WO2011128470A2 - Metodos de monitorizacion de aerogeneradores - Google Patents

Metodos de monitorizacion de aerogeneradores Download PDF

Info

Publication number
WO2011128470A2
WO2011128470A2 PCT/ES2011/000108 ES2011000108W WO2011128470A2 WO 2011128470 A2 WO2011128470 A2 WO 2011128470A2 ES 2011000108 W ES2011000108 W ES 2011000108W WO 2011128470 A2 WO2011128470 A2 WO 2011128470A2
Authority
WO
WIPO (PCT)
Prior art keywords
wind
speed
wind turbine
variable
function
Prior art date
Application number
PCT/ES2011/000108
Other languages
English (en)
French (fr)
Other versions
WO2011128470A3 (es
Inventor
Javier Teres Teres
Roberto Gutierrez Ardanaz
Millan Esteban Cornejo
Original Assignee
Gamesa Innovation & Technology, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gamesa Innovation & Technology, S.L. filed Critical Gamesa Innovation & Technology, S.L.
Priority to EP11768482.9A priority Critical patent/EP2559892B1/en
Priority to CN201180019180.2A priority patent/CN102859184B/zh
Priority to BR112012026350-1A priority patent/BR112012026350B1/pt
Priority to ES11768482T priority patent/ES2899983T3/es
Priority to US13/639,212 priority patent/US8677810B2/en
Priority to DK11768482.9T priority patent/DK2559892T3/da
Publication of WO2011128470A2 publication Critical patent/WO2011128470A2/es
Publication of WO2011128470A3 publication Critical patent/WO2011128470A3/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/02Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring forces exerted by the fluid on solid bodies, e.g. anemometer
    • G01P5/06Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring forces exerted by the fluid on solid bodies, e.g. anemometer using rotation of vanes
    • G01P5/07Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring forces exerted by the fluid on solid bodies, e.g. anemometer using rotation of vanes with electrical coupling to the indicating device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/83Testing, e.g. methods, components or tools therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/32Wind speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/335Output power or torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the invention relates to wind turbine monitoring methods and, more particularly, to wind speed transfer function monitoring methods.
  • Wind turbines are devices that convert mechanical energy into electrical energy.
  • a typical wind turbine includes a gondola mounted on a tower that houses a power train to transmit the rotation of a rotor to an electric generator and other components such as the orientation motors through which the wind turbine is rotated, various controllers and a brake.
  • the rotor supports several blades that extend radially to capture the kinetic energy of the wind and cause a rotational movement of the power train.
  • the rotor blades have an aerodynamic shape so that when the wind passes through the surface of the blade an ascending force is created that causes the rotation of an axis to which it is connected - directly or through a multiplication device - a Electric generator located inside the gondola.
  • the amount of energy produced by the wind turbines depends on the scanning surface of the blade rotor that receives the action of the wind and, consequently, the increase in the length of the blades normally implies an increase in the energy production of the wind turbine.
  • Wind speed is therefore an important control parameter for the operation of variable speed wind turbines.
  • the wind speed used by the wind turbine control system is the wind speed calculated by applying a Transfer Function (hereinafter TF) to the wind speed measured by an anemometer located in the wind turbine's gondola.
  • TF Transfer Function
  • TF is defined as the function that expresses the speed of the free wind current as a function of the wind speed measured by the wind sensor used by the wind turbine control system. This function is intended for the correction of the generator rotor effect and the distortion of flow around the wind turbine.
  • the TF depends on the characteristics of the wind turbine, the location of the wind sensor and the model, and the characteristics of the wind at the site of the wind turbine.
  • the free wind speed must be measured in front of the wind turbine rotor (using a bowl anemometer or a sonic anemometer installed on a weather mast, or a remote wind sensor, or other means, including a local calibration if it is necessary) and the wind speed measured by the wind turbine anemometer.
  • the correlation function obtained, after the corresponding analysis of the data and the rejection of the invalid data, is the one that must be applied to the data provided by the wind turbine anemometer to obtain real wind speed in front of the wind turbine rotor.
  • a known method of obtaining an appropriate TF for a wind turbine without measuring the free wind speed in front of the wind turbine is the anemometer calibration method described in US 2008/0307853 which comprises the steps of obtaining pairs of wind speed measurements and a wind turbine variable dependent on the wind speed, compare said pairs of measurements with wind speed pairs and the wind turbine variable dependent on the wind speed obtained from an expected curve of said wind turbine variable to determine a difference between the measured value of the wind speed and the expected value of the wind speed for a given variable of the wind turbine and adjust a adjust a calibration function of said anemometer based on said certain difference.
  • This invention is aimed at solving that problem using known control methods so that it can be implemented in wind turbines that are already installed.
  • a method of monitoring a variable speed wind turbine comprising control means for pitch regulation following a power vs. curve. generator speed as a function of the wind speed expressed by a TF applied to the wind speed measured by a wind sensor located in a location where the wind flow is distorted, comprising the following steps:
  • step b) Generate a warning message when the value of said parameter D is greater than a predetermined value.
  • said function of relation F 2 is obtained using average values of said variables V, P in periods of at least 10 minutes. This achieves a method that ensures that the data used to obtain said F2 relationship function is not influenced by temporal fluctuations.
  • said parameter D is obtained for the differences between said functions of relation Fi, F 2 in a predetermined range of values of one of said variables V, P.
  • a method is thus achieved only applicable at a selected range of one of said variables where better detection of these differences should be expected.
  • said variable V dependent on wind speed is the blade pitch angle and said variable P dependent on wind turbine performance is the speed of the generator.
  • the TF implemented in the control means is a pre-validated TF V. This achieves an appropriate method to detect problems other than the use of inappropriate TF in the wind turbine.
  • Figure 1 schematically shows the main components of a wind turbine.
  • Figure 2 shows a Power vs. curve. Generator speed known in the art that is used to control variable speed wind turbines.
  • Figure 3 shows a typical Power vs. curve. Wind speed.
  • Figure 4 shows an optimal relationship function Fi between the blade pitch angle and the speed of the generator in the wind turbine being monitored.
  • Figure 5 shows a function of relation F 2 between the blade pitch angle and the speed of the generator obtained in the wind turbine being monitored.
  • a conventional wind turbine 11 comprises a tower 13 supporting a gondola 21 that houses a generator 19 to convert the rotational energy of the rotor of the wind turbine into electrical energy.
  • the wind turbine rotor comprises a rotor bushing 15 and, normally, three blades 17.
  • the rotor bushing 15 is connected directly to the well or through a multiplier to the generator 19 of the wind turbine to transfer the torque generated by the rotor 15 to the generator 19 increasing the shaft speed in order to achieve an appropriate rotational speed of the generator rotor.
  • the energy produced by a modern wind turbine is normally controlled by means of a control system to regulate the pitch angle of the rotor blades and the generator torque.
  • the rotational speed of the rotor and the energy production of a wind turbine can then be controlled initially, that is, before a transfer of energy to an electrical distribution network through a converter.
  • this description we will refer to a common blade pitch angle for all rotor blades but the person skilled in the art will readily appreciate that this invention is also applicable to wind turbines with individual means for controlling the pitch angle of each rotor blade.
  • the basic objective of the operation methods of a variable speed wind turbine is to achieve an operation with aerodynamically ideal production as long as possible.
  • the kinetic energy associated with a wind current depends on the area swept by said current, its density and the wind speed cube and it is considered that wind turbines can extract up to 59% of said energy. Therefore, the capacity of each wind turbine to approximate said limit is represented by the so-called power coefficient Cp that is determined by its aerodynamic characteristics, particularly by the ratio ⁇ of its speed at the tip that is defined as the ratio between the speed Tangential of the tip of the blade and the speed of the incident wind. If this ratio can be maintained at the maximum Cp power coefficient of the wind turbine so that the rotor speed follows the wind speed, a very efficient wind turbine can be achieved.
  • variable speed wind turbines The control strategy generally followed in variable speed wind turbines is based on electrically adjusting the generator torque to achieve maximum production, which is carried out using a controller that receives signals indicating the speed of the generator and the power produced by the generator and that provides a torque reference signal to the converter to obtain the required power.
  • the wind turbine controller uses a curve that defines the desirable functional relationship between power and speed to achieve ideal production.
  • This curve comprises a first sub-nominal zone 23 in which the wind speed reaches the minimum level to begin wind turbine operation.
  • the second sub-nominal zone 25 corresponds to low wind speeds in which the generator speed is increased and the wind turbine operates with a optimal power coefficient Cp.
  • the third sub-nominal zone 27 corresponds to average wind speeds in which the generator speed n r i is kept constant while the power is increased to the nominal power.
  • the pitch angle of the blades is fixed and the speed of the generator is controlled through the torque.
  • the full load wind turbine operation takes place under the control of the pitch angle of the blades to avoid overloads.
  • the average power curve will be curve 31 of Figure 3 but if the TF does not provide a correct wind speed value, there will be energy losses compared to the ideal energy production.
  • the TF initially applied to a wind turbine is normally a TF obtained in a wind turbine position different from the wind turbine's working position.
  • the TF depends, among other variables, on the wind conditions (turbulence intensity, vertical wind component) and topographic characteristics of the wind turbine location. As these variables can vary from one position of the wind turbine to another position of the wind turbine even at a distance of a few meters between them, it may happen that the TF initially applied to a wind turbine is not the most appropriate for its location with the consequence that the performance of the generator will be below its optimum level.
  • the basic idea of this invention is to provide a TF monitoring method based on the relationship between a wind speed dependent variable V and a wind turbine performance dependent variable P.
  • V wind speed dependent variable
  • P wind turbine performance dependent variable
  • V variables are the following: wind speed, blade pitch angle or any other variable related to the wind speed measured by the wind sensor.
  • Appropriate P variables are the following: generator speed, energy produced, torque, rotor speed or any other variable related to wind turbine performance.
  • the blade pitch angle pair as variable V dependent on wind speed and generator speed as variable P dependent on generator performance is particularly suitable for detecting TF deviations.
  • the first step of a monitoring method according to a preferred embodiment of the present invention is therefore to provide an optimum ratio function Fi (ie a relationship with an appropriate TF) between the blade pitch angle and the speed of the generator, such as the Fi function illustrated in Figure 4.
  • Fi a ratio function between the blade pitch angle and the speed of the generator
  • This Fi function is obtained as the function between said variables resulting from a theoretical behavior of the wind turbine. As you can easily see the Fi function of Figure 4 and the power vs. curve. Generator speed 21 of Figure 3 shows different views of the theoretical behavior of the wind turbine.
  • the values of the blade pitch angle and the generator speed are measured continuously and the function of relation F 2 between them is obtained as the function F 2 of Figure 5 (illustrating a relationship with inappropriate TF).
  • the values of the blade pitch angle and the speed of the generator should be measured as frequently as possible, typically 1 Hz and average values are calculated, for example the average values of 10 minutes. These average values of the two variables blade pitch angle and generator speed are used to obtain the function F 2 .
  • the above-mentioned functions F- ⁇ and F 2 should be broadly understood to include, for example, sets of pairs of spade pitch and generator speed values and mathematical functions obtained by means of a regression analysis. of such data.
  • a parameter D indicative of the differences between said Fi, F 2 functions is continuously obtained using conventional mathematical tools and filtered data after eliminating non-significant values.
  • Said parameter D can be obtained as an average value for a predetermined period (for example an hour or a day) that is also useful for trend analysis.
  • Said parameter D can also be obtained for a predetermined range of values, for example in reference to Figures 4 and 5, only for pairs of values in which the generator speed is between G3-G5 where a clear difference between F 1 and F 2 when the wind turbine is using inappropriate TF. This difference can be seen graphically by comparing Figures 4 and 5.
  • the expected value for the blade pitch angle has a constant value P2 while its actual value, when the wind turbine uses an inappropriate TF, is greater than P3.
  • a warning message is generated when the value of said parameter D is greater than a predetermined value that must be set for each wind turbine model.
  • F 2 TF After the detection of a relevant difference between these Fi functions, F 2 TF must be corrected to maximize wind turbine production according to any of the known methods mentioned in the Background.
  • this method can be implemented in the SCADA of the wind turbine to monitor the performance of the wind turbine and send warning messages to warn that the wind turbine is not working in optimal conditions.
  • the detection of These problems can prevent a significant decrease in the energy efficiency of the wind turbine.

Abstract

Métodos de monitorización de aerogeneradores (11) de velocidad variable que comprenden medios de control para una regulación por "pitch" siguiendo una curva de potencia vs. velocidad del generador (21) en función de la velocidad del viento expresada por una función de transferencia (TF) aplicada a la velocidad del viento medida por un sensor de viento situado en una ubicación en la que el flujo del viento está distorsionado, que comprenden los siguientes pasos: a) proporcionar una función de relación óptima (F1) entre una variable (V) dependiente de la velocidad del viento y una variable (P) dependiente del rendimiento del aerogenerador; b) medir continuamente dichas variables (V, P) y obtener una función de relación (F2) entre ellas; c) obtener continuamente un parámetro (D) indicativo de las diferencias entre dichas funciones (F1, F2); d) generar un mensaje de aviso cuando el valor de dicho parámetro (D) es mayor de un valor predeterminado.

Description

METODOS DE MONITORIZACION DE AEROGENERADORES
La invención se refiere a métodos de monítorización de aerogeneradores y, más en particular, a métodos de monítorización de la Función de Transferencia de la velocidad del viento.
ANTECEDENTES
Los aerogeneradores son dispositivos que convierten energía mecánica en energía eléctrica. Un aerogenerador típico incluye una góndola montada sobre una torre que alberga un tren de potencia para transmitir la rotación de un rotor a un generador eléctrico y otros componentes tal como los motores de orientación mediante los que se gira el aerogenerador, varios controladores y un freno. El rotor soporta varias palas que se extienden radialmente para capturar la energía cinética del viento y causan un movimiento rotatorio del tren de potencia. Las palas del rotor tienen una forma aerodinámica de manera que cuando el viento pasa a través de la superficie de la pala se crea una fuerza ascensional que causa la rotación de un eje al que está conectado - directamente o a través de un dispositivo de multiplicación- un generador eléctrico situado dentro de la góndola. La cantidad de energía producida por los aerogeneradores depende de la superficie de barrido del rotor de palas que recibe la acción del viento y, consecuentemente, el incremento de la longitud de las palas implica normalmente un incremento de la producción de energía del aerogenerador.
Bajo métodos de control conocidos la energía producida por un aerogenerador se incrementa con la velocidad del viento hasta que se alcanza un nivel nominal pre-establecido y a partir de ahí se mantiene constante. En aerogeneradores regulados por "pitch", eso se hace regulando el ángulo de paso de las palas de manera se optimice la captura de energía independientemente de la velocidad del viento.
La velocidad del viento es pues un parámetro de control importante para la operación de aerogeneradores de velocidad variable. En muchos de los aerogeneradores ya instalados, la velocidad del viento usada por el sistema de control del aerogenerador es la velocidad de viento calculada aplicando una Función de Transferencia (en adelante TF) a la velocidad del viento medida por un anemómetro situado en la góndola del aerogenerador.
La TF se define como la función que expresa la velocidad de la corriente libre del viento como una función de la velocidad del viento medida por el sensor de viento utilizado por el sistema de control del aerogenerador. Esta función está destinada a la corrección del efecto del rotor del generador y la distorsión de flujo alrededor del aerogenerador. La TF depende de las características del aerogenerador, de la localización del sensor de viento y del modelo, y de las características del viento en el sitio del aerogenerador.
Como el flujo de viento alrededor de la góndola resulta distorsionado por el rotor del aerogenerador y la góndola, es muy importante aplicar una TF apropiada para corregir la distorsión del flujo.
Para obtener la TF apropiada debe medirse la velocidad del viento libre enfrente del rotor del aerogenerador (usando un anemómetro de cazoleta ó un anemómetro sónico instalado en un mástil metereológico, ó un sensor de viento remoto, ú otros medios, incluyendo una calibración local si es necesario) y la velocidad del viento medida por el anemómetro del aerogenerador. La función de correlación obtenida, después del correspondiente análisis de los datos y el rechazo de los datos inválidos, es la que debe aplicarse a los datos proporcionados por el anemómetro del aerogenerador para obtener velocidad real del viento enfrente del rotor del aerogenerador.
Un método conocido para obtener una TF apropiada para un aerogenerador sin medir la velocidad del viento libre enfrente del aerogenerador es el método de calibración de anemómetro descrito en US 2008/0307853 que comprende los pasos de obtener pares de mediciones de la velocidad del viento y de una variable del aerogenerador dependiente de la velocidad del viento, comparar dichos pares de mediciones con pares de la velocidad del viento y de la variable del aerogenerador dependiente de la velocidad del viento obtenidos de una curva esperada de dicha variable del aerogenerador para determinar una diferencia entre el valor medido de la velocidad del viento y el valor esperado de la velocidad del viento para una variable dada del aerogenerador y ajustar una ajustar una función de calibración de dicho anemómetro en base a dicha determinada diferencia.
Aunque se conoce la importancia de utilizar una TF apropiada para optimizar la producción de energía, entre los métodos conocidos para evaluar diferentes aspectos del funcionamiento de los aerogeneradores no se encuentra ningún método específico para monitorizar la TF aplicada a un aerogenerador.
Esta invención está dirigida a la solución de ese problema utilizando métodos de control conocidos de manera que pueda implementarse en los aerogeneradores que ya están instalados.
SUMARIO DE LA INVENCIÓN
Es un objeto de la presente invención proporcionar un método de monitorización del rendimiento de un aerogenerador controlado por "pitch".
Es otro objeto de la presente invención proporcionar un método de monitorización de la TF aplicada a un aerogenerador controlado por "pitch".
Estos y otros objetos se consiguen proporcionando un método de monitorización de un aerogenerador de velocidad variable que comprende medios de control para una regulación por "pitch" siguiendo una curva de potencia vs. velocidad del generador en función de la velocidad del viento expresada por una TF aplicada a la velocidad del viento medida por un sensor de viento situado en una ubicación en la que el flujo del viento está distorsionado, que comprende los siguientes pasos:
a) Proporcionar una función de relación óptima F entre una variable V dependiente de la velocidad del viento y una variable P dependiente del rendimiento del aerogenerador.
b) Medir continuamente dicha variable V dependiente de la velocidad del viento y dicha variable P dependiente del rendimiento del aerogenerador y obtener una función de relación F2 entre ellas.
c) Obtener continuamente un parámetro D indicativo de las diferencias entre dichas funciones de relación F-i, F2.
d) Generar un mensaje de aviso cuando el valor de dicho parámetro D es mayor de un valor predeterminado. En una realización preferente, en dicho paso b) dicha función de relación F2 se obtiene usando valores promedio de dichas variables V, P en períodos de al menos 10 minutos. Se consigue con ello un método que asegura que los datos usados para obtener dicha función de relación F2 no están influenciados por fluctuaciones temporales.
En otra realización preferente, en dicho paso c) dicho parámetro D se obtiene para las diferencias entre dichas funciones de relación Fi, F2 en un rango predeterminado de valores de una de dichas variables V, P. Se consigue con ello un método aplicable únicamente a un rango seleccionado de una de dichas variables donde debe esperarse una mejor detección de dichas diferencias.
En otra realización preferente, dicha variable V dependiente de la velocidad del viento es el ángulo de paso de pala y dicha variable P dependiente del rendimiento del aerogenerador es la velocidad del generador. Se consigue con ello un método que usa un par de variables particularmente relevantes para mostrar las diferencias entre dichas funciones de relación Fi, F2 porque, en particular, hay una rango significativo de velocidades de viento en los que el ángulo de paso de pala debe permanecer constante (en promedios estadísticos de 10 minutos) en condiciones óptimas de producción permitiendo por tanto una fácil detección de desviaciones cuando se usa una TF inapropiada o cuando el aerogenerador tiene otro problema.
En otra realización preferente, la TF implementada en los medios de control es una TFV pre-validada. Se consigue con ello un método apropiado para detectar problemas diferentes al uso de una TF inapropiada en el aerogenerador.
Otras características y ventajas de la presente invención se desprenderán de la descripción detallada que sigue de una realización ilustrativa y no limitativa de su objeto en relación con las figuras que se acompañan.
BREVE DESCRIPCION DE LAS FIGURAS
La Figura 1 muestra esquemáticamente los componentes principales de un aerogenerador. La Figura 2 muestra una curva Potencia vs. Velocidad del generador conocida en la técnica que se usa para controlar aerogeneradores de velocidad variable.
La Figura 3 muestra una curva típica Potencia vs. Velocidad del viento.
La Figura 4 muestra una función de relación óptima Fi entre el ángulo de paso de pala y la velocidad del generador en el aerogenerador que está siendo monitorizado.
La Figura 5 muestra una función de relación F2 entre el ángulo de paso de pala y la velocidad del generador obtenida en el aerogenerador que está siendo monitorizado.
DESCRIPCIÓN DETALLADA DE LAS REALIZACIONES PREFERIDAS
Un aerogenerador 11 convencional comprende una torre 13 soportando una góndola 21 que alberga un generador 19 para convertir la energía rotacional del rotor del aerogenerador en energía eléctrica. El rotor del aerogenerador comprende un buje de rotor 15 y, normalmente, tres palas 17. El buje del rotor 15 está conectado al bien directamente o a través de una multiplicadora al generador 19 del aerogenerador para transferir el par generado por el rotor 15 al generador 19 incrementando la velocidad del eje a fin de alcanzar una velocidad rotacional apropiada del rotor del generador.
La energía producida por un aerogenerador moderno está controlada normalmente por medio de un sistema de control para regular el ángulo de paso de las palas del rotor y el par motor del generador. La velocidad rotacional del rotor y la producción de energía de un aerogenerador pueden ser pues controladas inicialmente, es decir, antes de una transferencia de energía a una red de distribución eléctrica a través de un convertidor. En esta descripción nos referiremos a un ángulo de paso de pala común para todas las palas del rotor pero el experto en la materia apreciará fácilmente que esta invención también es aplicable a aerogeneradores con medios individuales para controlar el ángulo de paso de cada pala del rotor. El objetivo básico de los métodos de operación de un aerogenerador de velocidad variable es alcanzar una operación con la producción aerodinámicamente ideal el mayor tiempo posible.
Como es sabido, la energía cinética asociada con una corriente de viento depende del área barrida por dicha corriente, de su densidad y del cubo de la velocidad del viento y se considera que los aerogeneradores pueden extraer hasta el 59% de dicha energía. Por ello, se representa la capacidad de cada aerogenerador para aproximarse a dicho límite por el llamado coeficiente de potencia Cp que está determinado por sus características aerodinámicas, particularmente por el ratio λ de su velocidad en la punta que se define como la relación entre la velocidad tangencial de la punta de la pala y la velocidad del viento incidente. Si se puede mantener ese ratio al máximo coeficiente de potencia Cp del aerogenerador de manera que la velocidad del rotor siga a la velocidad del viento, se puede conseguir un aerogenerador muy eficiente.
La estrategia de control seguida generalmente en los aerogeneradores de velocidad variable está basada en ajustar eléctricamente el par del generador para alcanzar la máxima producción lo que se lleva a cabo usando un controlador que recibe señales indicado la velocidad del generador y la potencia producida por el generador y que proporciona una señal de referencia del par al convertidor para obtener la potencia requerida.
Consecuentemente, el controlador del aerogenerador usa una curva que define la relación funcional deseable entre potencia y velocidad para alcanzar la producción ideal.
Para una mejor comprensión de la presente invención, se hace seguidamente una breve descripción de una típica curva potencia vs. velocidad 21 mostrada en la Figura 2.
Esta curva comprende una primera zona sub-nominal 23 en la que la velocidad del viento alcanza el nivel mínimo para comenzar la operación del aerogenerador. En esta zona, el control del aerogenerador es muy limitado ya que el aerogenerador no puede capturar la máxima energía. La segunda zona sub-nominal 25 corresponde a bajas velocidades del viento en la que la velocidad del generador se incrementa y el aerogenerador funciona con un óptimo coeficiente de potencia Cp. La tercera zona sub-nominal 27 corresponde a velocidades medias del viento en la que se mantiene constante la velocidad del generador nri mientras la potencia se incrementa hasta la potencia nominal. En esta zona el ángulo de paso de las palas es fijo y la velocidad del generador se controla a través del par. En la zona nominal 29, tiene lugar la operación del aerogenerador a plena carga bajo el control del ángulo de paso de las palas para evitar sobrecargas.
En condiciones ideales, la curva de potencia promedio será la curva 31 de la Figura 3 pero si la TF no proporciona un valor correcto de velocidad de la corriente libre del viento habrá pérdidas de energía respecto a la producción ideal de energía.
La TF aplicada inicialmente a un aerogenerador es normalmente una TF obtenida en una posición del aerogenerador diferente de la posición de trabajo del aerogenerador. La TF depende, entre otras variable, de las condiciones del viento (intensidad de la turbulencia, componente vertical del viento) y de características topográficas de la ubicación del aerogenerador. Como estas variables pueden variar de una posición del aerogenerador a otra posición del aerogenerador incluso a una distancia de pocos metros entre ellas, puede suceder que la TF aplicada inicialmente a un aerogenerador no sea la más apropiada para su ubicación con la consecuencia de que el rendimiento del generador estará por debajo de su nivel óptimo.
La ¡dea básica de esta invención es proporcionar un método de monitorización de la TF basado en la relación entre una variable V dependiente de la velocidad del viento y una variable P dependiente del rendimiento del aerogenerador P. Cuando la TF no estima correctamente la velocidad del viento enfrente del rotor la relación entre dichas variables V, P no es la óptima. Así pues se puede monitorizar si el aerogenerador está trabajando o no con una TF apropiada comparando los valores esperados de dichas variables V, P con los valores medidos de dichas variables V, P en el aerogenerador.
Variables V apropiadas son las siguientes: velocidad del viento, ángulo de paso de la pala o cualquier otra variable relacionada con la velocidad del viento medida por el sensor de viento. Variables P apropiadas son las siguientes: velocidad del generador, energía producida, par, velocidad del rotor o cualquier otra variable relacionada con el rendimiento del aerogenerador.
En una realización preferente se ha encontrado que el par ángulo de paso de pala como variable V dependiente de la velocidad del viento y velocidad del generador como variable P dependiente del rendimiento del generador es particularmente apropiado para detectar desviaciones de la TF.
El primer paso de un método de monitorización según una realización preferente de la presente invención es por tanto proporcionar una función de relación óptima Fi (es decir una relación con una TF apropiada) entre el ángulo de paso de pala y la velocidad del generador, tal como la función Fi ilustrada en la Figura 4.
Dicha función Fi se obtiene como la función entre dichas variables resultante de un comportamiento teórico del aerogenerador. Como puede advertirse fácilmente la función Fi de la Figura 4 y la curva potencia vs. velocidad del generador 21 de la Figura 3 muestran vistas diferentes del comportamiento teórico del aerogenerador.
En el segundo paso del método de monitorización según la presente invención, los valores del ángulo de paso de pala y de la velocidad del generador se miden continuamente y se obtiene la función de relación F2 entre ellos como la función F2 de la Figura 5 (que ilustra una relación con una TF inapropiada).
Los valores del ángulo de paso de pala y de la velocidad del generador deben medirse tan frecuentemente como sea posible, típicamente 1 Hz y se calculan unos valores promedio, por ejemplo los valores promedio de 10 minutos. Estos valores promedios de las dos variables ángulo de paso de pala y velocidad del generador se usan para obtener la función F2.
En el marco de la presente invención, las funciones mencionadas anteriormente F-ι y F2 deben entenderse en sentido amplio incluyendo por ejemplo conjuntos de pares de valores de ángulo de paso de pala y velocidad del generador y funciones matemáticas obtenidas mediante un análisis de regresión de dichos datos. En el tercer paso de un método de monitorización según la presente invención, se obtiene continuamente un parámetro D indicativo de las diferencias entre dichas funciones Fi, F2 utilizando herramientas matemáticas convencionales y datos filtrados después de eliminar valores no significativos.
Dicho parámetro D puede ser obtenido como un valor promedio para un período predeterminado (por ejemplo una hora ó un día) que también es útil para análisis de tendencias.
Dicho parámetro D también puede ser obtenido para un rango predeterminado de valores, por ejemplo en referencia a las Figuras 4 y 5, solo para pares de valores en los que la velocidad del generador esté comprendida entre G3-G5 donde debe esperarse una clara diferencia entre F1 y F2 cuando el aerogenerador está usando una TF inapropiada. Esa diferencia puede apreciarse gráficamente comparando las Figuras 4 y 5. El valor esperado para el ángulo de paso de pala tiene un valor constante P2 mientras que su valor real, cuando el aerogenerador usa una TF inapropiada, es mayor de P3.
En el cuarto paso de un método de monitorización según la presente invención se genera un mensaje de aviso cuando el valor de dicho parámetro D es mayor de un valor predeterminado que debe ser establecido para cada modelo de aerogenerador.
Tras la detección de una diferencia relevante entre dichas funciones F-i , F2 la TF debe ser corregida para maximizar la producción del aerogenerador según alguno de los métodos conocidos que se mencionaron en los Antecedentes.
Puede suceder que ejecutando el método de monitorización de esta invención utilizando una TFV validada haya todavía diferencias relevantes entre dichas funciones F-i , F2 debido a razones tales como desalineaciones del aerogenerador o problemas mecánicos. De esta manera, puede usarse el método según la presente invención para detectar dichos problemas.
Como entenderá fácilmente el experto en la materia, este método puede ser implementado en el SCADA del aerogenerador para monitorizar el rendimiento del aerogenerador y enviar mensajes de aviso para advertir que el aerogenerador no está trabajando en óptimas condiciones. La detección de estos problemas puede evitar un decremento significativo del rendimiento energético del aerogenerador.
Aunque la presente invención se ha descrito enteramente en conexión con realizaciones preferidas, es evidente que se pueden introducir aquellas modificaciones dentro de su alcance, no considerando éste como limitado por las anteriores realizaciones, sino por el contenido de las reivindicaciones siguientes.

Claims

REIVINDICACIONES
1. - Método de monitorización de un aerogenerador (11) de velocidad variable que comprende medios de control para una regulación por "pitch" siguiendo una curva de potencia vs. velocidad del generador (21) en función de la velocidad del viento expresada por una función de transferencia (TF) aplicada a la velocidad del viento medida por un sensor de viento situado en una ubicación en la que el flujo del viento está distorsionado, caracterizado porque comprende los siguientes pasos:
a) proporcionar una función de relación óptima (Fi) entre una variable (V) dependiente de la velocidad del viento y una variable (P) dependiente del rendimiento del aerogenerador;
b) medir continuamente dicha variable (V) dependiente de la velocidad del viento y dicha variable (P) dependiente del rendimiento del aerogenerador y obtener una función de relación (F2) entre ellas;
c) obtener continuamente un parámetro (D) indicativo de las diferencias entre dichas funciones de relación (F-ι, F2);
d) generar un mensaje de aviso cuando el valor de dicho parámetro (D) es mayor de un valor predeterminado.
2. - Método de monitorización de un aerogenerador (11) de velocidad variable según la reivindicación 1 , caracterizado porque en dicho paso b) dicha función de relación (F2) se obtiene usando valores promedio de dichas variables (V, P) en períodos de al menos 10 minutos.
3. - Método de monitorización de un aerogenerador (11) de velocidad variable según cualquiera de las reivindicaciones 1-2, caracterizado porque en dicho paso c) dicho parámetro (D) se obtiene para las diferencias entre dichas funciones de relación (F-i, F2) en un rango predeterminado de valores de una de dichas variables (V, P).
4. - Método de monitorización de un aerogenerador (11) de velocidad variable según cualquiera de las reivindicaciones 1-3, caracterizado porque dicha variable (V) dependiente del viento es el ángulo de paso de pala y dicha variable (P) dependiente del rendimiento del aerogenerador es la velocidad del generador.
5. - Método de monitorización de un aerogenerador (11) de velocidad variable según cualquiera de las reivindicaciones 1-4, caracterizado porque la función de transferencia (TF) implementada en los medios de control del aerogenerador es una función de transferencia pre-validada (TFV).
6. - Un aerogenerador (11) de velocidad variable monitorizado por un método de monitorización según cualquiera de las reivindicaciones 1-5.
PCT/ES2011/000108 2010-04-13 2011-04-11 Metodos de monitorizacion de aerogeneradores WO2011128470A2 (es)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP11768482.9A EP2559892B1 (en) 2010-04-13 2011-04-11 Method for monitoring wind turbines
CN201180019180.2A CN102859184B (zh) 2010-04-13 2011-04-11 用于风力涡轮机的监测方法
BR112012026350-1A BR112012026350B1 (pt) 2010-04-13 2011-04-11 Método de monitorização de um aerogerador de velocidade variável e aerogerador de velocidade variável
ES11768482T ES2899983T3 (es) 2010-04-13 2011-04-11 Método para la monitorización de aerogeneradores
US13/639,212 US8677810B2 (en) 2010-04-13 2011-04-11 Methods for monitoring wind turbines
DK11768482.9T DK2559892T3 (da) 2010-04-13 2011-04-11 Fremgangsmåde til overvågning af vindmøller

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201000471 2010-04-13
ES201000471A ES2381094B1 (es) 2010-04-13 2010-04-13 Metodos de monitorizacion de aerogeneradores

Publications (2)

Publication Number Publication Date
WO2011128470A2 true WO2011128470A2 (es) 2011-10-20
WO2011128470A3 WO2011128470A3 (es) 2012-07-12

Family

ID=44799088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2011/000108 WO2011128470A2 (es) 2010-04-13 2011-04-11 Metodos de monitorizacion de aerogeneradores

Country Status (7)

Country Link
US (1) US8677810B2 (es)
EP (1) EP2559892B1 (es)
CN (1) CN102859184B (es)
BR (1) BR112012026350B1 (es)
DK (1) DK2559892T3 (es)
ES (2) ES2381094B1 (es)
WO (1) WO2011128470A2 (es)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103016266A (zh) * 2013-01-11 2013-04-03 华北电力大学 模糊前馈与线性自抗扰结合的风电机组变桨距控制方法
US20140199156A1 (en) * 2013-01-17 2014-07-17 Alstom Renovables Espana, S.L. Method of operating a wind turbine
CN104819098A (zh) * 2015-04-15 2015-08-05 重庆大学 一种无速度传感器的风力发电最大功率跟踪方法
CN112284751A (zh) * 2020-10-16 2021-01-29 中国航发四川燃气涡轮研究院 一种畸变特性可调的畸变试验装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011119466A1 (de) * 2011-11-25 2013-05-29 Robert Bosch Gmbh Verfahren zur Bestimmung einer Gesamtschädigung wenigstens einer rotierenden Komponente eines Antriebsstrangs
US8704393B2 (en) * 2012-08-09 2014-04-22 General Electric Company System and method for controlling speed and torque of a wind turbine during post-rated wind speed conditions
PL2915997T3 (pl) 2012-10-31 2018-06-29 Hispavista Labs A.I.E. Sposób obliczania i korekcji kąta natarcia na farmie turbin wiatrowych
EP3088733B1 (en) * 2015-04-27 2018-10-17 Envision Energy (Jiangsu) Co., Ltd. Method for operating a wind turbine based on degradation of wind turbine blade
CN106812658B (zh) * 2015-11-27 2019-09-06 中国船舶重工集团海装风电股份有限公司 一种风力发电机组的控制方法及装置
CN105508149B (zh) * 2015-12-31 2018-12-07 北京金风科创风电设备有限公司 用于风力发电机组的故障检测方法及装置
EP3296513B1 (en) * 2016-09-16 2020-08-19 Ratier-Figeac SAS Propeller health monitoring
CN107884596A (zh) * 2016-09-29 2018-04-06 北京金风科创风电设备有限公司 风力发电机风速测量值修正方法和修正装置
CN107676230A (zh) * 2017-10-12 2018-02-09 佛山伊贝尔科技有限公司 一种涡轮机性能监测方法
CN109653961B (zh) * 2018-12-14 2020-05-19 三一重能有限公司 一种风力发电机的监测方法及装置
CN113357097B (zh) * 2020-03-02 2024-01-26 北京金风科创风电设备有限公司 风力发电机组的叶片卡桨检测方法和装置
CN113883008B (zh) * 2021-11-23 2023-06-16 南瑞集团有限公司 一种可抑制多扰动因素的风机模糊自适应变桨距控制方法
CN116733687B (zh) * 2023-04-28 2024-01-12 广东工业大学 一种风机内部模态谐振的检测方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080307853A1 (en) 2007-06-18 2008-12-18 Thomas Siebers Anemometer calibration method and wind turbine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002048050A (ja) * 2000-08-07 2002-02-15 Mitsubishi Heavy Ind Ltd 風力発電装置のピッチ角制御方法及びその装置
CA2557396C (en) * 2004-02-27 2010-12-21 Mitsubishi Heavy Industries, Ltd. Wind turbine generator, active damping method thereof, and windmill tower
US7342323B2 (en) * 2005-09-30 2008-03-11 General Electric Company System and method for upwind speed based control of a wind turbine
US20090299780A1 (en) * 2008-05-29 2009-12-03 Abhinanda Sarkar Method and apparatus for determining and/or providing power output information of wind turbine farms
EP2287465B1 (en) * 2008-06-18 2016-06-22 Mitsubishi Heavy Industries, Ltd. Wind-turbine-dynamic-characteristics monitoring apparatus and method therefore
US8219356B2 (en) * 2010-12-23 2012-07-10 General Electric Company System and method for detecting anomalies in wind turbines

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080307853A1 (en) 2007-06-18 2008-12-18 Thomas Siebers Anemometer calibration method and wind turbine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103016266A (zh) * 2013-01-11 2013-04-03 华北电力大学 模糊前馈与线性自抗扰结合的风电机组变桨距控制方法
CN103016266B (zh) * 2013-01-11 2014-10-29 华北电力大学 模糊前馈与线性自抗扰结合的风电机组变桨距控制方法
US20140199156A1 (en) * 2013-01-17 2014-07-17 Alstom Renovables Espana, S.L. Method of operating a wind turbine
US10006440B2 (en) * 2013-01-17 2018-06-26 GE Renewable Technologies Win B.V. Method of operating a wind turbine
CN104819098A (zh) * 2015-04-15 2015-08-05 重庆大学 一种无速度传感器的风力发电最大功率跟踪方法
CN112284751A (zh) * 2020-10-16 2021-01-29 中国航发四川燃气涡轮研究院 一种畸变特性可调的畸变试验装置
CN112284751B (zh) * 2020-10-16 2023-01-13 中国航发四川燃气涡轮研究院 一种畸变特性可调的畸变试验装置

Also Published As

Publication number Publication date
US8677810B2 (en) 2014-03-25
BR112012026350B1 (pt) 2021-10-05
ES2381094B1 (es) 2013-04-23
CN102859184B (zh) 2015-07-08
EP2559892A4 (en) 2017-06-21
ES2899983T3 (es) 2022-03-15
EP2559892A2 (en) 2013-02-20
DK2559892T3 (da) 2021-12-06
CN102859184A (zh) 2013-01-02
ES2381094A1 (es) 2012-05-23
BR112012026350A2 (pt) 2016-07-19
BR112012026350A8 (pt) 2018-06-26
WO2011128470A3 (es) 2012-07-12
US20130025352A1 (en) 2013-01-31
EP2559892B1 (en) 2021-09-08

Similar Documents

Publication Publication Date Title
ES2899983T3 (es) Método para la monitorización de aerogeneradores
ES2717654T3 (es) Sistemas y procedimientos y para controlar una turbina eólica
ES2781599T3 (es) Determinación de configuración de turbina eólica
ES2667818T3 (es) Sistema y procedimiento de control de un parque eólico
ES2647816T3 (es) Método de control de una turbina eólica, y turbina eólica
DK1906192T3 (en) Apparatus for evaluating sensors and / or for controlling the operation of an apparatus which includes a sensor
ES2663715T3 (es) Turbina eólica
ES2687784T3 (es) Control de palas de rotor para vientos intensos
ES2646016T3 (es) Métodos de control de aerogeneradores para mejorar la producción de energía
ES2947764T3 (es) Una turbina eólica con prevención de entrada en pérdida del rotor
US10215159B2 (en) Method of starting a wind turbine
ES2928211T3 (es) Sistema y procedimiento para operar un parque eólico
ES2931179T3 (es) Procedimientos y sistemas de control predictivo de turbinas eólicas
EP3059830A1 (en) Reactive power compensation based on reactive power capability of a renewable energy system
DK2522853T3 (en) Wind turbine torque-speed control
EP3249218B1 (en) System and method for micrositing a wind farm for loads optimization
KR20190085081A (ko) 낮은 침식 조건 중에 정격 위에서의 풍력 터빈의 작동
ES2950363T3 (es) Procedimiento y dispositivo para el funcionamiento de una turbina eólica
CN111648916B (zh) 对于风力涡轮的推力极限
EP3091226A1 (en) System and method for detecting rotor asymmetry
EP4177463A1 (en) Methods and systems for determining roughness of wind turbine blades and wind turbine control
ES2829201T3 (es) Turbina eólica

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180019180.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 8590/DELNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13639212

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011768482

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012026350

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012026350

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20121015