hours. Then, to complete the chemical bonding reaction with dipalmitoyl phosphatidylethanolamine § Min and BS 3 on the ribosome film was stirred overnight further under refrigeration. Then, this ribosome solution was subjected to ultrafiltration (fractionated molecular weight: 300,000) with an XM300 membrane and a carbonate buffer (pH 8.5). Next, 40 mg of tris (hydroxymethyl) aminomethane dissolved in 1 ml of carbonate buffer (pH 8.5) was added to 10 ml of ribosome solution. The solution was then stirred at room temperature for 2 hours, then stirred overnight under refrigeration, ultrafiltered with a molecular weight cut off of 300,000 to remove free tris (hydroxymethyl) aminomethane, and the carbonate buffer solution. Is exchanged for N-tris (hydroxymethyl) 3-aminopropanesulfonic acid buffer (pH8.4), and the chemical binding reaction between BS 3 bound to lipid on the ribosome membrane and tris (hydroxymethyl) aminomethane Was completed. As a result, the hydroxyl group of tris (hydroxymethyl) aminomethane was coordinated on the lipid dipalmitoyl phosphatidylethanolamine of the ribosome membrane to make it hydrated and hydrophilic.
[0214] (実施例 3.リボソーム膜面上へのヒト血清アルブミン (HSA)の結合) リボソーム膜面上へのヒト血清アルブミン(HSA)の結合は、既報の手法 (Yamaza ki, N. , Kodama, Μ. and Gabius, H. —J. (1994) MethodsEnzymol. 242, 56 -65)により、カップリング反応法を用いて行った。すなわち、この反応は 2段階ィ匕 学反応で行い、はじめに、実施例 2で得られた 10mlのリボソーム膜面上に存在する ガンダリオシドを lmlの N—トリス(ヒドロキシメチル)—3—ァミノプロパンスルホン酸緩 衝液 (pH 8. 4)に溶力したメタ過ヨウ素酸ナトリウム 43mgをカ卩え、冷蔵下でー晚攪 拌して過ヨウ素酸酸ィ匕した。 XM300膜と PBS緩衝液 (pH 8. 0)で限外濾過(分画 分子量: 300, 000)することにより、遊離の過ヨウ素酸ナトリウムを除去し、 N—トリス( ヒドロキシメチル)—3—ァミノプロパンスルホン酸緩衝液を PBS緩衝液(pH8. 0)に 交換して、酸化されたリボソーム 10mlを得た。このリボソーム液に、 20mgのヒト血清 アルブミン (HSA) /PBS緩衝液 (pH 8. 0)をカ卩えて室温で 2時間反応させ、次に 2 M NaBH CNZPBS緩衝液(pH 8. 0) 100 1を加えて室温で 2時間、さらに冷 [0214] (Example 3. Binding of human serum albumin (HSA) to ribosome membrane surface) The binding of human serum albumin (HSA) to the ribosome membrane surface was performed by a previously reported method (Yamaza ki, N., Kodama, Μ. And Gabius, H. —J. (1994) Methods Enzymol. 242, 56 -65). The coupling reaction method was used. That is, this reaction is a two-step chemical reaction. First, gandarioside present on the surface of 10 ml of the ribosome obtained in Example 2 was converted to 1 ml of N-tris (hydroxymethyl) -3-aminopropanesulfone. 43 mg of sodium metaperiodate dissolved in an acid buffer (pH 8.4) was added and stirred under refrigeration to form periodate. Free periodate sodium periodate was removed by ultrafiltration (fraction molecular weight: 300, 000) with XM300 membrane and PBS buffer (pH 8.0), and N-tris (hydroxymethyl) -3-a The minopropane sulfonate buffer was replaced with PBS buffer (pH 8.0) to obtain 10 ml of oxidized ribosome. To this ribosome solution, 20 mg of human serum albumin (HSA) / PBS buffer (pH 8.0) was added and reacted at room temperature for 2 hours, and then 2 M NaBH CNZPBS buffer (pH 8.0) 100 1 2 hours at room temperature
3  Three
蔵下でー晚攪拌してリボソーム上のガンダリオシドと HSAとのカップリング反応で HS Aを結合した。次いで、限外濾過(分画分子量: 300, 000)し、遊離のシァノホウ素 酸ナトリウムおよびヒト血清アルブミンを除去し、この溶液の緩衝液を炭酸緩衝液 (pH 8. 5)に交換して、 HSA結合リボソーム液 10mlを得た。  Under stirring, the mixture was agitated and HSA was bound by a coupling reaction between gandioside on the ribosome and HSA. Then, ultrafiltration (fractionated molecular weight: 300,000) was performed to remove free sodium cyanoborate and human serum albumin, and the buffer of this solution was replaced with carbonate buffer (pH 8.5). 10 ml of HSA binding ribosome solution was obtained.
[0215] (実施例 4.糖鎖の調製)  [0215] (Example 4. Preparation of sugar chain)
以下の表 2Bに示される糖鎖を使用した。  The sugar chains shown in Table 2B below were used.
[0216] 各糖鎖の質量を計測し、以下の実施例 5において使用するための前処理をした。 2 つ以上の糖鎖の組み合せを使用する場合、各糖鎖を混合する。  [0216] The mass of each sugar chain was measured and pretreated for use in Example 5 below. When using a combination of two or more sugar chains, mix each sugar chain.
[0217] [表 2]  [0217] [Table 2]
(表 2A)  (Table 2A)
略称 名称 (英語) 名称(日本語) メーカ一名 製品番号 Abbreviation Name (English) Name (Japanese) One manufacturer Product number
SLX Sialyl Lewis X シァリルルイス X CALBIOCHEM 565950SLX Sialyl Lewis X CALBIOCHEM 565950
G4GN N -ァセチルラクドサ G4GN N-Acetyllacdosa
N-Acetyllactosamine CALBIOCHEM 345250 ミン  N-Acetyllactosamine CALBIOCHEM 345 250 Min
A6 Οί 1 _o Mannobiose α 1 -6マンノビオース フナコシ DL-1220-60 [0218] (表2 B) A6 Οί 1 _ o Mannobiose α 1 -6 Mannobiose Funakoshi DL-1220-60 [0218] (Table 2 B)
Figure imgf000107_0001
Figure imgf000107_0001
[0219] (実施例 5.リボソーム膜面結合ヒト血清アルブミン (HSA)上への糖鎖の結合) 実施例 4において調製した各糖鎖 2mgを精製水に溶解し、 0. 25gの NH HCOを  (Example 5. Binding of sugar chains onto ribosome membrane surface-bound human serum albumin (HSA)) 2 mg of each sugar chain prepared in Example 4 was dissolved in purified water, and 0.25 g NH HCO was dissolved.
4 3 溶かした 0. 5ml水溶液に加え、 37°Cで 3日間攪拌した後、 0. 45 μ mのフィルターで 濾過して糖鎖の還元末端のアミノ化反応を完結して、各糖鎖のグリコシルァミンィ匕合 物 4mgZml (アミノ化糖鎖溶液)を得た。次に、実施例 3で得たリボソーム液の一部 分 10mlに架橋試薬 3, 3,一ジチォビス(スルホスクシンィミジルプロピオネート) (DT SSP ; Pierce Co. , USA) 10mgをカ卩えて室温で 2時間、続いて冷蔵下でー晚攪 拌し、 XM300膜と炭酸緩衝液 (pH 8. 5)で限外濾過(分画分子量: 300, 000)し て、遊離の DTSSPを除去し、 DTSSPがリボソーム上の HSAに結合したリボソーム 1 Omlを得た。次に、このリボソーム液に上記のグリコシルァミンィ匕合物(アミノ化糖鎖溶 液) 12. 5、 37. 5、 125、 250、 500、 1250、 2500 /z lを加えて、室温で 2時間反応 させ、トリス (ヒドロキシメチル)ァミノメタン/炭酸緩衝液 (pH 8. 5)を添加し、その後 、冷蔵下で一晩攪拌し、リボソーム膜面結合ヒト血清アルブミン上の DTSSPにグリコ シルイ匕アミンィ匕合物の結合を行った。 XM300膜と HEPES緩衝液 (pH 7. 2)で限 外濾過(分画分子量: 300, 000)して、遊離の糖鎖およびトリス (ヒドロキシメチル)ァ ミノメタンを除去した。その結果、表 2Bに示される糖鎖とヒト血清アルブミンとリポソ一 ムとが結合したリボソーム各 10ml (総脂質量 26mg、総蛋白量 1. 5mg、平均粒子径 lOOnm)が得られた。 4 3 Add to 0.5 ml aqueous solution and stir at 37 ° C for 3 days, then filter through 0.45 μm filter to complete the amination reaction of the reducing end of the sugar chain. A glycosylamine compound 4 mgZml (aminated sugar chain solution) was obtained. Next, 10 mg of a cross-linking reagent 3, 3, monodithiobis (sulfosuccinimidyl propionate) (DT SSP; Pierce Co., USA) was added to 10 ml of a part of the ribosome solution obtained in Example 3. Stir for 2 hours at room temperature, and then stir under refrigeration, ultrafiltration (fraction molecular weight: 300,000) with XM300 membrane and carbonate buffer (pH 8.5) to remove free DTSSP Thus, ribosome 1 Oml in which DTSSP was bound to HSA on the ribosome was obtained. Next, the glycosamine amine compound (aminated sugar chain solution) is added to the ribosome solution. Solution) 12. 5, 37.5, 125, 250, 500, 1250, 2500 / zl was added, reacted at room temperature for 2 hours, and tris (hydroxymethyl) aminomethane / carbonate buffer (pH 8.5) was added. Thereafter, the mixture was stirred overnight under refrigeration, and the glycosylamine amine compound was bound to DTSSP on ribosome membrane surface-bound human serum albumin. Free sugar chains and tris (hydroxymethyl) aminomethane were removed by ultrafiltration (fraction molecular weight: 300,000) with XM300 membrane and HEPES buffer (pH 7.2). As a result, 10 ml of each ribosome in which the sugar chain shown in Table 2B, human serum albumin and liposome were bound (total lipid amount 26 mg, total protein amount 1.5 mg, average particle diameter lOOnm) was obtained.
(調製例 1.リボソーム膜面結合ヒト血清アルブミン (HSA)上へのトリス (ヒドロキシメチ ル)ァミノメタンの結合)  (Preparation example 1. Binding of tris (hydroxymethyl) aminomethane onto ribosome membrane-bound human serum albumin (HSA))
比較試料としてのリボソームを調製するために、実施例 3で得たリボソーム液の一部 分 10mlに架橋試薬 3, 3,一ジチォビス(スルホスクシンィミジルプロピオネート(DTS SP ; Pierce Co. , USA) 10mgを加えて室温で 2時間、続いて冷蔵下でー晚攪拌 し、 XM300膜と炭酸緩衝液 (pH 8. 5)で限外濾過(分画分子量: 300, 000)して、 遊離の DTSSPを除去し、 DTSSPがリボソーム上の HSAに結合したリボソーム 10m 1を得た。次に、このリボソーム液にトリス(ヒドロキシメチル)ァミノメタン (Wako Co. , Japan) 26. 4mgをカ卩えて、室温で 2時間攪拌し、その後冷蔵下で一晩攪拌し、リポソ 一ム膜面結合ヒト血清アルブミン上の DTSSPにトリス(ヒドロキシメチル)ァミノメタンの 結合を行った。 XM300膜と HEPES緩衝液 (pH 7. 2)で限外濾過(分画分子量: 3 00, 000)した。この工程で既に大過剰である 26. 4mgのトリス(ヒドロキシメチル)アミ ノメタンが存在するのでリボソーム膜面結合ヒト血清アルブミン (HSA)上の親水性ィ匕 処理も同時に完結した。 0. 45 mのフィルターで濾過して、最終産物である親水性 化処理されたトリス(ヒドロキシメチル)ァミノメタンとヒト血清アルブミンとリボソームとが 結合した比較試料としてのリボソーム(略称: TRIS) 10ml (総脂質量 26mg、総蛋白 量 1. 5mg、平均粒子径 lOOnm)が得られた。  In order to prepare a ribosome as a comparative sample, a 10 ml portion of the ribosome solution obtained in Example 3 was added to the cross-linking reagent 3, 3, 1 dithiobis (sulfosuccinimidyl propionate (DTS SP; Pierce Co. , USA) Add 10mg and stir for 2 hours at room temperature, then refrigerate, and ultrafilter with XM300 membrane and carbonate buffer (pH 8.5) (fraction molecular weight: 300, 000) Free DTSSP was removed to obtain ribosome 10m 1 in which DTSSP bound to HSA on ribosome, and then 26.4 mg of tris (hydroxymethyl) aminomethane (Wako Co., Japan) was added to this ribosome solution. The mixture was stirred for 2 hours at room temperature and then overnight under refrigeration to bind tris (hydroxymethyl) aminomethane to DTSSP on liposomal membrane-bound human serum albumin XM300 membrane and HEPES buffer (pH 7. Ultrafiltration (fraction molecular weight: 300,000) in 2). Since 26.4 mg of tris (hydroxymethyl) aminomethane was present in a large excess, hydrophilic treatment on ribosome membrane-bound human serum albumin (HSA) was completed at the same time. Then, 10ml of ribosome (abbreviation: TRIS) as a comparative sample in which the final product, tris (hydroxymethyl) aminomethane treated with hydrophilicity, human serum albumin, and ribosome were combined (total lipid amount 26mg, total protein amount 1) 5 mg, average particle size lOOnm) was obtained.
(実施例 6.リボソーム膜面結合ヒト血清アルブミン (HSA)上の親水性化処理) 実施例 5の手段により調製された糖鎖が結合したリボソームについて、それぞれ別 々に以下の手順によりリボソーム上の HSAタンパク質表面の親水性ィ匕処理を行った 。糖鎖修飾リボソーム 10mlに、別々に、トリス(ヒドロキシメチル)ァミノメタン 26. 4mg を加えて、室温で 2時間、その後冷蔵下で一晩攪拌した後、 XM300膜と HEPES緩 衝液 (pH 7. 2)で限外濾過(分画分子量: 300, 000)し未反応物を除去した。 0. 4 5 mのフィルターで濾過して、最終産物である親水性ィ匕処理された糖鎖修飾リポソ ーム複合体各 10ml (総脂質量 26mg、総蛋白量 1. 5 /z g、平均粒子径 lOOnm)を得 た。 (Example 6. Hydrophilization treatment on ribosome membrane surface-bound human serum albumin (HSA)) For the ribosome to which the sugar chain prepared by the means of Example 5 was bound, the ribosome was separately treated on the ribosome by the following procedure. The surface of the HSA protein was treated with hydrophilicity. . Separately, 26.4 mg of tris (hydroxymethyl) aminomethane was added to 10 ml of the sugar chain-modified ribosome, stirred at room temperature for 2 hours, and then overnight under refrigeration, and then XM300 membrane and HEPES buffer (pH 7.2). And ultrafiltered (fraction molecular weight: 300,000) to remove unreacted substances. 0.4 Filtered with a 5 m filter, 10 ml each of the final product, hydrophilic-modified glycosylated liposome complex (total lipid content 26 mg, total protein content 1.5 / zg, average particle size) Diameter lOOnm).
[0221] (実施例 7.蛍光色素を内包するリボソームの調製)  (Example 7. Preparation of ribosome encapsulating fluorescent dye)
(cy5. 5標識ヒト血清アルブミン溶液の調製)  (Preparation of cy5.5 labeled human serum albumin solution)
ヒト血清アルブミン ZN トリス(ヒドロキシメチル) 3—ァミノプロパンスルホン酸緩 衝液(pH8. 4)溶液(10mgZml)、(2ml)に cy5. 5ZN トリス(ヒドロキシメチル) 3 ァミノプロパンスルホン酸緩衝液 (pH8. 4)溶液(2mgZml)、 (2. 5ml)を混 合して、 37°Cで 3時間撹拌した。この混合溶液を、分画分子量 10, 000、 N トリス( ヒドロキシメチル) 3ーァミノプロパンスルホン酸緩衝液 (pH8. 4)溶液で限外濾過 し、遊離の cy5. 5を除去し、 cy5. 5標識ヒト血清アルブミン溶液を調製した。 Human serum albumin ZN Tris (hydroxymethyl) 3-aminopropanesulfonic acid buffer (pH8.4) solution (10mgZml), (2ml) in cy5.5ZN Tris (hydroxymethyl) 3 aminopropanesulfonic acid buffer (pH8) 4) The solution (2 mgZml) and (2.5 ml) were mixed and stirred at 37 ° C for 3 hours. This mixed solution was ultrafiltered with a fractional molecular weight 10,000, N-tris (hydroxymethyl) 3 -aminopropanesulfonic acid buffer ( pH 8.4) solution to remove free cy5.5, and cy5. A 5-labeled human serum albumin solution was prepared.
[0222] リボソームは既報の手法(Yamazaki, N. , Kodama, M. and Gabius, H. —J. [0222] Ribosomes have been reported (Yamazaki, N., Kodama, M. and Gabius, H. —J.
(1994) Methods Enzymol. 242, 56— 65)により、改良型コール酸透析法を用 いて調製した。すなわち、ジパルミトイルホスファチジルコリン、コレステロール、ジセ チルホスフェート、ガンダリオシドおよびジパルミトイルホスファチジルエタノールァミン をモル比でそれぞれ 35 :40 : 5 : 15 : 5の割合で合計脂質量 45. 6mgになるように混 合し、コール酸ナトリウム 46. 9mgを添カ卩し、クロ口ホルム Zメタノール(1 : 1)溶液 3m 1に溶解した。この溶液を蒸発させ、沈殿物を真空中で乾燥させることによって脂質膜 を得た。得られた脂質膜を TAPS緩衝生理食塩液 (pH8. 4) 3mlに再懸濁し、 37°C で 1時間攪拌した。次いで、この溶液を窒素置換し、超音波処理し、透明なミセル懸 濁液 3mlを得た。この超音波処理したミセル懸濁液に HSA緩衝液 (pH8. 4)で 0. 2 mgZlmlになるよう完全に溶解した cy5. 5標識 HSA溶液を撹拌しながらゆっくりと 滴下して均一に混合した後、この蛍光色素入りミセル懸濁液を PM10膜 (Amicon Co. , USA)と TAPS緩衝生理食塩液 (ρΗ8. 4)を用いた限外濾過(分画分子量: 1 0, 000)にかけ均一な蛍光色素を内包するリボソーム粒子懸濁液 10mlを調製した。 [0223] 得られた生理食塩懸濁液中(37°C)の蛍光色素を内包するリボソーム粒子の粒子 径とゼータ電位をゼータ電位 ·粒子径 ·分子量測定装置(Model Nano ZS, Malv ern Instruments Ltd, , UK)により測定した結果、粒子径は約 65nm〜約 125n m、ゼータ電位は 40〜一 70mVであった。 (1994) Methods Enzymol. 242, 56-65) using a modified cholate dialysis method. In other words, dipalmitoyl phosphatidylcholine, cholesterol, dicetyl phosphate, gandarioside and dipalmitoyl phosphatidylethanolamine were mixed in a molar ratio of 35: 40: 5: 15: 5 to give a total lipid content of 45.6 mg. Then, 46.9 mg of sodium cholate was added, and dissolved in 3 ml 1 of black mouth form Z methanol (1: 1) solution. The solution was evaporated and the precipitate was dried in vacuo to obtain a lipid membrane. The obtained lipid membrane was resuspended in 3 ml of TAPS buffered physiological saline (pH 8.4) and stirred at 37 ° C for 1 hour. The solution was then purged with nitrogen and sonicated to give 3 ml of a clear micelle suspension. To this sonicated micelle suspension, cy5.5-labeled HSA solution completely dissolved to 0.2 mgZlml with HSA buffer (pH 8.4) was slowly added dropwise with stirring and mixed uniformly. Fluorescent dye-containing micelle suspension was subjected to ultrafiltration using PM10 membrane (Amicon Co., USA) and TAPS buffered saline (ρΗ8.4) (fractional molecular weight: 10 000) to obtain uniform fluorescence 10 ml of a ribosome particle suspension containing the dye was prepared. [0223] The particle size and zeta potential of the ribosome particles encapsulating the fluorescent dye in the obtained physiological saline suspension (37 ° C) are converted into zeta potential · particle size · molecular weight measuring device (Model Nano ZS, Malvern Instruments Ltd. ,, UK), the particle size was about 65 nm to about 125 nm, and the zeta potential was 40 to 70 mV.
[0224] (実施例 8.蛍光色素を内包するリボソーム脂質膜面上の親水性ィヒ処理)  (Example 8. Treatment of hydrophilic dig on ribosomal lipid membrane surface encapsulating fluorescent dye)
実施例 7で調製した蛍光色素を内包するリポソーム溶液 1 Omlを XM 300膜 ( Amic on Co. , USA)と炭酸緩衝液 (pH 8. 5)を用いた限外濾過(分画分子量: 300, 0 00)にかけ溶液の pHを 8. 5にした。次に、架橋試薬ビス (スルホスクシンィミジル)ス ベレー HBS3; Pierce Co. , USA) 10mgを加え、室温で 2時間攪拌した。その後、 さらに 7°Cでー晚攪拌してリボソーム膜上の脂質ジパルミトイルフォスファチジルェタノ ールァミンと BS3との化学結合反応を完結した。そして、このリボソーム液を XM300 膜と炭酸緩衝液 (pH 8. 5)で限外濾過(分画分子量: 300, 000)にかけた。次に、 炭酸緩衝液 (pH 8. 5) lmlに溶かしたトリス(ヒドロキシメチル)ァミノメタン 40mgをリ ポソーム液 10mlにカ卩えた。次いで、この溶液を、室温で 2時間攪拌後、冷蔵下で一 晚攪拌し、分画分子量 300, 000で限外濾過し、遊離のトリス (ヒドロキシメチル)ァミノ メタンを除去し、該炭酸緩衝液を N トリス(ヒドロキシメチル) 3—ァミノプロパンス ルホン酸緩衝液 (pH8. 4)に交換し、リボソーム膜上の脂質に結合した BS3とトリス (ヒ ドロキシメチル)ァミノメタンとの化学結合反応を完結した。これにより、リボソーム膜の 脂質ジパルミトイルフォスファチジルエタノールァミン上にトリス(ヒドロキシメチル)アミ ノメタンの水酸基が配位して水和親水性化された。 Liposomes containing the fluorescent dye prepared in Example 7 1 Oml was ultrafiltered using XM 300 membrane (Amic on Co., USA) and carbonate buffer (pH 8.5) (fractionated molecular weight: 300, The pH of the solution was 8.5. Next, 10 mg of a cross-linking reagent bis (sulfosuccinimidyl) sverley HBS 3 ; Pierce Co., USA) was added and stirred at room temperature for 2 hours. Then, to complete the further chemical binding reaction between 7 ° C De晚攪拌lipid on the ribosome film dipalmitoylphosphatidyl E Tano Ruamin and BS 3. Then, this ribosome solution was subjected to ultrafiltration (fractionated molecular weight: 300,000) with an XM300 membrane and a carbonate buffer (pH 8.5). Next, 40 mg of tris (hydroxymethyl) aminomethane dissolved in 1 ml of carbonate buffer (pH 8.5) was added to 10 ml of liposome solution. Next, this solution was stirred at room temperature for 2 hours, then stirred under refrigeration, ultrafiltered with a molecular weight cut off of 300,000 to remove free tris (hydroxymethyl) aminomethane, and the carbonate buffer solution. Was replaced with N-tris (hydroxymethyl) 3-aminopropane sulfonate buffer (pH 8.4) to complete the chemical binding reaction between BS 3 bound to lipid on the ribosome membrane and tris (hydroxymethyl) aminomethane. As a result, the hydroxyl group of tris (hydroxymethyl) aminomethane was coordinated on the lipid dipalmitoylphosphatidylethanolamine of the ribosome membrane to make it hydrated and hydrophilic.
[0225] (実施例 9.蛍光色素を内包するリボソーム膜面上へのヒト血清アルブミン (HSA) の結合) [Example 9: Binding of human serum albumin (HSA) to the surface of a ribosome membrane encapsulating a fluorescent dye)
リボソーム膜面上へのヒト血清アルブミン(HSA)の結合は、既報の手法 (Yamaza ki, N. , Kodama, Μ. and Gabius, H. —J. (1994) MethodsEnzymol. 242, 56 -65)により、カップリング反応法を用いて行った。すなわち、この反応は 2段階ィ匕 学反応で行い、はじめに、実施例 2で得られた 10mlのリボソーム膜面上に存在する ガンダリオシドを lmlの N トリス(ヒドロキシメチル)—3—ァミノプロパンスルホン酸緩 衝液 (pH 8. 4)に溶力したメタ過ヨウ素酸ナトリウム 10. 8mgを加え、 7°Cでー晚攪 拌して過ヨウ素酸酸ィ匕した。 XM300膜と PBS緩衝液 (pH 8. 0)で限外濾過(分画 分子量: 300, 000)することにより、遊離の過ヨウ素酸ナトリウムを除去し、 N—トリス( ヒドロキシメチル)—3—ァミノプロパンスルホン酸緩衝液を PBS緩衝液(pH8. 0)に 交換して、酸化されたリボソーム 10mlを得た。このリボソーム液に、 20mgのヒト血清 アルブミン (HSA) /PBS緩衝液 (pH 8. 0)をカ卩えて室温で 2時間反応させ、次に 2 M NaBH CNZPBS緩衝液(pH 8. 0) 100 1を加えて室温で 2時間、さらに冷 The binding of human serum albumin (HSA) to the ribosome membrane surface was performed by a previously reported method (Yamaza ki, N., Kodama, Μ. And Gabius, H. —J. (1994) Methods Enzymol. 242, 56 -65). The coupling reaction method was used. That is, this reaction is a two-step chemical reaction. First, gandarioside present on the surface of 10 ml of ribosome obtained in Example 2 is converted to 1 ml of N tris (hydroxymethyl) -3-aminopropanesulfonic acid. Add 10.8 mg of sodium metaperiodate dissolved in buffer solution (pH 8.4) and stir at 7 ° C. Stir to periodate. Free periodate sodium periodate was removed by ultrafiltration (fraction molecular weight: 300, 000) with XM300 membrane and PBS buffer (pH 8.0), and N-tris (hydroxymethyl) -3-a The minopropane sulfonate buffer was replaced with PBS buffer (pH 8.0) to obtain 10 ml of oxidized ribosome. To this ribosome solution, 20 mg of human serum albumin (HSA) / PBS buffer (pH 8.0) was added and reacted at room temperature for 2 hours, and then 2 M NaBH CNZPBS buffer (pH 8.0) 100 1 2 hours at room temperature
3  Three
蔵下でー晚攪拌してリボソーム上のガンダリオシドと HSAとのカップリング反応で HS Aを結合した。次いで、限外濾過(分画分子量: 300, 000)し、遊離のシァノホウ素 酸ナトリウムおよびヒト血清アルブミンを除去し、この溶液の緩衝液を炭酸緩衝液 (pH 8. 5)に交換して、 HSA結合リボソーム液 10mlを得た。  Under stirring, the mixture was agitated and HSA was bound by a coupling reaction between gandioside on the ribosome and HSA. Then, ultrafiltration (fractionated molecular weight: 300,000) was performed to remove free sodium cyanoborate and human serum albumin, and the buffer of this solution was replaced with carbonate buffer (pH 8.5). 10 ml of HSA binding ribosome solution was obtained.
[0226] (実施例 10.糖鎖の調製) (Example 10. Preparation of sugar chain)
実施例 4と同様の手順により糖鎖を調製した。  A sugar chain was prepared by the same procedure as in Example 4.
[0227] (実施例 11.蛍光色素を内包するリボソーム膜面結合ヒト血清アルブミン (HSA)上 への糖鎖の結合とリンカ一タンパク質 (HSA)の親水性化処理) (Example 11. Binding of sugar chain onto ribosome membrane surface-bound human serum albumin (HSA) encapsulating fluorescent dye and hydrophilization of linker protein (HSA))
実施例 10において調製した各糖鎖 2mgを精製水に溶解し、 0. 25gの NH HCO  2 mg of each sugar chain prepared in Example 10 was dissolved in purified water, and 0.25 g NH 4 HCO
4 3 を溶力した 0. 5ml水溶液に加え、 37°Cで 3日間攪拌した後、 0. 45 mのフィルター で濾過して糖鎖の還元末端のアミノ化反応を完結して、各糖鎖のグリコシルアミンィ匕 合物 4mgZml (アミノ化糖鎖溶液)を得た。次に、実施例 9で得たリボソーム液の一 部分 10mlに架橋試薬 3, 3,一ジチォビス(スルホスクシンィミジルプロピオネート) (D TSSP ; Pierce Co. , USA) 10mgをカ卩えて室温で 2時間、続いて冷蔵下でー晚攪 拌し、 XM300膜と炭酸緩衝液 (pH 8. 5)で限外濾過(分画分子量: 300, 000)し て、遊離の DTSSPを除去し、 DTSSPがリボソーム上の HSAに結合したリボソーム 1 Omlを得た。次に、このリボソーム液に上記のグリコシルァミンィ匕合物(アミノ化糖鎖溶 液) 12. 5、 37. 5、 125、 250、 500、 1250、 2500 /z lを加えて、室温で 2時間反応 させ、トリス (ヒドロキシメチル)ァミノメタン/炭酸緩衝液 (pH 8. 5)を添加し、その後 、冷蔵下で一晩攪拌し、リボソーム膜面結合ヒト血清アルブミン上の DTSSPにグリコ シルイ匕アミンィ匕合物の結合を行った。 XM300膜と HEPES緩衝液 (pH 7. 2)で限 外濾過(分画分子量: 300, 000)して、遊離の糖鎖およびトリス (ヒドロキシメチル)ァ ミノメタンを除去した。その結果、表 2Bに示される糖鎖とヒト血清アルブミンとリポソ一 ムとが結合したリボソーム各 10ml (総脂質量 38mg、総蛋白量 15mg、平均粒子径 1 OOnm)が得られた。 4 3 was added to a 0.5 ml aqueous solution and stirred at 37 ° C for 3 days, and then filtered through a 0.45 m filter to complete the amination reaction at the reducing end of the sugar chain. Of 4 mgZml (aminated sugar chain solution) was obtained. Next, 10 mg of a cross-linking reagent 3, 3, dithiobis (sulfosuccinimidyl propionate) (DTSSP; Pierce Co., USA) was added to 10 ml of a portion of the ribosome solution obtained in Example 9. Stir for 2 hours at room temperature, then under refrigeration, ultrafilter with XM300 membrane and carbonate buffer (pH 8.5) (molecular weight cut off: 300,000) to remove free DTSSP. Ribosome 1 Oml in which DTSSP was bound to HSA on the ribosome was obtained. Next, add the above glycosamine amine compound (aminated sugar chain solution) 12.5, 37.5, 125, 250, 500, 1250, 2500 / zl to this ribosome solution, and add 2 at room temperature. React for hours, add tris (hydroxymethyl) aminomethane / carbonate buffer (pH 8.5), then stir overnight under refrigeration, and add glycosylamine to DTSSP on ribosomal membrane-bound human serum albumin. Bonding of the compounds was performed. Ultrafiltration (fraction molecular weight: 300,000) with XM300 membrane and HEPES buffer (pH 7.2), free sugar chain and tris (hydroxymethyl) Minomethane was removed. As a result, 10 ml of each ribosome in which the sugar chain shown in Table 2B, human serum albumin, and liposome were bound (total lipid amount 38 mg, total protein amount 15 mg, average particle size 1 OOnm) was obtained.
[0228] 得られた生理食塩懸濁液中(37°C)の蛍光色素を内包するリボソーム粒子の粒子 径とゼータ電位をゼータ電位 ·粒子径 ·分子量測定装置(Model Nano ZS, Malv ern Instruments Ltd, , UK)により測定した結果、粒子径は約 65nm〜約 125n m、ゼータ電位は 40〜一 70mVであった。  [0228] The particle size and zeta potential of the ribosome particles encapsulating the fluorescent dye in the obtained physiological saline suspension (37 ° C) are converted into zeta potential · particle size · molecular weight measuring device (Model Nano ZS, Malvern Instruments Ltd. ,, UK), the particle size was about 65 nm to about 125 nm, and the zeta potential was 40 to 70 mV.
[0229] (実施例 12.リボソーム膜面結合ヒト血清アルブミン (HSA)上の親水性化処理) 実施例 11の手段により調製された糖鎖が結合したリボソームについて、以下の手 順によりリボソーム上の HSAタンパク質表面の親水性ィ匕処理を行った。糖鎖修飾リポ ソーム 10mlに、別々に、トリス(ヒドロキシメチル)ァミノメタン 26. 4mgを加えて、室温 で 2時間、その後冷蔵下で一晩攪拌した後、 XM300膜と HEPES緩衝液 (pH 7. 2 )で限外濾過(分画分子量: 300, 000)し、未反応物を除去した。 0. 45 μ mのフィル ターで濾過して、最終産物である親水性化処理された糖鎖修飾リボソーム複合体各 10ml (総脂質量 38mg、総蛋白量 15mg、平均粒子径 1 OOnm)を得た。  (Example 12. Hydrophilization treatment on ribosome membrane surface-bound human serum albumin (HSA)) [0229] Regarding the ribosome to which the sugar chain prepared by the means of Example 11 was bound, the following procedure was performed on the ribosome. The surface of the HSA protein was subjected to hydrophilic treatment. Separately, 26.4 mg of tris (hydroxymethyl) aminomethane was added to 10 ml of the glycosylated liposomes, stirred at room temperature for 2 hours and then overnight under refrigeration, and then XM300 membrane and HEPES buffer (pH 7.2). ) And ultrafiltered (fraction molecular weight: 300,000) to remove unreacted substances. Filter through a 45 μm filter to obtain 10 ml each of the hydrophilized glycosylated ribosome complex (total lipid content 38 mg, total protein content 15 mg, average particle size 1 OOnm). It was.
[0230] (実施例 13.担癌マウスでのインビボイメージング)  (Example 13. In vivo imaging in tumor-bearing mice)
(担癌マウスの作製)  (Production of tumor-bearing mice)
マウス(ddyY、雄性、 7週齢)の右大腿部皮下に、 Ehrlich ascite  Ehrlich ascite subcutaneously in the right thigh of a mouse (ddyY, male, 7 weeks old)
tumor (EAT)細胞を 5 X 106細胞移植し、 7〜10日後に実験に使用した。 Tumor (EAT) cells were transplanted 5 × 10 6 cells and used for experiments 7-10 days later.
[0231] (評価方法) [0231] (Evaluation method)
1/10 ネンブタール溶液を担癌マウスの腹腔内に 300 1投与して麻酔をかけた 。蛍光イメージング装置 eXplore Optix(GE Healthcare)により投与前の画像 データを取った。尾静脈より、 cy5. 5内包糖鎖修飾リボソーム (K1) (200 1:脂質量 750 μ g相当)を投与して、投与直後の画像データを取った。  1/10 Nembutal solution was administered 300 1 into the peritoneal cavity of cancer-bearing mice and anesthetized. Pre-dose image data was taken with a fluorescence imaging device eXplore Optix (GE Healthcare). From the tail vein, cy5.5-encapsulated sugar chain-modified ribosome (K1) (2001: equivalent to 750 μg of lipid) was administered, and image data immediately after administration were collected.
[0232] コントロールとして、糖鎖を結合させて!/、な 、リボソーム粒子を同量投与した。経時 的に画像データをとつた。画像データは、すべて腹側より撮影した。 [0232] As a control, the same amount of ribosome particles was administered with sugar chains attached! /. Image data was collected over time. All image data were taken from the ventral side.
[0233] (結果) [0233] (Result)
図 1に示されるように、リボソーム投与直後では糖鎖のあるなしの差は見られな!/ヽが 、 1日後には糖鎖修飾リボソーム (Kl)が糖鎖なしよりも強く腫瘍部位に集積した。 2 日後では、糖鎖修飾リボソーム (K1)は有意に腫瘍部位に集積することが確認できた 。この結果から、 K1— 3リボソームによる腫瘍部位のイメージングが可能であることが わかった。リボソーム投与量を 200 μ 1から 50 μ 1と 1Z4にすると、ノ ックグラウンドが 下がり 8時間後でも糖鎖結合リポソ—ムは腫瘍部位に集積しているのが確認できた。 1日後ではさらに明確に腫瘍部位での糖鎖なしとの差が見られた。この結果から、 K1 —3リボソームによる腫瘍部位のイメージングが少量で、しかも短時間に可能であるこ とがわ力つた(図 2)。リボソーム投与量 200 1の場合、糖鎖修飾リボソーム (K1)の 集積は投与 2日後が最大となり、その後徐々にシグナルが弱くなつていくのが確認で きた。一方、糖鎖なしリボソームでは大きな変化は見られな力つた。この結果から、 K1 - 3リボソームが腫瘍部位にぉ 、て代謝されて 、る様子をイメージングによりリアルタ ィムで見ることができることがわかった(図 3)。 As shown in Figure 1, there is no difference between the presence and absence of sugar chains immediately after ribosome administration! / After 1 day, sugar chain-modified ribosome (Kl) accumulated more strongly at the tumor site than without sugar chain. Two days later, it was confirmed that the sugar chain-modified ribosome (K1) was significantly accumulated at the tumor site. From this result, it was found that the tumor site can be imaged by K1-3 ribosome. When the ribosome dose was changed from 200 μ1 to 50 μ1 and 1Z4, the knockdown decreased and it was confirmed that sugar chain-binding liposomes were accumulated at the tumor site even after 8 hours. One day later, there was a clear difference from the absence of sugar chain at the tumor site. From this result, it was proved that imaging of the tumor site with K1-3 ribosome was possible in a short time and in a short time (Fig. 2). In the case of a ribosome dose of 200 1, it was confirmed that the accumulation of sugar chain-modified ribosome (K1) was maximized 2 days after administration, and then the signal gradually weakened. On the other hand, ribosomes without sugar chains were powerful without significant changes. From this result, it was found that K1-3 ribosomes are metabolized to the tumor site and can be seen in real time by imaging (Fig. 3).
[0234] 図 4に示すように、糖鎖修飾リボソーム (Κ3)は腫瘍部位に集積する力 糖鎖なしょ りも腫瘍部位が弱いシグナルとなった。また、 1日後までは腫瘍部位に徐々に集積し ているが、 2日後、 3日後と増減なく変化がな力 た。この結果は、腫瘍部位のィメー ジングには Κ3— 3リボソームではなく K1— 3リボソームが最適であり、また糖鎖の特 異性を示した。 [0234] As shown in Fig. 4, the sugar chain-modified ribosome (Κ3) showed a weak signal at the tumor site, even without the ability to accumulate at the tumor site. In addition, it gradually accumulated at the tumor site until 1 day later, but it changed without any change between 2 days and 3 days later. This result shows that K1-3 ribosome, not Κ3-3 ribosome, is optimal for imaging the tumor site, and that the sugar chain is specific.
[0235] (実施例 14.慢性関節リウマチモデルマウスを用いた実験)  (Example 14. Experiment using rheumatoid arthritis model mouse)
(ヒト慢性関節リウマチモデルマウスの作製)  (Production of human rheumatoid arthritis model mice)
マウス(BalbZc,雌性、 8週齢)に関節炎惹起用モノクロナール抗体 (Chondrex 社)を 200 l (2mg)、尾静脈投与した。投与 2〜5日後、 LPS (リポポリサッカリド (Li popolysaccharide) )を 100 1 (50 1)をマウス腹腔内に投与した。マウスは、投与 3〜4日後に関節炎を発症した。  Mice (BalbZc, female, 8 weeks old) were administered with 200 l (2 mg) of monoclonal antibody (Chondrex) for inducing arthritis in the tail vein. Two to five days after administration, LPS (Lipopolysaccharide) 100 1 (50 1) was intraperitoneally administered to mice. Mice developed arthritis 3-4 days after administration.
[0236] (評価方法) [0236] (Evaluation method)
1/10 ネンブタール溶液を関節炎マウスの腹腔内に 200 1投与して麻酔をかけ た。蛍光イメージング装置 eXplore Optix (GE Healthcare)により投与前の画 像データを取った。尾静脈より、 cy5. 5内包糖鎖修飾リボソーム (Kl, K2) (50 1: 脂質量 190 g)を投与して、投与直後の画像データを取った。コントロールとして、 糖鎖を結合させていないリボソームを同量投与した。経時的に画像データをとつた。 画像データは、すべて背中側より後ろ足を撮影した。 Anesthesia was performed by administering 1/10 Nembutal solution into the peritoneal cavity of arthritic mice. Pre-dose image data was taken with a fluorescence imaging device eXplore Optix (GE Healthcare). From the tail vein, cy5.5-encapsulated sugar chain-modified ribosome (Kl, K2) (501: lipid amount 190 g) was administered, and image data immediately after administration were taken. As a control, The same amount of ribosome to which no sugar chain was bound was administered. The image data was collected over time. All image data were taken from the back foot from the back side.
[0237] (結果)  [0237] (Result)
図 5に示すように、糖鎖修飾リボソーム (K1)投与 1日後に炎症部位に集積している ことが確認できた。その後、 2日後、 3日後と徐々にシグナルは弱くなつていつた。この 結果から、 K1 3リボソームによる炎症部位のイメージングが可能であることがわかつ た。また、炎症部位に集積した K1— 3リボソームの代謝される様子力 イメージングに よりリアルタイムで見ることができることがわ力つた。 図 6に示すように、糖鎖修飾リポ ソーム (K1)投与 1日後に炎症部位に集積していることが確認できた。その後、図 5と 同様に、 2日後とシグナルは弱くなつていつた。この結果は、 K1— 3リボソームによる 炎症部位のイメージングと特異性の再現性を示した。  As shown in FIG. 5, it was confirmed that 1 day after administration of the sugar chain-modified ribosome (K1), it was accumulated in the inflamed site. Then, after 2 days and 3 days, the signal gradually weakened. From this result, it was found that imaging of the inflammatory site by K13 ribosome is possible. In addition, the ability of K1-3 ribosomes accumulated in the inflamed site to be metabolized was visualized in real time by imaging. As shown in FIG. 6, it was confirmed that 1 day after administration of the sugar chain-modified liposome (K1), it was accumulated in the inflamed site. After that, as in Fig. 5, the signal began to weaken after 2 days. This result showed reproducibility of imaging and specificity of the inflammatory site by K1-3 ribosome.
[0238] 図 7に示すように、糖鎖修飾リボソーム (K1)において、リボソームの表面に結合し て 、る糖鎖の密度を変え炎症部位への集積量を比較したところ、 K1 3が最も集積 していた。 K1— 4も K1 3ほど顕著ではないが炎症部位に集積した。 Kl— 5、 Kl —6と密度を高めると糖鎖なしリボソーム以上に炎症部位のシグナルが弱力つた。こ の結果から、糖鎖修飾リボソーム (K1)による炎症部位のイメージングには、 K1— 3、 K1—4などリボソーム表面に結合して 、る糖鎖の密度が低 、方が適して 、ることがわ かった。また、リボソーム表面の糖鎖の修飾結合密度による特異性を示した。糖鎖修 飾リボソーム (K3)は、 1日後ではどの糖鎖密度のリボソームも糖鎖なしリボソームとの 差が見られな力つた。この結果は、図 7の結果をふまえて糖鎖修飾リボソーム (K1)と 糖鎖修飾リボソーム (K3)とでは炎症部位へのリボソームの集積性が異なり、糖鎖 K1 リボソームが炎症部位へ特異的に集積することを示した(図 8)。  [0238] As shown in Fig. 7, when sugar chain-modified ribosome (K1) binds to the surface of the ribosome and changes the density of sugar chains, the amount of accumulation at the inflammatory site is compared. Was. K1-4 was also not as prominent as K1 3, but accumulated at the site of inflammation. Increasing the density of Kl-5 and Kl-6 weakened the signal at the inflammatory site more than ribosomes without sugar chains. From these results, it is suggested that for inflammatory site imaging by glycan-modified ribosomes (K1), the density of glycans bound to the ribosome surface such as K1-3 and K1-4 is better. I understood. Moreover, the specificity by the modified bond density of the sugar chain on the ribosome surface was shown. Glycan-modified ribosomes (K3) did not show any difference from ribosomes with no sugar chain after one day. Based on the results shown in Fig. 7, there is a difference in the accumulation of ribosomes at the inflammatory site between the sugar chain-modified ribosome (K1) and the sugar chain-modified ribosome (K3). It was shown to accumulate (Figure 8).
[0239] 糖鎖修飾リボソーム (K2)は、 1日後では K2— 3が炎症部位に集積しているのが確 認できた。この結果から、 K2— 3リボソームでの炎症部位のイメージングが可能であ ることがわ力つた。また、図 7〜9の結果をふまえると、炎症部位への集積具合により 糖鎖の特異性が示され、かつ、炎症部位のイメージングにはリボソーム表面に結合し て 、る糖鎖の密度が低 、方が良 、ことを示した(図 9)。糖鎖 K1は糖鎖量レベル 3 (K 1 - 3)および糖鎖量レベル 4 (K1 -4)で有意な差を認めた。正常マウスでは集積な し。この結果から、糖鎖の修飾結合密度が低い糖鎖修飾リボソーム (K1)は、炎症部 位に特異的に集積することがわ力つた(図 10)。別ロットサンプルでの K1 - 3も炎症 部位に集積した。この結果は、 K1— 3リボソームによる炎症部位のイメージングと特 異性の再現性を示した(図 11)。糖鎖 K1につ 、ては K1 - 2と糖鎖密度が低くても炎 症部位に集積した。この結果から、糖鎖修飾リボソーム (K1)については糖鎖の修飾 結合密度が高 、リボソームより低 、リボソームの方が炎症部位のイメージングに適し て!、ることがわかった(図 12)。 [0239] In the sugar chain-modified ribosome (K2), it was confirmed that K2-3 was accumulated at the site of inflammation after 1 day. From this result, it was proved that it is possible to image the inflammatory site with K2-3 ribosome. In addition, based on the results shown in FIGS. 7 to 9, the specificity of the sugar chain is shown by the degree of accumulation in the inflamed site, and in the imaging of the inflamed site, the density of the sugar chain bound to the ribosome surface is low. This is better (Fig. 9). Sugar chain K1 showed a significant difference between sugar chain level 3 (K 1-3) and sugar chain level 4 (K1 -4). Accumulated in normal mice Yes. These results indicate that sugar chain-modified ribosomes (K1), which have a low sugar chain-modified bond density, accumulate specifically at the inflammatory site (Fig. 10). K1-3 from another lot sample also accumulated at the site of inflammation. This result showed imaging of the site of inflammation by K1-3 ribosome and reproducibility of the specificity (Fig. 11). For sugar chain K1, K1-2 was accumulated at the site of inflammation even if the sugar chain density was low. From these results, the sugar chain-modified ribosome (K1) has a higher sugar chain modification density, which is lower than the ribosome, and the ribosome is more suitable for imaging of inflammatory sites! (Fig. 12)
[0240] 糖鎖 K3については糖鎖密度を変えても炎症部位には集積しなカゝつた。この結果と 図 8、図 12をふまえると糖鎖修飾リボソーム (K3)はリボソーム表面に結合している糖 鎖の密度を変えても炎症部位に集積せず、リボソームの表面に結合して 、る糖鎖の 種類による炎症部位への特異性がわ力つた(図 13)。  [0240] Sugar chain K3 did not accumulate in the inflamed site even when the sugar chain density was changed. Based on these results and Figs. 8 and 12, the sugar chain-modified ribosome (K3) does not accumulate at the inflammatory site even if the density of the sugar chain bound to the ribosome surface is changed, and binds to the ribosome surface. Specificity of the glycemic chain to the inflamed site was particularly strong (Fig. 13).
[0241] (実施例 15.正常マウスを用いた実験)  [0241] (Example 15. Experiment using normal mice)
(cy5. 5内包糖鎖修飾リボソームの正常マウスにおける体内動態の確認) 正常マウスとして、 BalbZc,雌性、 7〜8週齢を用いた。  (Confirmation of pharmacokinetics of cy5.5 encapsulated sugar chain-modified ribosome in normal mice) As normal mice, BalbZc, female, 7-8 weeks old were used.
[0242] (評価方法)  [0242] (Evaluation method)
1/10 ネンブタール溶液を正常マウスの腹腔内に 100 1投与して麻酔をかけた 。蛍光イメージング装置 eXplore Optix(GE Healthcare)により投与前の画像 データを取った。尾静脈より、 cy5. 5内包糖鎖修飾リボソーム(200 1:脂質量 750 g)を投与して、投与直後の画像データを取った。経時的に画像データをとつた。 画像データは、すべて腹側より撮影した。  A 1/10 Nembutal solution was administered 100 1 into the abdominal cavity of normal mice and anesthetized. Pre-dose image data was taken with a fluorescence imaging device eXplore Optix (GE Healthcare). From the tail vein, cy5.5-encapsulated sugar chain-modified ribosome (2001: lipid amount 750 g) was administered, and image data immediately after administration were taken. The image data was collected over time. All image data were taken from the ventral side.
[0243] (結果)  [0243] (Result)
図 14は、脳のデータを示す。投与後 1時間で K1 3、 K2— 3が脳に集積している のが確認できた。また、投与後 1日では K1— 3は脳にかなりの量残っている力 K2 —3では明らかに減少していた。この結果から、糖鎖修飾リボソーム (K1)は血液脳 関門(Blood— Brain Barrier; BBB)を通過し組織へ浸透していることがわかった 。また、糖鎖修飾リボソーム (K2)は、 1日後で減少していたことより、脳の血管には入 る力 BBBを通過できず、組織へは浸透しないことがわ力つた。このことより、糖鎖の 種類による脳での特異的な動態があることがわ力つた。 [0244] 図 15は、肝臓のデータを示す。 1日後の K2— 6では強いシグナルが確認できた。 この結果から、糖鎖の種類 ·修飾結合密度の違!ヽによる肝臓への集積の特異性をィ メージングとして見ることができることがわ力つた。 Figure 14 shows brain data. One hour after administration, it was confirmed that K1 3 and K2-3 were accumulated in the brain. One day after administration, K1-3 was clearly decreased with K2-3, which has a considerable amount of brain remaining. From this result, it was found that sugar chain-modified ribosome (K1) penetrates the blood-brain barrier (BBB) and penetrates into tissues. In addition, the sugar-modified ribosome (K2) decreased after one day, indicating that it cannot pass through the BBB force that enters the brain blood vessels and does not penetrate into the tissue. This proved that there was a specific dynamic in the brain depending on the type of sugar chain. [0244] FIG. 15 shows liver data. One day later, K2-6 showed a strong signal. From this result, it was proved that the specificity of accumulation in the liver due to the difference in sugar chain type and modified bond density can be seen as imaging.
[0245] 図 16は、腎臓のデータを示す。 K1糖鎖、 K3糖鎖と比較して、 K2糖鎖 (K2— 3)は 投与後 1時間で強いシグナルが確認できた。この結果から、 K2— 3糖鎖は腎臓への 集積の特異性をイメージングができることがわ力つた。 [0245] FIG. 16 shows kidney data. Compared with the K1 and K3 sugar chains, the K2 sugar chain (K2-3) showed a strong signal 1 hour after administration. From this result, it was proved that K2-3 sugar chain can image the specificity of accumulation in the kidney.
[0246] 図 17は、脾臓のデータを示す。 K1 - 3, 4, 6と K2— 4, 6が集積していた。この結 果から、糖鎖の種類'修飾結合密度の違いによる脾臓への集積の特異性をイメージ ングとして見ることができることがわ力つた。 [0246] FIG. 17 shows spleen data. K1-3, 4, 6 and K2-4, 6 were accumulated. This result showed that the specificity of accumulation in the spleen due to the difference in the type of sugar chain and the modified binding density can be seen as an image.
[0247] 図 18は肺のデータを示す。 K1— 3は、投与後 1時間と 1日後においてシグナルが 持続していた。この結果から、糖鎖の種類'修飾結合密度の違いによる肺への集積 の特異性をイメージングとして見ることができることがわ力つた。 [0247] Figure 18 shows lung data. For K1-3, the signal persisted 1 hour and 1 day after administration. From this result, it was proved that the specificity of accumulation in the lung due to the difference in the type of sugar chain and the modified bond density can be seen as imaging.
[0248] 図 19は、脾臓のデータを示す。全体的にシグナルが弱いが、部分的 (K2— 3、 Κ2 [0248] FIG. 19 shows spleen data. The signal is weak overall, but partially (K2—3, Κ2
6など)にシグナルの高い部位が見られた。この結果から、糖鎖の種類'修飾結合 密度の違 、による脾臓への集積の特異性をイメージングとして見ることができることが わかった。  6) and other areas with high signal. From this result, it was found that the specificity of accumulation in the spleen due to the type of sugar chain and the difference in the modified bond density can be seen as imaging.
[0249] 図 20は、心臓のデータを示す。糖鎖密度を変えるとシグナル強度に差は見られた 力 糖鎖なしの方が強いシグナルを示していた。この結果から、糖鎖の種類'修飾結 合密度の違いによる心臓への集積の特異性をイメージングとして見ることができること がわかった。  [0249] FIG. 20 shows cardiac data. When the sugar chain density was changed, a difference in signal intensity was observed. The signal without sugar chain showed a stronger signal. From this result, it was found that the specificity of accumulation in the heart due to the difference in the type of sugar chain and the modified binding density can be seen as imaging.
[0250] 図 21は、 K1— 3の全身スキャンデータ (頭頂部以外)、投与直後を示す。糖鎖なし に比べると K1 3は肝臓のシグナルが弱い。この結果から、投与直後、 K1— 3リポソ 一ムは糖鎖なしリボソームに比べて肝臓に取り込まれにくいことがわ力つた。図 22は 、 K1 -4, 6の全身スキャンデータ (頭頂部以外)、投与直後を示す。 K1 3と同様 に糖鎖なしに比べると肝臓のシグナルが弱い。この結果から、投与直後、糖鎖修飾リ ポソーム (K1)は糖鎖なしリボソームに比べて肝臓に取り込まれにくいことがわ力 た  [0250] FIG. 21 shows K1-3 whole body scan data (other than the parietal region) immediately after administration. K13 has a weaker liver signal than no sugar chain. These results indicate that immediately after administration, K1-3 liposomes are less likely to be taken into the liver than ribosomes without sugar chains. FIG. 22 shows whole body scan data of K1-4, 6 (other than the parietal region) immediately after administration. Like K13, liver signal is weaker than without sugar chain. These results indicate that immediately after administration, sugar chain-modified liposomes (K1) are less likely to be taken up by the liver than ribosomes without sugar chains.
[0251] 図 23は、 Κ2— 3の全身スキャンデータ (頭頂部以外)、投与直後を示す。糖鎖なし に比べると肝臓のシグナルが強い。この結果から、投与直後、 K2— 3リボソームは糖 鎖なしリボソームに比べて肝臓に取り込まれやすいことがわ力つた。また、この結果は 、図 15と同様の結果になった。投与直後において、糖鎖の種類による肝臓への特異 性が示された。図 24は、 K2— 4, 6の全身スキャンデータ (頭頂部以外)、投与直後 を示す。糖鎖なしに比べると K2— 4, K2— 6は肝臓のシグナルが弱い。この結果か ら、投与直後、 K2— 4、 K2— 6リボソームは糖鎖なしリボソームに比べて肝臓に取り 込まれにくいことがわ力つた。投与直後において、修飾結合密度の違いによる肝臓 への特異性が示された。 [0251] FIG. 23 shows whole body scan data of Κ2-3 (other than the parietal region) immediately after administration. No sugar chain The liver signal is stronger than. From these results, it was proved that K2-3 ribosomes were more easily taken into the liver than ribosomes without sugar chains immediately after administration. This result was the same as that shown in FIG. Immediately after administration, specificity to the liver was shown by the type of sugar chain. Fig. 24 shows whole body scan data for K2–4, 6 (except for the parietal region) immediately after administration. K2-4 and K2-6 have weaker liver signals than without sugar chains. These results indicate that immediately after administration, K2-4 and K2-6 ribosomes are less likely to be taken into the liver than ribosomes without sugar chains. Immediately after administration, specificity for the liver due to the difference in the modified binding density was shown.
[0252] 図 25は、 K3— 3の全身スキャンデータ (頭頂部以外)、投与直後を示す。糖鎖なし と肝臓でのシグナルが同じである。この結果から、投与直後、 K3— 3リボソームは糖 鎖なしリボソームに比べて肝臓に取り込まれにくいことがわ力つた。図 26は、 K3-4, 6の全身スキャンデータ (頭頂部以外)、投与直後を示す。糖鎖なしに比べると K3— 4, K3— 6は肝臓のシグナルが弱い。この結果から、投与直後、糖鎖修飾リボソーム( K3)は糖鎖なしリボソームに比べて肝臓に取り込まれにくいことがわ力つた。  [0252] FIG. 25 shows whole body scan data of K3-3 (except for the parietal region) immediately after administration. The signal in the liver is the same as in the case of no sugar chain. From these results, it was found that K3-3 ribosomes were less likely to be taken into the liver immediately after administration compared to ribosomes without sugar chains. FIG. 26 shows whole body scan data for K3-4 and 6 (other than the parietal region) immediately after administration. K3-4 and K3-6 have weaker liver signals than without sugar chains. From these results, it was found that immediately after administration, sugar chain-modified ribosome (K3) is less likely to be taken into the liver than ribosomes without sugar chain.
[0253] 図 27は、糖鎖なしの全身スキャンデータ (頭頂部以外)、経時変化を示す。 1日後 には肝臓、および膀胱にシグナルが検出された。この結果から、リボソームが肝臓、 膀胱へと代謝'排出されているの力 イメージングにより見ることができることがわかつ た。図 28は、 K1 3の全身スキャンデータ (頭頂部以外)、経時変化を示す。 1日後 には膀胱にシグナルが検出された。この結果から、リボソームが肝臓、膀胱へと代謝' 排出されているの力 イメージングにより見ることができることがわ力つた。図 29は、 K 1 4の全身スキャンデータ (頭頂部以外)、経時変化を示す。 1日後には肝臓および 膀胱にシグナルが検出された。 2日後には肝臓におけるシグナルが減少した。この結 果から、リボソームが肝臓、膀胱へと代謝'排出されているのが、イメージングにより見 ることができることがわ力つた。図 30は、 K1— 6の全身スキャンデータ (頭頂部以外) 、経時変化を示す。この結果から、リボソームが肝臓、膀胱へと代謝'排出されている の力 イメージングにより見ることができることがわ力つた。  FIG. 27 shows whole body scan data without sugar chain (other than the parietal region) and changes with time. One day later, signals were detected in the liver and bladder. From this result, it was found that ribosomes can be observed by force imaging of metabolism and excretion into the liver and bladder. FIG. 28 shows K13 whole body scan data (other than the parietal region) and time course. One day later, a signal was detected in the bladder. From this result, it was proved that ribosome can be observed by force imaging of metabolism and excretion into the liver and bladder. FIG. 29 shows K 14 whole body scan data (other than the parietal region) and time course. One day later, signals were detected in the liver and bladder. Two days later, the signal in the liver decreased. From this result, it was clear that the ribosome was metabolized and excreted into the liver and bladder by imaging. Figure 30 shows the time course of K1-6 whole body scan data (except for the parietal region). From this result, it was proved that ribosome can be observed by force imaging of metabolism and excretion into the liver and bladder.
[0254] (実施例 16.リボソームの定量分析)  (Example 16. Quantitative analysis of ribosome)
(I.タンパク質定量) リボソームに内包された HSA量とリボソーム表面にカップリングした HSAの総タン ノ ク質量を BCA法により測定した。 (I. Protein quantification) The amount of HSA encapsulated in the ribosome and the total tank mass of HSA coupled to the ribosome surface were measured by the BCA method.
[0255] タンパク質量の測定は、 Micro BCA™ Protein Assay Reagentキット(カタ口 グ番号 23235BN) (PIERCE Co. LTD)を用いた。標準物質として、キットに添付 された 2mgZmlアルブミン(BSA)を使用した。  [0255] Micro BCA ™ Protein Assay Reagent kit (catalog number 23235BN) (PIERCE Co. LTD) was used for the measurement of protein amount. As a standard substance, 2 mg Zml albumin (BSA) attached to the kit was used.
[0256] スタンダード溶液として、標準物質(2mgZml:アルブミン)を PBS緩衝液で希釈し 、 0、 0. 25、 0. 5、 1、 2、 3、 4、 5 g/50 1溶液を調製した。 Cy5. 5内包糖鎖修 飾リボソームを PBS緩衝液で 20倍希釈し、検体溶液を調製した。スタンダード溶液、 検体溶液をそれぞれ試験管に 50 1分注した。各試験管に 3%ラウリル硫酸ナトリウ ム溶液(SDS溶液)を 100 1添加した。キットに添付された試薬 A、 B、 Cを、試薬 A: 試薬 B :試薬 C=48 : 2 : 50となるように混合し、各試験管に 150 1添カ卩した。この試 験管を、 60°Cで 1時間、静置した。室温に戻ってから、吸光度 540nmを測定し、スタ ンダード溶液により検量線を作成して、リボソームのタンパク質量を測定した。以下の 表に結果を示す。  [0256] As a standard solution, a standard substance (2 mgZml: albumin) was diluted with PBS buffer solution to prepare 0, 0.25, 0.5, 1, 2, 3, 4, 5 g / 50 1 solutions. Cy5.5-encapsulated sugar chain-modified ribosomes were diluted 20-fold with PBS buffer to prepare a sample solution. The standard solution and the sample solution were each dispensed into a test tube for 50 minutes. 100 1 of 3% sodium lauryl sulfate solution (SDS solution) was added to each test tube. Reagents A, B, and C attached to the kit were mixed so that reagent A: reagent B: reagent C = 48: 2: 50, and 150 1 was added to each test tube. The test tube was allowed to stand at 60 ° C for 1 hour. After returning to room temperature, the absorbance was measured at 540 nm, a calibration curve was prepared with a standard solution, and the amount of ribosomal protein was measured. The following table shows the results.
[0257] [表 3] [0257] [Table 3]
Figure imgf000119_0001
Figure imgf000119_0001
[0258] (II.脂質定量) [0258] (II. Lipid determination)
リボソームの構成脂質量を、コレステロール量を定量することにより算出した。脂質 の定量にはデタミナ一 TC555キット(カタログ番号 UCCZEAN128) (KYOWA C o. LTD)を用いた。標準物質として、キットに添付されている 50mgZml  The amount of ribosome component lipid was calculated by quantifying the amount of cholesterol. Detamina TC555 kit (Cat. No. UCCZEAN128) (KYOWA Co. LTD) was used for lipid quantification. 50mgZml attached to kit as standard
コレステロールを使用した。  Cholesterol was used.
[0259] スタンダード溶液として、標準物質(50mgZml:コレステロール)を PBS緩衝液で 希釈し、 0、 0. 1、 0. 25、 0. 5、 0. 75、 1、 5、 8Ζ20 /ζ 1溶液を調製した。 Cy5 . 5内包糖鎖修飾リボソームを PBS緩衝液で 5倍希釈し、検体溶液を調製した。スタ ンダード溶液、検体溶液をそれぞれ試験管に 20 1分注した。各試験管に、 Triton X— 100 (10%溶液)を 17 1添加して撹拌し、その後、 37°C、 40分間、静置した。 デタミナ一 TC555キットの酵素試薬を 300 1添加して撹拌し、その後、 37°C、 20分 間、静置した。吸光度 540nmを測定し、スタンダード溶液により検量線を作成して、リ ポソームのコレステロール量を測定し、脂質量を求めた。 [0259] As a standard solution, dilute standard substance (50mgZml: cholesterol) with PBS buffer solution, 0, 0.1, 0.25, 0.5, 0.75, 1, 5, 8 Ζ20 / ζ 1 solution Was prepared. Cy5.5-encapsulated sugar chain-modified ribosome was diluted 5-fold with PBS buffer to prepare a sample solution. The standard solution and the sample solution were each dispensed into a test tube for 20 minutes. To each test tube, Triton X-100 (10% solution) 17 1 was added and stirred, and then allowed to stand at 37 ° C. for 40 minutes. 3001 enzyme reagent from Detamina TC555 kit was added and stirred, and then allowed to stand at 37 ° C for 20 minutes. Absorbance was measured at 540 nm, a calibration curve was prepared with a standard solution, the amount of cholesterol in the liposome was measured, and the amount of lipid was determined.
コレステロール量力 脂質量を求める換算式  Cholesterol power Conversion formula for lipid content
脂質量 Ζ5〇/Ζ 1) =コレステロール量 gZSO /z l) X 4. 51 (換算係数) 脂質量の定量結果を以下に示す。 Lipid content Ζ 5 〇 / Ζ 1) = Cholesterol content gZSO / zl) X 4.51 (Conversion factor) The quantitative results of lipid content are shown below.
[0260] [表 4] [0260] [Table 4]
(表 4 脂質量の定量結果) cy5. 5内包糖 (Table 4 Quantitative results of lipid content) cy5.5 Encapsulated sugar
鎖修飾リポソ一 Chain-modified liposome
ム ( i /50ju l) cy5.5 K1-0 191 (I / 50ju l) cy5.5 K1-0 191
cy5.5 K1-1 168 cy5.5 K1-1 168
cy5.5 K1-2 178 cy5.5 K1-2 178
cy5.5 K1-3 187 cy5.5 K1-3 187
cy5.5 K1-4 199.8 cy5.5 K1-5 166.2 cy5.5 K1-6 161.3 cy5.5 K2-0 214.4 cy5.5 K2-1 215.3 cy5.5 K2-2 183.5 cy5.5 K2-3 217.2 cy5.5 K2-4 221 cy5.5 K1-4 199.8 cy5.5 K1-5 166.2 cy5.5 K1-6 161.3 cy5.5 K2-0 214.4 cy5.5 K2-1 215.3 cy5.5 K2-2 183.5 cy5.5 K2-3 217.2 cy5 .5 K2-4 221
cy5.5 K2-5 198.7 cy5.5 K2-6 205.3 cy5.5 K3-0 245.6 cy5.5 K3-1 212.7 cy5.5 K3-2 200.1 cy5.5 K3-3 198.6 cy5.5 K3-4 204.2 cy5.5 K3-5 197.7 cy5.5 K3-6 208.6 [0261] [表 5] cy5.5 K2-5 198.7 cy5.5 K2-6 205.3 cy5.5 K3-0 245.6 cy5.5 K3-1 212.7 cy5.5 K3-2 200.1 cy5.5 K3-3 198.6 cy5.5 K3-4 204.2 cy5 .5 K3-5 197.7 cy5.5 K3-6 208.6 [0261] [Table 5]
(表 5 脂質に対するタンパク質の割合)  (Table 5 Ratio of protein to lipid)
Figure imgf000122_0001
Figure imgf000122_0001
[0262] (III.粒子径分布および粒子径) [0262] (III. Particle size distribution and particle size)
リボソーム粒子を精製水で 50倍に希釈して、ゼータサイザ一ナノ (Nan— ZS: MA LVERN Co . LTD)を用 、て測定した。  Ribosome particles were diluted 50-fold with purified water and measured using a Zetasizer Nano (Nan-ZS: MA LVERN Co. LTD).
[0263] [表 6] 測定された粒子径 (nm〉の結果) [0263] [Table 6] Measured particle size (nm) result
Figure imgf000123_0001
Figure imgf000123_0001
(実施例 17.蛍光標識物質外付型リボソームの調製 I)  (Example 17. Preparation of fluorescent-labeled substance-attached ribosome I)
(cy5. 5標識ヒト血清アルブミン溶液の調製)  (Preparation of cy5.5 labeled human serum albumin solution)
ヒト血清アルブミン ZN トリス(ヒドロキシメチル) 3—ァミノプロパンスルホン酸緩 衝液(pH8. 4)溶液(10mgZml)、(2ml)に cy5. 5ZN—トリス(ヒドロキシメチル) 3 ァミノプロパンスルホン酸緩衝液 (pH8. 4)溶液(2mgZml)、 (2. 5ml)を混 合して、 37°Cで 3時間撹拌した。この混合溶液を、分画分子量 10, 000で限外濾過 し、遊離の cy5. 5を除去し、 cy5. 5標識ヒト血清アルブミン溶液を調製する。 [0265] 実施例 2で得られた 10mlのリボソーム膜面上に存在するガンダリオシドを lmlの N —トリス(ヒドロキシメチル)—3—ァミノプロパンスルホン酸緩衝液 (pH 8. 4)に溶か したメタ過ヨウ素酸ナトリウム 43mgを加え、冷蔵下で一晩攪拌して過ヨウ素酸酸ィ匕す る。 XM300膜と PBS緩衝液 (pH 8. 0)で限外濾過(分画分子量: 300, 000)する ことにより、遊離の過ヨウ素酸ナトリウムを除去し、 N—トリス (ヒドロキシメチル) - 3- ァミノプロパンスルホン酸緩衝液を PBS緩衝液 (pH8. 0)に交換して、酸化されたリ ポソーム 10mlを得る。このリボソーム液に、 20mgの cy5. 5標識ヒト血清アルブミン溶 液を加えて室温で 2時間反応させ、次に 2M NaBH CNZPBS緩衝液 (pH 8. 0) Human serum albumin ZN Tris (hydroxymethyl) 3-aminopropanesulfonic acid buffer (pH8.4) solution (10mgZml), (2ml) with cy5.5ZN-tris (hydroxymethyl) 3 aminopropanesulfonic acid buffer ( pH 8.4) solution (2mgZml) and (2.5ml) were mixed and stirred at 37 ° C for 3 hours. This mixed solution is ultrafiltered with a molecular weight cut-off of 10,000 to remove free cy5.5 and prepare a cy5.5-labeled human serum albumin solution. [0265] The gandarioside present on the 10 ml ribosome membrane surface obtained in Example 2 was dissolved in lml N-tris (hydroxymethyl) -3-amaminopropanesulfonate buffer (pH 8.4). Add 43 mg of sodium metaperiodate and stir overnight under refrigeration for periodate. Free filtration of sodium periodate was removed by ultrafiltration (fraction molecular weight: 300, 000) with XM300 membrane and PBS buffer (pH 8.0). N-Tris (hydroxymethyl) -3- Exchange minopropane sulfonate buffer with PBS buffer (pH 8.0) to obtain 10 ml of oxidized liposomes. To this ribosome solution, add 20 mg of cy5.5-labeled human serum albumin solution and react at room temperature for 2 hours, then 2M NaBH CNZPBS buffer (pH 8.0)
3  Three
100 1をカ卩えて室温で 2時間、さらに冷蔵下で一晩攪拌してリボソーム上のガンダリ オシドと cy5. 5標識 HSAとのカップリング反応で cy5. 5標識 HSAを結合させる。次 いで、限外濾過(分画分子量: 300, 000)し、遊離のシァノホウ素酸ナトリウムおよび ヒト血清アルブミンを除去し、この溶液の緩衝液を炭酸緩衝液 (pH8. 5)に交換して 、 cy5. 5標識 HSA結合リボソーム液 10mlを得る。  Add 1001 and stir for 2 hours at room temperature and overnight under refrigeration to allow cy5.5-labeled HSA to bind by coupling reaction between gandarioside on ribosome and cy5.5-labeled HSA. Next, ultrafiltration (fractional molecular weight: 300,000) was performed to remove free sodium cyanoborate and human serum albumin, and the buffer of this solution was replaced with carbonate buffer (pH 8.5). Obtain 10 ml of cy5.5-labeled HSA-binding ribosome solution.
[0266] (糖鎖の調製) [0266] (Preparation of sugar chain)
実施例 4と同様の方法にて糖鎖を調製する。  A sugar chain is prepared in the same manner as in Example 4.
[0267] (リボソーム膜面結合 cy5. 5標識ヒト血清アルブミン (HSA)上への糖鎖の結合) 実施例 4において調製した各糖鎖 2mgを精製水に溶解し、 0. 25gの NH HCOを [0267] (Ribosomal membrane surface binding cy5.5 Binding of sugar chains onto 5-labeled human serum albumin (HSA)) 2 mg of each sugar chain prepared in Example 4 was dissolved in purified water, and 0.25 g of NH HCO was dissolved.
4 3 溶かした 0. 5ml水溶液に加え、 37°Cで 3日間攪拌した後、 0. 45 μ mのフィルターで 濾過して糖鎖の還元末端のアミノ化反応を完結して、各糖鎖のグリコシルァミンィ匕合 物 4mgZml (アミノ化糖鎖溶液)を得る。次に、実施例 3で得たリボソーム液の一部分 10mlに架橋試薬 3, 3, 一ジチォビス(スルホスクシンィミジルプロピオネート) (DTSS P ; Pierce Co. , USA) 10mgをカ卩えて室温で 2時間、続いて冷蔵下でー晚攪拌し 、 XM300膜と炭酸緩衝液 (pH 8. 5)で限外濾過(分画分子量: 300, 000)して、 遊離の DTSSPを除去し、 DTSSPがリボソーム上の cy5. 5標識 HSAに結合したリ ポソーム 10mlを得る。次に、このリボソーム液に上記のグリコシルァミン化合物(ァミノ ィ匕糖鎖溶液) 12. 5、 37. 5、 125、 250、 500、 1250、 2500 1をカロえて、室温で 2 時間反応させ、トリス (ヒドロキシメチル)ァミノメタン Z炭酸緩衝液 (PH 8. 5)を添カロ し、その後、冷蔵下で一晩攪拌し、リボソーム膜面結合 cy5. 5標識ヒト血清アルブミ ン上の DTSSPにグリコシル化ァミン化合物の結合を行う。 XM300膜と HEPES緩衝 液 (pH 7. 2)で限外濾過(分画分子量: 300, 000)して、遊離の糖鎖およびトリス( ヒドロキシメチル)ァミノメタンを除去する。その結果、糖鎖と cy5. 5標識ヒト血清アル ブミンとリボソームとが結合したリボソームが得られる。 4 3 Add to 0.5 ml aqueous solution and stir at 37 ° C for 3 days, then filter through 0.45 μm filter to complete the amination reaction of the reducing end of the sugar chain. Glycosamine amine compound 4mgZml (aminated sugar chain solution) is obtained. Next, 10 mg of a crosslinking reagent 3, 3, monodithiobis (sulfosuccinimidyl propionate) (DTSS P; Pierce Co., USA) was added to 10 ml of a part of the ribosome solution obtained in Example 3 at room temperature. For 2 hours, followed by agitation under refrigeration, ultrafiltration (fraction molecular weight: 300, 000) with XM300 membrane and carbonate buffer (pH 8.5) to remove free DTSSP, DTSSP Obtain 10 ml of liposomes bound to cy5.5-labeled HSA on the ribosome. Next, transfer the above glycosylamine compound (amino saccharose solution) 12.5, 37.5, 125, 250, 500, 1250, 2500 1 to this ribosome solution and react at room temperature for 2 hours. Add tris (hydroxymethyl) aminomethane Z carbonate buffer (PH 8.5), and then stir overnight under refrigeration to bind to ribosome membrane surface cy5.5. Conjugate glycosylated amine compounds to DTSSP on the screen. Free sugar chains and tris (hydroxymethyl) aminomethane are removed by ultrafiltration (fraction molecular weight: 300,000) with XM300 membrane and HEPES buffer (pH 7.2). As a result, a ribosome in which a sugar chain, cy5.5-labeled human serum albumin and ribosome are bound is obtained.
[0268] (リボソーム膜面結合 cy5. 5標識ヒト血清アルブミン (HSA)上の親水性化処理) 上記の糖鎖が結合したリボソームについて、それぞれ別々に以下の手順によりリポ ソーム上の cy5. 5標識 HSAタンパク質表面の親水性化処理を行う。糖鎖修飾リポソ ーム 10mlに、別々に、トリス(ヒドロキシメチル)ァミノメタン 26. 4mgを加えて、室温で 2時間、その後冷蔵下で一晩攪拌した後、 XM300膜と PBS緩衝液 (pH 7. 2)で限 外濾過(分画分子量: 300, 000)し、未反応物を除去する。 0. 45 mのフィルター で濾過して、最終産物である親水性化処理された糖鎖修飾リボソーム複合体各 10m 1を得る。 [0268] (Ribosomal membrane surface-bound cy5.5-labeled human serum albumin (HSA) hydrophilization treatment) For the ribosomes to which the above sugar chains are bound, the cy5.5-label on the liposomes is separately treated by the following procedure. Perform hydrophilic treatment of the HSA protein surface. Separately, 26.4 mg of tris (hydroxymethyl) aminomethane was added to 10 ml of the glycosylated liposome, stirred at room temperature for 2 hours, and then overnight under refrigeration, and then XM300 membrane and PBS buffer (pH 7. Perform ultrafiltration (fraction molecular weight: 300, 000) in 2) to remove unreacted substances. Filter through a 0.45 m filter to obtain 10 ml each of the glycosylated ribosome complex that has been hydrophilized as the final product.
[0269] (実施例 18.蛍光標識物質外付型リボソームの調製 II)  (Example 18. Preparation of fluorescent-labeled substance-attached ribosome II)
実施例 6で得られたリボソーム表面の HSA中の S— S基に対して、蛍光色素 cy3ま たは cy5を添加して反応させ、標識させる。  A fluorescent dye cy3 or cy5 is added to the S—S group in the HSA on the ribosome surface obtained in Example 6 for reaction and labeling.
[0270] 実施例 6で得られた糖鎖修飾リボソーム 10mlを XM300膜と PBS緩衝液 (pH7. 2 )で限外濾過(分画分子量: 300, 000)し、 cy3または cy5Zジメチルホルムアミド(D MF) (pH8. 4)溶液(20mgZml) 100 1を混合して、室温で2時間攪拌後、冷蔵下 一晩攪拌する。 XM300膜と HEPES緩衝液 (pH7. 2)で限外濾過(分画分子量: 30 0, 000)して、遊離の蛍光色素を除去する。最終産物である蛍光標識物質外付型リ ポソームが得られる。 [0270] 10 ml of the sugar chain-modified ribosome obtained in Example 6 was ultrafiltered (fraction molecular weight: 300,000) with XM300 membrane and PBS buffer (pH 7.2), and cy3 or cy5Z dimethylformamide (D MF ) (pH 8. 4) solution (2 0mgZml) by mixing 100 1, after stirring for 2 hours at room temperature and stirred overnight under refrigeration. Free fluorescent dye is removed by ultrafiltration (fraction molecular weight: 300,000) with XM300 membrane and HEPES buffer (pH 7.2). The final product, fluorescently labeled substance-attached liposome, is obtained.
[0271] (実施例 19.蛍光色素を内包するリボソームを用いたイメージング)  (Example 19. Imaging using a ribosome encapsulating a fluorescent dye)
(Cy5. 5内包糖鎖修飾リボソーム (K1)の調製)  (Preparation of Cy5.5 encapsulated sugar chain-modified ribosome (K1))
糖鎖として SLXを用いて Cy5. 5内包糖鎖修飾リボソーム (K1)を調製した(図 40を 参照のこと o ) oリボソームを、 Yamazaki, N. J. Membrance  CyX 5.5-encapsulated glycoside-modified ribosome (K1) was prepared using SLX as the sugar chain (see Fig. 40) o The ribosome was isolated from Yamazaki, N. J. Membrance.
Sci. 1989, 41, 249— 267、 Yamazaki, N. , Komada, M. , Gabius, H-J. Methods. Enzymol. 1994, 242, 56— 65に記載される改良されたコール酸塩透 析法を用いて調製した。 [0272] ジパルミトイルホスファチジルコリン(16. 8mg)、コレステロール(10. lmg)、ジセ チルホスフェート(1. 8mg)、ガングリオシド(14. 6mg)、ジパルミトイルホスファチジ ルエタノールァミン(2. 3mg)およびコール酸ナトリウム(46. 9mg)を混合した。この 混合物を、 3mlのクロ口ホルム Zメタノール(1 : 1、 vZv)溶液で溶解した。この溶媒を 、 30°Cにてロータリーエバポレーターを用いて蒸発させ、減圧下で乾燥させた後、脂 質フィルムを得た。この脂質フィルムを、 3mlのトリス(ヒドロキシメチル)メチルアミノプ 口パンスルホン酸緩衝液 (TAPS、 pH8. 4)中に溶解し、そして、超音波処理をした 後に、ミセル懸濁液を得た。 Sci. 1989, 41, 249—267, Yamazaki, N., Komada, M., Gabius, HJ. Methods. Enzymol. 1994, 242, 56—65 Prepared. [0272] Dipalmitoylphosphatidylcholine (16.8 mg), cholesterol (10. lmg), dicetyl phosphate (1.8 mg), ganglioside (14.6 mg), dipalmitoylphosphatidylethanolamine (2.3 mg) and Sodium cholate (46.9 mg) was mixed. This mixture was dissolved in 3 ml of Kloform-form Z methanol (1: 1, vZv) solution. The solvent was evaporated using a rotary evaporator at 30 ° C. and dried under reduced pressure to obtain a fat film. The lipid film was dissolved in 3 ml of tris (hydroxymethyl) methylaminobutane sulfonic acid buffer (TAPS, pH 8.4) and, after sonication, a micelle suspension was obtained.
[0273] 以下の標識方法を用いて、 Cy5. 5を HSAに結合させた。 20mgの HSAおよび 2m gの CY5. 5— NHSエステル(GE Healthcare CO. , LTD)を、 3mlの TAPS (p H8. 4)中に溶解し、 37°Cにて 3時間撹拌した。この溶液を、 Amicon Diaflo PM 10メンブレン(Amicon CO. , LTD)を取り付けた限外濾過セル(Model 8010 ; Amicon CO. , LTD)を用いて TAPS (ρΗ8. 4)で限外濾過し、残った Cy5. 5— NHSエステルを除去した。  [0273] Cy5.5 was conjugated to HSA using the following labeling method. 20 mg of HSA and 2 mg of CY5.5-NHS ester (GE Healthcare CO., LTD) were dissolved in 3 ml of TAPS (pH 8.4.4) and stirred at 37 ° C for 3 hours. This solution was ultrafiltered with TAPS (ρΗ8.4) using an ultrafiltration cell (Model 8010; Amicon CO., LTD) fitted with an Amicon Diaflo PM 10 membrane (Amicon CO., LTD) and remained. Cy5.5.—NHS ester was removed.
[0274] Cy5. 5を有する HSAの溶液 (3ml)を、上記のミセル懸濁液と混合した。この混合 液を、 PM10 (Amicon CO. , LTD)により TAPS (ρΗ8. 4)で限外濾過して、残つ た Cy5. 5を有する HSAを除去し、リボソーム溶液(10ml)を得た。 10mgのスベリン 酸ビス(スルホスクシンィミジル) (BS ; PIERCE  [0274] A solution of HSA with Cy5.5 (3 ml) was mixed with the micelle suspension described above. This mixed solution was subjected to ultrafiltration with TAPS (ρ CO8.4) by PM10 (Amicon CO., LTD) to remove the remaining HSA having Cy5.5 to obtain a ribosome solution (10 ml). 10mg bis (sulfosuccinimidyl) suberate (BS; PIERCE
3  Three
CO. , LTD) (架橋剤)を、このリボソーム溶液(10ml)に加え、 20〜25°Cにて 2時 間撹拌し、さらに、 4°Cにて一晩撹拌した。 BSを、リボソーム表面に結合させた。次  CO., LTD) (crosslinking agent) was added to the ribosome solution (10 ml), and the mixture was stirred at 20 to 25 ° C. for 2 hours and further stirred at 4 ° C. overnight. BS was bound to the ribosome surface. Next
3  Three
いで、 40mgのトリス(ヒドロキシメチル)ァミノメタンを加え、 20〜25°Cにて 2時間撹拌 し、さらに、 4°Cにて一晩撹拌して、トリス (ヒドロキシメチル)ァミノメタンを BSに結合さ  Add 40 mg of tris (hydroxymethyl) aminomethane, stir at 20-25 ° C for 2 hours, and then stir overnight at 4 ° C to bind tris (hydroxymethyl) aminomethane to BS.
3 せた。これを、 XM300 (Amicon CO. , LTD)により限外濾過して、残ったトリス(ヒ ドロキシメチル)ァミノメタンを除去した。 HSAをリボソーム表面に結合させるために、 カップリング法を用いた。リボソーム表面を酸ィ匕するために、 10. 8mgの過ヨウ素酸ナ トリウムを、リボソーム溶液(10ml)に加え、 4°Cにてー晚撹拌した。これを、 XM300 ( Amicon CO. , LTD)により限外濾過し、残った過ヨウ素酸ナトリウムを除去した。 2 Omgの HSAをこれに加え、 20〜25°Cにて 2時間撹拌した。次いで、 3. 125mgのシ ァノホウ化水素ナトリウムをカ卩え、 20〜25°Cにて 2時間撹拌し、さらに、 4°Cにて一晩 撹拌した。残ったシァノホウ化水素ナトリウムを除去するために、この溶液を、 XM30 0 (Amicon CO. , LTD)により限外濾過した。 3 This was ultrafiltered with XM300 (Amicon CO., LTD) to remove the remaining tris (hydroxymethyl) aminomethane. A coupling method was used to bind HSA to the ribosome surface. To acidify the ribosome surface, 10.8 mg of sodium periodate was added to the ribosome solution (10 ml) and stirred at 4 ° C. This was ultrafiltered with XM300 (Amicon CO., LTD) to remove the remaining sodium periodate. 2 Omg of HSA was added thereto and stirred at 20-25 ° C for 2 hours. Then 3. Sodium borohydride was added and stirred at 20 to 25 ° C for 2 hours, and further stirred at 4 ° C overnight. This solution was ultrafiltered through XM300 (Amicon CO., LTD) to remove the remaining sodium cyanoborohydride.
[0275] 糖鎖を、 3, 3 ジチォビス(スルホスクシンィミジルプロピオネート) (DTSSP; PIER CE CO. , LTD)を介して、リボソーム表面に結合させた。 DTSSPを架橋剤として 用いた。 10mgの DTSSPを、 10mlのリボソーム溶液に加え、 20〜25°Cにて 2時間 撹拌し、さらに、 4°Cにて一晩撹拌した。残った DTSSPを除去するために、この溶液 を、 XM300 (Amicon CO. , LTD)により限外濾過した。糖鎖の還元基末端のアミ ノ化を、グリコシルァミノ化反応により行なった。 2mgの SLX(Calbiochem CO. , L TD)を、 0. 5mLの蒸留水に溶解させた。 0. 25gの NH HCOを加え、そして、 37[0275] The sugar chain was bound to the ribosome surface via 3,3 dithiobis (sulfosuccinimidylpropionate) (DTSSP; PIER CE CO., LTD). DTSSP was used as a cross-linking agent. 10 mg of DTSSP was added to 10 ml of the ribosome solution, stirred at 20-25 ° C. for 2 hours, and further stirred at 4 ° C. overnight. This solution was ultrafiltered through XM300 (Amicon CO., LTD) to remove the remaining DTSSP. Amination of the reducing group terminal of the sugar chain was performed by glycosylamination reaction. 2 mg of SLX (Calbiochem CO., LTD) was dissolved in 0.5 mL of distilled water. Add 25 g NH HCO and 37
°Cにて 3日間撹拌した。アミノィ匕 SLXを、 25
Figure imgf000127_0001
The mixture was stirred at ° C for 3 days. Amino 匕 SLX, 25
Figure imgf000127_0001
1 (密度02 :1^1—3)、 100 ,u g/ml (¾ ¾D3: Kl -4) , 200 ,u g/ml (¾ ¾D4: Kl 5)および 500 μ g/ml (密度 D5: Kl— 6)の最終濃度に到達するまでカ卩え、そし て、 20〜25°Cにて 2時間撹拌した。  1 (density 02: 1 ^ 1—3), 100, ug / ml (¾ ¾D3: Kl -4), 200, ug / ml (¾ ¾D4: Kl 5) and 500 μg / ml (density D5: Kl— The final concentration of 6) was reached, and the mixture was stirred at 20-25 ° C for 2 hours.
[0276] トリス(ヒドロキシメチル)ァミノメタンを、 132mg/mlの最終濃度に到達するまでカロ え、 4°Cにてー晚撹拌して、リボソーム表面を繰返し親水性ィ匕した。この溶液を、 XM 300 (Amicon CO. , LTD)により限外濾過して、残った SLXおよびトリス(ヒドロキ シメチル)ァミノメタンを除去した。  [0276] Tris (hydroxymethyl) aminomethane was calored until a final concentration of 132 mg / ml was reached and stirred at 4 ° C to repeatedly hydrophilicize the ribosome surface. This solution was ultrafiltered through XM 300 (Amicon CO., LTD) to remove residual SLX and tris (hydroxymethyl) aminomethane.
[0277] (糖鎖なしのリボソームの調製)  [0277] (Preparation of ribosome without sugar chain)
糖鎖なしのリボソームの調製を、糖鎖を結合させるプロセスを除いて、糖鎖修飾リポ ノームの場合と同様に行った。リボソーム表面上への N—ァセチルラクトサミン(G4G N : Calbiochem CO. , LTD)の結合もまた、糖鎖修飾リボソームの場合と同様に 行なった。  Preparation of ribosomes without sugar chains was performed in the same manner as in the case of sugar chain-modified liposomes, except for the process of attaching sugar chains. The binding of N-acetyllactosamine (G4GN: Calbiochem CO., LTD) to the ribosome surface was also performed in the same manner as in the case of the sugar chain-modified ribosome.
[0278] (リボソームの定量分析)  [0278] (Quantitative analysis of ribosomes)
(リボソームの脂質含量の測定)  (Measurement of lipid content of ribosome)
得られた糖鎖修飾リボソーム (K1)および糖鎖なしリボソームの脂質含量を、 Deter miner 丁じ555キット(1 ^^^八 CO. , LTD)を用いて、 0. 5%  Using the Deter miner 555 kit (1 ^^^ 8 CO., LTD), the lipid content of the resulting sugar chain-modified ribosome (K1) and sugar chain-free ribosome was 0.5%
TritonX— 100の存在下での総コレステロールとして測定した。次いで、脂肪酸の 総量を各脂質のモル比から計算した。タンパク質含量を、 Yamazaki, N. J. Membr ance Sci. 1989, 41, 249— 267、 Yamazaki, N. , Komada, M. , Gabius, H -J. Methods. Enzymol. 1994, 242, 56— 65に記載されるように、 Micro BC A™ Protein Assay Reagent (PIERCE CO. , LTD)を用いて、 1%ドデシル 硫酸ナトリウム(SDS)の存在下で測定した。 Measured as total cholesterol in the presence of TritonX-100. Then the fatty acid The total amount was calculated from the molar ratio of each lipid. Protein content is described in Yamazaki, NJ Membrance Sci. 1989, 41, 249—267, Yamazaki, N., Komada, M., Gabius, H-J. Methods. Enzymol. 1994, 242, 56—65 As described above, measurement was performed using Micro BC A ™ Protein Assay Reagent (PIERCE CO., LTD) in the presence of 1% sodium dodecyl sulfate (SDS).
[0279] 糖鎖修飾リボソーム (K1)の脂質含量およびタンパク質含量は、それぞれ、 3. 7mg /mlおよび 1. 2mgZmlであった。糖鎖なしリボソームについて、 3. 8mgZmlの脂 質含量および lmgZmlのタンパク質含量が得られた。  [0279] The lipid content and protein content of the sugar chain-modified ribosome (K1) were 3.7 mg / ml and 1.2 mgZml, respectively. For sugarless ribosomes, a lipid content of 3.8 mgZml and a protein content of lmgZml were obtained.
[0280] (リボソームの粒子サイズおよび ζ電位の測定)  [0280] (Measurement of ribosome particle size and zeta potential)
Zetasizer Nano— S 90 (Malvern CO. , LTD)を用いて、粒子サイズおよび ζ 電位を 25°Cにて測定した。このリボソーム溶液を、測定のために、蒸留水で 50倍に 希釈した。糖鎖修飾リボソーム (K1)および糖鎖なしリボソームの両方の粒子サイズ は、ほぼ均一な分布を示した。平均粒子サイズは、約 lOOnmであった(図 41)。リポ ソーム膜表面の電荷を示す ζ電位は、負に帯電しており、両方のリボソームについて 、—40mVであった。 4°Cにて 6ヶ月間保存した後、粒子サイズの分布は、調製直後 のものとほぼ同じであり、これらのリボソームの安定特性を示した(図 42)。  The particle size and ζ potential were measured at 25 ° C. using Zetasizer Nano—S 90 (Malvern CO., LTD). This ribosome solution was diluted 50 times with distilled water for measurement. The particle size of both sugar-modified ribosome (K1) and sugar-free ribosome showed almost uniform distribution. The average particle size was about lOOnm (Figure 41). The ζ potential indicating the charge on the surface of the liposome membrane was negatively charged and was −40 mV for both ribosomes. After storage for 6 months at 4 ° C, the particle size distribution was almost the same as that immediately after preparation, indicating the stable properties of these ribosomes (Figure 42).
[0281] (実施例 20.ヒト慢性関節リウマチモデルマウスを用いた実験)  (Example 20. Experiment using human rheumatoid arthritis model mouse)
(ヒト慢性関節リウマチモデルマウスの作製およびリボソームの投与)  (Preparation of human rheumatoid arthritis model mice and administration of ribosomes)
ヒト慢性関節リウマチモデルマウスを、以下の方法により作製した。ヒト慢性関節リウ マチの誘導のために、 200 /z l ^mg)のモノクローナル抗体(Chondrex CO. , LT D)を、 BalbZcマウス (雌性、 8週齢)の尾静脈力ら投与した。 4日後、 100 1 (50 g)のリポ多糖 (LPS)を、腹腔内に投与した。このマウスを、 3〜4日後に実験に使用 した。生理食塩水で 10倍希釈した 150 1のネンブタール溶液(Dainippon Phar maceutical CO. , LTD)を、腹腔内に投与し、モデルマウスを麻酔をかけた。次い で、糖鎖修飾リボソーム (K1)または糖鎖なしリボソームを、尾静脈力も投与した (マウ ス 1匹あたり 50 1)。  A human rheumatoid arthritis model mouse was prepared by the following method. For induction of human rheumatoid arthritis, 200 / z l ^ mg) monoclonal antibody (Chondrex CO., LTD) was administered from the tail vein force of BalbZc mice (female, 8 weeks old). Four days later, 100 1 (50 g) lipopolysaccharide (LPS) was administered intraperitoneally. The mice were used for experiments after 3-4 days. A 150 1 Nembutal solution (Dainippon Pharmacoeutical CO., LTD) diluted 10-fold with physiological saline was administered intraperitoneally, and the model mice were anesthetized. Subsequently, sugar chain-modified ribosomes (K1) or glycosomes without sugar chains were also administered to the tail vein (50 1 per mouse).
[0282] (実施例 21. explore Optixを用いたイメージング)  [0282] (Example 21. Imaging using explore Optix)
eXplore Optix (GE Healthcare CO. , LTD)を用いて、 Cy5. 5の蛍光シグ ナルを、注射前、注射後の 0時間および 24時間において、同じマウスの炎症領域( 後脚の裏面)にお 、てモニターした(励起: 680nm、発光: 700nm)。 Using eXplore Optix (GE Healthcare CO., LTD), Cy5.5 fluorescent signal Nulls were monitored before the injection, at 0 and 24 hours after injection, in the inflammatory area of the same mouse (back of the hind limb) (excitation: 680 nm, emission: 700 nm).
[0283] 注射の 24時間後の炎症領域への糖鎖修飾リボソーム (K1)および糖鎖なしリポソ ームの集積を比較すると、糖鎖修飾リボソーム (K1)は、糖鎖なしリボソームよりも多く 集積した (図 43)。  [0283] Comparing the accumulation of sugar chain-modified ribosomes (K1) and sugar chain-free liposomes in the inflamed area 24 hours after injection, sugar chain-modified ribosomes (K1) accumulate more than sugar-free ribosomes. (Fig. 43).
[0284] (糖鎖の特異性の確認)  [0284] (Confirmation of sugar chain specificity)
この集積が SLX特異的であることを確認するために、 G4GNがリボソーム表面に結 合した糖鎖修飾リボソーム (K2)を、本実施例の糖鎖修飾リボソーム (K1)と同様の方 法を用いて、 D2の糖鎖密度 (K2— 3)で調製する。糖鎖修飾リボソーム (K1および K 2)を、尾静脈力も投与し(50 1Zマウス)、注射の 24時間後に、リボソームの集積を 調べた。図 44に示すように、糖鎖修飾リボソーム (K2)の集積は、糖鎖なしリボソーム の場合とほぼ同じレベルであり、糖鎖修飾リボソーム (K1)のみ力 炎症領域に特異 的に集積した。  In order to confirm that this accumulation is SLX specific, the sugar chain modified ribosome (K2) with G4GN bound to the ribosome surface was used in the same manner as the sugar chain modified ribosome (K1) of this example. Prepare with D2 sugar chain density (K2-3). Glycosylated ribosomes (K1 and K2) were also administered with tail vein force (501Z mice) and ribosome accumulation was examined 24 hours after injection. As shown in FIG. 44, the accumulation of sugar chain-modified ribosome (K2) was almost the same level as that of ribosome without sugar chain, and only the sugar chain-modified ribosome (K1) was specifically accumulated in the force-inflammatory region.
[0285] (炎症領域への特異的な集積に対する糖鎖密度の影響)  [0285] (Effect of sugar chain density on specific accumulation in the inflamed area)
糖鎖修飾リボソーム (K1)の炎症領域への特異的な集積と、その表面上の糖鎖密 度との関係を明らかにするために、種々の密度の糖鎖を有する糖鎖修飾リボソーム( Kl) (Dl〜5)を投与し(50 1Zマウス)、リボソームの集積の程度を比較した(図 45 In order to clarify the relationship between the specific accumulation of sugar chain-modified ribosomes (K1) in the inflammatory region and the sugar chain density on the surface, sugar chain-modified ribosomes with various sugar chains (Kl ) (Dl ~ 5) was administered (50 1Z mice), and the degree of ribosome accumulation was compared (Fig. 45).
) o ) o
[0286] 興味深 、ことに、糖鎖密度が D2の場合にぉ 、て、炎症領域への最も高 、集積を 示した。糖鎖修飾リボソーム (K1)では、糖鎖密度が D2よりも高くなると、炎症領域へ の集積は低下した。リボソームの表面上の糖鎖密度は、集積に著しい影響を及ぼす ことがわ力つた。そして、炎症領域への効率的な集積のための糖鎖の最適な密度が 存在することが明ら力となった。従って、糖鎖修飾リボソーム (密度 D2 :K1— 3)は、 炎症領域へ効率的に集積させるために、顕著に有効な種類の糖鎖であり、かつその 最適な結合密度であると!/ヽえる。  [0286] Interestingly, particularly when the sugar chain density was D2, it showed the highest accumulation in the inflammatory region. In the sugar-modified ribosome (K1), the accumulation in the inflamed area decreased when the sugar chain density was higher than D2. It was found that the sugar chain density on the surface of the ribosome has a significant effect on accumulation. It became clear that there was an optimal density of sugar chains for efficient accumulation in the inflamed area. Therefore, the sugar chain-modified ribosome (density D2: K1-3) is a remarkably effective type of sugar chain for efficiently accumulating in the inflammatory region and has the optimal binding density! / ヽYeah.
[0287] (実施例 22.走査型顕微鏡によるイメージング)  (Example 22. Imaging with a scanning microscope)
(ォリンパス IV100による観察)  (Olympus IV100 observation)
(方法) 炎症部位へ集積した3し ー1^)0—じ 5. 5が血管内にとどまっているの力、或い は血管力も周辺の組織へ移行して 、るのかの確認を走査型蛍光顕微鏡 IV— 100 ( OLYMPUS. , Co. LTD)を用いて行った。観察は、 IV— 100の直径 1. 3mmの極 細径スティック対物レンズ (IV— OB35F22W20)を観察部位に近づけて行った。 1 /10ネンブタール溶液を関節炎マウスの腹腔内に 200 1投与して麻酔をかけ、尾 静脈より、 cy5. 5内包糖鎖修飾リボソーム (K1— 3) (100 1:脂質量 380 g)を投 与した。また、コントロールとして、糖鎖を結合させていないリボソームを同量投与した 。経時的に画像データをとつた。画像データは、すべて後ろ足の裏側を観察した。 (Method) Scanning fluorescence microscope IV confirms that the force accumulated in the inflamed area is in the blood vessel, or that the vascular force is also transferred to the surrounding tissue. — 100 (OLYMPUS., Co. LTD). Observation was performed with an ultrafine stick objective lens (IV—OB35F22W20) having a diameter of IV-100 of 1.3 mm close to the observation site. Anesthetized with 1/10 Nembutal solution administered intraperitoneally into arthritic mice and administered cy5.5-encapsulated glycosome-modified ribosome (K1-3) (100 1: lipid amount 380 g) from the tail vein. did. As a control, the same amount of ribosome not bound to a sugar chain was administered. The image data was collected over time. All image data were observed on the back of the hind legs.
[0288] また、観察直前にアタリジンオレンジ(150 μ 1: 0. 5%, w/v%)をマウスの尾静脈 より投与して、血管内の白血球を染めた。 Ex 488nm、Em 526nmでアタリジンォ レンジ(緑色)、 Ex 633nm、Em 693nmで Cy5. 5 (オレンジ色)の蛍光を観察し た。 [0288] In addition, atalidine orange (150 μ 1: 0.5%, w / v%) was administered from the tail vein of mice just before observation to stain leukocytes in blood vessels. At 488 nm and Em 526 nm, fluorescence was observed at ataridine range (green), and Ex 633 nm and Em 693 nm at Cy5.5 (orange).
[0289] (結果)  [0289] (Result)
炎症部位へ集積した K1 3リボソームが血管内にとどまって 、るのか、或いは血管 力も周辺の組織へ移行しているのかの確認を行った。図 46〖こ示すとおり、投与後 10 分および 30分では、リボソームの血管壁への付着や凝集物は認められず、血管内を 流れるリボソームが確認できた。投与 6h後では、 K1 3リボソームのみ、部分的に血 管壁に添った付着が認められた。一方、糖鎖なしリボソームではそのような付着は確 認されなかった。投与 24h後では、 K1— 3リボソームは、血管周辺組織へ移行してお り、血管内壁に 6h後に認められた血管に添った付着は認められな力つた。 48h後に おいて、 K1— 3リボソームの血管周辺組織での集積は、 24h後よりも増加した。  It was confirmed whether the K1 3 ribosome accumulated in the inflammatory site stayed in the blood vessel, or whether the vascular force was also transferred to surrounding tissues. As shown in Fig. 46, at 10 and 30 minutes after administration, no attachment or aggregation of ribosomes to the blood vessel wall was observed, and ribosomes flowing in the blood vessels were confirmed. At 6 hours after administration, only K13 ribosome was observed to adhere partially to the blood vessel wall. On the other hand, such attachment was not confirmed in ribosomes without sugar chains. At 24 hours after administration, K1-3 ribosomes migrated to the tissues around the blood vessels, and the adhesion along the blood vessels observed 6 hours after the inner wall of the blood vessels was strong. After 48 h, the accumulation of K1-3 ribosomes in the perivascular tissues increased more than after 24 h.
[0290] (まとめ) [0290] (Summary)
以前より、 LPSにより誘導されたヒト臍静脈 (HUVEC)上の E—セレクチンの発現パ ターンは均一ではなぐ細胞上で部分的かつ高密度の凝集を形成することが報告さ れている (Joseph. K. Welply. , S. Zaheer Abbas. , Peter Scudder. Glycob iology. 1994, 4, 259— 265、 Muligan, M. S. , Polley, M. J. , Bayer, R. J. J . Clin. Invest. 1992, 90 (4) , 1600—1607、 Pober, J. S. , Bevilacqua, D. L . , Mendrick, L. A. , Lapierre, L. A. J. Immunol. 1986, 136 (5) , 1680—1 687)。本実施例において、血管内に存在した糖鎖修飾リボソーム (K1— 3)リポソ一 ムは、血管から血管内壁をローリングし、血管周辺組織へ移行することが確認された 。これは、糖鎖修飾リボソーム (K1)力 血管内皮上に不均一に発現する E—セレク チンを認識し、部分的に結合しながら移動したことを示している。 Previously, the LPS-induced E-selectin expression pattern on human umbilical vein (HUVEC) has been reported to form partial and dense aggregates on non-uniform cells (Joseph. K. Welply., S. Zaheer Abbas., Peter Scudder. Glycob iology. 1994, 4, 259—265, Muligan, MS, Polley, MJ, Bayer, RJ J. Clin. Invest. 1992, 90 (4), 1600 —1607, Pober, JS, Bevilacqua, D.L., Mendrick, LA, Lapierre, LAJ Immunol. 1986, 136 (5), 1680—1 687). In this example, it was confirmed that the sugar chain-modified ribosome (K1-3) liposome existing in the blood vessel rolls from the blood vessel to the blood vessel inner wall and migrates to the tissue around the blood vessel. This indicates that the glycosylated ribosome (K1) force recognized E-selectin expressed heterogeneously on the vascular endothelium and migrated with partial binding.
[0291] (実施例 23.担癌マウスを用いた実験) [0291] (Example 23. Experiment using tumor-bearing mice)
(担癌マウスモデルの作製およびリボソームの投与)  (Creation of tumor-bearing mouse model and administration of ribosome)
糖鎖修飾リボソーム (K1)および糖鎖なしリボソームの腫瘍領域への集積を、以下 の方法により作製した腫瘍を有するマウスを用いて試験した。 EAT細胞(5 X 106 細 胞 Zマウス)を、 ddYマウス (雄性、 7週齢)の右大腿領域に移植し、そして、このマウ スを、 7〜 10日後に実験に使用した。麻酔をかけるために、生理食塩水で 10倍希釈 した 300 1のネンブタール溶液を、腹腔内に投与した。次いで、糖鎖修飾リボソーム (K1)または糖鎖なしリボソームを、尾静脈から投与した (200 μ 1Zマウス)。 Accumulation of sugar chain-modified ribosome (K1) and sugar chain-free ribosome in the tumor region was tested using tumor-bearing mice prepared by the following method. EAT cells (5 × 10 6 cell Z mice) were transplanted into the right femoral region of ddY mice (male, 7 weeks old) and the mice were used for experiments 7-10 days later. For anesthesia, 300 1 Nembutal solution diluted 10-fold with physiological saline was administered intraperitoneally. Subsequently, sugar chain-modified ribosome (K1) or sugar chain-free ribosome was administered from the tail vein (200 μ1Z mice).
[0292] (実施例 24. explore Optixによるイメージング) [0292] (Example 24. Imaging with explore Optix)
explore Optix (励起: 680nm、発光: 700nm)を用いて、同じマウスの腫瘍領域 (後脚の裏面)を、投与前、投与の 0時間後、 24時間後、 48時間後、 72時間後およ び 96時間後に観察した。図 47に示されるように、糖鎖修飾リボソーム (K1)は、腫瘍 領域に有意に集積した。この集積は、 48時間まで次第に増加した。一方で、糖鎖な しリボソームの集積は、糖鎖修飾リボソーム (K1)の集積よりも低ぐ 96時間以降まで 一疋 ζ·、あった。  Using explore Optix (excitation: 680 nm, emission: 700 nm), the tumor area (back of the hind limb) of the same mouse was examined before administration, at 0, 24, 48, 72 and 72 hours after administration. And 96 hours later. As shown in FIG. 47, the sugar chain-modified ribosome (K1) was significantly accumulated in the tumor region. This accumulation increased gradually up to 48 hours. On the other hand, the accumulation of ribosomes without sugar chains was ζ ·, which was lower than that of sugar chain-modified ribosomes (K1) after 96 hours.
[0293] 体内の蛍光の分布を調べるために、全身を注射の 96時間後にスキャンした。強い 蛍光シグナルが、肝臓、膀胱および腫瘍領域において検出された(図 48を参照のこ と。 ) 0これらのシグナルを、蛍光の寿命により分析した。腫瘍領域において、 HSAに 結合した Cy5. 5 (寿命、 1. 8ns)のみが検出された。しかし、肝臓および膀胱におい ては、遊離型の Cy5. 5 (寿命、 1. 5ns)および HSAに結合した Cy5. 5 (寿命、 1. 8 ns)の両方が存在することが確認された。 [0293] The whole body was scanned 96 hours after injection to examine the distribution of fluorescence in the body. Strong fluorescence signals were detected in the liver, bladder and tumor areas (see Figure 48). 0 These signals were analyzed by fluorescence lifetime. Only Cy5.5 (life, 1.8 ns) bound to HSA was detected in the tumor area. However, in the liver and bladder, both free Cy5.5 (lifetime, 1.5 ns) and HSA-bound Cy5.5 (lifetime, 1.8 ns) were identified.
[0294] (実施例 25.走査顕微鏡によるイメージング) [Example 25. Imaging with a scanning microscope]
(ォリンパス IV100による観察)  (Olympus IV100 observation)
(方法) マウス(BalbZc、雌性、 8週齢)の右大腿部皮下に Ehrlich ascite tumor (EA T)細胞を 2 X 106細胞移植し、 7〜 10日後に実験に使用した。 (Method) 2 × 10 6 cells of Ehrlich ascite tumor (EAT) cells were transplanted subcutaneously into the right thigh of a mouse (BalbZc, female, 8 weeks old) and used for experiments 7-10 days later.
[0295] 担癌部位へ集積した K1— 3リボソームが血管内にとどまっているの力、或いは血管 力も周辺の組織へ移行して 、るのかの確認を走査型蛍光顕微鏡 IV— 100 (OLYM PUS. , Co. LTD)を用いて行った。観察は、 IV— 100の直径 1. 3mmの極細径ス ティック対物レンズ (IV—OB35F22W20)を観察部位に近づけて行った。 lZlOネ ンブタール溶液を担癌マウスの腹腔内に 200 1投与して麻酔をかけた。蛍光ィメー ジング装置 IV— 100 (OLYMPUS)により、担癌部位の血管及び血管周辺組織の 画像データをとつた。尾静脈より、 cy5. 5内包糖鎖修飾リボソーム (K1— 3) (100 1 :脂質量 380 g)を投与した。また、コントロールとして、糖鎖を結合させていないリポ ソームを同量投与した。投与 48h後に癌部位 (右大腿部)の血管及び血管周辺組織 を IV— 100 (OLYMPUS)を用いて観察した。また、観察直前にアタリジンオレンジ( 150 ^ 1: 0. 5%, wZv%)をマウスの尾静脈より投与して、血管内の白血球を染めた 。 Ex 488nm、Em 526nmでアタリジンオレンジ(緑色)、 Ex 633nm、 Em 693 nmで Cy5. 5 (オレンジ色)の蛍光を観察した。  [0295] Scanning fluorescent microscope IV-100 (OLYM PUS.) Confirms whether the K1-3 ribosome accumulated in the tumor-bearing site remains in the blood vessel, or the vascular force is also transferred to surrounding tissues. , Co. LTD). Observation was performed with an IV-100 ultrafine stick objective lens (IV-OB35F22W20) with a diameter of 1.3 mm close to the observation site. An lZlO nebutal solution was administered intraperitoneally into the peritoneal cavity of mice bearing cancer and anesthetized. Using fluorescence imaging device IV-100 (OLYMPUS), image data of blood vessels and surrounding tissues of cancer-bearing sites were collected. From the tail vein, cy5.5-encapsulated sugar chain-modified ribosome (K1-3) (100 1: lipid amount 380 g) was administered. As a control, the same amount of liposomes to which no sugar chain was bound was administered. 48 hours after administration, blood vessels and surrounding tissues at the cancer site (right thigh) were observed using IV-100 (OLYMPUS). Immediately before the observation, atalidine orange (150 ^ 1: 0.5%, wZv%) was administered from the tail vein of the mouse to stain leukocytes in the blood vessel. Fluorescence of Atalidine Orange (green) was observed at Ex 488 nm and Em 526 nm, and Cy5.5 (orange) was observed at Ex 633 nm and Em 693 nm.
[0296] (結果)  [0296] (Result)
担癌部位へ集積した K1 3リボソームが血管内にとどまって 、るのか、或いは血管 力 周辺の組織へ移行しているのかの確認を行った。図 49に示すとおり、 K1— 3リ ポソームは、投与 48時間後、血管から血管外組織へ移行して血管外組織の細胞内 に集積していた。糖鎖なしリボソームの場合も、投与 48時間で K1— 3リボソームに比 ベ集積量は少ないが、血管外組織で蛍光が確認された。このことは、糖鎖なしリポソ ームの場合も、癌周辺の血管内皮の間隙力 受動的に組織へ移行したことによると 考えられた。  We confirmed whether the K1 3 ribosome accumulated in the tumor-bearing site stayed in the blood vessel or moved to the tissue around the vascular force. As shown in FIG. 49, the K1-3 liposome migrated from the blood vessel to the extravascular tissue 48 hours after administration, and was accumulated in the cells of the extravascular tissue. In the case of ribosomes without sugar chains, the amount of accumulation was less than that of K1-3 ribosomes at 48 hours after administration, but fluorescence was confirmed in extravascular tissues. This was thought to be due to the passive transition of the vascular endothelium around the cancer to the tissue even in the case of liposomes without sugar chains.
[0297] (まとめ) [0297] (Summary)
血管内のリボソームの保持は、炎症領域および腫瘍領域における集積に有意に影 響を与え、この集積は、血管内の保持を延長することによって増加することが報告さ れ 7こ (Drummond, D. C. , Meyer, O. , Hong, Κ. , Kirpotin, D. Β. Pharmac ological. Rev. 1999, 51, 691— 743、 Kawakita, Y. , Yamazaki, N. , Kojim a, S. Radioisotopes. 2000, 49, 339— 345、 Yamazaki, N. US patent. 200 3— 0143267)。 It has been reported that retention of ribosomes in blood vessels has a significant impact on accumulation in inflammatory and tumor areas, and this accumulation is increased by prolonging retention in blood vessels (Drummond, DC, Meyer, O., Hong, Κ., Kirpotin, D. Β. Pharmac ological. Rev. 1999, 51, 691—743, Kawakita, Y., Yamazaki, N., Kojim a, S. Radioisotopes. 2000, 49, 339—345, Yamazaki, N. US patent. 200 3—0143267).
[0298] 血管中のリボソームの保持を延長する対策として、現在までに、「肝臓および脾臓 内への細網内皮系(RES)の取り込みの回避」、「マクロファージによる貪食の回避」 および「血管内皮細胞および白血球のような細胞による非特異的な吸着の回避」が 報告されている(Drummond, D. C. , Meyer, O. , Hong, Κ. , Kirpotin, D. Β . Pharmacological. Rev. 1999, 51, 691— 743)。  [0298] As measures to prolong retention of ribosomes in blood vessels, to date, "avoidance of uptake of reticuloendothelial system (RES) into liver and spleen", "avoidance of macrophage engulfment" and "vascular endothelium" Avoidance of non-specific adsorption by cells such as cells and leukocytes ”(Drummond, DC, Meyer, O., Hong, Κ., Kirpotin, D. Β. Pharmacological. Rev. 1999, 51, 691—743).
[0299] 糖鎖修飾リボソーム (Kl)、ならびに血管内皮細胞、赤血球および白血球のような 細胞は、負に帯電している。このことから、糖鎖修飾リボソーム (K1)およびこれらの 細胞は、相互に電気的に反発する (repulse)。従って、糖鎖修飾リボソーム (K1)は 、このような細胞には非特異的には吸着されない。さらに、リボソーム表面を親水性に することにより、血漿中のォプソニンタンパク質の吸着、およびマクロファージによる貪 食が回避され得、従って、血流中のリボソームの保持が延長される。  [0299] Sugar-modified ribosomes (Kl) and cells such as vascular endothelial cells, erythrocytes and leukocytes are negatively charged. From this, the sugar chain-modified ribosome (K1) and these cells repulse each other electrically. Therefore, the sugar chain-modified ribosome (K1) is not adsorbed nonspecifically to such cells. Furthermore, by making the ribosome surface hydrophilic, adsorption of opsonin protein in plasma and phagocytosis by macrophages can be avoided, thus extending retention of ribosomes in the bloodstream.
[0300] その結果、糖鎖修飾リボソーム (K1)は、 E—セレクチンに対する親和性および血 管内での優れた保持を示すので、炎症領域に特異的かつ効率的に集積すると考え られる。それゆえ、糖鎖修飾リボソーム (K1)は、インビボ蛍光イメージング試薬として 有用である。さら〖こ、適切な糖鎖および密度を選択することによって、糖鎖を有するリ ポソームは、種々の物質 (蛍光物質、化学物質、タンパク質、遺伝子など)を、体内の 特定の所望の領域 (疾患領域を含む)へと送達し得る。このことは、これらの型のリポ ソーム力 能動的ターゲティング DDSとして有用な道具となり得ることを示す。  [0300] As a result, the sugar chain-modified ribosome (K1) exhibits an affinity for E-selectin and excellent retention in the blood vessel, and is thought to accumulate specifically and efficiently in the inflammatory region. Therefore, sugar chain-modified ribosome (K1) is useful as an in vivo fluorescent imaging reagent. By selecting the appropriate sugar chain and density, liposomes with sugar chains can be used to transfer various substances (fluorescent substances, chemicals, proteins, genes, etc.) to a specific desired region (disease). Including the region). This indicates that these types of liposomal dynamic targeting DDS can be useful tools.
[0301] (実施例 26.蛍光標識物質外付型リボソームを用いたイメージング)  [0301] (Example 26. Imaging using fluorescent-labeled substance-attached ribosome)
(蛍光標識物質外付型リボソームの調製)  (Preparation of fluorescent labeling substance external ribosome)
糖鎖として SLXを用いて、実施例 17と同様の方法を使用して蛍光標識外付型リポ ソームを調製する。  Using SLX as a sugar chain, a fluorescently labeled external liposome is prepared using the same method as in Example 17.
[0302] (糖鎖なしのリボソームの調製) [0302] (Preparation of ribosome without sugar chain)
糖鎖なしのリボソームの調製を、実施例 19と同様の方法を使用して調製する。  Preparation of ribosomes without sugar chains is prepared using a method similar to Example 19.
[0303] (リボソームの定量分析) [0303] (Quantitative analysis of ribosome)
(リボソームの脂質含量の測定) 得られた糖鎖修飾リボソーム (K1)および糖鎖なしリボソームの脂質含量を、実施 例 19と同様の方法を用いて測定する。次いで、脂肪酸の総量を各脂質のモル比か ら計算する。タンパク質含量を、 1%ドデシル硫酸ナトリウム (SDS)の存在下で測定 する。 (Measurement of lipid content of ribosome) The lipid content of the obtained sugar chain-modified ribosome (K1) and sugar chain-free ribosome is measured using the same method as in Example 19. The total amount of fatty acids is then calculated from the molar ratio of each lipid. The protein content is measured in the presence of 1% sodium dodecyl sulfate (SDS).
[0304] (リボソームの粒子サイズおよび ζ電位の測定)  [0304] (Measurement of ribosome particle size and zeta potential)
実施例 19と同様の方法を用いて、粒子サイズおよび ζ電位を測定する。糖鎖修飾 リボソーム (K1)および糖鎖なしリボソームの両方の粒子サイズは、ほぼ均一な分布 を示す。リボソーム膜表面の電荷を示す ζ電位は、負に帯電しており、両方のリポソ ームについて、— 40mVである。 4°Cにて 6ヶ月間保存した後、粒子サイズの分布は、 調製直後のものとほぼ同じであり、これらのリボソームの安定特性を示す。  Using the same method as in Example 19, the particle size and ζ potential are measured. The particle size of both sugar-modified ribosomes (K1) and non-glycosylated ribosomes shows an almost uniform distribution. The zeta potential, which indicates the charge on the ribosome membrane surface, is negatively charged and is -40 mV for both liposomes. After storage for 6 months at 4 ° C, the particle size distribution is almost the same as that immediately after preparation, indicating the stable properties of these ribosomes.
[0305] (実施例 27.ヒト慢性関節リウマチモデルマウスを用いた実験) [Example 27. Experiment using human rheumatoid arthritis model mouse]
(ヒト慢性関節リウマチモデルマウスの作製およびリボソームの投与)  (Preparation of human rheumatoid arthritis model mice and administration of ribosomes)
実施例 20と同様の方法によりヒト慢性関節リウマチモデルを作製する。麻酔をかけ るために、生理食塩水で 10倍希釈した 150 μ 1のネンブタール溶液 (Dainippon P harmaceutical CO. , LTD)を、腹腔内に投与する。次いで、糖鎖修飾リボソーム (K1)または糖鎖なしリボソームを、尾静脈力も投与する(マウス 1匹あたり 50 1)。  A human rheumatoid arthritis model is prepared in the same manner as in Example 20. For anesthesia, a 150 μl Nembutal solution (Dainippon Pharaceutical CO., LTD) diluted 10-fold with saline is administered intraperitoneally. Subsequently, sugar chain-modified ribosomes (K1) or sugar chain-free ribosomes are also administered by tail vein force (50 1 per mouse).
[0306] (実施例 28. explore Optixを用いたイメージング) (Example 28. Imaging using explore Optix)
実施例 21と同様の方法を用いて、 Cy5. 5の蛍光シグナルを、注射前、注射後の 0 時間および 24時間において、同じマウスの炎症領域 (後脚の裏面)においてモニタ 一する(励起: 680nm、発光: 700nm)。  Using the same method as in Example 21, the fluorescence signal of Cy5.5 is monitored in the inflammatory area of the same mouse (back of the hind limb) before injection, at 0 and 24 hours after injection (excitation: 680 nm, emission: 700 nm).
[0307] 注射の 24時間後の炎症領域への糖鎖修飾リボソーム (K1)および糖鎖なしリポソ ームの集積を比較すると、糖鎖修飾リボソーム (K1)は、糖鎖なしリボソームよりも多く 集積することが確認される。 [0307] Comparing the accumulation of glycosylated ribosomes (K1) and glycosylated liposomes in the inflamed area 24 hours after injection, glycosylated ribosomes (K1) accumulate more than glycosylated ribosomes To be confirmed.
[0308] (糖鎖の特異性の確認) [0308] (Confirmation of sugar chain specificity)
この集積が SLX特異的であることを確認するために、実施例 21と同様の方法により G4GNがリボソーム表面に結合した糖鎖修飾リボソーム (K2)を、 D2の糖鎖密度 (K 2- 3)で調製する。これらのリボソーム (K1および K2)を尾静脈から投与し (マウス 1 匹あたり 50 1)、注射の 24時間後にリボソームの集積を調べる。糖鎖修飾リボソーム (K2)の集積は、糖鎖なしリボソームの場合とほぼ同じレベルであり、糖鎖修飾リポソ ーム (K1)のみが炎症領域に特異的に集積することが確認される。 In order to confirm that this accumulation is SLX-specific, the sugar chain-modified ribosome (K2) in which G4GN is bound to the ribosome surface was converted to the sugar chain density of D2 (K 2-3) by the same method as in Example 21. Prepare with. These ribosomes (K1 and K2) are administered via the tail vein (50 1 per mouse) and ribosome accumulation is examined 24 hours after injection. Glycomodified ribosome Accumulation of (K2) is almost the same level as in the case of ribosome without sugar chain, and it is confirmed that only the sugar chain-modified liposome (K1) accumulates specifically in the inflammatory region.
[0309] (炎症領域への特異的な集積に対する糖鎖密度の影響) [0309] (Effect of sugar chain density on specific accumulation in the inflamed area)
糖鎖修飾リボソーム (K1)の炎症領域への特異的な集積と、その表面上の糖鎖密 度との関係を明らかにするために、種々の密度の糖鎖を有する糖鎖修飾リボソーム( Kl : D1〜5)を投与し (マウス 1匹あたり 50 1)、リボソームの集積の程度を比較する  In order to clarify the relationship between the specific accumulation of sugar chain-modified ribosomes (K1) in the inflammatory region and the sugar chain density on the surface, sugar chain-modified ribosomes with various sugar chains (Kl : D1-5) (50 1 per mouse) and compare the degree of ribosome accumulation
[0310] その結果、糖鎖修飾リボソーム D2 (K1 - 3)が最も高 、集積性を示す。この集積性 は、糖鎖密度が D2 (K1— 3)によりも高密度の糖鎖において低くなる。また、糖鎖修 飾リボソーム D2 (K1— 3)は、 D1 (K1— 2)よりも集積性が高いことが確認される。以 上より、炎症への集積にお!、て最適の糖鎖密度が存在すると!、える。 [0310] As a result, sugar chain-modified ribosome D2 (K1-3) shows the highest level of accumulation. This accumulation is lower for sugar chains with a higher density than for D2 (K1-3). In addition, it is confirmed that sugar chain-modified ribosome D2 (K1-3) has higher accumulation than D1 (K1-2). From the above, there is an optimal sugar chain density for accumulation in inflammation!
[0311] (実施例 29.走査型顕微鏡によるイメージング)  [0311] (Example 29. Imaging with a scanning microscope)
実施例 22と同様の方法を用いて、炎症部位へ集積した K1— 3リボソームが血管内 にとどまって!/、るの力、或 、は血管力 周辺の組織へ移行して 、るのかの確認する。 走査型顕微鏡は、 IV— OB 35F22W20、 1. 3mm直径レンズ(OLYMPUS CO . , LTD)を用いる。  Using the same method as in Example 22, confirm whether K1-3 ribosomes accumulated in the inflamed site stay in the blood vessel! /, Or move to tissues around the vascular force. To do. The scanning microscope uses IV-OB 35F22W20, 1.3 mm diameter lens (OLYMPUS CO., LTD).
[0312] (ォリンパス IV100による観察)  [0312] (Olympus IV100 observation)
(方法)  (Method)
白血球および血管内皮細胞を染色するために、 150 1のアタリジンオレンジ (AO) (0. 5%、 wZv%)を、観察の直前にマウスの尾静脈力も投与する。糖鎖修飾リポソ ーム (K1)または糖鎖なしリボソームを、尾静脈力も投与する(100 1Zマウス)。測 定条件は以下を使用する: Cy5. 5および AOに対する励起は、それぞれ、 HeNe- Rレーザ(633nm)およびアルゴンレーザ (488nm)により提供する。発光は、 Cy5. 5については、 Cy5. 5チャネル(660〜730nm バンドパスフィルタ)で補足し、 AO については、緑色蛍光タンパク質(GFP)チャネル(505〜525nm バンドパスフィル タ)で捕捉する。  To stain leukocytes and vascular endothelial cells, 150 1 atalidine orange (AO) (0.5%, wZv%) is also administered to the tail vein force of mice just prior to observation. Glycosylated liposomes (K1) or glycosomes without sugar chains are also administered via tail vein force (100 1Z mice). Measurement conditions use the following: Excitation for Cy5.5 and AO is provided by HeNe-R laser (633 nm) and argon laser (488 nm), respectively. Luminescence is captured by Cy5.5 channel (660-730 nm bandpass filter) for Cy5.5, and captured by green fluorescent protein (GFP) channel (505-525 nm bandpass filter) for AO.
[0313] 炎症領域の血管および周囲の組織 (後脚の裏面)を、注射の 10分後、 30分後、 6 時間後、 24時間後、および 48時間後に観察する。注射の 10分後および 30分後に は、血管壁へのリボソームの接着もリボソームの凝集も認められず、血管内でのリポソ ームの流れのみが観察される。血管壁への部分的な接着 (注射 6時間後)、その後の 血管周囲組織への移動(注射 24時間後)が、糖鎖修飾リボソーム (K1)においての み観察される。注射の 48時間後において、血管の周囲組織への糖鎖修飾リボソーム (K1)の集積量は、注射の 24時間後と比較して増加する。 [0313] Blood vessels in the inflamed area and surrounding tissues (back of the hind limb) are observed at 10, 30, 6, 24, and 48 hours after injection. 10 and 30 minutes after injection No ribosome adhesion or ribosome aggregation to the blood vessel wall is observed, and only liposome flow in the blood vessel is observed. Partial adhesion to the vessel wall (6 hours after injection) and subsequent migration to the perivascular tissue (24 hours after injection) is observed only on the glycosylated ribosome (K1). At 48 hours after injection, the amount of glycosylated ribosome (K1) accumulated in the tissues surrounding the blood vessels increases compared to 24 hours after injection.
[0314] 糖鎖なしリボソームは、注射の 24時間後および 48時間後には血管の周囲組織へと 移動するが、この集積は、糖鎖修飾リボソーム (K1)よりも低ぐこのことは、糖鎖なしリ ポソーム力 炎症により生じた血管内皮のギャップを通って受動的に移動したことを 示す。 [0314] Ribosomes without sugar chains migrate to the surrounding tissues at 24 and 48 hours after injection, but this accumulation is lower than that of sugar-modified ribosomes (K1). None Liposomal force Indicates passive migration through the vascular endothelium gap caused by inflammation.
[0315] (実施例 30.担癌マウスを用いた実験)  [0315] (Example 30. Experiment using tumor-bearing mouse)
(担癌マウスモデルの作製およびリボソームの投与)  (Creation of tumor-bearing mouse model and administration of ribosome)
実施例 23と同様の方法により、腫瘍を有するマウスを作製する。糖鎖修飾リポソ一 ム (K1)または糖鎖なしリボソームを、尾静脈力も投与する(マウス 1匹あたり 200 1)  A mouse having a tumor is produced in the same manner as in Example 23. Glycosylated liposomes (K1) or ribosomes without sugar chains are also administered with tail vein force (200 1 per mouse)
[0316] (実施例 31. explore Optixによるイメージング) [0316] (Example 31. Imaging with explore Optix)
実施例 24と同様の方法を用いて、 explore Optix (励起: 680nm、発光: 700nm )を用いて、同じマウスの腫瘍領域 (後脚の裏面)を、投与前、投与の 0時間後、 24時 間後、 48時間後、 72時間後および 96時間後に観察する。糖鎖修飾リボソーム (K1) は、腫瘍領域に有意に集積し、この集積は、 48時間まで次第に増加する。一方で、 糖鎖なしリボソームの集積は、糖鎖修飾リボソーム (K1)の集積よりも低ぐ 96時間以 降まで一定である。  Using the same method as Example 24, using explore Optix (excitation: 680 nm, emission: 700 nm), the tumor area (back of the hind limb) of the same mouse was examined before administration, 0 hours after administration, and 24 hours. Observe after 48, 72, and 96 hours. Glycomodified ribosomes (K1) accumulate significantly in the tumor area, and this accumulation gradually increases up to 48 hours. On the other hand, the accumulation of ribosomes without sugar chains is constant up to 96 hours, which is lower than the accumulation of sugar chain-modified ribosomes (K1).
[0317] 体内の蛍光の分布を調べるために、全身を注射の 96時間後にスキャンする。強い 蛍光シグナル力 肝臓、膀胱および腫瘍領域において検出される。これらのシグナ ルを、蛍光の寿命により分析する。腫瘍領域において、 HSAに結合した Cy5. 5のみ が検出される。しかし、肝臓および膀胱においては、遊離型の Cy5. 5および HSAに 結合した Cy5. 5の両方が存在することが確認される。  [0317] The whole body is scanned 96 hours after injection to examine the distribution of fluorescence in the body. Strong fluorescent signal power Detected in liver, bladder and tumor areas. These signals are analyzed by fluorescence lifetime. Only Cy5.5 bound to HSA is detected in the tumor area. However, it is confirmed in the liver and bladder that both free Cy5.5 and Cy5.5 bound to HSA are present.
[0318] (実施例 32.走査顕微鏡によるイメージング)  [0318] (Example 32. Imaging with a scanning microscope)
(ォリンパス IV100による観察) (方法) (Olympus IV100 observation) (Method)
実施例 25と同様の方法を使用する。糖鎖修飾リボソームが血管内にとどまつている の力、或いは血管から腫瘍組織へ移行して 、るのかの確認する。  A method similar to Example 25 is used. Check if the sugar-modified ribosome stays in the blood vessel or if it moves from the blood vessel to the tumor tissue.
[0319] 注射の 48時間後において、蛍光シグナルは血管力も周囲組織へと移動し、組織の 細胞内においても検出される。さらに、白血球のローリングは、腫瘍領域の血管内皮 上で観察される。このことは、糖鎖修飾リボソーム (K1)が、腫瘍増殖と共に発現され る E—セレクチンにより認識され、その結果、腫瘍領域に集積したことを示す。  [0319] Forty-eight hours after injection, the fluorescent signal also translocates vascular force to the surrounding tissue and is detected in the cells of the tissue. In addition, leukocyte rolling is observed on the vascular endothelium in the tumor area. This indicates that the sugar chain-modified ribosome (K1) was recognized by E-selectin expressed with tumor growth, and as a result, accumulated in the tumor area.
[0320] 糖鎖なしリボソームもまた、血管の周囲組織に集積するが、この集積量は、糖鎖修 飾リボソーム (K1)よりも少ない。糖鎖なしリボソームは、腫瘍の周りの血管内皮のギヤ ップ力 組織へと受動的に移動したものと考えられる。  [0320] Ribosomes without sugar chains also accumulate in surrounding tissues of blood vessels, but the amount of this accumulation is less than that of sugar chain-modified ribosomes (K1). The sugar-free ribosome is thought to have passively moved to the vascular endothelium's gap force around the tumor.
[0321] (まとめ)  [0321] (Summary)
蛍光標識物質外付型リボソームにおいても、蛍光内包糖鎖修飾リボソームと同様に 、 SLXで修飾した糖鎖修飾リボソーム (K1)は、 E—セレクチンに対する親和性およ び血管内での優れた保持を示し、炎症領域および腫瘍組織に特異的かつ効率的に 集積すると考えられる。それゆえ、蛍光標識物質外付型の糖鎖修飾リボソーム (K1) も、蛍光内包糖鎖修飾リボソームと同様にインビボ蛍光イメージング試薬として有用 である。  As with fluorescently-encapsulated sugar chain-modified ribosomes, glycosylated ribosomes (K1) modified with SLX also have an affinity for E-selectin and excellent retention in blood vessels. It is thought that it accumulates specifically and efficiently in the inflamed area and tumor tissue. Therefore, the sugar chain-modified ribosome (K1) externally attached to the fluorescent labeling substance is also useful as an in vivo fluorescence imaging reagent in the same manner as the fluorescence-encapsulated sugar chain-modified ribosome.
[0322] (実施例 33. Cy7を内包した糖鎖修飾リボソーム(Cy7内包型糖鎖修飾リボソーム) を用いたインビボ実験)  [0322] (Example 33. In vivo experiment using Cy7-encapsulated sugar chain-modified ribosome)
(Cy7内包型糖鎖修飾リボソームの調製)  (Preparation of Cy7-encapsulated sugar chain-modified ribosome)
蛍光色素として Cy5. 5のかわりに Cy7を用いること以外、実施例 1〜12と同様の方 法を用いて Cy7内包型糖鎖修飾リボソームを調製した。糖鎖としては、 SLX(K— 1) を用いた。  Cy7-encapsulated sugar chain-modified ribosomes were prepared using the same method as in Examples 1 to 12, except that Cy7 was used instead of Cy5.5 as the fluorescent dye. SLX (K-1) was used as the sugar chain.
[0323] (担癌マウスの作製) [0323] (Production of tumor-bearing mice)
実施例 23と同様の方法を用いて 6週齢の雌性 BalbZcマウスの右大腿部皮下に E hrlich ascite tumor (EAT)細胞を 1 X 106個移植した。 7〜 10日後にこれらの担 癌マウスを実験に使用した。 Using the same method as in Example 23, 1 × 10 6 Ehrlich ascite tumor (EAT) cells were transplanted subcutaneously into the right thigh of 6-week-old female BalbZc mice. These tumor-bearing mice were used for experiments after 7-10 days.
[0324] (評価方法) 1/10 ネンブタール溶液を担癌マウスの腹腔内に 200 1投与して麻酔をかけた 。次いで、尾静脈より、 cy7内包型糖鎖修飾リボソーム (K1— 3 (50 gZmD SO /z l )を投与した。蛍光イメージング装置 eXplore Optix(GE Healthcare)を用いて 、投与直後から経時的に画像データをとつた。画像データはすべて腹側より撮影した 。コントロールとして、糖鎖を結合させていないリボソームを同量投与した担癌マウス を用いた。 [0324] (Evaluation method) Anesthesia was performed by administering 1/10 Nembutal solution into the peritoneal cavity of mice bearing cancer. Next, cy7-encapsulated sugar chain-modified ribosome (K1-3 (50 gZmD SO / zl)) was administered from the tail vein, and image data was collected over time immediately after administration using the fluorescence imaging device eXplore Optix (GE Healthcare). All the image data were taken from the ventral side, and as a control, a tumor-bearing mouse administered with the same amount of ribosome not bound to a sugar chain was used.
[0325] (結果) [0325] (Result)
投与 6時間後、 Cy7内包型糖鎖修飾リボソーム (K 1)を投与した担癌マウスは、 コントロールに比べて腫瘍部位において蛍光強度が高力つた。投与 24時間後にお いては、ほとんどシグナルが検出されな力つた(図 50を参照のこと。 ) o  Six hours after administration, tumor-bearing mice to which Cy7-encapsulated sugar chain-modified ribosome (K 1) was administered had higher fluorescence intensity at the tumor site than the control. At 24 hours after administration, almost no signal was detected (see Figure 50). O
[0326] (実施例 34. Cy3を用いて蛍光を付与した糖鎖修飾リボソーム (Cy3内包型糖鎖修 飾リボソーム)を用いたインビボ実験)  (Example 34. In vivo experiment using a sugar chain-modified ribosome (Cy3-encapsulated sugar chain-modified ribosome) fluoresced using Cy3)
蛍光色素として Cy5. 5のかわりに Cy3を用いること以外、実施例 1〜12と同様の方 法を用いて Cy3内包型糖鎖修飾リボソームを調製した。糖鎖としては、 SLX(K— 1) を用いた。  Cy3-encapsulated sugar chain-modified ribosomes were prepared using the same method as in Examples 1 to 12 except that Cy3 was used instead of Cy5.5 as the fluorescent dye. SLX (K-1) was used as the sugar chain.
[0327] (担癌マウスの作製)  [0327] (Production of tumor-bearing mice)
実施例 23と同様の方法を用いて 6週齢の雌性 BalbZcマウスの右大腿部皮下に E hrlich ascite tumor (EAT)細胞を 1 X 106個移植した。 7〜 10日後にこれらの担 癌マウスを実験に使用した。 Using the same method as in Example 23, 1 × 10 6 Ehrlich ascite tumor (EAT) cells were transplanted subcutaneously into the right thigh of 6-week-old female BalbZc mice. These tumor-bearing mice were used for experiments after 7-10 days.
[0328] (評価方法)  [0328] (Evaluation method)
1/10 ネンブタール溶液を担癌マウスの腹腔内に 200 1投与して麻酔をかけた 。次いで、尾静脈より、 cy3内包型糖鎖修飾リボソーム (K— 1) (Κ1 - 3 (50 ^ 8/πι L) 100 1)を投与した。投与 48時間後に腫瘍部位を取り出し、ホルマリン溶液で 12 時間以上固定した後、常法によりパラフィン切片を作製し、蛍光顕微鏡 CKX41 (OL YMPUS)により画像データを得た。コントロールとして、糖鎖を結合させていないリ ポソームを同量投与した担癌マウスを用いた。 Anesthesia was performed by administering 1/10 Nembutal solution into the peritoneal cavity of mice bearing cancer. Subsequently, cy3-encapsulated sugar chain-modified ribosome (K-1) (Κ1-3 (50 ^ 8 / πι L) 100 1) was administered from the tail vein. 48 hours after administration, the tumor site was taken out and fixed with a formalin solution for 12 hours or more, and then a paraffin section was prepared by a conventional method, and image data was obtained with a fluorescence microscope CKX41 (OL YMPUS). As a control, cancer-bearing mice administered with the same amount of liposomes to which no sugar chain was bound were used.
[0329] (結果)  [0329] (Result)
投与 6時間後、 Cy3内包型糖鎖修飾リボソーム (K 1)を投与した担癌マウスは、 コントロールに比べて腫瘍組織における蛍光強度が高いことが判明した(図 51を参 照のこと。)。 6 hours after administration, the tumor-bearing mice administered Cy3-encapsulated glycosylated ribosome (K 1) It was found that the fluorescence intensity in the tumor tissue was higher than in the control (see Figure 51).
[0330] (実施例 35.蛍光色素含有糖鎖修飾リボソームの製造)  (Example 35. Production of fluorescent dye-containing sugar chain-modified ribosome)
本実施例では、標識物質として、蛍光色素である Cy3. Cy5. 5および Cy7をそれ ぞれ用いた。  In this example, fluorescent dyes Cy3. Cy5.5 and Cy7 were used as labeling substances, respectively.
3, 3, 一ジチォビス(スルホスクシンィミジルプロピオネート)(DTSSP ; Pierce Co . , USA)を含む粉体 Αに、炭酸緩衝液を含む溶液 Αを 500 /z L添加して溶解した。 この溶液 50 Lを、リボソームを含む溶液 lmLに添加して、室温で 2時間撹拌した。 遠心限外濾過フィルター(NMWL, : 30, 000)を用いて脱塩を行った。 100〜200 1に濃縮し、溶液 Aを加え lmlとした。この操作をもう一度繰り返した。  3, 3 and 1, dithiobis (sulfosuccinimidyl propionate) (DTSSP; Pierce Co., USA) was dissolved in 500 ml of z / L solution containing carbonate buffer. . 50 L of this solution was added to 1 mL of a solution containing ribosome and stirred at room temperature for 2 hours. Desalting was performed using a centrifugal ultrafiltration filter (NMWL,: 30,000). The solution was concentrated to 100 to 2001, and solution A was added to make 1 ml. This operation was repeated once more.
[0331] (1.リボソームに結合させる糖鎖溶液の調製)  [0331] (1. Preparation of sugar chain solution to be bound to ribosome)
糖鎖 SLX、 N-ァセチルラクトサミン、 α -マンノビオースをそれぞれ密栓のできるガ ラス製バイアルに秤量し、精製水 500 Lに完全に溶解した。糖鎖水溶液の終濃度 力 mMとなるように調製した。  Sugar chains SLX, N-acetyllactosamine, and α-mannobiose were weighed into glass vials each capable of being sealed and completely dissolved in 500 L of purified water. The final concentration of the sugar chain aqueous solution was adjusted to mM.
[0332] 炭酸水素アンモ-ゥム 0. 3gを添カ卩して、炭酸水素アンモ-ゥムが溶けきらないよ うに注意しながら、 37°Cで 3日間撹拌した。炭酸水素ナトリウムが溶けきつた場合は、 更に、適量の炭酸水素アンモ-ゥムを追加した。この溶液を冷蔵庫に 30分間入れ、 0. 45 /z m 濾過フィルターで濾過した。  [0332] 0.3 g of hydrogen carbonate ammonia was added, and the mixture was stirred at 37 ° C for 3 days, taking care not to dissolve the hydrogen carbonate ammonia. When sodium bicarbonate was completely dissolved, an appropriate amount of ammonium bicarbonate was added. This solution was placed in a refrigerator for 30 minutes and filtered through a 0.45 / z m filter.
[0333] (2.リボソームへの糖鎖の結合と親水性化処理)  [0333] (2. Binding of sugar chain to ribosome and hydrophilization)
これらのリボソームを含む溶液 lmLに糖鎖溶液 12. 5 /z Lを添カロし、ボルテックスで 混合後、室温で 2時間反応させた。トリス緩衝液を含む溶液 Bを 40 /z L添加し、室温 で 2時間撹拌し、さらに、冷蔵(2〜10°C)で 16〜20時間撹拌した。遠心限外濾過フ ィルター(NMWL, : 30, 000)を用いて、脱塩を行った。脱塩を行った溶液を 100〜 200 1に濃縮し、 HEPES緩衝液を含む溶液 Cをカロえ lmlにした。この操作をもう一 度繰り返した。 0. 45 m 濾過フィルター(マイレタス—HV (ミリポア))で濾過し、遮 光下で、冷蔵保管した。  A sugar chain solution of 12.5 / zL was added to 1 mL of a solution containing these ribosomes, mixed by vortexing, and reacted at room temperature for 2 hours. Solution B containing Tris buffer was added at 40 / zL, stirred at room temperature for 2 hours, and further stirred at refrigeration (2-10 ° C) for 16-20 hours. Desalination was performed using a centrifugal ultrafiltration filter (NMWL,: 30,000). The desalted solution was concentrated to 100 to 2001, and the solution C containing HEPES buffer was made up to 1 ml. This operation was repeated once more. The solution was filtered through a 0.45 m filter (Myletus—HV (Millipore)) and stored refrigerated under light shielding.
[0334] (3.脂質濃度、平均粒子径、 Z電位、吸光度の測定、安定性の確認)  [0334] (3. Measurement of lipid concentration, average particle diameter, Z potential, absorbance, confirmation of stability)
これらのリボソームについて、タンパク質濃度、脂質濃度、平均粒子径、ゼータ電位 を測定した。本実施例により調製されたリボソームの脂質濃度、平均粒子径、 Z電位 、吸光度、安定性は、実施例 7〜12において調製された糖鎖修飾リボソームの脂質 濃度、平均粒子径、 Z電位、吸光度、安定性と変わらな力 た。本実施例により調製 されたリボソームは、表面に結合させる糖鎖の影響も受けな力つた。 For these ribosomes, protein concentration, lipid concentration, average particle size, zeta potential Was measured. The lipid concentration, average particle diameter, Z potential, absorbance, and stability of the ribosome prepared in this example are the lipid concentration, average particle diameter, Z potential, and absorbance of the sugar chain-modified ribosome prepared in Examples 7-12. , Stability and power. The ribosome prepared by this example was not affected by the sugar chain bound to the surface.
[0335] (3— 1.タンパク質濃度) [0335] (3— 1. Protein concentration)
実施例 16と同様の方法により、これらの糖鎖修飾リボソームについて、タンパク質 濃度を測定した。その結果、タンパク質濃度は、 Cy3では 0. 24mgZmL以上、 Cy5 . 5では 0. 45mgZmL以上、 Cy7では 0. 20mgZmL以上であった(表 8を参照の こと。)。  The protein concentration of these sugar chain-modified ribosomes was measured by the same method as in Example 16. As a result, the protein concentration was 0.24 mgZmL or more for Cy3, 0.45 mgZmL or more for Cy5.5, and 0.20 mgZmL or more for Cy7 (see Table 8).
[0336] (3-2.脂質濃度)  [0336] (3-2. Lipid concentration)
実施例 16と同様の方法により、これらの糖鎖修飾リボソームについて、脂質濃度を 測定した。その結果、脂質濃度は、 Cy3では 1. 2mgZmL以上、 Cy5. 5では 1. 4m gZmL以上、 Cy7では 2. lmgZmL以上であった(表 8を参照のこと。 )。  The lipid concentration of these sugar chain-modified ribosomes was measured by the same method as in Example 16. As a result, the lipid concentration was 1.2 mgZmL or higher for Cy3, 1.4 mgZmL or higher for Cy5.5, and 2. lmgZmL or higher for Cy7 (see Table 8).
[0337] (3-3.平均粒子径) [0337] (3-3. Average particle size)
実施例 16と同様の方法により、これらの糖鎖修飾リボソームについて、平均粒子径 を測定した。その結果、平均粒子径は、いずれの蛍光を用いた場合も 50ηπ!〜 300η mであった(表 8を参照のこと。 ) o  The average particle size of these sugar chain-modified ribosomes was measured in the same manner as in Example 16. As a result, the average particle size is 50ηπ when using any fluorescence! ~ 300ηm (see Table 8) o
[0338] (3-4.ゼータ電位) [0338] (3-4. Zeta potential)
実施例 16と同様の方法により、これらの糖鎖修飾リボソームについて、ゼータ電位 を測定した。その結果、ゼータ電位は、いずれの蛍光を用いた場合も— 30未満であ つた (表 8を参照のこと。)。  The zeta potential of these sugar chain-modified ribosomes was measured by the same method as in Example 16. As a result, the zeta potential was less than –30 for any fluorescence used (see Table 8).
[0339] (3-5.安定性) [0339] (3-5. Stability)
製造した各リボソームを、冷蔵保存した後、安定性を確認した。その結果、 Cy3では 少なくとも 1年間、 Cy5. 5では少なくとも 1年間、 Cy7では少なくとも 3ヶ月間にわたつ て、粒子サイズの分布は、調製直後のものとほぼ同じであり、これらのリボソームの安 定特性を示した。  Each manufactured ribosome was refrigerated and stored to confirm the stability. As a result, the particle size distribution is almost the same as that immediately after preparation for at least 1 year for Cy3, for at least 1 year for Cy5.5, and for at least 3 months for Cy7. The characteristics are shown.
[0340] [表 7] (表 7 . 各種の糖鎖修飾リボソームの物性) [0340] [Table 7] (Table 7. Physical properties of various sugar chain-modified ribosomes)
Figure imgf000141_0001
Figure imgf000141_0001
[0341] (実施例 36.糖鎖修飾リボソームの製造方法についての改良法 (遠心法)) (Example 36. Improved method for producing sugar chain-modified ribosome (centrifugation))
実施例 1と同様の方法を使用して、リボソーム(平均粒子径 lOOnm) 10mlを調製し た。  Using the same method as in Example 1, 10 ml of ribosome (average particle size lOOnm) was prepared.
[0342] (1.リボソーム脂質膜面上の親水性化処理)  [0342] (1. Hydrophilization treatment on ribosomal lipid membrane surface)
実施例 1と同様の方法で調製したリボソーム溶液 12. 5mlを Amicon Ultra— 4 ( 分画分子量: 100, 000) (Millipore) 4本それぞれに 4等分して入れ、 2000 X gで 6 0分間、室温で遠心分離機にかけることで限外濾過濃縮した。このリボソーム濃縮液 に炭酸緩衝液(CBS緩衝液: 50mM NaHCO 157mM NaCl (pH8. 5) )を 2ml  Ribosome solution prepared in the same way as in Example 1 12.5 ml of Amicon Ultra-4 (fractionated molecular weight: 100,000) (Millipore) 4 aliquots are placed in 4 equal portions, and 2000 X g for 60 minutes The solution was ultrafiltered and concentrated by centrifuging at room temperature. 2 ml of carbonate buffer (CBS buffer: 50 mM NaHCO 157 mM NaCl (pH 8.5)) is added to the ribosome concentrate.
3、  3,
ずつ加え、同条件で遠心機にかけて限外濾過した。濃縮されたリボソーム溶液を回 収してまとめ、同緩衝液を加え元の体積にメスアップした。次に、架橋試薬ビス (スル ホスクシンィミジル)スべレート(BS3; Pierce Co. , USA) 12. 5mgを加え、室温で 2時間攪拌した。その後、さらに冷蔵下で一晩攪拌してリボソーム膜上の脂質ジパル ミトィルフォスファチジルエタノールァミンと BS3との化学結合反応を完結した。リポソ ーム溶液 12. 5mlを Amicon Ultra— 4 (分画分子量: 100, 000) 4本それぞれに 4 等分して入れ、 2000 X gで 60分間、室温で遠心分離機にかけることで限外濾過濃 縮した。このリボソーム濃縮液に CBS緩衝液 (pH 8. 5)を 2mlずつ加え、同条件で 遠心機にかけて限外濾過した。濃縮されたリボソーム溶液を回収してまとめ、同緩衝 液をカ卩ぇ元の体積にメスアップした。次に、 CBS緩衝液 (pH 8. 5) 1. 25mlに溶力 したトリス(ヒドロキシメチル)ァミノメタン 50mgをリボソーム液 12. 5mlに加えた。次い で、この溶液を、室温で 2時間攪拌後、冷蔵下で一晩攪拌しリボソーム膜上の脂質に 結合した BS3とトリス (ヒドロキシメチル)ァミノメタンとの化学結合反応を完結した。この リボソーム溶液を Amicon Ultra— 4 (分画分子量: 100, 000) 4本それぞれに 4等 分して入れ、 2000 X gで 60分間、室温で遠心分離機にかけることで限外濾過濃縮し た。このリボソーム濃縮液に N トリス(ヒドロキシメチル)—3—ァミノプロパンスルホン 酸緩衝液 (PH8. 4)を 2mlずつ加え、同条件で遠心機にかけて限外濾過した。濃縮 されたリボソーム溶液を回収してまとめ、同緩衝液をカ卩ぇ元の体積にメスアップした。 Each was added, and ultrafiltration was performed in a centrifuge under the same conditions. The concentrated ribosome solution was collected and collected, and the same buffer was added to make up the original volume. Next, 12.5 mg of a crosslinking reagent bis (sulfosuccinimidyl) suberate (BS 3 ; Pierce Co., USA) was added, and the mixture was stirred at room temperature for 2 hours. Then, to complete the chemical bonding reaction between the lipid Jiparu Mito I le phosphatidylethanolamine § Min and BS 3 on the ribosome film was stirred overnight further under refrigeration. Liposome solution 12.5 ml Amicon Ultra—4 (molecular weight cut off: 100,000) Add 4 equal aliquots to each of 4 tubes and centrifuge at 2000 X g for 60 minutes at room temperature. The filtrate was concentrated. To this ribosome concentrate, 2 ml each of CBS buffer (pH 8.5) was added, and ultrafiltration was performed in a centrifuge under the same conditions. The concentrated ribosome solution was collected and collected, and the same buffer was diluted to the original volume. Next, 50 mg of tris (hydroxymethyl) aminomethane dissolved in 1.25 ml of CBS buffer (pH 8.5) was added to 12.5 ml of ribosome solution. Next, this solution was stirred at room temperature for 2 hours and then stirred overnight under refrigeration to complete the chemical binding reaction between BS 3 bound to lipids on the ribosome membrane and tris (hydroxymethyl) aminomethane. This ribosome solution is divided into 4 grades for each of 4 Amicon Ultra— 4 (molecular weight cut off: 100,000) Then, it was concentrated by ultrafiltration by centrifuging at 2000 xg for 60 minutes at room temperature. To this ribosome concentrate, 2 ml each of N-tris (hydroxymethyl) -3-amaminopropanesulfonate buffer (PH8.4) was added, and ultrafiltration was performed in a centrifuge under the same conditions. The concentrated ribosome solution was collected and collected, and the buffer was diluted to the original volume.
[0343] (2.リボソーム膜面上へのヒト血清アルブミン(HSA)の結合) [0343] (2. Binding of human serum albumin (HSA) to ribosome membrane surface)
上記 1.で得られた 12. 5mlのリボソーム溶液に、 0. 3mlの N トリス(ヒドロキシメチ ル) 3—ァミノプロパンスルホン酸緩衝液 (pH 8. 4)に溶かしたメタ過ヨウ素酸ナト リウム 13. 45mgをカ卩え、冷蔵下でー晚攪拌して過ヨウ素酸酸ィ匕した。 Amicon Ult ra— 4 (分画分子量: 100, 000) 4本それぞれに 4等分して入れ、 2000 X gで 60分 間、室温で遠心分離機にかけることで限外濾過濃縮した。このリボソーム濃縮液に P BS緩衝液 (pH 8. 0)を 2mlずつ加え、同条件で遠心機にかけて限外濾過した。濃 縮されたリボソーム溶液を回収してまとめ、同緩衝液をカ卩ぇ元の体積にメスアップした  Sodium metaperiodate dissolved in 0.3 ml of N-tris (hydroxymethyl) 3-aminopropanesulfonate buffer (pH 8.4) was added to 12.5 ml of the ribosome solution obtained in 1 above. 13. 45 mg was added and stirred with periodate under refrigeration. Amicon Ult ra-4 (fractionated molecular weight: 100,000) Each of the four was divided into 4 equal parts, and concentrated by ultrafiltration by centrifuging at 2000 X g for 60 minutes at room temperature. To this ribosome concentrate, 2 ml of PBS buffer (pH 8.0) was added, and ultrafiltration was performed using a centrifuge under the same conditions. The concentrated ribosome solution was collected and collected, and the volume of the buffer was increased to the original volume.
[0344] このリボソーム液に、 25mgのヒト血清アルブミン(HSA) ZPBS緩衝液(pH 8. 0) を加えて室温で 2時間反応させ、さらに冷蔵下で一晩攪拌してリボソーム上のガング リオシドと HSAを結合した。次いで、 Amicon Ultra— 4 (分画分子量: 100, 000) 4本それぞれに 4等分して入れ、 2000 X gで 60分間、室温で遠心分離機にかけるこ とで限外濾過濃縮した。このリボソーム濃縮液に CBS緩衝液 (pH8. 5)を 2mlずつ加 え、同条件で遠心機にかけて限外濾過した。濃縮されたリボソーム溶液を回収してま とめ、同緩衝液をカ卩ぇ元の体積にメスアップし、 HSA結合リボソーム液 12. 5mlを得 た。 [0344] To this ribosome solution, 25 mg of human serum albumin (HSA) ZPBS buffer (pH 8.0) was added and allowed to react at room temperature for 2 hours, and further stirred overnight under refrigeration with ganglioside on the ribosome. HSA was bound. Next, each of the four Amicon Ultra-4 (fractionated molecular weight: 100,000) was divided into 4 equal parts, and concentrated by ultrafiltration by centrifuging at 2000 × g for 60 minutes at room temperature. To this ribosome concentrate, 2 ml of CBS buffer (pH 8.5) was added, and ultrafiltration was performed using a centrifuge under the same conditions. The concentrated ribosome solution was collected and collected, and the buffer solution was made up to the original volume to obtain 12.5 ml of HSA-bound ribosome solution.
[0345] 蛍光として Cy5. 5の変わりに Cy7を用いたこと以外、実施例 1と同様の方法 (従来 法)を使用して製造した Cy7内包型リボソームおよび本実施例の方法 (遠心法)により 製造した Cy7内包型リボソームの諸性質を比較した。結果を以下の表 8、図 52およ び図 53に示す。本実施例の方法によると、従来法と比較して、収率が約 19%向上し 、使用する緩衝液の量が節約でき、操作時間の短縮された。また、製造時間も大幅 に短縮された。  [0345] Cy7-encapsulated ribosome produced using the same method (conventional method) as in Example 1 except that Cy7 was used instead of Cy5.5 as fluorescence, and the method of this example (centrifugation). The properties of the produced Cy7-encapsulated ribosome were compared. The results are shown in Table 8, Figure 52 and Figure 53 below. According to the method of this example, the yield was improved by about 19% compared to the conventional method, the amount of the buffer used could be saved, and the operation time was shortened. In addition, manufacturing time has been significantly reduced.
[0346] (表 8.脂質濃度、平均粒子径、 Z電位、吸光度の比較) [表 8] [0346] (Table 8. Comparison of lipid concentration, average particle size, Z potential, absorbance) [Table 8]
Figure imgf000143_0001
Figure imgf000143_0001
[0347] 以上のように、本発明の好ましい実施形態を用いて本発明を例示してきた力 本発 明は、この実施形態に限定して解釈されるべきものではない。本発明は、特許請求 の範囲によってのみその範囲が解釈されるべきであることが理解される。当業者は、 本発明の具体的な好ましい実施形態の記載から、本発明の記載および技術常識に 基づいて等価な範囲を実施することができることが理解される。本明細書において引 用した特許、特許出願および文献は、その内容自体が具体的に本明細書に記載さ れているのと同様にその内容が本明細書に対する参考として援用されるべきであるこ とが理解される。 [0347] As described above, the power that has exemplified the present invention using the preferred embodiment of the present invention. The present invention should not be construed as being limited to this embodiment. It is understood that the scope of the present invention should be construed only by the claims. It is understood that those skilled in the art can implement an equivalent range based on the description of the present invention and the common general technical knowledge from the description of specific preferred embodiments of the present invention. Patents, patent applications, and literature references cited in this specification should be incorporated by reference as if the contents themselves were specifically described in the present specification. Is understood.
産業上の利用可能性  Industrial applicability
[0348] 本発明は、目的の送達部位に薬物を経口投与などによって送達することができると いう有用性を有する。従って、本発明は、糖鎖修飾リボソームに薬剤や遺伝子を封入 した経口投与用薬物送達媒体および関連する有用性を提供する。 [0348] The present invention has utility that a drug can be delivered to a target delivery site by oral administration or the like. Therefore, the present invention provides a drug delivery vehicle for oral administration in which a drug or gene is encapsulated in a sugar chain-modified ribosome and related utility.

Claims

請求の範囲 The scope of the claims
[1] 糖鎖修飾リボソームであって、該糖鎖修飾リボソームは、  [1] A sugar chain-modified ribosome, wherein the sugar chain-modified ribosome is
リボソームと  Ribosome and
糖鎖基と  Sugar chain and
リンカ一タンパク質基と  Linker with protein group
親水性化合物基とを含み、  A hydrophilic compound group,
該リンカ一タンパク質基は該リボソームの外表面に結合し、該リンカ一タンパク質基の 少なくとも一部に該糖鎖基が結合し、該リボソームの外表面または該リンカ一タンパク 質基の一部に該親水性ィ匕合物基が結合している、糖鎖修飾リボソーム。  The linker protein group binds to the outer surface of the ribosome, the sugar chain group binds to at least part of the linker protein group, and the linker protein group binds to the outer surface of the ribosome or part of the linker protein group. A sugar chain-modified ribosome to which a hydrophilic compound group is bound.
[2] 前記糖鎖修飾リボソームは、構造 Iと構造 Πとを含み、  [2] The sugar chain-modified ribosome includes structure I and structure 、,
該構造 Iは、  The structure I is
X-CH NH— R1— NH— C ( = 0)— R2— C ( = 0)— NH— R3で表され、 X-CH NH— R 1 — NH— C (= 0) — R 2 — C (= 0) — NH— R 3
2  2
Xは、前記リボソームに含まれる前記リンカ一タンパク質と CH—NH結合可能な  X is capable of CH—NH binding with the linker protein contained in the ribosome.
2  2
官能基 aを含む構成単位から、該官能基 aがとれた基であり、  A group in which the functional group a is removed from the structural unit containing the functional group a,
R1は、前記リンカ一タンパク質基であり、 R 1 is the linker protein group,
R2は、リンカ一タンパク質架橋基であり、 R 2 is a linker-protein cross-linking group,
R3は、前記糖鎖基であり;および R 3 is the sugar chain group; and
該構造 IIは、  The structure II is
Y - NH - C ( = 0) - R4 - C ( = 0) - NH - R5で表され、 Y-NH-C (= 0)-R 4 -C (= 0)-NH-R 5
Yは、前記リボソームに含まれる親水性ィ匕合物架橋基とペプチド結合可能な官能 基 bを含む構成単位力ゝら該官能基 bがとれた基であり、  Y is a group in which the functional group b is removed from the structural unit force including the hydrophilic compound cross-linking group contained in the ribosome and the functional group b capable of peptide bonding;
R4は、該親水性化合物架橋基であり、 R 4 is the hydrophilic compound crosslinking group,
R5は、前記親水性ィ匕合物基である、請求項 1に記載の糖鎖修飾リボソーム。 2. The sugar chain-modified ribosome according to claim 1, wherein R 5 is the hydrophilic compound group.
[3] 前記リボソームが蛍光性を有する、請求項 1に記載の糖鎖修飾リボソーム。 [3] The sugar chain-modified ribosome according to claim 1, wherein the ribosome has fluorescence.
[4] 前記蛍光性が、前記リボソームと適合性の蛍光色素によって付与される、請求項 3に 記載の糖鎖修飾リボソーム。 [4] The sugar chain-modified ribosome according to claim 3, wherein the fluorescence is imparted by a fluorescent dye compatible with the ribosome.
[5] 前記蛍光色素が、 [5] The fluorescent dye is
[化 1] く Cy5. 5> [Chemical 1] Cy5. 5>
Figure imgf000145_0001
Figure imgf000145_0001
[化 2] [Chemical 2]
<cy3>  <cy3>
Figure imgf000145_0002
Figure imgf000145_0002
cy5、 cy7、 cy3B、 cy3. 5、 Alexa Fluor 350 ^ Alexa Fluor488、 Alexa Fluor 532、 Alexa Fluor 546、 Alexa Fluor555、 Alexa Fluor568、 Alexa Fluor 5 94、 Alexa Fluor633、 Alexa Fluor647、 Alexa Fluor680、 Alexa Fluor70 0、 Alexa Fluor750およびフルォレセイン— 4—イソチオシァネート(FITC)ならび にそれらの組み合わせ力 なる群より選択される、請求項 4に記載の糖鎖修飾リポソ ーム。 cy5, cy7, cy3B, cy3.5, Alexa Fluor 350 ^ Alexa Fluor488, Alexa Fluor 532, Alexa Fluor 546, Alexa Fluor555, Alexa Fluor568, Alexa Fluor 5 94, Alexa Fluor633, Alexa Fluor647, Alexa Fluor680, Alexa Fluor700, Alexa 5. The sugar chain-modified liposome according to claim 4, which is selected from the group consisting of Fluor 750 and fluorescein-4-isothiocyanate (FITC) and a combination force thereof.
前記蛍光色素が、 The fluorescent dye is
[化 3] く Cy5. 5> [Chemical 3] Cy5. 5>
Figure imgf000146_0001
である、請求項 5に記載の糖鎖修飾リボソーム。
Figure imgf000146_0001
The sugar chain-modified ribosome according to claim 5, wherein
[7] 前記蛍光色素が、リボソームに内包されている、請求項 4に記載の糖鎖修飾リポソ一 ム。 7. The sugar chain-modified liposome according to claim 4, wherein the fluorescent dye is encapsulated in a ribosome.
[8] 前記 R1が、哺乳動物由来タンパク質基である、請求項 2に記載の糖鎖修飾リポソ一 ム。 8. The sugar chain-modified liposome according to claim 2, wherein R 1 is a mammal-derived protein group.
[9] 前記 R1が、ヒト由来タンパク質基である、請求項 8に記載の糖鎖修飾リボソーム。 [9] wherein R 1 is a human-derived protein groups, glycosylation ribosome of claim 8.
[10] 前記 R1が、ヒト由来血清タンパク質基である、請求項 9に記載の糖鎖修飾リボソーム。 10. The sugar chain-modified ribosome according to claim 9, wherein R 1 is a human-derived serum protein group.
[11] 前記 R1が、血清アルブミン基である請求項 8に記載の糖鎖修飾リボソーム。 11. The sugar chain-modified ribosome according to claim 8, wherein R 1 is a serum albumin group.
[12] 前記 R2が、 3, 3,一ジチォビス(スルホスクシンィミジルプロピオネート)基、ビススルホ スクシンイミジルスべレート基、ジスクシンィミジルグルタレート基、ジチオビススクシン ィミジルプロピオネート基、ジスクシンイミジルスべレート基、エチレングリコールビスス クシンィミジルスクシネート基およびエチレングリコールビススルホスクシンィミジルスク シネート基力もなる群より選択される、請求項 2に記載の糖鎖修飾リボソーム。 [12] The R 2 is 3, 3, 1 dithiobis (sulfosuccinimidyl propionate) group, bissulfosuccinimidyl suberate group, disuccinimidyl glutarate group, dithiobis succinate. 3. A group selected from the group consisting of a midylpropionate group, a disuccinimidyl suberate group, an ethylene glycol bissuccinimidyl succinate group and an ethylene glycol bissulfosuccinimidyl succinate group. The sugar chain-modified ribosome described in 1.
[13] 前記 R2が、 3, 3,—ジチォビス (スルホスクシンィミジルプロピオネート)基である、請 求項 12に記載の糖鎖修飾リボソーム。 [13] The sugar chain-modified ribosome according to claim 12, wherein R 2 is a 3, 3, -dithiobis (sulfosuccinimidyl propionate) group.
[14] 前記 R3が、シァリルルイス X基、 N—ァセチルラクトサミン基、 a 1—6マンノビオース 基およびそれらの組み合わせ力 なる群より選択される、請求項 2に記載の糖鎖修飾 リボソーム。 14. The sugar chain-modified ribosome according to claim 2, wherein R 3 is selected from the group consisting of sialyl Lewis X group, N-acetylyllactosamine group, a 1-6 mannobiose group, and a combination force thereof.
[15] 前記 R3が、シァリルルイス X基であり、該シァリルルイス X基力 0. OOOlmg糖鎖 Zm g脂質〜 500mg糖鎖 Zmg脂質の範囲の修飾結合密度で含まれる、請求項 14に記 載の糖鎖修飾リボソーム。 [15] said R 3, a Shiariruruisu X groups include a modified bond density of said Shiariruruisu X groups force 0. OOOlmg sugar Zm g lipid ~ 500 mg sugar Zmg range of lipids, serial to claim 14 The sugar chain-modified ribosome listed.
[16] 前記 R3が、 N—ァセチルラクトサミン基であり、該 N ァセチルラクトサミン基力 0. 0 OOlmg糖鎖 Zmg脂質〜 500mg糖鎖 Zmg脂質の範囲の修飾結合密度で含まれる 、請求項 14に記載の糖鎖修飾リボソーム。 [16] The R 3 is an N-acetyllactosamine group, and the N-acetylyllactosamine group is included at a modified bond density in the range of 0.0 OOlmg sugar chain Zmg lipid to 500 mg sugar chain Zmg lipid. The sugar chain-modified ribosome according to claim 14.
[17] 前記 R3が、 α 1—6マンノビオース基であり、該 α 1—6マンノビオース基が、 0. 0001 mg糖鎖 Zmg脂質〜 500mg糖鎖 Zmg脂質の範囲の修飾結合密度で含まれる、請 求項 14に記載の糖鎖修飾リボソーム。 [17] R 3 is an α 1-6 mannobiose group, and the α 1-6 mannobiose group is included at a modified bond density in the range of 0.0001 mg sugar chain Zmg lipid to 500 mg sugar chain Zmg lipid. The sugar chain-modified ribosome according to claim 14.
[18] 前記 R4が、ビス(スルホスクシンィミジル)スべレート基、ジスクシンィミジルグルタレ一 ト基、ジチオビススクシンィミジルプロピオネート基、ジスクシンイミジルスべレート基、 3, 3,一ジチォビス(スルホスクシンィミジルプロピオネート)基、エチレングリコールビ ススクシンイミジルスクシネート基およびエチレングリコールビススルホスクシンイミジ ルスクシネート基カゝら選択される、請求項 2に記載の糖鎖修飾リボソーム。 [18] R 4 is a bis (sulfosuccinimidyl) suberate group, a disuccinimidyl glutarate group, a dithiobissuccinimidyl propionate group, a disuccinimidyl suberate. Selected from the group 3, 3, 1 dithiobis (sulfosuccinimidyl propionate), ethylene glycol bissuccinimidyl succinate and ethylene glycol bissulfosuccinimidyl succinate Item 3. The sugar chain-modified ribosome according to Item 2.
[19] 前記 R4が、ビス (スルホスクシンィミジル)スべレート基である、請求項 18に記載の糖 鎖修飾リボソーム。 [19] The R 4 is bis (sulfosuccinimidyl I succinimidyl) scan base rate group, glycosylation ribosome of claim 18.
[20] 前記 R5が、トリス(ヒドロキシアルキル)アルキルアミノ基である、請求項 2に記載の糖 鎖修飾リボソーム。 [20] The R 5 is a tris (hydroxyalkyl) alkylamino group, a sugar chain modification ribosome of claim 2.
[21] 前記トリス(ヒドロキシアルキル)アルキルアミノ基が、ヒドロキシアルキルが C  [21] The tris (hydroxyalkyl) alkylamino group is
1〜Cヒド 6 ロキシアルキルであり、アルキルァミノが C  1 to C hydroxy 6 alkyloxy and alkylamino is C
1〜Cアルキルァミノである、請求項 20に 6  Claims 20 to 6 which are 1-C alkylamino.
記載の糖鎖修飾リボソーム。 ノ基である、請求項 21に記載の糖鎖修飾リボソーム。  The sugar chain-modified ribosome described. 22. The sugar chain-modified ribosome according to claim 21, which is a non-group.
[23] 前記官能基 aが、 -CH C ( = 0)— CH—基を有する、請求項 2に記載の糖鎖修 [23] The sugar chain repair according to claim 2, wherein the functional group a has a —CH 2 C (= 0) —CH— group.
2 2  twenty two
飾リボソーム。  Decorated ribosome.
[24] 前記 Xが、ガンダリオシドである、請求項 23に記載の糖鎖修飾リボソーム。  [24] The sugar chain-modified ribosome according to claim 23, wherein X is gandioside.
[25] 前記官能基 が、アミノ基である、請求項 2に記載の糖鎖修飾リボソーム。 [25] The sugar chain-modified ribosome according to claim 2, wherein the functional group is an amino group.
[26] 前記 Yが、ホスファチジルエタノールァミンである、請求項 25に記載の糖鎖修飾リポ ノーム。 26. The sugar chain-modified liposome according to claim 25, wherein Y is phosphatidylethanolamine.
[27] 前記リボソーム力 ジパルミトイルホスファチジルコリン、コレステロール、ガングリオシ ド、ジセチルホスフェート、ジパルミトイルホスファチジルエタノールァミンおよびコー ル酸ナトリウムを含む、請求項 1に記載の糖鎖修飾リボソーム。 [27] Said ribosomal force dipalmitoylphosphatidylcholine, cholesterol, gangliosi 2. The sugar chain-modified ribosome according to claim 1, wherein the sugar chain-modified ribosome comprises didosyl, dicetyl phosphate, dipalmitoyl phosphatidylethanolamine, and sodium cholate.
[28] 前記リボソーム力 ジパルミトイルホスファチジルコリン、コレステロール、ガングリオシ ド、ジセチルホスフェート、ジパルミトイルホスファチジルエタノールァミンおよびコー ル酸ナトリウムを、 35 : 40 : 15 : 5 : 5 : 167のモル比で含む、請求項 27に記載の糖鎖 修飾リボソーム。 [28] The ribosomal force comprising dipalmitoyl phosphatidylcholine, cholesterol, ganglioside, dicetyl phosphate, dipalmitoyl phosphatidylethanolamine and sodium cholate in a molar ratio of 35: 40: 15: 5: 5: 167, Item 27. The sugar chain-modified ribosome according to Item 27.
[29] 前記 R2が、 3, 3,一ジチォビス(スルホスクシンィミジルプロピオネート)基であり、力 つ [29] R 2 is a 3, 3, 1 dithiobis (sulfosuccinimidyl propionate) group,
前記 R3が、シァリルルイス X基、 N—ァセチルラクトサミン基、 α 1—6マンノビオース 基およびそれらの組み合わせ力 なる群より選択される、請求項 2に記載の糖鎖修飾 リボソーム。 The sugar chain-modified ribosome according to claim 2, wherein R 3 is selected from the group consisting of a sialyl Lewis X group, an N-acetylyl lactosamine group, an α 1-6 mannobiose group, and a combination force thereof.
[30] 前記 R3が、シァリルルイス X基、 Ν—ァセチルラクトサミン基、 a 1—6マンノビオース 基およびそれらの組み合わせ力 なる群より選択され、かつ [30] The R 3 is selected from the group consisting of sialyl Lewis X group, Ν-acetyl lactosamine group, a 1-6 mannobiose group, and a combination force thereof, and
前記 R4が、ビス (スルホスクシンィミジル)スべレート基である、請求項 2に記載の糖鎖 修飾リボソーム。 The sugar chain-modified ribosome according to claim 2, wherein R 4 is a bis (sulfosuccinimidyl) suberate group.
[31] 前記 R2が、 3, 3,一ジチォビス(スルホスクシンィミジルプロピオネート)基であり、 前記 R3が、シァリルルイス X基、 N—ァセチルラクトサミン基、 α 1—6マンノビオース 基およびそれらの組み合わせ力 なる群より選択され、かつ [31] The R 2 is a 3, 3, 1 dithiobis (sulfosuccinimidyl propionate) group, and the R 3 is a sialyl Lewis X group, an N-acetyllactosamine group, α 1-6 Selected from the group consisting of mannobiose groups and their combination powers, and
前記 R4が、ビス (スルホスクシンィミジル)スべレート基である、請求項 2に記載の糖鎖 修飾リボソーム。 The sugar chain-modified ribosome according to claim 2, wherein R 4 is a bis (sulfosuccinimidyl) suberate group.
[32] 前記リボソーム力 ジパルミトイルホスファチジルコリン、コレステロール、ガングリオシ ド、ジセチルホスフェート、ジパルミトイルホスファチジルエタノールァミンおよびコー ル酸ナトリウムを含み、  [32] including the ribosomal force dipalmitoyl phosphatidylcholine, cholesterol, ganglioside, dicetyl phosphate, dipalmitoyl phosphatidylethanolamine and sodium cholate,
前記 R2が、 3, 3,一ジチォビス(スルホスクシンィミジルプロピオネート)基であり、 前記 R3が、シァリルルイス X基、 Ν—ァセチルラクトサミン基、 α 1—6マンノビオース 基およびそれらの組み合わせ力 なる群より選択され、かつ R 2 is a 3,3,1 dithiobis (sulfosuccinimidylpropionate) group, and R 3 is a sialyl Lewis X group, a ァ -acetyllactosamine group, an α 1-6 mannobiose group, and Selected from the group of their combination power, and
前記 R4が、ビス (スルホスクシンィミジル)スべレート基である、請求項 2に記載の糖鎖 修飾リボソーム。 [33] 前記リボソーム力 ジパルミトイルホスファチジルコリン、コレステロール、ガングリオシ ド、ジセチルホスフェート、ジパルミトイルホスファチジルエタノールァミンおよびコー ル酸ナトリウムを含み、 The sugar chain-modified ribosome according to claim 2, wherein R 4 is a bis (sulfosuccinimidyl) suberate group. [33] including the ribosomal force dipalmitoyl phosphatidylcholine, cholesterol, ganglioside, dicetyl phosphate, dipalmitoyl phosphatidylethanolamine and sodium cholate,
前記 R1が血清アルブミン基であり、 R 1 is a serum albumin group,
前記 R2が、 3, 3,一ジチォビス(スルホスクシンィミジルプロピオネート)基であり、前 記 R3が、シァリルルイス X基、 N—ァセチルラクトサミン基、 ひ 1—6マンノビオース基 およびそれらの組み合わせ力 なる群より選択され、 R 2 is a 3,3,1 dithiobis (sulfosuccinimidylpropionate) group, and R 3 is a sialyl Lewis X group, an N-acetyllactosamine group, or a 1-6 mannobiose group. And their combination power
前記 R4が、ビス (スルホスクシンィミジル)スべレート基であり、かつ R 4 is a bis (sulfosuccinimidyl) suberate group, and
前記 R5が、トリス (ヒドロキシメチル)ァミノメタン基である、請求項 2に記載の糖鎖修飾 リボソーム。 The sugar chain-modified ribosome according to claim 2, wherein R 5 is a tris (hydroxymethyl) aminomethane group.
[34] 前記糖鎖修飾リボソームが、  [34] The sugar chain-modified ribosome is
[化 4]  [Chemical 4]
<Cy5. 5> <Cy5. 5>
Figure imgf000149_0001
によって標識されている、請求項 33に記載の糖鎖修飾リボソーム。
Figure imgf000149_0001
34. The sugar chain-modified ribosome according to claim 33, which is labeled with.
[35] 前記リボソームにおいて、脂質に対するタンパク質の割合力 約 0. 1から約 0. 5であ る、請求項 1に記載の糖鎖修飾リボソーム。 35. The sugar chain-modified ribosome according to claim 1, wherein in the ribosome, the ratio of protein to lipid is about 0.1 to about 0.5.
[36] 前記糖鎖修飾リボソーム力 該リボソームの粒度分布の最大域にぉ 、て、約 80nm[36] The sugar chain-modified ribosome force The maximum size of the particle size distribution of the ribosome is about 80 nm.
〜約 165nmの粒子径を有する、請求項 1に記載の糖鎖修飾リポソーム。 2. The sugar chain-modified liposome of claim 1 having a particle size of ˜about 165 nm.
[37] 前記糖鎖修飾リボソーム力 約 50nm〜約 300nmの平均粒子径を有する、請求項 1 に記載の糖鎖修飾リボソーム。 [37] The sugar chain-modified ribosome according to claim 1, wherein the sugar chain-modified ribosome has an average particle size of about 50 nm to about 300 nm.
[38] 請求項 1に記載の糖鎖修飾リボソームを含む、イメージング剤。 [39] 請求項 1に記載の糖鎖修飾リボソームと送達が所望される物質とを含む、該物質を所 望の部位に送達するための組成物。 [38] An imaging agent comprising the sugar chain-modified ribosome according to claim 1. [39] A composition for delivering the substance to a desired site, comprising the sugar chain-modified ribosome according to claim 1 and a substance desired to be delivered.
[40] 前記所望される物質が、診断薬または研究試薬である、請求項 39に記載の組成物。 [40] The composition of claim 39, wherein the desired substance is a diagnostic or research reagent.
[41] 前記診断薬が、 DNAプローブ診断薬、腫瘍診断薬、血液学的検査用試薬および微 生物検査用試薬力 なる群より選択される、請求項 40に記載の組成物。 41. The composition according to claim 40, wherein the diagnostic agent is selected from the group consisting of a DNA probe diagnostic agent, a tumor diagnostic agent, a hematological test reagent, and a microbiological test reagent force.
[42] 分子イメージングまたはインビボイメージングにおいて使用するための、請求項 39に 記載の組成物。 [42] The composition of claim 39, for use in molecular or in vivo imaging.
[43] 前記物質が該生物学的因子を含む、請求項 39に記載の組成物。  [43] The composition of claim 39, wherein the substance comprises the biological agent.
[44] 請求項 1に記載の糖鎖修飾リボソームと医薬活性成分をさらに含む、薬学的組成物  [44] A pharmaceutical composition further comprising the sugar chain-modified ribosome according to claim 1 and a pharmaceutically active ingredient.
[45] 前記医薬活性成分が、脳、肝臓、腎臓、脾臓、肺、脾臓もしくは心臓における疾患を 処置するための薬剤、または炎症もしくは腫瘍を処置するための薬剤である、請求項 44に記載の薬学的組成物。 [45] The agent according to claim 44, wherein the pharmaceutically active ingredient is an agent for treating a disease in the brain, liver, kidney, spleen, lung, spleen or heart, or an agent for treating inflammation or tumor. Pharmaceutical composition.
[46] 所望の部位を標識するための組成物の製造のための、請求項 1に記載の糖鎖修飾リ ポソームの使用。  [46] Use of the sugar chain-modified liposome according to claim 1 for the production of a composition for labeling a desired site.
[47] 前記所望の部位が、脳、肝臓、腎臓、脾臓、肺、脾臓、心臓、炎症部位および腫瘍 部位力 なる群より選択される、請求項 46に記載の使用。  [47] The use according to claim 46, wherein the desired site is selected from the group consisting of brain, liver, kidney, spleen, lung, spleen, heart, inflammatory site and tumor site force.
[48] 所望の部位を標識するための方法であって、  [48] A method for labeling a desired site,
該被験体に、該所望の部位を標識するための組成物を投与する工程を包含し、該組 成物は請求項 1に記載の糖鎖修飾リボソームおよび薬学的受容可能なキャリアを含 み、該所望の部位が、脳、肝臓、腎臓、脾臓、肺、脾臓、心臓、炎症部位および腫瘍 部位からなる群より選択される、方法。  Administering a composition for labeling the desired site to the subject, the composition comprising the sugar chain-modified ribosome of claim 1 and a pharmaceutically acceptable carrier, The method wherein the desired site is selected from the group consisting of brain, liver, kidney, spleen, lung, spleen, heart, inflammatory site and tumor site.
[49] 糖鎖修飾リボソームを製造する方法であって、該方法は、以下:  [49] A method for producing a sugar chain-modified ribosome, the method comprising:
(a)脂質を、メタノール Zクロ口ホルム溶液に懸濁して攪拌し、該攪拌した溶液を蒸 発させ、沈殿物を真空乾燥させることにより脂質膜を得る工程;  (a) a step of obtaining a lipid membrane by suspending lipids in a methanol Z chloroform solution and stirring, evaporating the stirred solution, and drying the precipitate in vacuo;
(b)該脂質膜を、懸濁緩衝液に懸濁し、超音波処理する工程;  (b) suspending the lipid membrane in a suspension buffer and sonicating;
(c)該超音波処理した溶液と蛍光標識溶液とを混合して、蛍光標識されたリポソ一 ムを提供する工程; (d)該リボソームをトリス (ヒドロキシアルキル)アミノアルカンにより親水性ィ匕処理する 工程; (c) providing the fluorescently labeled liposome by mixing the sonicated solution and the fluorescently labeled solution; (d) a step of hydrophilic treatment of the ribosome with tris (hydroxyalkyl) aminoalkane;
(e)該親水性ィ匕処理されたリボソームにリンカ一タンパク質を結合させて、リンカ一 タンパク質結合リボソームを生成する工程;および  (e) binding a linker protein to the hydrophilic ribosome treated to produce a linker protein-binding ribosome; and
(f)該リボソームに、糖鎖を結合させて糖鎖修飾リボソームを生成する工程 を包含する、方法。  (f) A method comprising a step of binding a sugar chain to the ribosome to produce a sugar chain-modified ribosome.
[50] 前記 (c)工程の蛍光標識溶液が、  [50] The fluorescent labeling solution in the step (c)
[化 5] く Cy5. 5>  [Chemical 5] Ku5. 5>
Figure imgf000151_0001
を含む、請求項 49に記載の糖鎖修飾リボソームを製造する方法。
Figure imgf000151_0001
The method for producing a sugar chain-modified ribosome according to claim 49, comprising:
[51] 前記 (e)工程のリンカ一タンパク質力 ヒト血清アルブミンである、請求項 49に記載の 製造方法。 [51] The production method according to [49], wherein the linker protein strength in the step (e) is human serum albumin.
[52] 目的の送達部位に薬物を送達するための糖鎖修飾リボソームの製造方法であって、 該製造方法は、以下:  [52] A method for producing a sugar chain-modified ribosome for delivering a drug to a target delivery site, the production method comprising the following:
(a)種々の糖鎖密度を有する、該目的の送達部位への送達を達成する蛍光標識さ れた糖鎖修飾リボソームを提供する工程であって、以下:  (a) providing fluorescently labeled sugar chain-modified ribosomes having various sugar chain densities to achieve delivery to the target delivery site, comprising:
(i)脂質を、メタノール Zクロ口ホルム溶液に懸濁して攪拌し、該攪拌した溶液を 蒸発させ、沈殿物を真空乾燥させることにより脂質膜を得る工程;  (i) a step of obtaining a lipid membrane by suspending lipids in methanol Z chloroform solution and stirring, evaporating the stirred solution, and drying the precipitate in vacuum;
(ii)該脂質膜を、懸濁緩衝液に懸濁し、超音波処理する工程;  (ii) suspending the lipid membrane in a suspension buffer and sonicating;
(iii)該超音波処理した溶液と蛍光標識溶液とを混合する工程を包含する、工程 (b)該糖鎖修飾リボソーム上の糖鎖密度にっ 、て、該送達部位への最適な送達を 達成する密度を決定する工程;および (iii) a step comprising mixing the sonicated solution and the fluorescent labeling solution (b) determining the density of the sugar chain on the sugar chain-modified ribosome to achieve optimal delivery to the delivery site; and
(c)該薬物を決定された最適な糖鎖修飾リボソームに組み込んで薬物含有リポソ一 ムを生成する工程  (c) a step of producing a drug-containing liposome by incorporating the drug into the determined optimal sugar chain-modified ribosome
を包含する、製造方法。  Manufacturing method.
[53] 蛍光色素含有糖鎖修飾リボソームの製造方法であって、 [53] A method for producing a fluorescent dye-containing sugar chain-modified ribosome,
A)蛍光色素をリボソームに内包した力、または結合させたリボソームを形成させる 工程;  A) the step of forming a force that encapsulates the fluorescent dye in the ribosome or a bound ribosome;
B)該リボソームを親水性化処理する工程;  B) Hydrophilizing the ribosome;
C)該リボソームとリンカ一タンパク質を結合させる工程、および  C) binding the ribosome and linker protein; and
D)該リボソームへ糖鎖を結合させる工程  D) Step of binding a sugar chain to the ribosome
を包含する、製造方法。  Manufacturing method.
[54] 前記 D)工程に引き続きフィルター濾過をする工程を包含する、請求項 53に記載の 製造方法。  54. The production method according to claim 53, further comprising a step of performing filter filtration following the step D).
[55] 前記 A)工程が、以下: [55] The step A) includes the following:
(A1)ジパルミトイルホスファチジルコリン、コレステロール、ガンダリオシド、ジセチ ルホスフェート、ジパルミトイルホスファチジルエタノールァミンおよびコール酸ナトリウ ムを、 35: 40: 15: 5: 5: 167のモル比で混合させ、メタノール 'クロ口ホルム(1: 1)溶 液に懸濁させる工程;  (A1) Dipalmitoyl phosphatidylcholine, cholesterol, gandarioside, dicetyl phosphate, dipalmitoyl phosphatidylethanolamine and sodium cholate are mixed at a molar ratio of 35: 40: 15: 5: 5: 167 Suspending in form (1: 1) solution;
(A2)該クロロホルム'メタノール溶液を蒸発させ、真空乾燥させ、 N—トリス (ヒドロキ シメチル) 3—ァミノプロパンスルホン酸緩衝液 (pH8. 4)に再懸濁させて再懸濁液 を生成する工程;  (A2) Evaporate the chloroform'methanol solution, vacuum dry, and resuspend in N-tris (hydroxymethyl) 3-aminopropanesulfonate buffer (pH 8.4) to form a resuspension Process;
(A3)該再懸濁液を 30°C〜40°Cで攪拌させ、窒素置換し、超音波処理する工程; (A4) (A3)工程において超音波処理した溶液に、前記蛍光色素を含む蛍光色素 溶液を混合し、混合した溶液を分画分子量 10, 000で限外濾過し、該蛍光色素を内 包するリボソームを調製する工程、  (A3) The resuspension is stirred at 30 ° C. to 40 ° C., purged with nitrogen, and sonicated; (A4) The fluorescent dye is contained in the solution sonicated in (A3) A step of mixing a fluorescent dye solution, ultrafiltering the mixed solution with a molecular weight cut-off of 10,000, and preparing a ribosome containing the fluorescent dye;
を包含する、請求項 53に記載の蛍光色素含有糖鎖修飾リボソームの製造方法。  54. The method for producing a fluorescent dye-containing sugar chain-modified ribosome according to claim 53, comprising:
[56] 前記 (A4)工程における前記蛍光色素溶液が、蛍光色素で標識された蛍光色素標 識タンパク質を含む溶液であり、以下: [56] The fluorescent dye standard in which the fluorescent dye solution in the step (A4) is labeled with a fluorescent dye Is a solution containing a protein, the following:
(1)蛍光標識が結合し得るタンパク質 ZN—トリス (ヒドロキシメチル) 3 アミノブ 口パンスルホン酸緩衝液 (PH8. 4)溶液に蛍光色素 ZN トリス(ヒドロキシメチル) 3—ァミノプロパンスルホン酸緩衝液 (pH8. 4)溶液を混合して、室温〜約 37°Cで撹 拌する工程;および (1) Fluorescent labels can bind proteins ZN- tris (hydroxymethyl) 3 Aminobu port pan sulfonic acid buffer (P H8. 4) Fluorescent dyes ZN tris (hydroxymethyl) To a solution of 3-§ amino propane sulfonic acid buffer mixing the (pH 8.4) solution and stirring at room temperature to about 37 ° C; and
(2) (1)工程の混合溶液を、分画分子量 10, 000で限外濾過し、遊離の該蛍光色 素を除去する工程、  (2) A step of ultrafiltration of the mixed solution in step (1) with a molecular weight cut-off of 10,000 to remove the free fluorescent dye,
を包含する工程により調製される、請求項 55に記載の製造方法。  56. The method of claim 55, which is prepared by a process comprising
[57] 前記 B)工程が、以下: [57] The step B) includes the following:
(B1)前記蛍光色素を内包した力または結合したリボソームを含む溶液を、分画分 子量 300, 000で限外濾過し、該溶液中に含まれる緩衝液を炭酸緩衝液 (pH8. 5) に交換する工程;  (B1) The solution containing force or bound ribosome encapsulating the fluorescent dye is ultrafiltered with a fractionation amount of 300,000, and the buffer contained in the solution is carbonate buffer (pH 8.5) Replacing with
(B2)該 (B1)工程にお ヽて該緩衝液が該炭酸緩衝液に変換された溶液にビス (ス ルホスクシンィミジル)スべレートを添加して、冷蔵〜約 37°Cで攪拌し、分画分子量 3 00, 000で限外濾過し、遊離の該ビス(スルホスクシンィミジル)スべレートを除去する 工程;  (B2) Add bis (sulfosuccinimidyl) suberate to the solution in which the buffer solution has been converted to the carbonate buffer solution in the step (B1), and refrigerate to about 37 ° C. Agitation and ultrafiltration at a molecular weight cut off of 300,000 to remove the free bis (sulfosuccinimidyl) suberate;
(B3)該(B2)工程にお!、て、該遊離の該ビス (スルホスクシンィミジル)スべレートを 除去した溶液に、 330mM トリス(ヒドロキシメチル)ァミノメタン Z炭酸緩衝液 (ρΗ8 . 5)溶液を添加して、冷蔵〜約 37°Cで攪拌し、さらに冷蔵〜室温で一晩撹拌し、分 画分子量 300, 000で限外濾過し、遊離のトリス(ヒドロキシメチル)ァミノメタンを除去 し、該炭酸緩衝液を N トリス(ヒドロキシメチル)—3—ァミノプロパンスルホン酸緩衝 液 (pH8. 4)に交換して親水性ィ匕処理されたリボソームを含む溶液を生成させるェ 程;  (B3) In the step (B2), a solution obtained by removing the free bis (sulfosuccinimidyl) suberate is added to 330 mM Tris (hydroxymethyl) aminomethane Z carbonate buffer (ρΗ8. 5) Add the solution, stir at refrigeration to about 37 ° C, stir at refrigeration to room temperature overnight, and ultrafilter with a molecular weight cut off of 300,000 to remove free tris (hydroxymethyl) aminomethane. And replacing the carbonate buffer with N-tris (hydroxymethyl) -3-aminopropanesulfonate buffer (pH 8.4) to produce a solution containing ribosomes that have been hydrophilically treated;
を包含する、請求項 53に記載の製造方法。  54. The method of claim 53, comprising:
[58] 前記 B)工程が、以下: [58] Step B) includes the following:
(B1 ' )前記蛍光色素を内包した力または結合したリボソームを含む溶液を、分画分 子量 100, 000、 2000 X g、 60分間の条件で 2回、遠'、分離に力、けることにより限外 濾過し、該溶液中に含まれる緩衝液を炭酸緩衝液 (PH8. 5)に交換する工程; (Β2' )該 (Bl ' )工程にぉ ヽて該緩衝液が該炭酸緩衝液に変換された溶液にビス ( スルホスクシンィミジル)スべレートを添カ卩して、冷蔵〜約 37°Cで攪拌し、分画分子量 100, 000、 2000 X g、 60分間の条件で 2回、遠'、分離に力、けることにより限外據過 し、遊離の該ビス (スルホスクシンィミジル)スべレートを除去する工程; (B1 ') The solution containing the fluorescent dye or the solution containing the bound ribosome should be separated and dissipated twice under the conditions of a fractional amount of 100,000, 2000 X g, 60 minutes. A step of exchanging the buffer contained in the solution with a carbonate buffer (PH8.5); (Β2 ') Add bis (sulfosuccinimidyl) suberate to the solution in which the buffer solution is converted to the carbonate buffer solution in the step (Bl'), and refrigerate to about The mixture was stirred at 37 ° C and subjected to ultrafiltration by detaching it twice under the conditions of a molecular weight cut off of 100,000, 2000 X g, 60 minutes, and separating, and the free bis (sulfosuccin Imidyl) suberate removal;
(B3,)該(B2,)工程において、該遊離の該ビス (スルホスクシンィミジル)スべレート を除去した溶液に、 330mM トリス(ヒドロキシメチル)ァミノメタン/炭酸緩衝液 (pH 8. 5)溶液を添加して、冷蔵〜約 37°Cで攪拌し、さらに冷蔵〜室温で一晩撹拌し、 分画分子量 100, 000、 2000 X g 60分間の条件で 2回、遠心分離にかけることに より限外濾過し、遊離のトリス (ヒドロキシメチル)ァミノメタンを除去し、該炭酸緩衝液 を N—トリス(ヒドロキシメチル)—3—ァミノプロパンスルホン酸緩衝液 (pH8. 4)に交 換して親水性ィ匕処理されたリボソームを含む溶液を生成させる工程;  (B3,) In the step (B2,), in the solution from which the free bis (sulfosuccinimidyl) suberate was removed, 330 mM tris (hydroxymethyl) aminomethane / carbonate buffer (pH 8.5) was added. ) Add the solution, stir at refrigeration to approximately 37 ° C, stir at refrigeration to room temperature overnight, and centrifuge twice at a molecular weight cut off of 100,000, 2000 x g for 60 minutes. Ultrafiltration is performed to remove free tris (hydroxymethyl) aminomethane, and the carbonate buffer is replaced with N-tris (hydroxymethyl) -3-amaminopropanesulfonate buffer (pH 8.4). Producing a solution containing ribosomes that have been treated with hydrophilicity and hydrophilicity;
を包含する、請求項 53に記載の製造方法。 54. The method of claim 53, comprising:
前記 C)工程が、以下: Step C) includes the following:
(C1)前記蛍光色素を内包した力または結合したリボソームを含む溶液に、メタ過ョ ゥ素酸ナトリウム ZN—トリス(ヒドロキシメチル)—3—ァミノプロパンスルホン酸緩衝 液 (pH8. 4)溶液を添加し、冷蔵〜室温で一晩撹拌して、リボソーム粒子表面を酸ィ匕 する工程;  (C1) Add a solution of sodium metaperoxide ZN-tris (hydroxymethyl) -3-aminopropanesulfonic acid buffer (pH 8.4) to a solution containing force or bound ribosome containing the fluorescent dye. Adding and acidifying the surface of the ribosome particles by refrigeration to stirring at room temperature overnight;
(C2) (C1)工程において、粒子表面が酸ィ匕されたリボソームを含む溶液を、分画 分子量 300, 000で限外濾過し、遊離の該メタ過ヨウ素酸ナトリウムを除去し、該 N— トリス(ヒドロキシメチル)— 3—ァミノプロパンスルホン酸緩衝液を PBS緩衝液 (pH8. 0)に交換する工程;  (C2) In the step (C1), the solution containing the ribosome whose surface is oxidized is ultrafiltered with a molecular weight cut off of 300,000 to remove the free sodium metaperiodate, and the N— Replacing tris (hydroxymethyl) -3-aminopropanesulfonate buffer with PBS buffer (pH 8.0);
(C3) (C2)工程において、該緩衝液が該 PBS緩衝液に交換された溶液に、ヒト血 清アルブミン/ PBS緩衝液 (pH8. 0)を添加して冷蔵〜室温で反応させて反応溶液 を生成する工程;  (C3) In the step (C2), human serum albumin / PBS buffer (pH 8.0) is added to the solution in which the buffer is exchanged with the PBS buffer, and the reaction is performed at refrigeration to room temperature. Producing
(C4)さらに、該反応溶液に、シァノホウ素酸ナトリウム ZPBS緩衝液 (pH8. 0)を 添加して、冷蔵〜室温で攪拌し、分画分子量 300, 000で限外濾過し、遊離の該シ ァノホウ素酸ナトリウムおよび該ヒト血清アルブミンを除去し、該溶液の緩衝液を炭酸 緩衝液 (PH8. 5)に交換する工程 を包含する、請求項 53に記載の製造方法。 (C4) Further, sodium cyanoboronate ZPBS buffer (pH 8.0) was added to the reaction solution, stirred at refrigeration to room temperature, ultrafiltered with a molecular weight cut off of 300,000, and free Removing sodium boroborate and human serum albumin, and replacing the buffer of the solution with carbonate buffer (PH8.5) 54. The method of claim 53, comprising:
[60] 前記 C)工程が、以下: [60] Step C) includes the following:
(C1)前記蛍光色素を内包した力または結合したリボソームを含む溶液に、メタ過ョ ゥ素酸ナトリウム ZN トリス(ヒドロキシメチル)—3—ァミノプロパンスルホン酸緩衝 液 (pH8. 4)溶液を添加し、冷蔵〜室温で一晩撹拌して、リボソーム粒子表面を酸ィ匕 する工程;  (C1) Add a solution of sodium metaperoxide ZN tris (hydroxymethyl) -3-aminopropanesulfonate buffer (pH 8.4) to the solution containing the force or bound ribosome containing the fluorescent dye. And acidifying the surface of the ribosome particles by stirring overnight at refrigerated to room temperature;
(C2) (C1)工程において、粒子表面が酸ィ匕されたリボソームを含む溶液を、分画 分子量 300, 000で限外濾過し、遊離の該メタ過ヨウ素酸ナトリウムを除去し、該 N— トリス(ヒドロキシメチル)— 3—ァミノプロパンスルホン酸緩衝液を PBS緩衝液 (pH8. 0)に交換する工程;  (C2) In the step (C1), the solution containing the ribosome whose surface is oxidized is ultrafiltered with a molecular weight cut off of 300,000 to remove the free sodium metaperiodate, and the N— Replacing tris (hydroxymethyl) -3-aminopropanesulfonate buffer with PBS buffer (pH 8.0);
(C3) (C2)工程において、該緩衝液が該 PBS緩衝液に交換された溶液に、ヒト血 清アルブミン/ PBS緩衝液 (pH8. 0)を添加して冷蔵〜室温で反応させて反応溶液 を生成する工程;  (C3) In the step (C2), human serum albumin / PBS buffer (pH 8.0) is added to the solution in which the buffer is exchanged with the PBS buffer, and the reaction is performed at refrigeration to room temperature. Producing
(C4)さらに、該反応溶液を、冷蔵〜室温で攪拌し、分画分子量 300, 000で限外 濾過し、遊離の該ヒト血清アルブミンを除去し、該溶液の緩衝液を炭酸緩衝液 (pH8 . 5)に交換する工程  (C4) Further, the reaction solution is stirred at refrigeration to room temperature, ultrafiltered with a molecular weight cut off of 300,000 to remove free human serum albumin, and the buffer solution of the solution is changed to a carbonate buffer solution (pH 8). .5) Replacement process
を包含する、請求項 53に記載の製造方法。  54. The method of claim 53, comprising:
[61] 前記 C)工程が、以下: [61] Step C) includes the following:
(C1 ' )前記蛍光色素を内包した力または結合したリボソームを含む溶液に、メタ過 ヨウ素酸ナトリウム ZN—トリス(ヒドロキシメチル)— 3—ァミノプロパンスルホン酸緩衝 液 (pH8. 4)溶液を添加し、冷蔵〜室温で一晩撹拌して、リボソーム粒子表面を酸ィ匕 する工程;  (C1 ') Add a solution of sodium metaperiodate ZN-tris (hydroxymethyl) -3-aminopropanesulfonate buffer (pH 8.4) to the solution containing the force or bound ribosome containing the fluorescent dye. And acidifying the surface of the ribosome particles by stirring overnight at refrigerated to room temperature;
(C2' ) (C1 ' )工程において、粒子表面が酸ィ匕されたリボソームを含む溶液を、分 画分子量 100, 000、 2000 X g 60分間の条件で 2回、遠'、分離に力、けることにより 限外濾過し、遊離の該メタ過ヨウ素酸ナトリウムを除去し、該 N トリス (ヒドロキシメチ ル) 3—ァミノプロパンスルホン酸緩衝液を PBS緩衝液 (pH8. 0)に交換する工程; (C2 ′) In the (C1 ′) step, the solution containing the ribosome whose surface is oxidized is subjected to two separations under the conditions of a molecular weight cutoff of 100,000 and 2000 × g for 60 minutes. Removing the free sodium metaperiodate and replacing the N-tris (hydroxymethyl) 3-aminopropanesulfonate buffer solution with PBS buffer (pH 8.0). ;
(C3' ) (C2' )工程において、該緩衝液が該 PBS緩衝液に交換された溶液に、ヒト 血清アルブミン/ PBS緩衝液 (pH8. 0)を添加して冷蔵〜室温で反応させて反応溶 液を生成する工程; (C3 ′) In the step (C2 ′), human serum albumin / PBS buffer (pH 8.0) was added to the solution in which the buffer was replaced with the PBS buffer, and the reaction was performed at refrigeration to room temperature. Melting Producing a liquid;
(C4,)さらに、該反応溶液に、シァノホウ素酸ナトリウム ZPBS緩衝液 (pH8. 0)を 添カロして、分画分子量 100, 000、 2000 X g 60分 f¾の条件で 2回、遠 、分離に力 けることにより限外濾過し、遊離のシァノホウ素酸ナトリウムおよび該ヒト血清アルブミ ンを除去し、該溶液の緩衝液を炭酸緩衝液 (pH8. 5)に交換する工程  (C4) Further, sodium cyanoborate ZPBS buffer (pH 8.0) was added to the reaction solution, and the mixture was separated twice under the conditions of a molecular weight cutoff of 100,000, 2000 × g for 60 minutes f¾, Ultrafiltration by force of separation to remove free sodium cyanoboronate and human serum albumin, and exchange the buffer of the solution with carbonate buffer (pH 8.5)
を包含する、請求項 53に記載の製造方法。  54. The method of claim 53, comprising:
[62] 前記 C)工程が、以下: [62] Step C) includes the following:
(C1 ' )前記蛍光色素を内包した力または結合したリボソームを含む溶液に、メタ過 ヨウ素酸ナトリウム ZN—トリス(ヒドロキシメチル)— 3—ァミノプロパンスルホン酸緩衝 液 (pH8. 4)溶液を添加し、冷蔵〜室温で一晩撹拌して、リボソーム粒子表面を酸ィ匕 する工程;  (C1 ') Add a solution of sodium metaperiodate ZN-tris (hydroxymethyl) -3-aminopropanesulfonate buffer (pH 8.4) to the solution containing the force or bound ribosome containing the fluorescent dye. And acidifying the surface of the ribosome particles by stirring overnight at refrigerated to room temperature;
(C2' ) (C1 ' )工程において、粒子表面が酸ィ匕されたリボソームを含む溶液を、分 画分子量 100, 000、 2000 X g 60分間の条件で 2回、遠'、分離に力、けることにより 限外濾過し、遊離の該メタ過ヨウ素酸ナトリウムを除去し、該 N トリス (ヒドロキシメチ ル) 3—ァミノプロパンスルホン酸緩衝液を PBS緩衝液 (pH8. 0)に交換する工程; (C2 ′) In the (C1 ′) step, the solution containing the ribosome whose surface is oxidized is subjected to two separations under the conditions of a molecular weight cutoff of 100,000 and 2000 × g for 60 minutes. Removing the free sodium metaperiodate and replacing the N-tris (hydroxymethyl) 3-aminopropanesulfonate buffer solution with PBS buffer (pH 8.0). ;
(C3' ) (C2' )工程において、該緩衝液が該 PBS緩衝液に交換された溶液に、ヒト 血清アルブミン/ PBS緩衝液 (pH8. 0)を添加して冷蔵〜室温で反応させて反応溶 液を生成する工程; (C3 ′) In the step (C2 ′), human serum albumin / PBS buffer (pH 8.0) was added to the solution in which the buffer was replaced with the PBS buffer, and the reaction was performed at refrigeration to room temperature. Producing a solution;
(C4' )さらに、該反応溶液を、冷蔵〜室温で攪拌し、分画分子量 100, 000、 200 O X g 60分間の条件で 2回、遠心分離にかけることにより限外濾過し、該ヒト血清ァ ルブミンを除去し、該溶液の緩衝液を炭酸緩衝液 (pH8. 5)に交換する工程 を包含する、請求項 53に記載の製造方法。  (C4 ′) Further, the reaction solution was stirred at refrigeration to room temperature, ultrafiltered by centrifugation twice under conditions of a molecular weight cut off of 100,000 and 200 OX g for 60 minutes, and the human serum 54. The production method according to claim 53, comprising a step of removing albumin and exchanging the buffer solution of the solution with a carbonate buffer solution (pH 8.5).
[63] 前記 D)工程が、以下: [63] Step D) includes the following:
(D1)前記糖鎖を精製水に溶解して、炭酸水素アンモ-ゥム飽和下で室温〜約 37 °Cで反応させて、アミノィ匕糖鎖溶液を調製する工程;  (D1) a step of dissolving the sugar chain in purified water and reacting at room temperature to about 37 ° C. under saturated ammonium bicarbonate to prepare an amino sugar chain solution;
(D2)前記蛍光色素を内包した力または結合したリボソームを含む溶液に、 3, 3' ジチォビス(スルホスクシンィミジルプロピオネート)を添カ卩して、冷蔵〜約 37°Cで 攪拌し、分画分子量 300, 000で限外濾過し、遊離の該 3, 3'—ジチオピス (スルホ スクシンィミジルプロピオネート)を除去する工程;および (D2) Add 3, 3 'dithiobis (sulfosuccinimidyl propionate) to the solution containing the force or bound ribosome containing the fluorescent dye, and stir at refrigeration to approximately 37 ° C. And ultrafiltered with a molecular weight cut off of 300,000 to give the free 3,3'-dithiopis (sulfo Removing succinimidyl propionate); and
(D3) (D2)工程において、該遊離の該 3, 3,一ジチォビス(スルホスクシンィミジル プロピオネート)を除去した溶液に、該ァミノ化糖鎖溶液を添加して、冷蔵〜約 37°C で反応させ、トリス (ヒドロキシメチル)ァミノメタン Z炭酸緩衝液 (PH8. 5)を添加し、 冷蔵〜 37°Cで一晩撹拌し、分画分子量 300, 000で限外濾過し、遊離の該糖鎖と 該トリス (ヒドロキシメチル)ァミノメタンを除去する工程;  (D3) In the step (D2), the aminated sugar chain solution is added to the solution from which the free 3,3,4-dithiobis (sulfosuccinimidyl propionate) has been removed, and the mixture is refrigerated to about 37 ° C. React with C, add tris (hydroxymethyl) aminomethane Z carbonate buffer (PH8.5), stir overnight at refrigerated ~ 37 ° C, ultrafilter with molecular weight cut off 300,000, Removing the sugar chain and the tris (hydroxymethyl) aminomethane;
(D4) (D3)工程において、遊離の該糖鎖と該トリス (ヒドロキシメチル)ァミノメタンを 除去した溶液の緩衝液を、 HEPES緩衝液 (pH7. 2)に交換する工程、  (D4) a step of replacing the buffer solution of the solution from which the free sugar chain and tris (hydroxymethyl) aminomethane have been removed in the step (D3) with a HEPES buffer solution (pH 7.2),
を包含する、請求項 53に記載の製造方法。  54. The method of claim 53, comprising:
[64] 前記 D)工程に引き続き前記糖鎖が結合したリボソームを親水性ィ匕する工程を包含 する、請求項 53に記載の製造方法。  [64] The production method according to claim 53, further comprising the step of hydrophilicizing the ribosome to which the sugar chain is bound following the step D).
[65] 蛍光色素含有糖鎖修飾リボソームの製造方法であって、該製造方法が、  [65] A method for producing a fluorescent dye-containing sugar chain-modified ribosome comprising the following steps:
A)蛍光色素をリボソームに内包させたリボソームを形成させる工程;  A) forming a ribosome in which a fluorescent dye is encapsulated in the ribosome;
B)該リボソームを親水性化処理する工程;  B) Hydrophilizing the ribosome;
C)該リボソームとリンカ一タンパク質を結合させる工程;  C) binding the ribosome to a linker protein;
D)該リボソームへ糖鎖を結合させる工程;  D) a step of binding a sugar chain to the ribosome;
E)該糖鎖が結合したリボソームを親水性ィ匕する工程;ならびに  E) Hydrophilizing the ribosome to which the sugar chain is bound; and
F)該親水性ィ匕したリボソームを含む溶液をフィルター濾過する工程  F) Filtering the solution containing the hydrophilic ribosome
を包含する、製造方法。  Manufacturing method.
[66] 前記 A)工程が、以下:  [66] Step A) includes the following:
(A1)ジパルミトイルホスファチジルコリン、コレステロール、ガンダリオシド、ジセチ ルホスフェート、ジパルミトイルホスファチジルエタノールァミンおよびコール酸ナトリウ ムを、 35: 40: 15: 5: 5: 167のモル比で混合させ、メタノール 'クロ口ホルム(1: 1)溶 液に懸濁させる工程;  (A1) Dipalmitoyl phosphatidylcholine, cholesterol, gandarioside, dicetyl phosphate, dipalmitoyl phosphatidylethanolamine and sodium cholate are mixed at a molar ratio of 35: 40: 15: 5: 5: 167 Suspending in form (1: 1) solution;
(A2)該クロロホルム'メタノール溶液を蒸発させ、真空乾燥させ、 N—トリス (ヒドロキ シメチル) 3—ァミノプロパンスルホン酸緩衝液 (pH8. 4)に再懸濁させて再懸濁液 を生成する工程;  (A2) Evaporate the chloroform'methanol solution, vacuum dry, and resuspend in N-tris (hydroxymethyl) 3-aminopropanesulfonate buffer (pH 8.4) to form a resuspension Process;
(A3)該再懸濁液を 30〜40°Cで攪拌させ、窒素置換し、超音波処理する工程;お よび (A3) A step of stirring the resuspension at 30 to 40 ° C., purging with nitrogen, and sonicating; And
(A4) (A3)工程において超音波処理した溶液に、該蛍光色素を含む蛍光色素溶 液を混合し、混合した溶液を分画分子量 10, 000で限外濾過し、該蛍光色素を内包 するリボソームを調製する工程であって、該蛍光色素溶液は、ヒト血清アルブミン ZN —トリス(ヒドロキシメチル)—3—ァミノプロパンスルホン酸緩衝液 (pH8. 4)溶液に蛍 光色素/ N—トリス(ヒドロキシメチル)— 3—ァミノプロパンスルホン酸緩衝液 (pH8. 4)溶液を混合して、 37°Cで撹拌し、分画分子量 10, 000で限外濾過し、遊離の該 蛍光色素を除去する工程によって調製される工程を包含し、  (A4) The fluorescent dye solution containing the fluorescent dye is mixed with the solution sonicated in step (A3), and the mixed solution is ultrafiltered with a molecular weight cut off of 10,000 to enclose the fluorescent dye. In the step of preparing ribosome, the fluorescent dye solution is added to human serum albumin ZN—Tris (hydroxymethyl) -3-aminopropanesulfonic acid buffer (pH 8.4) solution with fluorescent dye / N-Tris ( Hydroxymethyl) -3-aminopropanesulfonic acid buffer (pH 8.4) solution was mixed, stirred at 37 ° C, and ultrafiltered with a molecular weight cut off of 10,000 to remove the free fluorescent dye. Comprising a step prepared by the step of
前記 B)工程が、以下: Step B) includes the following:
(B1)該蛍光色素を内包したか、または結合したリボソームを含む溶液を、分画分 子量 300, 000で限外濾過し、該溶液中に含まれる緩衝液を炭酸緩衝液 (pH8. 5) に交換する工程;  (B1) The solution containing the ribosome encapsulating or binding the fluorescent dye is ultrafiltered at a fractional fraction of 300,000, and the buffer contained in the solution is carbonate buffer (pH 8.5). ) To replace with;
(B2)該 (B1)工程にお ヽて該緩衝液が該炭酸緩衝液に変換された溶液にビス (ス ルホスクシンィミジル)スべレートを添加して、冷蔵〜約 37°Cで攪拌し、分画分子量 3 00, 000で限外濾過し、遊離の該ビス(スルホスクシンィミジル)スべレートを除去する 工程;および  (B2) Add bis (sulfosuccinimidyl) suberate to the solution in which the buffer solution has been converted to the carbonate buffer solution in the step (B1), and refrigerate to about 37 ° C. And ultrafiltration with a molecular weight cut off of 300,000 to remove the free bis (sulfosuccinimidyl) suberate; and
(B3)該(B2)工程にお!、て、該遊離の該ビス (スルホスクシンィミジル)スべレートを 除去した溶液に、 330mM トリス(ヒドロキシメチル)ァミノメタン Z炭酸緩衝液 (ρΗ8 . 5)溶液を添加して、冷蔵〜約 37°Cで攪拌し、冷蔵〜室温で一晩撹拌し、分画分 子量 300, 000で限外濾過し、遊離のトリス(ヒドロキシメチル)ァミノメタンを除去し、 該炭酸緩衝液を N—トリス(ヒドロキシメチル) 3—ァミノプロパンスルホン酸緩衝液 ( PH8. 4)に交換して親水性ィ匕処理されたリボソームを含む溶液を生成させる工程を 包含し、  (B3) In the step (B2), a solution obtained by removing the free bis (sulfosuccinimidyl) suberate is added to 330 mM Tris (hydroxymethyl) aminomethane Z carbonate buffer (ρΗ8. 5) Add the solution, stir at refrigeration to about 37 ° C, stir at refrigeration to room temperature overnight, ultrafilter with a fractional fraction of 300,000, and free tris (hydroxymethyl) aminomethane. And removing the carbonate buffer with N-tris (hydroxymethyl) 3-aminopropanesulfonate buffer (PH8.4) to produce a solution containing ribosomes that have been treated with hydrophilic acid. And
前記 C)工程が、以下: Step C) includes the following:
(C1)該蛍光色素を内包した力または結合したリボソームを含む溶液に、メタ過ヨウ 素酸ナトリウム ZN トリス(ヒドロキシメチル) 3—ァミノプロパンスルホン酸緩衝液 ( PH8. 4)溶液を添加し、冷蔵下で一晩撹拌して、リボソーム粒子表面を酸ィ匕するェ 程; (C2) (CI)工程において、粒子表面が酸ィ匕されたリボソームを含む溶液を、分画 分子量 300, 000で限外濾過し、遊離の該メタ過ヨウ素酸ナトリウムを除去し、該 N— トリス(ヒドロキシメチル)— 3—ァミノプロパンスルホン酸緩衝液を PBS緩衝液 (pH8. 0)に交換する工程; (C1) A solution containing sodium phosphoperiodate ZN tris (hydroxymethyl) 3-aminopropanesulfonate buffer solution (PH8.4) is added to a solution containing force or bound ribosome encapsulating the fluorescent dye, Stir overnight under refrigeration to acidify the ribosome particle surface; (C2) In the step (CI), the solution containing the ribosome whose surface is oxidized is ultrafiltered with a molecular weight cut off of 300,000 to remove the free sodium metaperiodate, and the N— Replacing tris (hydroxymethyl) -3-aminopropanesulfonate buffer with PBS buffer (pH 8.0);
(C3) (C2)工程において、該緩衝液が該 PBS緩衝液に交換された溶液に、ヒト血 清アルブミン/ PBS緩衝液 (pH8. 0)を添加して冷蔵〜室温で反応させて反応溶液 を生成する工程;および  (C3) In the step (C2), human serum albumin / PBS buffer (pH 8.0) is added to the solution in which the buffer is exchanged with the PBS buffer, and the reaction is performed at refrigeration to room temperature. Producing steps; and
(C4)該反応溶液に、シァノホウ素酸ナトリウム ZPBS緩衝液 (pH8. 0)を添加して 、冷蔵〜室温で攪拌し、分画分子量 300, 000で限外濾過し、遊離の該シァノホウ素 酸ナトリウムおよび該ヒト血清アルブミンを除去し、該溶液の緩衝液を炭酸緩衝液 (P H8. 5)に交換する工程を包含し、  (C4) To the reaction solution was added sodium cyanoboronate ZPBS buffer (pH 8.0), stirred at refrigeration to room temperature, ultrafiltered with a molecular weight cut off of 300,000, and free cyanoboronic acid. Removing sodium and the human serum albumin and replacing the buffer of the solution with carbonate buffer (PH 8.5),
前記 D)工程が、以下: Step D) includes the following:
(D1)該糖鎖を精製水に溶解して、炭酸水素アンモ -ゥム飽和下で、室温〜約 37 °Cで反応させて、アミノィ匕糖鎖溶液を調製する工程;  (D1) a step of dissolving the sugar chain in purified water and reacting at room temperature to about 37 ° C under ammonium hydrogen carbonate saturation to prepare an amino sugar chain solution;
(D2)該蛍光色素を内包したかまたは結合したリボソームを含む溶液に、 3, 3'—ジ チォビス (スルホスクシンィミジルプロピオネート)を添カ卩して、冷蔵〜約 37°Cで攪拌 し、分画分子量 300, 000で限外濾過し、遊離の該 3, 3,—ジチオピス(スルホスクシ ンィミジルプロピオネート)を除去する工程;および  (D2) 3, 3′-dithiobis (sulfosuccinimidyl propionate) is added to a solution containing a ribosome containing or bound to the fluorescent dye, and refrigerated to about 37 ° C. And removing the free 3, 3, -dithiopis (sulfosuccinimidyl propionate) by ultrafiltration with a molecular weight cut off of 300,000; and
(D3) (D2)工程において、該遊離の該 3, 3,一ジチォビス(スルホスクシンィミジル プロピオネート)を除去した溶液に、該ァミノ化糖鎖溶液を添加して、冷蔵〜約 37°C で反応させ、トリス (ヒドロキシメチル)ァミノメタン Z炭酸緩衝液 (PH8. 5)を添加し、 冷蔵〜 37°Cで一晩撹拌し、分画分子量 300, 000で限外濾過し、遊離の該糖鎖と 該トリス (ヒドロキシメチル)ァミノメタンを除去する工程;および  (D3) In the step (D2), the aminated sugar chain solution is added to the solution from which the free 3,3,4-dithiobis (sulfosuccinimidyl propionate) has been removed, and the mixture is refrigerated to about 37 ° C. React with C, add tris (hydroxymethyl) aminomethane Z carbonate buffer (PH8.5), stir overnight at refrigerated ~ 37 ° C, ultrafilter with molecular weight cut off 300,000, Removing sugar chains and the tris (hydroxymethyl) aminomethane; and
(D4) (D3)工程において、遊離の該糖鎖と該トリス (ヒドロキシメチル)ァミノメタンを 除去した溶液の緩衝液を、 HEPES緩衝液 (pH7. 2)に交換する工程を包含する、 請求項 65に記載の製造方法。  (D4) The step (D3) includes a step of exchanging the buffer solution of the solution from which the free sugar chain and the tris (hydroxymethyl) aminomethane are removed with a HEPES buffer solution (pH 7.2). The manufacturing method as described in.
前記 A)工程が、以下: Step A) includes the following:
(A1)ジパルミトイルホスファチジルコリン、コレステロール、ガンダリオシド、ジセチ ルホスフェート、ジパルミトイルホスファチジルエタノールァミンおよびコール酸ナトリウ ムを、 35: 40: 15: 5: 5: 167のモル比で混合させ、メタノール 'クロ口ホルム(1: 1)溶 液に懸濁させる工程; (A1) Dipalmitoyl phosphatidylcholine, cholesterol, gandioside, disetti Ruphosphate, dipalmitoyl phosphatidylethanolamine and sodium cholate are mixed in a molar ratio of 35: 40: 15: 5: 5: 167 and suspended in a methanol 'black form (1: 1) solution. Process;
(A2)該クロロホルム'メタノール溶液を蒸発させ、真空乾燥させ、 N—トリス (ヒドロキ シメチル) 3—ァミノプロパンスルホン酸緩衝液 (pH8. 4)に再懸濁させて再懸濁液 を生成する工程;  (A2) Evaporate the chloroform'methanol solution, vacuum dry, and resuspend in N-tris (hydroxymethyl) 3-aminopropanesulfonate buffer (pH 8.4) to form a resuspension Process;
(A3)該再懸濁液を 30〜40°Cで攪拌させ、窒素置換し、超音波処理する工程;お よび  (A3) stirring the resuspension at 30-40 ° C, purging with nitrogen, and sonicating; and
(A4) (A3)工程において超音波処理した溶液に、該蛍光色素を含む蛍光色素溶 液を混合し、混合した溶液を分画分子量 10, 000で限外濾過し、該蛍光色素を内包 するリボソームを調製する工程であって、該蛍光色素溶液は、ヒト血清アルブミン ZN —トリス(ヒドロキシメチル)—3—ァミノプロパンスルホン酸緩衝液 (pH8. 4)溶液に蛍 光色素/ N—トリス(ヒドロキシメチル)— 3—ァミノプロパンスルホン酸緩衝液 (pH8. 4)溶液を混合して、 37°Cで撹拌し、分画分子量 10, 000で限外濾過し、遊離の該 蛍光色素を除去する工程によって調製される工程を包含し、  (A4) The fluorescent dye solution containing the fluorescent dye is mixed with the solution sonicated in step (A3), and the mixed solution is ultrafiltered with a molecular weight cut off of 10,000 to enclose the fluorescent dye. In the step of preparing ribosome, the fluorescent dye solution is added to human serum albumin ZN—Tris (hydroxymethyl) -3-aminopropanesulfonic acid buffer (pH 8.4) solution with fluorescent dye / N-Tris ( Hydroxymethyl) -3-aminopropanesulfonic acid buffer (pH 8.4) solution was mixed, stirred at 37 ° C, and ultrafiltered with a molecular weight cut off of 10,000 to remove the free fluorescent dye. Comprising a step prepared by the step of
前記 B)工程が、以下: Step B) includes the following:
(B1)該蛍光色素を内包したか、または結合したリボソームを含む溶液を、分画分 子量 300, 000で限外濾過し、該溶液中に含まれる緩衝液を炭酸緩衝液 (pH8. 5) に交換する工程;  (B1) The solution containing the ribosome encapsulating or binding the fluorescent dye is ultrafiltered at a fractional fraction of 300,000, and the buffer contained in the solution is carbonate buffer (pH 8.5). ) To replace with;
(B2)該 (B1)工程にお ヽて該緩衝液が該炭酸緩衝液に変換された溶液にビス (ス ルホスクシンィミジル)スべレートを添加して、冷蔵〜約 37°Cで攪拌し、分画分子量 3 00, 000で限外濾過し、遊離の該ビス(スルホスクシンィミジル)スべレートを除去する 工程;および  (B2) Add bis (sulfosuccinimidyl) suberate to the solution in which the buffer solution has been converted to the carbonate buffer solution in the step (B1), and refrigerate to about 37 ° C. And ultrafiltration with a molecular weight cut off of 300,000 to remove the free bis (sulfosuccinimidyl) suberate; and
(B3)該(B2)工程にお!、て、該遊離の該ビス (スルホスクシンィミジル)スべレートを 除去した溶液に、 330mM トリス(ヒドロキシメチル)ァミノメタン Z炭酸緩衝液 (ρΗ8 . 5)溶液を添加して、冷蔵〜約 37°Cで攪拌し、冷蔵〜室温で一晩撹拌し、分画分 子量 300, 000で限外濾過し、遊離のトリス(ヒドロキシメチル)ァミノメタンを除去し、 該炭酸緩衝液を N—トリス(ヒドロキシメチル) 3—ァミノプロパンスルホン酸緩衝液 ( pH8. 4)に交換して親水性ィ匕処理されたリボソームを含む溶液を生成させる工程を 包含し、 (B3) In the step (B2), a solution obtained by removing the free bis (sulfosuccinimidyl) suberate is added to 330 mM Tris (hydroxymethyl) aminomethane Z carbonate buffer (ρΗ8. 5) Add the solution, stir at refrigeration to about 37 ° C, stir at refrigeration to room temperature overnight, ultrafilter with a fractional fraction of 300,000, and free tris (hydroxymethyl) aminomethane. Removing the carbonate buffer with N-tris (hydroxymethyl) 3-aminopropanesulfonate buffer ( including the step of changing to pH 8.4) to produce a solution containing ribosomes treated with hydrophilicity,
前記 C)工程が、以下: Step C) includes the following:
(C1)該蛍光色素を内包した力または結合したリボソームを含む溶液に、メタ過ヨウ 素酸ナトリウム ZN トリス(ヒドロキシメチル) 3—ァミノプロパンスルホン酸緩衝液 ( PH8. 4)溶液を添加し、冷蔵下で一晩撹拌して、リボソーム粒子表面を酸ィ匕するェ 程;  (C1) A solution containing sodium phosphoperiodate ZN tris (hydroxymethyl) 3-aminopropanesulfonate buffer solution (PH8.4) is added to a solution containing force or bound ribosome encapsulating the fluorescent dye, Stir overnight under refrigeration to acidify the ribosome particle surface;
(C2) (C1)工程において、粒子表面が酸ィ匕されたリボソームを含む溶液を、分画 分子量 300, 000で限外濾過し、遊離の該メタ過ヨウ素酸ナトリウムを除去し、該 N— トリス(ヒドロキシメチル)— 3—ァミノプロパンスルホン酸緩衝液を PBS緩衝液 (pH8. 0)に交換する工程;  (C2) In the step (C1), the solution containing the ribosome whose surface is oxidized is ultrafiltered with a molecular weight cut off of 300,000 to remove the free sodium metaperiodate, and the N— Replacing tris (hydroxymethyl) -3-aminopropanesulfonate buffer with PBS buffer (pH 8.0);
(C3) (C2)工程において、該緩衝液が該 PBS緩衝液に交換された溶液に、ヒト血 清アルブミン/ PBS緩衝液 (pH8. 0)を添加して冷蔵〜室温で反応させて反応溶液 を生成する工程;および  (C3) In the step (C2), human serum albumin / PBS buffer (pH 8.0) is added to the solution in which the buffer is exchanged with the PBS buffer, and the reaction is performed at refrigeration to room temperature. Producing steps; and
(C4)さらに、該反応溶液を、冷蔵〜室温で攪拌し、分画分子量 300, 000で限外 濾過し、遊離の該ヒト血清アルブミンを除去し、該溶液の緩衝液を炭酸緩衝液 (pH8 . 5)に交換する工程を包含し、  (C4) Further, the reaction solution is stirred at refrigeration to room temperature, ultrafiltered with a molecular weight cut off of 300,000 to remove free human serum albumin, and the buffer solution of the solution is changed to a carbonate buffer solution (pH 8). 5) including the step of exchanging,
前記 D)工程が、以下: Step D) includes the following:
(D1)該糖鎖を精製水に溶解して、炭酸水素アンモ -ゥム飽和下で、室温〜約 37 °Cで反応させて、アミノィ匕糖鎖溶液を調製する工程;  (D1) a step of dissolving the sugar chain in purified water and reacting at room temperature to about 37 ° C under ammonium hydrogen carbonate saturation to prepare an amino sugar chain solution;
(D2)該蛍光色素を内包したかまたは結合したリボソームを含む溶液に、 3, 3'—ジ チォビス (スルホスクシンィミジルプロピオネート)を添カ卩して、冷蔵〜約 37°Cで攪拌 し、分画分子量 300, 000で限外濾過し、遊離の該 3, 3,—ジチオピス(スルホスクシ ンィミジルプロピオネート)を除去する工程;および  (D2) 3, 3′-dithiobis (sulfosuccinimidyl propionate) is added to a solution containing a ribosome containing or bound to the fluorescent dye, and refrigerated to about 37 ° C. And removing the free 3, 3, -dithiopis (sulfosuccinimidyl propionate) by ultrafiltration with a molecular weight cut off of 300,000; and
(D3) (D2)工程において、該遊離の該 3, 3,一ジチォビス(スルホスクシンィミジル プロピオネート)を除去した溶液に、該ァミノ化糖鎖溶液を添加して、冷蔵〜約 37°C で反応させ、トリス (ヒドロキシメチル)ァミノメタン Z炭酸緩衝液 (PH8. 5)を添加し、 冷蔵〜 37°Cで一晩撹拌し、分画分子量 300, 000で限外濾過し、遊離の該糖鎖と 該トリス (ヒドロキシメチル)ァミノメタンを除去する工程;および (D3) In the step (D2), the aminated sugar chain solution is added to the solution from which the free 3,3,4-dithiobis (sulfosuccinimidyl propionate) has been removed, and the mixture is refrigerated to about 37 ° C. React with C, add tris (hydroxymethyl) aminomethane Z carbonate buffer (PH8.5), stir overnight at refrigerated ~ 37 ° C, ultrafilter with molecular weight cut off 300,000, Sugar chain and Removing the tris (hydroxymethyl) aminomethane; and
(D4) (D3)工程において、遊離の該糖鎖と該トリス (ヒドロキシメチル)ァミノメタンを 除去した溶液の緩衝液を、 HEPES緩衝液 (pH7. 2)に交換する工程を包含する、 請求項 65に記載の製造方法。  (D4) The step (D3) includes a step of exchanging the buffer solution of the solution from which the free sugar chain and the tris (hydroxymethyl) aminomethane are removed with a HEPES buffer solution (pH 7.2). The manufacturing method as described in.
前記 A)工程が、以下: Step A) includes the following:
(A1)ジパルミトイルホスファチジルコリン、コレステロール、ガンダリオシド、ジセチ ルホスフェート、ジパルミトイルホスファチジルエタノールァミンおよびコール酸ナトリウ ムを、 35: 40: 15: 5: 5: 167のモル比で混合させ、メタノール 'クロ口ホルム(1: 1)溶 液に懸濁させる工程;  (A1) Dipalmitoyl phosphatidylcholine, cholesterol, gandarioside, dicetyl phosphate, dipalmitoyl phosphatidylethanolamine and sodium cholate are mixed at a molar ratio of 35: 40: 15: 5: 5: 167 Suspending in form (1: 1) solution;
(A2)該クロロホルム'メタノール溶液を蒸発させ、減圧乾燥させ、 N—トリス (ヒドロキ シメチル) 3—ァミノプロパンスルホン酸緩衝液 (pH8. 4)に再懸濁させて再懸濁液 を生成する工程;  (A2) The chloroform'methanol solution is evaporated, dried under reduced pressure, and resuspended in N-tris (hydroxymethyl) 3-aminopropanesulfonate buffer (pH 8.4) to form a resuspension. Process;
(A3)該再懸濁液を 30〜40°Cで攪拌させ、窒素置換し、超音波処理する工程;お よび  (A3) stirring the resuspension at 30-40 ° C, purging with nitrogen, and sonicating; and
(A4) (A3)工程において超音波処理した溶液に、該蛍光色素を含む蛍光色素溶 液を混合し、混合した溶液を分画分子量 10, 000で限外濾過し、該蛍光色素を内包 するリボソームを調製する工程であって、該蛍光色素溶液は、ヒト血清アルブミン ZN —トリス(ヒドロキシメチル)—3—ァミノプロパンスルホン酸緩衝液 (pH8. 4)溶液に蛍 光色素/ N—トリス(ヒドロキシメチル)— 3—ァミノプロパンスルホン酸緩衝液 (pH8. 4)溶液を混合して、 37°Cで撹拌し、分画分子量 10, 000で限外濾過し、遊離の該 蛍光色素を除去する工程によって調製される工程を包含し、  (A4) The fluorescent dye solution containing the fluorescent dye is mixed with the solution sonicated in step (A3), and the mixed solution is ultrafiltered with a molecular weight cut off of 10,000 to enclose the fluorescent dye. In the step of preparing ribosome, the fluorescent dye solution is added to human serum albumin ZN—Tris (hydroxymethyl) -3-aminopropanesulfonic acid buffer (pH 8.4) solution with fluorescent dye / N-Tris ( Hydroxymethyl) -3-aminopropanesulfonic acid buffer (pH 8.4) solution was mixed, stirred at 37 ° C, and ultrafiltered with a molecular weight cut off of 10,000 to remove the free fluorescent dye. Comprising a step prepared by the step of
前記 B)工程が、以下: Step B) includes the following:
(B1 ' )該蛍光色素を内包した力または結合したリボソームを含む溶液を、分画分子 量 100, 000、 2000 X g 60分間の条件で 2回、遠'、分離に力、けることにより限外據 過し、該溶液中に含まれる緩衝液を炭酸緩衝液 (pH8. 5)に交換する工程;  (B1 ′) The solution containing the fluorescent dye or the solution containing the bound ribosome is limited by separating and separating the solution twice under conditions of a molecular weight cutoff of 100,000, 2000 × g for 60 minutes. A step of filtering and replacing the buffer contained in the solution with carbonate buffer (pH 8.5);
(B2' )該 (B1 ' )工程にぉ ヽて該緩衝液が該炭酸緩衝液に変換された溶液にビス ( スルホスクシンィミジル)スべレートを添カ卩して、冷蔵〜約 37°Cで攪拌し、分画分子量 100, 000、 2000 X g 60分間の条件で 2回、遠'、分離に力、けることにより限外據過 し、遊離の該ビス (スルホスクシンィミジル)スべレートを除去する工程; (B2 ′) Addition of bis (sulfosuccinimidyl) suberate to the solution in which the buffer solution is converted to the carbonate buffer solution in the step (B1 ′) Stir at 37 ° C, ultrafiltration by breaking away twice, separating molecular weight 100,000, 2000 x g for 60 min. And removing the free bis (sulfosuccinimidyl) suberate;
(B3,)該(B2,)工程において、該遊離の該ビス (スルホスクシンィミジル)スべレート を除去した溶液に、 330mM トリス(ヒドロキシメチル)ァミノメタン/炭酸緩衝液 (pH 8. 5)溶液を添加して、冷蔵〜約 37°Cで攪拌し、さらに冷蔵〜室温で一晩撹拌し、 分画分子量 100, 000、 2000 X g 60分間の条件で 2回、遠心分離にかけることに より限外濾過し、遊離のトリス (ヒドロキシメチル)ァミノメタンを除去し、該炭酸緩衝液 を N トリス(ヒドロキシメチル)—3—ァミノプロパンスルホン酸緩衝液 (pH8. 4)に交 換して親水性ィ匕処理されたリボソームを含む溶液を生成させる工程を包含し、 前記 C)工程が、以下:  (B3,) In the step (B2,), in the solution from which the free bis (sulfosuccinimidyl) suberate was removed, 330 mM tris (hydroxymethyl) aminomethane / carbonate buffer (pH 8.5) was added. ) Add the solution, stir at refrigeration to approximately 37 ° C, stir at refrigeration to room temperature overnight, and centrifuge twice at a molecular weight cut off of 100,000, 2000 x g for 60 minutes. To remove free tris (hydroxymethyl) aminomethane, and replace the carbonate buffer with N-tris (hydroxymethyl) -3-aminopropanesulfonate buffer (pH 8.4). Including a step of producing a solution containing ribosome that has been subjected to hydrophilic treatment, and the step C) includes the following:
(C1 ' )前記蛍光色素を内包した力または結合したリボソームを含む溶液に、メタ過 ヨウ素酸ナトリウム ZN—トリス(ヒドロキシメチル)— 3—ァミノプロパンスルホン酸緩衝 液 (pH8. 4)溶液を添加し、冷蔵〜室温で一晩撹拌して、リボソーム粒子表面を酸ィ匕 する工程;  (C1 ') Add a solution of sodium metaperiodate ZN-tris (hydroxymethyl) -3-aminopropanesulfonate buffer (pH 8.4) to the solution containing the force or bound ribosome containing the fluorescent dye. And acidifying the surface of the ribosome particles by stirring overnight at refrigerated to room temperature;
(C2' ) (C1 ' )工程において、粒子表面が酸ィ匕されたリボソームを含む溶液を、分 画分子量 100, 000、 2000 X g 60分間の条件で 2回、遠'、分離に力、けることにより 限外濾過し、遊離の該メタ過ヨウ素酸ナトリウムを除去し、該 N トリス (ヒドロキシメチ ル) 3—ァミノプロパンスルホン酸緩衝液を PBS緩衝液 (pH8. 0)に交換する工程; (C2 ′) In the (C1 ′) step, the solution containing the ribosome whose surface is oxidized is subjected to two separations under the conditions of a molecular weight cutoff of 100,000 and 2000 × g for 60 minutes. Removing the free sodium metaperiodate and replacing the N-tris (hydroxymethyl) 3-aminopropanesulfonate buffer solution with PBS buffer (pH 8.0). ;
(C3' ) (C2' )工程において、該緩衝液が該 PBS緩衝液に交換された溶液に、ヒト 血清アルブミン/ PBS緩衝液 (pH8. 0)を添加して冷蔵〜室温で反応させて反応溶 液を生成する工程; (C3 ′) In the step (C2 ′), human serum albumin / PBS buffer (pH 8.0) was added to the solution in which the buffer was replaced with the PBS buffer, and the reaction was performed at refrigeration to room temperature. Producing a solution;
(C4,)さらに、該反応溶液に、シァノホウ素酸ナトリウム ZPBS緩衝液 (pH8. 0)を 添カロして、分画分子量 100, 000、 2000 X g 60分 f¾の条件で 2回、遠 、分離に力 けることにより限外濾過し、遊離のシァノホウ素酸ナトリウムおよび該ヒト血清アルブミ ンを除去し、該溶液の緩衝液を炭酸緩衝液 (pH8. 5)に交換する工程を包含し、 前記 D)工程が、以下:  (C4) Further, sodium cyanoborate ZPBS buffer (pH 8.0) was added to the reaction solution, and the mixture was separated twice under the conditions of a molecular weight cutoff of 100,000, 2000 × g for 60 minutes f¾, Including ultrafiltration by forcing separation, removing free sodium cyanoborate and human serum albumin, and replacing the buffer of the solution with carbonate buffer (pH 8.5), D) The process is as follows:
(D1)該糖鎖を精製水に溶解して、炭酸水素アンモ -ゥム飽和下で、室温〜約 37 °Cで反応させて、アミノィ匕糖鎖溶液を調製する工程;  (D1) a step of dissolving the sugar chain in purified water and reacting at room temperature to about 37 ° C under ammonium hydrogen carbonate saturation to prepare an amino sugar chain solution;
(D2)該蛍光色素を内包したかまたは結合したリボソームを含む溶液に、 3, 3'—ジ チォビス (スルホスクシンィミジルプロピオネート)を添カ卩して、冷蔵〜約 37°Cで攪拌 し、分画分子量 300, 000で限外濾過し、遊離の該 3, 3,—ジチオピス(スルホスクシ ンィミジルプロピオネート)を除去する工程;および (D2) A solution containing ribosome encapsulating or binding the fluorescent dye, Add thiobis (sulfosuccinimidyl propionate), stir at refrigeration to about 37 ° C, ultrafilter with a molecular weight cut off of 300,000, and release the 3, 3, -dithiopis Removing (sulfosuccinimidyl propionate); and
(D3) (D2)工程において、該遊離の該 3, 3,一ジチォビス(スルホスクシンィミジル プロピオネート)を除去した溶液に、該ァミノ化糖鎖溶液を添加して、冷蔵〜約 37°C で反応させ、トリス (ヒドロキシメチル)ァミノメタン Z炭酸緩衝液 (PH8. 5)を添加し、 冷蔵〜 37°Cで一晩撹拌し、分画分子量 300, 000で限外濾過し、遊離の該糖鎖と 該トリス (ヒドロキシメチル)ァミノメタンを除去する工程;および  (D3) In the step (D2), the aminated sugar chain solution is added to the solution from which the free 3,3,4-dithiobis (sulfosuccinimidyl propionate) has been removed, and the mixture is refrigerated to about 37 ° C. React with C, add tris (hydroxymethyl) aminomethane Z carbonate buffer (PH8.5), stir overnight at refrigerated ~ 37 ° C, ultrafilter with molecular weight cut off 300,000, Removing sugar chains and the tris (hydroxymethyl) aminomethane; and
(D4) (D3)工程において、遊離の該糖鎖と該トリス (ヒドロキシメチル)ァミノメタンを 除去した溶液の緩衝液を、 HEPES緩衝液 (pH7. 2)に交換する工程を包含する、 請求項 65に記載の製造方法。  (D4) The step (D3) includes a step of exchanging the buffer solution of the solution from which the free sugar chain and the tris (hydroxymethyl) aminomethane are removed with a HEPES buffer solution (pH 7.2). The manufacturing method as described in.
前記 A)工程が、以下: Step A) includes the following:
(A1)ジパルミトイルホスファチジルコリン、コレステロール、ガンダリオシド、ジセチ ルホスフェート、ジパルミトイルホスファチジルエタノールァミンおよびコール酸ナトリウ ムを、 35: 40: 15: 5: 5: 167のモル比で混合させ、メタノール 'クロ口ホルム(1: 1)溶 液に懸濁させる工程;  (A1) Dipalmitoyl phosphatidylcholine, cholesterol, gandarioside, dicetyl phosphate, dipalmitoyl phosphatidylethanolamine and sodium cholate are mixed at a molar ratio of 35: 40: 15: 5: 5: 167 Suspending in form (1: 1) solution;
(A2)該クロロホルム'メタノール溶液を蒸発させ、減圧乾燥させ、 N—トリス (ヒドロキ シメチル) 3—ァミノプロパンスルホン酸緩衝液 (pH8. 4)に再懸濁させて再懸濁液 を生成する工程;  (A2) The chloroform'methanol solution is evaporated, dried under reduced pressure, and resuspended in N-tris (hydroxymethyl) 3-aminopropanesulfonate buffer (pH 8.4) to form a resuspension. Process;
(A3)該再懸濁液を 30〜40°Cで攪拌させ、窒素置換し、超音波処理する工程;お よび  (A3) stirring the resuspension at 30-40 ° C, purging with nitrogen, and sonicating; and
(A4) (A3)工程において超音波処理した溶液に、該蛍光色素を含む蛍光色素溶 液を混合し、混合した溶液を分画分子量 10, 000で限外濾過し、該蛍光色素を内包 するリボソームを調製する工程であって、該蛍光色素溶液は、ヒト血清アルブミン ZN —トリス(ヒドロキシメチル)—3—ァミノプロパンスルホン酸緩衝液 (pH8. 4)溶液に蛍 光色素/ N—トリス(ヒドロキシメチル)— 3—ァミノプロパンスルホン酸緩衝液 (pH8. 4)溶液を混合して、 37°Cで撹拌し、分画分子量 10, 000で限外濾過し、遊離の該 蛍光色素を除去する工程によって調製される工程を包含し、 前記 B)工程が、以下: (A4) The fluorescent dye solution containing the fluorescent dye is mixed with the solution sonicated in step (A3), and the mixed solution is ultrafiltered with a molecular weight cut off of 10,000 to enclose the fluorescent dye. In the step of preparing ribosome, the fluorescent dye solution is added to human serum albumin ZN—Tris (hydroxymethyl) -3-aminopropanesulfonic acid buffer (pH 8.4) solution with fluorescent dye / N-Tris ( Hydroxymethyl) -3-aminopropanesulfonic acid buffer (pH 8.4) solution was mixed, stirred at 37 ° C, and ultrafiltered with a molecular weight cut off of 10,000 to remove the free fluorescent dye. Comprising a step prepared by the step of Step B) includes the following:
(Bl ' )該蛍光色素を内包した力または結合したリボソームを含む溶液を、分画分子 量 100, 000、 2000 X g 60分間の条件で 2回、遠'、分離に力、けることにより限外據 過し、該溶液中に含まれる緩衝液を炭酸緩衝液 (pH8. 5)に交換する工程;  (Bl ′) The solution containing the fluorescent dye or the solution containing the bound ribosome is limited by separating and separating the solution twice under conditions of a molecular weight cut off of 100,000, 2000 × g for 60 minutes. A step of filtering and replacing the buffer contained in the solution with carbonate buffer (pH 8.5);
(B2' )該 (B1 ' )工程にぉ ヽて該緩衝液が該炭酸緩衝液に変換された溶液にビス ( スルホスクシンィミジル)スべレートを添カ卩して、冷蔵〜約 37°Cで攪拌し、分画分子量 100, 000、 2000 X g 60分間の条件で 2回、遠'、分離に力、けることにより限外據過 し、遊離の該ビス (スルホスクシンィミジル)スべレートを除去する工程;  (B2 ′) Addition of bis (sulfosuccinimidyl) suberate to the solution in which the buffer solution is converted to the carbonate buffer solution in the step (B1 ′) After stirring at 37 ° C, the mixture was subjected to ultrafiltration by detaching it twice under conditions of a molecular weight cut off of 100,000, 2000 xg for 60 minutes, and the free bis (sulfosuccinic acid). A step of removing (midyl) suberate;
(B3,)該(B2,)工程において、該遊離の該ビス (スルホスクシンィミジル)スべレート を除去した溶液に、 330mM トリス(ヒドロキシメチル)ァミノメタン/炭酸緩衝液 (pH 8. 5)溶液を添加して、冷蔵〜約 37°Cで攪拌し、さらに冷蔵〜室温で一晩撹拌し、 分画分子量 100, 000、 2000 X g 60分間の条件で 2回、遠心分離にかけることに より限外濾過し、遊離のトリス (ヒドロキシメチル)ァミノメタンを除去し、該炭酸緩衝液 を N トリス(ヒドロキシメチル)—3—ァミノプロパンスルホン酸緩衝液 (pH8. 4)に交 換して親水性ィ匕処理されたリボソームを含む溶液を生成させる工程を包含し、 前記 C)工程が、以下:  (B3,) In the step (B2,), in the solution from which the free bis (sulfosuccinimidyl) suberate was removed, 330 mM tris (hydroxymethyl) aminomethane / carbonate buffer (pH 8.5) was added. ) Add the solution, stir at refrigeration to approximately 37 ° C, stir at refrigeration to room temperature overnight, and centrifuge twice at a molecular weight cut off of 100,000, 2000 x g for 60 minutes. To remove free tris (hydroxymethyl) aminomethane, and replace the carbonate buffer with N-tris (hydroxymethyl) -3-aminopropanesulfonate buffer (pH 8.4). Including a step of producing a solution containing ribosomes having been subjected to hydrophilic treatment, wherein the step C) includes the following:
(C1 ' )前記蛍光色素を内包した力または結合したリボソームを含む溶液に、メタ過 ヨウ素酸ナトリウム ZN—トリス(ヒドロキシメチル)— 3—ァミノプロパンスルホン酸緩衝 液 (pH8. 4)溶液を添加し、冷蔵〜室温で一晩撹拌して、リボソーム粒子表面を酸ィ匕 する工程;  (C1 ') Add a solution of sodium metaperiodate ZN-tris (hydroxymethyl) -3-aminopropanesulfonate buffer (pH 8.4) to the solution containing the force or bound ribosome containing the fluorescent dye. And acidifying the surface of the ribosome particles by stirring overnight at refrigerated to room temperature;
(C2' ) (C1 ' )工程において、粒子表面が酸ィ匕されたリボソームを含む溶液を、分 画分子量 100, 000、 2000 X g 60分間の条件で 2回、遠'、分離に力、けることにより 限外濾過し、遊離の該メタ過ヨウ素酸ナトリウムを除去し、該 N トリス (ヒドロキシメチ ル) 3—ァミノプロパンスルホン酸緩衝液を PBS緩衝液 (pH8. 0)に交換する工程; (C2 ′) In the (C1 ′) step, the solution containing the ribosome whose surface is oxidized is subjected to two separations under the conditions of a molecular weight cutoff of 100,000 and 2000 × g for 60 minutes. Removing the free sodium metaperiodate and replacing the N-tris (hydroxymethyl) 3-aminopropanesulfonate buffer solution with PBS buffer (pH 8.0). ;
(C3' ) (C2' )工程において、該緩衝液が該 PBS緩衝液に交換された溶液に、ヒト 血清アルブミン/ PBS緩衝液 (pH8. 0)を添加して冷蔵〜室温で反応させて反応溶 液を生成する工程; (C3 ′) In the step (C2 ′), human serum albumin / PBS buffer (pH 8.0) was added to the solution in which the buffer was replaced with the PBS buffer, and the reaction was performed at refrigeration to room temperature. Producing a solution;
(C4' )さらに、該反応溶液を、冷蔵〜室温で攪拌し、分画分子量 100, 000、 200 O X g 60分間の条件で 2回、遠心分離にかけることにより限外濾過し、該ヒト血清ァ ルブミンを除去し、該溶液の緩衝液を炭酸緩衝液 (pH8. 5)に交換する工程を包含 し、 (C4 ′) Further, the reaction solution was stirred at refrigeration to room temperature, and the molecular weight cut off was 100,000, 200 OX g, including ultrafiltration by centrifuging twice for 60 minutes, removing the human serum albumin, and replacing the buffer of the solution with carbonate buffer (pH 8.5) And
前記 D)工程が、以下:  Step D) includes the following:
(D1)該糖鎖を精製水に溶解して、炭酸水素アンモ -ゥム飽和下で、室温〜約 37 °Cで反応させて、アミノィ匕糖鎖溶液を調製する工程;  (D1) a step of dissolving the sugar chain in purified water and reacting at room temperature to about 37 ° C under ammonium hydrogen carbonate saturation to prepare an amino sugar chain solution;
(D2)該蛍光色素を内包したかまたは結合したリボソームを含む溶液に、 3, 3'—ジ チォビス (スルホスクシンィミジルプロピオネート)を添カ卩して、冷蔵〜約 37°Cで攪拌 し、分画分子量 300, 000で限外濾過し、遊離の該 3, 3,—ジチオピス(スルホスクシ ンィミジルプロピオネート)を除去する工程;および  (D2) 3, 3′-dithiobis (sulfosuccinimidyl propionate) is added to a solution containing a ribosome containing or bound to the fluorescent dye, and refrigerated to about 37 ° C. And removing the free 3, 3, -dithiopis (sulfosuccinimidyl propionate) by ultrafiltration with a molecular weight cut off of 300,000; and
(D3) (D2)工程において、該遊離の該 3, 3,一ジチォビス(スルホスクシンィミジル プロピオネート)を除去した溶液に、該ァミノ化糖鎖溶液を添加して、冷蔵〜約 37°C で反応させ、トリス (ヒドロキシメチル)ァミノメタン Z炭酸緩衝液 (PH8. 5)を添加し、 冷蔵〜 37°Cで一晩撹拌し、分画分子量 300, 000で限外濾過し、遊離の該糖鎖と 該トリス (ヒドロキシメチル)ァミノメタンを除去する工程;および  (D3) In the step (D2), the aminated sugar chain solution is added to the solution from which the free 3,3,4-dithiobis (sulfosuccinimidyl propionate) has been removed, and the mixture is refrigerated to about 37 ° C. React with C, add tris (hydroxymethyl) aminomethane Z carbonate buffer (PH8.5), stir overnight at refrigerated ~ 37 ° C, ultrafilter with molecular weight cut off 300,000, Removing sugar chains and the tris (hydroxymethyl) aminomethane; and
(D4) (D3)工程において、遊離の該糖鎖と該トリス (ヒドロキシメチル)ァミノメタンを 除去した溶液の緩衝液を、 HEPES緩衝液 (pH7. 2)に交換する工程を包含する、 請求項 65に記載の製造方法。  (D4) The step (D3) includes a step of exchanging the buffer solution of the solution from which the free sugar chain and the tris (hydroxymethyl) aminomethane are removed with a HEPES buffer solution (pH 7.2). The manufacturing method as described in.
[70] 蛍光色素含有糖鎖修飾リボソームの製造方法であって、 [70] A method for producing a fluorescent dye-containing sugar chain-modified ribosome comprising:
A)リボソームを形成させる工程;  A) forming ribosomes;
B)該リボソームを親水性化処理する工程;  B) Hydrophilizing the ribosome;
C)該リボソームとリンカ一タンパク質を結合させる工程であって、該リンカ一タンパク 質が蛍光色素により標識されている工程、および  C) a step of binding the ribosome and a linker protein, wherein the linker protein is labeled with a fluorescent dye; and
D)該リボソームへ糖鎖を結合させる工程  D) Step of binding a sugar chain to the ribosome
を包含する、方法。  Including the method.
[71] 前記糖鎖修飾リボソームの糖鎖が、シァリルルイス X基であり、該シァリルルイス X基 力 0. 025mg糖鎖 Zmg脂質の修飾結合密度で含まれる、請求項 38に記載のィメ 一ジング剤。 [72] 炎症部位または癌組織をイメージングするための、請求項 71に記載のイメージング 剤。 [71] The imaging agent according to claim 38, wherein the sugar chain of the sugar chain-modified ribosome is a sialyl Lewis X group, and the sialyl Lewis X group has a modified bond density of 0.025 mg sugar chain Zmg lipid. . [72] The imaging agent according to claim 71, for imaging an inflamed site or cancer tissue.
[73] 前記炎症部位または癌組織が実質を含む、請求項 72に記載のイメージング剤。  73. The imaging agent according to claim 72, wherein the inflammatory site or cancer tissue contains a parenchyma.
[74] 前記糖鎖修飾リボソームの糖鎖が、シァリルルイス X基であり、該シァリルルイス X基 力 0. 025mg糖鎖 Zmg脂質の修飾結合密度で含まれる、請求項 39に記載の組成 物。 74. The composition according to claim 39, wherein the sugar chain of the sugar chain-modified ribosome is a sialyl Lewis X group, and the sialyl Lewis X group has a modified binding density of 0.025 mg sugar chain Z mg lipid.
[75] 前記物質を、炎症部位または癌組織に送達するための、請求項 74に記載の組成物  [75] The composition of claim 74, for delivering the substance to an inflammatory site or cancer tissue
[76] 前記炎症部位または癌組織が実質を含む、請求項 75に記載の組成物。 [76] The composition of claim 75, wherein the site of inflammation or cancerous tissue comprises parenchyma.
[77] 分子イメージングまたはインビボイメージングにお 、て使用するためのキャリアであつ て、該キャリアは、請求項 1に記載の糖鎖修飾リボソームを含む、キャリア。  [77] A carrier for use in molecular imaging or in vivo imaging, the carrier comprising the sugar chain-modified ribosome according to claim 1.
[78] 前記糖鎖修飾リボソームの糖鎖が、シァリルルイス X基であり、該シァリルルイス X基 1S 0. 025mg糖鎖 Zmg脂質の修飾結合密度で含まれ、前記キャリアは炎症部位ま たは癌組織に標識物質を送達するための、請求項 77に記載のキャリア。  [78] The sugar chain of the sugar chain-modified ribosome is a sialyl Lewis X group, and the sialyl Lewis X group is contained at a modified binding density of 1S 0.025 mg sugar chain Zmg lipid, and the carrier is present in an inflamed site or cancer tissue. 78. A carrier according to claim 77 for delivering a labeling substance.
[79] 前記炎症部位または癌組織が実質を含む、請求項 77に記載のキャリア。  [79] The carrier of claim 77, wherein the inflammatory site or cancer tissue comprises a parenchyma.
[80] 前記標識物質が蛍光性である、請求項 79に記載のキャリア。  80. The carrier according to claim 79, wherein the labeling substance is fluorescent.
[81] 目的の部位を分子イメージングまたはインビボイメージングするためのシステムであつ て、該システムは:  [81] A system for molecular or in vivo imaging of a site of interest comprising:
A)該目的の部位に特異的な糖鎖修飾リボソーム;  A) a sugar chain-modified ribosome specific to the target site;
B)標識;および  B) sign; and
C)該標識の有無を調べる手段;  C) means for examining the presence or absence of the label;
を備え、ここで、  Where, where
該標識が目的の部位に集積するのに十分な時間たつた後、該生体における該標 識の有無を調べ、該標識により該生体の機能または構造を画像化することを特徴と する、  After a sufficient time for the label to accumulate at the target site, the presence or absence of the label in the living body is examined, and the function or structure of the living body is imaged by the label.
システム。  system.
[82] 前記標識が蛍光物質である、請求項 81に記載のシステム。  82. The system of claim 81, wherein the label is a fluorescent material.
[83] 前記糖鎖修飾リボソームの糖鎖が、シァリルルイス X基であり、該シァリルルイス X基 1S 0. 025mg糖鎖 Zmg脂質の修飾結合密度で含まれる、請求項 82に記載のシス テム。 [83] The sugar chain of the sugar chain-modified ribosome is a sialyl Lewis X group, and the sialyl Lewis X group 85. The system of claim 82, comprising 1S 0.025 mg sugar chain Zmg lipid modified binding density.
[84] 炎症部位または癌組織をイメージングするための、請求項 81に記載のシステム。  [84] The system of claim 81, for imaging an inflamed site or cancerous tissue.
[85] 前記炎症部位または癌組織が実質を含む、請求項 84に記載のシステム。 [85] The system of claim 84, wherein the site of inflammation or cancerous tissue comprises parenchyma.
[86] 前記標識の有無を調べる手段が、走査型顕微鏡を含む、請求項 81に記載のシステ ム。 [86] The system of claim 81, wherein the means for examining the presence or absence of the label comprises a scanning microscope.
[87] 前記標識の有無を調べる手段が、さらにスティック対物レンズを備える、請求項 86〖こ 記載のシステム。  [87] The system of claim 86, wherein the means for checking the presence or absence of a label further comprises a stick objective lens.
[88] 前記標識の有無を調べる手段が、蛍光を検出する手段である、請求項 81に記載の システム。  [88] The system according to [81], wherein the means for examining the presence or absence of the label is a means for detecting fluorescence.
[89] 請求項 53に記載の蛍光色素含有糖鎖修飾リボソームの製造方法であって、以下: a)リンカ一タンパク質が結合した蛍光を内包したリボソームを提供する工程; b)該リボソームを親水性化処理する工程;  [89] The method for producing a fluorescent dye-containing sugar chain-modified ribosome according to claim 53, comprising the steps of: a) providing a ribosome encapsulating fluorescence bound by a linker protein; b) making the ribosome hydrophilic The step of chemical conversion treatment;
c) 3, 3,一ジチォビス(スルホスクシ-ミジルプロピオネート)を該リボソームに結合さ せる工程;および  c) binding 3, 3, 1 dithiobis (sulfosuccinimidyl propionate) to the ribosome; and
d)該リボソームにおける該リンカ一タンパク質へ糖鎖を結合させて、該蛍光色素含 有糖鎖修飾リボソームを生じさせる工程  d) A step of binding a sugar chain to the linker protein in the ribosome to produce the fluorescent dye-containing sugar chain-modified ribosome
を包含し、  Including
該 b)〜c)工程は任意の順で実施される、製造方法。  The production method, wherein the steps b) to c) are performed in an arbitrary order.
[90] 請求項 53に記載の蛍光色素含有糖鎖修飾リボソームの製造方法であって、以下: a)リンカ一タンパク質が結合した蛍光を内包したリボソームを提供する工程; b)該リボソームを親水性化処理する工程; [90] The method for producing a fluorescent dye-containing sugar chain-modified ribosome according to claim 53, comprising the following steps: a) providing a ribosome encapsulating fluorescence to which a linker protein is bound; b) making the ribosome hydrophilic Process of chemical conversion;
c) 3, 3,一ジチォビス(スルホスクシ-ミジルプロピオネート)を該リボソームに結合さ せる工程;および  c) binding 3, 3, 1 dithiobis (sulfosuccinimidyl propionate) to the ribosome; and
d)該リボソームにおける該リンカ一タンパク質へ糖鎖を結合させて、該蛍光色素含 有糖鎖修飾リボソームを生じさせる工程  d) A step of binding a sugar chain to the linker protein in the ribosome to produce the fluorescent dye-containing sugar chain-modified ribosome
e)該蛍光色素含有糖鎖修飾リボソームを親水性化する工程;および  e) hydrophilizing the fluorescent dye-containing sugar chain-modified ribosome; and
f)該親水性ィ匕した該蛍光色素含有糖鎖修飾リボソームを含む溶液をフィルター濾 過する工程 f) Filter the solution containing the hydrophilic dye-containing sugar chain modified ribosome Process
を包含し、 Including
該 b)〜c)工程は任意の順で実施される、製造方法。 The production method, wherein the steps b) to c) are performed in an arbitrary order.
前記 a)工程の次に順に前記 c)工程および前記 b)工程を行!ヽ、  Step c) and step b) are performed in order after step a).
該 c)工程が、以下: The c) step is as follows:
(cl) 3, 3, 一ジチォビス(スルホスクシ-ミジルプロピオネート)を含む粉体 Aに、 炭酸緩衝液を含む溶液 Aを添加して溶解し、混合溶液を調製する工程;および (cl) adding powder A containing carbonate buffer solution to powder A containing 3, 3, 1 dithiobis (sulfosuccinimidyl propionate) to prepare a mixed solution; and
(c2)リボソームを含む溶液に、該混合溶液を添加し、室温で、 16〜20時間攪拌 し、分画分子量 30, 000で限外濾過し、脱塩して、 3, 3,—ジチオピス(スルホスクシ 二ミジルプロピオネート)の結合した蛍光内包型リボソームを含む溶液を調製するェ 程を包含し、 (c2) The mixed solution is added to a solution containing ribosome, stirred at room temperature for 16 to 20 hours, ultrafiltered with a molecular weight cut off of 30,000, desalted, and 3, 3, -dithiopis ( Including a step of preparing a solution containing a fluorescently encapsulated ribosome bound with sulfosuccinimidylpropionate)
該 b)工程が、以下: The step b) includes the following:
(bl)該蛍光内包型リボソームを含む溶液を濃縮し、濃縮された該蛍光内包型リ ポソームを含む溶液に、該溶液 Aを添加する工程;および  (bl) concentrating the solution containing the fluorescently encapsulated ribosome and adding the solution A to the concentrated solution containing the fluorescently encapsulated liposome;
(b2)該溶液 Aが添加された該蛍光内包型リボソームを含む混合溶液を、分画分 子量 300, 000で遠心分離にかけて限外濾過し、濃縮し、該濃縮させた混合溶液に 該溶液 Aを添加して、親水性化された該蛍光内包型リボソームを調製する工程を包 含し、  (b2) The mixed solution containing the fluorescently encapsulated ribosome to which the solution A is added is centrifuged at a fractional molecular weight of 300,000, ultrafiltered and concentrated, and the concentrated mixed solution is mixed with the solution. A step of adding A to prepare the fluorescently encapsulated ribosome that has been made hydrophilic;
前記 d)工程が、以下: The step d) includes the following:
(dl)所望の糖鎖を精製水に完全に溶解し、 1〜: LOmM濃度の糖鎖溶液を調製 する工程;  (dl) a step of completely dissolving a desired sugar chain in purified water, and 1 to: preparing a sugar chain solution having a LOmM concentration;
(d2)必要に応じて、該糖鎖水溶液に、炭酸水素アンモ-ゥム (pH 7〜14)を約 0. 2〜1. Og/mL濃度で添加し、 20〜40°Cで 3〜7日間攪拌させて、 2〜8°C下で 20〜60分間インキュベートし、濾過フィルターで濾過して、アミノ化糖鎖溶液を調製 する工程;  (d2) Ammonia bicarbonate (pH 7-14) is added to the aqueous sugar chain solution at a concentration of about 0.2 to 1. Og / mL as necessary, and 3 to 20 to 40 ° C. Stirring for 7 days, incubating at 2-8 ° C for 20-60 minutes, and filtering through a filter to prepare an aminated sugar chain solution;
(d3)該親水性化された蛍光内包型リボソームを含む溶液に、該ァミノ化糖鎖溶 液を添加して、混合した後、室温下で 2〜6時間反応させて反応溶液工程;および (d4)該 (d3)工程によって得られた該反応溶液に、トリス緩衝液を含む溶液 Bを添 加し、室温下で 2〜6時間攪拌し、さらに、冷蔵下で 16〜48時間攪拌し、分画分子 量 30, 000で限外濾過し、脱塩させて、前記蛍光色素含有糖鎖修飾リボソームを生 じさせる工程を包含し、 (d3) The aminated sugar chain solution is added to the solution containing the hydrophilized fluorescently encapsulated ribosome, mixed, and then reacted at room temperature for 2 to 6 hours; a reaction solution step; and ( d4) Solution B containing Tris buffer is added to the reaction solution obtained in step (d3). The mixture is stirred for 2 to 6 hours at room temperature, further stirred for 16 to 48 hours under refrigeration, ultrafiltered with a molecular weight cut off of 30,000, desalted, and modified with the above-mentioned fluorescent dye-containing sugar chain Including the step of producing ribosomes,
前記 e)工程が、  Step e)
(el)該蛍光色素含有糖鎖修飾リボソームを含む溶液を濃縮し、 2- [4- (2 ヒ ドロキシェチル)— 1—ピぺラジュル]エタンスルホン酸 (HEPES)緩衝液を含む溶液 Cを添加し、分画分子量 30, 000で限外濾過し、濃縮し、該濃縮させた蛍光色素含 有糖鎖修飾リボソームを含む溶液に該 C溶液を添加して、該糖鎖が結合した蛍光内 包型リボソームを親水性化する工程を包含する、  (el) Concentrate the solution containing the fluorescent dye-containing sugar chain-modified ribosome, and add solution C containing 2- [4- (2 hydroxyxetyl) -1-piperajuryl] ethanesulfonic acid (HEPES) buffer. , Ultrafiltered with a molecular weight cut off of 30,000, concentrated, added the solution C to the concentrated solution containing the fluorescent dye-containing sugar chain-modified ribosome, and the fluorescence-encapsulated type to which the sugar chain was bound Including the step of hydrophilizing the ribosome,
請求項 90に記載の製造方法。  The manufacturing method according to claim 90.
[92] 蛍光色素含有糖鎖修飾リボソームを製造するためのキットであって、 [92] A kit for producing a fluorescent dye-containing sugar chain-modified ribosome,
i)蛍光色素をリボソームに内包させるか、または結合させる手段;  i) a means for encapsulating or binding the fluorescent dye in the ribosome;
ii)該リボソームの親水性化剤;  ii) a hydrophilizing agent for the ribosome;
iii)該リボソームのリンカ一タンパク質、および  iii) the ribosomal linker protein, and
iv)糖鎖;  iv) sugar chains;
V)該糖鎖を該リボソームに結合させる手段  V) Means for binding the sugar chain to the ribosome
を備える、キット。  A kit comprising:
[93] 蛍光色素含有糖鎖修飾リボソームを製造するためのキットであって、以下:  [93] A kit for producing a fluorescent dye-containing sugar chain-modified ribosome comprising the following:
A)リンカ一タンパク質を結合した蛍光を内包したリボソームを含む溶液; A) a solution containing a ribosome encapsulating fluorescence bound to a linker protein;
B) 3, 3,一ジチォビス(スルホスクシ-ミジルプロピオネート)を含む粉体 AとB) Powder A containing 3, 3, 1 dithiobis (sulfosuccimidyl propionate) and
C)炭酸緩衝液を含む溶液 Aと C) Solution A containing carbonate buffer and
D)トリス緩衝液を含む溶液 Bと  D) solution B containing Tris buffer and
E) 2— [4一(2 ヒドロキシェチル) 1—ピペラジ -ル]エタンスルホン酸(HEPES )緩衝液を含む溶液 Cとを備える、キット。  E) A kit comprising 2- [4 (2-hydroxyethyl) 1-piperazyl] ethanesulfonic acid (HEPES) buffer solution C.
PCT/JP2007/052289 2006-02-08 2007-02-08 Sugar chain-modified liposome suitable for molecular imaging and utilization and production of the same WO2007091661A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007557899A JPWO2007091661A1 (en) 2006-02-08 2007-02-08 Glycosylated liposomes suitable for molecular imaging and their use and production

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006031765 2006-02-08
JP2006-031765 2006-02-08
JP2006226319 2006-08-23
JP2006-226319 2006-08-23

Publications (1)

Publication Number Publication Date
WO2007091661A1 true WO2007091661A1 (en) 2007-08-16

Family

ID=38345255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/052289 WO2007091661A1 (en) 2006-02-08 2007-02-08 Sugar chain-modified liposome suitable for molecular imaging and utilization and production of the same

Country Status (2)

Country Link
JP (1) JPWO2007091661A1 (en)
WO (1) WO2007091661A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009022756A1 (en) * 2007-08-13 2009-02-19 Katayama Chemical Industries Co., Ltd. Diagnosis and treatment of ischemic disease
WO2009025168A1 (en) * 2007-08-20 2009-02-26 Konica Minolta Holdings, Inc. Sugar-modified liposome containing compound for contrast agent and contrast agent
WO2009104649A1 (en) * 2008-02-22 2009-08-27 片山化学工業株式会社 Synthetic glycolipid-containing liposomes
WO2009133867A1 (en) * 2008-05-01 2009-11-05 片山化学工業株式会社 Liposome containing metal colloid
WO2009148169A1 (en) * 2008-06-06 2009-12-10 片山化学工業株式会社 Tumor treatment technique using liposome encapsulating ammine-platinum complex at high concentration
EP2228074A1 (en) * 2009-02-19 2010-09-15 Korea Institute of Science and Technology A tumor targeting protein conjugate and a method for preparing the same
JP2010215572A (en) * 2009-03-17 2010-09-30 Japan Health Science Foundation Pulpitis diagnostic marker and pulpitis diagnostic system
WO2011128931A1 (en) * 2010-04-12 2011-10-20 財団法人ヒューマンサイエンス振興財団 Pulpitis diagnostic marker and pulpitis diagnostic system
WO2011152046A1 (en) * 2010-05-31 2011-12-08 国立大学法人千葉大学 Fluorescent probe for imaging lymph nodes
WO2012066896A1 (en) 2010-11-19 2012-05-24 Kato Junji Combined pharmaceutical preparation

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000009502A1 (en) * 1998-08-12 2000-02-24 Daiichi Pure Chemicals Co., Ltd. Fluorescent labelling reagents
JP2003226638A (en) * 2002-01-30 2003-08-12 National Institute Of Advanced Industrial & Technology Target-tropic liposome
JP2004138397A (en) * 2002-10-15 2004-05-13 Kyowa Hakko Kogyo Co Ltd Screening method for compound accumulated at specific part
WO2004065491A1 (en) * 2003-01-24 2004-08-05 Schering Ag Hydrophilic, thiol-reactive cyanine dyes and conjugates thereof with biomolecules for fluorescence diagnosis
WO2004087106A1 (en) * 2003-03-31 2004-10-14 Fujirebio Inc. Method of controlling release speed of subject to be transported from liposome
WO2005011633A1 (en) * 2003-08-01 2005-02-10 National Institute Of Advanced Industrial Science And Technology Remedy or diagnostic for inflammatory disease containing target-directing liposome
WO2005011632A1 (en) * 2003-08-01 2005-02-10 National Institute Of Advanced Industrial Science And Technology Target-directed and enteric absorption-controlled liposome having sugar chain and cancer remedy and diagnostic containing the same
WO2007018273A1 (en) * 2005-08-11 2007-02-15 National Institute Of Advanced Industrial Science And Technology Composition for delivering diagnostic agent containing sugar-modified liposome

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000009502A1 (en) * 1998-08-12 2000-02-24 Daiichi Pure Chemicals Co., Ltd. Fluorescent labelling reagents
JP2003226638A (en) * 2002-01-30 2003-08-12 National Institute Of Advanced Industrial & Technology Target-tropic liposome
JP2004138397A (en) * 2002-10-15 2004-05-13 Kyowa Hakko Kogyo Co Ltd Screening method for compound accumulated at specific part
WO2004065491A1 (en) * 2003-01-24 2004-08-05 Schering Ag Hydrophilic, thiol-reactive cyanine dyes and conjugates thereof with biomolecules for fluorescence diagnosis
WO2004087106A1 (en) * 2003-03-31 2004-10-14 Fujirebio Inc. Method of controlling release speed of subject to be transported from liposome
WO2005011633A1 (en) * 2003-08-01 2005-02-10 National Institute Of Advanced Industrial Science And Technology Remedy or diagnostic for inflammatory disease containing target-directing liposome
WO2005011632A1 (en) * 2003-08-01 2005-02-10 National Institute Of Advanced Industrial Science And Technology Target-directed and enteric absorption-controlled liposome having sugar chain and cancer remedy and diagnostic containing the same
WO2007018273A1 (en) * 2005-08-11 2007-02-15 National Institute Of Advanced Industrial Science And Technology Composition for delivering diagnostic agent containing sugar-modified liposome

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BIRCHLER M. ET AL.: "Infrared photodetection for the in vivo localisation of phage-derived antibodies directed against angiogenic markers", J. IMMUNOL. METHODS, vol. 231, no. 1-2, 1999, pages 239 - 248, XP003016797 *
BREMER C. ET AL.: "In vivo molecular target assessment of matrix metalloproteinase inhibition", NAT. MED., vol. 7, no. 6, 2001, pages 743 - 748, XP003016798 *
YAMAZAKI N. ET AL.: "Preparation and characterization of neoglycoprotein-liposome conjugates: A promising approach to developing drug delivery materials applying sugar chain ligands", TRENDS GLYCOSCI. GLYCOTECH., vol. 13, no. 71, 2001, pages 319 - 329, XP003016799 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009022756A1 (en) * 2007-08-13 2009-02-19 Katayama Chemical Industries Co., Ltd. Diagnosis and treatment of ischemic disease
JP5370153B2 (en) * 2007-08-20 2013-12-18 コニカミノルタ株式会社 Compound-containing sugar-modified liposome for contrast medium and contrast medium
WO2009025168A1 (en) * 2007-08-20 2009-02-26 Konica Minolta Holdings, Inc. Sugar-modified liposome containing compound for contrast agent and contrast agent
WO2009104649A1 (en) * 2008-02-22 2009-08-27 片山化学工業株式会社 Synthetic glycolipid-containing liposomes
JP5465542B2 (en) * 2008-02-22 2014-04-09 片山化学工業株式会社 Synthetic glycolipid-containing liposome
WO2009133867A1 (en) * 2008-05-01 2009-11-05 片山化学工業株式会社 Liposome containing metal colloid
WO2009148169A1 (en) * 2008-06-06 2009-12-10 片山化学工業株式会社 Tumor treatment technique using liposome encapsulating ammine-platinum complex at high concentration
JPWO2009148169A1 (en) * 2008-06-06 2011-11-04 片山化学工業株式会社 Tumor therapy using liposomes encapsulating ammine platinum complex at high concentration
EP2228074A1 (en) * 2009-02-19 2010-09-15 Korea Institute of Science and Technology A tumor targeting protein conjugate and a method for preparing the same
JP2010215572A (en) * 2009-03-17 2010-09-30 Japan Health Science Foundation Pulpitis diagnostic marker and pulpitis diagnostic system
WO2011128931A1 (en) * 2010-04-12 2011-10-20 財団法人ヒューマンサイエンス振興財団 Pulpitis diagnostic marker and pulpitis diagnostic system
WO2011152046A1 (en) * 2010-05-31 2011-12-08 国立大学法人千葉大学 Fluorescent probe for imaging lymph nodes
TWI499427B (en) * 2010-05-31 2015-09-11 Eisai R&D Man Co Ltd Fluorescent probes for imaging lymph nodes
US9302018B2 (en) 2010-05-31 2016-04-05 Eisai R&D Management Co., Ltd. Fluorescent probe for imaging lymph nodes
JP6057710B2 (en) * 2010-05-31 2017-01-11 エーザイ・アール・アンド・ディー・マネジメント株式会社 Fluorescent probe for lymph node imaging
US9957392B2 (en) 2010-05-31 2018-05-01 Eisai R&D Management Co., Ltd. Fluorescent probe for imaging lymph nodes
WO2012066896A1 (en) 2010-11-19 2012-05-24 Kato Junji Combined pharmaceutical preparation
US9757462B2 (en) 2010-11-19 2017-09-12 Sapporo Medical University Combined pharmaceutical preparation

Also Published As

Publication number Publication date
JPWO2007091661A1 (en) 2009-07-02

Similar Documents

Publication Publication Date Title
WO2007091661A1 (en) Sugar chain-modified liposome suitable for molecular imaging and utilization and production of the same
Fang et al. Cell membrane-derived nanomaterials for biomedical applications
Jain et al. A review of glycosylated carriers for drug delivery
JP5364381B2 (en) Liposome encapsulating ammine platinum complex at high concentration and method for producing the same
US10272160B2 (en) Nanostructures comprising cobalt porphyrin-phospholipid conjugates and polyhistidine-tags
WO2007018273A1 (en) Composition for delivering diagnostic agent containing sugar-modified liposome
AU2006229381B2 (en) Liposome composition for immune induction
Khan et al. Structural modification and strategies for the enhanced doxorubicin drug delivery
Moffett et al. Aberrant glycosylation patterns on cancer cells: Therapeutic opportunities for glycodendrimers/metallodendrimers oncology
JPWO2005011632A1 (en) Target-directed and intestinal absorption-controllable liposomes having sugar chains and cancer therapeutics and diagnostics containing the same
JPWO2007018275A1 (en) Delivery vehicle design based on rolling model
JP2011020923A (en) Diagnosis and treatment of arteriosclerosis
US20060193906A1 (en) Sugar-modified liposome and products comprising the liposome
US9018156B2 (en) Organic nanotube having hydrophobized inner surface, and encapsulated medicinal agent prepared using the nanotube
Qi et al. Exosomes separated based on the “STOP” criteria for tumor-targeted drug delivery
US20160038597A9 (en) Carrier that targets fucosylated molecule-producing cells
CN113307824B (en) Amphiphilic material and application thereof in preparation of liposome
WO2009148169A1 (en) Tumor treatment technique using liposome encapsulating ammine-platinum complex at high concentration
AU2003280761B2 (en) Liposome
US9757462B2 (en) Combined pharmaceutical preparation
WO2009133867A1 (en) Liposome containing metal colloid
Misra et al. Functionalized liposomes: A nanovesicular system
CN114306316B (en) Tumor targeting composite nano-drug and preparation method and application thereof
Kim et al. Nanoparticle platform comprising lipid-tailed pH-sensitive carbon dots with minimal drug loss
Bouffard et al. Why anticancer nanomedicine needs sugars?

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007557899

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07708273

Country of ref document: EP

Kind code of ref document: A1