WO2011126217A2 - 평관형 고체산화물 연료전지용 거대 스택 및 그 제작 방법 - Google Patents
평관형 고체산화물 연료전지용 거대 스택 및 그 제작 방법 Download PDFInfo
- Publication number
- WO2011126217A2 WO2011126217A2 PCT/KR2011/001459 KR2011001459W WO2011126217A2 WO 2011126217 A2 WO2011126217 A2 WO 2011126217A2 KR 2011001459 W KR2011001459 W KR 2011001459W WO 2011126217 A2 WO2011126217 A2 WO 2011126217A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cell
- stack
- solid oxide
- channel
- oxide fuel
- Prior art date
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 119
- 239000007787 solid Substances 0.000 title claims abstract description 94
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 56
- 238000006243 chemical reaction Methods 0.000 claims abstract description 22
- 230000005611 electricity Effects 0.000 claims abstract description 4
- 239000002737 fuel gas Substances 0.000 claims description 104
- 239000000565 sealant Substances 0.000 claims description 81
- 239000007789 gas Substances 0.000 claims description 56
- 239000000919 ceramic Substances 0.000 claims description 32
- 238000000034 method Methods 0.000 claims description 32
- 239000003792 electrolyte Substances 0.000 claims description 31
- 238000002407 reforming Methods 0.000 claims description 22
- 239000003054 catalyst Substances 0.000 claims description 17
- 239000001257 hydrogen Substances 0.000 claims description 16
- 229910052739 hydrogen Inorganic materials 0.000 claims description 16
- 238000000576 coating method Methods 0.000 claims description 15
- 238000002844 melting Methods 0.000 claims description 15
- 230000008018 melting Effects 0.000 claims description 15
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 14
- 238000007789 sealing Methods 0.000 claims description 14
- 239000011248 coating agent Substances 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 13
- 230000000149 penetrating effect Effects 0.000 claims description 11
- 238000005245 sintering Methods 0.000 claims description 11
- 238000001816 cooling Methods 0.000 claims description 10
- 239000012528 membrane Substances 0.000 claims description 10
- 230000036647 reaction Effects 0.000 claims description 10
- 239000000853 adhesive Substances 0.000 claims description 6
- 230000001070 adhesive effect Effects 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 239000010405 anode material Substances 0.000 claims description 5
- 229910010293 ceramic material Inorganic materials 0.000 claims description 5
- 239000004020 conductor Substances 0.000 claims description 5
- 239000011521 glass Substances 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 5
- 239000011148 porous material Substances 0.000 claims description 5
- 239000002002 slurry Substances 0.000 claims description 5
- 230000000903 blocking effect Effects 0.000 claims description 4
- 239000007788 liquid Substances 0.000 claims description 3
- 238000005553 drilling Methods 0.000 claims description 2
- 238000001035 drying Methods 0.000 claims description 2
- 230000017525 heat dissipation Effects 0.000 claims description 2
- 239000002912 waste gas Substances 0.000 claims description 2
- 239000012212 insulator Substances 0.000 claims 2
- 239000000654 additive Substances 0.000 claims 1
- 230000000996 additive effect Effects 0.000 claims 1
- 239000004927 clay Substances 0.000 claims 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 claims 1
- 230000007774 longterm Effects 0.000 abstract 1
- 229930195733 hydrocarbon Natural products 0.000 description 8
- 150000002430 hydrocarbons Chemical class 0.000 description 8
- 239000004215 Carbon black (E152) Substances 0.000 description 7
- 230000007797 corrosion Effects 0.000 description 7
- 238000005260 corrosion Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 5
- 230000008439 repair process Effects 0.000 description 5
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 238000003475 lamination Methods 0.000 description 4
- 239000007769 metal material Substances 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 239000003566 sealing material Substances 0.000 description 3
- 230000035882 stress Effects 0.000 description 3
- 230000008646 thermal stress Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000010406 cathode material Substances 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000006057 reforming reaction Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 description 2
- 229910018281 LaSrMnO3 Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000011195 cermet Substances 0.000 description 1
- 239000003034 coal gas Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000004939 coking Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000002001 electrolyte material Substances 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- -1 oxygen ions Chemical class 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2465—Details of groupings of fuel cells
- H01M8/2484—Details of groupings of fuel cells characterised by external manifolds
- H01M8/2485—Arrangements for sealing external manifolds; Arrangements for mounting external manifolds around a stack
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0612—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
- H01M8/0618—Reforming processes, e.g. autothermal, partial oxidation or steam reforming
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
- C01B3/38—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
- C01B3/384—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0612—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
- H01M8/0625—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
- H01M8/0631—Reactor construction specially adapted for combination reactor/fuel cell
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M8/1213—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/241—Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
- H01M8/2425—High-temperature cells with solid electrolytes
- H01M8/2428—Grouping by arranging unit cells on a surface of any form, e.g. planar or tubular
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/241—Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
- H01M8/2425—High-temperature cells with solid electrolytes
- H01M8/243—Grouping of unit cells of tubular or cylindrical configuration
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/241—Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
- H01M8/2425—High-temperature cells with solid electrolytes
- H01M8/2432—Grouping of unit cells of planar configuration
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2465—Details of groupings of fuel cells
- H01M8/2483—Details of groupings of fuel cells characterised by internal manifolds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2465—Details of groupings of fuel cells
- H01M8/2484—Details of groupings of fuel cells characterised by external manifolds
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0205—Processes for making hydrogen or synthesis gas containing a reforming step
- C01B2203/0227—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
- C01B2203/0233—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/06—Integration with other chemical processes
- C01B2203/066—Integration with other chemical processes with fuel cells
- C01B2203/067—Integration with other chemical processes with fuel cells the reforming process taking place in the fuel cell
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M2008/1293—Fuel cells with solid oxide electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0271—Sealing or supporting means around electrodes, matrices or membranes
- H01M8/028—Sealing means characterised by their material
- H01M8/0282—Inorganic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0271—Sealing or supporting means around electrodes, matrices or membranes
- H01M8/0286—Processes for forming seals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a stack for a solid oxide fuel cell and a method for manufacturing the same, and more particularly, a stack for a solid oxide fuel cell having a large capacity in which cell modules integrating a flat tube reformer and a flat tube reactor are electrically connected to each other by forming a cell bundle. It's about how
- a monolithic reformer having a conductive porous support having two sealant grooves formed at both ends of the flat tube, wherein interconnects are formed on the upper and lower surfaces thereof, and a reforming catalyst is embedded in the inner channel; And unit cell units having a unit cell layer formed on one side and an electrical connector layer formed on one side thereof after generating a channel for airflow on one or both sides of the central portion of the flat surface of the support.
- the cell modules are stacked up and down again
- the cell bundles connecting the current collectors to the gas manifolds are manufactured, and the stacks are manufactured by arranging the cell bundles up, down, left, and right again, between the fuel gas and air manifolds of the stack modules.
- the stack bundles are properly connected to each other, and the stack bundles are repeatedly arranged up and down again, and the final stack is manufactured.
- the tube center air channel portion of the stack module is installed in a hot box for air inlet and outlet and left and right outside the hot box.
- the fuel gas manifold rack is installed and the cell bundles are electrically connected to each other in series and parallel, It is designed to be connected in series, parallel, or series-parallel mixing, so it is structurally stable and the sealing part in the fuel gas manifold at both ends in the cell bundle is kept at a low temperature for a perfect sealing, and stacking by parallel connection of small unit cells Larger area is possible, and the built-in reformer consumes heat generated by the fuel cell, so that the thermal variation in the cell bundle is small, and the thermal management of the final stack is easy. Also, when a specific cell fails, the cell bundle can be easily withdrawn from the hot box.
- the present invention relates to a stack for a solid oxide fuel cell and a method of manufacturing the same, which can be easily repaired and enlarged in three dimensions.
- the channel for fuel gas flow is formed inside the flat pipe in the longitudinal direction, and two grooves for sealing material are formed at regular widths and depths on the front, top, bottom, left, and right sides of both ends at intervals.
- the reforming catalyst is mounted on the inner channel of the support, and electrical connection layers are formed on both sides of the upper and lower plates, and the vertical channel for reforming gas discharge is formed by blocking the inner channel at one end and connected to the inner channel at a position between the sealant grooves.
- Monolithic reformers And a channel for air flow on one or both sides of the center of the flat plate, and a unit cell layer including a cathode layer, an electrolyte layer, and an anode layer is formed on one side, and an electrical connector layer is formed on the opposite side.
- a unit cell of a monolithic type in which a vertical passage for inflow or outflow of gas connected to an inner channel is formed at a position between the sealant grooves on both sides of the sealant; To produce a cell module, but evenly stacks the unit cells on the upper and lower surfaces of the reformer so that fuel gas is introduced into the reformer so that the reformed reformed gas passes through the inner channel to the neighboring unit cells through the vertical passage.
- a cell module which is made to flow to zigzag and finally discharged to the opposite side of the reformer inlet and is electrically connected in series; Arranging the cell modules closely to the left and right again and stacking them up and down again to produce cell bundles of a certain size, and the current collector plates attached to the end cells are connected to the left and right fuel gas manifolds, and a sealant is provided in the sealant groove.
- the unit stack module arranged in the cell bundles up, down, left, and right, and equipped with a hot box in a central air channel part and a fuel gas manifold mounted in an open box on a left and right rack outside the hot box;
- the stack bundles may be arranged up and down again to be enlarged indefinitely in three dimensions, and the cell bundles may be electrically modified by being connected in parallel and parallel with the cell bundles in the stack module or the cell bundles in the neighboring stack module.
- the stack fuel gas is introduced into the reformer through the inlet gas manifold at one end and the middle of the stack module, and the inner channels of the unit cells in the cell module are passed through the zigzag and the exhaust manifold on the other side, and the air is hot box.
- the unit cell outside the tube flows to cause a fuel cell reaction.
- the unit cells can be connected in series and parallel, and mechanically can be enlarged indefinitely in three dimensions. It is a monolithic structure that is mechanically stable and the fuel gas manifolds at both ends of the tubes in the stack are kept at a low temperature to be completely sealed and a large area of the reaction area can be achieved by parallel connection even with a small unit cell.
- the temperature variation is small, the thermal management of the stack is easy, and the problem of some cells It provides a new and more advanced stack that can be replaced with the corresponding cell bundle and a manufacturing method thereof.
- Solid oxide fuel cell which is now called the third generation fuel cell, uses thermochemically stable zirconia-based electrolyte, and the anode and the anode As an attached form, it is possible to use fuel gas such as hydrogen, methane, methanol, diesel without reforming, and use the air or oxygen as an oxidizing agent to attract high-efficiency, low pollution, next generation power generation.
- fuel gas such as hydrogen, methane, methanol, diesel without reforming
- air or oxygen as an oxidizing agent to attract high-efficiency, low pollution, next generation power generation.
- Such SOFCs have used stabilized zirconium oxide in which yttria was added as an electrolyte and the stabilization of the crystal structure was achieved. This material has the conductivity of oxygen ions, but this conductivity depends on the temperature and is characterized by obtaining the desired conductivity as a fuel cell in the range of 800 to 1000 ° C.
- the operating temperature of SOFC is 800-1000 degreeC normally, and it is preferable that ceramic material is used also in order for an electrode material to withstand such high temperature.
- ceramic material is used also in order for an electrode material to withstand such high temperature.
- LaSrMnO3 is used as the anode into which air is introduced, and a Ni-ZrO2 mixture is commonly used as the cathode into which hydrogen is introduced.
- a plate made of a porous cathode material is usually formed as a support to form a dense membrane electrolyte layer and a porous cathode layer on one side of the plate to a predetermined thickness through coating and sintering.
- Unit electrode combination Electrode-Electrode Assembly
- a connecting plate made of a conductive metal material that electrically connects the anode and cathode of the upper and lower electrode combinations and also forms gas channels on both sides for introducing fuel gas and air.
- the final stack is formed by repeatedly stacking unit cells interleaved with Interconnect (hereinafter referred to as an electrical connection plate).
- the thickness of the unit 'electrode plate' is thin, but it is difficult to control the uniformity or flatness of the thickness due to the characteristics of the ceramic, and thus it is not easy to enlarge the size.
- a gas seal is required to be mounted at all parts of the cell edge.
- the softening temperature of the glass-based material used as the sealing material starts at about 600 ° C
- the solid oxide fuel cell is generally preferable to operate at a high temperature of 800 ° C or higher in view of efficiency.
- cylindrical cells In order to make up for the drawbacks of such flat cells, a scheme called cylindrical cells is proposed in US Pat. Nos. 6,207,311 B1 and 6,248,468 B1.
- the cylindrical cell has a somewhat lower power density than the flat cell structure, but is advantageous in terms of strength and gas sealing.
- a unit fuel cell is constructed by stacking materials on a porous support tube made of zirconium oxide or the like in order of an air electrode, an electrolyte, a fuel electrode, and an electrical connector layer.
- no gas sealant is required between the cells, which eliminates the problem of ceramic sealing that occurs in flat cells.
- each cell is formed on a solid support, the fuel cell itself forms a strong ceramic structure and excellent resistance to thermal expansion.
- an electrical interconnector made of a metal material may be used.
- a power generation current flows along a thin electrode surface in a length direction, an internal resistance increases, and thus it is impossible to increase the size.
- the disadvantage is that the power density per volume is not high.
- the fuel cell module itself has a flat cell structure and a cylindrical cell structure to solve the sealing problem of the flat cell and at the same time.
- Development of unit cells and stacks using a flat tube type structure to increase the density has been made in Korean Patent Publication No. 10-2005-0021027 and US Pat. No. 64,16897 and US 6429051.
- an electrical connection plate of a certain thickness is required to electrically connect the anode and the cathode between the stacked tubular cells having a gas flow path for introducing air or anode gas to the outside of the flat tubular cell.
- the flat tube type increases the power density per volume by increasing the contact area between unit cells and mechanical stability during lamination.However, due to the metal material of the electrical connection plate, the mechanical and thermal properties between the electrode plates, which are ceramic materials, are maintained at high temperatures. There is a problem that a stress occurs. In addition, there is a problem of the possibility of corrosion by air on the surface of the electrical connecting plate when using at a high temperature for a long time, it is not easy to solve the thermal mechanical stress between the ceramic material and the metal material when it is enlarged.
- solid oxide fuel cells are difficult to increase the area of a unit cell due to the characteristics of ceramics, and when the unit cells are only physically and electrically connected in series, the performance of the entire stack is reduced immediately when the performance of one specific cell is degraded.
- This equally deteriorating problem poses the challenge of making all cells perfect and functional in production, and is difficult or impossible to replace or repair some of the cells in the event of failure or degradation of specific cells in a stacked stack.
- solid oxide fuel cells operate at a much higher temperature than other fuel cells such as polymer electrolytes and molten carbonates, and thus have high efficiency and can oxidize not only hydrogen but also CO. Therefore, various types of fuels such as coal gas, bio gas, diesel gas, etc.
- a fuel cell uses hydrogen as a reaction gas, and hydrogen is usually produced by reforming a fuel gas containing a hydrocarbon with steam, and the reaction is an endothermic reaction. Therefore, the reforming reaction can be controlled by inserting a reformer between the unit cells or by coating the reforming catalyst on the cathode layer or the electrical connection plate of the unit cell to control the heat generation problem of the fuel cell reaction.
- Ni-Zirconia Cermet is currently used.
- the anode layer has a problem that the cathode layer is excellent in activity for hydrocarbon reforming but Ni can cause severe coking at high temperature and the cathode layer is ultimately destroyed, so the cathode layer cannot be directly exposed to hydrocarbon-containing fuel gas. It is not possible to control the fuel cell reaction heat by the reforming reaction unless it is physically inserted between the unit cell and the electrical connecting plate.
- the problem to be solved in the present invention is that the hot gas sealant is not exposed to high temperature, there is no thermal stress and air corrosion problems caused by the gas channel and the electrical connection at high temperatures, and can maintain the mechanical stability according to the size of the stack, It provides a new solid oxide fuel cell stack with low temperature variations in the stack, easy thermal management, and easy repair of stacked stacks.
- the hot gas sealant is not exposed to high temperature, there is no problem of thermal stress and air corrosion caused by the gas channel and the electrical connector at high temperature, and can maintain the mechanical stability according to the size of the stack
- the present invention provides a method of manufacturing a stack for a solid oxide fuel cell having a small temperature deviation in a stack, easy thermal management, and easy repair of a stacked stack.
- Another problem to be solved by the present invention is to provide a cell module for manufacturing a new solid oxide fuel cell stack with a low temperature deviation in the stack, easy thermal management, and no air corrosion problems of the gas channel.
- Another problem to be solved by the present invention is to provide a cell bundle for manufacturing a new solid oxide fuel cell stack with a low temperature deviation in the stack, easy thermal management, there is no problem of air corrosion of the gas channel, stable operation of a large capacity.
- Another problem to be solved by the present invention is to provide a stack module for manufacturing a new solid oxide fuel cell stack with a low temperature deviation in the stack, easy thermal management, and easy repair of the stacked stack.
- Another problem to be solved in the present invention is to provide a new flat tube unit cell reactor that can be introduced into the reformed gas through the laminated surface from the flat tube reformer.
- Another problem to be solved by the present invention is to provide a new flat tube reformer to which reformed gas can be introduced into the flat unit cell reactor through the laminated surface.
- the present invention is a problem of perfect gas sealing caused by the high temperature operation of the conventional solid oxide fuel cell, thermal stress and air corrosion problems due to the use of gas channels and electrical connectors made of metal, difficulty in large area of the ceramic unit cell In order to solve the problems such as mechanical stability, stack temperature deviation and thermal management problem of stacks, repair of stacked stacks, etc.
- Electrode-electrolyte assembly (EEA) layers of the anode layer, the electrolyte layer and the cathode layer are formed in the center of the upper surface of the support plate, and on the opposite lower surface, an electrical connection layer connected to the conductive support is formed.
- the electrolyte layer is formed, but finally, the electrical connector layer and the electrolyte layer are to be formed into a dense film and the remaining layers have pores, and the processes are performed by conventional wet coating and sintering processes or by dry coating processes such as plasma spray and physical vapor deposition. Completing the unit cell base by; And
- the cell bundle base is electrically connected in parallel and parallel.
- the tube bundle is erected vertically in the longitudinal direction, and the tube is melted at a high temperature. Manufacturing the final cell bundles by sealing between them and between the cell bundle outer surface and the manifold inner wall; And
- the rack is a double wall, and between the double walls is composed of a mounting open box having a larger cross section than the cell bundle so that the cell bundles can slide to the left and right into the hot box. Insert the ring plug into the wall of the hot box to close the gap between the cell bundles to prevent the hot air from leaking out of the hot box and to prevent the electricity between the cell bundles and the racks.
- An air injection air chamber is formed on the rack by blocking the gap between the outer wall on the rack, and the cell bundles are opened up, down, left and right.Then, the cooling air is blown into the air chamber to prevent the sealant in the manifold portion from melting. Manufacturing the final unit stack module by maintaining the temperature below a temperature; And
- the inlet manifold is repeatedly connected between the air exhaust manifold and the inlet manifold on the front and back walls of the hot box mounted on the stack module, or two unit stack modules or a plurality of the serially connected stack modules are moved back and forth.
- the air manifolds are repeatedly connected to each other and the exhaust manifolds are repeatedly connected to each other, and the fuel manifolds for fuel gas inlet and the fuel manifolds for fuel gas discharge are repeatedly connected to each other. Manufacturing stack bundles of a predetermined size to which fuel gas manifolds are repeatedly connected from side to side; And
- the stack bundles are repeatedly stacked up and down again, and the fuel gas inlet or outlet manifolds are integrated into one in the vertical direction, and then electrically mixed in series and parallel between the cell bundles in the fuel gas manifold to obtain a desired current and voltage. Linking to form a final, finalizing a three-dimensionally huge stack;
- a stack for a solid oxide fuel cell comprising the same and a method of fabricating the same, wherein air flows into one side of a hot box and is discharged through the unit cells between individual tube shells, and the hydrocarbon-containing gas is fuel gas manifold.
- the reformed hydrogen and CO-containing gas flows to zigzag through a vertical passage connected to the inner channel of neighboring unit cells and is discharged from the end unit cell in the cell module unit.
- the endothermic reaction of the phase can consume the heat generated by the fuel cell reaction on the neighboring unit cell, thereby reducing the temperature deviation in the cell bundle, which makes the cell bundle itself larger in size.
- the cell burners are mounted on a rack to provide a new and advanced solid oxide fuel cell stack and a method of manufacturing the same, which can be repaired by replacing the burned cells in the event of failure or degradation of a particular cell.
- the reformer for the solid oxide fuel cell and the support used for manufacturing the unit cell further dig a central portion of the side of the flat tube to a certain depth so that the air is not only in the left and right directions of the air channel portion but also in the vertical direction when laminating the later flat tube.
- a method of making a support such that it can flow.
- the reformer for a solid oxide fuel cell has a dense film formed at the center of the flat plate upper and lower flat surfaces as an electrical connector layer, and the outer surface is formed with a dense film made of a nonconductive ceramic, preferably an electrolyte material.
- a dense film made of a nonconductive ceramic, preferably an electrolyte material.
- the reformer produced is a vertical passage formed on the upper and lower surfaces of the opposite blocked end after the hydrocarbon-containing fuel introduced from one end of the tube is reformed into hydrogen and CO-containing gas in the catalyst layer.
- the flat surface air channel on the support for a solid oxide fuel cell is formed in a concave-convex cross section with a constant depth and width, and the anode layer on the upper part of the concave-convex portion when the unit cell and the reformer made of the support are stacked. It is electrically connected to the electrical connector layer of the unit cell or the electrical connector layer of the reformer, the air is produced to flow in the vertical direction in the length of the gap created in the uneven surface between the laminated tube.
- the cell module for a solid oxide fuel cell stacks an even number of unit cells on the upper and lower flat surfaces of the reformer, and applies a slurry made of an electrical connector material or an anode material to the electrical connector layer and the anode layer at the time of lamination and sealant.
- the sealant is placed in the groove, and the ceramic adhesive is applied to the left and right sides of the seal groove and compressed and dried to be sintered at 700 ° C. or lower, preferably 600 ° C. or lower, so that the sealant does not melt, thereby forming a monolithic structure.
- the cell module for a solid oxide fuel cell the hydrocarbon-containing fuel gas introduced into the central reformer is reformed into a reforming gas containing hydrogen and CO in the reforming reformer and then introduced into the unit cell adjacent to the upper and lower sides and again The next unit cell flows into the zigzag in the longitudinal direction and is finally discharged to the opposite end of the reformer inlet of the terminal unit cell.
- the electrical connector layer of the reformer is connected to the unit cell, and the unit cell adjacent to the anode layer of the unit cell.
- the cathode layers of are connected in series so that the lower end unit cell becomes the cathode layer and the upper end unit cell becomes the anode layer.
- the intermediate connection manifold for fuel gas discharge or inflow in the stack for the solid oxide fuel cell is made longer than the length of the cell bundle so that individual cell bundles can be withdrawn or charged when necessary.
- the stack for the solid oxide fuel cell array s the stack bundles again and again at regular intervals to produce a final stack, wherein a pipe connected to each manifold is accommodated between the stack bundles and It is designed to secure a moving space for replacement.
- the stack for a solid oxide fuel cell can be used as a unit stack module of the minimum size, or the unit stack module can be used as a medium size stack by closely arranged up and down after being connected in series in the air direction Alternatively, only two in the direction of fuel gas may be connected to each other in a minimum unit, and may be connected in series in the air direction and arranged in the final vertical direction to be used as the final stack.
- the series connection between the air inlet and the maniflod of the stack modules in the stack for the solid oxide fuel cell is a point in time when the oxygen concentration in the exhaust air is reduced to an unsuitable level for inflow, preferably 5% or less of the oxygen concentration.
- the connection is interrupted and the inlet and outlet manifolds of the series-connected unit are connected repeatedly to face each other, thereby dispersing the air and increasing the size while avoiding a decrease in air concentration.
- the stack for a solid oxide fuel cell is a vertical pipe is placed vertically in a stack module is repeatedly connected or arranged in three dimensions to produce a final stack, the temperature range of the melting temperature of the sealant melting fuel gas manifold during operation, That is, it can be operated by maintaining at 700 °C or more.
- the sealant grooves of the unit cell and the reformer are equipped with a plate-shaped rod made of a sealant when the cell module or the cell bundle is manufactured, and the shell side of the tubes is sealed by melting the sealant by high temperature sintering.
- the cell buns are placed upright and then melted to seal underneath the seal grooves and spread between left and right between the tubes to provide a perfect seal, thus preventing the sealant from leaking out of the grooves.
- the ceramic slurry or paste may be applied to the lower portion of the seal groove during the lamination and sintered while pressing to prevent the sealant from melting and leaking down.
- a ceramic plate may be attached to a central portion of the terminal collector plate that is stacked into a hot box of the terminal collector plate laminated to the cell bundle, and the current collector plate may be sealed to prevent corrosion of the current collector plate due to air exposure.
- the flat tube for the reformer is preferably made of the same material, shape, and size as the unit cell, but if necessary, the outer surface does not have an air channel or a dense membrane that is not porous. In this case, the exact coincidence of the unit cell and the width and length of the unit cell correspond to the fabrication and elaborate sealing of large cell bundles.
- the rectangular ring-shaped plug inserted between the cell bundles on the rack and placed on the wall surface of the hot box is manufactured so that the upper and lower surfaces of the cross section are inserted into the hot box at the time of charging and inserted into the hot box. It is designed to serve as a function to block the flow of inflow air by blocking the gap between the top and bottom of the cell bundle.
- the front and rear walls of the hot box through which air is introduced and discharged are composed of thick walls in which small channel holes for air flow are evenly distributed, thereby effectively exhibiting heat shielding, and when necessary, small holes are randomly drilled.
- the air inlet and outlet manifolds are finally installed to effectively block the heat dissipation of the hot box and effectively increase the distribution of air flow into the pipe.
- the thermal management of the stack adjusts the flow rate of the air or, preferably, further installs a small reformer on the outside and adjusts the reforming ratio of the external reformer and the internal reformer to more precisely manage it.
- the porous flat tube for the reformer coats the inner surface of the channel and the outer surface including the vertical passage with which the fuel gas is in contact with a dense membrane such as an electrolyte so that the fuel gas is in contact with a metal such as Ni in the support. It is prevented from being modified to prevent physical deformation and structural destruction of the porous support by coke formation at high temperature.
- the present invention provides a cell module for a solid oxide fuel cell in which at least one flat tube reactor is stacked in a flat tube reformer, wherein the flat tube reformer has one side blocked and at least one penetrating from the inner channel to the outer surface.
- a first channel is formed, and at least one side of the flat tubular reactor is blocked, and at least one second channel penetrating from the inner channel to the outer surface is formed, and the unit cell reaction part and the air flow path are formed on the outer surface of the flat tubular reactor. It is formed, the first channel provides a cell module for a solid oxide fuel cell, characterized in that in communication with at least one second channel.
- a cell module for a solid oxide fuel cell in which at least one flat tube reactor is stacked in a flat tube reformer, and the flat tube reformer has one side blocked and at least one penetrated from an inner channel to an outer surface.
- the first channel of the formed is formed, the flat tubular reactor is blocked at least one side, at least one second channel is formed from the inner channel penetrates to the outer surface, the unit cell reaction unit and the air flow path on the outer surface of the flat tubular reactor Is formed, and the first channel is in communication with at least one second channel, and the cell modules are bundled up and down and / or left and right to provide a bundle of cells.
- a cell module for a solid oxide fuel cell in which at least one flat tube reactor is stacked in a flat tube reformer, and the flat tube reformer has one side blocked and at least one penetrated from an inner channel to an outer surface.
- the first channel of the formed is formed, the flat tubular reactor is blocked at least one side, at least one second channel is formed from the inner channel penetrates to the outer surface, the unit cell reaction unit and the air flow path on the outer surface of the flat tubular reactor
- the first channel is in communication with at least one second channel, the cell modules are stacked in a vertical stack and / or left and right to provide a stack module is connected in series and / or parallel .
- the present invention provides a stack bundle in which the stack modules are electrically connected in series and / or in parallel.
- the present invention provides a stack for a solid oxide fuel cell in which the stack bundle is connected in series and / or in parallel.
- a conductive flat tubular support having an inner channel formed therein is blocked by one side of a plug, and a vertical channel is vertically penetrated from an inner channel to an outer surface of the support at an adjacent portion of the plug.
- the channel is to provide a reformer for a solid oxide fuel cell, characterized in that the reforming catalyst is coated.
- two grooves each having a sealant inserted along the circumference of the support are formed on both sides of the outer surface of the conductive flat tubular support having the inner channel formed therebetween, and vertically penetrated by the inner channel between the grooves.
- a channel is selectively formed, and an air channel formed of at least one groove is formed at the center of the outer surface of the support, and at least one unit cell of the first electrode, the electrolyte, and the second electrode is formed on the top surface of the support.
- the cell modules of a monolithic structure which are electrically connected in series by using an even number of flat unit cells and one reformer, are repeatedly arranged back and forth, and are connected in series and stacked up and down again and sealed.
- the anode and cathode current collector plates are attached to the end cells, and the gas manifolds connected to the current collector plates are mounted at both ends thereof, so that the hot sintered cell bundles have a monolith structure as a whole.
- Structurally stable and easy stack manufacturing by large parallel connection of small unit cells and large area, and endothermic reaction in reformer regularly included in cell bundle consumes heat of fuel cell exothermic reaction in neighboring unit cell.
- the stack module is manufactured so that the fuel gas manifold is mounted in the open box for mounting on the rack, and withdrawal and replacement is possible in the case of failure of specific cell bundles.
- the air flows into the air manifold on one side of the hot box on the stack module, passes through the shell side of the individual tubes and into the air manifold on the other side, and fuel gas passes through the fuel gas inlet manifold of the stack module.
- Hydrogen-containing fuel gas is reformed into hydrogen and CO-containing gas, and then flows into individual unit cell internal channels and is finally discharged to the fuel gas discharge manifold on the opposite side. It is possible to adjust the current and voltage by connecting to include
- the new and advanced solid oxide fuel cell stack and its manufacturing method are structurally stable and withdrawable in case of failure due to built-in reformer inside the cell bundle, which is a basic unit repeated within the stack, without temperature variation. To provide.
- FIG. 1 is a perspective view showing a support having a plurality of sealant grooves formed at both ends of a flat tube for a solid oxide fuel cell according to the present invention
- Figure 2 is a longitudinal cutaway view of the reformer completed using the support of Figure 1 for a solid oxide fuel cell according to the present invention.
- Figure 3 is a perspective view formed on one surface of the channel for air flow on the support of Figure 1 for a solid oxide fuel cell according to the present invention.
- Figure 4 is a vertical longitudinal incision showing an example of the covering and the interior passage of the electrical connection material on the support of Figure 3 for a solid oxide fuel cell according to the present invention.
- FIG. 5 is a longitudinal cutaway view showing a state of coating of an electrode and an electrolyte for forming a unit cell layer in a reaction unit of FIG. 3 for a solid oxide fuel cell according to the present invention
- FIG. 6 is a vertical cutaway view illustrating a cell module formed by stacking two types of unit cells of FIG. 5 up and down in one reformer of FIG. 2 for a solid oxide fuel cell according to the present invention
- FIG. 7 is a longitudinal cutaway view illustrating cell bundles manufactured by stacking four cell modules of FIG. 6 up and down for the solid oxide fuel cell according to the present invention.
- FIG. 8 is a longitudinal cutaway view showing a stack module manufactured by stacking four cell bundles of FIG. 7 up and down for a solid oxide fuel cell according to the present invention.
- FIG. 9 is a horizontal cutaway view showing a stack bundle that is finally completed by connecting two fuel gas manifolds to the left and right of the stack module of FIG. 8 for a solid oxide fuel cell according to the present invention, and connecting three air manifolds to the front and rear.
- FIG. 10 is a view showing the electrical connection between the electrodes on the fuel gas manifold of the four fuel gas inlet and outlet portions of FIG. 9 when three cell bundles of FIG. 9 are stacked up and down again for the solid oxide fuel cell according to the present invention.
- the planar porous support 101 for a solid oxide fuel cell according to the present invention includes a cathode material or a third conductive material and has at least one fuel gas flow channel 1 therein. It is provided in the direction and the seal grooves (groove) (5) for mounting the sealant at both ends of the tube are created at a predetermined depth and width in front of the four sides up, down, left and right at a predetermined distance.
- the upper and lower the thickness of the support 101 the thinner the better, and preferably less than 10mm, preferably less than 5mm, more preferably less than 3mm, the width and length is as large as possible if the production is large, but if the stack is too large Formation by coating and sintering of the later electrolyte layer or the electrical connector layer becomes difficult.
- the structure of the support is manufactured by making a flat tube by extrusion or the like and then making a groove by adding or polishing the surface, or by forming a flat plate by pressing or the like and facing the two plates. By attaching it may be directly produced a support of the final shape in which a channel for fuel gas and an air channel are formed outside. The support is further processed to polish the upper plate 7, lower plate 8 and left and right side surfaces 9 as necessary so that the final upper, lower, left and right thicknesses are kept constant.
- the ceramic plug 11, the sealant bar 12, and the ceramic plug 11 at one end of the support inner channel 1 are sequentially formed. Insert and erect vertically to melt the sealant to seal the inner channel, and then connect the inner channel up and down between the sealant grooves 5 next to it to create a vertical passage 22 penetrating out of the plate by a method such as drilling. do. Then, the dense membrane electrical connector layer 31 is coated on the upper and lower surfaces of the flat plates 7 and 8, and the dense membrane 14 of the electrolyte layer is formed on the inner channel 1 and the entire outer surface.
- the reformer 102 is completed by attaching or reforming the reformer catalyst 19 to the inner channel 1 or covering the inner wall to seal the grooves 5 together with the later unit cells.
- the plate 18 is mounted and subjected to sintering process.
- fuel gas flows into the inlet 21, and is reformed into hydrogen and CO-containing gas in the reforming catalyst of the inner channel and is adjacent to the outlet through the vertical passage 22. It flows into one unit cell.
- FIG. 3 shows an example of manufacturing the unit cell 103 using the support 101.
- the center of the upper plate surface 7 of the plate is shown.
- Channels 2 for airflow in the longitudinal direction are produced in the form of unevenness.
- the air channel may be exemplified in addition to the longitudinal right angle direction of FIG. 3, and may be mixed in a longitudinal direction and a right angle direction, or a channel may be formed in a vertical direction.
- the air channel may be provided on the lower plate 8 instead of the upper plate 7 or may be provided on both sides of the upper plate 7 and 8 to contribute to a deeper channel depth or to reduce the thickness of the support when stacked. Then, as shown in Fig.
- the end of the inner channel is fitted with a ceramic plug 11, the sealing bar 12, the ceramic plug 11, and sintered to block the inner channel at a position between the sealing grooves adjacent to it.
- the cathode layer 13, the electrolyte layer 14, and the anode layer 15, which is the cathode are formed on the air channel portion of the upper plate 7.
- the electrode layers of the porous layers are coated in order, and the electrical connector layer 31 is coated on the center of the opposite lower plate 8 and the electrolyte layer 14 is coated on the remaining outer surface, and then sintered individually or co-sintered. To form an electrolyte and electrical connection layer of the dense film.
- the coating of the anode layer 13 may be omitted as shown in FIG. 5 when the support 101 is made of an anode material.
- the electrode combination layer composed of the cathode layer 13, the electrolyte layer 14 and the anode layer 15 may be formed on the air channel 2 or on a flat surface without the air channel.
- An electrical connector layer 31 connected to the inside of the support 101 should be formed, and the electrical connector layer 31 may be formed by a dry coating method such as plasma spray or vapor deposition instead of coating and sintering processes on one side. have.
- FIG. 6 illustrates the manufacturing of a cell module 104 having a monolithic structure by stacking one reformer 102 and four unit cells 104a-104d on upper and lower surfaces of the reformer.
- Adjacent unit cells 104b and 104c are closed at both ends of the inner channel, one side creates a vertical path toward the lower plate, and the other side creates a vertical path toward the upper plate, and then the unit cells 104a and 104d.
- Silver blocks only one end of the inner channel and creates a vertical passage only toward the upper or lower plate so that the hydrocarbon-containing fuel gas introduced into the reformer inlet 21 is reformed into hydrogen and CO-containing gas on the reformer internal reforming catalyst and then the opposite outlet (22).
- the cell module additionally applies a conductive electrical connector or slurry of anode material to the electrical connector layer and the unit cell layer when the individual unit cells are stacked, and pastes of ceramic material on the left and right portions of the sealant groove and appropriately.
- drying and sintering at a temperature of preferably 600 ° C. or lower forms a single structure in which the reformer and the unit cells are electrically connected in series and structurally become one.
- FIG. 7 is a longitudinal cross-sectional view of a cell bundle manufactured as a basic unit of stack fabrication by repeating stacking up and down using a plurality of cell modules and stacking them up and down again. Although it is stacked up and down electrically connected in series and is not shown in the cutaway of FIG. 7, it is preferable that the stacked cell modules are stacked two-dimensionally to be electrically parallel by again closely arranging the stacked cell modules from side to side.
- a sealant is mounted in the sealant groove in the cell module, and an electrical connector or slurry of an anode material is applied to the anode layer on the neighboring cell module.
- the cell bundle base electrically connected and structurally integrated between the cell modules is completed.
- the electrical current collector plates 41 and 42 are attached to the upper and lower end cells of the cell bundle base, and the gas manifolds 51 and 52 are pushed to the place where the cell bundle supporting plate 47 is provided at both ends,
- the positive electrode current collector plate 41 is electrically connected to the left manifold 51 through an electrical connector 43
- the lower negative electrode current collector plate 42 is electrically connected to the right manifold 52 through an electrical connector 44.
- FIG. 8 illustrates a longitudinal cutaway view in the case of manufacturing the unit stack module by arranging the cell bundles 4 x 4 up, down, left, and right.
- the air channel section in the center of the cell bundle is mounted in the hot box (61) and both fuel gas manifold sections are installed in the open box for the cradle on the double wall rack (71) outside the hot box.
- a rectangular ring shaped plug made of electrically insulated and insulated material between the walls blocks the heat of the hot box and prevents energization between the rack and the cell bundle, and finally the cell bundle on the outer side of the double rack.
- the space between the square and the open box is blocked to create a chamber 81 for air cooling, and the cooling air is blown into the chamber inlet 55 so that the temperature of the gas manifold is not melted, preferably Maintain constant below 600 °C to prevent melting of the glass sealant in the manifold.
- FIG. 9 shows two unit stack modules 106 equipped with the 4 x 4 cell bundles connected to the fuel gas inlet manifolds 57 to the left and right, and again the air inlet manifold 53 and the outlet manifold.
- 3 shows a horizontal cutaway view in which three stack bundles 107 are finally completed by connecting three folds 54 in series.
- Air enters the air inlet manifold 53 on the hot box wall in the individual stack modules 106 and passes through the integrated manifold 84 for air inlet and outlet and finally to the air outlet manifold 54. do.
- the fuel gas flows into each of the integrated manifolds 87 for inflow of fuel gas and is discharged into the integrated manifolds 88 for discharge of left and right fuel gases.
- FIG. 10 shows an end cross section of the fuel gas manifold in each cell bundle looking from the left to the right of FIG. 9, and illustrates the electrical connection between the cell bundles.
- the bundles are connected in parallel and the fuel gas manifolds in the three stack modules become the cathode, then in series between the B-B 'side anode manifolds and the C-C' side cathode manifold and again D- On the D 'side, the left positive manifolds and the right negative manifold are again connected in series, and then connected between the positive manifold on the C-C' side and the B-B 'negative manifold, and with the AA' intermediate positive manifold.
- the cathode manifolds on the right side are connected, then the anode manifold and cathode manifold on the B-B 'side are finally connected out to the DD' anode manifold.
- the stack As in 10, stacking two fuel gas directions, three air directions, and three up and down directions, and the manifold length is 5 cm, the total volume of 150 cm thick x 170 cm wide x 135 cm long 3.44 m3
- the stack is a stack of 120 unit cells having an area of 5.76 m 2, and the amount of power generated is 1.38 MW, resulting in a large stack.
- An interconnect layer connected to the inside of the support and formed of a dense film on the outer plate surface of the reformer or unit cell.
- Stack module completed by arranging cell bundle up, down, left and right
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Fuel Cell (AREA)
Abstract
Description
Claims (46)
- 평관형 개질기에 적어도 하나의 평관형 반응기가 적층된 고체산화물 연료전지용 셀모듈에 있어서,
상기 평관형 개질기는 일측이 막혀 있고, 내부 채널에서 외면으로 관통되는 적어도 하나의 제1채널이 형성되고,
상기 평관형 반응기는 적어도 일측이 막혀 있고, 내부채널에서 외면으로 관통되는 적어도 하나의 제2채널이 형성되고, 상기 평관형 반응기의 외면에는 단위셀 반응부와 공기 유로가 형성되며,
상기 제1채널은 적어도 하나의 제2채널과 연통되는 것을 특징으로 하는 고체산화물 연료전지용 셀모듈.
- 제1항에 있어서, 상기 제1채널은 내부채널에서 외면으로 수직하게 막힌 쪽에 형성되며, 제 2 채널은 내부채널에서 외면으로 수직하게 막힌 쪽에 형성되는 것을 특징으로 하는 고체산화물 연료전지용 셀모듈.
- 제1항에 있어서, 원료 가스는 개질기로 유입되어 개질되고, 제1채널과 제2채널을 거쳐 평관형 반응기의 내부채널로 유입되어, 반응 후 배출되는 것을 특징으로 하는 고체산화물 연료전지용 셀모듈.
- 제1항에 있어서, 제1채널 및 제2채널은 반응기 및/또는 개질기의 외면 양측에 형성된 두 개의 밀봉제 홈 사이로 형성되는 것을 특징으로 하는 고체산화물 연료전지용 셀모듈.
- 제1항에 있어서, 상기 평관형 개질기는 전도성의 다공성 재료로 이루어지며, 외면 중앙부가 전기연결재로 치밀하게 피복되고, 나머지 외면과 내면은 전해질로 치밀하게 피복되고, 내부채널의 적어도 일부 표면에 개질 촉매가 코팅된 것을 특징으로 하는 고체산화물 연료전지용 셀모듈.
- 제1항에 있어서, 상기 평관형 반응기는 전도성의 다공성 재료로 이루어지며, 외면 중앙부에 적어도 하나 이상의 공기 흐름용 채널이 형성되고, 외면 중앙부 상면에 반응부가 형성되며, 하면에 전기연결재층이 형성되는 것을 특징으로 하는 고체산화물 연료전지용 셀모듈.
- 제1항에 있어서, 상기 개질기 상하면에 짝수개의 평관형 반응기가 적층되며, 평관형 반응기의 폐가스 배출은 개질기의 유입구 반대쪽에 형성되는 것을 특징으로 하는 고체산화물 연료전지용 셀모듈.
- 제1항에 있어서, 상기 평관형 개질기는 내부채널에 개질촉매가 코팅된 것을 특징으로 하는 고체산화물 연료전지용 셀모듈.
- 제1항에 있어서, 평관형 반응기는 상부면에 하나 이상의 공기 흐름용 홈이 형성되고, 상기 홈에 연료극, 전해질, 및 공기극이 차례로 피복된 하나 이상의 단위셀이 형성된 것을 특징으로 하는 고체산화물 연료전지용 셀모듈.
- 제1항에 있어서, 상기 셀모듈은 직렬로 적층되는 것을 특징으로 하는 고체산화물 연료전지용 셀모듈.
- 제1항 내지 제10항 중 어느 한 항에 따른 셀모듈들이 상하 및/또는 좌우로 적층하여 번들을 이루는 것을 특징으로 하는 셀 번들.
- 제11항에 있어서, 번들의 상면과 하면에 집전판이 부착되고, 좌우 말단에 가스 매니폴드가 부착되어, 일측의 매니폴드가 상면과 전기적으로 연결되며, 타측의 매니폴드가 하면과 전기적으로 연결되는 것을 특징으로 하는 셀 번들.
- 제1항 내지 제10항 중 어느 한 항에 따른 다수의 셀모듈이 상하로 적층되고, 적층된 셀모듈들의 상하면에 집전판이 형성된 셀 번들들을 직렬 및/또는 병렬로 연결한 스텍 모듈.
- 제1항 내지 제10항 중 어느 한 항에 따른 다수의 셀모듈이 상하로 적층되고, 적층된 셀모듈의 상하면에 집전판이 형성된 셀번들들을 전기적으로 직렬 및/또는 병렬로 연결한 스텍 모듈들을 전기적으로 직렬 및/또는 병렬로 연결한 스텍 번들.
- 제14항에 따른 스텍 번들을 직렬 및/또는 병렬로 연결한 고체산화물 연료전지용 스텍.
- 내부 채널이 형성된 전도성 평관형 지지체가 플러그로 일측이 막혀있고, 상기 플러그의 인접 부위에서 내부채널에서 지지체 외면으로 수직으로 관통되는 수직 채널이 형성되며, 상기 내부채널에는 개질 촉매가 코팅된 것을 특징으로 하는 고체산화물 연료전지용 개질기.
- 제16항에 있어서, 상기 평관형 지지체는 다공성 재질로 이루어진 전도성 지지체이며, 상면 중앙부와 하면 중앙부는 전기연결재로 피복되고, 나머지 외면은 전해질로 피복된 것을 특징으로 하는 고체산화물 연료전지용 개질기.
- 제16항 또는 제17항에서, 상기 지지체 외면의 양측에는 지지체의 둘레를 따라 두 개의 홈이 형성되며, 상기 홈에는 밀봉제가 삽입되고, 두 홈 사이에 수직채널이 형성된 것을 특징으로 하는 고체산화물 연료전지용 개질기.
- 내부 채널이 형성된 전도성의 평관형 지지체의 외면 양측에 지지체의 둘레를 따라 밀봉제가 삽입되는 두개의 홈이 각각 형성되고, 상기 홈 사이에는 내부채널로 관통되는 수직 채널이 선택적으로 형성되며,
상기 지지체의 외면 중앙부에는 하나 이상의 홈으로 이루어진 공기채널이 형성되고, 지지체의 외면 중앙부에는 상부면에 제1전극, 전해질, 및 제2전극으로 이루어진 하나 이상의 단위셀이 형성되고, 하부면에 전기연결재층이 형성되고,
나머지 외면은 치밀막으로 피복된 것을 특징으로 하는 고체 산화물 연료 전지용 단위셀 반응기.
- 제19항에 있어서, 상기 평관형 지지체는 수직 채널이 형성된 측의 출입구가 플러그로 막혀있는 것을 특징으로 하는 고체산화물 연료전지용 단위셀 반응기.
- 내부에 길이 방향으로 1개 이상의 연료가스 채널을 가지고 전기 전도성 재료로 이루어진 다공성의 평관형 튜브를 제조하고, 상기 평관형 튜브의 양쪽 끝 부분의 상하좌우 4면 전면에 일정 깊이 및 넓이로 파서 밀봉제 장착용 홈을 2개씩 생성시켜 지지체를 완성하는 단계;
상기 지지체의 내부 채널 한쪽 끝을 막고 그 옆 밀봉제 홈 사이의 위치에 내부채널에서 평판 밖으로 관통하는 수직통로를 상하로 생성하고 외부 평판면의 중앙부에 전기연결재층를 형성한 후 나머지 내외부 부위에는 전해질층을 피복하고, 내부 채널에 개질촉매을 장착하여 개질기를 완성하는 단계;
상기 지지체의 평판 중앙부 한면 또는 양면에 공기흐름용 채널을 생성하고 상부면 중앙에는 연료극층, 전해질층 및 공기극 층이 피복된 단위셀층을 형성하고 하부면 중앙에는 전기연결재층을 형성하며 그 나머지 외부면에는 전해질층을 피복한 후, 내부 채널의 한쪽 끝 또는 양쪽 끝을 막고 채널이 막힌 옆에 내부채널로부터 평판 밖으로 관통하는 수직 통로를 밀봉제 홈 사이에 설치하여 단위셀을 완성하는 단계;
상기 개질기 하나에 짝수 개의 단위셀들을 상하로 적층하되, 개질기 한쪽 끝의 수직통로가 이웃한 단위셀의 한쪽 끝 수직통로와 연결되고 반대 쪽 수직통로는 그 다음 단위셀의 한쪽 끝 수직 통로와 연결되는 것을 반복하여 연료가스가 채널 내부에서 길이 방향으로 zigzag로 흘러 개질기 유입구 반대 쪽으로 배출되도록 단위 셀모듈을 완성하는 단계;로 완성된 셀모듈을 이용하는 것을 특징으로 하는 고체산화물 연료전지용 스텍 제조 방법.
- 제21항에 있어서, 상기 셀모듈 일정 갯 수를 좌우로 밀착 배열하고 다시 상하로 적층한 후 적층된 말단셀에 양극 및 음극용 집전판을 부착하고 길이 양끝에 장착된 연료가스 매니폴드에 전기적으로 각각 연결하며 밀봉제 홈에 내장된 밀봉제를 녹여서 양쪽 끝이 밀봉된 단위 셀번들을 완성하는 단계를 더 포함하는 것을 특징으로 하는 고체산화물 연료전지용 스텍 제조 방법.
- 제22항에 있어서, 상기 셀번들 일정 갯 수를 상하좌우로 일정거리를 두고 배열하되, 셀번들 중앙부는 hot box 내에 장착되고 양끝 연료가스 매니폴드 부분은 hot box 밖에 설치된 이중 벽의 rack상의 open box 내에 거치되게 하여 단위 스택모듈을 완성하는 단계; 를 더 포함하는 것을 특징으로 하는 고체산화물 연료전지용 스텍 제조 방법.
- 제23항에 있어서, 상기 스택모듈에 장착된 hot box 앞뒤 면의 공기 배출용 매니폴드와 유입용 매니폴드사이를 반복적으로 직렬 연결하거나 또는 단위 스택모듈 2개나 상기 직렬 연결된 복수 개 스택모듈을 다시 앞뒤를 전치하여 유입용 매니폴드 끼리 및 배출용 매니폴드 끼리 반복 연결하거나 하는 방법으로 공기 매니폴드가 반복 연결되며, 이를 다시 연료가스 유입용매니폴드 끼리 및 연료가스 배출용 매니폴드 끼리 반복적으로 연결시켜 최종적으로 앞뒤로 공기 매니폴드가 반복 연결되고 좌우로 연료가스 매니폴드가 반복 연결된 일정 크기의 스택번들을 제작하는 단계; 를 더 포함하는 것을 특징으로 하는 고체산화물 연료전지용 스텍 제조 방법.
- 제24항에 있어서, 상기 스택번들을 다시 상하로 반복하여 적층하고 연료가스 유입 또는 배출용 매니폴드를 상하 방향으로는 하나로 통합한 후 연료가스 매니폴드내의 셀번들 사이를 전기적으로 직렬 및 병렬을 적절히 혼합하여 원하는 전류 및 전압을 낼 수 있도록 연결함으로써, 최종적으로 3차원적으로 거대화된 스택을 완성하는 단계;를 더 포함하는 것을 특징으로 하는 고체산화물 연료전지용 스택 제작 방법.
- 제21항 내지 제25항 중 어느 한 항에 있어서, 상기 지지체의 두께는 20 mm 이하, 바람직하게는 5 mm 이하로 유지되는 것을 특징으로 하는 고체산화물 연료전지용 스택 제작 방법.
- 제21항 내지 제25항 중 어느 항에 있어서, 평관 양끝에 생성된 밀봉제 홈의 깊이는 5 mm 이하로 바람직하게는 2 mm 이하로 생성되고, 넓이는 50 mm 이하로 바람직하게는 10 mm 이하로 생성되고 2 개의 밀봉제 홈 사이 간격은 50 mm 이하 바람직하게는 10 mm 이하인 것을 특징으로 하는 고체산화물 연료전지용 스택 제작 방법.
- 제21항 내지 제25항 중 어느 한 항에 있어서, 개질기 및 단위셀의 내부 채널 끝을 막기 위해, 내부 채널에 원통 bar형태의 세라믹, 밀봉제 및 세라믹 plug를 차례로 넣고 튜브를 수직으로 세운 후 고온으로 온도를 올려서 밀봉제가 녹아 하부 세라믹 plug 상의 지지체에 액체로 고여서 밀봉시킨 후 저온으로 식혀서 밀봉제를 고화 시켜 밀봉하거나, 보다 바람직하게는 점결재가 혼합된 세라믹 재료로 내부채널을 막고 고온 소결하는 방법에 의해 내부 채널 끝을 막는 것을 특징으로 하는 고체산화물 연료전지용 스택 제작 방법.
- 제21항 내지 제25항 중 어느 한 항에 있어서, 지지체 상의 막힌 채널 끝에 내부채널로부터 평판 밖으로 생성되는 수직통로는 hole 형태로 개개의 내부채널에 구멍을 뚫어서 생성하거나 slit 형태로 내부채널들을 하나로 묶어서 관통되도록 수직통로가 제작된 것을 특징으로 하는 고체산화물 연료전지용 스택 제작 방법.
- 제21항 내지 제25항 중 어느 한 항에 있어서, 상기 평판형 튜브 상의 외부면에 생성된 공기 채널은 튜브를 상하 적층 시 평판 상의 요철면의 사이에서 생성되고, 그 최종적인 흐름 방향은 내부채널의 연료가스와 직각 방향 인 것을 것을 특징으로 하는 고체산화물 연료전지용 스택 제작 방법.
- 제21항 내지 제25항 중 어느 한 항에 있어서,상기 개질기 및 단위셀에 피복되는 전기연결재층과 전해질층은 가스가 통하지 않는 치밀막으로 형성되고 전극층은 다공성으로 형성되는 것을 특징으로 하는 고체산화물 연료전지용 스택 제작 방법.
- 제21항 내지 제25항 중 어느 한 항에 있어서, 상기 셀모듈의 상하 적층 시, 단위셀층과 전기연결재층에는 전기연결재 또는 양극 재료로 된 전도성의 slurry를 도포하고 나머지 평판 부위에는 부도체의 세라믹 paste 또는 접착제를 도포한 후 평판면의 밀봉제 홈에 bar 또는 plate형태의 밀봉제를 넣고 적층 된 평판 상하면를 압착하면서 밀봉제의 녹는점 이하 범위에서 고온으로 올려 건조 및 소성하는 방법에 의해 개질기 및 단위셀 간 전기적으로 연결되고 구조적으로는 하나의 단일구조체 (monolith structure)로 제작되게 하는 것을 특징으로 하는 고체산화물 연료전지용 스택 제작 방법.
- 제22항 내지 제25항 중 어느 한 항에 있어서, 상기 셀번들의 제작 시 셀모듈을 상하로 적층하고 압착하면서 소결하여 단위셀들이 전기적으로 직렬 연결되고 구조적으로 하나의 단일체가 되게 제조한 후, 상기 단일체를 좌우로 배열 시에는 측면의 밀봉제 홈에 밀봉제 bar 또는 plate를 넣고 세라믹 접착제를 밀봉제 홈 부위 이외의 측면에 도포하고 밀봉제의 녹는점 이하로 소결하여 세라믹 접착제에 의해 구조적으로 전체 튜브가 단일체가 되도록 제작하여 일차적으로 구조적으로 안정한 셀번들 base를 먼저 제조하는 것을 특징으로 하는 고체산화물 연료전지용 스택 제작 방법.
- 제22항 내지 제25항 중 어느 한 항에 있어서, 상기 셀 번들 base의 상부의 말단 양극층과 한쪽 끝 연료가스 매니폴드 내벽 사이에는 양극용 집전판을 부착하고 하부의 말단 전기연결재층과 반대 쪽 연료가스 매니폴드 내벽 사이에는 음극용 집전판을 부착하고, 집전판과 가스 매니폴드 내벽 사이에는 길이 왼쪽에서 오른쪽으로 세라믹 paste, 밀봉제, 전도성의 금속재 paste, 밀봉제를 차례로 장착하고 나머지 2면의 셀번들 외부면과 가스 매니폴드 내벽 사이는 세라믹 paste, 밀봉제, 세라믹 paste, 밀봉제를 차례로 장착한 후 1차로 밀봉제의 녹는점 이하에서 평판 방향으로 가압하면서 빌봉재 용융점 이하, 바람직하게는 600℃ 이하에서 1차로 소결하여 집전판과 매니폴드 내벽 사이가 전기적으로 연결되고 셀번들과 가스 매니폴드 사이가 견고하게 부착되도록 하며, 그 후에 전체를 수직으로 세우고 밀봉제가 녹는점 이상으로 바람직하게는 700℃ 이상으로 온도를 올려 밀봉제를 녹인 후 다시 온도를 내려서 전체적으로 밀봉을 완성하는 것을 특징으로 하는 고체산화물 연료전지용 스택 제작 방법.
- 제34항에 있어서, 세라믹 paste 또는 접착제는 세라믹 또는 clay로 된 부도체 재료를 물리적으로 성형하여 부착 또는 도포시킬 수 있는 재료로 구성되고, 밀봉제는 glass 및 glass를 포함하고 녹는점이 600-800 ℃ 사이인 특성을 가지는 재료로 구성되며, 금속재 paste는 건조 및 소결 후 수축되지 않고 전기적인 연결을 달성할 수 있는 전도성의 재료 특성을 가지는 것을 특징으로 하는 고체산화물 연료전지용 스택 제작 방법.
- 제22항 내지 제25항 중 어느 항에 있어서, 상기 셀번들을 상하좌우로 배열하여 제작되는 스택모듈은 스택모듈 사이 연결된 연료가스 유입용 통합 매니폴드를 통해서 연료가스가 유입되어 각각의 셀번들의 유입용 매니폴드를 거쳐서 개개의 개질기 내로 유입되어 내장된 촉매에 의해 수소 및 CO 함유 가스로 개질되고 개질된 가스는 셀모듈 내 단위셀들을 거치면서 연료전지 반응에 참여하고 다시 셀번들 배출용 매니폴드를 거쳐서 최종적으로 스택모듈의 배출용 매니폴드로 배출되며, 공기는 hot box 한 면의 공기 유입 매니폴드로 주입되어 개개의 튜브의 shell side를 거쳐서 반대쪽의 공기 배출용 매니폴드로 배출되는 것을 특징으로 하는 고체산화물 연료전지용 스택 제작 방법.
- 제22항 내지 제25항 중 어느 한 항에 있어서, 스택모듈 내 셀번들은 hot box 좌측의 이중 벽으로 된 rack 상에 규칙적으로 배열된 open box내로 들어가 다시 hot box를 거쳐서 우측 rack상의 open box내에 거치되는 것을 특징으로 하는 고체산화물 연료전지용 스택 제작 방법.
- 제37항에 있어서, rack 상의 open box의 단면적은 연료가스 매니폴드의 그것보다 같거나 크며, 셀번들의 hot box 벽면 위치에 부도체의 단열재로 된 plate로 된 plug를 상하좌우에 끼워 1차로 hot box 로 부터의 열 누출을 방지하고 2차로 금속재의 rack 과 금속재의 매니폴드 사이 통전을 방지하도록 rack이 제작되고 매니폴드가 거치되는 것을 특징으로 하는 고체산화물 연료전지용 스택 제작 방법.
- 제21항 내지 제25항 중 어느 한 항에 있어서, 상기 사각링의 단면상 상하면은 길이 방향으로 hot box 내부까지 연장되어, hot box 내 셀번들 간 상하 틈새를 막아 셀번들 사이 공기 흐름을 차단하도록 하는 것을 특징으로 하는 고체산화물 연료전지용 스택 제작 방법.
- 제38항에 있어서, rack 상의 바깥 면의 매니폴드와 open box 사이 틈새를 막아 전체적으로 공기 쳄버를 생성시키고 냉각 공기를 불어 넣어 연료가스 매니폴드 부의 온도를 밀봉제 용융점 이하 바람직하게는 600℃ 이하로 유지되도록 하는 것을 특징으로 하는 고체산화물 연료전지용 스택 제작 방법.
- 제21항 내지 제25항 중 어느 한 항에 있어서, 공기 유입 및 배출을 위한 hot box 벽면은 작은 hole들이 분산되어 생성되어 유입된 공기가 골고루 분산되고 열 방출을 감소시키며, hot box 벽면과 매니폴드사이 타공판을 추가로 설치하여 공기 흐름의 추가 분산을 돕고 hot box 로 부터의 열을 추가로 차단하는 것을 특징으로 하는 고체산화물 연료전지용 스택 제작 방법.
- 제21항 내지 제24항 중 어느 한 항에 있어서, 스택 상의 연료가스 매니폴드는 스택번들의 상하 적층 방향으로는 하나로 통합되어 셀번들 간 전기적 연결이 연료가스 매니폴드 내에서 이루어 질 수 있도록 하는 것을 특징으로 하는 고체산화물 연료전지용 스택 제작 방법.
- 제21항 내지 제24항 중 어느 한 항에 있어서, 스택모듈 내에서 셀번들의 배치는 전기적으로 병렬 연결되는 경우는 연료가스 매니폴드의 전극이 이웃하는 셀번들과 같은 방향으로 배치되고 직렬 연결되는 경우에는 이웃하는 셀번들과는 반대극 방향으로 오도록 앞뒤를 전치하여 배치하는 것을 특징으로 하는 고체산화물 연료전지용 스택 제작 방법.
- 제25항에 있어서, 최종 스택으로 사용되는 스택모듈, 스택번들 또는 최종 스택 내 열 관리는 셀모듈 내 장착된 내부 개질기와 스택 외부에 추가로 설치된 소형 개질기 사이의 개질 비율을 조절하는 방법에 의해 조절하는 것을 특징으로 하는 고체산화물 연료전지용 스택 제작 방법.
- 제25항에 있어서, 최종 스택은 평관들이 길이 방향으로 수직으로 세워지게 설치되고, rack 상의 공기 쳄버에는 냉각용 공기와 스택에서 배출되는 공기를 혼입시켜 연료가스 매니폴드 내 밀봉제가 액체 상태로 유지되게 운전되어 지는 것을 특징으로 하는 고체산화물 연료전지용 스택 제작 방법.
- 고체산화물 연료전지용 거대 스택을 제작하는데 있어서,
내부에 길이 방향으로 1개 이상의 연료가스 채널을 가지고 전기 전도성 재료로 이루어진 다공성의 평관형 튜브를 제조하고, 상기 평관형 튜브의 양쪽 끝 부분의 상하좌우 4면 전면에 일정 깊이 및 넓이로 파서 밀봉제 장착용 홈을 2개씩 생성시켜 지지체를 완성하는 단계;
상기 지지체의 내부 채널 한쪽 끝을 막고 그 옆 밀봉제 홈 사이의 위치에 내부채널에서 평판 밖으로 관통하는 수직통로를 상하로 생성하고 외부 평판면의 중앙부에 전기연결재층를 형성한 후 나머지 내외부 부위에는 전해질층을 피복하고, 내부 채널에 개질촉매을 장착하여 개질기를 완성하는 단계;
상기 지지체의 평판 중앙부 한면 또는 양면에 공기흐름용 채널을 생성하고 상부면 중앙에는 연료극층, 전해질층 및 공기극 층이 피복된 단위셀층을 형성하고 하부면 중앙에는 전기연결재층을 형성하며 그 나머지 외부면에는 전해질층을 피복한 후, 내부 채널의 한쪽 끝 또는 양쪽 끝을 막고 채널이 막힌 옆에 내부채널로부터 평판 밖으로 관통하는 수직 통로를 밀봉제 홈 사이에 설치하여 단위셀을 완성하는 단계;
상기 개질기 하나에 짝수 개의 단위셀들을 상하로 적층하되, 개질기 한쪽 끝의 수직통로가 이웃한 단위셀의 한쪽 끝 수직통로와 연결되고 반대 쪽 수직통로는 그 다음 단위셀의 한쪽 끝 수직 통로와 연결되는 것을 반복하여 연료가스가 채널 내부에서 길이 방향으로 zigzag로 흘러 개질기 유입구 반대 쪽으로 배출되도록 단위 셀모듈을 완성하는 단계;
상기 셀모듈 일정 갯 수를 좌우로 밀착 배열하고 다시 상하로 적층한 후 적층된 말단셀에 양극 및 음극용 집전판을 부착하고 길이 양끝에 장착된 연료가스 매니폴드에 전기적으로 각각 연결하며 밀봉제 홈에 내장된 밀봉제를 녹여서 양쪽 끝이 밀봉된 단위 셀번들을 완성하는 단계;
상기 셀번들 일정 갯 수를 상하좌우로 일정거리를 두고 배열하되, 셀번들 중앙부는 hot box 내에 장착되고 양끝 연료가스 매니폴드 부분은 hot box 밖에 설치된 이중 벽의 rack상의 open box 내에 거치되게 하여 단위 스택모듈을 완성하는 단계;
상기 스택모듈에 장착된 hot box 앞뒤 면의 공기 배출용 매니폴드와 유입용 매니폴드사이를 반복적으로 직렬 연결하거나 또는 단위 스택모듈 2개나 상기 직렬 연결된 복수 개 스택모듈을 다시 앞뒤를 전치하여 유입용 매니폴드 끼리 및 배출용 매니폴드 끼리 반복 연결하거나 하는 방법으로 공기 매니폴드가 반복 연결되며, 이를 다시 연료가스 유입용매니폴드 끼리 및 연료가스 배출용 매니폴드 끼리 반복적으로 연결시켜 최종적으로 앞뒤로 공기 매니폴드가 반복 연결되고 좌우로 연료가스 매니폴드가 반복 연결된 일정 크기의 스택번들을 제작하는 단계; 및
상기 스택번들을 다시 상하로 반복하여 적층하고 연료가스 유입 또는 배출용 매니폴드를 상하 방향으로는 하나로 통합한 후 연료가스 매니폴드내의 셀번들 사이를 전기적으로 직렬 및 병렬을 적절히 혼합하여 원하는 전류 및 전압을 낼 수 있도록 연결함으로써, 최종적으로 3차원적으로 거대화된 스택을 완성하는 단계;
를 포함하는 것을 특징으로 하는 고체산화물 연료전지용 스택 제작 방법.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/639,710 US9379400B2 (en) | 2010-04-09 | 2011-03-03 | Huge stack for flat-tubular solid oxide fuel cell and manufacturing method thereof |
CN201180018268.2A CN102971901B (zh) | 2010-04-09 | 2011-03-03 | 平管型固体氧化物燃料电池用巨大电池堆及其制备方法 |
JP2013503655A JP5518252B2 (ja) | 2010-04-09 | 2011-03-03 | 平管型固体酸化物燃料電池用巨大スタック及びその製造方法 |
EP11766068.8A EP2557624A4 (en) | 2010-04-09 | 2011-03-03 | VERY LARGE STACK FOR FLAT TUBE OXYGEN FUEL CELLS AND METHOD FOR THE PRODUCTION THEREOF |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2010-0032854 | 2010-04-09 | ||
KR1020100032854A KR101135367B1 (ko) | 2010-04-09 | 2010-04-09 | 평관형 고체산화물 연료전지용 거대 스택 및 그 제작 방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2011126217A2 true WO2011126217A2 (ko) | 2011-10-13 |
WO2011126217A3 WO2011126217A3 (ko) | 2012-03-01 |
Family
ID=44763351
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2011/001459 WO2011126217A2 (ko) | 2010-04-09 | 2011-03-03 | 평관형 고체산화물 연료전지용 거대 스택 및 그 제작 방법 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9379400B2 (ko) |
EP (1) | EP2557624A4 (ko) |
JP (1) | JP5518252B2 (ko) |
KR (1) | KR101135367B1 (ko) |
CN (1) | CN102971901B (ko) |
WO (1) | WO2011126217A2 (ko) |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101237735B1 (ko) * | 2010-06-14 | 2013-02-26 | 포항공과대학교 산학협력단 | 내부개질형 관형 고체산화물 연료전지 스택 및 그 제작 방법 |
US8927172B2 (en) | 2010-07-30 | 2015-01-06 | Korea Institute Of Energy Research | Flat-tubular solid oxide cell stack |
KR101120134B1 (ko) * | 2010-07-30 | 2012-03-22 | 한국에너지기술연구원 | 평관형 고체산화물 셀 스택 |
KR101418071B1 (ko) * | 2012-04-06 | 2014-07-10 | 한국에너지기술연구원 | 평관형 고체산화물 셀 스택 |
EP2819230B1 (en) * | 2013-06-27 | 2017-12-20 | Toto Ltd. | Solid oxide fuel cell and manufacturing method and manufacturing apparatus for same |
JP6175410B2 (ja) * | 2013-06-28 | 2017-08-02 | 日本特殊陶業株式会社 | 燃料電池及びその製造方法 |
KR101672077B1 (ko) * | 2013-08-21 | 2016-11-04 | 포항공과대학교 산학협력단 | 고체산화물 연료전지에 있어서 단위 셀과 분리판 제작 및 이를 이용한 스택 제작 방법 |
GB201420378D0 (en) | 2014-11-17 | 2014-12-31 | Lg Fuel Cell Systems Inc | Method and components for repairing a ceramic fuel cell stack assembly |
SG11201708667PA (en) * | 2015-04-23 | 2017-11-29 | Lg Fuel Cell Systems Inc | Modular fuel cell system |
CN106887621B (zh) * | 2015-10-29 | 2019-05-31 | 天津大学 | 固体氧化物燃料电池电池组的制备方法 |
DK178850B1 (en) * | 2016-01-15 | 2017-03-27 | Serenergy As | Extrusion used for Production of a Reformer in a Fuel Cell System |
DE102016222537A1 (de) * | 2016-11-16 | 2018-05-17 | Robert Bosch Gmbh | Brennstoffzellenvorrichtung |
CN106784958B (zh) * | 2017-01-09 | 2019-04-16 | 江苏科技大学 | 一种具有交差-并流-对流综合优化特征的燃料电池堆 |
KR102017578B1 (ko) * | 2017-09-19 | 2019-09-03 | 주식회사 미코 | 연료전지 구조체 |
CN111095639B (zh) * | 2017-09-19 | 2023-08-15 | 美科电力有限公司 | 固体氧化物燃料电池结构体 |
CN111416134B (zh) * | 2020-03-31 | 2021-03-26 | 西安交通大学 | 金属扁管支撑体、电池/电解池、电池堆结构 |
CN113764704B (zh) * | 2020-06-05 | 2022-12-27 | 国家能源投资集团有限责任公司 | 燃料电池堆的堆叠系统及其短路检测方法 |
KR20210153430A (ko) * | 2020-06-10 | 2021-12-17 | 주식회사 엘지에너지솔루션 | 배터리 모듈 및 그의 제조방법 |
CN111613825B (zh) * | 2020-07-08 | 2024-07-09 | 徐州普罗顿氢能储能产业研究院有限公司 | 一种固体氧化物燃料电池电堆 |
CN115395037A (zh) * | 2021-05-25 | 2022-11-25 | 国家能源投资集团有限责任公司 | 用于测试的发电模块 |
CN114566690A (zh) * | 2022-02-10 | 2022-05-31 | 浙江氢邦科技有限公司 | 一种用于平管式电池堆燃料气进出的结构及其制造方法 |
CN114361505B (zh) * | 2022-03-17 | 2022-06-07 | 武汉氢能与燃料电池产业技术研究院有限公司 | 三流道固体氧化物燃料电池单元结构及电池堆 |
CN115241508A (zh) * | 2022-03-31 | 2022-10-25 | 潍柴动力股份有限公司 | 一种燃料电池堆高稳定性计算方法及燃料电池堆 |
WO2025058674A1 (en) * | 2023-04-14 | 2025-03-20 | Georgia Tech Research Corporation | Solid oxide cell system with thermally tolerant cells with passive thermal management structures |
FR3154866A1 (fr) * | 2023-10-25 | 2025-05-02 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Procédé de fabrication de réacteur électrochimique à oxyde solide comportant des assemblages d’étanchéité et d’isolation |
KR20250094277A (ko) * | 2023-12-18 | 2025-06-25 | 포스코홀딩스 주식회사 | 수전해 스택 조립체 및 핫박스 장치 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6207311B1 (en) | 1997-04-07 | 2001-03-27 | Siemens Westinghouse Power Corporation | Solid oxide fuel cell operable over wide temperature range |
US6248468B1 (en) | 1998-12-31 | 2001-06-19 | Siemens Westinghouse Power Corporation | Fuel electrode containing pre-sintered nickel/zirconia for a solid oxide fuel cell |
US6416897B1 (en) | 2000-09-01 | 2002-07-09 | Siemens Westinghouse Power Corporation | Tubular screen electrical connection support for solid oxide fuel cells |
US6429051B1 (en) | 2000-12-29 | 2002-08-06 | Intel Corporation | Stitched plane structure for package power delivery and dual referenced stripline I/O performance |
KR20050021027A (ko) | 2003-08-25 | 2005-03-07 | 한국에너지기술연구원 | 연료극 지지체식 평관형 고체산화물 연료전지 스택과 그제조 방법 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0117939D0 (en) * | 2001-07-24 | 2001-09-19 | Rolls Royce Plc | A solid oxide fuel cell stack |
JP4369163B2 (ja) | 2003-06-10 | 2009-11-18 | 株式会社ティラド | 改質器 |
GB0323224D0 (en) * | 2003-10-03 | 2003-11-05 | Rolls Royce Plc | A module for a fuel cell stack |
JP2005243433A (ja) | 2004-02-26 | 2005-09-08 | Seiko Epson Corp | 改質器、および改質器を備えた燃料電池システム |
JP2006019081A (ja) * | 2004-06-30 | 2006-01-19 | Univ Of Tokyo | 固体酸化物形燃料電池システム、及び固体酸化物形燃料電池システムの駆動方法 |
JP2007029860A (ja) * | 2005-07-27 | 2007-02-08 | Dna Future:Kk | 土壌中の有害物質の分解又は濃縮方法 |
CA2629120C (en) * | 2005-11-08 | 2013-04-30 | Alan Devoe | Solid oxide fuel cell device comprising an elongated substrate with a hot and a cold portion |
KR100727684B1 (ko) * | 2005-12-08 | 2007-06-13 | 학교법인 포항공과대학교 | 고체산화물 연료전지 모듈, 이를 이용한 연료전지 및 그제작방법 |
JP4936801B2 (ja) * | 2006-06-22 | 2012-05-23 | ヤンマー株式会社 | 平板固体酸化物型燃料電池 |
JP5237614B2 (ja) * | 2007-05-22 | 2013-07-17 | 日本碍子株式会社 | 固体酸化物型燃料電池 |
KR101006467B1 (ko) | 2008-01-31 | 2011-01-06 | 포항공과대학교 산학협력단 | 고체산화물 연료전지용 전극 지지체와 일체형 단위 셀 및그 제조 방법 |
KR100976506B1 (ko) | 2008-03-31 | 2010-08-17 | 포항공과대학교 산학협력단 | 고체산화물 연료전지용 전극 지지체와 일체형 단위 셀 및이를 이용한 스텍 제작 방법 |
JP5317274B2 (ja) * | 2008-05-22 | 2013-10-16 | 独立行政法人産業技術総合研究所 | 電気化学リアクターユニット、それらから構成される電気化学リアクターモジュール及び電気化学反応システム |
KR20110044657A (ko) * | 2009-10-23 | 2011-04-29 | 주식회사 효성 | 평관 지지체형 고체산화물 연료전지 |
KR101237735B1 (ko) * | 2010-06-14 | 2013-02-26 | 포항공과대학교 산학협력단 | 내부개질형 관형 고체산화물 연료전지 스택 및 그 제작 방법 |
-
2010
- 2010-04-09 KR KR1020100032854A patent/KR101135367B1/ko not_active Expired - Fee Related
-
2011
- 2011-03-03 WO PCT/KR2011/001459 patent/WO2011126217A2/ko active Application Filing
- 2011-03-03 JP JP2013503655A patent/JP5518252B2/ja active Active
- 2011-03-03 US US13/639,710 patent/US9379400B2/en not_active Expired - Fee Related
- 2011-03-03 CN CN201180018268.2A patent/CN102971901B/zh not_active Expired - Fee Related
- 2011-03-03 EP EP11766068.8A patent/EP2557624A4/en not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6207311B1 (en) | 1997-04-07 | 2001-03-27 | Siemens Westinghouse Power Corporation | Solid oxide fuel cell operable over wide temperature range |
US6248468B1 (en) | 1998-12-31 | 2001-06-19 | Siemens Westinghouse Power Corporation | Fuel electrode containing pre-sintered nickel/zirconia for a solid oxide fuel cell |
US6416897B1 (en) | 2000-09-01 | 2002-07-09 | Siemens Westinghouse Power Corporation | Tubular screen electrical connection support for solid oxide fuel cells |
US6429051B1 (en) | 2000-12-29 | 2002-08-06 | Intel Corporation | Stitched plane structure for package power delivery and dual referenced stripline I/O performance |
KR20050021027A (ko) | 2003-08-25 | 2005-03-07 | 한국에너지기술연구원 | 연료극 지지체식 평관형 고체산화물 연료전지 스택과 그제조 방법 |
Also Published As
Publication number | Publication date |
---|---|
EP2557624A2 (en) | 2013-02-13 |
CN102971901B (zh) | 2015-07-01 |
EP2557624A4 (en) | 2016-08-31 |
JP2013524458A (ja) | 2013-06-17 |
KR20110113458A (ko) | 2011-10-17 |
CN102971901A (zh) | 2013-03-13 |
JP5518252B2 (ja) | 2014-06-11 |
WO2011126217A3 (ko) | 2012-03-01 |
KR101135367B1 (ko) | 2012-04-16 |
US20130130137A1 (en) | 2013-05-23 |
US9379400B2 (en) | 2016-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101135367B1 (ko) | 평관형 고체산화물 연료전지용 거대 스택 및 그 제작 방법 | |
WO2011159064A9 (ko) | 내부개질형 관형 고체산화물 연료전지 스택 및 그 제작 방법 | |
EP1796192B1 (en) | Solid oxide fuel cell module, fuel cell system using the same and manufacturing method thereof | |
US10312530B2 (en) | Fuel cell device and system | |
US9608285B2 (en) | Stack for a solid oxide fuel cell using a flat tubular structure | |
WO1990004860A1 (en) | Fabrication of a monolithic solid oxide fuel cell | |
KR20130016140A (ko) | 튜브형 고체산화물 연료전지 스택 및 그 제작 방법 | |
JP3346784B2 (ja) | 縦縞円筒型固体電解質燃料電池 | |
KR101346727B1 (ko) | 튜브형 고체산화물 연료전지 스택 및 그 제작 방법 | |
KR101053224B1 (ko) | 고체산화물 연료전지용 스텍 | |
JP2012238622A (ja) | 燃料電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180018268.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11766068 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013503655 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13639710 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011766068 Country of ref document: EP |