WO2011127853A2 - Wimax下行功控的方法及装置 - Google Patents

Wimax下行功控的方法及装置 Download PDF

Info

Publication number
WO2011127853A2
WO2011127853A2 PCT/CN2011/074109 CN2011074109W WO2011127853A2 WO 2011127853 A2 WO2011127853 A2 WO 2011127853A2 CN 2011074109 W CN2011074109 W CN 2011074109W WO 2011127853 A2 WO2011127853 A2 WO 2011127853A2
Authority
WO
WIPO (PCT)
Prior art keywords
power control
control zone
power
downlink
terminal
Prior art date
Application number
PCT/CN2011/074109
Other languages
English (en)
French (fr)
Other versions
WO2011127853A3 (zh
Inventor
程竹林
欧艳华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201180000717.0A priority Critical patent/CN102217374B/zh
Priority to PCT/CN2011/074109 priority patent/WO2011127853A2/zh
Publication of WO2011127853A2 publication Critical patent/WO2011127853A2/zh
Publication of WO2011127853A3 publication Critical patent/WO2011127853A3/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/241TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account channel quality metrics, e.g. SIR, SNR, CIR, Eb/lo
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/143Downlink power control

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and apparatus for WiMAX downlink power control. Background technique
  • WiMax WiMax (Wor ldwide Interoperabi y for Microwave Acces s) WiMAX systems, if frequency resources are limited, co-channel interference may occur between cells. In order to reduce interference between adjacent cells, downlink power control is usually required for the terminal, and the downlink power control may be simply referred to as downlink power control.
  • a Burs t (burst) based Power Boos t ing (power boost) mechanism is used for downlink power control.
  • the base station raises the transmit power or reduces the transmit power of all the data subcarriers of the Burs t to transmit, and simultaneously carries the value of the data subcarrier to raise the transmit power or reduce the transmit power. And sent to the terminal in the indication information of the Burs t.
  • Embodiments of the present invention provide a method and apparatus for downlink power control of a WiMAX, which can simultaneously reduce transmission power of downlink pilot subcarriers and downlink data subcarriers of some terminals, thereby reducing interference between cells.
  • a method for WiMAX downlink power control comprising:
  • a device for WiMAX downlink power control comprising:
  • a first execution unit configured to divide a power control zone in the downlink subframe, and determine a power reduction range of the power control zone
  • a first switching unit configured to determine, according to a downlink carrier-to-interference ratio CINR and a power reduction range reported by the terminal, whether the terminal can switch to the power control zone, and switch the terminal that can be switched to the power control zone to the work Control area
  • a control unit configured to simultaneously reduce transmit power of downlink data subcarriers and downlink pilot subcarriers of all terminals in the power control zone according to the power reduction range.
  • the method and device for the downlink power control of the WiMAX provided by the embodiment of the present invention, by dividing a power control zone in a downlink subframe, and determining a power reduction range of the power control zone, and then according to the downlink CINR and the power reported by the terminal Determining whether the terminal can switch to the power control zone, and switching the terminal that can be switched to the power control zone to the power control zone, and simultaneously reducing all terminals in the power control zone according to the power reduction range
  • the downlink pilot subcarrier can not be used to raise the transmit power or reduce the transmit power, and the pilot subchannel can not reduce the interference of the pilot subchannel to other base stations, and the downlink guide of some terminals can be simultaneously reduced by using the solution provided in the embodiment of the present invention.
  • FIG. 1 is a flowchart of a method for performing WiMAX downlink power control according to Embodiment 1 of the present invention
  • FIG. 2 is a block diagram of a device for WiMAX downlink power control according to Embodiment 1 of the present invention
  • FIG. 3 is a flowchart of a method for downlink power control of WiMAX according to Embodiment 2 of the present invention
  • 4 is a flowchart of switching a terminal to the power control zone according to Embodiment 2 of the present invention
  • FIG. 5 is a flowchart of scheduling of a terminal located in a power control zone by a base station according to Embodiment 2 of the present invention
  • FIG. 6 is a flowchart of scheduling of a terminal in a non-power control zone in another WiMAX downlink power control method according to Embodiment 2 of the present invention.
  • Figure ⁇ is a flowchart of scheduling of the terminal in the power control area in another WiMAX downlink power control method according to Embodiment 2 of the present invention.
  • FIG. 8 is a flowchart of periodically processing a Y by a base station in another method for downlink power control of a WiMAX according to Embodiment 2 of the present invention
  • FIG. 9 is a schematic diagram of a non-power control zone provided in a different time domain according to Embodiment 2 of the present invention.
  • FIG. 10 is a block diagram of an apparatus for WiMAX downlink power control provided by Embodiment 3 of the present invention.
  • FIG 11 is a block diagram of an adjustment module according to Embodiment 3 of the present invention. detailed description
  • the embodiment of the invention provides a method for downlink power control of WiMAX. As shown in FIG. 1, the method includes:
  • Step 101 Divide a power control zone in the downlink subframe, and determine a power reduction range of the power control zone;
  • Step 102 Determine, according to the downlink carrier-to-interference ratio CINR reported by the terminal, the power-down range, whether the terminal can switch to the power control zone, and switch the terminal that can be switched to the power control zone to the power control zone;
  • Step 103 Simultaneously reduce the transmit power of the downlink data subcarrier and the downlink pilot subcarrier of all terminals in the power control zone according to the power reduction range.
  • the present invention further provides a WiMAX downlink power control device.
  • the WiMAX downlink power control device includes: a first execution unit 201, a first switching unit 202, Control unit 203.
  • the first executing unit 201 is configured to divide a power control zone in the downlink subframe, and determine a power reduction range of the power control zone;
  • the first switching unit 202 is configured to determine, according to the downlink carrier-to-interference ratio CINR and the power reduction range reported by the terminal, whether the terminal can switch to the power control zone, and switch the terminal that can be switched to the power control zone to the Power control zone
  • the control unit 203 is configured to simultaneously reduce the transmit power of the downlink data subcarrier and the downlink pilot subcarrier of all the terminals in the power control zone according to the power reduction range.
  • the terminal that can be switched to the power control zone is switched to the power control zone, and then according to the The power reduction amplitude reduces the transmission power of the downlink data subcarrier and the downlink pilot subcarrier of all terminals in the power control zone.
  • the solution provided in the embodiment of the present invention can solve the problem that only the downlink data subcarrier can be reduced in transmit power, and the downlink pilot subcarrier cannot be reduced in transmit power, and the downlink of some terminals can be reduced at the same time. The transmit power of the data subcarriers and the downlink pilot subcarriers, thereby reducing interference between cells.
  • An embodiment of the present invention provides an application scenario in which: a common pilot area is used in a downlink subframe to divide a power control area and a non-power control area, where the power control area and the non-power control area occupy the same subchannel.
  • the power reduction range of the power control area is statically determined, that is, the power reduction range of the power control area is set to a fixed value, and then the downlink data subcarriers of all terminals in the power control area are reduced according to the power reduction range.
  • the transmit power of the downlink pilot subcarrier The following describes in detail a method of WiMAX downlink power control. As shown in FIG. 3, the method includes:
  • Step 301 Divide a power control zone in the downlink subframe, and determine a power reduction range of the power control zone.
  • the power control zone uses a common pilot, and the non-power control zone in the power control zone and the downlink subframe occupies phase Same subchannel.
  • the downlink data region using the common pilot is divided into different Zone Types according to whether all the subchannels are used, and the regions using all the subchannels are collectively referred to as the downlink all subchannels Zone Type, and the regions using the partial subchannels are collectively referred to as Downstream subchannel Zone Type.
  • the system can perform power control for a certain Zone Type, that is, divide the power control zone and the non-power control zone in the same Zone Type. The switching between the power control zone and the non-power control zone is performed in the same Zone Type.
  • the power reduction range of the power control zone in the downlink subframe may be determined as a first preset value, where the first preset value is defined as X db, and the X is greater than 0, for example, determining a downlink subframe.
  • the power reduction in the power control zone is 3 db.
  • Step 302 Determine, according to the downlink CINR reported by the terminal, the power reduction range, whether the terminal can switch to the power control zone, and switch the terminal that can be switched to the power control zone to the power control zone.
  • step 302 can be specifically completed by the following sub-steps:
  • Step 3020 Receive a downlink CINR reported by the terminal.
  • the downlink CINR on the terminal can be m db.
  • Step 3021 When the terminal is located in the non-power control zone, calculate a second modulation and coding mode according to a difference between the downlink CINR and the power reduction amplitude;
  • the second modulation coding mode may be calculated according to an adaptive modulation coding algorithm.
  • the Adaptive Modulation (Coding) algorithm enables the system to adaptively track link changes by changing the coding mode and modulation order.
  • a very important feature of wireless channels is that they have a strong time-varying, and short-term fading can reach dozens of decibels or even tens of decibels. Adaptive tracking of this time-varying feature can bring significant benefits to system performance improvements.
  • Step 3022 Determine whether the transmission efficiency of the second modulation and coding mode is less than a first preset transmission efficiency threshold.
  • Step 3024 If the transmission efficiency of the second modulation and coding mode is not less than a first preset transmission efficiency threshold, calculate a load of the system according to the second modulation and coding manner;
  • the load of the system can be calculated according to the attributes of the service flow, modulation and coding methods, and the like.
  • Step 3025 If the load of the system is lower than the first preset load threshold, the terminal is switched from the non-power control area to the power control area;
  • the first preset load threshold may be a value set by the user according to actual experience.
  • the first preset load threshold may be 70%.
  • the terminal is switched from the non-power control area to the power control area, and the modulation and coding mode of the terminal in the power control area is determined to be a second modulation and coding mode.
  • steps 3021 to 3025 are processing of the terminal by the base station when the terminal is located in the non-power control zone.
  • the following steps 3026 - 3029 are the processing of the base station to the terminal when the terminal is located in the power control zone, as shown in FIG.
  • Step 3020 Receive a downlink CINR reported by the terminal.
  • Step 3026 When the terminal is located in the power control zone, calculate a first modulation coding mode according to the downlink C INR;
  • the downlink CINR reported by the terminal is m db
  • Step 3027 Determine whether the transmission efficiency of the first modulation and coding mode is less than a second preset transmission efficiency threshold.
  • Step 3028 if the transmission efficiency of the first modulation and coding mode is not less than a second preset transmission efficiency threshold, maintaining the terminal in the power control zone;
  • the modulation and coding mode adopted by the terminal held in the power control zone is a first modulation coding mode.
  • Step 3029 if the transmission efficiency of the first modulation and coding mode is less than the second preset transmission An efficiency threshold, wherein the terminal is switched from the power control area to the non-power control area;
  • the method further includes:
  • Step 303 if the load of the system is greater than the second preset load threshold, then switch some of the terminals in the power control zone to the non-power control zone, and perform step 304;
  • the second preset load threshold may be a value set by the user according to actual experience.
  • the second preset load threshold may be set to 85%.
  • Step 304 If the load of the system is less than the third preset load threshold, stop switching some of the terminals in the power control zone to the non-power control zone, and perform step 306;
  • the third preset load threshold is a value set by the user according to actual experience.
  • the third preset load threshold may be 75%.
  • Step 305 if the load of the system is greater than the second preset load threshold, then all the terminals in the power control zone are switched to the non-power control zone, and step 306 is performed;
  • step 303 and step 304 are adopted; or all the terminals in the power control area are switched to the non-power control area, that is, the method of step 305 is adopted.
  • Step 306 Simultaneously reduce the transmit power of the downlink data subcarrier and the downlink pilot subcarrier of all terminals in the power control zone according to the power reduction range.
  • a common pilot area is used in a downlink subframe to divide a power control area and a non-power control area, where the power control area and the non-power control area occupy the same sub-subsection.
  • the power reduction range of the power control area may be obtained by performing multiple or periodic adjustments on the power reduction range of the current power control area, that is, determining the power control area according to the power reduction range of the current power control area.
  • the power reduction range is then adjusted a plurality of times or periodically to adjust the power reduction range of the power control zone to obtain a suitable power reduction range, and then reduce the downlink of all terminals in the power control zone according to the power reduction range. Transmit power of data subcarriers and downlink pilot subcarriers.
  • the downlink data area using the common pilot is divided into different zone types by using all the subchannels, and the zones using all the subchannels are collectively referred to as the downlink all subchannels Zone Type, and the partial subchannels are used.
  • the areas are collectively referred to as the downlink sub-channel Zone Type.
  • the system can perform power control for a certain Zone Type, that is, divide the power control zone and the non-power control zone in the same Zone Type.
  • the switching between the power control zone and the non-power control zone is performed in the same Zone Type.
  • a WiMAX downlink power control method which includes:
  • the specific includes:
  • Step 400 Receive a downlink CINR on the terminal.
  • Step 401 Calculate a first modulation and coding mode according to the downlink C I NR;
  • the downlink CINR reported by the terminal is m db.
  • Step 402 Determine whether the transmission efficiency of the first modulation and coding mode is less than a first preset transmission efficiency threshold
  • the transmission efficiency of the first modulation and coding scheme is obtained according to a corresponding order of the first modulation and coding scheme, and the unit is a bit.
  • the first preset transmission efficiency threshold may be set according to the experience of the user.
  • Step 403 If the transmission efficiency of the first modulation and coding mode is less than the first preset transmission efficiency threshold, keep the terminal in the non-power control zone;
  • Step 404 If the transmission efficiency of the first modulation and coding mode is not less than the first preset transmission efficiency threshold, determine the CINR according to the terminal and the power reduction range of the current power control zone.
  • the modulation coding mode of the terminal is the second modulation coding mode, and step 405 is performed;
  • the second modulation and coding mode can be calculated according to CINRii, where Yo is the second preset value, that is, the power control zone The initial decrease in power.
  • the initial power reduction range of the power control zone is set to a second preset value, and the second preset value is a power reduction amplitude value preset by the system, which may be the same as the first preset value.
  • Step 405 Determine whether the transmission efficiency of the second modulation and coding mode is less than a first preset transmission efficiency threshold.
  • Step 406 If the transmission efficiency of the second modulation and coding mode is less than the first preset transmission efficiency threshold, maintaining the terminal in the non-power control zone;
  • Step 407 If the transmission efficiency of the second modulation and coding mode is not less than the first preset transmission efficiency threshold, calculate the load of the system according to the second modulation and coding mode, when the load of the system is lower than the first When a load threshold is preset, the terminal is switched from the non-power control area to the power control area.
  • the first preset load threshold may be a value set by the user according to actual experience.
  • the first preset load threshold may be 70%.
  • the terminal is switched from the non-power control area to the power control area, and the modulation and coding mode of the terminal in the power control area is determined to be a second modulation and coding mode.
  • the terminal When the terminal is located in the power control area, the terminal is processed, as shown in FIG. Includes:
  • Step 408 When the terminal is located in the power control zone, calculate a first modulation and coding mode according to the downlink CINR.
  • the first modulation coding mode is calculated according to the CINR.
  • Step 409 Determine whether the transmission efficiency of the first modulation and coding mode is less than a second preset transmission efficiency threshold.
  • Step 410 If the transmission efficiency of the first modulation and coding mode is not less than a second preset transmission efficiency threshold, keep the terminal in the power control zone;
  • the modulation and coding mode of the terminal of the terminal in the power control zone is the first modulation coding mode.
  • Step 412 Perform multiple or periodic adjustments on the power reduction range of the current power control area on the cornerstone of the Yo to obtain a power reduction range of the power control area in the downlink subframe.
  • the YQ is a second preset value, that is, an initial power reduction range of the power control zone, and the power of the power control zone may be obtained after performing multiple or periodic adjustments on the cornerstone of the Yo.
  • the amplitude is decreased by Y, and then the next adjustment, the result of the previous adjustment is to make multiple or periodic adjustments for the cornerstone, that is, after the initial adjustment, the power reduction range of the power control zone is Y, then the next adjustment is made.
  • the currently calculated ⁇ is taken as the initial power reduction of the power control zone, based on the Y Continuing to adjust the power reduction range of the power control area to determine the power reduction range of the new power control area.
  • Step 412 is not fixed in the sequence provided by the embodiment of the present invention and other steps, and is periodic.
  • the periodicity may be a period of 10 seconds, that is, the power reduction range of the current power control area is adjusted once every 10 seconds.
  • the description is made by taking the adjustment of the Yo as an example, and the specific steps are as follows:
  • Step 4120 Determine, in the non-power control area, the total number of terminals in which the transmission efficiency of the modulation and coding mode in the non-power control area is not less than the first preset transmission efficiency threshold, and determine the total number of terminals in the power control area. Determining, by the total number of terminals, that the transmission efficiency of the modulation and coding mode of the power control zone is not less than a third preset transmission efficiency threshold;
  • the third preset transmission efficiency threshold is set to prevent excessive users from cutting out the power control zone when the power control zone continues to reduce power, and the modulation and coding mode of the power control zone is A terminal whose transmission efficiency is not less than the third preset transmission efficiency threshold may continue to reduce a certain power and does not cut out the power control zone.
  • Step 4121 if P/Q>R, JL Yo-PowerUpStep>MinPowerDownThreshold H, adjust the power reduction range of the power control area to YQ - PowerUpStep;
  • R represents a threshold value
  • Yo is a second preset value, that is, an initial power reduction amplitude of the power control zone
  • PowerUpSte represents a power rise step
  • MinPowerDownThreshold represents a power control zone power minimum drop threshold
  • the PowerUpStep indicates a power step, for example, a PowerUpStep can be set to ldb.
  • the MinPowerDownThreshold indicates a minimum power drop threshold of the power control zone.
  • the MinPowerDownThreshold can be set to 3db, and the MinPowerDownThreshold is set to reduce the transmit power of the downlink data subcarrier and the downlink pilot subcarrier of the power control zone to a certain extent.
  • the downlink data subcarrier and the downlink pilot subcarrier of the power control zone have less transmission power, and the effect of reducing interference is not obvious.
  • the P/Q>R indicates that the power amplitude of the power control zone decreases relatively, and some terminal users that can reduce power cannot enter the power control zone.
  • the R represents a threshold value which can be set according to an empirical value, for example, R can be set to 1.5.
  • Step 4122 If P/Q>R, JL Yo-PowerUpStep ⁇ MinPowerDownThreshold H, the power reduction range of the power control zone is not adjusted;
  • Step 4123 if P/Q ⁇ T, N/Q>S, and the load of the system is less than the first preset load threshold, recalculate the load of the system according to Yo+PowerUpStep, where T represents a gate. Limit, S represents a threshold;
  • the P/Q ⁇ T, N/Q>S indicates that the power reduction range of the power control zone is relatively small, and the power amplitude of the power control zone may continue to decrease.
  • the T may be 0.3, and the T ⁇ R.
  • the S may be 0.7. There is no direct relationship between the S and the R and the T.
  • the Yo+PowerUpS tep is a power reduction range of the power control zone, and the system re-estimates the modulation coding mode of the power control zone according to the power reduction range of the power control zone, and estimates the system load.
  • Step 4124 When the recalculated load of the system is not less than the first preset load threshold, the power reduction range of the power control zone is not adjusted;
  • Step 4125 When the load of the recalculated system is less than the first preset load threshold, adjust a power reduction range of the power control zone to be Yo+PowerUpStep;
  • the method further includes:
  • Step 413 When the load of the system is greater than the second preset load threshold, switch part of the terminal or all terminals from the power control area to the non-power control area;
  • the terminal may adopt a lower modulation and coding scheme in the power control area, in order to meet its QoS (Quality of Service) requirements, the system may allocate more resources to it, which may cause system load. Higher, so when the load is high, consider some terminal or All terminals cut out the power control area to reduce the load on the system and accommodate more users.
  • the switching of the part terminal or all the terminals from the power control area to the non-power control area may adopt any one of the following methods:
  • a part of the terminal is switched from the power control area to the non-power control area:
  • the second preset load threshold may be a value set by the user according to actual experience.
  • the second preset load threshold may be 85%.
  • the specific terminal in the power control zone may be stopped from being switched to the non-power control zone;
  • the third preset load threshold is a value set by the user according to actual experience.
  • the third preset load threshold may be 75%.
  • Step 414 Decrease the transmit power of the downlink data subcarrier and the downlink pilot subcarrier of all terminals in the power control zone according to the power reduction range.
  • the method for reducing the transmit power of the downlink data subcarrier and the downlink pilot subcarrier of all the terminals in the power control zone and the downlink data subcarrier used in step 306 used in step 306 to reduce the downlink data subcarriers in all the terminals in the power control zone The method is the same as the transmission power of the downlink pilot subcarrier. Further, the non-power control zones of the respective cells perform power transmission on different time domains.
  • the solution provided by the embodiment of the present invention is to reduce the transmit power of the downlink data subcarrier and the downlink pilot subcarrier of all the terminals in the power control zone, and the downlink data of all the terminals is not lowered in the non-power control zone.
  • the transmission power of the carrier and the downlink pilot subcarrier therefore, the interference of the non-power control zone between the respective cells may be higher.
  • the power reduction area of the power control area in the downlink subframe may be statically determined and dynamically determined, and the non-power control area of each cell is in different time domains. Power transmission is performed on it.
  • the non-power control area of the partial cell may be placed on the left side of the Zone Type, and the non-power control area of the partial cell may be placed on the right side of the Zone Type.
  • the common pilot data area of all subchannels is divided into a non-power control area and a power control area, and in the adjacent two cells Cel1, the non-power control area of Cel l A Located on the left side of the power control area, the non-power control area in Cel l B is located on the right side of the power control area, that is, the non-power control areas of Cel l A and Ce ll B transmit downlink data in different time domains. Carrier and downlink pilot subcarriers.
  • the terminal that meets the handover condition is determined according to the downlink CINR and the power reduction range reported by the terminal, and the terminal is switched to the power control zone, and then the power control zone is decreased according to the power reduction range.
  • the solution provided in the embodiment of the present invention can reduce the transmit power of the downlink data subcarrier and the downlink pilot subcarrier of the power control zone at the same time, thereby reducing interference between cells, by using the non-power control zone of each cell
  • the time domain is staggered, and the interference of the non-power control zone is also reduced, so that the effect of the power control is good.
  • Example 3 The embodiment of the present invention provides a device for WiMAX downlink power control.
  • the device for the WiMAX downlink power control includes: a first execution unit 501, a first switching unit 502, a control unit 503, and a second switching unit 504. Processing unit 505, third switching unit 506.
  • the first executing unit 501 is configured to divide a power control zone in the downlink subframe, and determine a power reduction range of the power control zone, where the power control zone uses a common pilot, and the power control zone and the downlink subframe The non-power control area in the middle occupies the same subchannel;
  • the first switching unit 502 is configured to determine, according to the downlink carrier-to-interference ratio CINR and the power reduction range reported by the terminal, whether the terminal can switch to the power control zone, and switch the terminal that can be switched to the power control zone to the Power control zone
  • the control unit 503 is configured to simultaneously reduce the transmit power of the downlink data subcarrier and the downlink pilot subcarrier of all the terminals in the power control zone according to the power reduction range.
  • the functions of the first execution unit 501 and the first switching unit 502 may be implemented by two processors, or may be implemented by integrating the functions of the first execution unit 501 and the first switching unit 502 into one processor;
  • the unit can be a controller.
  • each non-power control zone may perform power transmission on different time domains.
  • the second switching unit 504 is configured to switch some of the terminals in the power control zone to the non-power control zone, when the load of the system is less than the third preset.
  • the processing unit 505 is configured to stop switching some of the terminals in the power control zone to the non-power control zone;
  • all the terminals in the power control zone may also be switched to the non-power control zone by the third switching unit 506;
  • the foregoing second switching unit 504, the processing unit 505, and the third switching unit 506 may be implemented by different processors, or may be integrated into the same processor as the first switching unit 502.
  • the first execution unit 501 includes at least one of the following modules: a setting module 5010 and an adjustment module 5011.
  • the setting module 5010 in the first execution unit 501 is configured to set the power reduction range of the power control area to a first preset value;
  • the adjustment module 5011 in the first execution unit 501 is configured to set the initial power reduction range of the power control area to a second preset value, where the second pre- On the basis of the set value, the power reduction range of the current power control zone is adjusted multiple times or periodically to obtain the power reduction range of the power control zone in the downlink subframe.
  • the adjustment module 5011 includes: a first determining submodule 601, a first adjusting submodule 602, a holding submodule 603, and a second adjusting submodule 604.
  • the first determining sub-module 601 is configured to determine the total number of terminals P of the modulation coding mode in the non-power control zone that is not less than the first preset transmission efficiency threshold, and determine the total number of terminals Q of the power control zone, and determine The transmission efficiency of the modulation and coding mode of the power control zone is not less than the total number of terminals N of the third preset transmission efficiency threshold;
  • the first adjustment submodule 602 is used if P/Q>R, JL Yo-PowerUpS tep>
  • R is a threshold
  • PowerUpS tep is the power step
  • MinPowerDownThresho ld is the minimum power down threshold of the power control zone
  • Yo is the second preset value, that is, the initial power reduction of the power control zone; 5 ⁇
  • R can be set to 1. 5.
  • a second adjustment sub-module 604 configured to recalculate the load of the system according to Yo+PowerUpS tep if P/Q ⁇ T, N/Q>S, and the load of the system is less than the first preset load threshold Where T is a threshold value and S is a threshold value; when the recalculated load of the system is not less than the first preset load threshold, the power control zone is not adjusted The power reduction range; when the load of the recalculated system is less than the first preset load threshold, adjust the The power reduction of the power control zone is Yo+PowerUpStep.
  • the T may be 0.3, and the T ⁇ R.
  • the S may be 0.7. There is no direct relationship between the S and the R and the T.
  • the first switching unit 502 includes: a receiving module 5020, a first switching processing module 5021, and a second switching processing module 5022.
  • the receiving module 5020 is configured to receive the downlink CINR reported by the terminal, where the CINR may be m (db).
  • the first switching processing module 5021 is configured to receive according to the receiving module 802. Calculating a second modulation and coding mode by using a difference between the downlink CINR and the power reduction amplitude reported by the terminal; the power reduction amplitude is determined by the first execution unit;
  • the transmission efficiency of the second modulation and coding mode is not less than the first preset transmission efficiency threshold, calculating the load of the system according to the second modulation and coding manner; the load in the system is lower than the first preset When the threshold is loaded, the terminal is switched from the non-power control area to the power control area, and the modulation and coding mode of the terminal in the power control area is determined to be a second modulation and coding mode;
  • the second handover processing module 5022 calculates a first modulation and coding mode according to the downlink CINR reported by the terminal received by the receiving module 5020.
  • the terminal When the transmission efficiency of the first modulation and coding mode is not less than a second preset transmission efficiency threshold, maintaining the terminal in the power control zone, and determining a modulation and coding side of the terminal in the power control zone a first modulation coding mode; when the transmission efficiency of the first modulation coding mode is less than a second preset transmission efficiency threshold, the terminal is switched from the power control zone to the non-power control zone
  • the apparatus for the downlink power control of the WiMAX determines whether the terminal can switch to the power control zone according to the downlink CINR and the power reduction range reported by the terminal, and switches the terminal that can be switched to the power control zone to The power control zone then reduces the transmit power of the downlink data subcarrier and the downlink pilot subcarrier of all terminals in the power control zone according to the power reduction range.
  • the device does not reduce the transmit power of the downlink pilot subcarrier, and the device provided by the embodiment of the present invention can reduce the transmit power of the downlink data subcarrier and the downlink pilot subcarrier of the power control zone at the same time, thereby reducing the cell. Interference.
  • the method and device for the WiMAX downlink power control provided by the embodiment of the present invention can also be applied to other air interface based on the 0FDMA technology, and the area using the common pilot in the downlink subframe of the 0FDMA is divided into the power control area and the non-power control area. And then reducing the transmit power of the downlink data subcarrier and the downlink pilot subcarrier to the power control zone as a whole.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transmitters (AREA)

Abstract

本发明公开了一种WiMAX下行功控的方法及装置,涉及通信技术领域,可以同时降低部分终端的下行导频子载波和下行数据子载波的发射功率,从而减少小区之间的干扰。本发明实施例根据终端上报的下行载波干扰比CINR和功率下降幅度将能切换到功控区的终端切换到功控区,按照所述功率下降幅度同时降低所述功控区的下行数据子载波和下行导频子载波的发射功率。本发明实施例提供的WiMAX下行功控的方法及装置,还可以应用到其他空口基于OFDMA技术的制式。

Description

WiMAX下行功控的方法及装置 技术领域
本发明涉及通信技术领域, 尤其涉及 WiMAX下行功控的方法及装置。 背景技术
在 WiMax (Wor ldwide Interoperabi l i ty for Microwave Acces s, 全球微 波接入互操作性) WiMAX系统中, 如果频率资源受限时, 各个小区之间可能产 生同频干扰。 为了降低相邻小区间的干扰, 通常需要对终端进行下行功率控 制, 所述下行功率控制可以简称为下行功控。
现有技术中采用基于 Burs t (突发) 的 Power Boos t ing (功率增强)机 制进行下行功控。 当需要对一个下行 Burs t 进行功控时, 基站将所述 Burs t 的所有数据子载波抬升发射功率或者降低发射功率进行发射, 同时将所述数 据子载波抬升发射功率或者降低发射功率的值携带在所述 Burs t 的指示信息 中发送给终端。
然而, 基于 Burs t的 Power Boos t ing机制进行功控时, 不能对下行导频 子载波抬升发射功率或者降低发射功率, 不能降低导频子信道对其他基站的 干扰, 从而导致功控的效果不佳。 发明内容
本发明的实施例提供一种 WiMAX 下行功控的方法及装置, 可以同时降低 部分终端的下行导频子载波和下行数据子载波的发射功率, 从而减少小区之 间干扰。
为达到上述目的, 本发明的实施例采用如下技术方案:
一种 WiMAX下行功控的方法, 包括:
在下行子帧中划分一个功控区, 并确定所述功控区的功率下降幅度; 根据终端上报的下行载波干扰比 CINR和所述功率下降幅度判断终端能否 切换到所述功控区, 将能切换到所述功控区的终端切换到所述功控区; 按照所述功率下降幅度同时降低所述功控区中所有终端的下行数据子载 波和下行导频子载波的发射功率。
一种 WiMAX下行功控的装置, 包括:
第一执行单元, 用于在下行子帧中划分一个功控区, 并确定所述功控区 的功率下降幅度;
第一切换单元, 用于根据终端上报的下行载波干扰比 CINR和所述功率下 降幅度判断终端能否切换到所述功控区, 将能切换到所述功控区的终端切换 到所述功控区;
控制单元, 用于按照所述功率下降幅度同时降低所述功控区中所有终端 的下行数据子载波和下行导频子载波的发射功率。
本发明实施例提供的 WiMAX 下行功控的方法及装置, 通过在下行子帧中 划分一个功控区, 并确定所述功控区的功率下降幅度, 然后根据终端上报的 下行 CINR和所述功率下降幅度判断终端能否切换到所述功控区, 将能切换到 所述功控区的终端切换到所述功控区, 按照所述功率下降幅度同时降低所述 功控区中所有终端的下行数据子载波和下行导频子载波的发射功率。 与现有 技术不能对下行导频子载波抬升发射功率或者降低发射功率, 不能降低导频 子信道对其他基站的干扰相比, 利用本发明实施例中提供的方案可以同时降 低部分终端的下行导频子载波和下行数据子载波的发射功率, 从而减少小区 之间干扰。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明实施例 1提供的 WiMAX下行功控的方法的流程图; 图 2为本发明实施例 1提供的 WiMAX下行功控的装置的框图;
图 3为本发明实施例 2提供的一种 WiMAX下行功控的方法的流程图; 图 4为本发明实施例 2提供的将终端切换到所述功控区的流程图; 图 5为本发明实施例 2提供的基站对位于功控区中的终端的调度的流程 图;
图 6为本发明实施例 2提供的另一种 WiMAX下行功控的方法中所述终端 在非功控区的调度的流程图;
图 Ί为本发明实施例 2提供的另一种 WiMAX下行功控的方法中所述终端 在功控区的调度的流程图;
图 8为本发明实施例 2提供的另一种 WiMAX下行功控的方法中基站对 Y 进行周期性处理的流程图;
图 9为本发明实施例 2提供的非功控区处于不同的时域上的示意图; 图 10为本发明实施例 3提供的 WiMAX下行功控的装置的框图;
图 11为本发明实施例 3提供的调整模块的框图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而 不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作 出创造性劳动前提下所获得的所有其他实施例 , 都属于本发明保护的范围。
实施例 1
本发明实施例提供一种 WiMAX下行功控的方法, 如图 1所示, 该方法包 括:
步骤 101 , 在下行子帧中划分一个功控区, 并确定所述功控区的功率下降 幅度;
步骤 102 , 根据终端上报的下行载波干扰比 CINR和所述功率下降幅度判 断终端能否切换到所述功控区, 将能切换到所述功控区的终端切换到所述功 控区;
步骤 103 ,按照所述功率下降幅度同时降低所述功控区中所有终端的下行 数据子载波和下行导频子载波的发射功率。 为了实现上述 WiMAX下行功控的方法, 本发明还提供一种 WiMAX下行功 控的装置, 如图 2所示, 该 WiMAX下行功控的装置包括: 第一执行单元 201、 第一切换单元 202、 控制单元 203。
第一执行单元 201 , 用于在下行子帧中划分一个功控区, 并确定所述功控 区的功率下降幅度;
第一切换单元 202 , 用于根据终端上报的下行载波干扰比 CINR和所述功 率下降幅度判断终端能否切换到所述功控区, 将能切换到所述功控区的终端 切换到所述功控区;
控制单元 203 ,用于按照所述功率下降幅度同时降低所述功控区中所有终 端的下行数据子载波和下行导频子载波的发射功率。
本实施例中通过根据终端上报的下行 CINR和功率下降幅度判断终端能否 切换到所述功控区, 将能切换到所述功控区的终端切换到所述功控区, 然后 按照所述功率下降幅度降低所述功控区中所有终端的下行数据子载波和下行 导频子载波的发射功率。 与现有技术相比, 利用本发明实施例中提供的方案 可以解决只能对下行数据子载波降低发射功率, 无法对下行导频子载波降低 发射功率的问题, 实现了同时降低部分终端的下行数据子载波和下行导频子 载波的发射功率, 从而减少小区之间干扰。
实施例 2
本发明实施例提供一种应用场景为: 在下行子帧中采用公共导频的区域 划分出功控区和非功控区, 所述功控区和所述非功控区占用相同的子信道, 所述功控区的功率下降幅度静态确定, 即将所述功控区的功率下降幅度设为 一个固定值, 然后按照所述功率下降幅度降低所述功控区中所有终端的下行 数据子载波和下行导频子载波的发射功率。 下面详细介绍一种 WiMAX 下行功 控的方法, 如图 3所示, 该方法包括:
步骤 301 , 在下行子帧中划分一个功控区, 并确定所述功控区的功率下降 幅度;
所述功控区采用公共导频, 所述功控区和下行子帧中的非功控区占用相 同的子信道。 将采用公共导频的下行数据区域按照是否使用全部子信道划分 为不同的 Zone Type (区带类型), 使用全部子信道的区域统称为下行全部子 信道 Zone Type, 使用部分子信道的区域统称为下行部分子信道 Zone Type。 系统可以针对某个 Zone Type进行功控, 即在同一个 Zone Type内划分功控 区和非功控区。 功控区和非功控区的切换在同一个 Zone Type内进行。
具体地, 可以将下行子帧中的功控区的功率下降幅度确定为第一预设值 , 该第一预设值定义为 X db, 所述 X大于 0, 例如, 确定下行子帧中的功控区 的功率下降幅度为 3 db。
步骤 302 , 根据终端上报的下行 CINR和所述功率下降幅度判断终端能否 切换到所述功控区, 将能切换到所述功控区的终端切换到所述功控区;
如图 4所示, 步骤 302具体可以由以下子步骤完成:
步骤 3020, 接收终端上报的下行 CINR;
可以^没终端上 的下行 CINR为 m db。
步骤 3021 , 当所述终端位于非功控区时,根据所述下行 CINR与所述功率 下降幅度的差值计算出第二调制编码方式;
当终端位于非功控区时, 根据下行 CINR与所述功率下降幅度的差值计算 出第二调制编码方式, 即假设 CINRn=m-X (db) , 根据 CINRii计算出第二调制 编码方式。 所述第二调制编码方式可以根据由自适应调制编码算法计算得出。 所述自适应调制编码算法 ( Adapt ive Modulat ion and Coding ), 可以使系统 能够通过改变编码方式和调制阶数对链路变化进行自适应跟踪。 无线信道的 一个很重要的特点就是具有很强的时变性, 短时间衰落可以达到十几分贝甚 至几十分贝。 对这种时变特性进行自适应跟踪会给系统性能的改善带来^ [艮大 的好处。
步骤 3022 , 判断所述第二调制编码方式的传输效率是否小于第一预设的 传输效率门限值;
步骤 3023 , 如果所述第二调制编码方式的传输效率小于第一预设调制的 传输效率门限值, 则保持所述终端在所述非功控区; 进一步地,在所述非功控区的终端采用的调制编码方式可以根据 C INRi2=m ( db )计算得出。
步骤 3024 , 如果所述第二调制编码方式的传输效率不小于第一预设的传 输效率门限值, 则根据所述第二调制编码方式计算系统的负荷;
系统的负荷可以根据业务流的属性、 调制编码方式等计算得出。
步骤 3025 , 如果所述系统的负荷低于第一预设负荷门限值, 则将所述终 端从非功控区切换到功控区;
所述第一预设负荷门限值可以是用户根据实际经验设置的一个值, 例如 第一预设负荷门限值可以为 70%。
进一步地, 将所述终端从非功控区切换到功控区, 并确定该终端在功控 区的调制编码方式为第二调制编码方式。
需要说明的是, 上述步骤 3023与步骤 3024执行时并无先后顺序。
上述步骤 3021-步骤 3025为终端位于非功控区时, 基站对终端的处理。 下面的步骤 3026-步骤 3029为终端位于功控区时, 基站对终端的处理, 如图 5所示。
步骤 3020 , 接收终端上报的下行 CINR;
步骤 3026 , 当所述终端位于功控区时, 根据所述下行 C INR计算出第一调 制编码方式;
具体地, 假设终端上报的下行 CINR为 m db , 根据 C I NR2i=m (db)计算出 第一调制编码方式。
步骤 3027 , 判断所述第一调制编码方式的传输效率是否小于第二预设的 传输效率门限值;
步骤 3028 , 如果所述第一调制编码方式的传输效率不小于第二预设的传 输效率门限值, 则保持所述终端在所述功控区;
进一步地, 所述保持在功控区的终端采用的调制编码方式为第一调制编 码方式。
步骤 3029 , 如果所述第一调制编码方式的传输效率小于第二预设的传输 效率门限值, 则将所述终端从所述功控区切换到所述非功控区;
将所述终端从所述功控区切换到所述非功控区后, 所述终端采用的调制 编码方式可以根据 CINR22=m+X (db)计算得出。
需要说明的是, 上述步骤 3028和 3029在执行时没有先后顺序。
可选地, 在步骤 302之后可以进一步包括:
步骤 303 , 如果系统的负荷大于第二预设负荷门限值, 则将所述功控区中 的部分终端切换到所述非功控区, 并执行步骤 304;
所述第二预设负荷门限值可以是用户根据实际经验设置的一个值, 例如 第二预设负荷门限值可以设置为 85%。
进一步地, 将所述终端切换到所述非功控区时采用的调制编码方式可以 根据 CINR22=m+X (db)计算得出。
步骤 304 , 如果系统的负荷小于第三预设负荷门限值, 则停止将所述功控 区中的部分终端切换到所述非功控区, 并执行步骤 306 ;
所述第三预设负荷门限值是用户根据实际经验设置的一个值, 例如第三 预设负荷门限值可以为 75%。
例如: 当系统的负荷大于 85%时, 将功控区中部分终端切换到非功控区, 当系统的负荷降低到 75%时, 停止将功控区中的部分终端切换到非功控区。
步骤 305 , 如果系统的负荷大于所述第二预设负荷门限值, 则将所述功控 区中全部终端切换到所述非功控区, 并执行步骤 306;
进一步地, 根据终端在功控区上报的下行 CINR=m (db) , 根据 CINR22=m+X (db)计算出上述终端切换到所述非功控区后采用的调制编码方式。
当系统的负荷大于所述第二预设负荷门限值时, 可以考虑将所述功控区 中的部分终端切换到所述非功控区, 其余的终端仍然保留在所述功控区, 即 采用步骤 303、 步骤 304的方式; 或者可以考虑将所述功控区中的全部终端切 换到所述非功控区, 即采用步骤 305的方式。
步骤 306 ,按照所述功率下降幅度同时降低所述功控区中所有终端的下行 数据子载波和下行导频子载波的发射功率。 本发明实施例提供另一种应用场景为: 在下行子帧中采用公共导频的区 域划分出功控区和非功控区, 所述功控区和所述非功控区占用相同的子信道, 所述功控区的功率下降幅度可以根据对当前功控区的功率下降幅度进行多次 或周期调整得出, 即先根据所述当前功控区的功率下降幅度确定所述功控区 的功率下降幅度, 然后经过多次或周期性对所述功控区的功率下降幅度进行 调整, 得到一个合适的功率下降幅度, 然后按照该功率下降幅度降低所述功 控区中所有终端的下行数据子载波和下行导频子载波的发射功率。
需要说明的是, 将采用公共导频的下行数据区域按照是否使用全部子信 道划分为不同的区带类型 Zone Type , 使用全部子信道的区域统称为下行全部 子信道 Zone Type, 使用部分子信道的区域统称为下行部分子信道 Zone Type。 系统可以针对某个 Zone Type进行功控, 即在同一个 Zone Type内划分功控 区和非功控区。 功控区和非功控区的切换在同一个 Zone Type 内进行。 下面 详细介绍一种 WiMAX下行功控的方法, 该方法包括:
如图 6所示, 具体包括:
步骤 400, 接收终端上 的下行 CINR;
步骤 401 , 根据所述下行 C I NR计算出第一调制编码方式;
假设终端上报的下行 CINR为 m db。当所述功控区没有终端时,按照 CINR= m ( db )计算出第一调制编码方式。
步骤 402 ,判断第一调制编码方式的传输效率是否小于第一预设的传输效 率门限值;
所述第一调制编码方式的传输效率根据所述第一调制编码方式的对应阶 数获得, 其单位为比特。
所述第一预设的传输效率门限值可以根据用户的经验设置。
步骤 403 ,如果所述第一调制编码方式的传输效率小于第一预设的传输效 率门限值, 则保持所述终端在所述非功控区;
步骤 404 ,如果所述第一调制编码方式的传输效率不小于第一预设的传输 效率门限值, 则根据终端上报的 CINR和当前功控区的功率下降幅度确定所述 终端的调制编码方式为第二调制编码方式, 并执行步骤 405 ;
上述步骤 404中, 令 CINRii =CINR- Yo ( db ) =m - Yo ( db ), 所述第二调 制编码方式可以根据 CINRii计算得出, 其中 Yo为第二预设值, 即功控区的功 率初始下降幅度。
将功控区的功率初始下降幅度设置为第二预设值, 所述第二预设值为系 统预设的一个功率下降幅度值, 可以与所述第一预设值相同。 所述 YQ为第二 预设值, 因为多次或周期地在所述 Yo基石出上对当前功控区的功率下降幅度进 行调整, 可以获得调整后的当前功控区的功率下降幅度 Y , 所以在下一次算 CINRn时,可以将目前计算出的 Y当^!功控区的功率初始下降幅度, 即 CINRii =CINR- Y ( db ) =m - Y ( db )。
需要说明的是, 上述步骤 403和 404在执行时没有先后顺序。
步骤 405 ,判断所述第二调制编码方式的传输效率是否小于第一预设的传 输效率门限值;
步骤 406 ,如果所述第二调制编码方式的传输效率小于第一预设的传输效 率门限值, 则保持所述终端在所述非功控区;
进一步地, 终端在所述非功控区采用的调制编码方式可以按照 CINR=m ( db )计算得出。
步骤 407 ,如果所述第二调制编码方式的传输效率不小于第一预设的传输 效率门限值, 则根据所述第二调制编码方式计算系统的负荷, 当所述系统的 负荷低于第一预设负荷门限值时, 将所述终端从所述非功控区切换到所述功 控区。
所述第一预设负荷门限值可以是用户根据实际经验设置的一个值, 例如 第一预设负荷门限值可以为 70%。
进一步地, 将所述终端从所述非功控区切换到所述功控区, 并确定该终 端在所述功控区的调制编码方式为第二调制编码方式。
需要说明的是, 上述步骤 406和 407在执行时没有先后顺序。
当所述终端位于所述功控区时, 对所述终端做处理, 如图 7 所示, 具体 包括:
步骤 408 , 当所述终端位于所述功控区时, 根据所述下行 CINR计算出第 一调制编码方式;
具体地, 假设终端上报的下行 CINR=m db, 根据 CINR计算出第一调制编 码方式。
步骤 409 ,判断所述第一调制编码方式的传输效率是否小于第二预设的传 输效率门限值;
步骤 410,如果所述第一调制编码方式的传输效率不小于第二预设的传输 效率门限值, 保持所述终端在所述功控区;
进一步地, 保持终端在所述功控区的终端的调制编码方式为第一调制编 码方式。
步骤 411 ,如果所述第一调制编码方式的传输效率小于第二预设的传输效 率门限值时,将所述终端从所述功控区切换到所述非功控区,并执行步骤 412; 将所述终端从所述功控区切换到所述非功控区后, 终端采用的调制编码 方式按照 CINR22=m+Yo (db)计算得出, 所述 Υο为第二预设值, 即功控区的功 率初始下降幅度, 因为多次或周期地在所述 Υο基石出上对当前功控区的功率下 降幅度进行调整, 可以获得调整后的当前功控区的功率下降幅度 Υ, 所以在下 一次算 CINRii时,可以将目前计算出的 Y当做功控区的功率初始下降幅度, 即 CINR22=m+Y (db)。
需要说明的是, 上述步骤 410和 411在执行时没有先后顺序。
步骤 412 , 在所述 Yo的基石出上对当前功控区的功率下降幅度进行多次或 周期调整得出下行子帧中的功控区的功率下降幅度;
需要说明的是, 所述 YQ为第二预设值, 即功控区的功率初始下降幅度, 可以在所述 Yo的基石出上进行多次或周期性调整后得到所述功控区的功率下降 幅度 Y, 然后下一次调整时, 则以上一次调整后的结果为基石出进行多次或周期 性调整, 即, 初次调整后所述功控区的功率下降幅度为 Y, 则下一次进行调整 时, 将目前计算出的 γ 当做功控区的功率初始下降幅度, 在所述 Y的基础上 继续对功控区的功率下降幅度进行调整, 以确定新的功控区的功率下降幅度, 步骤 412 在本发明实施例提供的方案中与其他各个步骤之间的顺序不是固定 的, 以周期性调整为例, 所述周期性可以是以 10 秒为一个周期, 即每隔 10 秒对所述当前功控区的功率下降幅度进行一次调整。 如图 8 所示, 以对所述 Yo进行调整为例进行描述, 具体地步骤如下:
步骤 4120, 在所述非功控区中确定非功控区中调制编码方式的传输效率 不小于第一预设的传输效率门限值的终端总数 Ρ,确定所述功控区的终端总数 Q , 确定所述功控区的调制编码方式的传输效率不小于第三预设的传输效率门 限值的终端总数 Ν;
所述第三预设的传输效率门限值的设置是为了在对所述功控区继续降功 率时, 防止过多用户切出所述功控区, 所述功控区的调制编码方式的传输效 率不小于第三预设的传输效率门限值的终端可以继续降一定的功率且不会切 出功控区
步骤 4121,如果 P/Q>R, JL Yo-PowerUpStep>MinPowerDownThreshold H, 则调整所述功控区的功率下降幅度为 YQ - PowerUpStep;
其中, R表示一个门限值, Yo为第二预设值, 即功控区的功率初始下降幅 度 PowerUpSte 表示功率上升步长, MinPowerDownThreshold表示功控区功率 最小下降门限;
所述 PowerUpStep表示功率上升步长,例如可以设置 PowerUpStep为 ldb。 所述 MinPowerDownThreshold表示功控区功率最小下降门限, 例如可以设置 MinPowerDownThreshold为 3db, 设置 MinPowerDownThreshold是为了使所述 功控区的下行数据子载波和下行导频子载波的发射功率有一定程度的下降, 如果所述功控区的下行数据子载波和下行导频子载波的发射功率下降较少, 则降低干扰的作用不明显。
所述 P/Q>R, 表示所述功控区的功率幅度下降的比较大, 导致部分可以降 功率的终端用户不能进入所述功控区。 所述 R表示一个门限值, 可以根据经 验值设定, 例如, R可以设置为 1.5。 进一步地, 根据终端上报的下行 CINR, 按照调整后的下行子帧中的功控 区的功率下降幅度重新计算出所述功控区终端的调制编码方式并应用, 即按 照 CINR=m+PowerUpStep (db) 重新计算出所述功控区终端的调制编码方式。
步骤 4122 ,如果 P/Q>R, JL Yo-PowerUpStep<MinPowerDownThreshold H, 则不调整所述功控区的功率下降幅度;
步骤 4123 , 如果 P/Q<T、 N/Q>S , 且系统的负荷小于所述第一预设负荷门 限值时, 根据 Yo+PowerUpStep重新计算出系统的负荷, 其中, T表示一个门 限值, S表示一个门限值;
所述 P/Q<T, N/Q>S , 表示所述功控区的功率下降幅度比较小, 还可以继 续下降所述功控区的功率幅度。 所述 T可以为 0. 3 , 所述 T<R。 所述 S可以为 0. 7。 所述 S与所述 R、 所述 T之间没有直接关系。
具体地, 所述 Yo+PowerUpS tep为所述功控区的功率下降幅度, 系统根据 所述功控区的功率下降幅度重新估算所述功控区的调制编码方式, 并估算系 统的负荷。
步骤 4124 , 在所述重新计算出的所述系统的负荷不小于所述第一预设负 荷门限值时, 不调整所述功控区的功率下降幅度;
步骤 4125 , 在所述重新计算出的系统的负荷小于所述第一预设负荷门限 值时, 调整所述功控区的功率下降幅度为 Yo+PowerUpStep;
进一步地, 根据终端上报的下行 CINR, 按照调整后的下行子帧中的功控 区的功率下降幅度重新计算出所述功控区终端的调制编码方式并应用, 即按 照 CINR=m+ Yo (db) 重新计算出位于功控区中终端的调制编码方式。
可选地, 在上述步骤 410或 411之后进一步包括:
步骤 413 , 当系统的负荷大于第二预设负荷门限值时, 将部分终端或者全 部终端从所述功控区切换到所述非功控区;
由于终端在功控区可能采用了较低的调制编码方式, 为了满足其 QoS ( Qua l i ty of Servi ce, 服务质量)要求, 系统可能为其分配了更多的资源, 从而可能会造成系统负荷较高, 因此在负荷高的时候可以考虑将部分终端或 者全部终端切出功控区, 以降低系统的负荷, 接纳更多的用户。 所述将部分 终端或者全部终端从所述功控区切换到所述非功控区即可以采用以下任一种 方式:
方式一, 将部分终端从所述功控区切换到所述非功控区:
当系统的负荷大于第二预设负荷门限值时, 将所述功控区中的部分终端 切换到所述非功控区;
所述第二预设负荷门限值可以是用户根据实际经验设置的一个值, 例如 第二预设负荷门限值可以为 85%。
进一步地, 所述部分终端从所述功控区切换到所述非功控区采用的调制 编码方式可以按照 C INR=m + Yo (db)计算得出。
当系统的负荷小于第三预设负荷门限值时, 可以停止将所述功控区中的 所述特定终端切换到所述非功控区;
所述第三预设负荷门限值是用户根据实际经验设置的一个值, 例如第三 预设负荷门限值可以为 75%。
例如: 当系统的负荷大于 85%时, 将所述功控区中部分终端切换到所述非 功控区, 当系统的负荷降低到 75%时,停止将所述功控区中的特定终端切换到 所述非功控区。
方式二, 将全部终端从所述功控区切换到所述非功控区:
当系统的负荷大于所述第二预设负荷门限值时, 将所述功控区中全部终 端切换到所述非功控区。
进一步地, 所述将全部终端从所述功控区切换到所述非功控区时采用的 调制编码方式按照 C INR=m + Yo (db)计算得出。
步骤 414 ,按照所述功率下降幅度降低所述功控区中所有终端的下行数据 子载波和下行导频子载波的发射功率。
步骤 414 中采用的降低所述功控区中所有终端的下行数据子载波和下行 导频子载波的发射功率的方法和步骤 306 中采用的降低所述功控区中所有终 端的下行数据子载波和下行导频子载波的发射功率的方法相同。 进一步地, 将各个小区的非功控区在不同的时域上进行功率发射。 由于 本发明实施例提供的方案是在所述功控区降低所有终端的下行数据子载波和 下行导频子载波的发射功率, 而在所述非功控区是未降低所有终端的下行数 据子载波和下行导频子载波的发射功率, 因此, 在各个小区间的所述非功控 区的干扰可能会较高。 为了降低所述非功控区的干扰, 可以在下行子帧中的 功控区的功率下降幅度静态确定和动态确定两种场景中, 将各个小区的所述 非功控区在不同的时域上进行功率发射。
具体地, 可以将部分小区的所述非功控区放在 Zone Type 的左侧, 将部 分小区的所述非功控区放在 Zone Type的右侧。 如图 9所示, 将下行使用全 部子信道的公共导频数据区划分为非功控区和功控区, 在相邻的两个小区 Cel l 中, Cel l A的所述非功控区位于所述功控区的左边, Cel l B中的所述 非功控区位于功控区的右边, 即 Cel l A 和 Ce l l B的非功控区在不同的时域 上发射下行数据子载波和下行导频子载波。
非功控区放在 Zone Type的左侧或者放在 Zone Type的右侧, 可以由网 规员根据干扰的具体情况配置确定, 或者可以由算法确定。 例如根据基站编 号 BSID和扇区号 Segment Number来确定: Segment Number=0的 Cel l的非功 控区放在 Zone Type的左侧, Segment Number=l的 Cel l的非功控区放在 Zone Type的右侧; Segment Number=2的 Cel l , 如果 BS ID为奇数, 则非功控区放 在 Zone Type的左侧, 如果 BSID为偶数, 则非功控区放在 Zone Type的右侧。
本实施例中通过根据终端上报的下行 CINR和功率下降幅度来确定满足切 换条件的终端, 并将所述终端切换到所述功控区, 然后按照所述功率下降幅 度降低所述功控区中所有终端的下行数据子载波和下行导频子载波的发射功 率。 利用本发明实施例中提供的方案可以实现同时降低功控区的下行数据子 载波和下行导频子载波的发射功率, 从而减少小区之间干扰, 通过将各个小 区的所述非功控区在时域上错开, 同时也降低了所述非功控区的干扰, 使功 控的效果很好。
实施例 3 本发明实施例提供一种 WiMAX下行功控的装置如图 10所示, 该 WiMAX下 行功控的装置包括: 第一执行单元 501、 第一切换单元 502、 控制单元 503、 第二切换单元 504、 处理单元 505、 第三切换单元 506。
第一执行单元 501 , 用于在下行子帧中划分一个功控区, 并确定所述功控 区的功率下降幅度, 所述功控区采用公共导频, 所述功控区和下行子帧中的 非功控区占用相同的子信道;
第一切换单元 502 , 用于根据终端上报的下行载波干扰比 CINR和所述功 率下降幅度判断终端能否切换到所述功控区, 将能切换到所述功控区的终端 切换到所述功控区;
控制单元 503 ,用于按照所述功率下降幅度同时降低所述功控区中所有终 端的下行数据子载波和下行导频子载波的发射功率。
上述第一执行单元 501和第一切换单元 502的功能可以由两个处理器来 实现, 也可以将第一执行单元 501和第一切换单元 502的功能集成在一个处 理器中来实现; 上述控制单元可以是一个控制器。
进一步地, 为了降低所述非功控区的干扰, 可以将各个非功控区在不同 的时域上进行功率发射。
当系统的负荷大于第二预设负荷门限值时, 第二切换单元 504 用于将所 述功控区中的部分终端切换到所述非功控区, 当系统的负荷小于第三预设负 荷门限值时, 处理单元 505 用于停止将所述功控区中的部分终端切换到所述 非功控区;
当系统的负荷大于第二预设负荷门限值时, 也可以由第三切换单元 506 将所述功控区中全部终端切换到所述非功控区;
上述第二切换单元 504 ,处理单元 505和第三切换单元 506可以分别由不 同的处理器来实现, 也可以与上述第一切换单元 502 集成在一个相同的处理 器中。
具体地, 第一执行单元 501包括以下至少一种模块: 设置模块 5010、 调 整模块 5011。 当下行子帧中的功控区的功率下降幅度静态确定时, 第一执行单元 501 中的设置模块 501 0用于将所述功控区的功率下降幅度设为第一预设值; 当下 行子帧中的功控区的功率下降幅度动态确定时, 第一执行单元 501 中的调整 模块 5011用于将功控区的功率初始下降幅度设置为第二预设值, 在所述第二 预设值的基础上对当前功控区的功率下降幅度进行多次或周期调整得出下行 子帧中的所述功控区的功率下降幅度。
当下行子帧中的功控区的功率下降幅度采用动态确定时, 还需要基站对 Yo进行周期性的处理, 其中, 所述 Υο表示第二预设值, 即功控区的功率初始 下降幅度 所述 WiMAX下行功控的装置中, 如图 11所示, 所述调整模块 501 1 包括: 第一确定子模块 601、 第一调整子模块 602、 保持子模块 603、 第二调 整子模块 604。
第一确定子模块 601 ,用于确定非功控区中调制编码方式的传输效率不小 于第一预设的传输效率门限值的终端总数 P, 确定所述功控区的终端总数 Q, 确定所述功控区的调制编码方式的传输效率不小于第三预设的传输效率门限 值的终端总数 N;
第一调整子模块 602 , 用于如果 P/Q>R, JL Yo-PowerUpS tep>
MinPowerDownThresho l d 时, 调整所述功控区的功率下降幅度为 Yo-PowerUpS tep;
其中, R 表示一个门限值, PowerUpS tep 表示功率上升步长, MinPowerDownThresho ld表示功控区功率最小下降门限, Yo为第二预设值, 即 功控区的功率初始下降幅度; 所述 R可以根据经验值设定, 例如, R可以设置 为 1. 5。
第二调整子模块 604 , 用于如果 P/Q<T , N/Q>S , 且系统的负荷小于所述 第一预设负荷门限值时,根据 Yo+PowerUpS tep重新计算出系统的负荷,其中, T表示一个门限值, S表示一个门限值; 在所述重新计算出的所述系统的负 荷不小于所述第一预设负荷门限值时, 不调整所述功控区的功率下降幅度; 在所述重新计算出的系统的负荷小于所述第一预设负荷门限值时, 调整所述 功控区的功率下降幅度为 Yo+PowerUpStep。
保持子模块 603 , 用于当 P/Q>R, 且
Yo-PowerUpStep<MinPowerDownThreshold 时, 不调整所述功控区的功率 下降幅度;
需要说明的是, 如果不满足所述 P/Q>R, 且 Yo-PowerUpStep>
MinPowerDownThreshold, 和所述 P/Q<T, N/Q>S , 且系统的负荷小于所述第一 预设负荷门限值时, 都不需要调整所述功控区的功率下降幅度。 所述 T 可以 为 0. 3 , 所述 T<R。 所述 S可以为 0. 7。 所述 S与所述 R、 所述 T之间没有直 接关系。
具体地 ,第一切换单元 502包括:接收模块 5020、第一切换处理模块 5021、 第二切换处理模块 5022。
接收模块 5020, 用于接收终端上报的下行 CINR, 该 CINR可以为 m (db); 当所述终端位于所述非功控区时, 第一切换处理模块 5021用于根据接收 模块 802接收的所述终端上报的所述下行 CINR与所述功率下降幅度的差值计 算出第二调制编码方式; 所述功率下降幅度由第一执行单元确定;
判断所述第二调制编码方式的传输效率是否小于第一预设的传输效率门 限值; 在所述第二调制编码方式的传输效率小于第一预设的传输效率门限值 时, 保持所述终端在所述非功控区, 所述终端采用的调制编码方式按照 CINR=m (db)计算得出;
在所述第二调制编码方式的传输效率不小于第一预设的传输效率门限值 时, 根据所述第二调制编码方式计算系统的负荷; 在所述系统的负荷低于第 一预设负荷门限值时, 将所述终端从所述非功控区切换到所述功控区, 并确 定该终端在所述功控区的调制编码方式为第二调制编码方式;
当所述终端位于所述功控区时, 第二切换处理模块 5022 根据接收模块 5020接收的所述终端上报的所述下行 CINR计算出第一调制编码方式;
在所述第一调制编码方式的传输效率不小于第二预设的传输效率门限值 时, 保持所述终端在所述功控区, 并确定该终端在所述功控区的调制编码方 式为第一调制编码方式; 在所述第一调制编码方式的传输效率小于第二预设 的传输效率门限值时, 将所述终端从所述功控区切换到所述非功控区, 所述 终端采用的调制编码方式按照 CINR=m+X (db)计算得出。
本发明实施例提供的 WiMAX 下行功控的装置, 通过根据终端上报的下行 CINR和功率下降幅度来判断终端能否切换到所述功控区, 将能切换到所述功 控区的终端切换到所述功控区, 然后按照所述功率下降幅度降低所述功控区 中所有终端的下行数据子载波和下行导频子载波的发射功率。 与现有技术不 能降低下行导频子载波的发射功率相比, 本发明实施例提供的装置可以实现 同时降低功控区的下行数据子载波和下行导频子载波的发射功率, 从而减少 小区之间干扰。
本发明实施例提供的 WiMAX 下行功控的方法及装置, 还可以应用到其他 空口基于 0FDMA技术的制式, 将 0FDMA的下行子帧中使用公共导频的区域划 分为功控区和非功控区, 然后对所述功控区整体降低下行数据子载波和下行 导频子载波的发射功率。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应所述以权利要求的保护范围为准。

Claims

权利 要求 书
1、 一种 WiMAX下行功控的方法, 其特征在于, 包括:
在下行子帧中划分一个功控区, 并确定所述功控区的功率下降幅度; 根据终端上报的下行载波干扰比 CINR和所述功率下降幅度判断终端能否切 换到所述功控区, 将能切换到所述功控区的终端切换到所述功控区;
按照所述功率下降幅度同时降低所述功控区中所有终端的下行数据子载波 和下行导频子载波的发射功率。
2、 根据权利要求 1所述的 WiMAX下行功控的方法, 其特征在于, 所述将能 切换到所述功控区的终端切换到所述功控区包括:
接收终端上报的下行 CINR;
当所述终端位于所述非功控区时, 根据所述下行 CINR与所述功率下降幅度 的差值计算出第二调制编码方式; 如果所述第二调制编码方式的传输效率不小 于第一预设的传输效率门限值, 则将所述终端从所述非功控区切换到所述功控 区。
3、 根据权利要求 2所述的 WiMAX下行功控的方法, 其特征在于, 将所述终 端从所述非功控区切换到所述功控区之前还包括:
根据所述第二调制编码方式计算系统的负荷, 在所述系统的负荷低于第一 预设负荷门限值时, 将所述终端从所述非功控区切换到所述功控区。
4、根据权利要求 1-3中任一项所述的 WiMAX下行功控的方法,其特征在于, 所述方法还包括:
当所述终端位于所述功控区时, 根据所述下行 CINR计算出第一调制编码方 式; 如果所述第一调制编码方式的传输效率不小于第二预设的传输效率门限值, 则保持所述终端在所述功控区。
5、根据权利要求 1-4中任一项所述的 WiMAX下行功控的方法,其特征在于, 所述确定所述下行子帧中的功控区的功率下降幅度包括:
将所述功控区的功率下降幅度设为第一预设值; 或者,
将功控区的功率初始下降幅度设置为第二预设值, 在所述第二预设值的基 础上对当前功控区的功率下降幅度进行多次或周期调整得到所述功控区的功率 下降幅度。
6、 根据权利要求 5所述的 WiMAX下行功控的方法, 其特征在于, 所述在所 述第二预设值的基础上对当前功控区的功率下降幅度进行多次或周期调整得到 所述功控区的功率下降幅度包括:
确定非功控区中调制编码方式的传输效率不小于第一预设的传输效率门限 值的终端总数 P; 确定所述功控区的终端总数 Q; 确定所述功控区的调制编码方 式的传输效率不小于第三预设的传输效率门限值的终端总数 N;
:¾口果 P/Q>R, JL Yo-PowerUpStep>MinPowerDownThreshold H, 贝1 J调整所述 功控区的功率下降幅度为 Υο - PowerUpStep;
其中, R 表示一个门限值, PowerUpStep 表示功率上升步长, MinPowerDownThreshold表示功控区功率最小下降门限, Υο为第二预设值, 即功 控区的功率初始下降幅度;
:¾口果 P/Q>R, JL Yo-PowerUpStep<MinPowerDownThreshold H, 贝1 J不调整所 述功控区的功率下降幅度;
如果 P/Q<T, N/Q>S , 且系统的负荷小于所述第一预设负荷门限值时, 根据 Yo+PowerUpS tep重新计算出系统的负荷, 其中, T表示一个门限值, S表示一个 门限值; 在所述重新计算出的所述系统的负荷不小于所述第一预设负荷门限值 时, 不调整所述功控区的功率下降幅度; 在所述重新计算出的系统的负荷小于 所述第一预设负荷门限值时, 调整所述功控区的功率下降幅度为 Yo+PowerUpStep。
7、根据权利要求 1-6中任一项所述的 WiMAX下行功控的方法,其特征在于, 还包括:
当系统的负荷大于第二预设负荷门限值时, 将所述功控区中的部分终端切 换到所述非功控区。
8、根据权利要求 1-6中任一项所述的 WiMAX下行功控的方法,其特征在于, 还包括: 当系统的负荷小于第三预设负荷门限值时, 停止将所述功控区中的部 分终端切换到所述非功控区。
9、根据权利要求 1-6中任一项所述的 WiMAX下行功控的方法,其特征在于, 还包括:
当系统的负荷大于所述第二预设负荷门限值时, 将所述功控区中全部终端 切换到所述非功控区。
10、 根据权利要求 1-9 中任一项所述的 WiMAX下行功控的方法, 其特征在 于, 所述功控区采用公共导频, 所述功控区和下行子帧中的非功控区占用相同 的子信道。
11、 一种 WiMAX下行功控的装置, 其特征在于, 包括:
第一执行单元, 用于在下行子帧中划分一个功控区, 并确定所述功控区的 功率下降幅度;
第一切换单元, 用于根据终端上报的下行载波干扰比 CINR和所述功率下降 幅度判断终端能否切换到所述功控区, 将能切换到所述功控区的终端切换到所 述功控区;
控制单元, 用于按照所述功率下降幅度同时降低所述功控区中所有终端的 下行数据子载波和下行导频子载波的发射功率。
12、 根据权利要求 11所述的 WiMAX下行功控的装置, 其特征在于, 所述第 一切换单元包括:
接收模块, 用于接收终端上报的下行 CINR;
第一切换处理模块, 用于当所述终端位于所述非功控区时, 根据所述下行 CINR与所述功率下降幅度的差值计算出第二调制编码方式; 如果所述第二调制 编码方式的传输效率不小于第一预设的传输效率门限值, 则将所述终端从所述 非功控区切换到所述功控区。
13、 根据权利要求 12所述的 WiMAX下行功控的装置, 其特征在于, 所述第 一切换处理模块还包括:
根据所述第二调制编码方式计算系统的负荷, 在所述系统的负荷低于第一 预设负荷门限值时, 将所述终端从所述非功控区切换到所述功控区。
14、 根据权利要求 11-13 中任一项所述的 WiMAX下行功控的装置, 其特征 在于, 所述第一切换单元还包括:
第二切换处理模块,用于当所述终端位于所述功控区时,根据所述下行 C INR 计算出第一调制编码方式; 所述第一调制编码方式的传输效率不小于第二预设 的传输效率门限值, 则保持所述终端在所述功控区。
15、 根据权利要求 11-14 中任一项所述的 WiMAX下行功控的装置, 其特征 在于, 所述第一执行单元包括以下至少一种模块:
设置模块, 用于将所述功控区的功率下降幅度设为第一预设值; 或者, 调整模块, 用于将功控区的功率初始下降幅度设置为第二预设值, 在所述 第二预设值的基础上对当前功控区的功率下降幅度进行多次或周期调整得到所 述功控区的功率下降幅度。
16、 根据权利要求 15所述的 WiMAX下行功控的装置, 其特征在于, 所述调 整模块包括:
第一确定子模块, 用于非功控区中调制编码方式的传输效率不小于第一预 设的传输效率门限值的终端总数 P; 确定所述功控区的终端总数 Q;确定所述功 控区的调制编码方式的传输效率不小于第三预设的传输效率门限值的终端总数 N;
第一调整子模块, 用于如果 P/Q>R, 且 Yo-PowerUpStep>
MinPowerDownThreshold 时, 则调整所述功控区的功率下降幅度为 Yo-PowerUpStep;
其中, R 表示一个门限值, PowerUpStep 表示功率上升步长, MinPowerDownThreshold表示功控区功率最小下降门限, Υο为第二预设值, 即功 控区的功率初始下降幅度;
保持子模块,用于如果 P/Q>R, JL Yo-PowerUpStep<MinPowerDownThreshold 时, 则不调整所述功控区的功率下降幅度;
第二调整子模块, 用于如果 P/Q<T, N/Q>S , 且系统的负荷小于所述第一预 设负荷门限值时, 根据 Yo+PowerUpStep重新计算出系统的负荷, 其中, T表示 一个门限值, S表示一个门限值; 在所述重新计算出的所述系统的负荷不小于 所述第一预设负荷门限值时, 不调整所述功控区的功率下降幅度; 在所述重新 计算出的系统的负荷小于所述第一预设负荷门限值时, 调整所述功控区的功率 下降幅度为 Yo+PowerUpStep。
17、 根据权利要求 11-16 中任一项所述的 WiMAX下行功控的装置, 其特征 在于, 所述装置还包括:
第二切换单元, 用于当系统的负荷大于第二预设负荷门限值时, 将所述功 控区中的部分终端切换到所述非功控区。
18、 根据权利要求 11-16 中任一项所述的 WiMAX下行功控的装置, 其特征 在于, 所述装置还包括:
处理单元, 用于当系统的负荷小于第三预设负荷门限值时, 停止将所述功 控区中的部分终端切换到所述非功控区。
19、 根据权利要求 11-16 中任一项所述的 WiMAX下行功控的装置, 其特征 在于, 所述装置还包括:
第三切换单元, 用于当系统的负荷大于所述第二预设负荷门限值时, 将所 述功控区中全部终端切换到所述非功控区。
20、 根据权利要求 11-19 中任一项所述的 WiMAX下行功控的装置, 其特征 在于, 所述功控区采用公共导频, 所述功控区和下行子帧中的非功控区占用相 同的子信道。
PCT/CN2011/074109 2011-05-16 2011-05-16 Wimax下行功控的方法及装置 WO2011127853A2 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180000717.0A CN102217374B (zh) 2011-05-16 2011-05-16 WiMAX下行功控的方法及装置
PCT/CN2011/074109 WO2011127853A2 (zh) 2011-05-16 2011-05-16 Wimax下行功控的方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/074109 WO2011127853A2 (zh) 2011-05-16 2011-05-16 Wimax下行功控的方法及装置

Publications (2)

Publication Number Publication Date
WO2011127853A2 true WO2011127853A2 (zh) 2011-10-20
WO2011127853A3 WO2011127853A3 (zh) 2012-04-19

Family

ID=44746779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/074109 WO2011127853A2 (zh) 2011-05-16 2011-05-16 Wimax下行功控的方法及装置

Country Status (2)

Country Link
CN (1) CN102217374B (zh)
WO (1) WO2011127853A2 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109474372B (zh) * 2017-09-08 2020-10-23 华为技术有限公司 一种数据传输的方法、装置及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101252379A (zh) * 2008-04-16 2008-08-27 中国科学院计算技术研究所 一种无线网络媒体接入控制系统及其信道参数调整方法
CN101350641A (zh) * 2007-07-16 2009-01-21 中兴通讯股份有限公司 一种减少快速功控消息空口开销的方法
CN101754345A (zh) * 2009-12-29 2010-06-23 华为技术有限公司 发射功率的控制方法及通信设备
US20100255871A1 (en) * 2009-04-02 2010-10-07 Qualcomm Incorporated Methods and systems for fast power control(fpc) message broadcasting in wimax systems
US20100279700A1 (en) * 2009-04-29 2010-11-04 Samsung Electronics Co. Ltd. Resource allocation and power control method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1906548B1 (en) * 2006-09-27 2014-08-13 Samsung Electronics Co., Ltd. Method and apparatus for scheduling data considering its power in a communication system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101350641A (zh) * 2007-07-16 2009-01-21 中兴通讯股份有限公司 一种减少快速功控消息空口开销的方法
CN101252379A (zh) * 2008-04-16 2008-08-27 中国科学院计算技术研究所 一种无线网络媒体接入控制系统及其信道参数调整方法
US20100255871A1 (en) * 2009-04-02 2010-10-07 Qualcomm Incorporated Methods and systems for fast power control(fpc) message broadcasting in wimax systems
US20100279700A1 (en) * 2009-04-29 2010-11-04 Samsung Electronics Co. Ltd. Resource allocation and power control method
CN101754345A (zh) * 2009-12-29 2010-06-23 华为技术有限公司 发射功率的控制方法及通信设备

Also Published As

Publication number Publication date
CN102217374A (zh) 2011-10-12
CN102217374B (zh) 2014-03-12
WO2011127853A3 (zh) 2012-04-19

Similar Documents

Publication Publication Date Title
EP2962502B1 (en) System and method for determining a pilot signal
Wang et al. Sleep mode design for green base stations
US9473958B2 (en) Method, apparatus, and system for adjusting CQI feedback cycle
US7995520B2 (en) Wireless communication system and terminal
JP5512476B2 (ja) セル間干渉協調方法及び基地局
WO2014101482A1 (zh) 频谱资源共享方法及基站
US9907082B2 (en) Radio base station, baseband processing apparatus, semiconductor integrated circuit, radio communication system and control method
EP2445276A2 (en) Method for cooperative control of power among base stations and base station device using same
WO2010108348A1 (zh) 载波聚合的实现方法以及基站
Chen et al. Energy-efficient coordinated scheduling mechanism for cellular communication systems with multiple component carriers
WO2007094415A1 (ja) 移動通信システム、移動局装置、基地局装置及び移動通信方法
WO2011020425A1 (zh) 一种上行信道配置方法、系统和设备
US20240090005A1 (en) METHOD AND SYSTEM FOR TRAFFIC SHAPING AT THE DU/CU TO ARTIFICIALLY REDUCE THE TOTAL TRAFFIC LOAD ON THE RADIO RECEIVER SO THAT NOT ALL THE TTLs ARE CARRYING DATA
Yaacoub Performance study of the implementation of green communications in LTE networks
KR20110085521A (ko) 무선 통신 시스템에서 송신 전력 제어 장치 및 방법
CN101778393A (zh) 载波聚合系统及其频谱碎片处理方法、设备
Huq et al. Energy efficient CoMP transmission in LTE-Advanced
CN107659530B (zh) 数据发射方法及设备
WO2011127853A2 (zh) Wimax下行功控的方法及装置
CN117320127A (zh) 节能方法、基站及终端设备
Qin et al. Power reservation-based admission control scheme for IEEE 802.16 e OFDMA systems
CN102118845B (zh) 一种功率控制方法及装置
JP2009284327A (ja) 無線送受信装置
WO2015096291A1 (zh) 异构网络的不平衡区域的软切换区的信号发送方法及装置
CN102131272A (zh) 功率控制方法及设备

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180000717.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11768464

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11768464

Country of ref document: EP

Kind code of ref document: A2