WO2011125952A1 - Flexible polyurethane foam for hot-press molding, production method therefor, hot-press molded article, and production method therefor - Google Patents

Flexible polyurethane foam for hot-press molding, production method therefor, hot-press molded article, and production method therefor Download PDF

Info

Publication number
WO2011125952A1
WO2011125952A1 PCT/JP2011/058458 JP2011058458W WO2011125952A1 WO 2011125952 A1 WO2011125952 A1 WO 2011125952A1 JP 2011058458 W JP2011058458 W JP 2011058458W WO 2011125952 A1 WO2011125952 A1 WO 2011125952A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyol
polyurethane foam
hot press
mass
flexible polyurethane
Prior art date
Application number
PCT/JP2011/058458
Other languages
French (fr)
Japanese (ja)
Inventor
孝之 佐々木
賀来 大輔
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2011125952A1 publication Critical patent/WO2011125952A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4804Two or more polyethers of different physical or chemical nature
    • C08G18/4812Mixtures of polyetherdiols with polyetherpolyols having at least three hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0838Manufacture of polymers in the presence of non-reactive compounds
    • C08G18/0842Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents
    • C08G18/0861Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of a dispersing phase for the polymers or a phase dispersed in the polymers
    • C08G18/0871Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of a dispersing phase for the polymers or a phase dispersed in the polymers the dispersing or dispersed phase being organic
    • C08G18/0876Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of a dispersing phase for the polymers or a phase dispersed in the polymers the dispersing or dispersed phase being organic the dispersing or dispersed phase being a polyol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/2815Monohydroxy compounds
    • C08G18/283Compounds containing ether groups, e.g. oxyalkylated monohydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/409Dispersions of polymers of C08G in organic compounds having active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4866Polyethers having a low unsaturation value
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7621Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring being toluene diisocyanate including isomer mixtures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0008Foam properties flexible
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0041Foam properties having specified density
    • C08G2110/005< 50kg/m3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0041Foam properties having specified density
    • C08G2110/0058≥50 and <150kg/m3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0083Foam properties prepared using water as the sole blowing agent

Definitions

  • the present invention relates to a method for producing a flexible polyurethane foam for hot press molding, a soft polyurethane foam for hot press molding obtained by the production method, a method for producing a hot press molded product using the flexible polyurethane foam for hot press molding, and The present invention relates to a hot press molded product obtained by the production method.
  • a flexible polyurethane foam having a low impact resilience has been widely used as, for example, an impact absorbing material, a soundproofing material, and a vibration absorbing material for automobiles and electronic devices.
  • a flexible polyurethane foam is molded into a desired shape by a hot press molding method.
  • a hot press molding method generally, a flexible polyurethane foam is cut into an appropriate size and shape in advance, and is compressed under heating to obtain a molded product having a shape corresponding to a sheet shape or a mold.
  • Patent Document 1 as a method for producing a flexible polyurethane foam suitable for molding by a hot press molding method, a polyoxypropylene polyol (A) having an average number of hydroxyl groups of 2 to 3 and a hydroxyl value of 10 to 90 mgKOH / g, an average A polyol composition containing a polyether polyol (B) having a hydroxyl number of 2 to 3 and a hydroxyl value of 100 to 250 mgKOH / g, and a polyether monool (D) having a hydroxyl value of 5 to 200 mgKOH / g, and a polyisocyanate A method of reacting a compound with an isocyanate index of less than 90 is described.
  • Patent Document 2 hot press molding is performed using a blended composition of a known flexible polyurethane foam obtained by mixing and reacting a flexible polyurethane foam raw material comprising a polyol, a polyisocyanate, a foam stabilizer, a foaming agent, a catalyst, and the like.
  • a method is described, and it is described that two or more kinds of polyols having different molecular weights are used as the polyol.
  • the flexible polyurethane foam obtained by the production method of Patent Document 1 is crushed because the hardness of the flexible polyurethane foam is insufficient when cutting prior to the hot press step. It tends to be difficult to cut, for example, foam adheres to a vertical cutting machine used at the time of cutting. For this reason, it is necessary to make the rotational speed of the vertical cutting machine for cutting the flexible polyurethane foam much lower than the normal rotational speed, so that the productivity becomes worse and the workability becomes worse. Further, it has been shown that when the hardness is increased by increasing the isocyanate index (isocyanate index) to 90 or more in order to improve productivity, the molding by the hot press molding method becomes worse.
  • isocyanate index isocyanate index
  • the impact-absorbing flexible polyurethane foam obtained in Patent Document 2 does not necessarily have sufficient moldability by the hot press molding method only by using two or more types of polyols having different molecular weights as polyols. It can not be said.
  • the present invention has been made in view of the above circumstances, and has a sufficient hardness, good workability at the time of cutting, and a flexible polyurethane foam that can be well molded by a hot press molding method. It is an object of the present invention to provide a production method thereof, a hot press molded article using the flexible polyurethane foam, and a production method thereof.
  • the present invention is the following [1] to [14].
  • the polyol mixture (X) contains the following polyol (A), the following polyol (B), and the following monool (D), and the amount of the polyisocyanate compound used is 90 or more in terms of isocyanate index.
  • polyol mixture (X) further contains the following polyol (C).
  • the polyol mixture (X) comprises 10 to 30% by mass of the polyol (A), 50 to 80% by mass of the polyol (B), 0 to 8% by mass of the polyol (C), and the mono
  • a flexible polyurethane foam for hot press molding obtained by the production method of any one of [1] to [11].
  • a step of producing a flexible polyurethane foam for hot press molding by the production method of any one of [1] to [11], a step of cutting the obtained flexible polyurethane foam for hot press molding, and the cut hot press A method for producing a hot-press molded article, comprising a step of molding a flexible polyurethane foam for molding by a hot press molding method.
  • “ ⁇ ” is used to mean that the numerical values described before and after the value are included as the lower limit value and the upper limit value unless otherwise specified.
  • a flexible polyurethane foam having sufficient hardness, good workability at the time of cutting, and good molding by hot pressing can be obtained.
  • the hot press molded product of a desired shape can be manufactured efficiently.
  • the hydroxyl value is a value measured by a method according to JIS K1557-1.
  • the average number of hydroxyl groups of a polyol means the average value of the number of active hydrogens of the initiator used for manufacture of this polyol.
  • the total unsaturation of the polyol is a value measured according to JIS K1557 (2007 edition).
  • the “polyol system liquid” is a liquid to be reacted with the polyisocyanate compound, and is a liquid containing a compounding agent as required, such as a foaming agent, a foam stabilizer, a catalyst, and a flame retardant, in addition to the polyol.
  • the “foaming stock solution composition” is a liquid obtained by mixing a polyol system liquid, a polyisocyanate compound, and optionally the remaining components.
  • the isocyanate index is 100 times the value obtained by dividing the equivalent of the isocyanate group of the polyisocyanate compound in the foaming stock composition by the total equivalent of all active hydrogens of all active hydrogen-containing compounds present in the foaming stock composition. It is a value represented by
  • the active hydrogen-containing compound is a compound having a hydrogen atom that can react with the polyisocyanate compound, and examples thereof include a polyol mixture (X) and water that can be used as a blowing agent.
  • the value of 25% hardness is a value measured by a measuring method based on JIS K6400 (1997 edition). Specifically, after the flexible polyurethane foam to be measured is cured in a room controlled at 23 ° C. and 50% relative humidity for 24 hours or more, the length is 300 mm, the width is 300 mm, and the thickness is 50 mm. It is a value measured by the A method. Immediately after measuring the 25% hardness (ILD) by compressing and holding for 25 seconds, the 50% hardness (ILD) was further compressed to 50% with respect to the original thickness of the flexible polyurethane foam, and the 25% hardness ( ILD) is measured under the same conditions. The 65% hardness (ILD) is also compressed to 65% of the original thickness of the flexible polyurethane foam and measured under the same conditions as 25% hardness (ILD).
  • the method for producing a flexible polyurethane foam for hot press molding according to the present invention comprises urethanizing a polyol mixture (X) and a polyisocyanate compound.
  • the reaction is carried out in the presence of a catalyst, a blowing agent and a foam stabilizer.
  • a polyol mixture (X) contains a polyol (A), a polyol (B), and a monool (D). Further, it preferably contains a polyol (C).
  • polyols other than polyols (A) to (C) hereinafter referred to as polyol (E)
  • monools other than monool (D) may be included.
  • the polyol (A) in the present invention is a polyoxyalkylene polyol having an average number of hydroxyl groups of 2 to 3, a hydroxyl value of 5 to 90 mgKOH / g, and an oxyethylene group content of 0 to 30% by mass.
  • This polyoxyalkylene polyol is obtained by ring-opening addition polymerization of alkylene oxide with an initiator in the presence of a polymerization catalyst.
  • a polyol (A) may use only 1 type, or may use 2 or more types together.
  • Examples of the polymerization catalyst used in the production of the polyol (A) include alkali metal compound catalysts (sodium catalyst, potassium catalyst, cesium catalyst, etc.), cationic polymerization catalyst, composite metal cyanide complex catalyst, phosphazene compound catalyst, and the like. It is done. From the point that the catalyst can be obtained at a low cost, an alkali metal compound catalyst and a double metal cyanide complex catalyst are preferable from the viewpoint that a low by-product polyol is obtained.
  • sodium-based catalyst or potassium-based catalyst examples include sodium metal, potassium metal, sodium alkoxide or potassium alkoxide (sodium methoxide, sodium ethoxide, sodium propoxide, potassium methoxide, potassium ethoxide, potassium propoxide, etc.), water.
  • Examples include sodium oxide, potassium hydroxide, sodium carbonate, potassium carbonate and the like.
  • Examples of the cesium catalyst include cesium metal, cesium alkoxide (cesium methoxide, cesium ethoxide, cesium propoxide, etc.), cesium hydroxide, cesium carbonate, and the like.
  • Examples of the cationic polymerization catalyst include MoO 2 (diketonate) Cl, MoO 2 (diketonate) OSO 2 CF 3 , trifluoromethanesulfonic acid, boron trifluoride, boron trifluoride coordination compound (boron trifluoride diethyl etherate, three Boron fluoride dibutyl etherate, boron trifluoride dioxanate, boron trifluoride acetate anhydrate or boron trifluoride triethylamine complex)), or an aromatic hydrocarbon group containing fluorine element or fluorine element Aluminum or boron compounds having at least one aromatic hydrocarbon oxy group are preferred.
  • aromatic hydrocarbon group containing fluorine element examples include pentafluorophenyl, tetrafluorophenyl, trifluorophenyl, 3,5-bis (trifluoromethyl) trifluorophenyl, and 3,5-bis (trifluoromethyl). And phenyl, ⁇ -perfluoronaphthyl, 2,2 ′, 2 ′′ -perfluorobiphenyl, and the like.
  • the aromatic hydrocarbon oxy group containing the fluorine element is preferably a hydrocarbon oxy group in which an oxygen element is bonded to the aromatic hydrocarbon group containing the fluorine element.
  • the double metal cyanide complex catalyst (hereinafter also referred to as “DMC catalyst”) has an organic ligand.
  • Organic ligands include tert-butyl alcohol, n-butyl alcohol, iso-butyl alcohol, tert-pentyl alcohol, iso-pentyl alcohol, N, N-dimethylacetamide, ethylene glycol mono-tert-butyl ether, ethylene glycol dimethyl ether ( And diethylene glycol dimethyl ether (also referred to as diglyme), triethylene glycol dimethyl ether (also referred to as triglyme), iso-propyl alcohol, and dioxane.
  • the dioxane may be 1,4-dioxane or 1,3-dioxane, but 1,4-dioxane is preferred.
  • One type of organic ligand may be used, or two or more types may be used in combination. Among these, it is preferable to have tert-butyl alcohol as the organic ligand. Therefore, it is preferable to use a DMC catalyst having tert-butyl alcohol as at least a part of the organic ligand.
  • Such DMC catalysts are highly active and can produce polyols with low total unsaturation.
  • the polyol (A) in the present invention is preferably a polyoxyalkylene polyol obtained by ring-opening addition polymerization of alkylene oxide with an initiator in the presence of a DMC catalyst.
  • a polyol (A) having a low total unsaturation can be obtained.
  • the total unsaturation degree of the polyol (A) is preferably 0.02 meq / g or less, more preferably 0.015 meq / g or less.
  • the durability which was excellent in it being 0.02 meq / g or less can be obtained. More preferably, it is 0.010 meq / g or less.
  • a compound having 2 or 3 active hydrogens (a hydrogen atom of a hydroxyl group or an amino group that can react with an alkylene oxide) in the molecule is used alone, Or use together.
  • hydroxyl group-containing compounds such as polyhydric alcohols and polyhydric phenols are preferable.
  • a small amount of a compound having 4 or more active hydrogens can also be used.
  • Specific examples of the compound having 2 active hydrogens include dihydric alcohols such as ethylene glycol, propylene glycol, 1,4-butanediol, diethylene glycol, and dipropylene glycol.
  • the compound having 3 active hydrogens include trihydric alcohols such as glycerin and trimethylolpropane.
  • a high hydroxyl group polyoxyalkylene polyol obtained by subjecting these compounds to ring-opening addition polymerization of alkylene oxide, preferably propylene oxide.
  • alkylene oxide preferably propylene oxide.
  • a polyoxyalkylene polyol preferably a polyoxypropylene polyol
  • a molecular weight per hydroxyl group of about 200 to 500, that is, a hydroxyl value of 110 to 285 mgKOH / g. It is preferable to use it.
  • Examples of the alkylene oxide used in the production of the polyol (A) include ethylene oxide, propylene oxide, 1,2-epoxybutane, 2,3-epoxybutane and the like. Among these, only propylene oxide or a combination of propylene oxide and ethylene oxide is preferable, and only propylene oxide is particularly preferable. That is, as the polyol (A), polyoxypropylene polyol obtained by ring-opening addition polymerization of only propylene oxide as an initiator is preferable. It is preferable to use only propylene oxide because the durability of the resulting flexible polyurethane foam during humidification is improved.
  • the oxyethylene group content in the polyol (A) is preferably 30% by mass or less, and particularly preferably 15% by mass or less.
  • the lower limit is 0% by mass. It is preferable for the oxyethylene group content to be 30% by mass or less because durability during humidification is improved.
  • any polymerization method of block polymerization and random polymerization may be used. Furthermore, it can also manufacture combining both block polymerization and random polymerization.
  • the order of ring-opening addition polymerization is preferably such that propylene oxide and ethylene oxide are added in this order, or ethylene oxide is added first, and propylene oxide and ethylene oxide are added in this order.
  • the terminal is preferably ethylene oxide.
  • the average number of hydroxyl groups of the polyol (A) in the present invention is 2 to 3.
  • the resulting flexible polyurethane foam easily develops thermoplastic properties, so that hot press molding becomes easy.
  • polyol (A) polyoxyalkylene diol having 2 hydroxyl groups is used in an amount of 50 to 100% by mass out of 100% by mass of the polyol (A). Is preferable in that it becomes favorable.
  • the polyol (A) is preferably a polyoxyalkylene diol having 2 hydroxyl groups.
  • the hydroxyl value of the polyol (A) is 5 to 90 mgKOH / g, preferably 5 to 60 mgKOH / g, and more preferably 5 to 40 mgKOH / g.
  • the hydroxyl value is preferably 5 to 12 mgKOH / g in order to improve the molding by the hot press molding method.
  • the hydroxyl value is 90 mgKOH / g or less
  • the flexibility of the resulting flexible foam is not impaired, and the workability when cutting with a vertical cutting machine or the like for hot press molding and Hot press molding becomes easy, and improvement in productivity is expected.
  • the polyol (A) in the present invention may be a polymer-dispersed polyol.
  • the polyol (A) being a polymer-dispersed polyol means a dispersion system in which polymer fine particles (dispersoid) are stably dispersed using the polyol (A) as a base polyol (dispersion medium).
  • Examples of the polymer of the polymer fine particles include addition polymerization polymers and condensation polymerization polymers.
  • the addition polymerization type polymer is obtained, for example, by homopolymerizing or copolymerizing monomers such as acrylonitrile, styrene, methacrylic acid ester and acrylic acid ester.
  • polycondensation polymer examples include polyester, polyurea, polyurethane, polymethylol melamine and the like.
  • the hydroxyl value of the polyol can be kept low, the hardness of the flexible polyurethane foam can be increased, and the workability when cutting with a vertical cutter for hot press molding, It is effective in improving mechanical properties such as tensile strength of a flexible foam and a molded product obtained by hot press molding the foam.
  • the content ratio of the polymer fine particles in the polymer-dispersed polyol is not particularly limited.
  • the polymer fine particles present in 100 parts by mass of the polyol mixture (X) are preferably 1 part by mass or more, more preferably 5 parts by mass or more, from the viewpoint that the effect of containing the polymer fine particles is sufficiently obtained.
  • the upper limit is preferably 40 parts by mass or less from the viewpoint of maintaining the moldability of the flexible polyurethane foam and suppressing the viscosity of the polyol mixture (X) from becoming too high.
  • the various properties (hydroxyl value, total unsaturation, etc.) of the polymer-dispersed polyol as a polyol are considered for the base polyol excluding the polymer fine particles.
  • the polyol (B) in the present invention is a polyoxyalkylene polyol having an average number of hydroxyl groups of 2 to 3 and a hydroxyl value of 100 to 250 mgKOH / g.
  • This polyoxyalkylene polyol can be obtained by ring-opening addition polymerization of an alkylene oxide in an initiator in the presence of a polymerization catalyst in the same manner as the polyol (A).
  • a polyol (B) may use only 1 type or may use 2 or more types together.
  • a phosphazene compound catalyst As the polymerization catalyst used for the production of the polyol (B), a phosphazene compound catalyst, a Lewis acid compound or an alkali metal compound catalyst, and a double metal cyanide complex catalyst are preferable, and among these, an alkali metal compound catalyst is particularly preferable.
  • the alkali metal compound catalyst include potassium compounds such as potassium hydroxide and potassium methoxide, alkali metal compounds such as cesium compounds such as cesium metal, cesium hydroxide, cesium carbonate, and cesium methoxide, or alkali metal hydroxides. It is done.
  • a compound having 2 or 3 active hydrogen atoms in the molecule is used alone or in combination.
  • a small amount of a compound having 4 or more active hydrogens can also be used.
  • Specific examples of the compound having 2 or 3 active hydrogens include polyhydric alcohols such as ethylene glycol, propylene glycol, 1,4-butanediol, diethylene glycol, dipropylene glycol, glycerin and trimethylolpropane; bisphenol A and the like
  • polyamines such as monoethanolamine, diethanolamine, triethanolamine, and piperazine. Of these, polyhydric alcohols are particularly preferred. Further, it is preferable to use a high hydroxyl group polyoxyalkylene polyol obtained by subjecting these compounds to ring-opening addition polymerization of alkylene oxide, preferably propylene oxide.
  • Examples of the alkylene oxide used for the production of the polyol (B) include ethylene oxide, propylene oxide, 1,2-epoxybutane, 2,3-epoxybutane and the like. Among these, only propylene oxide or a combination of propylene oxide and ethylene oxide is preferable, and only propylene oxide is particularly preferable.
  • the polyol (B) is preferably a polyol having a low oxyethylene group content, and the oxyethylene group content in the polyol (B) is preferably 0 to 20% by mass, more preferably 0 to 10% by mass.
  • a polyoxypropylene polyol having only an oxypropylene group as an oxyalkylene group is preferred. When such a polyol having a low oxyethylene group content is used, durability of the obtained flexible polyurethane foam and a molded product obtained by hot press molding the flexible polyurethane foam is improved.
  • the average number of hydroxyl groups of the polyol (B) in the present invention is 2 to 3.
  • the hardness of the obtained flexible polyurethane foam and the molded product obtained by hot press molding the flexible polyurethane foam becomes appropriate, and the feel of the surface of the molded product is also improved. Moreover, it is excellent also in physical properties, such as elongation and tensile strength, of a flexible polyurethane foam and its hot press-molded product.
  • the average number of hydroxyl groups after mixing them is preferably 2 to 2.8.
  • the average number of hydroxyl groups is within the above range, a flexible polyurethane foam having good processability when cutting with a vertical cutter or the like and the surface feel of a hot-press molded product is obtained.
  • the polyol (B) is preferably used in combination with a polyoxyalkylene diol having an average number of hydroxyl groups of 2 and a polyoxyalkylene triol having an average number of hydroxyl groups of 3.
  • the proportion of the polyoxyalkylene diol contained in 100% by mass of the entire polyol (B) is preferably 35% by mass or more, and more preferably 40% by mass or more.
  • the upper limit is 90% by mass.
  • the hydroxyl value of the polyol (B) in the present invention is 100 to 250 mgKOH / g.
  • the hydroxyl value of the polyol (B) in the present invention is 100 to 250 mgKOH / g.
  • the hydroxyl value of the polyol (B) is more preferably 100 to 200 mgKOH / g.
  • the polyol (B) in the present invention may be a polymer-dispersed polyol.
  • Examples of the polymer of the polymer fine particles include those described in the section of the polyol (A).
  • the polyol (C) in the present invention is a polyoxyalkylene polyol having an average number of hydroxyl groups of 2 to 6, a hydroxyl value of 10 to 60 mgKOH / g, and an oxyethylene group content of 50% by mass or more.
  • a polyol (C) may use only 1 type, or may use 2 or more types together.
  • the polyol (C) is obtained by subjecting an alkylene oxide to ring-opening addition polymerization in the presence of a polymerization catalyst in the same manner as the polyol (A) and polyol (B).
  • the polyol (C) may have a structure in which ethylene oxide and propylene oxide are randomly polymerized, or may have a structure in which ethylene oxide is subjected to ring-opening addition polymerization as a block immediately after a terminal or an initiator. Further, it may be polyethylene glycol obtained by multimerization. When the polyol (C) is used, a foam breaking effect is recognized, and the addition of the polyol (C) is effective in improving air permeability.
  • the same one as the above-described polyol (B) can be used.
  • an alkali metal compound catalyst is particularly preferable.
  • the initiator used for producing the polyol (C) a compound having 2 to 6 active hydrogen atoms in the molecule is used alone, or two or more kinds are used in combination. Specific examples of the number of active hydrogens of 2 to 6 include ring-opening polymerization of diglycerin, pentaerythritol, sorbitol, etc., and alkylene oxides to these compounds in addition to the initiators used for the production of polyol (B).
  • polyhydric alcohols or high hydroxyl group polyether polyols obtained by ring-opening polymerization of alkylene oxide, preferably propylene oxide, to polyhydric alcohols are preferable.
  • the alkylene oxide used for producing the polyol (C) examples include ethylene oxide, propylene oxide, 1,2-epoxybutane, 2,3-epoxybutane and the like.
  • the oxyethylene content in a polyol (C) is 50 mass% or more, and it is preferable to use ethylene oxide alone or a combination of propylene oxide and ethylene oxide.
  • the polyol (C) is preferably a polyol obtained by ring-opening addition polymerization of a mixture of propylene oxide and ethylene oxide.
  • the oxyethylene content in the polyol (C) is preferably 50 to 95% by mass, more preferably 60 to 90% by mass.
  • the average number of hydroxyl groups of the polyol (C) is 2-6. When the average number of hydroxyl groups is 2 to 6, it is easy to obtain a flexible polyurethane foam excellent in air permeability.
  • the average number of hydroxyl groups is preferably 2-4.
  • the hydroxyl value of the polyol (C) is 10 to 60 mgKOH / g. When the hydroxyl value is from 10 to 60 mgKOH / g, ethylene oxide in the polyol falls within an appropriate range, so that the feel of a molded product obtained by hot press molding the obtained flexible polyurethane foam is improved.
  • the hydroxyl value is preferably 15 to 50 mgKOH / g.
  • the monool (D) in the present invention is a polyoxyalkylene monool having a hydroxyl value of 5 to 200 mgKOH / g.
  • This polyoxyalkylene monool uses an initiator having 1 active hydrogen, and, like the polyol (A) or polyol (B), this initiator opens an alkylene oxide in the presence of a polymerization catalyst. Obtained by addition polymerization.
  • Monool (D) may use only 1 type, or may use 2 or more types together.
  • a DMC catalyst As the polymerization catalyst used in the production of monool (D), a DMC catalyst, a phosphazene compound catalyst, a Lewis acid compound or an alkali metal compound catalyst is preferable, and among these, a composite metal cyanide complex catalyst is particularly preferable.
  • a composite metal cyanide complex catalyst As the double metal cyanide complex catalyst, the above double metal cyanide complex catalyst can be used.
  • the initiator used for the production of monool (D) is a compound having only one active hydrogen atom.
  • Specific examples thereof include monohydric alcohols such as methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, tert-butyl alcohol; monohydric phenols such as phenol and nonylphenol; dimethylamine, diethylamine and the like. Secondary amines etc. are mentioned.
  • the high hydroxyl group polyoxyalkylene polyol for producing the polyol (A) and the like the high hydroxyl group polyoxyalkylene monool having a hydroxyl value higher than that of the target monool (D). Can also be used as an initiator.
  • the alkylene oxide used for the production of the monool (D) examples include ethylene oxide, propylene oxide, 1,2-epoxybutane, and 2,3-epoxybutane. Among these, only propylene oxide or a combination of propylene oxide and ethylene oxide is preferable, and only propylene oxide is particularly preferable. That is, the monool (D) is preferably a polyoxypropylene monool obtained by subjecting only propylene oxide to ring-opening addition polymerization to an initiator. It is preferable to use only propylene oxide because the durability of the resulting flexible polyurethane foam during humidification is improved. Moreover, the tactile sensation of a molded product obtained by hot press molding a flexible polyurethane foam is improved.
  • a molded product that has been hot press-molded into a sheet shape is preferable because it provides a tactile feel like a silk fabric.
  • the average number of hydroxyl groups of monool (D) in the present invention is 1.
  • the hydroxyl value of monool (D) is 10 to 200 mgKOH / g, the workability in hot press molding of a flexible polyurethane foam is improved.
  • the hydroxyl value is preferably 10 to 120 mgKOH / g.
  • the polyol mixture in this invention may contain monools other than monool (D) (for example, the polyoxypropylene monool whose hydroxyl value exceeds 200 mgKOH / g), normally monool (D). Other monools are not included. Even if the polyol mixture in the present invention contains a monool other than the monool (D), the proportion is preferably 5% by mass or less, more preferably 2% by mass or less, out of 100% by mass of the polyol mixture. .
  • the polyol (E) in the present invention is a polyol that does not fall under any of the polyols (A), (B), and (C).
  • a polyol having a higher hydroxyl value than the polyol (B), the polyol (A), and Examples thereof include polyols having an average number of hydroxyl groups larger than that of polyol (B) and higher oxyethylene content than polyol (C), and high molecular weight polyols other than polyoxyalkylene polyols.
  • the polyol (E) is preferably a polyol having an average number of hydroxyl groups of 2 to 6 and a hydroxyl value of 300 to 1,830 mgKOH / g. More preferred is a polyol having an average number of hydroxyl groups of 2 to 4 and a hydroxyl value of 300 to 600 mgKOH / g.
  • polyhydric alcohols, amines having 2 to 6 hydroxyl groups, and polyoxyalkylene polyols are preferable.
  • Such a polyol having a high hydroxyl value acts as a crosslinking agent, and mechanical properties such as hardness are improved. Particularly when a low density (light weight) flexible polyurethane foam is to be produced using a large amount of a foaming agent, the foaming stability is good.
  • polyhydric alcohols examples include ethylene glycol, propylene glycol, 1,4-butanediol, dipropylene glycol, glycerin, diglycerin, and pentaerythritol.
  • examples of amines having 2 to 6 hydroxyl groups include diethanolamine and triethanolamine.
  • Examples of the polyoxyalkylene polyol include polyoxyalkylene polyols obtained by subjecting an alkylene oxide to ring-opening addition polymerization to an initiator, like the polyol (B).
  • an initiator used for manufacture of polyol (E) which is a polyoxyalkylene polyol the initiator used for manufacture of the polyhydric alcohols which may be used as polyol (E), or polyol (B) can be illustrated.
  • Examples of the alkylene oxide used for producing the polyoxyalkylene polyol as the polyol (E) include ethylene oxide, propylene oxide, 1,2-epoxybutane, and 2,3-epoxybutane. Among these, only propylene oxide or a combination of propylene oxide and ethylene oxide is preferable, and only propylene oxide is particularly preferable. That is, the polyoxyalkylene polyol as the polyol (E) is preferably a polyoxypropylene polyol obtained by ring-opening addition polymerization of only propylene oxide as an initiator. As the polyol (E), among the above, polyoxyalkylene polyol is preferable, and polyoxypropylene polyol polyol is particularly preferable. It is preferable to use only propylene oxide because the durability of the resulting flexible polyurethane foam during humidification is improved.
  • a polyol (E) may use only 1 type, or may use 2 or more types together.
  • the polyol (E) in the present invention may be a polyester polyol or a polycarbonate polyol, which is not limited to the above average number of hydroxyl groups or hydroxyl value. These polyols preferably have an average number of hydroxyl groups of 2 to 3, and a hydroxyl value of 20 to 300 mgKOH / g.
  • the proportion of the polyol (A) is preferably 5 to 50% by mass and more preferably 10 to 40% by mass in 100% by mass of the total of the polyol (A) and the polyol (B). .
  • the ratio of the polyol (A) in the polyol mixture (X) within the above range, the workability when cutting with a vertical cutting machine or the like is easy, and at the same time, the workability in hot press molding is good.
  • a polyurethane foam is obtained.
  • the polymer fine particles in the polymer-dispersed polyol are not included in the polyol content.
  • the total proportion of the polyol (A) and the polyol (B) is preferably 70% by mass or more, more preferably 75% by mass or more, and particularly preferably 90% by mass or more. preferable.
  • the upper limit is 99% by mass.
  • the proportion of monool (D) is preferably 1 to 30 parts by weight, more preferably 1 to 25 parts by weight, based on 100 parts by weight of the total of polyol (A) and polyol (B). It is particularly preferably 1 to 10 parts by mass.
  • the proportion of the polyol (C) is preferably 0.1 to 10% by mass, and preferably 1 to 8% by mass, out of 100% by mass of the polyol mixture (X). % Is more preferable.
  • the polyol mixture (X) is less required to contain the polyol (E), but when the polyol (E) is used, the proportion of the polyol (E) in 100% by mass of the polyol mixture (X) is 10 % By mass or less is preferable, 5% by mass or less is more preferable, and 2% by mass or less is particularly preferable. It is preferable to contain 0.1% by mass or more from the viewpoint that the effect of containing the polyol (E) is sufficiently obtained.
  • a suitable composition of the polyol mixture (X) (100% by mass) include 10 to 30% by mass of the polyol (A), 50 to 80% by mass of the polyol (B), C) is 0 to 8% by mass, monool (D) is 1 to 24% by mass, and polyol (E) is 0 to 5% by mass.
  • the polyisocyanate compound used in the present invention is not particularly limited, and is a polyisocyanate having two or more isocyanate groups, such as aromatic, alicyclic, and aliphatic groups; a mixture of two or more of the above polyisocyanates; And modified polyisocyanates obtained by modifying.
  • polyisocyanate compound examples include tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), polymethylene polyphenyl polyisocyanate (common name: crude MDI), xylylene diisocyanate (XDI), isophorone diisocyanate (IPDI), hexamethylene. And diisocyanate (HMDI).
  • modified polyisocyanate include prepolymer-modified products, nurate-modified products, urea-modified products, and carbodiimide-modified products of the above polyisocyanates. Among these, TDI, MDI, crude MDI, or modified products thereof are preferable.
  • TDI TDI
  • crude MDI or a modified product thereof (especially a prepolymer modified product)
  • a polyisocyanate compound having a relatively low reactivity among TDI, crude MDI, or a modified product thereof because air permeability is improved.
  • a TDI mixture in which the proportion of 2,6-TDI is 20% by mass and the proportion of 2,4-TDI is 80% by mass is preferable. Even if the ratio of 2,6-TDI is 20% by mass or more, it can be used as required.
  • the amount of the polyisocyanate compound used is such that the ratio of the total active hydrogen-containing compound and the polyisocyanate compound in the foaming stock solution composition is 90 or more in terms of isocyanate index.
  • the isocyanate index is preferably 92 or more, more preferably 95 or more.
  • the upper limit of the isocyanate index is preferably less than 105, more preferably 103 or less, from the viewpoint of workability of hot press molding of a flexible polyurethane foam.
  • a known catalyst can be appropriately used as a catalyst for promoting the urethanization reaction.
  • an amine compound, an organometallic compound, a carboxylic acid metal salt, etc. are mentioned. 1 type may be used independently and 2 or more types may be combined.
  • the amine compound include tertiary amines such as triethylenediamine, bis (2-dimethylaminoethyl) ether, N, N, N ′, N′-tetramethylhexamethylenediamine.
  • organometallic compounds include dibutyltin oxides such as dibutyltin oxide, dibutyltin dilaurate, dibutyltin, and dibutyltin diacetate, dioctyltins such as dioctyltin oxide, dioctyltin dilaurate, and dioctyltin diacetate, stannous octoate, tin neodecanoate And bismuth octylate.
  • the carboxylic acid metal salt include potassium acetate and potassium 2-ethylhexanoate.
  • the total amount of the urethanization catalyst is preferably 0.001 to 5.0 parts by mass, more preferably 0.01 to 3.0 parts by mass, with respect to 100 parts by mass of the polyol mixture (X). preferable.
  • the amount is 5.0 parts by mass or less, the foaming reaction can be easily controlled.
  • the amount is 3.0 parts by mass or less, when producing a flexible polyurethane foam, the rise time of the reaction liquid when the polyol mixture and the polyisocyanate compound react with each other can be sufficiently secured, so that the yield is improved.
  • sufficient cure of a flexible polyurethane foam can be ensured, the processability at the time of cut
  • the foam does not adhere to the press pressure plate, workability and processing time are shortened, which is preferable.
  • the amount of 0.001 part by mass or more is preferable because the curing of the foam is good.
  • the urethanization catalyst preferably contains an organometallic compound.
  • an organometallic compound and a tertiary amine are used in combination, the compatibility of the foaming agent and the polyisocyanate compound is improved, and small homogeneous bubbles are generated during foaming. More preferable.
  • the organometallic compound dioctyltins are preferred in that sufficient cream time can be secured in the production process of the flexible polyurethane foam. That is, the urethanization catalyst preferably contains dioctyltins.
  • the amount used when dioctyltins are used is preferably 0.01 to 3.0 parts by weight, more preferably 0.03 to 2.0 parts by weight, with respect to 100 parts by weight of the polyol mixture (X).
  • 0.05 to 1.0 part by mass is more preferable, and 0.07 to 0.5 part by mass is most preferable.
  • the amount is 3.0 parts by mass or less, shrinkage of the foam is suppressed, and when the amount is 0.01 parts by mass or more, settling of the foam is suppressed, and a foam having a good appearance can be manufactured.
  • tertiary amines triethylenediamine is preferred from the viewpoint of easy control of foaming behavior and economy.
  • the amount of tertiary amines used is preferably 0.01 to 3.0 parts by weight, more preferably 0.05 to 2.0 parts by weight with respect to 100 parts by weight of the polyol mixture (X).
  • the amount is more preferably 0.1 to 1.0 part by weight, and most preferably 0.2 to 0.5 part by weight.
  • the amount is 3.0 parts by mass or less, the foaming reaction can be easily controlled, and when the amount is 0.01 parts by mass or more, the curability is favorable.
  • foam stabilizer examples include silicone foam stabilizers and fluorine foam stabilizers. Of these, silicone-based foam stabilizers are preferred. Of the silicone foam stabilizers, silicone foam stabilizers based on polyoxyalkylene / dimethylpolysiloxane copolymers are preferred.
  • the foam stabilizer may be a polyoxyalkylene / dimethylpolysiloxane copolymer alone or a mixture containing other combined components. Examples of other combined components include polyalkylmethylsiloxane, glycols, polyoxyalkylene compounds and the like.
  • foam stabilizer a foam stabilizer mixture containing a polyoxyalkylene / dimethylpolysiloxane copolymer, a polyalkylmethylsiloxane and a polyoxyalkylene compound is particularly preferred from the viewpoint of excellent foam stability.
  • foam stabilizer mixture examples include trade names of Toray Dow Corning: SZ-1127, L-580, L-582, L-520, SZ-1919, L-5740S, L-5740M, SZ-1111. , SZ-1127, SZ-1162, SZ-1105, SZ-1328, SZ-1325, SZ-1330, SZ-1306, SZ-1327, SZ-1336, SZ-1339, L-3601, SZ-1302, SH -192, SF-2909, SH-194, SH-190, SRX-280A, SRX-298, SF-2908, SF-2904, SRX-294A, SF-2965, SF-2962, SF-2961, SRX-274C SF-2964, SF-2969, PRX-607, SZ-1711, SZ-1666, SZ- 627, SZ-1710, L-5420, L-5421, SZ-1669, SZ-1649, SZ-1654, SZ-1642,
  • the amount of the foam stabilizer used is preferably 0.01 to 2 parts by mass and more preferably 1 to 2 parts by mass with respect to 100 parts by mass of the polyol mixture (X).
  • the content is 0.01 parts by mass or more, a flexible polyurethane foam excellent in foaming stability can be produced.
  • the amount is 2 parts by mass or less, a flexible polyurethane foam having sufficient air permeability can be obtained.
  • the foaming agent known foaming agents such as fluorinated hydrocarbons can be used, and at least one selected from water and inert gas is preferable.
  • the inert gas include air, nitrogen, carbon dioxide gas, and the like.
  • water is more preferable in consideration of the environment, and it is most preferable to use only water as a foaming agent.
  • the amount of the blowing agent is preferably 10 parts by mass or less, more preferably 0.1 to 4.0 parts by mass with respect to 100 parts by mass of the polyol mixture (X).
  • additives can be used in addition to the urethanization catalyst, the foaming agent and the foam stabilizer described above.
  • Additives include fillers such as potassium carbonate and barium sulfate; surfactants such as emulsifiers; anti-aging agents such as antioxidants and ultraviolet absorbers; flame retardants, plasticizers, colorants, anti-fungal agents, and foam breaking Agents, dispersants, discoloration inhibitors and the like.
  • the method for producing the flexible polyurethane foam may be a method in which the foamed stock solution composition is injected into a closed mold and foam-molded (mold method), or a method in which the foamed stock solution composition is foamed in an open system (slab method).
  • the slab method is preferred. Specifically, it can be performed by a known method such as a one-shot method, a semi-prepolymer method, or a prepolymer method.
  • a commonly used production apparatus can be used for production of the flexible polyurethane foam.
  • the polyisocyanate compound is used in an amount of 90 or more in terms of the isocyanate index, so that the hardness of the flexible polyurethane foam is increased, and the workability at the time of cutting performed prior to hot press molding is performed. Becomes better.
  • the flexible polyurethane foam has a sufficient hardness, molding by the hot press molding method can be performed satisfactorily.
  • the polyol (A) has a molecular structure with an average number of hydroxyl groups of 2 to 3 and a hydroxyl value of 5 to 90 mgKOH / g, and is therefore presumed to be superior in developing thermoplastic properties. . That is, hot press molding can be performed at a relatively low temperature.
  • 25% hardness (ILD), 50% hardness (ILD), and 65% hardness (ILD) are used as an index of hardness. As these values are larger, the hardness is higher.
  • the 25% hardness (ILD) is 40 N / 314 cm 2 or more in the flexible polyurethane foam for hot press molding, the workability when cutting with a vertical cutting machine or the like is improved, and 50 N / 314 cm 2 or more is more preferable.
  • the upper limit of the 25% hardness (ILD) is preferably 95/314 cm 2 or less in view of workability of hot press molding, and more preferably 92/314 cm 2 or less.
  • the 50% hardness (ILD) is preferably 60 N / 314 cm 2 or more, and more preferably 70 N / 314 cm 2 or more.
  • the 65% hardness (ILD) is preferably 80 N / 314 cm 2 or more, and more preferably 90 N / 314 cm 2 or more.
  • the 50% compression residual strain is preferably 40% or less, more preferably 35% or less, and even more preferably 30% or less.
  • the 50% wet heat compression residual strain is preferably 40% or less, more preferably 35% or less, and even more preferably 30% or less.
  • the core rebound resilience of the flexible polyurethane foam for hot press molding obtained in the present invention is preferably 20% or less, more preferably 18% or less, further preferably 15% or less, and most preferably 12% or less. By setting the core rebound resilience to 20% or less, sufficient low resilience is exhibited. Usually, the lower limit is 0%.
  • Core density of the thermal press-molding the flexible polyurethane foam obtained by the present invention is preferably 10 ⁇ 110kg / m 3, more preferably from 10 ⁇ 80kg / m 3, 20 ⁇ 50kg / m 3 and more preferable.
  • the core density is 10 kg / m 3 or more, the workability of hot press molding is good, and when it is 110 kg / m 3 or less, the feel of the hot press-molded product is excellent, for example, hot press molding into a sheet shape. The smoothness like silk fabric is obtained with the molded product.
  • the method for producing a hot press-molded article of the present invention includes a step of producing a flexible polyurethane foam for hot press molding by the production method of the present invention, a step of cutting the obtained flexible polyurethane foam for hot press molding, It has the process of shape
  • the forming by cutting and hot press forming can be performed by appropriately using a known method.
  • the hot press molding temperature is usually 150 to 200 ° C. Since the flexible polyurethane foam for hot press molding of the present invention has high thermoplasticity, that is, high crystallinity, it can be hot press molded even at a relatively low temperature, for example, 150 to 170 ° C.
  • the molding time by hot press molding is usually 5 seconds to 1 hour, preferably 5 seconds to 30 minutes from the viewpoint of more industrial.
  • Good molding by the hot press molding method means that the thickness of a molded product that has been hot press molded to a desired thickness can be kept within a certain range. For example, when the thickness of the molded product obtained by hot pressing is within 10% of the set value, the hot press molding is considered good.
  • the method for producing a hot press molded product of the present invention can be applied to various hot press molded products obtained by molding a flexible polyurethane foam by a hot press molding method.
  • the shape of the hot press molded product is not limited, but for example, a sheet shape having a thickness of about 2 to 50 mm is preferable.
  • Specific examples of heat-pressed products include clothing insoles such as insoles for shoes, bras and shoulder pads, disposable diapers, medical supplies, sanitary products, sanitary products such as cosmetic puffs, and sound absorbing materials under the floor. Can be mentioned.
  • a bra pad or a puff for cosmetics is preferable from the viewpoint of excellent hardness and an insole for shoes (insole) and excellent touch feeling.
  • Polyol A1 Polyoxypropylene polyol obtained in the following Production Example 1.
  • Polyol A2 polyoxypropylene polyol obtained in Production Example 2 below.
  • Polyol A3 polyoxypropylene polyol obtained in Production Example 3 below.
  • Polyol A4 a polymer-dispersed polyol obtained in Production Example 4 below.
  • Polyol B1 Obtained by ring-opening addition polymerization of propylene oxide (hereinafter also referred to as “PO”) using potassium hydroxide catalyst and dipropylene glycol as an initiator, the average number of hydroxyl groups is 2, and the hydroxyl value is 160 mgKOH. / G polyoxypropylene polyol.
  • Polyol B2 Polyoxypropylene polyol having an average number of hydroxyl groups of 3 and a hydroxyl value of 168 mgKOH / g, obtained by ring-opening addition polymerization of PO using glycerol as an initiator using a potassium hydroxide catalyst.
  • Polyol C1 An average number of hydroxyl groups of 3 obtained by ring-opening addition polymerization of a mixture of PO and ethylene oxide (hereinafter also referred to as “EO”) using potassium hydroxide catalyst and glycerin as an initiator by random polymerization.
  • Polyoxypropylene oxyethylene polyol having a hydroxyl value of 48 mg KOH / g and an oxyethylene group content of 80% by mass.
  • Monool D1 obtained by ring-opening addition polymerization of PO using zinc hexacyanocobaltate-tert-butyl alcohol complex catalyst using n-butyl alcohol as an initiator, and having an average hydroxyl number of 1 and a hydroxyl value of 16. 7 mg KOH / g polyoxypropylene monool.
  • Polyols A1 to A4, polyols B1 to B2, polyol C1 and monool D1 have octadecyl-3- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] as an antioxidant. 1,500 ppm was added to each polyol or monool (trade name: IRGANOX 1076, manufactured by BASF Japan).
  • -Foaming agent water.
  • -Foam stabilizer a Silicone foam stabilizer (manufactured by Toray Dow Corning, trade name: SRX-298).
  • -Foam stabilizer b Silicone foam stabilizer (manufactured by Toray Dow Corning, trade name: SZ-1327).
  • Urethane catalyst a Diethylene glycol solution of triethylenediamine (manufactured by Tosoh Corporation, trade name: TEDA-L33).
  • Urethane catalyst b Dioctyltin dilaurate (manufactured by Nitto Kasei Co., Ltd., trade name: Neostan U-810).
  • a polyol serving as a base of the polyol (A4) was produced as follows. In the presence of zinc hexacyanocobaltate-tert-butyl alcohol complex catalyst, which is a DMC catalyst, using glycerol as an initiator, PO and EO are opened by random polymerization at a ratio of PO: EO of 93: 7 (mass ratio). Cycloaddition polymerization was performed to obtain a polyoxypropylene / polyoxyethylene polyol having an average number of hydroxyl groups of 3, a hydroxyl value of 56.0 mgKOH / g, and a total unsaturation of 0.007 meq / g.
  • polystyrene and acrylonitrile were copolymerized at 70:30 (mass ratio) to obtain a polymer-dispersed polyol.
  • the overall polymer-dispersed polyol obtained had a hydroxyl value of 32.0 mgKOH / g and a content of polymer fine particles of 43% by mass.
  • Examples 1 to 20, 22, 24 Flexible polyurethane foams having the formulations shown in Tables 1 to 3 were produced and their physical properties were evaluated. The evaluation results are shown in Tables 1 to 3. Examples 7, 14, 19, 22, and 24 are comparative examples. That is, among the raw materials shown in Tables 1 to 3, all raw materials other than the polyisocyanate compound were mixed to prepare a polyol system liquid having a liquid temperature of 23 ° C. ⁇ 1 ° C. A polyisocyanate compound was prepared at a liquid temperature of 23 ° C. ⁇ 1 ° C. A predetermined amount of a polyisocyanate compound was added to the polyol system liquid, and mixed for 5 seconds with a mixer (3,000 revolutions per minute) to obtain a foaming stock solution composition.
  • a wooden box having an open top and foamed at room temperature (23 ° C.) to obtain a flexible polyurethane foam (slab foam).
  • the wooden box used had a size of 600 mm in length, 600 mm in width, and 400 mm in height, with a vinyl sheet on the inner surface.
  • the obtained flexible polyurethane foam was taken out of the wooden box, left in a room at room temperature (23 ° C.) and a humidity of 50% for 24 hours, and then evaluated by the following method.
  • the flexible foams obtained in Examples 7, 14, 19, and 24 were uncut at room temperature.
  • the flexible foam obtained in Example 22 could be cut at 500 revolutions per minute at room temperature, but could not be cut uniformly.
  • the flexible foams obtained in Examples 7, 14, 19, 22, and 24 were placed in a low-temperature incubator at 5 ° C. (manufactured by Espec Corp., apparatus name: Platinums K series PL-3KT) for 1 hour. It was left to stand and removed immediately after removal.
  • the cut sample was subjected to hot press molding using a hot press molding machine (manufactured by Iwaki Kogyo Co., Ltd., apparatus name: hydraulic molding machine) as a target shape with a sheet shape having a length of 50 mm, a width of 125 mm, and a thickness of 5 mm. .
  • the hot press conditions were a temperature of 160 ° C., a pressure of 20 MPa, and 120 seconds.
  • the obtained hot press-molded product was left in a room temperature (23 ° C.) and a humidity of 50% for 1 hour, and then the thickness was measured. The value of the thickness at the thickest part is shown in the table as the maximum thickness d after pressing. Show.
  • the hot press formability was evaluated according to the following criteria.
  • (good): The maximum thickness d after hot pressing is 4.5 mm or more and less than 5.5 mm.
  • hot press moldability is so bad that the maximum thickness after hot press is large.
  • Example 21 About the flexible foam obtained in each of Examples 20 and 22, a hot press test was performed by changing the hot press conditions.
  • Example 23 is a comparative example using the flexible foam obtained in Example 22. That is, cutting, hot press molding, and evaluation were performed in the same manner as in Examples 20 and 22, except that the hot press conditions were a temperature of 200 ° C., a pressure of 20 MPa, and 120 seconds. The evaluation results are shown in Table 3.
  • each of the flexible polyurethane foams obtained in Examples 1 to 6, Examples 8 to 13, and Examples 15 to 18, 20, and 21 according to the present invention has a 25% hardness.
  • (ILD) was 40 N / 314 cm 2 or more, the workability was good, and hot press molding was also possible.
  • it was low density, air permeability, mechanical characteristics (tensile strength, elongation, tear strength, hysteresis loss rate), and durability were also good.
  • Examples 1, 2, 4 to 6, 8 to 9, 11 to 13, 17, and 20 to 21 had a 25% hardness (ILD) of 50 N / 314 cm 2 or more and excellent workability.
  • Example 20 the workability is good when the 25% hardness (ILD) is 50 N / 314 cm 2 or more.
  • Hot press molding is also possible. In Example 20, hot press molding was performed at 160 ° C., but in Example 21, hot press molding was performed at 200 ° C., so that the maximum thickness d after hot pressing approached 5 mm, and the hot press moldability was improved.
  • Example 20 and Example 21 are compared with Example 2, the difference is the average hydroxyl value of the polyol (A) in the polyol mixture (X). In Example 2, the average hydroxyl value of the polyol (A) is smaller than those in Examples 20 and 21.
  • Example 2 the polyol (A1) having a large molecular weight was used, and the hot press moldability at a low temperature (160 ° C.) was good even with an isocyanate index of 100. It is more preferable that hot press molding at a low temperature is possible because a load is not applied to the flexible foam.
  • Examples 22 to 24 are examples in which the polyol mixture (X) does not contain the monool (D).
  • hot press molding was performed at 160 ° C., but it was hard and had poor hot press moldability.
  • hot press molding was performed at 200 ° C., but the hot press moldability was also poor.
  • the isocyanate index was less than 90, and when the polyol mixture (X) did not contain the monool (D), it was confirmed that the workability and the hot press moldability were poor.

Abstract

Disclosed is a flexible polyurethane foam with which hot-press molding can be successfully performed that has sufficient firmness and excellent processing workability during cutting. The flexible polyurethane foam for hot-press molding is produced by reacting a polyol mixture (X) and a polyisocyanate compound in the presence of a catalyst for urethanization, a foaming agent, and a foam stabilizer. The polyol mixture (X) includes: a polyoxyalkylene polyol (A) in which the average number of hydroxyl groups is 2 to 3, the hydroxyl value is 5 to 90 mg KOH/g, and the oxyethylene group content is 0 to 30 mass%; a polyoxyalkylene polyol (B) in which the average number of hydroxyl groups is 2 to 3 and the hydroxyl value is 100 to 250 mg KOH/g; and a polyoxyalkylene mono-ol (D) in which the hydroxyl value is 5 to 200 mg KOH/g. The amount of the polyisocyanate compound used is 90 or higher on the isocyanate index.

Description

熱プレス成形用軟質ポリウレタンフォームおよびその製造方法、ならびに熱プレス成形品およびその製造方法SOFT POLYURETHANE FOAM FOR HOT PRESS MOLDING AND ITS MANUFACTURING METHOD, AND HOT PRESS MOLDED PRODUCT AND ITS MANUFACTURING METHOD
 本発明は、熱プレス成形用軟質ポリウレタンフォームの製造方法、該製造方法で得られる熱プレス成形用軟質ポリウレタンフォーム、該熱プレス成形用軟質ポリウレタンフォームを用いて熱プレス成形品を製造する方法、および該製造方法で得られる熱プレス成形品に関する。 The present invention relates to a method for producing a flexible polyurethane foam for hot press molding, a soft polyurethane foam for hot press molding obtained by the production method, a method for producing a hot press molded product using the flexible polyurethane foam for hot press molding, and The present invention relates to a hot press molded product obtained by the production method.
 従来より、反発弾性率の低い、すなわち低反発性の軟質ポリウレタンフォームは、例えば自動車、電子機器等の衝撃吸収材、防音材料、振動吸収材として広く利用されている。
 また、軟質ポリウレタンフォームを熱プレス成形法により所望の形状に成形することも行われている。
 熱プレス成形法では、一般に、予め軟質ポリウレタンフォームを適切な大きさおよび形状に切断し、加熱下に圧縮してシート状あるいは金型に応じた形状の成形品とする。
Conventionally, a flexible polyurethane foam having a low impact resilience, that is, a low resilience, has been widely used as, for example, an impact absorbing material, a soundproofing material, and a vibration absorbing material for automobiles and electronic devices.
In addition, a flexible polyurethane foam is molded into a desired shape by a hot press molding method.
In the hot press molding method, generally, a flexible polyurethane foam is cut into an appropriate size and shape in advance, and is compressed under heating to obtain a molded product having a shape corresponding to a sheet shape or a mold.
 特許文献1には、熱プレス成形法による成形に適した軟質ポリウレタンフォームを製造する方法として、平均水酸基数が2~3、水酸基価が10~90mgKOH/gのポリオキシプロピレンポリオール(A)、平均水酸基数が2~3、水酸基価が100~250mgKOH/gであるポリエーテルポリオール(B)、および水酸基価が5~200mgKOH/gのポリエーテルモノオール(D)を含むポリオール組成物と、ポリイソシアネート化合物とを、イソシアネート指数で90未満の割合で反応させる方法が記載されている。
 特許文献2には、ポリオール、ポリイソシアネート、整泡剤、発泡剤、触媒等からなる軟質ポリウレタンフォーム原料を混合し反応させて得られる、公知の軟質ポリウレタンフォームの配合組成を用いて熱プレス成形する方法が記載され、ポリオールとしては分子量の異なる2種類以上のポリオールを用いることが記載されている。
In Patent Document 1, as a method for producing a flexible polyurethane foam suitable for molding by a hot press molding method, a polyoxypropylene polyol (A) having an average number of hydroxyl groups of 2 to 3 and a hydroxyl value of 10 to 90 mgKOH / g, an average A polyol composition containing a polyether polyol (B) having a hydroxyl number of 2 to 3 and a hydroxyl value of 100 to 250 mgKOH / g, and a polyether monool (D) having a hydroxyl value of 5 to 200 mgKOH / g, and a polyisocyanate A method of reacting a compound with an isocyanate index of less than 90 is described.
In Patent Document 2, hot press molding is performed using a blended composition of a known flexible polyurethane foam obtained by mixing and reacting a flexible polyurethane foam raw material comprising a polyol, a polyisocyanate, a foam stabilizer, a foaming agent, a catalyst, and the like. A method is described, and it is described that two or more kinds of polyols having different molecular weights are used as the polyol.
国際公開第2009/041535号パンフレットInternational Publication No. 2009/041535 Pamphlet 特開2009-179720号JP 2009-179720 A
 特許文献1の製造方法で得られる軟質ポリウレタンフォームは、本発明者等の知見によれば、熱プレス工程に先立って切断を行う際に、軟質ポリウレタンフォームの硬さが不充分であるため、つぶれが生じる、切断時に使用するバーチカル(vertical)裁断機にフォームが付着するなど、切断しにくい傾向にある。このため、軟質ポリウレタンフォームを切断するバーチカル裁断機の回転速度を、通常の回転数より大幅に低速にする必要があり、生産性が悪くなると同時に加工作業性が悪くなる。また、生産性を改善するためにイソシアネート指数(イソシアネートインデックス)を90以上にするなどして硬度を上げると、熱プレス成形法による成形が悪くなることが示されている。
 特許文献2で得られる衝撃吸収性軟質ポリウレタンフォームは、本発明者等の知見によれば、ポリオールとして分子量の異なる2種類以上のポリオールを使用するだけでは、必ずしも熱プレス成形法による成形性が充分とは言えない。
According to the knowledge of the present inventors, the flexible polyurethane foam obtained by the production method of Patent Document 1 is crushed because the hardness of the flexible polyurethane foam is insufficient when cutting prior to the hot press step. It tends to be difficult to cut, for example, foam adheres to a vertical cutting machine used at the time of cutting. For this reason, it is necessary to make the rotational speed of the vertical cutting machine for cutting the flexible polyurethane foam much lower than the normal rotational speed, so that the productivity becomes worse and the workability becomes worse. Further, it has been shown that when the hardness is increased by increasing the isocyanate index (isocyanate index) to 90 or more in order to improve productivity, the molding by the hot press molding method becomes worse.
According to the knowledge of the present inventors, the impact-absorbing flexible polyurethane foam obtained in Patent Document 2 does not necessarily have sufficient moldability by the hot press molding method only by using two or more types of polyols having different molecular weights as polyols. It can not be said.
 本発明は前記事情に鑑みてなされたもので、充分な硬さを有し、切断時の加工作業性が良好であり、かつ熱プレス成形法による成形を良好に行うことができる軟質ポリウレタンフォームおよびその製造方法、ならびに該軟質ポリウレタンフォームを用いた熱プレス成形品およびその製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and has a sufficient hardness, good workability at the time of cutting, and a flexible polyurethane foam that can be well molded by a hot press molding method. It is an object of the present invention to provide a production method thereof, a hot press molded article using the flexible polyurethane foam, and a production method thereof.
 本発明は、下記[1]~[14]の発明である。
[1]ポリオール混合物(X)とポリイソシアネート化合物とを、ウレタン化触媒、発泡剤および整泡剤の存在下で反応させて、熱プレス成形用軟質ポリウレタンフォームを製造する方法において、前記ポリオール混合物(X)が、下記ポリオール(A)、下記ポリオール(B)および下記モノオール(D)を含み、前記ポリイソシアネート化合物の使用量がイソシアネート指数で90以上であることを特徴とする軟質ポリウレタンフォームの製造方法。
 ・ポリオール(A):平均水酸基数が2~3、水酸基価が5~90mgKOH/g、オキシエチレン基含有量が0~30質量%であるポリオキシアルキレンポリオール、
 ・ポリオール(B):平均水酸基数が2~3、水酸基価が100~250mgKOH/gであるポリオキシアルキレンポリオール、
 ・モノオール(D):水酸基価が5~200mgKOH/gであるポリオキシアルキレンモノオール。
The present invention is the following [1] to [14].
[1] In the method for producing a flexible polyurethane foam for hot press molding by reacting the polyol mixture (X) with a polyisocyanate compound in the presence of a urethanization catalyst, a foaming agent and a foam stabilizer, the polyol mixture ( X) contains the following polyol (A), the following polyol (B), and the following monool (D), and the amount of the polyisocyanate compound used is 90 or more in terms of isocyanate index. Method.
Polyol (A): a polyoxyalkylene polyol having an average number of hydroxyl groups of 2 to 3, a hydroxyl value of 5 to 90 mgKOH / g, and an oxyethylene group content of 0 to 30% by mass,
Polyol (B): a polyoxyalkylene polyol having an average number of hydroxyl groups of 2 to 3 and a hydroxyl value of 100 to 250 mgKOH / g,
Monool (D): A polyoxyalkylene monool having a hydroxyl value of 5 to 200 mgKOH / g.
[2]前記ポリオール(A)と前記ポリオール(B)との合計の100質量%のうち、前記ポリオール(A)の割合が5~50質量%である、[1]の熱プレス成形用軟質ポリウレタンフォームの製造方法。
[3]前記ポリオール混合物(X)の100質量%のうち、前記ポリオール(A)と前記ポリオール(B)との合計の割合が、70~99質量%である、[1]または[2]に記載の熱プレス成形用ポリウレタンフォームの製造方法。
[4]前記ポリオール(A)と前記ポリオール(B)との合計の100質量部に対して、前記モノオール(D)の割合が1~30質量部である、[1]~[3]のいずれかの熱プレス成形用軟質ポリウレタンフォーム。
[5]前記ポリオール混合物(X)が、さらに下記ポリオール(C)を含む、[1]~[4]のいずれかの熱プレス成形用軟質ポリウレタンフォームの製造方法。
 ・ポリオール(C):平均水酸基数が2~6、水酸基価が10~60mgKOH/g、オキシエチレン基含有量が50質量%以上であるポリオキシアルキレンポリオール。
[2] Hot press-molding soft polyurethane according to [1], wherein the proportion of the polyol (A) is 5 to 50% by mass in 100% by mass of the total of the polyol (A) and the polyol (B) Form manufacturing method.
[3] In [1] or [2], a total ratio of the polyol (A) and the polyol (B) is 70 to 99% by mass in 100% by mass of the polyol mixture (X). The manufacturing method of the polyurethane foam for hot press molding of description.
[4] The ratio of the monool (D) is 1 to 30 parts by mass with respect to 100 parts by mass of the total of the polyol (A) and the polyol (B). Any flexible polyurethane foam for hot press molding.
[5] The method for producing a flexible polyurethane foam for hot press molding according to any one of [1] to [4], wherein the polyol mixture (X) further contains the following polyol (C).
Polyol (C): Polyoxyalkylene polyol having an average number of hydroxyl groups of 2 to 6, a hydroxyl value of 10 to 60 mgKOH / g, and an oxyethylene group content of 50% by mass or more.
[6]前記ポリオール混合物(X)の100質量%のうち、前記ポリオール(C)の割合が、0.1~10質量%である、[5]に記載の熱プレス成形用ポリウレタンフォームの製造方法。
[7]前記ポリオール混合物(X)は、前記ポリオール(A)を10~30質量%、前記ポリオール(B)を50~80質量%、前記ポリオール(C)を0~8質量%、および前記モノオール(D)を1~24質量%含む、[5]または[6]に記載の熱プレス成形用ポリウレタンフォームの製造方法。
[8]軟質ポリウレタンフォームの25%硬さ(ILD)が40N/314cm以上である、[1]~[7]のいずれかの熱プレス成形用軟質ポリウレタンフォームの製造方法。
[6] The method for producing a polyurethane foam for hot press molding according to [5], wherein a proportion of the polyol (C) is 0.1 to 10% by mass in 100% by mass of the polyol mixture (X). .
[7] The polyol mixture (X) comprises 10 to 30% by mass of the polyol (A), 50 to 80% by mass of the polyol (B), 0 to 8% by mass of the polyol (C), and the mono The method for producing a polyurethane foam for hot press molding according to [5] or [6], comprising 1 to 24% by mass of all (D).
[8] The method for producing a flexible polyurethane foam for hot press molding according to any one of [1] to [7], wherein the 25% hardness (ILD) of the flexible polyurethane foam is 40 N / 314 cm 2 or more.
[9]前記ウレタン化触媒がジオクチルスズ類を含む、[1]~[8]のいずれかの熱プレス成形用軟質ポリウレタンフォームの製造方法。
[10]前記ウレタン化触媒の使用量が、前記ポリオール混合物(X)全体の100質量部に対して、0.01~3.0質量部である、[1]~[9]のいずれかの熱プレス成形用軟質ポリウレタンフォームの製造方法。
[11]前記発泡剤が水のみからなる、[1]~[10]のいずれかの熱プレス成形用軟質ポリウレタンフォームの製造方法。
[9] The method for producing a flexible polyurethane foam for hot press molding according to any one of [1] to [8], wherein the urethanization catalyst contains dioctyltins.
[10] Any one of [1] to [9], wherein the amount of the urethanization catalyst used is 0.01 to 3.0 parts by mass with respect to 100 parts by mass of the entire polyol mixture (X). A method for producing a flexible polyurethane foam for hot press molding.
[11] The method for producing a flexible polyurethane foam for hot press molding according to any one of [1] to [10], wherein the foaming agent comprises only water.
[12][1]~[11]のいずれかの製造方法で得られる、熱プレス成形用軟質ポリウレタンフォーム。
[13][1]~[11]のいずれかの製造方法で熱プレス成形用軟質ポリウレタンフォームを製造する工程と、得られた熱プレス成形用軟質ポリウレタンフォームを切断する工程と、切断した熱プレス成形用軟質ポリウレタンフォームを熱プレス成形法により成形する工程を有する、熱プレス成形品の製造方法。
[14][13]の製造方法で得られる、熱プレス成形品。
 なお、本明細書において、「~」とは、特段の定めがない限り、その前後に記載される数値を下限値及び上限値として含む意味で使用される。
[12] A flexible polyurethane foam for hot press molding obtained by the production method of any one of [1] to [11].
[13] A step of producing a flexible polyurethane foam for hot press molding by the production method of any one of [1] to [11], a step of cutting the obtained flexible polyurethane foam for hot press molding, and the cut hot press A method for producing a hot-press molded article, comprising a step of molding a flexible polyurethane foam for molding by a hot press molding method.
[14] A hot press-molded product obtained by the production method of [13].
In the present specification, “˜” is used to mean that the numerical values described before and after the value are included as the lower limit value and the upper limit value unless otherwise specified.
 本発明によれば、充分な硬さを有し、切断時の加工作業性が良好であり、かつ熱プレスによる成形を良好に行うことができる軟質ポリウレタンフォームが得られる。
 また本発明によれば、所望の形状の熱プレス成形品を効率良く製造できる。
According to the present invention, a flexible polyurethane foam having sufficient hardness, good workability at the time of cutting, and good molding by hot pressing can be obtained.
Moreover, according to this invention, the hot press molded product of a desired shape can be manufactured efficiently.
 本明細書において、水酸基価は、JIS K 1557-1に準拠した方法で測定した値である。
 ポリオールの平均水酸基数は、該ポリオールの製造に用いた開始剤の活性水素数の平均値を意味する。
 ポリオールの総不飽和度は、JIS K1557(2007年版)に準拠して測定した値である。
 「ポリオールシステム液」とは、ポリイソシアネート化合物と反応させる相手の液であり、ポリオールのほかに発泡剤、整泡剤、触媒、難燃剤等、必要に応じた配合剤を含む液である。
 「発泡原液組成物」とは、ポリオールシステム液と、ポリイソシアネート化合物と、任意に残りの成分とを混合した液である。
 イソシアネート指数は、発泡原液組成物中のポリイソシアネート化合物のイソシアネート基の当量を、該発泡原液組成物中に存在する全活性水素含有化合物の全ての活性水素の合計の当量で除した数値の100倍で表される値である。該活性水素含有化合物とは、ポリイソシアネート化合物と反応し得る水素原子を有する化合物であり、例えばポリオール混合物(X)、および発泡剤として使用しうる水等である。
 25%硬さ(ILD)の値は、JIS K6400(1997年版)に準拠した測定方法で測定される値である。具体的には、測定する軟質ポリウレタンフォームを24時間以上、23℃、相対湿度50%に管理された室内で養生したのち、縦が300mm、横が300mm、厚みが50mmに切断し、当該JISにおけるA法で測定した値である。50%硬さ(ILD)は、25%硬さ(ILD)を20秒圧縮保持して測定した直後に、さらに軟質ポリウレタンフォームの元の厚みに対して50%まで圧縮し、25%硬さ(ILD)と同様な条件下で測定する。65%硬さ(ILD)についても、軟質ポリウレタンフォームの元の厚みに対して65%まで圧縮し、25%硬さ(ILD)と同様な条件下で測定する。
In the present specification, the hydroxyl value is a value measured by a method according to JIS K1557-1.
The average number of hydroxyl groups of a polyol means the average value of the number of active hydrogens of the initiator used for manufacture of this polyol.
The total unsaturation of the polyol is a value measured according to JIS K1557 (2007 edition).
The “polyol system liquid” is a liquid to be reacted with the polyisocyanate compound, and is a liquid containing a compounding agent as required, such as a foaming agent, a foam stabilizer, a catalyst, and a flame retardant, in addition to the polyol.
The “foaming stock solution composition” is a liquid obtained by mixing a polyol system liquid, a polyisocyanate compound, and optionally the remaining components.
The isocyanate index is 100 times the value obtained by dividing the equivalent of the isocyanate group of the polyisocyanate compound in the foaming stock composition by the total equivalent of all active hydrogens of all active hydrogen-containing compounds present in the foaming stock composition. It is a value represented by The active hydrogen-containing compound is a compound having a hydrogen atom that can react with the polyisocyanate compound, and examples thereof include a polyol mixture (X) and water that can be used as a blowing agent.
The value of 25% hardness (ILD) is a value measured by a measuring method based on JIS K6400 (1997 edition). Specifically, after the flexible polyurethane foam to be measured is cured in a room controlled at 23 ° C. and 50% relative humidity for 24 hours or more, the length is 300 mm, the width is 300 mm, and the thickness is 50 mm. It is a value measured by the A method. Immediately after measuring the 25% hardness (ILD) by compressing and holding for 25 seconds, the 50% hardness (ILD) was further compressed to 50% with respect to the original thickness of the flexible polyurethane foam, and the 25% hardness ( ILD) is measured under the same conditions. The 65% hardness (ILD) is also compressed to 65% of the original thickness of the flexible polyurethane foam and measured under the same conditions as 25% hardness (ILD).
 本発明の熱プレス成形用軟質ポリウレタンフォーム(以下、単に、「軟質ポリウレタンフォーム」または「軟質フォーム」ということもある。)の製造方法は、ポリオール混合物(X)とポリイソシアネート化合物とを、ウレタン化触媒、発泡剤および整泡剤の存在下で反応させる。
 <ポリオール混合物(X)>
 本発明におけるポリオール混合物(X)は、ポリオール(A)、ポリオール(B)およびモノオール(D)を含む。さらにポリオール(C)を含むことが好ましい。また、場合により、ポリオール(A)~(C)以外のポリオール(以下、ポリオール(E)という)やモノオール(D)以外のモノオールを含んでもよい。
The method for producing a flexible polyurethane foam for hot press molding according to the present invention (hereinafter sometimes simply referred to as “soft polyurethane foam” or “soft foam”) comprises urethanizing a polyol mixture (X) and a polyisocyanate compound. The reaction is carried out in the presence of a catalyst, a blowing agent and a foam stabilizer.
<Polyol mixture (X)>
The polyol mixture (X) in the present invention contains a polyol (A), a polyol (B), and a monool (D). Further, it preferably contains a polyol (C). In some cases, polyols other than polyols (A) to (C) (hereinafter referred to as polyol (E)) and monools other than monool (D) may be included.
[ポリオール(A)]
 本発明におけるポリオール(A)は、平均水酸基数が2~3、水酸基価が5~90mgKOH/g、オキシエチレン基含有量が0~30質量%のポリオキシアルキレンポリオールである。このポリオキシアルキレンポリオールは、重合触媒存在下で開始剤にアルキレンオキシドを開環付加重合させて得られる。
 ポリオール(A)は、1種のみを用いても2種以上を併用してもよい。
[Polyol (A)]
The polyol (A) in the present invention is a polyoxyalkylene polyol having an average number of hydroxyl groups of 2 to 3, a hydroxyl value of 5 to 90 mgKOH / g, and an oxyethylene group content of 0 to 30% by mass. This polyoxyalkylene polyol is obtained by ring-opening addition polymerization of alkylene oxide with an initiator in the presence of a polymerization catalyst.
A polyol (A) may use only 1 type, or may use 2 or more types together.
 ポリオール(A)の製造に用いる重合触媒としては、アルカリ金属化合物触媒(ナトリウム系触媒、カリウム系触媒、セシウム系触媒等。)、カチオン重合触媒、複合金属シアン化物錯体触媒、ホスファゼン化合物触媒等が挙げられる。触媒が安価に入手できる点からアルカリ金属化合物触媒、低副生成物のポリオールが得られる点から複合金属シアン化錯体触媒が好ましい。 Examples of the polymerization catalyst used in the production of the polyol (A) include alkali metal compound catalysts (sodium catalyst, potassium catalyst, cesium catalyst, etc.), cationic polymerization catalyst, composite metal cyanide complex catalyst, phosphazene compound catalyst, and the like. It is done. From the point that the catalyst can be obtained at a low cost, an alkali metal compound catalyst and a double metal cyanide complex catalyst are preferable from the viewpoint that a low by-product polyol is obtained.
 ナトリウム系触媒またはカリウム系触媒としては、ナトリウム金属、カリウム金属、ナトリウムアルコキシドまたはカリウムアルコキシド(ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムプロポキシド、カリウムメトキシド、カリウムエトキシド、カリウムプロポキシド等。)、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム等が挙げられる。
 セシウム系触媒としては、セシウム金属、セシウムアルコキシド(セシウムメトキシド、セシウムエトキシド、セシウムプロポキシド等。)、水酸化セシウム、炭酸セシウム等が挙げられる。
Examples of the sodium-based catalyst or potassium-based catalyst include sodium metal, potassium metal, sodium alkoxide or potassium alkoxide (sodium methoxide, sodium ethoxide, sodium propoxide, potassium methoxide, potassium ethoxide, potassium propoxide, etc.), water. Examples include sodium oxide, potassium hydroxide, sodium carbonate, potassium carbonate and the like.
Examples of the cesium catalyst include cesium metal, cesium alkoxide (cesium methoxide, cesium ethoxide, cesium propoxide, etc.), cesium hydroxide, cesium carbonate, and the like.
 カチオン重合触媒としては、MoO(diketonate)Cl、MoO(diketonate)OSOCF、トリフルオロメタンスルホン酸、三フッ化ホウ素、三フッ化ホウ素配位化合物(三フッ化ホウ素ジエチルエーテラート、三フッ化ホウ素ジブチルエーテラート、三フッ化ホウ素ジオキサネート、三フッ化ホウ素アセチックアンハイドレートまたは三フッ化ホウ素トリエチルアミン錯化合物。)、またはフッ素元素を含有する芳香族炭化水素基またはフッ素元素を含有する芳香族炭化水素オキシ基を少なくとも1個有するアルミニウムまたはホウ素化合物が好ましい。
 上記フッ素元素を含有する芳香族炭化水素基としては、ペンタフルオロフェニル、テトラフルオロフェニル、トリフルオロフェニル、3,5-ビス(トリフルオロメチル)トリフルオロフェニル、3,5-ビス(トリフルオロメチル)フェニル、β-ペルフルオロナフチル、2,2’,2’’-ペルフルオロビフェニル等が挙げられる。
 上記フッ素元素を含有する芳香族炭化水素オキシ基としては、前記フッ素元素を含有する芳香族炭化水素基に酸素元素が結合した炭化水素オキシ基が好ましい。
Examples of the cationic polymerization catalyst include MoO 2 (diketonate) Cl, MoO 2 (diketonate) OSO 2 CF 3 , trifluoromethanesulfonic acid, boron trifluoride, boron trifluoride coordination compound (boron trifluoride diethyl etherate, three Boron fluoride dibutyl etherate, boron trifluoride dioxanate, boron trifluoride acetate anhydrate or boron trifluoride triethylamine complex)), or an aromatic hydrocarbon group containing fluorine element or fluorine element Aluminum or boron compounds having at least one aromatic hydrocarbon oxy group are preferred.
Examples of the aromatic hydrocarbon group containing fluorine element include pentafluorophenyl, tetrafluorophenyl, trifluorophenyl, 3,5-bis (trifluoromethyl) trifluorophenyl, and 3,5-bis (trifluoromethyl). And phenyl, β-perfluoronaphthyl, 2,2 ′, 2 ″ -perfluorobiphenyl, and the like.
The aromatic hydrocarbon oxy group containing the fluorine element is preferably a hydrocarbon oxy group in which an oxygen element is bonded to the aromatic hydrocarbon group containing the fluorine element.
 複合金属シアン化物錯体触媒(以下、「DMC触媒」とも記す。)は有機配位子を有する。有機配位子としてはtert-ブチルアルコール、n-ブチルアルコール、iso-ブチルアルコール、tert-ペンチルアルコール、iso-ペンチルアルコール、N,N-ジメチルアセトアミド、エチレングリコールモノ-tert-ブチルエーテル、エチレングリコールジメチルエーテル(グライムともいう。)、ジエチレングリコールジメチルエーテル(ジグライムともいう。)、トリエチレングリコールジメチルエーテル(トリグライムともいう。)、iso-プロピルアルコール、およびジオキサンが挙げられる。ジオキサンは、1,4-ジオキサンでも1,3-ジオキサンでもよいが、1,4-ジオキサンが好ましい。有機配位子は1種でもよく2種以上を組み合わせて用いてもよい。
 これらのうちでも、有機配位子としてtert-ブチルアルコ-ルを有することが好ましい。したがって、有機配位子の少なくとも一部としてtert-ブチルアルコ-ルを有するDMC触媒を用いることが好ましい。このようなDMC触媒は高活性であり、総不飽和度の低いポリオールを製造することができる。
The double metal cyanide complex catalyst (hereinafter also referred to as “DMC catalyst”) has an organic ligand. Organic ligands include tert-butyl alcohol, n-butyl alcohol, iso-butyl alcohol, tert-pentyl alcohol, iso-pentyl alcohol, N, N-dimethylacetamide, ethylene glycol mono-tert-butyl ether, ethylene glycol dimethyl ether ( And diethylene glycol dimethyl ether (also referred to as diglyme), triethylene glycol dimethyl ether (also referred to as triglyme), iso-propyl alcohol, and dioxane. The dioxane may be 1,4-dioxane or 1,3-dioxane, but 1,4-dioxane is preferred. One type of organic ligand may be used, or two or more types may be used in combination.
Among these, it is preferable to have tert-butyl alcohol as the organic ligand. Therefore, it is preferable to use a DMC catalyst having tert-butyl alcohol as at least a part of the organic ligand. Such DMC catalysts are highly active and can produce polyols with low total unsaturation.
 本発明におけるポリオール(A)は、DMC触媒の存在下で、開始剤にアルキレンオキシドを開環付加重合させて得られるポリオキシアルキレンポリオールであることが好ましい。DMC触媒を用いることにより、総不飽和度の低いポリオール(A)が得られる。
 ポリオール(A)の総不飽和度は0.02meq/g以下が好ましく、0.015meq/g以下がより好ましい。0.02meq/g以下であると優れた耐久性を得ることができる。さらに好ましくは0.010meq/g以下である。
The polyol (A) in the present invention is preferably a polyoxyalkylene polyol obtained by ring-opening addition polymerization of alkylene oxide with an initiator in the presence of a DMC catalyst. By using a DMC catalyst, a polyol (A) having a low total unsaturation can be obtained.
The total unsaturation degree of the polyol (A) is preferably 0.02 meq / g or less, more preferably 0.015 meq / g or less. The durability which was excellent in it being 0.02 meq / g or less can be obtained. More preferably, it is 0.010 meq / g or less.
 ポリオール(A)の製造に用いる開始剤としては、分子中の活性水素(アルキレンオキシドが反応しうる、水酸基やアミノ基の水素原子)の数が2または3である化合物を、単独で用いるか、または併用する。開始剤としては、多価アルコール類、多価フェノール類などの水酸基含有化合物が好ましい。活性水素の数が4以上である化合物を少量併用することもできる。活性水素数が2である化合物の具体例としては、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、ジエチレングリコール、ジプロピレングリコールなどの2価アルコールが挙げられる。また活性水素数が3である化合物の具体例としては、グリセリン、トリメチロールプロパンなどの3価アルコールが挙げられる。またこれらの化合物にアルキレンオキシド、好ましくはプロピレンオキシドを開環付加重合させて得られた高水酸基価ポリオキシアルキレンポリオールを用いることが好ましい。具体的には、水酸基数が2または3であって、水酸基1個当たりの分子量が200~500程度、すなわち水酸基価が110~285mgKOH/gのポリオキシアルキレンポリオール(好ましくはポリオキシプロピレンポリオール)を用いることが好ましい。 As an initiator used for the production of the polyol (A), a compound having 2 or 3 active hydrogens (a hydrogen atom of a hydroxyl group or an amino group that can react with an alkylene oxide) in the molecule is used alone, Or use together. As the initiator, hydroxyl group-containing compounds such as polyhydric alcohols and polyhydric phenols are preferable. A small amount of a compound having 4 or more active hydrogens can also be used. Specific examples of the compound having 2 active hydrogens include dihydric alcohols such as ethylene glycol, propylene glycol, 1,4-butanediol, diethylene glycol, and dipropylene glycol. Specific examples of the compound having 3 active hydrogens include trihydric alcohols such as glycerin and trimethylolpropane. Further, it is preferable to use a high hydroxyl group polyoxyalkylene polyol obtained by subjecting these compounds to ring-opening addition polymerization of alkylene oxide, preferably propylene oxide. Specifically, a polyoxyalkylene polyol (preferably a polyoxypropylene polyol) having 2 or 3 hydroxyl groups and a molecular weight per hydroxyl group of about 200 to 500, that is, a hydroxyl value of 110 to 285 mgKOH / g. It is preferable to use it.
 ポリオール(A)の製造に用いるアルキレンオキシドとしては、エチレンオキシド、プロピレンオキシド、1,2-エポキシブタン、2,3-エポキシブタン等が挙げられる。これらのうち、プロピレンオキシドのみ、またはプロピレンオキシドとエチレンオキシドとの併用が好ましく、プロピレンオキシドのみが特に好ましい。すなわちポリオール(A)としては、開始剤にプロピレンオキシドのみを開環付加重合させたポリオキシプロピレンポリオールが好ましい。プロピレンオキシドのみを用いると、得られる軟質ポリウレタンフォームの加湿時の耐久性が向上するため好ましい。
 ポリオール(A)におけるオキシエチレン基含有量は30質量%以下が好ましく、15質量%以下が特に好ましい。下限値は0質量%である。オキシエチレン基含有量を30質量%以下とすることで、加湿時における耐久性が良好となるため好ましい。
Examples of the alkylene oxide used in the production of the polyol (A) include ethylene oxide, propylene oxide, 1,2-epoxybutane, 2,3-epoxybutane and the like. Among these, only propylene oxide or a combination of propylene oxide and ethylene oxide is preferable, and only propylene oxide is particularly preferable. That is, as the polyol (A), polyoxypropylene polyol obtained by ring-opening addition polymerization of only propylene oxide as an initiator is preferable. It is preferable to use only propylene oxide because the durability of the resulting flexible polyurethane foam during humidification is improved.
The oxyethylene group content in the polyol (A) is preferably 30% by mass or less, and particularly preferably 15% by mass or less. The lower limit is 0% by mass. It is preferable for the oxyethylene group content to be 30% by mass or less because durability during humidification is improved.
 プロピレンオキシドとエチレンオキシドとを併用する場合、ブロック重合およびランダム重合のいずれの重合法を用いてもよい。さらにブロック重合とランダム重合の両者を組み合わせて製造することもできる。ブロック重合の場合、開環付加重合させる順序は、プロピレンオキシド、エチレンオキシドの順で付加するか、先にエチレンオキシドを付加し、プロピレンオキシド、エチレンオキシドの順に付加することが好ましい。この順番で開環付加重合することで、ポリオキシアルキレンポリオール(A)の水酸基の多くは一級水酸基となり、ポリオール(A)とポリイソシアネート化合物との反応性が高くなる。その結果、得られる軟質ポリウレタンフォームの成形性が良好になりやすく好ましい。末端はエチレンオキシドであることが好ましい。 When propylene oxide and ethylene oxide are used in combination, any polymerization method of block polymerization and random polymerization may be used. Furthermore, it can also manufacture combining both block polymerization and random polymerization. In the case of block polymerization, the order of ring-opening addition polymerization is preferably such that propylene oxide and ethylene oxide are added in this order, or ethylene oxide is added first, and propylene oxide and ethylene oxide are added in this order. By ring-opening addition polymerization in this order, many of the hydroxyl groups of the polyoxyalkylene polyol (A) become primary hydroxyl groups, and the reactivity between the polyol (A) and the polyisocyanate compound increases. As a result, the moldability of the resulting flexible polyurethane foam tends to be favorable, which is preferable. The terminal is preferably ethylene oxide.
 本発明におけるポリオール(A)の平均水酸基数は2~3である。平均水酸基数を2~3とすることにより、得られる軟質ポリウレタンフォームは熱可塑性の特性を発現しやすくなるため、熱プレス成形が容易となる。また、規定時間で熱プレス成形を終えた後に加圧盤を軟質ポリウレタンフォームから開放する際に密着することなく容易に脱型することが可能である。ポリオール(A)としては、水酸基数が2であるポリオキシアルキレンジオールを、ポリオール(A)の100質量%のうち50~100質量%用いることが、得られる軟質ポリウレタンフォームの熱プレス成形における作業性が良好になる点で好ましい。特にポリオール(A)は、水酸基数が2であるポリオキシアルキレンジオールであることが好ましい。 The average number of hydroxyl groups of the polyol (A) in the present invention is 2 to 3. By setting the average number of hydroxyl groups to 2 to 3, the resulting flexible polyurethane foam easily develops thermoplastic properties, so that hot press molding becomes easy. In addition, it is possible to easily remove the mold without coming into close contact when the pressurizing plate is released from the flexible polyurethane foam after hot press molding is completed in a specified time. As the polyol (A), polyoxyalkylene diol having 2 hydroxyl groups is used in an amount of 50 to 100% by mass out of 100% by mass of the polyol (A). Is preferable in that it becomes favorable. In particular, the polyol (A) is preferably a polyoxyalkylene diol having 2 hydroxyl groups.
 ポリオール(A)の水酸基価は5~90mgKOH/gであり、5~60mgKOH/gであるのが好ましく、5~40mgKOH/gであるのがより好ましい。ポリオール(A)が後述するポリマー分散ポリオールでない場合は、熱プレス成形法による成形を特に良くするために水酸基価は5~12mgKOH/gとするのが好ましい。水酸基価を5mgKOH/g以上とすることで、コラップス(collapse)等を抑制し、軟質フォームを安定して製造できる。また、水酸基価を90mgKOH/g以下とすることで、イソシアネート指数を90以上としても、得られる軟質フォームの柔軟性を損なわず、熱プレス成形用にバーチカル裁断機等で切断する際の加工性および熱プレス成形が容易となり、生産性の向上が期待される。 The hydroxyl value of the polyol (A) is 5 to 90 mgKOH / g, preferably 5 to 60 mgKOH / g, and more preferably 5 to 40 mgKOH / g. When the polyol (A) is not a polymer-dispersed polyol described later, the hydroxyl value is preferably 5 to 12 mgKOH / g in order to improve the molding by the hot press molding method. By setting the hydroxyl value to 5 mgKOH / g or more, collapse or the like can be suppressed, and a flexible foam can be stably produced. In addition, when the hydroxyl value is 90 mgKOH / g or less, even when the isocyanate index is 90 or more, the flexibility of the resulting flexible foam is not impaired, and the workability when cutting with a vertical cutting machine or the like for hot press molding and Hot press molding becomes easy, and improvement in productivity is expected.
 本発明におけるポリオール(A)は、ポリマー分散ポリオールであってもよい。ポリオール(A)がポリマー分散ポリオールであるとは、ポリオール(A)をベースポリオール(分散媒)として、ポリマー微粒子(分散質)が安定に分散している分散系であることを意味する。
 ポリマー微粒子のポリマーとしては、付加重合系ポリマーまたは縮重合系ポリマーが挙げられる。付加重合系ポリマーは、例えば、アクリロニトリル、スチレン、メタクリル酸エステル、アクリル酸エステル等のモノマーを単独重合または共重合して得られる。縮重合系ポリマーとしては、例えば、ポリエステル、ポリウレア、ポリウレタン、ポリメチロールメラミン等が挙げられる。ポリオール中にポリマー微粒子を存在させることにより、ポリオールの水酸基価が低く抑えられ、軟質ポリウレタンフォームの硬度を高くすることができ、熱プレス成形用にバーチカル裁断機等で切断する際の加工性、該軟質フォームおよび該フォームを熱プレス成形した成形品の引張強度等の機械的物性向上に有効である。
 ポリマー分散ポリオール中のポリマー微粒子の含有割合は特に制限されない。ポリマー微粒子を含有させることによる効果が充分に得られる点で、ポリオール混合物(X)の100質量部中に存在するポリマー微粒子が1質量部以上であることが好ましく、5質量部以上がより好ましい。上限値は軟質ポリウレタンフォームの成形性を維持するため、またポリオール混合物(X)の粘度が高くなりすぎることを抑制する点から、40質量部以下が好ましい。
 なお、ポリマー分散ポリオールのポリオールとしての諸物性(水酸基価、総不飽和度等)は、ポリマー微粒子を除いたベースポリオールについて考えるものとする。
The polyol (A) in the present invention may be a polymer-dispersed polyol. The polyol (A) being a polymer-dispersed polyol means a dispersion system in which polymer fine particles (dispersoid) are stably dispersed using the polyol (A) as a base polyol (dispersion medium).
Examples of the polymer of the polymer fine particles include addition polymerization polymers and condensation polymerization polymers. The addition polymerization type polymer is obtained, for example, by homopolymerizing or copolymerizing monomers such as acrylonitrile, styrene, methacrylic acid ester and acrylic acid ester. Examples of the polycondensation polymer include polyester, polyurea, polyurethane, polymethylol melamine and the like. By allowing the polymer fine particles to be present in the polyol, the hydroxyl value of the polyol can be kept low, the hardness of the flexible polyurethane foam can be increased, and the workability when cutting with a vertical cutter for hot press molding, It is effective in improving mechanical properties such as tensile strength of a flexible foam and a molded product obtained by hot press molding the foam.
The content ratio of the polymer fine particles in the polymer-dispersed polyol is not particularly limited. The polymer fine particles present in 100 parts by mass of the polyol mixture (X) are preferably 1 part by mass or more, more preferably 5 parts by mass or more, from the viewpoint that the effect of containing the polymer fine particles is sufficiently obtained. The upper limit is preferably 40 parts by mass or less from the viewpoint of maintaining the moldability of the flexible polyurethane foam and suppressing the viscosity of the polyol mixture (X) from becoming too high.
The various properties (hydroxyl value, total unsaturation, etc.) of the polymer-dispersed polyol as a polyol are considered for the base polyol excluding the polymer fine particles.
[ポリオール(B)]
 本発明におけるポリオール(B)は、平均水酸基数が2~3、水酸基価が100~250mgKOH/gであるポリオキシアルキレンポリオールである。このポリオキシアルキレンポリオールは、ポリオール(A)と同様に、重合触媒存在下で開始剤にアルキレンオキシドを開環付加重合させて得られる。
 ポリオール(B)は、1種のみを用いても2種以上を併用してもよい。
[Polyol (B)]
The polyol (B) in the present invention is a polyoxyalkylene polyol having an average number of hydroxyl groups of 2 to 3 and a hydroxyl value of 100 to 250 mgKOH / g. This polyoxyalkylene polyol can be obtained by ring-opening addition polymerization of an alkylene oxide in an initiator in the presence of a polymerization catalyst in the same manner as the polyol (A).
A polyol (B) may use only 1 type or may use 2 or more types together.
 ポリオール(B)の製造に用いる重合触媒としては、ホスファゼン化合物触媒、ルイス酸化合物またはアルカリ金属化合物触媒、複合金属シアン化物錯体触媒が好ましく、このうちアルカリ金属化合物触媒が特に好ましい。アルカリ金属化合物触媒としては、水酸化カリウム、カリウムメトキシド等のカリウム化合物、セシウム金属、水酸化セシウム、炭酸セシウム、セシウムメトキシド等のセシウム化合物などのアルカリ金属化合物またはアルカリ金属水酸化物が好ましく挙げられる。 As the polymerization catalyst used for the production of the polyol (B), a phosphazene compound catalyst, a Lewis acid compound or an alkali metal compound catalyst, and a double metal cyanide complex catalyst are preferable, and among these, an alkali metal compound catalyst is particularly preferable. Preferred examples of the alkali metal compound catalyst include potassium compounds such as potassium hydroxide and potassium methoxide, alkali metal compounds such as cesium compounds such as cesium metal, cesium hydroxide, cesium carbonate, and cesium methoxide, or alkali metal hydroxides. It is done.
 ポリオール(B)の製造に用いる開始剤としては、分子中の活性水素数が2または3である化合物を、単独で用いるか、または併用する。活性水素の数が4以上である化合物を少量併用することもできる。活性水素数が2または3である化合物の具体例としては、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、ジエチレングリコール、ジプロピレングリコール、グリセリン、トリメチロールプロパン等の多価アルコール類;ビスフェノールA等の多価フェノール類;モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ピペラジン等のアミン類が挙げられる。このうち多価アルコール類が特に好ましい。またこれらの化合物にアルキレンオキシド、好ましくはプロピレンオキシドを開環付加重合させて得られた高水酸基価ポリオキシアルキレンポリオールを用いることが好ましい。 As the initiator used for producing the polyol (B), a compound having 2 or 3 active hydrogen atoms in the molecule is used alone or in combination. A small amount of a compound having 4 or more active hydrogens can also be used. Specific examples of the compound having 2 or 3 active hydrogens include polyhydric alcohols such as ethylene glycol, propylene glycol, 1,4-butanediol, diethylene glycol, dipropylene glycol, glycerin and trimethylolpropane; bisphenol A and the like And polyamines such as monoethanolamine, diethanolamine, triethanolamine, and piperazine. Of these, polyhydric alcohols are particularly preferred. Further, it is preferable to use a high hydroxyl group polyoxyalkylene polyol obtained by subjecting these compounds to ring-opening addition polymerization of alkylene oxide, preferably propylene oxide.
 ポリオール(B)の製造に用いるアルキレンオキシドとしては、エチレンオキシド、プロピレンオキシド、1,2-エポキシブタン、2,3-エポキシブタン等が挙げられる。このうち、プロピレンオキシドのみ、またはプロピレンオキシドとエチレンオキシドとの併用が好ましく、プロピレンオキシドのみが特に好ましい。
 ポリオール(B)としては、オキシエチレン基含有量の低いポリオールが好ましく、ポリオール(B)におけるオキシエチレン基含有量は0~20質量%が好ましく、0~10質量%がより好ましい。特にオキシアルキレン基としてオキシプロピレン基のみを有するポリオキシプロピレンポリオールが好ましい。このようなオキシエチレン基含有量の低いポリオールを用いると、得られる軟質ポリウレタンフォームおよび該軟質ポリウレタンフォームを熱プレス成形した成形品の、加湿時の耐久性が向上する。
Examples of the alkylene oxide used for the production of the polyol (B) include ethylene oxide, propylene oxide, 1,2-epoxybutane, 2,3-epoxybutane and the like. Among these, only propylene oxide or a combination of propylene oxide and ethylene oxide is preferable, and only propylene oxide is particularly preferable.
The polyol (B) is preferably a polyol having a low oxyethylene group content, and the oxyethylene group content in the polyol (B) is preferably 0 to 20% by mass, more preferably 0 to 10% by mass. In particular, a polyoxypropylene polyol having only an oxypropylene group as an oxyalkylene group is preferred. When such a polyol having a low oxyethylene group content is used, durability of the obtained flexible polyurethane foam and a molded product obtained by hot press molding the flexible polyurethane foam is improved.
 本発明におけるポリオール(B)の平均水酸基数は2~3である。平均水酸基数を2~3とすることにより、得られる軟質ポリウレタンフォームおよび該軟質ポリウレタンフォームを熱プレス成形した成形品の硬さが適度となり、該成形品表面の触感も良好となる。また、軟質ポリウレタンフォームおよびその熱プレス成形品の伸び、引張強度等の物性にも優れる。
 ポリオール(B)を2種以上併用する場合、それらの混合後における平均水酸基数が2~2.8であることが好ましい。平均水酸基数が上記範囲であると、バーチカル裁断機等で切断する際の加工性、かつ熱プレス成形した成形品の表面感触も良好な軟質ポリウレタンフォームが得られる。
The average number of hydroxyl groups of the polyol (B) in the present invention is 2 to 3. By setting the average number of hydroxyl groups to 2 to 3, the hardness of the obtained flexible polyurethane foam and the molded product obtained by hot press molding the flexible polyurethane foam becomes appropriate, and the feel of the surface of the molded product is also improved. Moreover, it is excellent also in physical properties, such as elongation and tensile strength, of a flexible polyurethane foam and its hot press-molded product.
When two or more polyols (B) are used in combination, the average number of hydroxyl groups after mixing them is preferably 2 to 2.8. When the average number of hydroxyl groups is within the above range, a flexible polyurethane foam having good processability when cutting with a vertical cutter or the like and the surface feel of a hot-press molded product is obtained.
 また、ポリオール(B)は平均水酸基数が2のポリオキシアルキレンジオールと、平均水酸基数が3のポリオキシアルキレントリオールを併用することが好ましい。ポリオール(B)全体の100質量%中に含まれるポリオキシアルキレンジオールの割合は、35質量%以上が好ましく、40質量%以上がより好ましい。上限値は90質量%である。 The polyol (B) is preferably used in combination with a polyoxyalkylene diol having an average number of hydroxyl groups of 2 and a polyoxyalkylene triol having an average number of hydroxyl groups of 3. The proportion of the polyoxyalkylene diol contained in 100% by mass of the entire polyol (B) is preferably 35% by mass or more, and more preferably 40% by mass or more. The upper limit is 90% by mass.
 本発明におけるポリオール(B)の水酸基価は100~250mgKOH/gである。水酸基価を100mgKOH/g以上とすることで、コラップス等を抑制し、軟質ポリウレタンフォームを安定して製造することができる。また水酸基価を250mgKOH/g以下とすることで、製造される軟質ポリウレタンフォームの柔軟性を損なわず、かつ、反発弾性率を低くできる。また、バーチカル裁断機等で切断する際の加工性に優れた軟質ポリウレタンフォームを得ることができる。ポリオール(B)の水酸基価は100~200mgKOH/gがより好ましい。 The hydroxyl value of the polyol (B) in the present invention is 100 to 250 mgKOH / g. By setting the hydroxyl value to 100 mgKOH / g or more, collapse or the like can be suppressed, and a flexible polyurethane foam can be stably produced. Moreover, by making a hydroxyl value into 250 mgKOH / g or less, the softness | flexibility of the flexible polyurethane foam manufactured can be impaired, and a resilience elastic modulus can be made low. Moreover, the flexible polyurethane foam excellent in workability at the time of cut | disconnecting with a vertical cutter etc. can be obtained. The hydroxyl value of the polyol (B) is more preferably 100 to 200 mgKOH / g.
 本発明におけるポリオール(B)は、ポリマー分散ポリオールであってもよい。ポリマー微粒子のポリマーとしては、ポリオール(A)の項で説明したものと同様のものが例示できる。 The polyol (B) in the present invention may be a polymer-dispersed polyol. Examples of the polymer of the polymer fine particles include those described in the section of the polyol (A).
[ポリオール(C)]
 本発明におけるポリオール(C)は、平均水酸基数が2~6、水酸基価が10~60mgKOH/g、オキシエチレン基含有量が50質量%以上であるポリオキシアルキレンポリオールである。
 ポリオール(C)は、1種のみを用いても2種以上を併用してもよい。
[Polyol (C)]
The polyol (C) in the present invention is a polyoxyalkylene polyol having an average number of hydroxyl groups of 2 to 6, a hydroxyl value of 10 to 60 mgKOH / g, and an oxyethylene group content of 50% by mass or more.
A polyol (C) may use only 1 type, or may use 2 or more types together.
 ポリオール(C)は、ポリオール(A)やポリオール(B)と同様に、重合触媒存在下で開始剤にアルキレンオキシドを開環付加重合させて得られる。ポリオール(C)は、エチレンオキシドとプロピレンオキシドがランダム重合している構造でもよく、または、エチレンオキシドが、末端もしくは開始剤の直後からブロックとして開環付加重合した構造でもよい。さらに、多量化で得られるポリエチレングリコールであってもよい。ポリオール(C)を用いると、破泡効果が認められ、ポリオール(C)の添加は通気性の向上に効果がある。 The polyol (C) is obtained by subjecting an alkylene oxide to ring-opening addition polymerization in the presence of a polymerization catalyst in the same manner as the polyol (A) and polyol (B). The polyol (C) may have a structure in which ethylene oxide and propylene oxide are randomly polymerized, or may have a structure in which ethylene oxide is subjected to ring-opening addition polymerization as a block immediately after a terminal or an initiator. Further, it may be polyethylene glycol obtained by multimerization. When the polyol (C) is used, a foam breaking effect is recognized, and the addition of the polyol (C) is effective in improving air permeability.
 ポリオール(C)の製造に用いる重合触媒は、前記したポリオール(B)と同様のものを用いることができる。特に、前記重合触媒のうちでも特にアルカリ金属化合物触媒が好ましい。
 ポリオール(C)の製造に用いる開始剤は、分子中の活性水素数が2~6である化合物を、単独で使用するか、または2種以上を併用する。活性水素数が2~6の具体例としては、ポリオール(B)の製造に用いる開始剤として挙げたものに加え、ジグリセリン、ペンタエリスリトール、ソルビトール等、およびこれらの化合物にアルキレンオキシドを開環重合させて得られた高水酸基価ポリエーテルポリオールが挙げられる。これらのうちで、多価アルコール類、または多価アルコール類にアルキレンオキシド、好ましくはプロピレンオキシドを開環重合させて得られた高水酸基価ポリエーテルポリオールが好ましい。
As the polymerization catalyst used for the production of the polyol (C), the same one as the above-described polyol (B) can be used. In particular, among the polymerization catalysts, an alkali metal compound catalyst is particularly preferable.
As the initiator used for producing the polyol (C), a compound having 2 to 6 active hydrogen atoms in the molecule is used alone, or two or more kinds are used in combination. Specific examples of the number of active hydrogens of 2 to 6 include ring-opening polymerization of diglycerin, pentaerythritol, sorbitol, etc., and alkylene oxides to these compounds in addition to the initiators used for the production of polyol (B). And a high hydroxyl group polyether polyol obtained by the above process. Among these, polyhydric alcohols, or high hydroxyl group polyether polyols obtained by ring-opening polymerization of alkylene oxide, preferably propylene oxide, to polyhydric alcohols are preferable.
 ポリオール(C)の製造に用いられるアルキレンオキシドとしては、エチレンオキシド、プロピレンオキシド、1,2-エポキシブタン、2,3-エポキシブタン等が挙げられる。また、ポリオール(C)におけるオキシエチレン含有量は50質量%以上であり、エチレンオキシドのみ、またはプロピレンオキシドとエチレンオキシドとの併用が好ましい。
 ポリオール(C)におけるオキシエチレン基含有量を50質量%以上とすることでポリオール(C)を添加した際に高い通気性を確保できる。
 特に、ポリオール(C)としては、プロピレンオキシドとエチレンオキシドとの混合物を開環付加重合させて得られるポリオールが好ましい。この場合、ポリオール(C)におけるオキシエチレン含有量は50~95質量%が好ましく、60~90質量%がより好ましい。
Examples of the alkylene oxide used for producing the polyol (C) include ethylene oxide, propylene oxide, 1,2-epoxybutane, 2,3-epoxybutane and the like. Moreover, the oxyethylene content in a polyol (C) is 50 mass% or more, and it is preferable to use ethylene oxide alone or a combination of propylene oxide and ethylene oxide.
By setting the oxyethylene group content in the polyol (C) to 50% by mass or more, high breathability can be secured when the polyol (C) is added.
In particular, the polyol (C) is preferably a polyol obtained by ring-opening addition polymerization of a mixture of propylene oxide and ethylene oxide. In this case, the oxyethylene content in the polyol (C) is preferably 50 to 95% by mass, more preferably 60 to 90% by mass.
 ポリオール(C)の平均水酸基数は2~6である。平均水酸基数が2~6であると、通気性に優れた軟質ポリウレタンフォームが得られやすい。該平均水酸基数は2~4が好ましい。
 ポリオール(C)の水酸基価は10~60mgKOH/gである。水酸基価が10~60mgKOH/gであると、ポリオール中のエチレンオキサイドが適度の範囲となるため、得られた軟質ポリウレタンフォームを熱プレス成形した成形品の触感が良好となる。該水酸基価は15~50mgKOH/gが好ましい。
The average number of hydroxyl groups of the polyol (C) is 2-6. When the average number of hydroxyl groups is 2 to 6, it is easy to obtain a flexible polyurethane foam excellent in air permeability. The average number of hydroxyl groups is preferably 2-4.
The hydroxyl value of the polyol (C) is 10 to 60 mgKOH / g. When the hydroxyl value is from 10 to 60 mgKOH / g, ethylene oxide in the polyol falls within an appropriate range, so that the feel of a molded product obtained by hot press molding the obtained flexible polyurethane foam is improved. The hydroxyl value is preferably 15 to 50 mgKOH / g.
[モノオール(D)]
 本発明におけるモノオール(D)は、水酸基価が5~200mgKOH/gであるポリオキシアルキレンモノオールである。このポリオキシアルキレンモノオールは、活性水素の数が1である開始剤を使用し、この開始剤に、ポリオール(A)またはポリオール(B)と同様に、重合触媒存在下でアルキレンオキシドを開環付加重合させて得られる。
 モノオール(D)は、1種のみを用いても2種以上を併用してもよい。
[Monoall (D)]
The monool (D) in the present invention is a polyoxyalkylene monool having a hydroxyl value of 5 to 200 mgKOH / g. This polyoxyalkylene monool uses an initiator having 1 active hydrogen, and, like the polyol (A) or polyol (B), this initiator opens an alkylene oxide in the presence of a polymerization catalyst. Obtained by addition polymerization.
Monool (D) may use only 1 type, or may use 2 or more types together.
 モノオール(D)の製造に用いる重合触媒としては、DMC触媒、ホスファゼン化合物触媒、ルイス酸化合物またはアルカリ金属化合物触媒が好ましく、このうち複合金属シアン化物錯体触媒が特に好ましい。複合金属シアン化物錯体触媒としては、前記の複合金属シアン化物錯体触媒を使用できる。 As the polymerization catalyst used in the production of monool (D), a DMC catalyst, a phosphazene compound catalyst, a Lewis acid compound or an alkali metal compound catalyst is preferable, and among these, a composite metal cyanide complex catalyst is particularly preferable. As the double metal cyanide complex catalyst, the above double metal cyanide complex catalyst can be used.
 モノオール(D)の製造に用いる開始剤は、活性水素原子を1個のみ有する化合物である。その具体例としては、メタノール、エタノール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、tert-ブチルアルコール等の1価アルコール類;フェノール、ノニルフェノール等の1価フェノール類;ジメチルアミン、ジエチルアミン等の2級アミン類等が挙げられる。また、前記ポリオール(A)等を製造するための高水酸基価ポリオキシアルキレンポリオールと同様に、目的とするモノオール(D)の水酸基価よりも高い水酸基価を有する高水酸基価ポリオキシアルキレンモノオールを開始剤として使用することもできる。 The initiator used for the production of monool (D) is a compound having only one active hydrogen atom. Specific examples thereof include monohydric alcohols such as methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, tert-butyl alcohol; monohydric phenols such as phenol and nonylphenol; dimethylamine, diethylamine and the like. Secondary amines etc. are mentioned. Further, similarly to the high hydroxyl group polyoxyalkylene polyol for producing the polyol (A) and the like, the high hydroxyl group polyoxyalkylene monool having a hydroxyl value higher than that of the target monool (D). Can also be used as an initiator.
 モノオール(D)の製造に用いるアルキレンオキシドとしては、エチレンオキシド、プロピレンオキシド、1,2-エポキシブタン、2,3-エポキシブタン等が挙げられる。このうち、プロピレンオキシドのみ、またはプロピレンオキシドとエチレンオキシドとの併用が好ましく、プロピレンオキシドのみが特に好ましい。すなわちモノオール(D)としては、開始剤にプロピレンオキシドのみを開環付加重合させたポリオキシプロピレンモノオールが好ましい。プロピレンオキシドのみを用いることは、得られる軟質ポリウレタンフォームの加湿時の耐久性が向上するため好ましい。また、軟質ポリウレタンフォームを熱プレス成形した成形品の触感が良好となる。例えばシート状に熱プレス成形した成形品は絹織物のような触感となるため好ましい。
 本発明におけるモノオール(D)の平均水酸基数は1である。モノオール(D)の水酸基価が10~200mgKOH/gであると軟質ポリウレタンフォームの熱プレス成形における作業性が向上する。該水酸基価は10~120mgKOH/gが好ましい。
Examples of the alkylene oxide used for the production of the monool (D) include ethylene oxide, propylene oxide, 1,2-epoxybutane, and 2,3-epoxybutane. Among these, only propylene oxide or a combination of propylene oxide and ethylene oxide is preferable, and only propylene oxide is particularly preferable. That is, the monool (D) is preferably a polyoxypropylene monool obtained by subjecting only propylene oxide to ring-opening addition polymerization to an initiator. It is preferable to use only propylene oxide because the durability of the resulting flexible polyurethane foam during humidification is improved. Moreover, the tactile sensation of a molded product obtained by hot press molding a flexible polyurethane foam is improved. For example, a molded product that has been hot press-molded into a sheet shape is preferable because it provides a tactile feel like a silk fabric.
The average number of hydroxyl groups of monool (D) in the present invention is 1. When the hydroxyl value of monool (D) is 10 to 200 mgKOH / g, the workability in hot press molding of a flexible polyurethane foam is improved. The hydroxyl value is preferably 10 to 120 mgKOH / g.
 なお、本発明におけるポリオール混合物は、モノオール(D)以外のモノオール(例えば水酸基価が200mgKOH/gを超えるポリオキシプロピレンモノオール)を含有していてもよいが、通常はモノオール(D)以外のモノオールは含有しない。本発明におけるポリオール混合物がモノオール(D)以外のモノオールを含有する場合であっても、ポリオール混合物の100質量%のうち、その割合は5質量%以下が好ましく、2質量%以下がより好ましい。 In addition, although the polyol mixture in this invention may contain monools other than monool (D) (for example, the polyoxypropylene monool whose hydroxyl value exceeds 200 mgKOH / g), normally monool (D). Other monools are not included. Even if the polyol mixture in the present invention contains a monool other than the monool (D), the proportion is preferably 5% by mass or less, more preferably 2% by mass or less, out of 100% by mass of the polyol mixture. .
[ポリオール(E)]
 本発明におけるポリオール(E)は、ポリオール(A)、(B)、(C)のいずれにも該当しないポリオールであり、例えば、ポリオール(B)よりも高水酸基価のポリオール、ポリオール(A)およびポリオール(B)よりも平均水酸基数が大きくかつポリオール(C)よりもオキシエチレン含有量が高いポリオール、ポリオキシアルキレンポリオール以外の高分子量ポリオールなどが挙げられる。
[Polyol (E)]
The polyol (E) in the present invention is a polyol that does not fall under any of the polyols (A), (B), and (C). For example, a polyol having a higher hydroxyl value than the polyol (B), the polyol (A), and Examples thereof include polyols having an average number of hydroxyl groups larger than that of polyol (B) and higher oxyethylene content than polyol (C), and high molecular weight polyols other than polyoxyalkylene polyols.
 ポリオール(E)としては、平均水酸基数が2~6であり、水酸基価が300~1,830mgKOH/gであるポリオールが好ましい。より好ましくは、平均水酸基数が2~4、水酸基価が300~600mgKOH/gのポリオールである。このポリオールとしては、多価アルコール類、水酸基を2~6個有するアミン類、ポリオキシアルキレンポリオールが好ましい。このような高水酸基価のポリオールは、架橋剤として作用し、硬度等の機械的物性が向上する。特に発泡剤を多く使用して低密度(軽量)の軟質ポリウレタンフォームを製造しようとする場合にも、発泡安定性が良好となる。 The polyol (E) is preferably a polyol having an average number of hydroxyl groups of 2 to 6 and a hydroxyl value of 300 to 1,830 mgKOH / g. More preferred is a polyol having an average number of hydroxyl groups of 2 to 4 and a hydroxyl value of 300 to 600 mgKOH / g. As this polyol, polyhydric alcohols, amines having 2 to 6 hydroxyl groups, and polyoxyalkylene polyols are preferable. Such a polyol having a high hydroxyl value acts as a crosslinking agent, and mechanical properties such as hardness are improved. Particularly when a low density (light weight) flexible polyurethane foam is to be produced using a large amount of a foaming agent, the foaming stability is good.
 ポリオール(E)として使用できる多価アルコール類としては、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、ジプロピレングリコール、グリセリン、ジグリセリン、ペンタエリスリトール等が挙げられる。水酸基を2~6個有するアミン類としてはジエタノールアミン、トリエタノールアミン等が挙げられる。ポリオキシアルキレンポリオールとしては、ポリオール(B)などと同様に、開始剤にアルキレンオキシドを開環付加重合させて得られたポリオキシアルキレンポリオールが挙げられる。ポリオキシアルキレンポリオールであるポリオール(E)の製造に用いられる開始剤としては、ポリオール(E)として用いてもよい多価アルコール類、またはポリオール(B)の製造に用いられる開始剤が例示できる。 Examples of polyhydric alcohols that can be used as the polyol (E) include ethylene glycol, propylene glycol, 1,4-butanediol, dipropylene glycol, glycerin, diglycerin, and pentaerythritol. Examples of amines having 2 to 6 hydroxyl groups include diethanolamine and triethanolamine. Examples of the polyoxyalkylene polyol include polyoxyalkylene polyols obtained by subjecting an alkylene oxide to ring-opening addition polymerization to an initiator, like the polyol (B). As an initiator used for manufacture of polyol (E) which is a polyoxyalkylene polyol, the initiator used for manufacture of the polyhydric alcohols which may be used as polyol (E), or polyol (B) can be illustrated.
 ポリオール(E)としてのポリオキシアルキレンポリオールの製造に用いられるアルキレンオキシドは、エチレンオキシド、プロピレンオキシド、1,2-エポキシブタン、2,3-エポキシブタン等が挙げられる。このうち、プロピレンオキシドのみ、またはプロピレンオキシドとエチレンオキシドとの併用が好ましく、プロピレンオキシドのみが特に好ましい。すなわちポリオール(E)としてのポリオキシアルキレンポリオールは、開始剤にプロピレンオキシドのみを開環付加重合させたポリオキシプロピレンポリオールが好ましい。ポリオール(E)としては、上記のうちポリオキシアルキレンポリオールが好ましく、ポリオキシプロピレンポリオールポリオールが特に好ましい。プロピレンオキシドのみを用いることは、得られる軟質ポリウレタンフォームの加湿時の耐久性が向上するため好ましい。ポリオール(E)は、1種のみを用いても2種以上を併用してもよい。 Examples of the alkylene oxide used for producing the polyoxyalkylene polyol as the polyol (E) include ethylene oxide, propylene oxide, 1,2-epoxybutane, and 2,3-epoxybutane. Among these, only propylene oxide or a combination of propylene oxide and ethylene oxide is preferable, and only propylene oxide is particularly preferable. That is, the polyoxyalkylene polyol as the polyol (E) is preferably a polyoxypropylene polyol obtained by ring-opening addition polymerization of only propylene oxide as an initiator. As the polyol (E), among the above, polyoxyalkylene polyol is preferable, and polyoxypropylene polyol polyol is particularly preferable. It is preferable to use only propylene oxide because the durability of the resulting flexible polyurethane foam during humidification is improved. A polyol (E) may use only 1 type, or may use 2 or more types together.
 本発明におけるポリオール(E)としては、上記平均水酸基数や水酸基価に限定されない、ポリエステルポリオールやポリカーボネートポリオールであってもよい。これらポリオールの平均水酸基数は2~3が好ましく、水酸基価は20~300mgKOH/gが好ましい。 The polyol (E) in the present invention may be a polyester polyol or a polycarbonate polyol, which is not limited to the above average number of hydroxyl groups or hydroxyl value. These polyols preferably have an average number of hydroxyl groups of 2 to 3, and a hydroxyl value of 20 to 300 mgKOH / g.
[ポリオール混合物(X)の配合]
 ポリオール混合物(X)において、ポリオール(A)とポリオール(B)との合計の100質量%のうち、ポリオール(A)の割合が、5~50質量%が好ましく、10~40質量%がより好ましい。ポリオール混合物(X)中のポリオール(A)の割合を上記の範囲とすることで、バーチカル裁断機等で切断する際の加工性が容易であると同時に、熱プレス成形における作業性が良好な軟質ポリウレタンフォームが得られる。
 なお、ポリマー分散ポリオール中のポリマー微粒子は、ポリオールの含有量に含めないものとする。
[Formulation of polyol mixture (X)]
In the polyol mixture (X), the proportion of the polyol (A) is preferably 5 to 50% by mass and more preferably 10 to 40% by mass in 100% by mass of the total of the polyol (A) and the polyol (B). . By making the ratio of the polyol (A) in the polyol mixture (X) within the above range, the workability when cutting with a vertical cutting machine or the like is easy, and at the same time, the workability in hot press molding is good. A polyurethane foam is obtained.
The polymer fine particles in the polymer-dispersed polyol are not included in the polyol content.
 またポリオール混合物(X)の100質量%のうち、ポリオール(A)とポリオール(B)との合計の割合は、70質量%以上が好ましく、75質量%以上がより好ましく、90質量%以上が特に好ましい。上限値は99質量%である。ポリオール混合物(X)中のポリオール(A)とポリオール(B)との合計の割合を上記の範囲とすることで、バーチカル裁断機等で切断する際の加工性が容易であると同時に、熱プレス成形における作業性が良好な軟質ポリウレタンフォームが得られる。 Further, in 100% by mass of the polyol mixture (X), the total proportion of the polyol (A) and the polyol (B) is preferably 70% by mass or more, more preferably 75% by mass or more, and particularly preferably 90% by mass or more. preferable. The upper limit is 99% by mass. By making the total ratio of the polyol (A) and the polyol (B) in the polyol mixture (X) within the above range, the workability when cutting with a vertical cutting machine or the like is easy, and at the same time, hot press A flexible polyurethane foam having good workability in molding can be obtained.
 またモノオール(D)の割合が、ポリオール(A)とポリオール(B)との合計の100質量部に対して、1~30質量部であることが好ましく、1~25質量部がより好ましく、1~10質量部であることが特に好ましい。モノオール(D)の割合を上記の範囲とすることで、低反発性に優れ、耐久性に優れ、かつ、通気性の良好な軟質ポリウレタンフォームが得られる。 The proportion of monool (D) is preferably 1 to 30 parts by weight, more preferably 1 to 25 parts by weight, based on 100 parts by weight of the total of polyol (A) and polyol (B). It is particularly preferably 1 to 10 parts by mass. By setting the proportion of monool (D) within the above range, a flexible polyurethane foam having excellent low resilience, excellent durability, and good breathability can be obtained.
 また、ポリオール混合物(X)がポリオール(C)を含有する場合、ポリオール混合物(X)の100質量%のうち、ポリオール(C)の割合は0.1~10質量%が好ましく、1~8質量%がより好ましい。ポリオール(C)を使用しかつポリオール(C)の割合を上記の範囲とすることで、得られる軟質ポリウレタンフォームを熱プレス成形した成形品の触感が良好となる。 In the case where the polyol mixture (X) contains the polyol (C), the proportion of the polyol (C) is preferably 0.1 to 10% by mass, and preferably 1 to 8% by mass, out of 100% by mass of the polyol mixture (X). % Is more preferable. By using the polyol (C) and setting the ratio of the polyol (C) within the above range, the feel of a molded product obtained by hot press molding the resulting flexible polyurethane foam is improved.
 また、ポリオール混合物(X)はポリオール(E)を含有する必要性は少ないが、ポリオール(E)を使用する場合、ポリオール混合物(X)の100質量%のうちポリオール(E)の割合は、10質量%以下が好ましく、5質量%以下がより好ましく、2質量%以下が特に好ましい。ポリオール(E)を含有させることによる効果が充分に得られる点で、0.1質量%以上を含有させることが好ましい。 In addition, the polyol mixture (X) is less required to contain the polyol (E), but when the polyol (E) is used, the proportion of the polyol (E) in 100% by mass of the polyol mixture (X) is 10 % By mass or less is preferable, 5% by mass or less is more preferable, and 2% by mass or less is particularly preferable. It is preferable to contain 0.1% by mass or more from the viewpoint that the effect of containing the polyol (E) is sufficiently obtained.
 本発明において、ポリオール混合物(X)(100質量%)の好適な組成の具体的な例としては、ポリオール(A)を10~30質量%、ポリオール(B)を50~80質量%、ポリオール(C)を0~8質量%、モノオール(D)を1~24質量%、ポリオール(E)を0~5質量%が挙げられる。 In the present invention, specific examples of a suitable composition of the polyol mixture (X) (100% by mass) include 10 to 30% by mass of the polyol (A), 50 to 80% by mass of the polyol (B), C) is 0 to 8% by mass, monool (D) is 1 to 24% by mass, and polyol (E) is 0 to 5% by mass.
 <ポリイソシアネート化合物>
 本発明において用いられるポリイソシアネート化合物としては、特に制限はなく、イソシアネート基を2以上有する芳香族系、脂環族系、脂肪族系等のポリイソシアネート;前記ポリイソシアネートの2種類以上の混合物;これらを変性して得られる変性ポリイソシアネート等が挙げられる。
<Polyisocyanate compound>
The polyisocyanate compound used in the present invention is not particularly limited, and is a polyisocyanate having two or more isocyanate groups, such as aromatic, alicyclic, and aliphatic groups; a mixture of two or more of the above polyisocyanates; And modified polyisocyanates obtained by modifying.
 ポリイソシアネート化合物の具体例としては、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、ポリメチレンポリフェニルポリイソシアネート(通称:クルードMDI)、キシリレンジイソシアネート(XDI)、イソホロンジイソシアネート(IPDI)、ヘキサメチレンジイソシアネート(HMDI)等が挙げられる。また変性ポリイソシアネートの具体例としては、上記各ポリイソシアネートのプレポリマー型変性体、ヌレート変性体、ウレア変性体、カルボジイミド変性体等が挙げられる。これらのうちでも、TDI、MDI、クルードMDI、またはこれらの変性体が好ましい。さらにこれらのうち、TDI、クルードMDIまたはその変性体(特にプレポリマー型変性体が好ましい。)を用いると発泡安定性が向上し、耐久性が向上する等の点で好ましい。特にTDI、クルードMDIまたはその変性体のうち、反応性が比較的低いポリイソシアネート化合物を用いると通気性が向上し好ましい。具体的には2,6-TDIの割合が20質量%、2,4-TDIの割合が80質量%のTDI混合物が好ましい。2,6-TDIの割合が20質量%以上でも必要に応じて使用することができる。 Specific examples of the polyisocyanate compound include tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), polymethylene polyphenyl polyisocyanate (common name: crude MDI), xylylene diisocyanate (XDI), isophorone diisocyanate (IPDI), hexamethylene. And diisocyanate (HMDI). Specific examples of the modified polyisocyanate include prepolymer-modified products, nurate-modified products, urea-modified products, and carbodiimide-modified products of the above polyisocyanates. Among these, TDI, MDI, crude MDI, or modified products thereof are preferable. Further, among these, use of TDI, crude MDI, or a modified product thereof (especially a prepolymer modified product) is preferable in terms of improving foaming stability and improving durability. In particular, it is preferable to use a polyisocyanate compound having a relatively low reactivity among TDI, crude MDI, or a modified product thereof because air permeability is improved. Specifically, a TDI mixture in which the proportion of 2,6-TDI is 20% by mass and the proportion of 2,4-TDI is 80% by mass is preferable. Even if the ratio of 2,6-TDI is 20% by mass or more, it can be used as required.
 ポリイソシアネート化合物の使用量は、発泡原液組成物中の全活性水素含有化合物とポリイソシアネート化合物の割合がイソシアネート指数で90以上となる量である。該イソシアネート指数を90以上とすることにより、軟質ポリウレタンフォームの充分な硬度が得られ、切断時の加工作業性が良好となる。該イソシアネート指数は92以上が好ましく、95以上がより好ましい。該イソシアネート指数の上限は軟質ポリウレタンフォームの熱プレス成形の作業性の点からは105未満が好ましく、103以下がより好ましい。 The amount of the polyisocyanate compound used is such that the ratio of the total active hydrogen-containing compound and the polyisocyanate compound in the foaming stock solution composition is 90 or more in terms of isocyanate index. By setting the isocyanate index to 90 or more, sufficient hardness of the flexible polyurethane foam can be obtained, and processing workability at the time of cutting becomes good. The isocyanate index is preferably 92 or more, more preferably 95 or more. The upper limit of the isocyanate index is preferably less than 105, more preferably 103 or less, from the viewpoint of workability of hot press molding of a flexible polyurethane foam.
 <ウレタン化触媒>
 ポリオール混合物(X)とポリイソシアネート化合物とを反応させるウレタン化触媒としては、ウレタン化反応を促進させる触媒として公知のものを適宜用いることができる。
 例えば、アミン化合物、有機金属化合物、カルボン酸金属塩等が挙げられる。1種を単独で用いてもよく、2種以上を組み合わせてもよい。
 アミン化合物としては、トリエチレンジアミン、ビス(2-ジメチルアミノエチル)エーテル、N,N,N’,N’-テトラメチルヘキサメチレンジアミン等の3級アミン類が挙げられる。
 有機金属化合物としては、ジブチルスズオキシド、ジブチルスズジラウレート、ジブチルスズ、およびジブチルスズジアセテート等のジブチルスズ類、ジオクチルスズオキシド、ジオクチルスズジラウレート、およびジオクチルスズジアセテート等のジオクチルスズ類、スタナスオクトエート、ネオデカン酸スズ、オクチル酸ビスマス等が挙げられる。
 カルボン酸金属塩としては、酢酸カリウム、2-エチルヘキサン酸カリウム等が挙げられる。
<Urethane catalyst>
As the urethanization catalyst for reacting the polyol mixture (X) with the polyisocyanate compound, a known catalyst can be appropriately used as a catalyst for promoting the urethanization reaction.
For example, an amine compound, an organometallic compound, a carboxylic acid metal salt, etc. are mentioned. 1 type may be used independently and 2 or more types may be combined.
Examples of the amine compound include tertiary amines such as triethylenediamine, bis (2-dimethylaminoethyl) ether, N, N, N ′, N′-tetramethylhexamethylenediamine.
Examples of organometallic compounds include dibutyltin oxides such as dibutyltin oxide, dibutyltin dilaurate, dibutyltin, and dibutyltin diacetate, dioctyltins such as dioctyltin oxide, dioctyltin dilaurate, and dioctyltin diacetate, stannous octoate, tin neodecanoate And bismuth octylate.
Examples of the carboxylic acid metal salt include potassium acetate and potassium 2-ethylhexanoate.
 ウレタン化触媒の使用量は、ポリオール混合物(X)の100質量部に対して、ウレタン化触媒の合計で0.001~5.0質量部が好ましく、0.01~3.0質量部がより好ましい。5.0質量部以下であると発泡反応の制御が容易である。3.0質量部以下であると、軟質ポリウレタンフォームを製造する際、ポリオール混合物とポリイソシアネート化合物とが反応した際の反応液の立ち上がり時間が十分確保できるため、歩留まりが向上する。また、軟質ポリウレタンフォームのキュアーが十分確保できるため、バーチカル裁断機等で切断する際の加工性が優れ、好ましい。切断した軟質ポリウレタンフォームを熱プレス成形する際にも、プレスの加圧盤にフォームが付着することがないので作業性や加工工程時間の短縮になり、好ましい。0.001質量部以上であるとフォームのキュアーが良好であるので好ましい。 The total amount of the urethanization catalyst is preferably 0.001 to 5.0 parts by mass, more preferably 0.01 to 3.0 parts by mass, with respect to 100 parts by mass of the polyol mixture (X). preferable. When the amount is 5.0 parts by mass or less, the foaming reaction can be easily controlled. When the amount is 3.0 parts by mass or less, when producing a flexible polyurethane foam, the rise time of the reaction liquid when the polyol mixture and the polyisocyanate compound react with each other can be sufficiently secured, so that the yield is improved. Moreover, since sufficient cure of a flexible polyurethane foam can be ensured, the processability at the time of cut | disconnecting with a vertical cutting machine etc. is excellent, and preferable. Also when hot-press-molding the cut flexible polyurethane foam, since the foam does not adhere to the press pressure plate, workability and processing time are shortened, which is preferable. The amount of 0.001 part by mass or more is preferable because the curing of the foam is good.
 特に、ウレタン化触媒が有機金属化合物を含むことが好ましく、有機金属化合物と3級アミン類を併用すると、発泡剤とポリイソシアネート化合物の相溶性がよくなり、発泡時に小さな均質な泡が生成するため、より好ましい。
 有機金属化合物としては、軟質ポリウレタンフォームの製造工程において、十分なクリームタイムを確保できる点でジオクチルスズ類が好ましい。すなわちウレタン化触媒がジオクチルスズ類を含むことが好ましい。
 ジオクチルスズ類を使用する場合の使用量は、ポリオール混合物(X)の100質量部に対して、0.01~3.0質量部が好ましく、0.03~2.0質量部がより好ましく、0.05~1.0質量部がさらに好ましく、0.07~0.5質量部が最も好ましい。3.0質量部以下であるとフォームの収縮が抑制され、0.01質量部以上であるとフォームのセトリング(settling)が抑制され、良好な外観のフォームが製造可能であるので好ましい。
In particular, the urethanization catalyst preferably contains an organometallic compound. When an organometallic compound and a tertiary amine are used in combination, the compatibility of the foaming agent and the polyisocyanate compound is improved, and small homogeneous bubbles are generated during foaming. More preferable.
As the organometallic compound, dioctyltins are preferred in that sufficient cream time can be secured in the production process of the flexible polyurethane foam. That is, the urethanization catalyst preferably contains dioctyltins.
The amount used when dioctyltins are used is preferably 0.01 to 3.0 parts by weight, more preferably 0.03 to 2.0 parts by weight, with respect to 100 parts by weight of the polyol mixture (X). 0.05 to 1.0 part by mass is more preferable, and 0.07 to 0.5 part by mass is most preferable. When the amount is 3.0 parts by mass or less, shrinkage of the foam is suppressed, and when the amount is 0.01 parts by mass or more, settling of the foam is suppressed, and a foam having a good appearance can be manufactured.
 3級アミン類としては、発泡挙動の制御が容易であり且つ経済的な点から、トリエチレンジアミンが好ましい。3級アミン類を用いる場合の使用量は、ポリオール混合物(X)の100質量部に対して、0.01~3.0質量部が好ましく、0.05~2.0質量部がより好ましく、0.1~1.0質量部がさらに好ましく、0.2~0.5質量部が最も好ましい。3.0質量部以下であると発泡反応の制御が容易であり、0.01質量部以上であると硬化性が良好であるため好ましい。 As the tertiary amines, triethylenediamine is preferred from the viewpoint of easy control of foaming behavior and economy. The amount of tertiary amines used is preferably 0.01 to 3.0 parts by weight, more preferably 0.05 to 2.0 parts by weight with respect to 100 parts by weight of the polyol mixture (X). The amount is more preferably 0.1 to 1.0 part by weight, and most preferably 0.2 to 0.5 part by weight. When the amount is 3.0 parts by mass or less, the foaming reaction can be easily controlled, and when the amount is 0.01 parts by mass or more, the curability is favorable.
 <整泡剤>
 整泡剤としては、シリコーン系整泡剤、フッ素系整泡剤等が挙げられる。これらのうち、シリコーン系整泡剤が好ましい。シリコーン系整泡剤のうち、ポリオキシアルキレン・ジメチルポリシロキサンコポリマーを主成分とするシリコーン系整泡剤が好ましい。整泡剤は、ポリオキシアルキレン・ジメチルポリシロキサンコポリマー単独であっても、これに他の併用成分を含んだ混合物であってもよい。他の併用成分としては、ポリアルキルメチルシロキサン、グリコール類、ポリオキシアルキレン化合物等が挙げられる。整泡剤としては、ポリオキシアルキレン・ジメチルポリシロキサンコポリマー、ポリアルキルメチルシロキサンおよびポリオキシアルキレン化合物を含む整泡剤混合物が、フォームの安定性に優れる点から特に好ましい。
<Foam stabilizer>
Examples of the foam stabilizer include silicone foam stabilizers and fluorine foam stabilizers. Of these, silicone-based foam stabilizers are preferred. Of the silicone foam stabilizers, silicone foam stabilizers based on polyoxyalkylene / dimethylpolysiloxane copolymers are preferred. The foam stabilizer may be a polyoxyalkylene / dimethylpolysiloxane copolymer alone or a mixture containing other combined components. Examples of other combined components include polyalkylmethylsiloxane, glycols, polyoxyalkylene compounds and the like. As the foam stabilizer, a foam stabilizer mixture containing a polyoxyalkylene / dimethylpolysiloxane copolymer, a polyalkylmethylsiloxane and a polyoxyalkylene compound is particularly preferred from the viewpoint of excellent foam stability.
 該整泡剤混合物としては、例えば、東レダウコーニング社製の商品名:SZ-1127、L-580、L-582、L-520、SZ-1919、L-5740S、L-5740M、SZ-1111、SZ-1127、SZ-1162、SZ-1105、SZ-1328、SZ-1325、SZ-1330、SZ-1306、SZ-1327、SZ-1336、SZ-1339、L-3601、SZ-1302、SH-192、SF-2909、SH-194、SH-190、SRX-280A、SRX-298、SF-2908、SF-2904、SRX-294A、SF-2965、SF-2962、SF-2961、SRX-274C、SF-2964、SF-2969、PRX-607、SZ-1711、SZ-1666、SZ-1627、SZ-1710、L-5420、L-5421、SZ-1669、SZ-1649、SZ-1654、SZ-1642、SZ-1720、SH-193;信越化学工業社製のF-114、F-121、F-122、F-348、F-341、F-502、F-506、F-607、F-606等;GE東芝シリコーン社製のY-10366、L-5309、TFA-4200、TFA-4202等;ゴールドシュミット社製のB-8110、B-8017、B-4113、B-8727LF,B-8715LF、B-8404、B-8462等が挙げられる。整泡剤は、2種類以上併用してもよく、また前記特定の整泡剤以外の整泡剤を併用してもよい。 Examples of the foam stabilizer mixture include trade names of Toray Dow Corning: SZ-1127, L-580, L-582, L-520, SZ-1919, L-5740S, L-5740M, SZ-1111. , SZ-1127, SZ-1162, SZ-1105, SZ-1328, SZ-1325, SZ-1330, SZ-1306, SZ-1327, SZ-1336, SZ-1339, L-3601, SZ-1302, SH -192, SF-2909, SH-194, SH-190, SRX-280A, SRX-298, SF-2908, SF-2904, SRX-294A, SF-2965, SF-2962, SF-2961, SRX-274C SF-2964, SF-2969, PRX-607, SZ-1711, SZ-1666, SZ- 627, SZ-1710, L-5420, L-5421, SZ-1669, SZ-1649, SZ-1654, SZ-1642, SZ-1720, SH-193; F-114, F- manufactured by Shin-Etsu Chemical Co., Ltd. 121, F-122, F-348, F-341, F-502, F-506, F-607, F-606, etc .; Y-10366, L-5309, TFA-4200, TFA manufactured by GE Toshiba Silicone -4202 etc .; Gold Schmidt B-8110, B-8017, B-4113, B-8727LF, B-8715LF, B-8404, B-8462 etc. Two or more types of foam stabilizers may be used in combination, or a foam stabilizer other than the specific foam stabilizer may be used in combination.
 整泡剤の使用量は、ポリオール混合物(X)の100質量部に対して、0.01~2質量部が好ましく、1~2質量部がより好ましい。0.01質量部以上であると発泡安定性に優れた軟質ポリウレタンフォームを製造することが可能となる。2質量部以下であると通気性が十分確保された軟質ポリウレタンフォームを得ることができる。 The amount of the foam stabilizer used is preferably 0.01 to 2 parts by mass and more preferably 1 to 2 parts by mass with respect to 100 parts by mass of the polyol mixture (X). When the content is 0.01 parts by mass or more, a flexible polyurethane foam excellent in foaming stability can be produced. When the amount is 2 parts by mass or less, a flexible polyurethane foam having sufficient air permeability can be obtained.
 <発泡剤>
 発泡剤としては、フッ素化炭化水素等の公知の発泡剤が使用でき、水および不活性ガスから選ばれた少なくとも1種が好ましい。不活性ガスとしては、具体的には、空気、窒素、炭酸ガス等が好ましく挙げられる。これらのうちでも、環境への配慮から水がより好ましく、発泡剤として水のみを用いることが最も好ましい。
 発泡剤の使用量は、水を使用する場合、ポリオール混合物(X)の100質量部に対して、10質量部以下が好ましく、0.1~4.0質量部がより好ましい。
 低密度の軟質ポリウレタンフォームを製造する場合、ポリオール混合物(X)の100質量部に対して、0.5~5.0質量部の水を使用するのが好ましい。
<Foaming agent>
As the foaming agent, known foaming agents such as fluorinated hydrocarbons can be used, and at least one selected from water and inert gas is preferable. Specific examples of the inert gas include air, nitrogen, carbon dioxide gas, and the like. Among these, water is more preferable in consideration of the environment, and it is most preferable to use only water as a foaming agent.
When water is used, the amount of the blowing agent is preferably 10 parts by mass or less, more preferably 0.1 to 4.0 parts by mass with respect to 100 parts by mass of the polyol mixture (X).
When producing a low-density flexible polyurethane foam, it is preferable to use 0.5 to 5.0 parts by mass of water with respect to 100 parts by mass of the polyol mixture (X).
 <その他の助剤>
 本発明において軟質ポリウレタンフォームを製造する際には、上述したウレタン化触媒、発泡剤、整泡剤以外に所望の添加物も使用できる。添加剤としては、炭酸カリウム、硫酸バリウム等の充填剤;乳化剤等の界面活性剤;酸化防止剤、紫外線吸収剤等の老化防止剤;難燃剤、可塑剤、着色剤、抗カビ剤、破泡剤、分散剤、変色防止剤等が挙げられる。
<Other auxiliaries>
When the flexible polyurethane foam is produced in the present invention, desired additives can be used in addition to the urethanization catalyst, the foaming agent and the foam stabilizer described above. Additives include fillers such as potassium carbonate and barium sulfate; surfactants such as emulsifiers; anti-aging agents such as antioxidants and ultraviolet absorbers; flame retardants, plasticizers, colorants, anti-fungal agents, and foam breaking Agents, dispersants, discoloration inhibitors and the like.
 <発泡方法>
 軟質ポリウレタンフォームの製造方法としては、密閉された金型内に発泡原液組成物を注入し発泡成形する方法(モールド法)でも、開放系で発泡原液組成物を発泡させる方法(スラブ法)でもよく、スラブ法が好ましい。具体的には、ワンショット法、セミプレポリマー法、プレポリマー法等の公知の方法により行うことができる。軟質ポリウレタンフォームの製造には、通常用いられる製造装置を用いることができる。
<Foaming method>
The method for producing the flexible polyurethane foam may be a method in which the foamed stock solution composition is injected into a closed mold and foam-molded (mold method), or a method in which the foamed stock solution composition is foamed in an open system (slab method). The slab method is preferred. Specifically, it can be performed by a known method such as a one-shot method, a semi-prepolymer method, or a prepolymer method. For production of the flexible polyurethane foam, a commonly used production apparatus can be used.
 <軟質ポリウレタンフォーム>
 本発明で得られる軟質ポリウレタンフォームは、ポリイソシアネート化合物の使用量をイソシアネート指数で90以上としたことにより、軟質ポリウレタンフォームの硬度が高くなり、熱プレス成形に先立って行われる切断時の加工作業性が良好となる。また、軟質ポリウレタンフォームが充分な硬さを有していながら、熱プレス成形法による成形を良好に行うことができる。その理由としては、ポリオール(A)は、平均水酸基数が2~3、水酸基価が5~90mgKOH/gという分子構造を有するため、熱可塑性の特性を発現させるのに優位であると推測される。すなわち、比較的低い温度で熱プレス成形をすることができる。
<Soft polyurethane foam>
In the flexible polyurethane foam obtained in the present invention, the polyisocyanate compound is used in an amount of 90 or more in terms of the isocyanate index, so that the hardness of the flexible polyurethane foam is increased, and the workability at the time of cutting performed prior to hot press molding is performed. Becomes better. In addition, while the flexible polyurethane foam has a sufficient hardness, molding by the hot press molding method can be performed satisfactorily. The reason is that the polyol (A) has a molecular structure with an average number of hydroxyl groups of 2 to 3 and a hydroxyl value of 5 to 90 mgKOH / g, and is therefore presumed to be superior in developing thermoplastic properties. . That is, hot press molding can be performed at a relatively low temperature.
 本明細書において、硬度の指標として、25%硬さ(ILD)、50%硬さ(ILD)、および65%硬さ(ILD)を用いる。これらの値は、大きい方が硬度が高い。
 熱プレス成形用軟質ポリウレタンフォームにおいて、25%硬さ(ILD)が40N/314cm以上であるとバーチカル裁断機等で切断する際の加工性が良好になり、50N/314cm以上がより好ましい。25%硬さ(ILD)の上限は、熱プレス成形の作業性の点からは95/314cm以下が好ましく、92/314cm以下がより好ましい。
 実用上、50%硬さ(ILD)は60N/314cm以上が好ましく、70N/314cm以上がより好ましい。
 65%硬さ(ILD)は80N/314cm以上が好ましく、90N/314cm以上がより好ましい。
In this specification, 25% hardness (ILD), 50% hardness (ILD), and 65% hardness (ILD) are used as an index of hardness. As these values are larger, the hardness is higher.
When the 25% hardness (ILD) is 40 N / 314 cm 2 or more in the flexible polyurethane foam for hot press molding, the workability when cutting with a vertical cutting machine or the like is improved, and 50 N / 314 cm 2 or more is more preferable. The upper limit of the 25% hardness (ILD) is preferably 95/314 cm 2 or less in view of workability of hot press molding, and more preferably 92/314 cm 2 or less.
Practically, the 50% hardness (ILD) is preferably 60 N / 314 cm 2 or more, and more preferably 70 N / 314 cm 2 or more.
The 65% hardness (ILD) is preferably 80 N / 314 cm 2 or more, and more preferably 90 N / 314 cm 2 or more.
 本明細書において、耐久性の指標として、圧縮率が50%での圧縮残留歪みおよび湿熱圧縮残留歪みを用いる。これらの値が小さい方が、耐久性が良好である。
 熱プレス成形用軟質ポリウレタンフォームにおいて、実用上、50%圧縮残留歪みは40%以下が好ましく、35%以下がより好ましく、30%以下がさらに好ましい。50%湿熱圧縮残留歪みは、40%以下が好ましく、35%以下がより好ましく、30%以下がさらに好ましい。
In this specification, as an index of durability, compression residual strain and wet heat compression residual strain at a compression rate of 50% are used. The smaller these values, the better the durability.
In practical use, the 50% compression residual strain is preferably 40% or less, more preferably 35% or less, and even more preferably 30% or less. The 50% wet heat compression residual strain is preferably 40% or less, more preferably 35% or less, and even more preferably 30% or less.
 本発明で得られる熱プレス成形用軟質ポリウレタンフォームのコア反発弾性率は、20%以下が好ましく、18%以下がより好ましく、15%以下がさらに好ましく、12%以下が最も好ましい。コア反発弾性率を20%以下とすることで、充分な低反発性が発揮される。通常下限は0%である。 The core rebound resilience of the flexible polyurethane foam for hot press molding obtained in the present invention is preferably 20% or less, more preferably 18% or less, further preferably 15% or less, and most preferably 12% or less. By setting the core rebound resilience to 20% or less, sufficient low resilience is exhibited. Usually, the lower limit is 0%.
 本発明で得られる熱プレス成形用軟質ポリウレタンフォーム(熱プレス成形前)のコア密度は、10~110kg/mが好ましく、10~80kg/mがより好ましく、20~50kg/mがさらに好ましい。コア密度が10kg/m以上であると、熱プレス成形の作業性が良好であり、110kg/m以下であると、熱プレス成形した成形品の触感に優れ、例えばシート状に熱プレス成形した成形品では絹織物のような滑らかさが得られる。 Core density of the thermal press-molding the flexible polyurethane foam obtained by the present invention (heat press before molding) is preferably 10 ~ 110kg / m 3, more preferably from 10 ~ 80kg / m 3, 20 ~ 50kg / m 3 and more preferable. When the core density is 10 kg / m 3 or more, the workability of hot press molding is good, and when it is 110 kg / m 3 or less, the feel of the hot press-molded product is excellent, for example, hot press molding into a sheet shape. The smoothness like silk fabric is obtained with the molded product.
 <熱プレス成形品の製造方法>
 本発明の熱プレス成形品の製造方法は、本発明の製造方法で熱プレス成形用軟質ポリウレタンフォームを製造する工程と、得られた熱プレス成形用軟質ポリウレタンフォームを切断する工程と、切断した熱プレス成形用軟質ポリウレタンフォームを熱プレス成形により成形する工程を有する。
 切断および熱プレス成形による成形は、公知の手法を適宜用いて行うことができる。熱プレス成形温度は、通常150~200℃である。本発明の熱プレス成形用軟質ポリウレタンフォームは、熱可塑性が高いので、すなわち結晶性が高いので、比較的低い温度、例えば150~170℃でも熱プレス成形することが可能である。低温で熱プレス成形ができると、軟質フォームに負荷がかからず、劣化が抑えられる点で好ましい。また熱プレス成形による成形時間は、通常5秒~1時間、より工業的である点で、好ましくは5秒~30分である。
 熱プレス成形法による成形が良好であるとは、例えば所望の厚みに熱プレス成形した成形品の厚みが、一定範囲内に保てることを言う。例えば熱プレスにより得られた成形物の厚みが、設定値との差が10%以内である場合、熱プレス成形が良好であるとされる。
<Method of manufacturing a hot press molded product>
The method for producing a hot press-molded article of the present invention includes a step of producing a flexible polyurethane foam for hot press molding by the production method of the present invention, a step of cutting the obtained flexible polyurethane foam for hot press molding, It has the process of shape | molding the flexible polyurethane foam for press molding by hot press molding.
The forming by cutting and hot press forming can be performed by appropriately using a known method. The hot press molding temperature is usually 150 to 200 ° C. Since the flexible polyurethane foam for hot press molding of the present invention has high thermoplasticity, that is, high crystallinity, it can be hot press molded even at a relatively low temperature, for example, 150 to 170 ° C. When hot press molding can be performed at a low temperature, the flexible foam is not loaded, and this is preferable in terms of suppressing deterioration. The molding time by hot press molding is usually 5 seconds to 1 hour, preferably 5 seconds to 30 minutes from the viewpoint of more industrial.
Good molding by the hot press molding method means that the thickness of a molded product that has been hot press molded to a desired thickness can be kept within a certain range. For example, when the thickness of the molded product obtained by hot pressing is within 10% of the set value, the hot press molding is considered good.
 <熱プレス成形品>
 本発明の熱プレス成形品の製造方法は、軟質ポリウレタンフォームを熱プレス成形法で成形して得られる各種の熱プレス成形品に適用できる。熱プレス成形品の形状は限定されないが、例えば、厚さ2~50mm程度のシート状が好ましい。
 熱プレス成形品の具体例としては、靴用中底(インソール)、ブラジャーや肩用パッドなどの衣料用品、紙おむつ、医療用品、生理用品、化粧用パフなどのサニタリー用品、床下の吸音材等が挙げられる。特に、硬度に優れる点で靴用中底(インソール)、触感が優れている点から、ブラジャーパッドや化粧品用パフなどが好ましい。
<Hot press molded product>
The method for producing a hot press molded product of the present invention can be applied to various hot press molded products obtained by molding a flexible polyurethane foam by a hot press molding method. The shape of the hot press molded product is not limited, but for example, a sheet shape having a thickness of about 2 to 50 mm is preferable.
Specific examples of heat-pressed products include clothing insoles such as insoles for shoes, bras and shoulder pads, disposable diapers, medical supplies, sanitary products, sanitary products such as cosmetic puffs, and sound absorbing materials under the floor. Can be mentioned. In particular, a bra pad or a puff for cosmetics is preferable from the viewpoint of excellent hardness and an insole for shoes (insole) and excellent touch feeling.
 以下に実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。
<原料>
 ・ポリオールA1:下記製造例1で得られるポリオキシプロピレンポリオール。
 ・ポリオールA2:下記製造例2で得られるポリオキシプロピレンポリオール。
 ・ポリオールA3:下記製造例3で得られるポリオキシプロピレンポリオール。
 ・ポリオールA4:下記製造例4で得られるポリマー分散ポリオール。
Hereinafter, the present invention will be described in more detail using examples, but the present invention is not limited to these examples.
<Raw material>
Polyol A1: Polyoxypropylene polyol obtained in the following Production Example 1.
Polyol A2: polyoxypropylene polyol obtained in Production Example 2 below.
Polyol A3: polyoxypropylene polyol obtained in Production Example 3 below.
Polyol A4: a polymer-dispersed polyol obtained in Production Example 4 below.
 ・ポリオールB1:水酸化カリウム触媒を用いてジプロピレングリコールを開始剤として、プロピレンオキシド(以下「PO」とも記す。)を開環付加重合させて得られる、平均水酸基数が2、水酸基価が160mgKOH/gのポリオキシプロピレンポリオール。
 ・ポリオールB2:水酸化カリウム触媒を用いてグリセリンを開始剤として、POを開環付加重合させて得られる、平均水酸基数が3、水酸基価が168mgKOH/gのポリオキシプロピレンポリオール。
Polyol B1: Obtained by ring-opening addition polymerization of propylene oxide (hereinafter also referred to as “PO”) using potassium hydroxide catalyst and dipropylene glycol as an initiator, the average number of hydroxyl groups is 2, and the hydroxyl value is 160 mgKOH. / G polyoxypropylene polyol.
Polyol B2: Polyoxypropylene polyol having an average number of hydroxyl groups of 3 and a hydroxyl value of 168 mgKOH / g, obtained by ring-opening addition polymerization of PO using glycerol as an initiator using a potassium hydroxide catalyst.
 ・ポリオールC1:水酸化カリウム触媒を用いてグリセリンを開始剤として、POおよびエチレンオキシド(以下「EO」とも記す。)の混合物をランダム重合にて開環付加重合させて得られる、平均水酸基数が3、水酸基価が48mgKOH/g、オキシエチレン基含有量が80質量%であるポリオキシプロピレンオキシエチレンポリオール。
 ・モノオールD1:n-ブチルアルコールを開始剤として、亜鉛ヘキサシアノコバルテート-tert-ブチルアルコール錯体触媒を用いてPOを開環付加重合させて得られる、平均水酸基数が1、水酸基価が16.7mgKOH/gのポリオキシプロピレンモノオール。
Polyol C1: An average number of hydroxyl groups of 3 obtained by ring-opening addition polymerization of a mixture of PO and ethylene oxide (hereinafter also referred to as “EO”) using potassium hydroxide catalyst and glycerin as an initiator by random polymerization. Polyoxypropylene oxyethylene polyol having a hydroxyl value of 48 mg KOH / g and an oxyethylene group content of 80% by mass.
Monool D1: obtained by ring-opening addition polymerization of PO using zinc hexacyanocobaltate-tert-butyl alcohol complex catalyst using n-butyl alcohol as an initiator, and having an average hydroxyl number of 1 and a hydroxyl value of 16. 7 mg KOH / g polyoxypropylene monool.
 なお、ポリオールA1~A4、ポリオールB1~B2、ポリオールC1、モノオールD1には酸化防止剤として、オクタデシル-3-[3-(3、5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート](BASFジャパン社製、商品名:IRGANOX 1076)を各ポリオールまたはモノオールに対して、1,500ppm添加した。 Polyols A1 to A4, polyols B1 to B2, polyol C1 and monool D1 have octadecyl-3- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] as an antioxidant. 1,500 ppm was added to each polyol or monool (trade name: IRGANOX 1076, manufactured by BASF Japan).
 ・発泡剤:水。
 ・整泡剤a:シリコーン系整泡剤(東レダウコーニング社製、商品名:SRX-298)。
 ・整泡剤b:シリコーン系整泡剤(東レダウコーニング社製、商品名:SZ-1327)。
 ・ウレタン化触媒a:トリエチレンジアミンのジプロピレングリコール溶液(東ソー社製、商品名:TEDA-L33)。
 ・ウレタン化触媒b:ジオクチルスズジラウレート(日東化成社製、商品名:ネオスタンU-810)。
 ・ポリイソシアネート化合物a:TDI-80(2,4-TDI/2,6-TDI=80/20質量%の混合物)、イソシアネート基含有量48.3質量%(日本ポリウレタン工業社製、商品名:コロネートT-80)。
-Foaming agent: water.
-Foam stabilizer a: Silicone foam stabilizer (manufactured by Toray Dow Corning, trade name: SRX-298).
-Foam stabilizer b: Silicone foam stabilizer (manufactured by Toray Dow Corning, trade name: SZ-1327).
Urethane catalyst a: Diethylene glycol solution of triethylenediamine (manufactured by Tosoh Corporation, trade name: TEDA-L33).
Urethane catalyst b: Dioctyltin dilaurate (manufactured by Nitto Kasei Co., Ltd., trade name: Neostan U-810).
Polyisocyanate compound a: TDI-80 (2,4-TDI / 2,6-TDI = 80/20 mass% mixture), isocyanate group content 48.3 mass% (manufactured by Nippon Polyurethane Industry Co., Ltd., trade name: Coronate T-80).
[製造例1:ポリオール(A1)の製造]
 水酸化カリウム触媒の存在下、ジプロピレングリコールを開始剤として、POを分子量が1,000になるまで開環付加重合させた後、珪酸マグネシウムで精製し、開始剤(a1)を製造した。ついで、DMC触媒である亜鉛ヘキサシアノコバルテート-tert-ブチルアルコール錯体触媒の存在下、前記開始剤(a1)にPOを開環付加重合させて、平均水酸基数2、水酸基価が11mgKOH/gのポリオキシプロピレンポリオール(A1)を得た。総不飽和度は、0.007meq/gであった。
[Production Example 1: Production of polyol (A1)]
In the presence of a potassium hydroxide catalyst, PO was subjected to ring-opening addition polymerization using dipropylene glycol as an initiator until the molecular weight reached 1,000, and then purified with magnesium silicate to produce an initiator (a1). Subsequently, in the presence of a zinc hexacyanocobaltate-tert-butyl alcohol complex catalyst, which is a DMC catalyst, PO is subjected to ring-opening addition polymerization to the initiator (a1) to obtain a polyhydroxy having an average hydroxyl number of 2 and a hydroxyl value of 11 mgKOH / g. Oxypropylene polyol (A1) was obtained. The total degree of unsaturation was 0.007 meq / g.
[製造例2:ポリオール(A2)の製造]
 ポリオール(A1)と同様な方法で製造した平均官能基数2、水酸基価が7.5mgKOH/gのポリオキシプロピレンポリオール(A2)を得た。総不飽和度は、0.008meq/gであった。
[Production Example 2: Production of polyol (A2)]
A polyoxypropylene polyol (A2) having an average number of functional groups of 2 and a hydroxyl value of 7.5 mgKOH / g produced by the same method as that for the polyol (A1) was obtained. The total degree of unsaturation was 0.008 meq / g.
[製造例3:ポリオール(A3)の製造]
 ポリオール(A1)と同様な方法で製造した平均官能基数2、水酸基価が14.0mgKOH/gのポリオキシプロピレンポリオール(A3)を得た。総不飽和度は、0.006meq/gであった。
[Production Example 3: Production of polyol (A3)]
A polyoxypropylene polyol (A3) having an average number of functional groups of 2 and a hydroxyl value of 14.0 mgKOH / g produced in the same manner as in the polyol (A1) was obtained. The total degree of unsaturation was 0.006 meq / g.
[製造例4:ポリオール(A4)の製造]
 ポリオール(A4)のベースとなるポリオールを、次のように製造した。グリセリンを開始剤として、DMC触媒である亜鉛ヘキサシアノコバルテート-tert-ブチルアルコール錯体触媒の存在下、POとEOを、PO:EOが93:7(質量比)の割合で、ランダム重合にて開環付加重合し、平均水酸基数が3、水酸基価が56.0mgKOH/g、総不飽和度が0.007meq/gのポリオキシプロピレン・ポリオキシエチレンポリオールを得た。このポリオール中で、エチレン性不飽和二重結合を持つモノマーとして、スチレンとアクリロニトリルとを70:30(質量比)で共重合することによりポリマー分散ポリオールを得た。得られたポリマー分散ポリオール全体における水酸基価は32.0mgKOH/g、ポリマー微粒子の含有量は43質量%であった。
[Production Example 4: Production of polyol (A4)]
A polyol serving as a base of the polyol (A4) was produced as follows. In the presence of zinc hexacyanocobaltate-tert-butyl alcohol complex catalyst, which is a DMC catalyst, using glycerol as an initiator, PO and EO are opened by random polymerization at a ratio of PO: EO of 93: 7 (mass ratio). Cycloaddition polymerization was performed to obtain a polyoxypropylene / polyoxyethylene polyol having an average number of hydroxyl groups of 3, a hydroxyl value of 56.0 mgKOH / g, and a total unsaturation of 0.007 meq / g. In this polyol, as a monomer having an ethylenically unsaturated double bond, styrene and acrylonitrile were copolymerized at 70:30 (mass ratio) to obtain a polymer-dispersed polyol. The overall polymer-dispersed polyol obtained had a hydroxyl value of 32.0 mgKOH / g and a content of polymer fine particles of 43% by mass.
 [例1~20、22、24]
 表1~3に示す配合で軟質ポリウレタンフォームを製造し、物性を評価した。評価結果を表1~3に示す。例7、14、19、22、24は比較例である。
 すなわち、表1~3に示した原料のうち、ポリイソシアネート化合物以外の全原料を混合し、液温23℃±1℃のポリオールシステム液を調製した。またポリイソシアネート化合物を液温23℃±1℃に調製した。
 ポリオールシステム液にポリイソシアネート化合物を所定量加え、ミキサー(毎分3,000回転)で5秒間混合して発泡原液組成物とした。これを混合直後に、上部が開口している木箱に注入し、室温(23℃)で発泡させて、軟質ポリウレタンフォーム(スラブフォーム)を得た。木箱は、縦が600mm、横が600mm、高さが400mmの大きさで、内面にビニールシートが敷きつめられたものを使用した。
 得られた軟質ポリウレタンフォームを木箱から取り出し、室温(23℃)、湿度50%の室内に24時間放置した後、下記の方法で評価を行った。
[Examples 1 to 20, 22, 24]
Flexible polyurethane foams having the formulations shown in Tables 1 to 3 were produced and their physical properties were evaluated. The evaluation results are shown in Tables 1 to 3. Examples 7, 14, 19, 22, and 24 are comparative examples.
That is, among the raw materials shown in Tables 1 to 3, all raw materials other than the polyisocyanate compound were mixed to prepare a polyol system liquid having a liquid temperature of 23 ° C. ± 1 ° C. A polyisocyanate compound was prepared at a liquid temperature of 23 ° C. ± 1 ° C.
A predetermined amount of a polyisocyanate compound was added to the polyol system liquid, and mixed for 5 seconds with a mixer (3,000 revolutions per minute) to obtain a foaming stock solution composition. Immediately after mixing, this was poured into a wooden box having an open top and foamed at room temperature (23 ° C.) to obtain a flexible polyurethane foam (slab foam). The wooden box used had a size of 600 mm in length, 600 mm in width, and 400 mm in height, with a vinyl sheet on the inner surface.
The obtained flexible polyurethane foam was taken out of the wooden box, left in a room at room temperature (23 ° C.) and a humidity of 50% for 24 hours, and then evaluated by the following method.
<評価方法>
[コア密度、コア反発弾性率]
 コア密度、コア反発弾性率は、JIS K6400(1997年版)に準拠した方法で測定した。フォームの中央部から表皮部を除いて縦横が各250mm、高さが50mmの大きさに切り出したものを測定に用いた。
<Evaluation method>
[Core density, core rebound resilience]
The core density and core rebound resilience were measured by a method based on JIS K6400 (1997 edition). Except for the skin part from the center part of the foam, what was cut into a size of 250 mm in length and width and 50 mm in height was used for the measurement.
[その他の物性]
 25%硬さ(ILD)、50%硬さ(ILD)、65%硬さ(ILD)、通気性、引張強度、伸び、引裂強度、ヒステリシスロス率、50%圧縮残留歪みおよび50%湿熱圧縮残留歪みは、JIS K6400(1997年版)に準拠した方法で測定した。
 通気性はJIS K6400(1997年版)のB法に準拠した方法で測定した。
[Other physical properties]
25% hardness (ILD), 50% hardness (ILD), 65% hardness (ILD), breathability, tensile strength, elongation, tear strength, hysteresis loss rate, 50% compression residual strain and 50% wet heat compression residual The strain was measured by a method based on JIS K6400 (1997 edition).
The air permeability was measured by a method based on method B of JIS K6400 (1997 edition).
[熱プレス試験]
 例1~20、22、24で得られた軟質ポリウレタンフォームを、中央部から表皮部を除いて縦が50mm、横が125mm、厚みが25mmの大きさに切断してサンプルを作成した。フォームの切断には、バーチカル裁断機(桜機械工業社製、装置名:手動式SK2-2A型)、使用刃物はバンドナイフ(幅が16mm、厚みが0.5mm、長さが5,130mm)を使用した。バーチカル裁断機の回転数は、インバーターにより調整した。加工作業性として、常温(23℃)で切断した時の加工作業性を下記の基準で評価した。
 なお、例7、14、19、24で得られた軟質フォームは常温では切断不可能であった。また例22で得られた軟質フォームも常温では1分間に500回転でどうにか切断できたものの、均一に切断することができなかった。各種物性を測定するために、例7、14、19、22、24で得られた軟質フォームを5℃の低温恒温器(エスペック社製、装置名:プラチナスKシリーズPL-3KT)内に1時間放置し、取り出してすぐに切断した。
 次いで、切り出したサンプルを、熱プレス成形機(岩城工業社製、装置名:油圧成型機)を用いて、縦が50mm、横が125mm、厚みが5mmのシート状を目標形状として熱プレス成形した。熱プレス条件は、温度160℃、圧力20MPa、120秒間とした。
 得られた熱プレス成形品を、室温(23℃)、湿度50%の室内に1時間放置した後、厚みを測定し、最も厚い部位における厚みの値を、プレス後の最大厚みdとして表に示す。
 熱プレス成形性を下記の基準で評価した。
[Hot press test]
Samples were prepared by cutting the flexible polyurethane foams obtained in Examples 1 to 20, 22, and 24 into a size of 50 mm in length, 125 mm in width, and 25 mm in thickness, excluding the skin portion from the center. For cutting the foam, a vertical cutting machine (manufactured by Sakura Kikai Kogyo Co., Ltd., device name: manual type SK2-2A type), a cutting knife used is a band knife (width 16 mm, thickness 0.5 mm, length 5,130 mm) It was used. The rotational speed of the vertical cutter was adjusted by an inverter. As the workability, the workability when cut at normal temperature (23 ° C.) was evaluated according to the following criteria.
Note that the flexible foams obtained in Examples 7, 14, 19, and 24 were uncut at room temperature. In addition, the flexible foam obtained in Example 22 could be cut at 500 revolutions per minute at room temperature, but could not be cut uniformly. In order to measure various physical properties, the flexible foams obtained in Examples 7, 14, 19, 22, and 24 were placed in a low-temperature incubator at 5 ° C. (manufactured by Espec Corp., apparatus name: Platinums K series PL-3KT) for 1 hour. It was left to stand and removed immediately after removal.
Next, the cut sample was subjected to hot press molding using a hot press molding machine (manufactured by Iwaki Kogyo Co., Ltd., apparatus name: hydraulic molding machine) as a target shape with a sheet shape having a length of 50 mm, a width of 125 mm, and a thickness of 5 mm. . The hot press conditions were a temperature of 160 ° C., a pressure of 20 MPa, and 120 seconds.
The obtained hot press-molded product was left in a room temperature (23 ° C.) and a humidity of 50% for 1 hour, and then the thickness was measured. The value of the thickness at the thickest part is shown in the table as the maximum thickness d after pressing. Show.
The hot press formability was evaluated according to the following criteria.
(加工作業性)
 ◎(優良):バーチカル裁断機の回転数が1分間に1,500回転で切断が可能である。
 ○(良):バーチカル裁断機の回転数が1分間に1,500回転では切断できないが、1,000回転で切断が可能である。
 △(可):バーチカル裁断機の回転数が1分間に1,000回転では切断できないが、500回転で切断が可能である。
 ×(不可):バーチカル裁断機では、軟質ポリウレタンフォームの粘性が高いため切断が不可能である。
 なお、バーチカル裁断機の回転数が多いほど、速く軟質フォームを切断できるので、作業性が良好である。
(熱プレス成形性)
 ○(良):熱プレス後の最大厚みdが、4.5mm以上5.5mm未満。
 △(可):熱プレス後の最大厚みdが、4.0mm以上4.5mm未満、または5.5mm以上6.0mm未満。
 ×(不可):熱プレス後の最大厚みdが、4.0mm未満、または6.0mm以上。
 なお、熱プレス後の最大厚みが大きいほど、熱プレス成形性が悪い。
(Processing workability)
(Excellent): Cutting is possible at a rotational speed of a vertical cutter of 1,500 revolutions per minute.
○ (good): The vertical cutter cannot be cut at 1,500 revolutions per minute, but can be cut at 1,000 revolutions.
Δ (possible): Although the rotational speed of the vertical cutting machine cannot be cut at 1,000 rotations per minute, it can be cut at 500 rotations.
X (impossible): In a vertical cutting machine, cutting is impossible due to the high viscosity of the flexible polyurethane foam.
In addition, since the flexible foam can be cut faster as the rotational speed of the vertical cutting machine is larger, the workability is better.
(Hot press formability)
○ (good): The maximum thickness d after hot pressing is 4.5 mm or more and less than 5.5 mm.
Δ (possible): The maximum thickness d after hot pressing is 4.0 mm or more and less than 4.5 mm, or 5.5 mm or more and less than 6.0 mm.
X (impossible): The maximum thickness d after hot pressing is less than 4.0 mm, or 6.0 mm or more.
In addition, hot press moldability is so bad that the maximum thickness after hot press is large.
[例21、23]
 例20、22でそれぞれ得られた軟質フォームについて、熱プレス条件を変えて熱プレス試験を行った。例23は例22で得られた軟質フォームを用いた比較例である。すなわち、熱プレス条件を、温度200℃、圧力20MPa、120秒間としたほかは、例20、22とそれぞれ同様に切断、熱プレス成形し、評価した。評価結果を表3に示す。
[Examples 21, 23]
About the flexible foam obtained in each of Examples 20 and 22, a hot press test was performed by changing the hot press conditions. Example 23 is a comparative example using the flexible foam obtained in Example 22. That is, cutting, hot press molding, and evaluation were performed in the same manner as in Examples 20 and 22, except that the hot press conditions were a temperature of 200 ° C., a pressure of 20 MPa, and 120 seconds. The evaluation results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1~3の結果に示されるように、本発明にかかる例1~6、例8~13、および例15~18、20、21で得られた軟質ポリウレタンフォームはいずれも、25%硬さ(ILD)が40N/314cm以上で加工作業性が良好であり、熱プレス成形も可能であった。また、低密度でありながら、通気性、機械特性(引張強度、伸び、引裂強度、ヒステリシスロス率)、および耐久性も良好であった。
 特に例1、2、4~6、8~9、11~13、17、20~21は25%硬さ(ILD)が50N/314cm以上であり、加工作業性に優れていた。
 例20は、25%硬さ(ILD)が50N/314cm以上で加工作業性が良好である。熱プレス成形も可能である。例20では160℃にて熱プレス成形したのに対し、例21は200℃で熱プレス成形したことにより、熱プレス後の最大厚みdは5mmに近づき、熱プレス成形性が向上した。例20および例21と例2を比較すると、違いはポリオール混合物(X)中のポリオール(A)の平均水酸基価である。例2は例20および例21よりもポリオール(A)の平均水酸基価が小さい。すなわち例2は分子量が大きいポリオール(A1)を用いたことで、イソシアネート指数が100でも、低温(160℃)での熱プレス成形性が良好であった。低温での熱プレス成形が可能であると、軟質フォームに負荷がかからない点でより好ましい。
As shown in the results of Tables 1 to 3, each of the flexible polyurethane foams obtained in Examples 1 to 6, Examples 8 to 13, and Examples 15 to 18, 20, and 21 according to the present invention has a 25% hardness. (ILD) was 40 N / 314 cm 2 or more, the workability was good, and hot press molding was also possible. Moreover, although it was low density, air permeability, mechanical characteristics (tensile strength, elongation, tear strength, hysteresis loss rate), and durability were also good.
In particular, Examples 1, 2, 4 to 6, 8 to 9, 11 to 13, 17, and 20 to 21 had a 25% hardness (ILD) of 50 N / 314 cm 2 or more and excellent workability.
In Example 20, the workability is good when the 25% hardness (ILD) is 50 N / 314 cm 2 or more. Hot press molding is also possible. In Example 20, hot press molding was performed at 160 ° C., but in Example 21, hot press molding was performed at 200 ° C., so that the maximum thickness d after hot pressing approached 5 mm, and the hot press moldability was improved. When Example 20 and Example 21 are compared with Example 2, the difference is the average hydroxyl value of the polyol (A) in the polyol mixture (X). In Example 2, the average hydroxyl value of the polyol (A) is smaller than those in Examples 20 and 21. That is, in Example 2, the polyol (A1) having a large molecular weight was used, and the hot press moldability at a low temperature (160 ° C.) was good even with an isocyanate index of 100. It is more preferable that hot press molding at a low temperature is possible because a load is not applied to the flexible foam.
 一方、比較例である例7、14、19は、イソシアネート指数が90未満であるため、25%硬さ(ILD)が低く、加工作業性が劣っていた。
 例22~24はポリオール混合物(X)中にモノオール(D)を含まない例である。例22では、熱プレス成形を160℃で行ったが、硬くて熱プレス成形性が悪かった。例23では熱プレス成形を200℃で行ったが、やはり熱プレス成形性が悪かった。例24は、イソシアネート指数が90未満であり、ポリオール混合物(X)中にモノオール(D)を含まないと、加工作業性も熱プレス成形性も不良であることが確認された。
On the other hand, Examples 7, 14, and 19, which are comparative examples, had an isocyanate index of less than 90, and therefore had a low 25% hardness (ILD) and poor workability.
Examples 22 to 24 are examples in which the polyol mixture (X) does not contain the monool (D). In Example 22, hot press molding was performed at 160 ° C., but it was hard and had poor hot press moldability. In Example 23, hot press molding was performed at 200 ° C., but the hot press moldability was also poor. In Example 24, the isocyanate index was less than 90, and when the polyol mixture (X) did not contain the monool (D), it was confirmed that the workability and the hot press moldability were poor.
 本発明によれば、充分な硬さを有し、切断時の加工作業性が良好であり、かつ熱プレスによる成形を良好に行うことができる軟質ポリウレタンフォームを得ることができ、各種の熱プレス成形品用として有用である。
 なお、2010年4月2日に出願された日本特許出願2010-086124号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の開示として取り入れるものである。
According to the present invention, it is possible to obtain a flexible polyurethane foam having sufficient hardness, good workability at the time of cutting, and capable of being well molded by hot press, and various hot presses. Useful for molded products.
The entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2010-086124 filed on April 2, 2010 are incorporated herein by reference. .

Claims (14)

  1.  ポリオール混合物(X)とポリイソシアネート化合物とを、ウレタン化触媒、発泡剤および整泡剤の存在下で反応させて、熱プレス成形用軟質ポリウレタンフォームを製造する方法において、前記ポリオール混合物(X)が、下記ポリオール(A)、下記ポリオール(B)および下記モノオール(D)を含み、前記ポリイソシアネート化合物の使用量がイソシアネート指数で90以上であることを特徴とする熱プレス成形用軟質ポリウレタンフォームの製造方法。
     ・ポリオール(A):平均水酸基数が2~3、水酸基価が5~90mgKOH/g、オキシエチレン基含有量が0~30質量%であるポリオキシアルキレンポリオール、
     ・ポリオール(B):平均水酸基数が2~3、水酸基価が100~250mgKOH/gであるポリオキシアルキレンポリオール、
     ・モノオール(D):水酸基価が5~200mgKOH/gであるポリオキシアルキレンモノオール。
    In the method for producing a flexible polyurethane foam for hot press molding by reacting a polyol mixture (X) with a polyisocyanate compound in the presence of a urethanization catalyst, a foaming agent and a foam stabilizer, the polyol mixture (X) comprises: A flexible polyurethane foam for hot press molding comprising the following polyol (A), the following polyol (B) and the following monool (D), wherein the polyisocyanate compound is used in an amount of 90 or more in terms of isocyanate index: Production method.
    Polyol (A): a polyoxyalkylene polyol having an average number of hydroxyl groups of 2 to 3, a hydroxyl value of 5 to 90 mgKOH / g, and an oxyethylene group content of 0 to 30% by mass,
    Polyol (B): a polyoxyalkylene polyol having an average number of hydroxyl groups of 2 to 3 and a hydroxyl value of 100 to 250 mgKOH / g,
    Monool (D): A polyoxyalkylene monool having a hydroxyl value of 5 to 200 mgKOH / g.
  2.  前記ポリオール(A)と前記ポリオール(B)との合計の100質量%のうち、前記ポリオール(A)の割合が5~50質量%である、請求項1に記載の熱プレス成形用軟質ポリウレタンフォームの製造方法。 The flexible polyurethane foam for hot press molding according to claim 1, wherein the proportion of the polyol (A) is 5 to 50% by mass in 100% by mass of the total of the polyol (A) and the polyol (B). Manufacturing method.
  3.  前記ポリオール混合物(X)の100質量%のうち、前記ポリオール(A)と前記ポリオール(B)との合計の割合が、70~99質量%である、請求項1または2に記載の熱プレス成形用ポリウレタンフォームの製造方法。 The hot press molding according to claim 1 or 2, wherein a total ratio of the polyol (A) and the polyol (B) is 70 to 99% by mass in 100% by mass of the polyol mixture (X). For producing polyurethane foam for use.
  4.  前記ポリオール(A)と前記ポリオール(B)との合計の100質量部に対して、前記モノオール(D)の割合が1~30質量部である、請求項1~3のいずれか一項に記載の熱プレス成形用軟質ポリウレタンフォームの製造方法。 The proportion of the monool (D) is 1 to 30 parts by mass with respect to 100 parts by mass of the total of the polyol (A) and the polyol (B). The manufacturing method of the flexible polyurethane foam for hot press molding of description.
  5.  前記ポリオール混合物(X)が、さらに下記ポリオール(C)を含む、請求項1~4のいずれか一項に記載の熱プレス成形用軟質ポリウレタンフォームの製造方法。
     ・ポリオール(C):平均水酸基数が2~6、水酸基価が10~60mgKOH/g、オキシエチレン基含有量が50質量%以上であるポリオキシアルキレンポリオール。
    The method for producing a flexible polyurethane foam for hot press molding according to any one of claims 1 to 4, wherein the polyol mixture (X) further contains the following polyol (C).
    Polyol (C): Polyoxyalkylene polyol having an average number of hydroxyl groups of 2 to 6, a hydroxyl value of 10 to 60 mgKOH / g, and an oxyethylene group content of 50% by mass or more.
  6.  前記ポリオール混合物(X)の100質量%のうち、前記ポリオール(C)の割合が、0.1~10質量%である、請求項5に記載の熱プレス成形用ポリウレタンフォームの製造方法。 The method for producing a polyurethane foam for hot press molding according to claim 5, wherein a proportion of the polyol (C) is 0.1 to 10% by mass in 100% by mass of the polyol mixture (X).
  7.  前記ポリオール混合物(X)は、前記ポリオール(A)を10~30質量%、前記ポリオール(B)を50~80質量%、前記ポリオール(C)を0~8質量%、および前記モノオール(D)を1~24質量%含む、請求項5または6に記載の熱プレス成形用ポリウレタンフォームの製造方法。 The polyol mixture (X) comprises 10 to 30% by mass of the polyol (A), 50 to 80% by mass of the polyol (B), 0 to 8% by mass of the polyol (C), and the monool (D The process for producing a polyurethane foam for hot press molding according to claim 5 or 6, comprising 1 to 24% by mass).
  8.  軟質ポリウレタンフォームの25%硬さ(ILD)が40N/314cm以上である、請求項1~7のいずれか一項に記載の熱プレス成形用軟質ポリウレタンフォームの製造方法。 The method for producing a flexible polyurethane foam for hot press molding according to any one of claims 1 to 7, wherein the 25% hardness (ILD) of the flexible polyurethane foam is 40 N / 314 cm 2 or more.
  9.  前記ウレタン化触媒がジオクチルスズ類を含む、請求項1~8のいずれか一項に記載の熱プレス成形用軟質ポリウレタンフォームの製造方法。 The method for producing a flexible polyurethane foam for hot press molding according to any one of claims 1 to 8, wherein the urethanization catalyst contains dioctyltins.
  10.  前記ウレタン化触媒の使用量が、前記ポリオール混合物(X)全体の100質量部に対して、0.01~3.0質量部である、請求項1~9のいずれか一項に記載の熱プレス成形用軟質ポリウレタンフォームの製造方法。 The heat according to any one of claims 1 to 9, wherein an amount of the urethanization catalyst used is 0.01 to 3.0 parts by mass with respect to 100 parts by mass of the whole polyol mixture (X). A method for producing a flexible polyurethane foam for press molding.
  11.  前記発泡剤が水のみからなる、請求項1~10のいずれか一項に記載の熱プレス成形用軟質ポリウレタンフォームの製造方法。 The method for producing a flexible polyurethane foam for hot press molding according to any one of claims 1 to 10, wherein the foaming agent comprises only water.
  12.  請求項1~11のいずれか一項に記載の製造方法で得られる、熱プレス成形用軟質ポリウレタンフォーム。 A flexible polyurethane foam for hot press molding obtained by the production method according to any one of claims 1 to 11.
  13.  請求項1~11のいずれか一項に記載の製造方法で熱プレス成形用軟質ポリウレタンフォームを製造する工程と、得られた熱プレス成形用軟質ポリウレタンフォームを切断する工程と、切断した熱プレス成形用軟質ポリウレタンフォームを熱プレス成形法により成形する工程を有する、熱プレス成形品の製造方法。 A step of producing a flexible polyurethane foam for hot press molding by the production method according to any one of claims 1 to 11, a step of cutting the obtained flexible polyurethane foam for hot press molding, and the hot press molding cut A method for producing a hot press-formed product, comprising a step of forming a flexible polyurethane foam for use in a hot press forming method.
  14.  請求項13に記載の製造方法で得られる、熱プレス成形品。 A hot press-molded product obtained by the production method according to claim 13.
PCT/JP2011/058458 2010-04-02 2011-04-01 Flexible polyurethane foam for hot-press molding, production method therefor, hot-press molded article, and production method therefor WO2011125952A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010086124A JP2013127011A (en) 2010-04-02 2010-04-02 Flexible polyurethane foam for hot-press molding, production method therefor, hot-press molded article, and production method therefor
JP2010-086124 2010-04-02

Publications (1)

Publication Number Publication Date
WO2011125952A1 true WO2011125952A1 (en) 2011-10-13

Family

ID=44762890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058458 WO2011125952A1 (en) 2010-04-02 2011-04-01 Flexible polyurethane foam for hot-press molding, production method therefor, hot-press molded article, and production method therefor

Country Status (3)

Country Link
JP (1) JP2013127011A (en)
TW (1) TW201202287A (en)
WO (1) WO2011125952A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018190051A1 (en) * 2017-04-12 2018-10-18 豊和繊維工業株式会社 Covering material used in molded ceiling for vehicles
WO2019110726A1 (en) 2017-12-08 2019-06-13 Shell Internationale Research Maatschappij B.V. Antioxidant for low-density polyurethane foam
JP2020019390A (en) * 2018-08-01 2020-02-06 住友ゴム工業株式会社 Pneumatic tire with sound control body and method for manufacturing the same
CN113480705A (en) * 2021-08-23 2021-10-08 安徽美世嘉新材料有限公司 Ultralow-temperature underwear compression molding cotton and preparation method thereof
CN115304744A (en) * 2022-09-16 2022-11-08 中山成长鞋材有限公司 Low-temperature hot-pressing underwear foam and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130122560A (en) * 2012-04-30 2013-11-07 (주)아모레퍼시픽 Puff for makeup
US9498927B2 (en) * 2013-03-15 2016-11-22 Nike, Inc. Decorative foam and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002293867A (en) * 2001-03-28 2002-10-09 Mitsui Chemicals Inc Flexible polyurethane foam and production method thereof
JP2004300352A (en) * 2003-03-31 2004-10-28 Sanyo Chem Ind Ltd Method for producing low resilience polyurethane foam
WO2006115169A1 (en) * 2005-04-21 2006-11-02 Asahi Glass Company, Limited Low-resilience soft polyurethane foam and method for producing same
WO2008050841A1 (en) * 2006-10-25 2008-05-02 Asahi Glass Company, Limited Method for producing soft polyurethane foam
WO2009041535A1 (en) * 2007-09-28 2009-04-02 Asahi Glass Company, Limited Method for producing flexible polyurethane foam, method for producing hot press molded article, and hot press molded article

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002293867A (en) * 2001-03-28 2002-10-09 Mitsui Chemicals Inc Flexible polyurethane foam and production method thereof
JP2004300352A (en) * 2003-03-31 2004-10-28 Sanyo Chem Ind Ltd Method for producing low resilience polyurethane foam
WO2006115169A1 (en) * 2005-04-21 2006-11-02 Asahi Glass Company, Limited Low-resilience soft polyurethane foam and method for producing same
WO2008050841A1 (en) * 2006-10-25 2008-05-02 Asahi Glass Company, Limited Method for producing soft polyurethane foam
WO2009041535A1 (en) * 2007-09-28 2009-04-02 Asahi Glass Company, Limited Method for producing flexible polyurethane foam, method for producing hot press molded article, and hot press molded article

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018190051A1 (en) * 2017-04-12 2018-10-18 豊和繊維工業株式会社 Covering material used in molded ceiling for vehicles
WO2019110726A1 (en) 2017-12-08 2019-06-13 Shell Internationale Research Maatschappij B.V. Antioxidant for low-density polyurethane foam
JP2020019390A (en) * 2018-08-01 2020-02-06 住友ゴム工業株式会社 Pneumatic tire with sound control body and method for manufacturing the same
WO2020027115A1 (en) * 2018-08-01 2020-02-06 住友ゴム工業株式会社 Pneumatic tire with acoustic damper, and method for manufacturing said tire
EP3822091A4 (en) * 2018-08-01 2022-04-06 Sumitomo Rubber Industries, Ltd. Pneumatic tire with acoustic damper, and method for manufacturing said tire
JP7089433B2 (en) 2018-08-01 2022-06-22 住友ゴム工業株式会社 Pneumatic tire with sound control body and its manufacturing method
CN113480705A (en) * 2021-08-23 2021-10-08 安徽美世嘉新材料有限公司 Ultralow-temperature underwear compression molding cotton and preparation method thereof
CN115304744A (en) * 2022-09-16 2022-11-08 中山成长鞋材有限公司 Low-temperature hot-pressing underwear foam and preparation method thereof

Also Published As

Publication number Publication date
TW201202287A (en) 2012-01-16
JP2013127011A (en) 2013-06-27

Similar Documents

Publication Publication Date Title
JP5266756B2 (en) Low resilience flexible polyurethane foam and method for producing the same
JP3909598B2 (en) Method for producing low resilience flexible polyurethane foam
JP5228914B2 (en) Method for producing flexible polyurethane foam
JP5720571B2 (en) Method for producing flexible polyurethane foam
EP2565215B1 (en) Polyoxyalkylene polyol, polyol in which polymer is dispersed, flexible polyurethane foam, and processes for production of same
JP4910702B2 (en) Method for producing flexible polyurethane foam
JP5229229B2 (en) Method for producing flexible polyurethane foam and hot press molded product
EP1316571B1 (en) Flexible polyurethane foam and method for its production
WO2011125952A1 (en) Flexible polyurethane foam for hot-press molding, production method therefor, hot-press molded article, and production method therefor
WO2001079323A1 (en) Process for producing flexible polyurethane foam
WO2011125951A1 (en) Flexible polyurethane foam and production method therefor
JP4058954B2 (en) Flexible polyurethane foam
JPWO2013021871A1 (en) Method for producing flexible polyurethane foam
JP4412116B2 (en) Low resilience flexible polyurethane foam and method for producing the same
JP4529300B2 (en) Method for producing flexible polyurethane foam
JP2008031241A (en) Process for preparing flexible polyurethane foam
JPWO2003059980A1 (en) Method for producing flexible polyurethane foam
JP4182733B2 (en) Flexible polyurethane foam and method for producing the same
JP5151461B2 (en) Method for producing flexible polyurethane foam and use thereof
JPWO2012115113A1 (en) Low resilience flexible polyurethane foam and method for producing the same
JP2003231747A (en) Polyol, method for producing the same, and method for producing flexible polyurethane foam

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765852

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11765852

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP