WO2011125541A1 - Immobilized palladium catalyst and method for producing ketone using the same - Google Patents

Immobilized palladium catalyst and method for producing ketone using the same Download PDF

Info

Publication number
WO2011125541A1
WO2011125541A1 PCT/JP2011/057326 JP2011057326W WO2011125541A1 WO 2011125541 A1 WO2011125541 A1 WO 2011125541A1 JP 2011057326 W JP2011057326 W JP 2011057326W WO 2011125541 A1 WO2011125541 A1 WO 2011125541A1
Authority
WO
WIPO (PCT)
Prior art keywords
palladium
ketone
olefin
immobilized
palladium catalyst
Prior art date
Application number
PCT/JP2011/057326
Other languages
French (fr)
Japanese (ja)
Inventor
清臣 金田
央司 曾禰
Original Assignee
Jx日鉱日石エネルギー株式会社
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社, 国立大学法人大阪大学 filed Critical Jx日鉱日石エネルギー株式会社
Priority to JP2012509436A priority Critical patent/JPWO2011125541A1/en
Publication of WO2011125541A1 publication Critical patent/WO2011125541A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • C07C45/34Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/165Polymer immobilised coordination complexes, e.g. organometallic complexes
    • B01J31/1658Polymer immobilised coordination complexes, e.g. organometallic complexes immobilised by covalent linkages, i.e. pendant complexes with optional linking groups, e.g. on Wang or Merrifield resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/70Oxidation reactions, e.g. epoxidation, (di)hydroxylation, dehydrogenation and analogues
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/824Palladium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated

Definitions

  • the present invention relates to a palladium catalyst immobilized on a polymer and a method for producing a ketone by oxidizing an olefin using the palladium catalyst.
  • Carbonyl compounds such as ketones such as methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK) and acetone, and aldehydes typified by acetaldehyde are useful as solvents and chemical raw materials, and are used in various fields.
  • Such a carbonyl compound is usually produced by a two-stage reaction method in which an alcohol produced by hydration of an olefin is dehydrogenated.
  • a one-stage reaction method in which an olefin is directly oxidized is also known. ing.
  • Non-Patent Document 1 discloses a method of oxidizing terminal and internal olefins using a palladium catalyst, a copper catalyst, polyethylene glycol and water. Is disclosed. J. et al. Org. Chem. 1990, 55, 2924-2927 (Non-Patent Document 2) discloses an improved Wacker method in which a cyclic or internal olefin is reacted with p-benzoquinone using a strong acid in the presence of a palladium catalyst. Yes. Japanese Patent Laid-Open No.
  • Patent Document 1 discloses palladium, oxyacid salts of metals having redox activity (copper, iron, etc.), hydroquinones, and compounds capable of converting the hydroquinones into quinones (iron In the presence of phthalocyanine, cobalt tetraphenylporphyrin and the like, a method for producing a carbonyl compound is disclosed in which an olefin is oxidized with molecular oxygen in an acidic aqueous solution.
  • Patent Document 2 discloses a method for producing a carbonyl compound in which an olefin and water are reacted in the presence of a palladium compound, a copper compound and an organic phosphorus compound.
  • Patent Document 3 in the presence of a palladium compound, a polyoxoanionic compound and an iron-containing compound, an olefin and oxygen gas are contained in a solvent comprising an oxygen-containing compound or a sulfur-containing compound.
  • a method for producing a carbonyl compound to be reacted is disclosed. Japanese Patent Laid-Open No.
  • Patent Document 4 discloses a method for producing a ketone in which an olefinic compound is oxidized using p-benzoquinone in the presence of water and a palladium compound. For example, a method for producing a ketone using a sulfonic acid ion exchanger or the like is disclosed. However, in these methods, since various compounds such as copper and benzoquinone are added in addition to the palladium catalyst, the reaction system is complicated, and it is not easy to separate and recover the palladium catalyst from the reaction solution after the oxidation reaction. Therefore, it was not suitable as an industrial method for producing ketones.
  • Patent Document 5 Japanese Patent Application Laid-Open No. 5-148177 (Patent Document 5) includes water and urea in the presence of a palladium compound supported on a carrier such as activated carbon and a copper compound and / or an iron compound. A method for producing a carbonyl compound that oxidizes an olefin in solution is disclosed.
  • Patent Document 6 discloses the production of a ketone that oxidizes alkenes with molecular oxygen in the presence of an oxidation catalyst composed of a palladium compound supported on activated carbon, a heteropolyacid, and a strong acid. A method is disclosed.
  • Patent Document 7 discloses a method for producing a ketone in which an olefin is reacted with molecular oxygen in the presence of a palladium source, water and a protonic acid supported on a mesoporous silicate.
  • the palladium catalyst can be easily separated and recovered from the reaction solution after the oxidation reaction, in addition to the palladium catalyst, various compounds such as copper and acid are added, so the reaction system is complicated and industrial It is not suitable as a typical method for producing ketones.
  • Non-patent Document 3 Angew. Chemie. Int. Ed. 2006, Vol. 45, pp. 481-485 (Non-patent Document 3), a reoxidant is used when oxidizing a terminal olefin in a polar solvent such as N, N-dimethylacetamide in the presence of a palladium catalyst.
  • a reoxidant is used when oxidizing a terminal olefin in a polar solvent such as N, N-dimethylacetamide in the presence of a palladium catalyst.
  • a reoxidant is used when oxidizing a terminal olefin in a polar solvent such as N, N-dimethylacetamide in the presence of a palladium catalyst.
  • a reoxidant is used when oxidizing a terminal olefin in a polar solvent such as N, N-dimethylacetamide in the presence of a palladium catalyst.
  • a reoxidant is used when oxid
  • the present invention has been made in view of the above-described problems of the prior art, and provides an immobilized palladium catalyst that can be easily recovered and reused when an olefin is oxidized to produce a corresponding ketone.
  • the purpose is to do.
  • an object of the present invention is to provide a method capable of easily producing a ketone from an olefin with a high yield and a high selectivity.
  • the present inventors have been able to reliably immobilize a palladium compound having catalytic ability by using a polymer having an amide bond in the side chain as a carrier, By using such an immobilized palladium catalyst, it becomes possible to easily recover and reuse the immobilized palladium catalyst from the solution after the reaction, and further oxidize the olefin with high yield and high selectivity.
  • the inventors have found that ketones can be easily produced, and have completed the present invention.
  • the immobilized palladium catalyst of the present invention comprises a polymer having an amide bond in the side chain and a palladium compound immobilized on the polymer.
  • the side chain preferably forms a cyclic structure, and the polymer having an amide bond in the side chain is more preferably polyvinylpyrrolidone.
  • the method for producing a ketone of the present invention uses the immobilized palladium catalyst, and in the presence of water and molecular oxygen, the oxygen pressure is 0.3 MPa or more, and one or more carbon-carbon atoms in the molecule.
  • An olefin having a double bond is oxidized, and an oxo group is bonded to at least one carbon atom constituting the carbon-carbon double bond.
  • an immobilized palladium catalyst that can be easily recovered and reused when an olefin is oxidized to produce a corresponding ketone. Further, by using such an immobilized palladium catalyst, it is possible to produce a ketone from an olefin with a high yield and high selectivity by a simple method of supplying molecular oxygen.
  • the immobilized palladium catalyst of the present invention comprises a polymer having an amide bond in the side chain and a palladium compound immobilized on the polymer.
  • the polymer used for the immobilized palladium catalyst of the present invention is not particularly limited as long as it is a polymer having an amide bond in the side chain (hereinafter referred to as “amide bond-containing polymer”), but an inert species Pd black is used. From the viewpoint that the palladium compound can be reliably fixed without being generated, a polymer in which the side chain having an amide bond forms a cyclic structure is preferable. Specifically, the following formulas (1) to (2):
  • R 1 and R 2 each independently represents an alkyl group having 1 to 4 carbon atoms or a phenyl group, and when R 1 and R 2 are both alkyl groups, they are bonded to each other. And may form a ring structure.
  • polymers having at least one of the structures represented by the following formulas (3) to (4):
  • A represents a cyclic structure having 2 to 8 carbon atoms.
  • a vinyl polymer containing a structural unit represented by (more preferably a repeating unit) is more preferred.
  • Examples of the vinyl polymer containing the repeating unit represented by the formula (5) include polyvinylpyrrolidone (poly (N-vinylpyrrolidone)), polyvinylcaprolactam (poly (N-vinyl- ⁇ -caprolactam)), N-vinyl.
  • Examples thereof include a copolymer of pyrrolidone and vinyl acetate, and among them, polyvinyl pyrrolidone is preferable.
  • the method for producing such an amide bond-containing polymer is not particularly limited.
  • a vinyl polymer a vinyl polymer having an amide bond such as N-vinyl-2-pyrrolidone or N-vinyl-2-caprolactam.
  • examples thereof include a method of (co) polymerizing monomers; a method of graft polymerization of a vinyl monomer having an amide bond to unmodified polyvinyl.
  • the viscosity average molecular weight of the amide bond-containing polymer used in the present invention is not particularly limited, but is preferably 40000 or more from the viewpoint of easy separation and recovery of the immobilized palladium catalyst.
  • the upper limit of the viscosity average molecular weight of the amide bond-containing polymer is not particularly limited, but is preferably 400,000 or less from the viewpoint of causing the immobilized palladium catalyst of the present invention to act as a homogeneous catalyst during the reaction.
  • the palladium compound used in the immobilized palladium catalyst of the present invention is not particularly limited as long as it has a palladium atom and has catalytic ability, and those used in the production of ketones can be used.
  • Examples of such palladium compounds include palladium inorganic salts such as palladium sulfate, palladium nitrate and palladium carbonate; polyoxoanionic compounds containing palladium such as heteropolyacid palladium salts and isopolyacid palladium salts; halogens such as palladium chloride and palladium bromide.
  • Palladium halides Palladium acid salts such as sodium tetrachloropalladate, sodium tetrabromopalladate, potassium tetrachloropalladate and potassium tetrabromopalladate; ammine complexes of palladium halides such as tetraamminepalladium dichloride and diamminepalladium tetrachloride; palladium hydroxide And palladium compounds and complexes such as palladium oxide; palladium acetate Palladium organic acid salts such as palladium (II) trifluoroacetate; palladium-containing organic compounds such as palladium acetylacetonate and alkylpalladium compounds; nitrile complexes of palladium halides such as diacetonitrile palladium dichloride and dibenzonitrile palladium dichloride; tetrakis (triphenylphosphine) Palladium phosphine complexes represented by pal
  • palladium halides and nitrile complexes of palladium halides are preferable, and palladium halides are more preferable, from the viewpoint of increasing yield and selectivity in the olefin oxidation reaction described below.
  • the amount of the palladium compound immobilized in the immobilized palladium catalyst of the present invention is preferably 1 to 100 mg per 1 g of the amide group-containing polymer, more preferably 2 to 20 mg.
  • the amount of the palladium compound immobilized is less than the lower limit, the olefin oxidation reaction does not proceed sufficiently, and it is not possible to produce a ketone in a high yield. Pd black is generated and the olefin oxidation reaction does not proceed sufficiently.
  • the immobilized palladium catalyst of the present invention can be prepared by mixing the amide bond-containing polymer and a palladium compound. At this time, it is preferable to use a solvent.
  • a solvent examples include water, dimethylacetamide (DMA), dimethylformamide (DMF), dimethylsulfoxide (DMSO), etc.
  • the palladium compound can be uniformly dispersed, and the palladium compound is uniformly dispersed. From the viewpoint of obtaining a catalyst immobilized in the above state, water is preferable.
  • the method for producing a ketone of the present invention comprises the use of the immobilized palladium catalyst of the present invention in the presence of water and molecular oxygen in the presence of one or more carbon-
  • an olefin having a carbon double bond is oxidized and an oxo group is bonded to at least one carbon atom constituting the carbon-carbon double bond.
  • the olefin used in the method for producing a ketone of the present invention is not particularly limited, and examples thereof include known olefins having one or more carbon-carbon double bonds (hereinafter abbreviated as “C ⁇ C bond”) in the molecule. Examples thereof include a terminal olefin in which the C ⁇ C bond is present at the molecular end, and an internal olefin and a cyclic olefin in which the C ⁇ C bond is present at a site other than the terminal in the molecule. Specifically, the following formula (6):
  • R 3 to R 6 each independently represents one selected from the group consisting of a hydrogen atom, an alkyl group, an alkenyl group, and an aryl group, and “R 3 and R 5 ” and / or “ When R 4 and R 6 ′′ are an alkyl group or an alkenyl group, they may be bonded to each other to form a ring structure.)
  • the olefin represented by these is mentioned.
  • R 3 and R 4 in the formula (6) are both hydrogen atoms, or when both R 5 and R 6 are hydrogen atoms, such olefins are terminal olefins.
  • at least one of R 3 and R 4 is any one of an alkyl group, an alkenyl group, and an aryl group, and at least one of R 5 and R 6 is an alkyl group,
  • Such olefins are internal olefins when they are either alkenyl groups or aryl groups.
  • R 3 and R 5 are an alkyl group or an alkenyl group and are bonded to each other to form a ring structure
  • R 4 and R 6 are an alkyl group or an alkenyl group and are bonded to each other to form a ring structure
  • Such olefins are cyclic olefins.
  • the alkyl group and the alkenyl group may be linear, branched or cyclic.
  • the carbon number of the alkyl group is preferably 1 to 12, and more preferably 4 to 12.
  • a hetero atom may be contained as long as the effects of the present invention are not impaired.
  • the position of the C ⁇ C bond in the alkenyl group is not particularly limited, and may be at the terminal or inside of the alkenyl group.
  • Examples of the aryl group include a phenyl group, a methylphenyl group, and a benzyl group, and the aryl group may contain a hetero atom as long as the effects of the present invention are not impaired.
  • Formula (6) in the R 3 and R 5, or, if R 4 and R 6 form a ring structure having bonded to C C bond to each other, a portion other than the ring structure (e.g., When R 3 and R 5 are combined to form a ring structure, R 4 and / or R 6 ) may also have a C ⁇ C bond.
  • terminal olefin examples include ethylene, propylene, 1-butene, 2-methyl-1-propylene, 2-pentene, 2-methyl-1-butene, 1-hexene, 2-methyl-1-pentene, 3 -Methyl-1-pentene, 1-heptene, 4-methyl-1-hexene, 1-octene, 5-methyl-1-heptene, 1-nonene, 6-methyl-1-octene, 2-phenyl-1-propylene 2-cyclohexyl-1-propylene, 1-decene, 7-methyl-1-nonene, 2-phenyl-1-butene, 2-cyclohexyl-1-butene, 1-undecene, 1-dodecene, 1-tetradecene, Monoolefins such as hexadecene; 1,4-pentadiene, 1,5-hexadiene, 1,6-heptadiene, 1,7-octadiene, 1,9
  • the internal olefin examples include 2-butene, 2-pentene, 2-methyl-2-butene, 2-hexene, 3-hexene, 4-methyl-2-pentene, 2-heptene and 3-heptene.
  • cyclic olefin examples include cycloalkenes such as cyclopentene, cyclohexene, cyclooctene, and cyclodecene, cycloalkadienes represented by cyclooctadiene, and alkyl groups in these cycloalkenes and cycloalkadienes. And those substituted with an alkenyl group (for example, vinylcyclohexene and allylcyclohexene).
  • olefins may be used alone or in combination of two or more.
  • the olefin concentration is preferably 0.01 to 5 mol / L, more preferably 0.05 to 1 mol / L. If the olefin concentration is less than the lower limit, the ketone cannot be obtained in high yield. On the other hand, if the olefin concentration exceeds the upper limit, the olefin oxidation reaction does not proceed sufficiently, and the ketone is produced in high yield. It tends to be impossible.
  • a ketone is produced by reacting an olefin with water.
  • the amount of water added is not particularly limited as long as it is a required amount for the reaction, and can be appropriately set depending on the olefin to be used, the immobilized palladium catalyst, the solvent, the reaction system and the conditions.
  • the specific amount of water added is preferably 0.5 to 70 parts by volume, more preferably 1 to 50 parts by volume with respect to 100 parts by volume of the solvent when the reaction is carried out in a solvent. When the amount of water added is less than the lower limit, a sufficient oxidation reaction rate cannot be obtained, and the yield of ketone tends to decrease.
  • the palladium component tends to remain as Pd black, and the catalytic activity tends to be reduced.
  • the solubility of olefin in water is low, the contact efficiency between the olefin and the immobilized palladium catalyst is lowered, a sufficient oxidation reaction rate cannot be obtained, and the yield of ketone tends to be lowered.
  • the immobilized palladium catalyst after oxidizing the olefin is reoxidized using molecular oxygen.
  • a cocatalyst such as a copper catalyst
  • the oxidation reaction of the olefin is not inhibited by the copper catalyst, and the corresponding ketone can be produced from various olefins with high yield and high selectivity.
  • Examples of the molecular oxygen supply source include oxygen gas, oxygen-enriched air, air, a mixed gas of oxygen gas and dilution gas (collectively referred to as “oxygen-containing gas”), and the like.
  • oxygen-containing gas examples include nitrogen gas, helium gas, argon gas, and carbon dioxide, and nitrogen gas is usually used.
  • a gas other than these oxygen-containing gas and dilution gas can be used in combination as long as the effects of the invention are not impaired.
  • such an oxygen-containing gas may be supplied by mixing with water or a solvent as necessary.
  • an oxygen-containing gas is supplied at an oxygen pressure of 0.3 MPa or more.
  • the oxygen pressure is less than the lower limit, Pd black which is an inert species is generated, and ketone cannot be produced in a high yield.
  • the oxygen pressure is preferably 0.4 MPa or more.
  • the upper limit of the oxygen pressure is preferably 1 MPa or less.
  • an olefin is usually oxidized using a solvent.
  • the solvent By using the solvent, the olefin can be efficiently oxidized, and the corresponding ketone can be produced with high yield and high selectivity.
  • Such a solvent is not particularly limited, and for example, a solvent used in the production of a ketone by oxidation of a known olefin such as acetonitrile, tetrahydrofuran, N, N-dimethylformamide, 1,4-dioxane can be used.
  • the amount of the solvent used is appropriately set so that the concentrations of the olefin and the immobilized palladium catalyst are within a predetermined range.
  • ⁇ Oxidation reaction> the immobilized palladium catalyst of the present invention is used, and in the presence of water and molecular oxygen, at least one carbon- A ketone is produced by oxidizing an olefin having a carbon double bond and attaching an oxo group ( ⁇ O) to at least one carbon atom constituting the C ⁇ C bond in the olefin.
  • a ketone is referred to as “corresponding ketone”.
  • the oxidation reaction method is not particularly limited, but usually the reaction is carried out using a solvent and heating and stirring. Moreover, a batch type, a semi-batch type, a semi-continuous type, a continuous flow type, or a combination thereof can be adopted. Moreover, there is no restriction
  • a catalyst solution prepared by mixing the immobilized palladium catalyst and a solvent or a mixed solution in which an olefin is mixed with the catalyst solution is charged into a batch reactor and reacted.
  • the concentration of the immobilized palladium catalyst is preferably 0.002 to 1 mol / L, more preferably 0.001 to 0.05 mol / L, in terms of palladium compound concentration. If the concentration of the immobilized palladium catalyst is less than the lower limit, the oxidation reaction of the olefin does not proceed sufficiently, and the ketone cannot be produced in a high yield. On the other hand, if the concentration exceeds the upper limit, it is an inert species. Pd black is generated and the olefin oxidation reaction does not proceed sufficiently.
  • the olefin supply rate is preferably 10 to 5000 mol / h per 1 mol of palladium.
  • the olefin supply rate is less than the lower limit, the production amount of ketone per unit time tends to decrease.
  • Pd Black which is an inert species, is produced, and the ketone is obtained in high yield. It tends to be impossible.
  • the supply rate of the oxygen-containing gas is appropriately adjusted so that the oxygen pressure in the reaction system is within the above range.
  • the reaction temperature for carrying out the oxidation reaction is preferably 30 to 200 ° C., more preferably 40 to 100 ° C.
  • the immobilized palladium catalyst of the present invention dissolves in a stable state in which a polymer having an amide bond in the side chain and a palladium compound are complexed, so that the reaction system becomes uniform and high Ketones can be produced from olefins in high yield and high selectivity.
  • the immobilized palladium catalyst tends to precipitate and the reaction system becomes heterogeneous, so the reaction rate tends to be slow and the yield of ketone tends to decrease. Side reactions such as the isomerization of benzene occur and the selectivity of the corresponding ketone tends to decrease.
  • the concentration of the copper catalyst used in the conventional Wacker method is preferably 0.03 mol / L or less, more preferably 0.01 mol / L or less, Particularly preferred is 0.003 mol / L or less.
  • concentration of the copper catalyst exceeds the upper limit, the yield of the corresponding ketone tends to decrease. From such a viewpoint, in the method for producing a ketone of the present invention, it is most preferable to oxidize an olefin in the absence of a copper catalyst (concentration: 0 mol / L).
  • the copper catalyst promotes reoxidation of the palladium catalyst in the conventional Wacker method, but in the olefin Wacker reaction according to the present invention, the yield of the corresponding ketone decreases due to the coexistence of the copper catalyst. From this tendency, it is presumed that the activity of the immobilized palladium catalyst that proceeds efficiently by molecular oxygen is inhibited.
  • the ketone thus obtained can be obtained as a single compound or a mixture having a desired purity or composition by separation and purification according to a conventional method.
  • the unreacted raw material can be recovered and used again for the production of the ketone. Also, the solvent can be recovered and reused.
  • the immobilized palladium catalyst can be easily separated and recovered by filtration or centrifugation by cooling the reaction solution after completion of the oxidation reaction to near room temperature. That is, the immobilized palladium catalyst is uniformly dispersed in the solvent under the reaction temperature conditions, but precipitates when cooled to near room temperature. Therefore, the precipitate can be easily recovered by collecting the precipitate by filtration or centrifugation. It can be used. Furthermore, in the method for producing a ketone of the present invention, since the immobilized palladium catalyst is hardly deteriorated, it can be reused in the production of the next ketone as it is after the separation and recovery without performing a regeneration treatment. A decrease in yield and the like is also unlikely to occur.
  • Example 1 In an autoclave reactor, palladium (II) chloride (1.8 mg, 0.01 mmol), polyvinylpyrrolidone (PVP, 0.5 g, “Polyvinylpyrrolidone K30” manufactured by Tokyo Chemical Industry Co., Ltd.), viscosity average molecular weight (Mt): 4 And water (2.0 ml) were added and stirred. As a result, palladium chloride was immobilized on polyvinylpyrrolidone to produce a pale yellow precipitate (hereinafter referred to as “Pd-PVP catalyst”).
  • Pd-PVP catalyst a pale yellow precipitate
  • acetonitrile 5 ml
  • 1-decene 112 mg, 0.5 mmol
  • oxygen gas was then supplied to the reactor.
  • the inside was pressurized to 0.6 MPa and an oxidation reaction was carried out at 80 ° C. for 5 hours. At this time, the inside of the reaction system was uniform.
  • Example 2 The oxidation reaction was carried out in the same manner as in Example 1 except that the pressure inside the reactor was increased to 0.3 MPa. The product after completion of the reaction was analyzed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 3 The oxidation reaction was carried out in the same manner as in Example 1 except that cyclohexene (246 mg, 3.0 mmol) was used instead of 1-decene and the reaction time was changed to 4 hours. The product after completion of the reaction was analyzed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 4 2-butene (375 mg, 6.70 mmol) was used instead of 1-decene, the amount of palladium (II) chloride was 6.1 mg (0.034 mmol), the amount of PVP was 1.5 g, and the amount of water was 6.
  • the oxidation reaction was carried out in the same manner as in Example 1 except that 0 ml, the amount of acetonitrile was changed to 15 ml, and the reaction time was changed to 6 hours.
  • the product after completion of the reaction was analyzed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 5 Cyclopentene (205.6 mg, 3.02 mmol) was used instead of 1-decene, the amount of palladium (II) chloride was 6.1 mg (0.034 mmol), the amount of PVP was 1.5 g, and the amount of water was 6.
  • the oxidation reaction was carried out in the same manner as in Example 1 except that 0 ml, the amount of acetonitrile was changed to 15 ml, and the reaction time was changed to 6 hours.
  • the product after completion of the reaction was analyzed in the same manner as in Example 1. The results are shown in Table 1.
  • Comparative Example 2 The oxidation reaction was carried out in the same manner as in Comparative Example 1 except that the oxidation reaction time was changed to 15 hours. The product after completion of the reaction was analyzed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 6 An oxidation reaction (first time) was performed in the same manner as in Example 1 except that the reaction time was changed to 6 hours. The product after completion of the reaction was analyzed in the same manner as in Example 1. The results are shown in Table 2.
  • the obtained Pd-PVP catalyst was put into an autoclave reactor, water (2.0 ml), acetonitrile (5 ml) and 1-decene (112 mg, 0.5 mmol) were added to depressurize the inside of the reactor, Oxygen gas was supplied to pressurize the inside of the reactor to 0.6 MPa, and an oxidation reaction (second time) was performed at 80 ° C. for 6 hours.
  • the product after completion of the reaction was analyzed in the same manner as in Example 1. The results are shown in Table 2.
  • an immobilized palladium catalyst that can be easily recovered and reused when an olefin is oxidized to produce a corresponding ketone. Further, by using such an immobilized palladium catalyst, it is possible to produce a ketone from an olefin with a high yield and high selectivity by a simple method of supplying molecular oxygen.
  • the method for producing a ketone of the present invention is high in yield and selectivity of the ketone, and is simple, and further, the used palladium catalyst can be easily recovered and reused, which is very economical. It is advantageous. That is, the ketone obtained by this method is useful as an industrial raw material such as a solvent or a chemical raw material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

Provided is an immobilized palladium catalyst comprising a polymer having amide bonds in the side chains and a palladium compound immobilized on this polymer. Also provided is a method for producing a ketone by oxidizing an olefin having one or more carbon-carbon double bonds per molecule, in the presence of water and molecular oxygen and under conditions of an oxygen pressure of 0.3 MPa or greater, using the immobilized palladium catalyst in order to cause oxo groups to bond with at least one of the carbon atoms that form the carbon-carbon double bond. 

Description

固定化パラジウム触媒およびそれを用いたケトンの製造方法Immobilized palladium catalyst and method for producing ketone using the same
 本発明は、ポリマーに固定化されたパラジウム触媒、およびそれを用いてオレフィンを酸化してケトンを製造する方法に関する。 The present invention relates to a palladium catalyst immobilized on a polymer and a method for producing a ketone by oxidizing an olefin using the palladium catalyst.
 メチルエチルケトン(MEK)やメチルイソブチルケトン(MIBK)、アセトンといったケトン類、アセトアルデヒドに代表されるアルデヒド類などのカルボニル化合物は、溶剤や化学原料として有用であり、様々な分野で用いられている。このようなカルボニル化合物は、通常、オレフィンの水和により生成したアルコールを脱水素せしめる2段反応法により製造されているが、より簡便な方法として、オレフィンを直接酸化せしめる1段反応法も知られている。 Carbonyl compounds such as ketones such as methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK) and acetone, and aldehydes typified by acetaldehyde are useful as solvents and chemical raw materials, and are used in various fields. Such a carbonyl compound is usually produced by a two-stage reaction method in which an alcohol produced by hydration of an olefin is dehydrogenated. As a simpler method, a one-stage reaction method in which an olefin is directly oxidized is also known. ing.
 例えば、Tetrahedron Letters、1985年、第26巻、第19号、2263-2264頁(非特許文献1)には、パラジウム触媒、銅触媒、ポリエチレングリコールおよび水を用いて末端および内部オレフィンを酸化させる方法が開示されている。J.Org.Chem.、1990年、第55巻、2924-2927頁(非特許文献2)には、パラジウム触媒の存在下、強酸を用いて環状または内部オレフィンとp-ベンゾキノンとを反応させる改良ワッカー法が開示されている。特開平5-140020号公報(特許文献1)には、パラジウム、レドックス活性を有する金属(銅、鉄など)の酸素酸塩、ヒドロキノン類、および前記ヒドロキノン類をキノン類に変換可能な化合物(鉄フタロシアニン、コバルトテトラフェニルポルフィリンなど)の存在下、酸性水溶液中でオレフィン類を分子状酸素により酸化させるカルボニル化合物の製造方法が開示されている。特開平7-17891号公報(特許文献2)には、パラジウム化合物、銅化合物および有機リン化合物の存在下にオレフィンと水とを反応させるカルボニル化合物の製造方法が開示されている。特開平7-149685号公報(特許文献3)には、パラジウム化合物、ポリオキソアニオン系化合物および鉄含有化合物の存在下に、含酸素化合物や含硫黄化合物からなる溶媒中でオレフィンと酸素ガスとを反応させるカルボニル化合物の製造方法が開示されている。特開平8-67648号公報(特許文献4)には、水およびパラジウム化合物の存在下でp-ベンゾキノンを用いてオレフィン系化合物を酸化させるケトンの製造方法において、前記酸化反応を不均質な強酸(例えば、スルホン酸のイオン交換体など)を用いて実施するケトンの製造方法が開示されている。しかしながら、これらの方法においては、パラジウム触媒以外に銅やベンゾキノンなど様々な化合物を添加するため、反応系が複雑であり、また、酸化反応後の反応溶液からパラジウム触媒を分離回収することが容易ではなく、工業的なケトンの製造方法としては不向きであった。 For example, Tetrahedron Letters, 1985, Vol. 26, No. 19, pages 2263-2264 (Non-Patent Document 1) discloses a method of oxidizing terminal and internal olefins using a palladium catalyst, a copper catalyst, polyethylene glycol and water. Is disclosed. J. et al. Org. Chem. 1990, 55, 2924-2927 (Non-Patent Document 2) discloses an improved Wacker method in which a cyclic or internal olefin is reacted with p-benzoquinone using a strong acid in the presence of a palladium catalyst. Yes. Japanese Patent Laid-Open No. 5-140020 (Patent Document 1) discloses palladium, oxyacid salts of metals having redox activity (copper, iron, etc.), hydroquinones, and compounds capable of converting the hydroquinones into quinones (iron In the presence of phthalocyanine, cobalt tetraphenylporphyrin and the like, a method for producing a carbonyl compound is disclosed in which an olefin is oxidized with molecular oxygen in an acidic aqueous solution. Japanese Patent Application Laid-Open No. 7-17891 (Patent Document 2) discloses a method for producing a carbonyl compound in which an olefin and water are reacted in the presence of a palladium compound, a copper compound and an organic phosphorus compound. In Japanese Patent Application Laid-Open No. 7-149585 (Patent Document 3), in the presence of a palladium compound, a polyoxoanionic compound and an iron-containing compound, an olefin and oxygen gas are contained in a solvent comprising an oxygen-containing compound or a sulfur-containing compound. A method for producing a carbonyl compound to be reacted is disclosed. Japanese Patent Laid-Open No. 8-67648 (Patent Document 4) discloses a method for producing a ketone in which an olefinic compound is oxidized using p-benzoquinone in the presence of water and a palladium compound. For example, a method for producing a ketone using a sulfonic acid ion exchanger or the like is disclosed. However, in these methods, since various compounds such as copper and benzoquinone are added in addition to the palladium catalyst, the reaction system is complicated, and it is not easy to separate and recover the palladium catalyst from the reaction solution after the oxidation reaction. Therefore, it was not suitable as an industrial method for producing ketones.
 また、特開平5-148177号公報(特許文献5)には、活性炭などの担体に担持されたパラジウム化合物と、銅化合物および/または鉄化合物とからなる触媒の存在下、水とウレアとを含む溶液中でオレフィンを酸化させるカルボニル化合物の製造方法が開示されている。特開2002-191979号公報(特許文献6)には、活性炭に担持されたパラジウム化合物と、ヘテロポリ酸と、強酸とからなる酸化触媒の存在下でアルケン類を分子状酸素で酸化させるケトンの製造方法が開示されている。特開2008-231043号公報(特許文献7)には、メソポーラスシリケートに担持されたパラジウム源、水およびプロトン酸の存在下、オレフィンを分子状酸素と反応させるケトンの製造方法が開示されている。これらの方法においては、酸化反応後の反応溶液からパラジウム触媒を容易に分離回収することができるものの、パラジウム触媒以外に銅や酸など様々な化合物を添加するため、反応系が複雑であり、工業的なケトンの製造方法としては不向きであった。 Japanese Patent Application Laid-Open No. 5-148177 (Patent Document 5) includes water and urea in the presence of a palladium compound supported on a carrier such as activated carbon and a copper compound and / or an iron compound. A method for producing a carbonyl compound that oxidizes an olefin in solution is disclosed. Japanese Patent Laid-Open No. 2002-191979 (Patent Document 6) discloses the production of a ketone that oxidizes alkenes with molecular oxygen in the presence of an oxidation catalyst composed of a palladium compound supported on activated carbon, a heteropolyacid, and a strong acid. A method is disclosed. Japanese Patent Application Laid-Open No. 2008-231043 (Patent Document 7) discloses a method for producing a ketone in which an olefin is reacted with molecular oxygen in the presence of a palladium source, water and a protonic acid supported on a mesoporous silicate. In these methods, although the palladium catalyst can be easily separated and recovered from the reaction solution after the oxidation reaction, in addition to the palladium catalyst, various compounds such as copper and acid are added, so the reaction system is complicated and industrial It is not suitable as a typical method for producing ketones.
 一方、Angew.Chemie.Int.Ed.、2006年、第45巻、481-485頁(非特許文献3)には、パラジウム触媒の存在下、N,N-ジメチルアセトアミドなどの極性溶媒中で末端オレフィンを酸化させる際に、再酸化剤として分子状酸素を用いるケトンの製造方法が開示されている。この方法では、パラジウム触媒以外に添加する化合物が分子状酸素であるため、反応系が簡便であり、また、ケトンの収率も非常に高いものであった。しかしながら、この方法においては、酸化反応後の反応溶液からパラジウム触媒を分離回収することが容易ではなく、パラジウム触媒の再利用という観点においては、工業的なケトンの製造方法として不向きであった。 Meanwhile, Angew. Chemie. Int. Ed. 2006, Vol. 45, pp. 481-485 (Non-patent Document 3), a reoxidant is used when oxidizing a terminal olefin in a polar solvent such as N, N-dimethylacetamide in the presence of a palladium catalyst. Discloses a method for producing ketones using molecular oxygen. In this method, since the compound to be added in addition to the palladium catalyst is molecular oxygen, the reaction system is simple and the yield of ketone is very high. However, in this method, it is not easy to separate and recover the palladium catalyst from the reaction solution after the oxidation reaction, and it is not suitable as an industrial ketone production method from the viewpoint of reusing the palladium catalyst.
特開平5-140020号公報JP-A-5-140020 特開平7-17891号公報JP-A-7-17891 特開平7-149685号公報Japanese Patent Application Laid-Open No. 7-149685 特開平8-67648号公報JP-A-8-67648 特開平5-148177号公報JP-A-5-148177 特開2002-191979号公報Japanese Patent Laid-Open No. 2002-191979 特開2008-231043号公報JP 2008-231043 A
 本発明は、上記従来技術の有する課題に鑑みてなされたものであり、オレフィンを酸化して対応するケトンを製造する際に、容易に回収して再利用することができる固定化パラジウム触媒を提供することを目的とする。さらに、本発明は、高収率且つ高選択率でオレフィンからケトンを簡便に製造することができる方法を提供することを目的とする。 The present invention has been made in view of the above-described problems of the prior art, and provides an immobilized palladium catalyst that can be easily recovered and reused when an olefin is oxidized to produce a corresponding ketone. The purpose is to do. Furthermore, an object of the present invention is to provide a method capable of easily producing a ketone from an olefin with a high yield and a high selectivity.
 本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、担体として側鎖にアミド結合を有するポリマーを用いることによって触媒能を有するパラジウム化合物を確実に固定化することができ、また、このような固定化パラジウム触媒を用いることによって、反応後の溶液から固定化パラジウム触媒を容易に回収して再利用することが可能となり、さらに、高収率且つ高選択率でオレフィンを酸化してケトンを簡便に製造できることを見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above object, the present inventors have been able to reliably immobilize a palladium compound having catalytic ability by using a polymer having an amide bond in the side chain as a carrier, By using such an immobilized palladium catalyst, it becomes possible to easily recover and reuse the immobilized palladium catalyst from the solution after the reaction, and further oxidize the olefin with high yield and high selectivity. Thus, the inventors have found that ketones can be easily produced, and have completed the present invention.
 すなわち、本発明の固定化パラジウム触媒は、側鎖にアミド結合を有するポリマーと、該ポリマーに固定化されたパラジウム化合物とを備えるものである。このような固定化パラジウム触媒においては、前記側鎖が環状構造を形成していることが好ましく、前記側鎖にアミド結合を有するポリマーがポリビニルピロリドンであることがより好ましい。 That is, the immobilized palladium catalyst of the present invention comprises a polymer having an amide bond in the side chain and a palladium compound immobilized on the polymer. In such an immobilized palladium catalyst, the side chain preferably forms a cyclic structure, and the polymer having an amide bond in the side chain is more preferably polyvinylpyrrolidone.
 また、本発明のケトンの製造方法は、前記固定化パラジウム触媒を用いて、水および分子状酸素の存在下、酸素圧が0.3MPa以上の条件で、分子内に1個以上の炭素-炭素二重結合を有するオレフィンを酸化せしめて、前記炭素-炭素二重結合を構成する少なくとも一方の炭素原子にオキソ基を結合せしめるものである。このようなケトンの製造方法においては、銅触媒の非存在下でオレフィンを酸化せしめることが好ましい。 In addition, the method for producing a ketone of the present invention uses the immobilized palladium catalyst, and in the presence of water and molecular oxygen, the oxygen pressure is 0.3 MPa or more, and one or more carbon-carbon atoms in the molecule. An olefin having a double bond is oxidized, and an oxo group is bonded to at least one carbon atom constituting the carbon-carbon double bond. In such a method for producing a ketone, it is preferable to oxidize an olefin in the absence of a copper catalyst.
 本発明によれば、オレフィンを酸化して対応するケトンを製造する際に、容易に回収して再利用することができる固定化パラジウム触媒を得ることができる。また、このような固定化パラジウム触媒を用いることによって高収率且つ高選択率でオレフィンからケトンを、分子状酸素を供給するという簡便な方法で製造することが可能となる。 According to the present invention, it is possible to obtain an immobilized palladium catalyst that can be easily recovered and reused when an olefin is oxidized to produce a corresponding ketone. Further, by using such an immobilized palladium catalyst, it is possible to produce a ketone from an olefin with a high yield and high selectivity by a simple method of supplying molecular oxygen.
 以下、本発明をその好適な実施形態に即して詳細に説明する。 Hereinafter, the present invention will be described in detail on the basis of preferred embodiments thereof.
 先ず、本発明の固定化パラジウム触媒について説明する。本発明の固定化パラジウム触媒は、側鎖にアミド結合を有するポリマーと、このポリマーに固定化されたパラジウム化合物とを備えるものである。 First, the immobilized palladium catalyst of the present invention will be described. The immobilized palladium catalyst of the present invention comprises a polymer having an amide bond in the side chain and a palladium compound immobilized on the polymer.
 <アミド結合含有ポリマー>
 本発明の固定化パラジウム触媒に用いられるポリマーとしては、側鎖にアミド結合を有するポリマー(以下、「アミド結合含有ポリマー」という)であれば特に制限はないが、不活性種であるPd blackを発生させることなく、パラジウム化合物を確実に固定化できるという観点から、アミド結合を有する側鎖が環状構造を形成しているポリマーが好ましい。具体的には、下記式(1)~(2):
<Amide bond-containing polymer>
The polymer used for the immobilized palladium catalyst of the present invention is not particularly limited as long as it is a polymer having an amide bond in the side chain (hereinafter referred to as “amide bond-containing polymer”), but an inert species Pd black is used. From the viewpoint that the palladium compound can be reliably fixed without being generated, a polymer in which the side chain having an amide bond forms a cyclic structure is preferable. Specifically, the following formulas (1) to (2):
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
(式(1)~(2)中、RおよびRはそれぞれ独立に炭素数1~4のアルキル基またはフェニル基を表し、RとRがともにアルキル基の場合には互いに結合して環構造を形成していてもよい。)
で表される構造の少なくとも一方を側鎖に有するポリマーが挙げられ、中でも、下記式(3)~(4):
(In the formulas (1) to (2), R 1 and R 2 each independently represents an alkyl group having 1 to 4 carbon atoms or a phenyl group, and when R 1 and R 2 are both alkyl groups, they are bonded to each other. And may form a ring structure.)
And polymers having at least one of the structures represented by the following formulas (3) to (4):
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(式(3)~(4)中、RおよびRは前記式(1)~(2)中のRおよびRと同義である。)
で表される構成単位(より好ましくは繰り返し単位)の少なくとも一方を含有するビニル系ポリマーが好ましく、不活性種であるPd blackを発生させることなく、パラジウム化合物を確実に固定化できるという観点から、下記式(5):
(Equation (3) - (4), R 1 and R 2 have the same meanings as R 1 and R 2 in the formula (1) to (2).)
From the viewpoint that the vinyl compound containing at least one of the structural units represented by (more preferably repeating units) is preferable, and the palladium compound can be reliably fixed without generating Pd black which is an inactive species. Following formula (5):
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式(5)中、Aは炭素数2~8の環状構造を表す。)
で表される構成単位(より好ましくは繰り返し単位)を含有するビニル系ポリマーがより好ましい。
(In the formula (5), A represents a cyclic structure having 2 to 8 carbon atoms.)
A vinyl polymer containing a structural unit represented by (more preferably a repeating unit) is more preferred.
 前記式(5)で表される繰り返し単位を含有するビニル系ポリマーとしては、ポリビニルピロリドン(ポリ(N-ビニルピロリドン))、ポリビニルカプロラクタム(ポリ(N-ビニル-ε-カプロラクタム))、N-ビニルピロリドンと酢酸ビニルとのコポリマーなどが挙げられ、中でも、ポリビニルピロリドンが好ましい。 Examples of the vinyl polymer containing the repeating unit represented by the formula (5) include polyvinylpyrrolidone (poly (N-vinylpyrrolidone)), polyvinylcaprolactam (poly (N-vinyl-ε-caprolactam)), N-vinyl. Examples thereof include a copolymer of pyrrolidone and vinyl acetate, and among them, polyvinyl pyrrolidone is preferable.
 このようなアミド結合含有ポリマーの製造方法としては特に制限はなく、例えば、ビニル系ポリマーの場合には、N-ビニル-2-ピロリドンやN-ビニル-2-カプロラクタムなどのアミド結合を有するビニル系モノマーを(共)重合させる方法;未変性のポリビニルに前記アミド結合を有するビニル系モノマーをグラフト重合させる方法などが挙げられる。 The method for producing such an amide bond-containing polymer is not particularly limited. For example, in the case of a vinyl polymer, a vinyl polymer having an amide bond such as N-vinyl-2-pyrrolidone or N-vinyl-2-caprolactam. Examples thereof include a method of (co) polymerizing monomers; a method of graft polymerization of a vinyl monomer having an amide bond to unmodified polyvinyl.
 本発明に用いられるアミド結合含有ポリマーの粘度平均分子量としては特に制限はないが、固定化パラジウム触媒の分離回収が容易であるという観点から、40000以上が好ましい。また、アミド結合含有ポリマーの粘度平均分子量の上限は特に制限はないが、本発明の固定化パラジウム触媒を反応中に均一系触媒として作用させる観点から、400000以下が好ましい。 The viscosity average molecular weight of the amide bond-containing polymer used in the present invention is not particularly limited, but is preferably 40000 or more from the viewpoint of easy separation and recovery of the immobilized palladium catalyst. The upper limit of the viscosity average molecular weight of the amide bond-containing polymer is not particularly limited, but is preferably 400,000 or less from the viewpoint of causing the immobilized palladium catalyst of the present invention to act as a homogeneous catalyst during the reaction.
 <パラジウム化合物>
 本発明の固定化パラジウム触媒に用いられるパラジウム化合物としては、パラジウム原子を有し且つ触媒能を有するものであれば特に制限はなく、ケトンの製造において用いられるものを使用することが可能である。このようなパラジウム化合物としては、硫酸パラジウム、硝酸パラジウムおよび炭酸パラジウムといったパラジウムの無機塩類;ヘテロポリ酸パラジウム塩およびイソポリ酸パラジウム塩といったパラジウムを含有するポリオキソアニオン系化合物;塩化パラジウムおよび臭化パラジウムといったハロゲン化パラジウム;テトラクロロパラジウム酸ナトリウム、テトラブロモパラジウム酸ナトリウム、テトラクロロパラジウム酸カリウムおよびテトラブロモパラジウム酸カリウムといったパラジウム酸塩類;テトラアンミンパラジウムジクロリドおよびジアンミンパラジウムテトラクロリドといったハロゲン化パラジウムのアンミン錯体;水酸化パラジウムおよび酸化パラジウムといった無機系パラジウム化合物および錯体;酢酸パラジウム、トリフルオロ酢酸パラジウム(II)といったパラジウム有機酸塩;パラジウムアセチルアセトナートおよびアルキルパラジウム化合物といったパラジウム含有有機化合物;ジアセトニトリルパラジウムジクロリドおよびジベンゾニトリルパラジウムジクロリドといったハロゲン化パラジウムのニトリル錯体;テトラキス(トリフェニルホスフィン)パラジウムに代表されるパラジウムホスフィン錯体;エチレンジアミン四酢酸パラジウムに代表されるパラジウムアミン錯体;トリス(ジベンジリデンアセトン)ジパラジウムのクロロホルム付加物およびシクロオクタジエンパラジウムジクロリドといった有機系パラジウム化合物および錯体;パラジウムコロイドおよび高分散パラジウム金属といった活性な金属パラジウムなどが挙げられる。これらのパラジウム化合物は1種を単独で用いてもまたは2種以上を併用してもよい。
<Palladium compound>
The palladium compound used in the immobilized palladium catalyst of the present invention is not particularly limited as long as it has a palladium atom and has catalytic ability, and those used in the production of ketones can be used. Examples of such palladium compounds include palladium inorganic salts such as palladium sulfate, palladium nitrate and palladium carbonate; polyoxoanionic compounds containing palladium such as heteropolyacid palladium salts and isopolyacid palladium salts; halogens such as palladium chloride and palladium bromide. Palladium halides; Palladium acid salts such as sodium tetrachloropalladate, sodium tetrabromopalladate, potassium tetrachloropalladate and potassium tetrabromopalladate; ammine complexes of palladium halides such as tetraamminepalladium dichloride and diamminepalladium tetrachloride; palladium hydroxide And palladium compounds and complexes such as palladium oxide; palladium acetate Palladium organic acid salts such as palladium (II) trifluoroacetate; palladium-containing organic compounds such as palladium acetylacetonate and alkylpalladium compounds; nitrile complexes of palladium halides such as diacetonitrile palladium dichloride and dibenzonitrile palladium dichloride; tetrakis (triphenylphosphine) Palladium phosphine complexes represented by palladium; palladium amine complexes represented by palladium on ethylenediaminetetraacetate; organic palladium compounds and complexes such as chloroform adduct of tris (dibenzylideneacetone) dipalladium and cyclooctadienepalladium dichloride; palladium colloid and Examples thereof include active metal palladium such as highly dispersed palladium metal. These palladium compounds may be used alone or in combination of two or more.
 これらのパラジウム化合物のうち、後述するオレフィンの酸化反応において収率および選択性が高くなるという観点から、ハロゲン化パラジウムおよびハロゲン化パラジウムのニトリル錯体が好ましく、ハロゲン化パラジウムがより好ましい。 Of these palladium compounds, palladium halides and nitrile complexes of palladium halides are preferable, and palladium halides are more preferable, from the viewpoint of increasing yield and selectivity in the olefin oxidation reaction described below.
 本発明の固定化パラジウム触媒におけるパラジウム化合物の固定化量としては、前記アミド基含有ポリマー1g当たり1~100mgが好ましく、2~20mgがより好ましい。パラジウム化合物の固定化量が前記下限未満になるとオレフィンの酸化反応が十分に進行せず、高収率でケトンを製造することができない傾向にあり、他方、前記上限を超えると不活性種であるPd blackが生成し、オレフィンの酸化反応が十分に進行しない傾向にある。 The amount of the palladium compound immobilized in the immobilized palladium catalyst of the present invention is preferably 1 to 100 mg per 1 g of the amide group-containing polymer, more preferably 2 to 20 mg. When the amount of the palladium compound immobilized is less than the lower limit, the olefin oxidation reaction does not proceed sufficiently, and it is not possible to produce a ketone in a high yield. Pd black is generated and the olefin oxidation reaction does not proceed sufficiently.
 <固定化パラジウム触媒の製造方法>
 本発明の固定化パラジウム触媒は、前記アミド結合含有ポリマーとパラジウム化合物とを混合することによって調製することができる。このとき、溶媒を使用することが好ましい。このような溶媒としては、水、ジメチルアセトアミド(DMA)、ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)などが挙げられ、中でも、パラジウム化合物を均一に分散させることができ、パラジウム化合物が均一に分散した状態で固定化された触媒が得られるという観点から、水が好ましい。
<Method for producing immobilized palladium catalyst>
The immobilized palladium catalyst of the present invention can be prepared by mixing the amide bond-containing polymer and a palladium compound. At this time, it is preferable to use a solvent. Examples of such a solvent include water, dimethylacetamide (DMA), dimethylformamide (DMF), dimethylsulfoxide (DMSO), etc. Among them, the palladium compound can be uniformly dispersed, and the palladium compound is uniformly dispersed. From the viewpoint of obtaining a catalyst immobilized in the above state, water is preferable.
 次に、本発明のケトンの製造方法について説明する。本発明のケトンの製造方法は、本発明の固定化パラジウム触媒を用いて、水および分子状酸素の存在下、酸素圧が0.3MPa以上の条件下で、分子内に1個以上の炭素-炭素二重結合を有するオレフィンを酸化せしめて、前記炭素-炭素二重結合を構成する少なくとも一方の炭素原子にオキソ基を結合せしめる方法である。 Next, a method for producing the ketone of the present invention will be described. The method for producing a ketone of the present invention comprises the use of the immobilized palladium catalyst of the present invention in the presence of water and molecular oxygen in the presence of one or more carbon- In this method, an olefin having a carbon double bond is oxidized and an oxo group is bonded to at least one carbon atom constituting the carbon-carbon double bond.
 <オレフィン>
 本発明のケトンの製造方法に用いられるオレフィンとしては特に制限はなく、分子内に1個以上の炭素-炭素二重結合(以下、「C=C結合」と略す)を有する公知のオレフィンが挙げられ、例えば、前記C=C結合が分子末端に存在する末端オレフィン、前記C=C結合が分子内の末端以外の部位に存在する内部オレフィンおよび環状オレフィンが挙げられる。具体的には、下記式(6):
<Olefin>
The olefin used in the method for producing a ketone of the present invention is not particularly limited, and examples thereof include known olefins having one or more carbon-carbon double bonds (hereinafter abbreviated as “C═C bond”) in the molecule. Examples thereof include a terminal olefin in which the C═C bond is present at the molecular end, and an internal olefin and a cyclic olefin in which the C═C bond is present at a site other than the terminal in the molecule. Specifically, the following formula (6):
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式(6)中、R~Rはそれぞれ独立に水素原子、アルキル基、アルケニル基およびアリール基からなる群から選択される1種を表し、「RとR」および/または「RとR」がアルキル基またはアルケニル基である場合、それらは互いに結合して環構造を形成していてもよい。)
で表されるオレフィンが挙げられる。
(In the formula (6), R 3 to R 6 each independently represents one selected from the group consisting of a hydrogen atom, an alkyl group, an alkenyl group, and an aryl group, and “R 3 and R 5 ” and / or “ When R 4 and R 6 ″ are an alkyl group or an alkenyl group, they may be bonded to each other to form a ring structure.)
The olefin represented by these is mentioned.
 前記オレフィンのうち、前記式(6)中のRおよびRがともに水素原子である場合、あるいはRおよびRがともに水素原子である場合、このようなオレフィンは末端オレフィンである。また、前記式(6)中のRおよびRのうちの少なくとも一方がアルキル基、アルケニル基およびアリール基のうちのいずれかであり、RおよびRのうちの少なくとも一方がアルキル基、アルケニル基およびアリール基のうちのいずれかである場合、このようなオレフィンは内部オレフィンである。さらに、RとRがアルキル基またはアルケニル基であって互いに結合して環構造を形成している場合、あるいはRとRがアルキル基またはアルケニル基であって互いに結合して環構造を形成している場合、このようなオレフィンは環状オレフィンである。 Among the olefins, when R 3 and R 4 in the formula (6) are both hydrogen atoms, or when both R 5 and R 6 are hydrogen atoms, such olefins are terminal olefins. In the formula (6), at least one of R 3 and R 4 is any one of an alkyl group, an alkenyl group, and an aryl group, and at least one of R 5 and R 6 is an alkyl group, Such olefins are internal olefins when they are either alkenyl groups or aryl groups. Further, when R 3 and R 5 are an alkyl group or an alkenyl group and are bonded to each other to form a ring structure, or R 4 and R 6 are an alkyl group or an alkenyl group and are bonded to each other to form a ring structure Such olefins are cyclic olefins.
 前記アルキル基および前記アルケニル基は、直鎖状のものであっても分枝状のものであっても環状のものであってもよい。また、アルキル基の炭素数としては1~12が好ましく、4~12がより好ましい。さらに、本発明の効果を損なわない限りにおいてヘテロ原子を含有していてもよい。前記アルケニル基中のC=C結合の位置としては特に制限はなく、アルケニル基の末端であっても内部であってもよい。前記アリール基としてはフェニル基、メチルフェニル基、ベンジル基などが挙げられ、本発明の効果を損なわない限りにおいてヘテロ原子を含有していてもよい。 The alkyl group and the alkenyl group may be linear, branched or cyclic. The carbon number of the alkyl group is preferably 1 to 12, and more preferably 4 to 12. Furthermore, a hetero atom may be contained as long as the effects of the present invention are not impaired. The position of the C═C bond in the alkenyl group is not particularly limited, and may be at the terminal or inside of the alkenyl group. Examples of the aryl group include a phenyl group, a methylphenyl group, and a benzyl group, and the aryl group may contain a hetero atom as long as the effects of the present invention are not impaired.
 前記式(6)中のRとR または、RとRがそれぞれ互いに結合してC=C結合を有する環構造を形成している場合、この環構造以外の部分(例えば、RとRとが結合して環構造を形成した場合にはRおよび/またはR)にもC=C結合が存在していてもよい。 Formula (6) in the R 3 and R 5, or, if R 4 and R 6 form a ring structure having bonded to C = C bond to each other, a portion other than the ring structure (e.g., When R 3 and R 5 are combined to form a ring structure, R 4 and / or R 6 ) may also have a C═C bond.
 前記末端オレフィンの具体例としては、エチレン、プロピレン、1-ブテン、2-メチル-1-プロピレン、2-ペンテン、2-メチル-1-ブテン、1-ヘキセン、2-メチル-1-ペンテン、3-メチル-1-ペンテン、1-ヘプテン、4-メチル-1-ヘキセン、1-オクテン、5-メチル-1-ヘプテン、1-ノネン、6-メチル-1-オクテン、2-フェニル-1-プロピレン、2-シクロヘキシル-1-プロピレン、1-デセン、7-メチル-1-ノネン、2-フェニル-1-ブテン、2-シクロヘキシル-1-ブテン、1-ウンデセン、1-ドデセン、1-テトラデセン、1-ヘキサデセンといったモノオレフィン類;1,4-ペンタジエン、1,5-ヘキサジエン、1,6-ヘプタジエン、1,7-オクタジエン、1,9-デカジエンといったジエン類などが挙げられる。 Specific examples of the terminal olefin include ethylene, propylene, 1-butene, 2-methyl-1-propylene, 2-pentene, 2-methyl-1-butene, 1-hexene, 2-methyl-1-pentene, 3 -Methyl-1-pentene, 1-heptene, 4-methyl-1-hexene, 1-octene, 5-methyl-1-heptene, 1-nonene, 6-methyl-1-octene, 2-phenyl-1-propylene 2-cyclohexyl-1-propylene, 1-decene, 7-methyl-1-nonene, 2-phenyl-1-butene, 2-cyclohexyl-1-butene, 1-undecene, 1-dodecene, 1-tetradecene, Monoolefins such as hexadecene; 1,4-pentadiene, 1,5-hexadiene, 1,6-heptadiene, 1,7-octadiene, 1,9 Such as dienes, and the like, such as decadiene.
 また、前記内部オレフィンの具体例としては、2-ブテン、2-ペンテン、2-メチル-2-ブテン、2-ヘキセン、3-ヘキセン、4-メチル-2-ペンテン、2-ヘプテン、3-ヘプテン、5-メチル-2-ヘキセン、2-オクテン、3-オクテン、4-オクテン、6-メチル-2-ヘプテン、2-ノネン、7-メチル-2-オクテン、1-フェニル-1-プロピレン、1-シクロヘキシル-1-プロピレン、2-デセン、3-デセン、4-デセン、5-デセン、8-メチル-2-ノネン、1-フェニル-2-ブテン、1-シクロヘキシル-2-ブテン、5-ウンデセン、6-ドデセン、7-テトラデセン、8-ヘキサデセンといったモノオレフィン類;1,3-ペンタジエン、2,4-ヘキサジエン、2,5-ヘプタジエン、1,3-オクタジエン、2,4-デカジエンといったジエン類などが挙げられる。また、これらの内部オレフィンは、シス型、トランス型といった異性体も区別なく使用できる。 Specific examples of the internal olefin include 2-butene, 2-pentene, 2-methyl-2-butene, 2-hexene, 3-hexene, 4-methyl-2-pentene, 2-heptene and 3-heptene. 5-methyl-2-hexene, 2-octene, 3-octene, 4-octene, 6-methyl-2-heptene, 2-nonene, 7-methyl-2-octene, 1-phenyl-1-propylene, -Cyclohexyl-1-propylene, 2-decene, 3-decene, 4-decene, 5-decene, 8-methyl-2-nonene, 1-phenyl-2-butene, 1-cyclohexyl-2-butene, 5-undecene , 6-dodecene, 7-tetradecene, 8-hexadecene monoolefins; 1,3-pentadiene, 2,4-hexadiene, 2,5-heptadiene, 1,3 Octadiene, such as dienes, and the like, such as 2,4-decadiene. Further, these internal olefins can be used without distinction from isomers such as cis type and trans type.
 さらに、前記環状オレフィンの具体例としては、シクロペンテン、シクロヘキセン、シクロオクテン、シクロデセンといったシクロアルケン類、シクロオクタジエンに代表されるシクロアルカジエン類、およびこれらのシクロアルケン類やシクロアルカジエン類にアルキル基やアルケニル基などが置換したもの(例えば、ビニルシクロヘキセン、アリルシクロヘキセン)などが挙げられる。 Further, specific examples of the cyclic olefin include cycloalkenes such as cyclopentene, cyclohexene, cyclooctene, and cyclodecene, cycloalkadienes represented by cyclooctadiene, and alkyl groups in these cycloalkenes and cycloalkadienes. And those substituted with an alkenyl group (for example, vinylcyclohexene and allylcyclohexene).
 これらのオレフィンは1種を単独で用いてもまたは2種以上を併用してもよい。 These olefins may be used alone or in combination of two or more.
 本発明のケトンの製造方法において、オレフィンの濃度としては、0.01~5mol/Lが好ましく、0.05~1mol/Lがより好ましい。オレフィンの濃度が前記下限未満になると高収率でケトンを得ることができない傾向にあり、他方、前記上限を超えるとオレフィンの酸化反応が十分に進行せず、高収率でケトンを製造することができない傾向にある。 In the method for producing a ketone of the present invention, the olefin concentration is preferably 0.01 to 5 mol / L, more preferably 0.05 to 1 mol / L. If the olefin concentration is less than the lower limit, the ketone cannot be obtained in high yield. On the other hand, if the olefin concentration exceeds the upper limit, the olefin oxidation reaction does not proceed sufficiently, and the ketone is produced in high yield. It tends to be impossible.
 <水>
 本発明のケトンの製造方法においては、オレフィンと水とを反応させてケトンを製造する。水の添加量は反応必要量であれば特に制限はなく、使用するオレフィン、固定化パラジウム触媒、溶媒、反応方式およびその条件によって適宜設定することができる。具体的な水の添加量としては、溶媒中で前記反応を行う場合、溶媒100容量部に対して0.5~70容量部が好ましく、1~50容量部がより好ましい。水の添加量が前記下限未満になると十分な酸化反応速度が得られず、ケトンの収率が低下する傾向にある。他方、前記上限を超えるとパラジウム成分がPd blackとして残存しやすく、触媒活性が低下する傾向にある。また、オレフィンの水への溶解度が低いため、オレフィンと固定化パラジウム触媒との接触効率が低下して十分な酸化反応速度が得られず、ケトンの収率が低下する傾向にある。
<Water>
In the method for producing a ketone of the present invention, a ketone is produced by reacting an olefin with water. The amount of water added is not particularly limited as long as it is a required amount for the reaction, and can be appropriately set depending on the olefin to be used, the immobilized palladium catalyst, the solvent, the reaction system and the conditions. The specific amount of water added is preferably 0.5 to 70 parts by volume, more preferably 1 to 50 parts by volume with respect to 100 parts by volume of the solvent when the reaction is carried out in a solvent. When the amount of water added is less than the lower limit, a sufficient oxidation reaction rate cannot be obtained, and the yield of ketone tends to decrease. On the other hand, when the upper limit is exceeded, the palladium component tends to remain as Pd black, and the catalytic activity tends to be reduced. In addition, since the solubility of olefin in water is low, the contact efficiency between the olefin and the immobilized palladium catalyst is lowered, a sufficient oxidation reaction rate cannot be obtained, and the yield of ketone tends to be lowered.
 <酸素>
 本発明のケトンの製造方法においては、オレフィンを酸化した後の固定化パラジウム触媒を、分子状酸素を用いて再酸化する。このとき、銅触媒などの共触媒を実質的に使用しないため、オレフィンの酸化反応が銅触媒により阻害されず、各種オレフィンから対応するケトンを高収率且つ高選択性で製造することが可能となる。
<Oxygen>
In the method for producing a ketone of the present invention, the immobilized palladium catalyst after oxidizing the olefin is reoxidized using molecular oxygen. At this time, since a cocatalyst such as a copper catalyst is not substantially used, the oxidation reaction of the olefin is not inhibited by the copper catalyst, and the corresponding ketone can be produced from various olefins with high yield and high selectivity. Become.
 前記分子状酸素の供給源としては、酸素ガス、酸素富化空気、空気、酸素ガスと希釈ガスとの混合ガスなど(これらをまとめて「酸素含有ガス」という)が挙げられる。希釈ガスとしては、窒素ガス、ヘリウムガス、アルゴンガス、二酸化炭素などが挙げられるが、通常、窒素ガスが用いられる。本発明のケトンの製造方法においては、発明の効果を損なわない限りにおいて、これらの酸素含有ガスや希釈ガス以外のガスを併用することができる。また、このような酸素含有ガスは、必要に応じて水や溶媒などと混合して供給してもよい。 Examples of the molecular oxygen supply source include oxygen gas, oxygen-enriched air, air, a mixed gas of oxygen gas and dilution gas (collectively referred to as “oxygen-containing gas”), and the like. Examples of the dilution gas include nitrogen gas, helium gas, argon gas, and carbon dioxide, and nitrogen gas is usually used. In the method for producing a ketone of the present invention, a gas other than these oxygen-containing gas and dilution gas can be used in combination as long as the effects of the invention are not impaired. In addition, such an oxygen-containing gas may be supplied by mixing with water or a solvent as necessary.
 本発明のケトンの製造方法においては、酸素含有ガスを、0.3MPa以上の酸素圧で供給する。酸素圧が前記下限未満になると不活性種であるPd blackが生成し、高収率でケトンを製造できない。また、より安定してケトンを製造するためには酸素圧は0.4MPa以上であることが好ましい。他方、酸素圧の上限としては1MPa以下が好ましい。酸素圧が前記上限を超えると一部のオレフィンにおいて、酸素化副生成物が生成する(例えば、シクロヘキセンの場合、アリル位が酸化された2-シクロヘキセン1-オンが生成する)傾向にある。 In the method for producing a ketone of the present invention, an oxygen-containing gas is supplied at an oxygen pressure of 0.3 MPa or more. When the oxygen pressure is less than the lower limit, Pd black which is an inert species is generated, and ketone cannot be produced in a high yield. Moreover, in order to produce a ketone more stably, the oxygen pressure is preferably 0.4 MPa or more. On the other hand, the upper limit of the oxygen pressure is preferably 1 MPa or less. When the oxygen pressure exceeds the above upper limit, oxygenated by-products tend to be formed in some olefins (for example, in the case of cyclohexene, 2-cyclohexen-1-one in which the allylic position is oxidized is generated).
 <溶媒>
 本発明のケトンの製造方法においては、通常、溶媒を使用してオレフィンを酸化させる。溶媒を使用することによって、オレフィンを効率的に酸化させることができ、対応するケトンを高収率且つ高選択性で製造することが可能となる。
<Solvent>
In the method for producing a ketone of the present invention, an olefin is usually oxidized using a solvent. By using the solvent, the olefin can be efficiently oxidized, and the corresponding ketone can be produced with high yield and high selectivity.
 このような溶媒としては特に制限はなく、例えば、アセトニトリル、テトラヒドロフラン、N,N-ジメチルホルムアミド、1,4-ジオキサンなど公知のオレフィンの酸化によるケトンの製造において用いられる溶媒を使用することができる。この溶媒の使用量は、オレフィンおよび固定化パラジウム触媒の濃度が所定の範囲内となるように適宜設定される。 Such a solvent is not particularly limited, and for example, a solvent used in the production of a ketone by oxidation of a known olefin such as acetonitrile, tetrahydrofuran, N, N-dimethylformamide, 1,4-dioxane can be used. The amount of the solvent used is appropriately set so that the concentrations of the olefin and the immobilized palladium catalyst are within a predetermined range.
 <酸化反応>
 本発明のケトンの製造方法においては、本発明の固定化パラジウム触媒を用いて、水および分子状酸素の存在下、酸素圧が0.3MPa以上の条件で、分子内に1個以上の炭素-炭素二重結合を有するオレフィンを酸化させ、このオレフィン中のC=C結合を構成する少なくとも一方の炭素原子にオキソ基(=O)を結合させることによってケトンが生成する。なお、本明細書においては、このようなケトンを「対応するケトン」という。
<Oxidation reaction>
In the method for producing a ketone of the present invention, the immobilized palladium catalyst of the present invention is used, and in the presence of water and molecular oxygen, at least one carbon- A ketone is produced by oxidizing an olefin having a carbon double bond and attaching an oxo group (═O) to at least one carbon atom constituting the C═C bond in the olefin. In the present specification, such a ketone is referred to as “corresponding ketone”.
 本発明のケトンの製造方法において、酸化反応の方式としては特に制限はないが、通常、溶媒を使用し、加熱撹拌して反応を行う。また、回分式、半回分式、半連続式、連続流通式、またはこれらの組み合わせを採用することができる。また、オレフィンなどの各成分の供給方法も特に制限はなく、液体状で供給しても気体状で供給してもよい。 In the method for producing a ketone of the present invention, the oxidation reaction method is not particularly limited, but usually the reaction is carried out using a solvent and heating and stirring. Moreover, a batch type, a semi-batch type, a semi-continuous type, a continuous flow type, or a combination thereof can be adopted. Moreover, there is no restriction | limiting in particular also in the supply method of each components, such as an olefin, You may supply in a liquid state or a gaseous state.
 具体的な製造方法としては、前記固定化パラジウム触媒と溶媒とを混合して調製した触媒溶液またはこれにオレフィンを混合した混合溶液と、前記酸素含有ガスとを回分式反応装置に仕込んで反応させる回分式;前記触媒溶液中にオレフィンと前記酸素含有ガスとを連続的に供給したり、前記混合溶液中に前記酸素含有ガスを連続的に供給する半回分式または半連続式;前記触媒溶液とオレフィンと前記酸素含有ガスとを同時に反応領域に流通させる連続流通式などが挙げられる。 As a specific production method, a catalyst solution prepared by mixing the immobilized palladium catalyst and a solvent or a mixed solution in which an olefin is mixed with the catalyst solution is charged into a batch reactor and reacted. Batch type; semi-batch type or semi-continuous type in which the olefin and the oxygen-containing gas are continuously supplied into the catalyst solution, or the oxygen-containing gas is continuously supplied into the mixed solution; Examples thereof include a continuous flow type in which an olefin and the oxygen-containing gas are simultaneously passed through a reaction region.
 本発明のケトンの製造方法において、前記固定化パラジウム触媒の濃度としては、パラジウム化合物濃度換算で0.002~1mol/Lが好ましく、0.001~0.05mol/Lがより好ましい。固定化パラジウム触媒の濃度が前記下限未満になるとオレフィンの酸化反応が十分に進行せず、高収率でケトンを製造することができない傾向にあり、他方、前記上限を超えると不活性種であるPd blackが生成し、オレフィンの酸化反応が十分に進行しない傾向にある。 In the ketone production method of the present invention, the concentration of the immobilized palladium catalyst is preferably 0.002 to 1 mol / L, more preferably 0.001 to 0.05 mol / L, in terms of palladium compound concentration. If the concentration of the immobilized palladium catalyst is less than the lower limit, the oxidation reaction of the olefin does not proceed sufficiently, and the ketone cannot be produced in a high yield. On the other hand, if the concentration exceeds the upper limit, it is an inert species. Pd black is generated and the olefin oxidation reaction does not proceed sufficiently.
 本発明のケトンの製造方法において、前記触媒溶液中にオレフィンと前記酸素含有ガスとを連続的に供給する場合、オレフィンの供給速度としては、パラジウム1mol当り10~5000mol/hが好ましい。オレフィンの供給速度が前記下限未満になると単位時間当たりのケトンの生産量が減少する傾向にあり、他方、前記上限を超えると不活性種であるPd Blackが生成し、ケトンを高収率で得ることができない傾向にある。なお、前記酸素含有ガスの供給速度については、反応系内の酸素圧が前記範囲内となるように適宜調整される。 In the method for producing a ketone of the present invention, when the olefin and the oxygen-containing gas are continuously supplied into the catalyst solution, the olefin supply rate is preferably 10 to 5000 mol / h per 1 mol of palladium. When the olefin supply rate is less than the lower limit, the production amount of ketone per unit time tends to decrease. On the other hand, when the upper limit is exceeded, Pd Black, which is an inert species, is produced, and the ketone is obtained in high yield. It tends to be impossible. The supply rate of the oxygen-containing gas is appropriately adjusted so that the oxygen pressure in the reaction system is within the above range.
 本発明のケトンの製造方法において、前記酸化反応を実施する際の反応温度としては、30~200℃が好ましく、40~100℃がより好ましい。反応温度が前記範囲にあると、本発明の固定化パラジウム触媒は、側鎖にアミド結合を有するポリマーとパラジウム化合物とが錯体を形成した安定な状態で溶解するため、反応系は均一となり、高収率且つ高選択率でオレフィンからケトンを製造することができる。一方、前記下限未満になると固定化パラジウム触媒が沈殿しやすく、反応系が不均一となるため、反応速度が遅くなり、ケトンの収率が低下する傾向にあり、他方、前記上限を超えるとオレフィンの異性化などの副反応が起こり、対応するケトンの選択率が低下する傾向にある。 In the method for producing a ketone of the present invention, the reaction temperature for carrying out the oxidation reaction is preferably 30 to 200 ° C., more preferably 40 to 100 ° C. When the reaction temperature is within the above range, the immobilized palladium catalyst of the present invention dissolves in a stable state in which a polymer having an amide bond in the side chain and a palladium compound are complexed, so that the reaction system becomes uniform and high Ketones can be produced from olefins in high yield and high selectivity. On the other hand, if it is less than the lower limit, the immobilized palladium catalyst tends to precipitate and the reaction system becomes heterogeneous, so the reaction rate tends to be slow and the yield of ketone tends to decrease. Side reactions such as the isomerization of benzene occur and the selectivity of the corresponding ketone tends to decrease.
 また、本発明のケトンの製造方法においては、従来のワッカー法で用いられる銅触媒の濃度が0.03mol/L以下であることが好ましく、0.01mol/L以下であることがより好ましく、0.003mol/L以下であることが特に好ましい。銅触媒の濃度が前記上限を超えると対応するケトンの収率が低下する傾向にある。このような観点から本発明のケトンの製造方法においては銅触媒の非存在下(濃度:0mol/L)でオレフィンを酸化せしめることが最も好ましい。銅触媒は、従来のワッカー法においてはパラジウム触媒の再酸化を促進していたものであるが、本発明にかかるオレフィンのワッカー反応においては、銅触媒の共存により対応するケトンの収率が低下する傾向にあることから、分子状酸素により効率的に進行する固定化パラジウム触媒の活性を阻害するものと推察される。 In the method for producing a ketone of the present invention, the concentration of the copper catalyst used in the conventional Wacker method is preferably 0.03 mol / L or less, more preferably 0.01 mol / L or less, Particularly preferred is 0.003 mol / L or less. When the concentration of the copper catalyst exceeds the upper limit, the yield of the corresponding ketone tends to decrease. From such a viewpoint, in the method for producing a ketone of the present invention, it is most preferable to oxidize an olefin in the absence of a copper catalyst (concentration: 0 mol / L). The copper catalyst promotes reoxidation of the palladium catalyst in the conventional Wacker method, but in the olefin Wacker reaction according to the present invention, the yield of the corresponding ketone decreases due to the coexistence of the copper catalyst. From this tendency, it is presumed that the activity of the immobilized palladium catalyst that proceeds efficiently by molecular oxygen is inhibited.
 このようにして得られたケトンは、常法に従って分離精製することにより所望の純度または組成の単独化合物または混合物として得ることができる。本発明のケトンの製造方法においては、酸化反応時の副反応が少ないため、未反応の原料は回収して再度ケトンの製造に使用することができる。また、溶媒も回収して再利用することができる。 The ketone thus obtained can be obtained as a single compound or a mixture having a desired purity or composition by separation and purification according to a conventional method. In the method for producing a ketone of the present invention, since there are few side reactions during the oxidation reaction, the unreacted raw material can be recovered and used again for the production of the ketone. Also, the solvent can be recovered and reused.
 また、本発明のケトンの製造方法においては、酸化反応終了後の反応溶液を室温付近まで冷却することによって固定化パラジウム触媒をろ過や遠心分離により容易に分離回収できる。すなわち、前記固定化パラジウム触媒は、前記反応温度条件では溶媒中に均一に分散しているが、室温付近まで冷却すると沈殿するため、この沈殿物をろ過や遠心分離により回収することによって容易に再利用することが可能となる。さらに、本発明のケトンの製造方法においては、固定化パラジウム触媒が劣化しにくいため、再生処理を行なわなくても分離回収後にそのまま次のケトンの製造に再利用することが可能であり、ケトンの収率などの低下も起こりにくい。 In the method for producing a ketone of the present invention, the immobilized palladium catalyst can be easily separated and recovered by filtration or centrifugation by cooling the reaction solution after completion of the oxidation reaction to near room temperature. That is, the immobilized palladium catalyst is uniformly dispersed in the solvent under the reaction temperature conditions, but precipitates when cooled to near room temperature. Therefore, the precipitate can be easily recovered by collecting the precipitate by filtration or centrifugation. It can be used. Furthermore, in the method for producing a ketone of the present invention, since the immobilized palladium catalyst is hardly deteriorated, it can be reused in the production of the next ketone as it is after the separation and recovery without performing a regeneration treatment. A decrease in yield and the like is also unlikely to occur.
 以下、実施例および比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically based on examples and comparative examples, but the present invention is not limited to the following examples.
 (実施例1)
 オートクレーブ型反応器に塩化パラジウム(II)(1.8mg、0.01mmol)、ポリビニルピロリドン(PVP、0.5g、東京化成工業(株)製「ポリビニルピロリドンK30」、粘度平均分子量(Mt):4万)および水(2.0ml)を入れて撹拌した。その結果、ポリビニルピロリドンに塩化パラジウムが固定化されて淡黄色の沈殿物(以下、「Pd-PVP触媒」という)が生成した。
Example 1
In an autoclave reactor, palladium (II) chloride (1.8 mg, 0.01 mmol), polyvinylpyrrolidone (PVP, 0.5 g, “Polyvinylpyrrolidone K30” manufactured by Tokyo Chemical Industry Co., Ltd.), viscosity average molecular weight (Mt): 4 And water (2.0 ml) were added and stirred. As a result, palladium chloride was immobilized on polyvinylpyrrolidone to produce a pale yellow precipitate (hereinafter referred to as “Pd-PVP catalyst”).
 次に、前記Pd-PVP触媒生成後の反応器にアセトニトリル(5ml)および1-デセン(112mg、0.5mmol)を添加して反応器内を脱圧した後、酸素ガスを供給して反応器内を0.6MPaに加圧し、80℃で5時間酸化反応を行なった。このとき、反応系内は均一であった。 Next, acetonitrile (5 ml) and 1-decene (112 mg, 0.5 mmol) were added to the reactor after the Pd—PVP catalyst was formed to depressurize the reactor, and oxygen gas was then supplied to the reactor. The inside was pressurized to 0.6 MPa and an oxidation reaction was carried out at 80 ° C. for 5 hours. At this time, the inside of the reaction system was uniform.
 反応終了後、室温まで冷却したところ、生成物を含む層とPd-PVP触媒を含む層に分離した。前記生成物をFID検出器を装着したガスクロマトグラフ((株)島津製作所製「GC-2014」、カラム:KOCL 3m)を用いて分析した。その結果を表1に示す。 After completion of the reaction, the mixture was cooled to room temperature, and separated into a layer containing the product and a layer containing the Pd-PVP catalyst. The product was analyzed using a gas chromatograph (“GC-2014” manufactured by Shimadzu Corporation, column: KOCL 3 m) equipped with an FID detector. The results are shown in Table 1.
 (実施例2)
 反応器内を0.3MPaに加圧した以外は実施例1と同様にして酸化反応を行なった。反応終了後の生成物を実施例1と同様にして分析した。その結果を表1に示す。
(Example 2)
The oxidation reaction was carried out in the same manner as in Example 1 except that the pressure inside the reactor was increased to 0.3 MPa. The product after completion of the reaction was analyzed in the same manner as in Example 1. The results are shown in Table 1.
 (実施例3)
 1-デセンの代わりにシクロヘキセン(246mg、3.0mmol)を用い、反応時間を4時間に変更した以外は実施例1と同様にして酸化反応を行なった。反応終了後の生成物を実施例1と同様にして分析した。その結果を表1に示す。
(Example 3)
The oxidation reaction was carried out in the same manner as in Example 1 except that cyclohexene (246 mg, 3.0 mmol) was used instead of 1-decene and the reaction time was changed to 4 hours. The product after completion of the reaction was analyzed in the same manner as in Example 1. The results are shown in Table 1.
 (実施例4)
 1-デセンの代わりに2-ブテン(375mg、6.70mmol)を用い、塩化パラジウム(II)の量を6.1mg(0.034mmol)、PVPの量を1.5g、水の量を6.0ml、アセトニトリルの量を15ml、反応時間を6時間に変更した以外は実施例1と同様にして酸化反応を行なった。反応終了後の生成物を実施例1と同様にして分析した。その結果を表1に示す。
Example 4
2-butene (375 mg, 6.70 mmol) was used instead of 1-decene, the amount of palladium (II) chloride was 6.1 mg (0.034 mmol), the amount of PVP was 1.5 g, and the amount of water was 6. The oxidation reaction was carried out in the same manner as in Example 1 except that 0 ml, the amount of acetonitrile was changed to 15 ml, and the reaction time was changed to 6 hours. The product after completion of the reaction was analyzed in the same manner as in Example 1. The results are shown in Table 1.
 (実施例5)
 1-デセンの代わりにシクロペンテン(205.6mg、3.02mmol)を用い、塩化パラジウム(II)の量を6.1mg(0.034mmol)、PVPの量を1.5g、水の量を6.0ml、アセトニトリルの量を15ml、反応時間を6時間に変更した以外は実施例1と同様にして酸化反応を行なった。反応終了後の生成物を実施例1と同様にして分析した。その結果を表1に示す。
(Example 5)
Cyclopentene (205.6 mg, 3.02 mmol) was used instead of 1-decene, the amount of palladium (II) chloride was 6.1 mg (0.034 mmol), the amount of PVP was 1.5 g, and the amount of water was 6. The oxidation reaction was carried out in the same manner as in Example 1 except that 0 ml, the amount of acetonitrile was changed to 15 ml, and the reaction time was changed to 6 hours. The product after completion of the reaction was analyzed in the same manner as in Example 1. The results are shown in Table 1.
 (比較例1)
 反応器内を0.1MPaに加圧した以外は実施例1と同様にして酸化反応を行なった。反応終了後の生成物を実施例1と同様にして分析した。その結果を表1に示す。
(Comparative Example 1)
The oxidation reaction was carried out in the same manner as in Example 1 except that the pressure inside the reactor was increased to 0.1 MPa. The product after completion of the reaction was analyzed in the same manner as in Example 1. The results are shown in Table 1.
 (比較例2)
 酸化反応時間を15時間に変更した以外は比較例1と同様にして酸化反応を行なった。反応終了後の生成物を実施例1と同様にして分析した。その結果を表1に示す。
(Comparative Example 2)
The oxidation reaction was carried out in the same manner as in Comparative Example 1 except that the oxidation reaction time was changed to 15 hours. The product after completion of the reaction was analyzed in the same manner as in Example 1. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表1に示した結果から明らかなように、塩化パラジウム(II)をポリビニルピロリドンに固定化した場合であっても、1-デセンまたは2-ブテンの酸化反応において十分な触媒活性を示すことが確認された(実施例1~2、4)。また、酸素圧が0.3MPa以上の場合(実施例1~2、4)には、酸素圧が0.1MPaの場合(比較例1~2)に比べて高収率で2-デカノンまたはメチルエチルケトンを得ることができ、異性体の生成も観察されなかった。なお、酸素圧が0.3MPa以上の場合に2-デカノンまたはメチルエチルケトンの収率が高くなる理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、比較例1~2においては、反応終了後の溶液が黒色を呈していたことから、酸化反応により生成した0価のPdがそのまま凝集しており、酸素による再酸化が十分に進行しなかったと推察される。一方、実施例1~2、4においては、反応終了後の溶液が黒色ではなかったことから、酸化反応により生成した0価のPdは再酸化されたと推察され、特に、実施例1~2においては、反応終了後の溶液が黄色を呈していたことから、酸化反応により生成した0価のPdは効率よく再酸化されたと推察される。 As is clear from the results shown in Table 1, it was confirmed that even when palladium (II) chloride was immobilized on polyvinylpyrrolidone, it exhibited sufficient catalytic activity in the oxidation reaction of 1-decene or 2-butene. (Examples 1-2, 4). Further, when the oxygen pressure is 0.3 MPa or more (Examples 1 to 2 and 4), 2-decanone or methyl ethyl ketone is produced in a higher yield than when the oxygen pressure is 0.1 MPa (Comparative Examples 1 and 2). And formation of isomers was not observed. The reason why the yield of 2-decanone or methyl ethyl ketone is high when the oxygen pressure is 0.3 MPa or higher is not necessarily clear, but the present inventors speculate as follows. That is, in Comparative Examples 1 and 2, since the solution after the reaction was black, zero-valent Pd produced by the oxidation reaction was aggregated as it was, and reoxidation with oxygen did not proceed sufficiently. It is inferred that On the other hand, in Examples 1 to 2 and 4, since the solution after completion of the reaction was not black, it was inferred that the zero-valent Pd produced by the oxidation reaction was reoxidized. In particular, in Examples 1 and 2, Is presumed that the zero-valent Pd produced by the oxidation reaction was efficiently reoxidized because the solution after the reaction was yellow.
 また、シクロヘキセンまたはシクロペンテンを酸化させた場合(実施例3、5)においても高収率でシクロヘキサノンまたはシクロペンタノンが生成した。このことから、本発明の固定化パラジウム触媒を用いることによって、種々のオレフィンから対応するケトンを製造できることが確認された。 In addition, when hexahexene or cyclopentene was oxidized (Examples 3 and 5), cyclohexanone or cyclopentanone was produced in a high yield. From this, it was confirmed that the corresponding ketones can be produced from various olefins by using the immobilized palladium catalyst of the present invention.
 (実施例6)
 反応時間を6時間に変更した以外は実施例1と同様にして酸化反応(1回目)を行なった。反応終了後の生成物を実施例1と同様にして分析した。その結果を表2に示す。
(Example 6)
An oxidation reaction (first time) was performed in the same manner as in Example 1 except that the reaction time was changed to 6 hours. The product after completion of the reaction was analyzed in the same manner as in Example 1. The results are shown in Table 2.
 次に、冷却後の溶液を遠心分離(3000rpm×10分間)して下層のPd-PVP触媒を回収した。得られたPd-PVP触媒をオートクレーブ型反応器に入れ、水(2.0ml)、アセトニトリル(5ml)および1-デセン(112mg、0.5mmol)を添加して反応器内を脱圧した後、酸素ガスを供給して反応器内を0.6MPaに加圧して80℃で6時間酸化反応(2回目)を行なった。反応終了後の生成物を実施例1と同様にして分析した。その結果を表2に示す。 Next, the cooled solution was centrifuged (3000 rpm × 10 minutes) to recover the lower layer Pd-PVP catalyst. The obtained Pd-PVP catalyst was put into an autoclave reactor, water (2.0 ml), acetonitrile (5 ml) and 1-decene (112 mg, 0.5 mmol) were added to depressurize the inside of the reactor, Oxygen gas was supplied to pressurize the inside of the reactor to 0.6 MPa, and an oxidation reaction (second time) was performed at 80 ° C. for 6 hours. The product after completion of the reaction was analyzed in the same manner as in Example 1. The results are shown in Table 2.
 さらに、上記と同様にしてPd-PVP触媒を回収した後、上記と同一の条件で3回目の酸化反応を行なった。反応終了後の生成物を実施例1と同様にして分析した。その結果を表2に示す。 Further, after recovering the Pd-PVP catalyst in the same manner as described above, a third oxidation reaction was performed under the same conditions as described above. The product after completion of the reaction was analyzed in the same manner as in Example 1. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表2に示した結果から明らかなように、本発明の固定化パラジウム触媒を用いることにより、従来のパラジウム触媒では困難であった触媒の分離回収が可能となり、しかも、再利用したPd-PVP触媒であっても異性体の生成は観察されず、高収率で2-デカノンを得ることができた。 As is apparent from the results shown in Table 2, by using the immobilized palladium catalyst of the present invention, it becomes possible to separate and recover the catalyst, which was difficult with the conventional palladium catalyst, and the reused Pd-PVP catalyst. Even in this case, no isomer was observed and 2-decanone could be obtained in high yield.
 以上説明したように、本発明によれば、オレフィンを酸化して対応するケトンを製造する際に、容易に回収して再利用することができる固定化パラジウム触媒を得ることができる。また、このような固定化パラジウム触媒を用いることによって高収率且つ高選択率でオレフィンからケトンを、分子状酸素を供給するという簡便な方法で製造することが可能となる。 As described above, according to the present invention, it is possible to obtain an immobilized palladium catalyst that can be easily recovered and reused when an olefin is oxidized to produce a corresponding ketone. Further, by using such an immobilized palladium catalyst, it is possible to produce a ketone from an olefin with a high yield and high selectivity by a simple method of supplying molecular oxygen.
 したがって、本発明のケトンの製造方法は、ケトンの収率および選択性が高く、しかも簡便であり、さらに、使用したパラジウム触媒を容易に回収して再利用することができ、経済的に非常に有利である。すなわち、この方法により得られたケトンは、溶媒や化学原料などの工業原料として有用である。 Therefore, the method for producing a ketone of the present invention is high in yield and selectivity of the ketone, and is simple, and further, the used palladium catalyst can be easily recovered and reused, which is very economical. It is advantageous. That is, the ketone obtained by this method is useful as an industrial raw material such as a solvent or a chemical raw material.

Claims (5)

  1.  側鎖にアミド結合を有するポリマーと、該ポリマーに固定化されたパラジウム化合物とを備える固定化パラジウム触媒。 An immobilized palladium catalyst comprising a polymer having an amide bond in the side chain and a palladium compound immobilized on the polymer.
  2.  前記側鎖が環状構造を形成している、請求項1に記載の固定化パラジウム触媒。 The immobilized palladium catalyst according to claim 1, wherein the side chain forms a cyclic structure.
  3.  前記側鎖にアミド結合を有するポリマーがポリビニルピロリドンである、請求項2に記載の固定化パラジウム触媒。 The immobilized palladium catalyst according to claim 2, wherein the polymer having an amide bond in the side chain is polyvinylpyrrolidone.
  4.  請求項1~3のうちのいずれか一項に記載の固定化パラジウム触媒を用いて、水および分子状酸素の存在下、酸素圧が0.3MPa以上の条件で、分子内に1個以上の炭素-炭素二重結合を有するオレフィンを酸化せしめて、前記炭素-炭素二重結合を構成する少なくとも一方の炭素原子にオキソ基を結合せしめるケトンの製造方法。 Using the immobilized palladium catalyst according to any one of claims 1 to 3, in the presence of water and molecular oxygen, the oxygen pressure is 0.3 MPa or more, and at least one in the molecule. A method for producing a ketone, wherein an olefin having a carbon-carbon double bond is oxidized to bond an oxo group to at least one carbon atom constituting the carbon-carbon double bond.
  5.  銅触媒の非存在下で前記オレフィンを酸化せしめる請求項4に記載のケトンの製造方法。 The method for producing a ketone according to claim 4, wherein the olefin is oxidized in the absence of a copper catalyst.
PCT/JP2011/057326 2010-03-31 2011-03-25 Immobilized palladium catalyst and method for producing ketone using the same WO2011125541A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012509436A JPWO2011125541A1 (en) 2010-03-31 2011-03-25 Immobilized palladium catalyst and method for producing ketone using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010082160 2010-03-31
JP2010-082160 2010-03-31

Publications (1)

Publication Number Publication Date
WO2011125541A1 true WO2011125541A1 (en) 2011-10-13

Family

ID=44762495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057326 WO2011125541A1 (en) 2010-03-31 2011-03-25 Immobilized palladium catalyst and method for producing ketone using the same

Country Status (2)

Country Link
JP (1) JPWO2011125541A1 (en)
WO (1) WO2011125541A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103664557A (en) * 2012-09-25 2014-03-26 中国石油化工股份有限公司 Method for preparing cyclopentanone by oxidation of cyclopentene

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097167A (en) * 2000-09-19 2002-04-02 Maruzen Petrochem Co Ltd Method for producing oxygen-containing compound

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097167A (en) * 2000-09-19 2002-04-02 Maruzen Petrochem Co Ltd Method for producing oxygen-containing compound

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
M.T.REETZ ET AL.: "Suzuki and Heck Reactions Catalyzed by Preformed Palladium Clusters and Palladium/Nickel Bimetallic Clusters", TETRAHEDRON LETTERS, vol. 37, no. 26, 24 June 1996 (1996-06-24), pages 4499 - 4502 *
P.G.N.MERTENS ET AL.: "Selective alcohol oxidation to aldehydes and ketones over base- promoted gold-palladium clusters as recyclable quasihomogeneous and heterogeneous metal catalysts", JOURNAL OF MOLECULAR CATALYSIS A: CHEMICAL, vol. 313, no. 1-2, 2 November 2009 (2009-11-02), pages 14 - 21 *
S.-H.CHOI ET AL.: "Preparation of catalytically efficient precious metallic colloids by gamma- irradiation and characterization", COLLOIDS AND SURFACES A, vol. 256, no. 2-3, 22 April 2005 (2005-04-22), pages 165 - 170 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103664557A (en) * 2012-09-25 2014-03-26 中国石油化工股份有限公司 Method for preparing cyclopentanone by oxidation of cyclopentene

Also Published As

Publication number Publication date
JPWO2011125541A1 (en) 2013-07-08

Similar Documents

Publication Publication Date Title
Mitsudome et al. Wacker-type oxidation of internal olefins using a PdCl2/N, N-dimethylacetamide catalyst system under copper-free reaction conditions
EP1619176B1 (en) Process for producing cycloalkanol and/or cycloalkanone
KR100715637B1 (en) Process for preparing ketone, alcohol and hydroperoxide
JP5524861B2 (en) Method for producing ketone
CN1547564A (en) Method for producing saturated alcohols, ketones, aldehydes and carboxylic acids
WO2011125541A1 (en) Immobilized palladium catalyst and method for producing ketone using the same
JP5613150B2 (en) Method for producing ketone
JP2008534577A (en) Method for producing p-toluic acid by liquid phase oxidation of p-xylene in water
Bordoloi et al. Tungsten‐and Molybdenum‐Based Coordination Polymer‐Catalyzed N‐Oxidation of Primary Aromatic Amines with Aqueous Hydrogen Peroxide
US8664447B2 (en) Process for the oxidation of hydrocarbons with the use of iridium metal catalyst complexes
US20020128478A1 (en) Process for a carbon-carbon coupling reaction of aryl halides with olefins by heterogeneous catalysts
JP4601805B2 (en) Cyclohexane oxidation method
JP5000354B2 (en) Method for producing dihydroxy aromatic compound
EP1741694A1 (en) Method for producing cycloalkanol and/or cycloalkanone
JPH0648974A (en) Production of carbonyl compound
JPWO2011043459A1 (en) Method for producing ketone
CN108329243A (en) Polymer/metallic porphyrin and n-Hydroxyphthalimide concerted catalysis cyclohexylbenzene hydroperoxide
JP4646423B2 (en) Method for producing carboxylic acid or ester thereof
JPH05140020A (en) Production of carbonyl compound
JPH0551344A (en) Production of carbonyl compound
JP2002097167A (en) Method for producing oxygen-containing compound
JP3147422B2 (en) Method for producing naphthalenedicarboxylic acid
JP2006273803A (en) Method for producing conjugated unsaturated carbonyl compound
JPH0311058A (en) Production of sec-butyltoluene hydroperoxide
JPS6042166B2 (en) Method for recovering ammonia from benzophenone imines

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765442

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012509436

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11765442

Country of ref document: EP

Kind code of ref document: A1