WO2011125333A1 - 無線通信基地局装置、無線通信端末装置及び無線通信方法 - Google Patents

無線通信基地局装置、無線通信端末装置及び無線通信方法 Download PDF

Info

Publication number
WO2011125333A1
WO2011125333A1 PCT/JP2011/002076 JP2011002076W WO2011125333A1 WO 2011125333 A1 WO2011125333 A1 WO 2011125333A1 JP 2011002076 W JP2011002076 W JP 2011002076W WO 2011125333 A1 WO2011125333 A1 WO 2011125333A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
communication device
quality
sleep window
communication method
Prior art date
Application number
PCT/JP2011/002076
Other languages
English (en)
French (fr)
Inventor
吉井勇
岸上高明
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2011125333A1 publication Critical patent/WO2011125333A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0245Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal according to signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a wireless communication base station device, a wireless communication terminal device, and a wireless communication method.
  • wireless communication terminals such as mobile phones and laptop computers have come to be equipped with communication functions such as WiMAX (Worldwide Interoperability for Microwave Access) and WiFi (Wireless Fidelity).
  • WiMAX Worldwide Interoperability for Microwave Access
  • WiFi Wireless Fidelity
  • each of the mobile phone and the laptop computer can communicate with the wireless communication base station (hereinafter referred to as “BS (Base Station)”) by WiMAX, and the mutual communication by WiFi is made between the mobile phone and the laptop computer. It can communicate.
  • BS Base Station
  • the IEEE 802.16 committee uses laptop computers (hereinafter referred to as “cooperating MS” (Cooper)) to transmit data of mobile phones (hereinafter referred to as “MS (Mobile Station)”) having poor propagation path conditions with the BS. It is considered to relay by ".
  • the MS transmits UL transmission data over the WiFi link to the cooperating MS, which transmits the received data over the WiMAX link to the BS.
  • the BS assigns a relay common ID to the MS and the cooperative MS.
  • the cooperative MS and the MS can simultaneously know the resource allocation, as shown in FIG. 1, the joint relay in which the MS and the cooperative MS jointly transmit using the WiMAX link, as shown in FIG. Only cooperative MSs can perform single relaying using WiMAX links.
  • relaying using different wireless links allows transmission with the existing frame format as compared with relaying using the same wireless link. Since transmission can be performed from a WiMAX link with better propagation path conditions, throughput of WiMAX can be increased without increasing cost.
  • WiMAX links used for single relay are transmissions from cooperative MSs with good propagation path conditions. Therefore, it is possible to improve the efficiency of the wireless link.
  • the cooperative MS reports the deterioration of the WiFi link to the BS.
  • the BS instructs the MS to return from the WiMAX sleep mode to the active mode. By this instruction, it is possible to shift from single relay to single transmission using WiMAX of MS and continue communication.
  • a listening window is provided as timing at which WiMAX signals can be temporarily transmitted and received during the sleep mode of WiMAX, and the sleep mode is configured of a listening window and a sleep window other than the listening window.
  • the sleep window is set to a longer window as the time since entering the sleep mode is longer. Therefore, as described above, when switching from single relay via cooperative MS to single transmission of MS by WiMAX, it may take time for the MS WiMAX to recover from the sleep mode.
  • An object of the present invention is to provide a wireless communication base station apparatus, a wireless communication terminal apparatus, and a wireless communication method, which can reduce the time required for returning from the sleep mode of the MS.
  • the communication device is a communication device capable of communicating with the first communication device and the second communication device by the first communication method, and from the first communication device by the second communication method different from the first communication method.
  • Quality acquiring means for acquiring the quality of the buffer
  • buffer amount acquiring means for acquiring the buffer amount indicating the amount of the signal received from the first communication device stored in the second communication device, the quality of the line
  • Sleep window size determining means for determining a size of a sleep window which is a time for which the first communication device suspends communication according to the first communication method based on a buffer amount; Wherein a configuration comprising transmitting means for transmitting a sleep window size of the first communication device, was.
  • the communication device is a communication device capable of communicating with the first communication device by the first communication method, and transmitting a signal to the second communication device by the second communication method different from the first communication method, Quality acquisition means for acquiring the quality of a line according to the second communication method between the second communication device and the communication device, and the amount of signals transmitted from the communication device stored in the second communication device A sleep amount controlling time of a sleep window which is a time during which the communication apparatus suspends communication according to the first communication method based on buffer amount obtaining means for obtaining the indicated buffer amount, and the quality of the line and the buffer amount And a mode control unit.
  • the first communication device, the second communication device, and the third communication device can communicate according to a first communication method, and the second communication method different from the first communication method can be used to (1) A communication method in which the second communication device relays a signal transmitted from one communication device to the third communication device according to the first communication method, which is between the first communication device and the second communication device The quality of the line according to the second communication method is acquired, and a buffer amount indicating the amount of the signal received from the first communication device stored in the second communication device is acquired, and the quality of the line and the buffer amount And determining the size of a sleep window, which is a time for which the first communication device suspends communication according to the first communication method, and determining the size of the determined sleep window as the first communication device. To send, and so on.
  • a schematic diagram showing joint relaying with MS and cooperative MS using WiMAX link jointly A schematic diagram showing a single relay where only cooperative MSs relay using the WiMAX link
  • Block diagram showing configuration of MS according to Embodiment 1 of the present invention Block diagram showing the configuration of cooperative MS according to Embodiment 1 of the present invention
  • Block diagram showing configuration of BS according to Embodiment 1 of the present invention The schematic diagram which shows the control procedure of the sleep window which MS, cooperation MS, and BS which concern on Embodiment 1 of this invention perform.
  • a schematic diagram showing the pattern to shorten the sleep window Block diagram showing configuration of MS according to Embodiment 2 of the present invention Block diagram showing the configuration of cooperative MS according to Embodiment 2 of the present invention Block diagram showing configuration of BS according to Embodiment 2 of the present invention
  • the schematic diagram which shows the control procedure of the sleep window which MS, cooperation MS, and BS which concern on Embodiment 2 of this invention perform
  • the schematic diagram which shows the control procedure of the sleep window which MS, cooperation MS, and BS which concern on Embodiment 3 of this invention perform Block diagram showing configuration of MS according to Embodiment 4 of the present invention
  • the schematic diagram which shows the control procedure of the sleep window which MS, cooperation MS, and BS which concern on Embodiment 4 of this invention perform
  • FIG. 3 is a block diagram showing a configuration of MS 100 according to Embodiment 1 of the present invention. The configuration of the MS 100 will be described below with reference to FIG.
  • the WiMAX transmission / reception unit 102 subjects the signal received via the WiMAX antenna 101 to predetermined WiMAX reception processing, and outputs the reception-processed signal to the decoding unit 103. Further, the WiMAX transmission / reception unit 102 performs predetermined transmission processing of the WiMAX system on data output from a data generation unit 105 described later, and transmits a signal subjected to transmission processing from the WiMAX antenna 101.
  • the decoding unit 103 decodes the sleep window size notification signal and the active signal from the signal output from the WiMAX transmission / reception unit 102, and outputs the decoded sleep window size notification signal and the active signal to the sleep mode control unit 104.
  • the sleep mode control unit 104 controls the sleep window size in the sleep mode of WiMAX based on the sleep window size notification signal output from the decoding unit 103. Also, the sleep mode control unit 104 controls switching from the sleep mode to the active mode based on the active signal output from the decoding unit 103. These control results are notified to the data generation unit 105.
  • the sleep mode and the active mode in the following description indicate the WiMAX mode of the MS 100.
  • the data generation unit 105 generates data, and outputs the generated data to the WiFi transmitting / receiving unit 106 in the sleep mode according to the control result of the sleep mode control unit 104, and the generated data to the WiMAX transmitting / receiving unit in the active mode. Output to 102.
  • the WiFi transmission / reception unit 106 performs predetermined transmission processing of the WiFi scheme on the data output from the data generation unit 105, and transmits the data subjected to the transmission processing from the WiFi antenna 107.
  • FIG. 4 is a block diagram showing a configuration of cooperative MS 200 according to Embodiment 1 of the present invention. The configuration of the cooperative MS 200 will be described below with reference to FIG.
  • the WiFi transmitting / receiving unit 202 subjects the signal received via the WiFi antenna 201 to predetermined WiFi reception processing, and outputs the signal subjected to the reception processing to the WiFi link quality detection unit 203 and the WiFi data decoding unit 204. Do.
  • the WiFi link quality detection unit 203 detects the quality of the WiFi link using the signal output from the WiFi transmission / reception unit 202, and outputs the detected WiFi link quality to the WiFi link quality notification signal encoding unit 206.
  • the WiFi data decoding unit 204 decodes WiFi data from the signal output from the WiFi transmission / reception unit 202, and outputs the decoded WiFi data to the buffer unit 205.
  • the buffer unit 205 temporarily stores the WiFi data output from the WiFi data decoding unit 204 and outputs the temporarily stored WiFi data as WiMAX data to the WiMAX data coding unit 208 and is stored in a buffer.
  • the data amount, that is, the buffer amount is output to the buffer amount notification signal encoding unit 207.
  • the WiFi link quality notification signal encoding unit 206 encodes the signal indicating the quality of the WiFi link output from the WiFi link quality detection unit 203, and outputs the encoded signal to the WiMAX transmission / reception unit 209.
  • the buffer amount notification signal encoding unit 207 encodes the signal indicating the buffer amount output from the buffer unit 205, and outputs the encoded signal to the WiMAX transmission / reception unit 209.
  • the WiMAX data encoding unit 208 encodes the WiMAX data output from the buffer unit 205, and outputs the encoded signal to the WiMAX transmission / reception unit 209.
  • the WiMAX transmission / reception unit 209 outputs the signal output from the WiFi link quality notification signal encoding unit 206, the signal output from the buffer amount notification signal encoding unit 207, and the signal output from the WiMAX data encoding unit 208. Is subjected to predetermined transmission processing of the WiMAX system, and data subjected to the transmission processing is transmitted from the antenna 210 for WiMAX.
  • FIG. 5 is a block diagram showing a configuration of BS 300 according to Embodiment 1 of the present invention. Hereinafter, the configuration of BS 300 will be described using FIG.
  • the WiMAX transmission / reception unit 302 subjects the signal received via the WiMAX antenna 301 to a predetermined reception process of the WiMAX system, and the signal subjected to the reception process is the WiFi link quality notification signal decoding unit 303 and the buffer amount notification signal decoding unit Output to 304.
  • the WiMAX transmission / reception unit 302 performs predetermined transmission processing of the WiMAX system on the signal output from the control signal encoding unit 306 described later, and transmits the signal subjected to transmission processing from the WiMAX antenna 301.
  • the WiFi link quality notification signal decoding unit 303 as quality acquisition means decodes the WiFi link quality notification signal from the signal output from the WiMAX transmission / reception unit 302, and transmits the decoded WiFi link quality notification signal to the sleep window size determination unit 305. Output.
  • the buffer amount notification signal decoding unit 304 as a buffer amount acquisition unit decodes the buffer amount notification signal from the signal output from the WiMAX transmission / reception unit 302, and outputs the decoded buffer amount notification signal to the sleep window size determination unit 305. .
  • the sleep window size determination unit 305 is set in the MS 100 based on the WiFi link quality notification signal output from the WiFi link quality notification signal decoding unit 303 and the buffer amount notification signal output from the buffer amount notification signal decoding unit 304. The size of the sleep window to be used is determined, and the determined sleep window size is output to the control signal encoding unit 306. Also, based on the acquired WiFi link quality notification signal and the buffer amount notification signal, an active signal for activating WiMAX of the MS 100 is generated, and the generated active signal is output to the control signal encoding unit 306.
  • the control signal encoding unit 306 encodes the sleep window size notification signal indicating the sleep window size output from the sleep window size determination unit 305 and the active signal, and transmits these encoded control signals to the WiMAX transmission / reception unit 302. Output to
  • the control procedure of the sleep window performed by the MS 100, the cooperative MS 200, and the BS 300 described above will be described with reference to FIG.
  • the MS 100 and the cooperative MS 200 have WiMAX and WiFi communication functions
  • the BS 300 has WiMAX communication functions.
  • the WiMAX of the MS 100 is in the sleep mode until it is in the active mode.
  • the MS 100 transmits UL transmission data from the WiFi transmission / reception unit 106 to the cooperating MS 200 via the WiFi link, and the cooperation MS 200 buffers the UL transmission data received from the MS 100 in the buffer unit 205 and buffers it. Is transmitted to the BS 300 from the WiMAX transmission / reception unit 209 by the WiMAX link.
  • the cooperative MS 200 notifies the BS 300 of the quality of the WiFi link detected by the WiFi link quality detection unit 203 and the buffer amount stored in the buffer unit 205.
  • the sleep window size determination unit 305 of the BS 300 determines the size of the sleep window based on the quality of the WiFi link notified from the cooperative MS 200 and the buffer amount of the cooperative MS. For example, if the quality of the WiFi link is degraded, there is a high possibility that the WiFi link will be disconnected, so the sleep window is shortened to prepare for the WiMAX of MS 100 to return to the active mode.
  • the sleep window size determination unit 305 determines to shorten the size of the sleep window when the quality of the WiFi link becomes SINR ⁇ 3 dB and the buffer amount of the cooperative MS 200 becomes 0%, otherwise In this case, the size of the sleep window does not change. In the case of shortening the sleep window, the BS 300 notifies the MS 100 of a sleep window size notification signal on the downlink of the WiMAX link at the timing of the listening window.
  • the above shows an example when the quality of the WiFi link becomes SINR ⁇ 3 dB and the buffer amount of the cooperative MS 200 becomes 0%.
  • the quality of the WiFi link is not limited to SINR, and may be CNR (Channel to Noise Ratio).
  • the sleep window size determination of the BS 300 at the timing of the listening window The unit 305 generates an active signal, and transmits the active signal of the WiMAX link from the BS 300 to the MS 100.
  • pattern A as shown in FIG. 7B, when the MS receives a sleep window size notification signal in the listening window, the placement of the sleep window is repeated from the beginning, and the sleep windows are placed in the order of N1, 2 ⁇ N1, 4 ⁇ N1. Be done.
  • the sleep window size can be shortened compared to the conventional pattern, and power saving can be promoted if the quality and buffer amount of the WiFi link do not change.
  • pattern B sleeps so that the length of the sleep window is gradually shortened according to the buffer size of the cooperating MS.
  • the window is placed.
  • sleep windows are arranged in the order of 4 ⁇ N1, 2 ⁇ N1, and N1.
  • the sleep window size can be shortened as compared with the conventional pattern, and since the sleep time can be kept long when the quality and buffer amount of the WiFi link gradually change, power saving is maintained. As it is, the transition to the WiMAX link can be performed promptly.
  • pattern C adds a listening window while maintaining the conventional sleep cycle (1 sleep window + 1 listening window), as shown in FIG. 7D.
  • the sleep window size can be shortened compared to the conventional pattern, transition to the WiMAX link can be performed quickly while maintaining power saving, and the sleep cycle is maintained, so timing management Can be done easily.
  • the BS determines the size of the sleep window based on the quality of the WiFi link between the MS and the cooperating MS and the transmission data amount of the MS buffered in the cooperating MS.
  • the sleep window can be shortened with an increased possibility of disconnection of the WiFi link, and the active signal in the listening window immediately. Since it can be received, the time required for the MS to recover from the sleep mode can be shortened.
  • FIG. 8 is a block diagram showing a configuration of MS 120 according to Embodiment 2 of the present invention. 8 differs from FIG. 3 in that the decoding unit 103 is deleted, the WiFi link quality detection unit 121 and the buffer amount notification signal decoding unit 122 are added, and the sleep mode control unit 104 is changed to the sleep mode control unit 123. It is.
  • the WiFi link quality detection unit 121 as a quality acquisition unit detects the quality of the WiFi link using the signal output from the WiFi transmission / reception unit 106, and outputs the detected WiFi link quality to the sleep mode control unit 123. .
  • the buffer amount notification signal decoding unit 122 as the buffer amount acquisition unit decodes the buffer amount notification signal indicating the transmission data amount of MS buffered in the cooperative MS from the signal output from the WiFi transmission / reception unit 106
  • the buffer amount notification signal is output to the sleep mode control unit 123.
  • the sleep mode control unit 123 controls the sleep window size in the sleep mode based on the quality of the WiFi link output from the WiFi link quality detection unit 121 and the buffer amount output from the buffer amount notification signal decoding unit 122. . Also, based on the active signal output from the WiMAX transmission / reception unit 102, the WiMAX is controlled to the active mode.
  • FIG. 9 is a block diagram showing a configuration of cooperative MS 220 according to Embodiment 2 of the present invention. 9 is different from FIG. 4 in that a buffer amount notification signal encoding unit 221 is added and the WiFi transmitting / receiving unit 202 is changed to a WiFi transmitting / receiving unit 222.
  • the buffer amount notification signal encoding unit 221 encodes the signal indicating the buffer amount output from the buffer unit 205, and outputs the encoded signal to the WiFi transmission / reception unit 222.
  • the WiFi transmitting / receiving unit 222 subjects the signal received via the WiFi antenna 201 to predetermined WiFi reception processing, and outputs the reception-processed signal to the WiFi link quality detection unit 203 and the WiFi data decoding unit 204. Do. Further, the WiFi transmitting / receiving unit 222 performs a predetermined transmission process of the WiFi method on the signal output from the buffer amount notification signal encoding unit 221, and transmits the data subjected to the transmission process from the WiFi antenna 201.
  • FIG. 10 is a block diagram showing a configuration of BS 320 according to Embodiment 2 of the present invention. 10 is different from FIG. 5 only in that the control signal coding unit 306 is deleted, and thus the detailed description of the configuration of the BS 320 is omitted.
  • the cooperative MS 220 notifies the MS 120 of the buffer amount, which is the MS's data amount stored in the buffer unit 205, to the MS 120 by the WiFi link, and notifies the BS 320 of the WiMAX link.
  • the BS 320 is notified of the quality of the WiFi link and the buffer amount of the cooperating MS from the cooperating MS 120 as in the first embodiment. Also, the MS 120 detects the quality of the WiFi link, and receives notification of the buffer size of the cooperating MS 220 from the cooperating MS 220. As a result, the MS 120 can change the sleep window size without receiving an instruction from the BS 320.
  • the communication system such as TDD (Time Division Duplex) is used between the MS 120 and the cooperative MS 220, and the quality from the cooperative MS 220 to the MS 120 is the same as the quality from the MS 120 to the cooperative MS 220. If the quality from the MS 120 to the MS 120 can not be estimated with the quality from the MS 220 to the MS 120, a separate notification signal is required.
  • TDD Time Division Duplex
  • the MS 120 and BS 320 determine the size of the MS 120 sleep window on a common basis from the quality of the WiFi link and the buffer size of the cooperating MS.
  • the size of the sleep window can be changed. Since BS 320 needs to know the location of the listening window, BS 320 also needs to know the size of the MS 120 sleep window.
  • the size of the sleep window is changed.
  • the present invention is not limited thereto.
  • the size of the sleep window may be changed when the quality of the WiFi link falls below a predetermined value and the buffer amount falls below a predetermined amount or a predetermined amount.
  • the quality of the WiFi link is not limited to SINR, and may be CNR (Channel to Noise Ratio).
  • the BS and MS sleep windows based on the quality of the WiFi link between the MS and the cooperating MS, and the transmission data amount of the MS buffered in the cooperating MS, the BS and MS sleep windows based on the same criteria.
  • the sleep window can be shortened with an increased possibility of disconnection of the WiFi link without notifying the sleep window size from the BS to the MS, and the active signal can be immediately displayed in the listening window. Since it can be received, the time required for the MS to recover from the sleep mode can be shortened.
  • the sleep window size determination unit 305 of the BS 300 generates an active signal when notified by the cooperating MS of WiFi link disconnection notification and that the buffer size is 30%, and starts transmission by the WiMAX link. And notify the MS. This allows the BS to obtain data from the MS as it is buffered in the cooperating MS, ie data which has not been acquired, errors between the MS and the cooperating MS, or between the cooperating MS and BS Even if there is an error in the above, the transition to the WiMAX link can be reliably performed while maintaining the power saving.
  • the sleep window size determination unit 305 of the BS 300 generates a flush signal for discarding the contents of the buffer together with the generation of the sequence number, and transmits the generated flush signal to the cooperative MS. Thereby, even during data transmission from the cooperative MS to the BS, transition to the WiMAX link can be performed.
  • BS upon transmission of an active signal from BS to MS, BS is notified to the MS of a sequence number starting transmission by the WiMAX link, whereby the BS remains buffered in the cooperative MS. Data can be obtained from the MS and migration to the WiMAX link can be ensured.
  • sequence number notified from the BS to the MS in the present embodiment may be a number in a layer higher than the MAC.
  • the present invention is not limited to this, and the buffer amount of the cooperative MS may be notified.
  • FIG. 13 is a block diagram showing a configuration of MS 140 according to Embodiment 4 of the present invention. 13 differs from FIG. 8 in that the WiMAX transmission / reception unit 102 is changed to a WiMAX transmission / reception unit 141.
  • the WiMAX transmission / reception unit 141 performs predetermined transmission processing of the WiMAX system on the quality of the WiFi link output from the WiFi link quality detection unit 121 and the buffer amount output from the buffer amount notification signal decoding unit 122, and performs transmission processing.
  • the transmitted data is transmitted from the antenna 101 for WiMAX.
  • the MS 140 detects the quality of the WiFi link and notifies the BS of the detected quality of the WiFi link at the timing of the listening window.
  • the WiMAX transmission / reception unit 141 of the MS 140 receives notification of the buffer amount of the cooperation MS from the cooperation MS, and notifies the BS of the notified buffer amount of the cooperation MS at the timing of the listening window.
  • the MS 140 can change the sleep window size without receiving an instruction from the BS.
  • the MS 140 when the WiFi link is disconnected (indicated by a cross in the drawing) and communication can not be performed (NG), the MS 140 notifies the BS of the quality (NG) of the WiFi link at the timing of the listening window.
  • the BS obtains the quality of the WiFi link, the sleep window size determination unit 305 generates an active signal, and transmits the active signal of the WiMAX link from the BS to the MS 140.
  • the MS detects the quality of the WiFi link, and is notified of the buffer size of the cooperating MS from the cooperating MS, and detects the quality of the WiFi link detected and the buffer size of the cooperating MS And notify the BS, and the BS and MS both notify the sleep window size from the BS to the MS by determining the size of the sleep window based on the quality of the WiFi link and the buffer amount of the cooperating MS
  • the sleep window can be shortened with an increased possibility of disconnecting the WiFi link, and the active signal can be received immediately in the listening window, thus reducing the time required for the MS to recover from the sleep mode be able to.
  • the resource allocation to the MS may be a common ID or an ID unique to the MS.
  • control signals such as a sleep window size notification signal and an active signal
  • BS WiMAX link
  • cooperative MS WiFi link
  • the buffer amount of the cooperative MS may be notified in the order of cooperative MS (WiFi link), MS (WiMAX link), and BS.
  • the buffer amount does not have to be always reported, and may be notified when the buffer amount falls below a certain threshold. This makes it possible to reduce overhead transmission.
  • notification of the sleep window size is performed, but the position of the listening window may be notified.
  • the present invention is described using hardware as an example, but the present invention can also be realized by software in cooperation with hardware.
  • Each function block employed in the description of each of the aforementioned embodiments may typically be implemented as an LSI constituted by an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include some or all. Although an LSI is used here, it may be called an IC, a system LSI, a super LSI, or an ultra LSI depending on the degree of integration.
  • the method of circuit integration is not limited to LSI's, and implementation using dedicated circuitry or general purpose processors is also possible.
  • a programmable field programmable gate array FPGA
  • a reconfigurable processor that can reconfigure connection and setting of circuit cells in the LSI may be used.
  • the antenna port refers to a logical antenna composed of one or more physical antennas. That is, the antenna port does not necessarily refer to one physical antenna, but may refer to an array antenna or the like configured of a plurality of antennas.
  • 3GPP LTE it is not defined how many physical antennas an antenna port is configured, but is defined as a minimum unit in which a base station can transmit different reference signals.
  • the antenna port may be defined as the smallest unit by which the weighting of the precoding vector is multiplied.
  • the wireless communication base station apparatus, the wireless communication terminal apparatus, and the wireless communication method according to the present invention can be applied to a mobile communication system or the like.

Abstract

 MSのスリープモードからの復帰に要する時間を短縮する無線通信基地局装置、無線通信端末装置及び無線通信方法を提供する。WiFiリンク品質通知信号復号部(303)がMSと協力MSとの間におけるWiFiリンクの品質を示すWiFiリンク品質通知信号を復号し、バッファ量通知信号復号部(304)が協力MSにバッファされたMSの送信データ量を示すバッファ量通知信号を復号する。スリープウィンドウサイズ決定部(305)は、WiFiリンク品質と協力MSのバッファ量とに基づいて、MSのスリープウィンドウのサイズを決定し、決定されたスリープウィンドウのサイズが制御信号符号化部(306)によって符号化され、WiMAXがスリープモード中のMSに通知される。

Description

無線通信基地局装置、無線通信端末装置及び無線通信方法
 本発明は、無線通信基地局装置、無線通信端末装置及び無線通信方法に関する。
 近年、携帯電話、ノートパソコンなどの無線通信端末がWiMAX(Worldwide Interoperability for Microwave Access)及びWiFi(Wireless Fidelity)などの通信機能を備えるようになってきた。これにより、例えば、携帯電話、ノートパソコンのそれぞれがWiMAXによって無線通信基地局(以下、「BS(Base Station)」という)と通信することができると共に、携帯電話及びノートパソコンの間でWiFiによる相互通信を行うことができる。
 このような背景の下、IEEE802.16委員会では、BSとの伝搬路状態の悪い携帯電話(以下、「MS(Mobile Station)」という)のデータをノートパソコン(以下、「協力MS(Cooperator)」という)によって中継することが検討されている。MSはUL送信データをWiFiリンクによって協力MSに送信し、協力MSは受信したデータをWiMAXリンクによってBSへ送信する。
 BSは、MSと協力MSとに中継用の共通IDを割り当てる。これにより、協力MSとMSとが同時にリソース割り当てを知ることができるので、図1に示すような、MSと協力MSとが共同でWiMAXリンクを用いて送信する共同中継と、図2に示すような、協力MSのみがWiMAXリンクを用いて中継する単独中継を行うことができる。
 このように、単独中継では、異なる無線リンク(または、回線、チャネルとも呼ばれる)を用いて中継することにより、同じ無線リンクを用いた中継と比べて、既存のフレームフォーマットのまま送信することができ、より伝搬路状態の良いWiMAXリンクから送信できるため、コストを増加させずにWiMAXのスループットを増加させることができる。
 また、単独中継に用いるWiMAXリンクは、すべて伝搬路状態の良い協力MSからの送信となる。そのため、無線リンクの効率化を図ることが可能となる。
 ここで、単独中継の際、MS及び協力MS間の通信はWiFiリンクを用いて行われるので、MSの省電力化を図るためには、MSにおけるWiMAXの機能を一時停止するスリープモードとするのが望ましい。
 このようなMSのスリープモード中にWiFiリンクの特性が劣化して、単独中継ができなくなった場合、協力MSからBSへWiFiリンクの劣化を報告する。BSは、MSに対してWiMAXのスリープモードからアクティブモードへの復帰を指示する。この指示により、単独中継からMSのWiMAXを用いた単独送信へ移行し、通信を継続することができる。
IEEE P802.16m/D4, DRAFT Amendment to IEEE Standard for local and metropolitan area networks - Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems - Advanced Air Interface IEEE C802.16-10/0016r1, Future 802.16 Networks: Challenges and Possibilities IEEE C802.16-10/0005r1, Client Cooperation in Future Wireless Broadband Networks
 IEEE802.16m規格では、WiMAXのスリープモード中にWiMAXの信号を一時的に送受信可能なタイミングとしてリスニングウィンドウが設けられており、スリープモードはリスニングウィンドウと、リスニングウィンドウ以外のスリープウィンドウから構成されている。また、このスリープウィンドウは、スリープモードに入ってからの時間が長いほど長いウィンドウが設定される。そのため、上述したように、協力MS経由の単独中継からWiMAXによるMSの単独送信に切り替える場合には、MSのWiMAXがスリープモードから復帰するのに時間がかかることがある。
 本発明の目的は、MSのスリープモードからの復帰に要する時間を短縮する無線通信基地局装置、無線通信端末装置及び無線通信方法を提供することである。
 本発明の通信装置は、第1通信方式によって第1通信装置及び第2通信装置と通信可能な通信装置であって、前記第1通信方式とは異なる第2通信方式によって前記第1通信装置から送信された信号を前記第2通信装置が前記第1通信方式によって中継し、中継された前記信号を受信する通信装置であって、前記第1通信装置と前記第2通信装置との間における回線の品質を取得する品質取得手段と、前記第2通信装置が記憶している前記第1通信装置から受信した信号の量を示すバッファ量を取得するバッファ量取得手段と、前記回線の品質及び前記バッファ量に基づいて、前記第1通信装置が前記第1通信方式による通信を一時停止する時間であるスリープウィンドウのサイズを決定するスリープウィンドウサイズ決定手段と、決定された前記スリープウィンドウのサイズを前記第1通信装置に送信する送信手段と、を具備する構成を採る。
 本発明の通信装置は、第1通信方式によって第1通信装置と通信可能であり、前記第1通信方式とは異なる第2通信方式によって第2通信装置に信号を送信する通信装置であって、前記第2通信装置と前記通信装置との間における前記第2通信方式による回線の品質を取得する品質取得手段と、前記第2通信装置が記憶している前記通信装置から送信した信号の量を示すバッファ量を取得するバッファ量取得手段と、前記回線の品質及び前記バッファ量に基づいて、前記通信装置が前記第1通信方式による通信を一時停止する時間であるスリープウィンドウのサイズを制御するスリープモード制御手段と、を具備する構成を採る。
 本発明の通信方法は、第1通信装置及び第2通信装置と第3通信装置とが第1通信方式によって通信可能であり、かつ、前記第1通信方式とは異なる第2通信方式によって前記第1通信装置から送信された信号を前記第2通信装置が前記第1通信方式によって前記第3通信装置に中継する通信方法であって、前記第1通信装置と前記第2通信装置との間における前記第2通信方式による回線の品質を取得し、前記第2通信装置が記憶している前記第1通信装置から受信した信号の量を示すバッファ量を取得し、前記回線の品質及び前記バッファ量に基づいて、前記第1通信装置が前記第1通信方式による通信を一時停止する時間であるスリープウィンドウのサイズを決定し、決定された前記スリープウィンドウのサイズを前記第1通信装置に送信する、ようにした。
 本発明によれば、MSのスリープモードからの復帰に要する時間を短縮することができる。
MSと協力MSとが共同でWiMAXリンクを用いる共同中継を示す模式図 協力MSのみがWiMAXリンクを用いて中継する単独中継を示す模式図 本発明の実施の形態1に係るMSの構成を示すブロック図 本発明の実施の形態1に係る協力MSの構成を示すブロック図 本発明の実施の形態1に係るBSの構成を示すブロック図 本発明の実施の形態1に係るMS、協力MS及びBSが行うスリープウィンドウの制御手順を示す模式図 スリープウィンドウを短くするパターンを示す模式図 本発明の実施の形態2に係るMSの構成を示すブロック図 本発明の実施の形態2に係る協力MSの構成を示すブロック図 本発明の実施の形態2に係るBSの構成を示すブロック図 本発明の実施の形態2に係るMS、協力MS及びBSが行うスリープウィンドウの制御手順を示す模式図 本発明の実施の形態3に係るMS、協力MS及びBSが行うスリープウィンドウの制御手順を示す模式図 本発明の実施の形態4に係るMSの構成を示すブロック図 本発明の実施の形態4に係るMS、協力MS及びBSが行うスリープウィンドウの制御手順を示す模式図
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。ただし、実施の形態において、同一機能を有する構成には、同一符号を付し、重複する説明は省略する。
 (実施の形態1)
 図3は、本発明の実施の形態1に係るMS100の構成を示すブロック図である。以下、図3を用いてMS100の構成について説明する。
 WiMAX用送受信部102は、WiMAX用アンテナ101を介して受信した信号にWiMAX方式の所定の受信処理を施し、受信処理を施した信号を復号部103に出力する。また、WiMAX用送受信部102は、後述するデータ生成部105から出力されたデータにWiMAX方式の所定の送信処理を施し、送信処理を施した信号をWiMAX用アンテナ101から送信する。
 復号部103は、WiMAX用送受信部102から出力された信号からスリープウィンドウサイズ通知信号及びアクティブ信号を復号し、復号したスリープウィンドウサイズ通知信号及びアクティブ信号をスリープモード制御部104に出力する。
 スリープモード制御部104は、復号部103から出力されたスリープウィンドウサイズ通知信号に基づいて、WiMAXのスリープモードにおけるスリープウィンドウサイズを制御する。また、スリープモード制御部104は、復号部103から出力されたアクティブ信号に基づいて、スリープモードからアクティブモードへの切り替えを制御する。これらの制御結果はデータ生成部105に通知される。なお、以下の説明におけるスリープモード及びアクティブモードは、MS100のWiMAXのモードを示す。
 データ生成部105は、データを生成し、スリープモード制御部104の制御結果に従い、スリープモード中は生成したデータをWiFi用送受信部106に出力し、アクティブモード中は生成したデータをWiMAX用送受信部102に出力する。
 WiFi用送受信部106は、データ生成部105から出力されたデータにWiFi方式の所定の送信処理を施し、送信処理を施したデータをWiFi用アンテナ107から送信する。
 図4は、本発明の実施の形態1に係る協力MS200の構成を示すブロック図である。以下、図4を用いて協力MS200の構成について説明する。
 WiFi用送受信部202は、WiFi用アンテナ201を介して受信した信号にWiFi方式の所定の受信処理を施し、受信処理を施した信号をWiFiリンク品質検出部203及びWiFi用データ復号部204に出力する。
 WiFiリンク品質検出部203は、WiFi用送受信部202から出力された信号を用いて、WiFiリンクの品質を検出し、検出したWiFiリンクの品質をWiFiリンク品質通知信号符号化部206に出力する。
 WiFi用データ復号部204は、WiFi用送受信部202から出力された信号からWiFi用データを復号し、復号したWiFi用データをバッファ部205に出力する。
 バッファ部205は、WiFi用データ復号部204から出力されたWiFi用データを一時記憶し、一時記憶したWiFi用データをWiMAX用データとしてWiMAX用データ符号化部208に出力すると共に、バッファに記憶されたデータ量、すなわち、バッファ量をバッファ量通知信号符号化部207に出力する。
 WiFiリンク品質通知信号符号化部206は、WiFiリンク品質検出部203から出力されたWiFiリンクの品質を示す信号を符号化し、符号化した信号をWiMAX用送受信部209に出力する。
 バッファ量通知信号符号化部207は、バッファ部205から出力されたバッファ量を示す信号を符号化し、符号化した信号をWiMAX用送受信部209に出力する。
 WiMAX用データ符号化部208は、バッファ部205から出力されたWiMAX用データを符号化し、符号化した信号をWiMAX用送受信部209に出力する。
 WiMAX用送受信部209は、WiFiリンク品質通知信号符号化部206から出力された信号、バッファ量通知信号符号化部207から出力された信号、及び、WiMAX用データ符号化部208から出力された信号にWiMAX方式の所定の送信処理を施し、送信処理を施したデータをWiMAX用アンテナ210から送信する。
 図5は、本発明の実施の形態1に係るBS300の構成を示すブロック図である。以下、図5を用いてBS300の構成について説明する。
 WiMAX用送受信部302は、WiMAX用アンテナ301を介して受信した信号にWiMAX方式の所定の受信処理を施し、受信処理を施した信号をWiFiリンク品質通知信号復号部303及びバッファ量通知信号復号部304に出力する。また、WiMAX用送受信部302は、後述する制御信号符号化部306から出力された信号にWiMAX方式の所定の送信処理を施し、送信処理を施した信号をWiMAX用アンテナ301から送信する。
 品質取得手段としてのWiFiリンク品質通知信号復号部303は、WiMAX用送受信部302から出力された信号からWiFiリンク品質通知信号を復号し、復号したWiFiリンク品質通知信号をスリープウィンドウサイズ決定部305に出力する。
 バッファ量取得手段としてのバッファ量通知信号復号部304は、WiMAX用送受信部302から出力された信号からバッファ量通知信号を復号し、復号したバッファ量通知信号をスリープウィンドウサイズ決定部305に出力する。
 スリープウィンドウサイズ決定部305は、WiFiリンク品質通知信号復号部303から出力されたWiFiリンク品質通知信号と、バッファ量通知信号復号部304から出力されたバッファ量通知信号とに基づいて、MS100に設定するスリープウィンドウのサイズを決定し、決定したスリープウィンドウサイズを制御信号符号化部306に出力する。また、取得したWiFiリンク品質通知信号と、バッファ量通知信号とに基づいて、MS100のWiMAXをアクティブにするアクティブ信号を生成し、生成したアクティブ信号を制御信号符号化部306に出力する。
 制御信号符号化部306は、スリープウィンドウサイズ決定部305から出力されたスリープウィンドウサイズを示すスリープウィンドウサイズ通知信号、及び、アクティブ信号を符号化し、符号化したこれらの制御信号をWiMAX用送受信部302に出力する。
 次に、上述したMS100、協力MS200及びBS300が行うスリープウィンドウの制御手順について図6を用いて説明する。ここでは、上述したように、MS100及び協力MS200は、WiMAX及びWiFiの通信機能を備え、BS300はWiMAXの通信機能を備えるものとする。また、MS100のWiMAXは、アクティブモードになるまでスリープモードであるものとする。
 MS100は、スリープモード中、WiFi用送受信部106からUL送信データをWiFiリンクによって協力MS200へ送信し、協力MS200は、MS100から受信したUL送信データをバッファ部205にバッファし、バッファしたUL送信データをWiMAX用送受信部209からWiMAXリンクによってBS300へ送信する。このとき、協力MS200は、WiFiリンク品質検出部203において検出されたWiFiリンクの品質と、バッファ部205に記憶されたバッファ量をBS300へ通知する。
 BS300のスリープウィンドウサイズ決定部305は、協力MS200から通知されたWiFiリンクの品質、及び、協力MSのバッファ量に基づいて、スリープウィンドウのサイズを決定する。例えば、WiFiリンクの品質が劣化していると、WiFiリンクが切断される可能性が高くなるので、スリープウィンドウを短くし、MS100のWiMAXがアクティブモードへ復帰するように備えておく。
 具体的には、スリープウィンドウサイズ決定部305は、WiFiリンクの品質がSINR<3dBとなり、かつ、協力MS200のバッファ量=0%となったとき、スリープウィンドウのサイズを短くすると決定し、それ以外の場合には、スリープウィンドウのサイズは変更しない。スリープウィンドウを短くする場合には、リスニングウィンドウのタイミングにおいて、BS300はWiMAXリンクの下りリンクでスリープウィンドウサイズ通知信号をMS100へ通知する。
 なお、スリープウィンドウのサイズを短くすると決定する条件の一例として、上記においては、WiFiリンクの品質がSINR<3dBとなり、かつ、協力MS200のバッファ量=0%となったときの例を示したが、これに限らず、WiFiリンクの品質が所定の値未満となり、かつ、協力MS200のバッファ量が所定の量あるいは所定の量未満となったとき、スリープウィンドウのサイズを短くすると決定するようにしてもよい。さらに、WiFiリンクの品質はSINRに限らず、CNR(Channel to Noise Ratio)などでもよい。
 また、WiFiリンクが切断(図中×印で示す)し、通信が行えない状態(NG)となり、協力MS200のバッファ量が0となった場合、リスニングウィンドウのタイミングにおいて、BS300のスリープウィンドウサイズ決定部305がアクティブ信号を生成し、BS300からMS100へWiMAXリンクのアクティブ信号を送信する。
 ここで、スリープウィンドウを短くする3通りのパターン(パターンA~C)について図7を用いて説明する。まず、従来のパターンは、図7Aに示すように、最も短いスリープウィンドウの長さをN1とすると、N1、2×N1、4×N1、8×N1の順にスリープウィンドウが配置され、各スリープウィンドウの間にリスニングウィンドウが配置されている。すなわち、スリープモードに入ってからの時間が長いほど長いスリープウィンドウが設定されている。
 パターンAは、図7Bに示すように、リスニングウィンドウにおいてMSがスリープウィンドウサイズ通知信号を受信すると、スリープウィンドウの配置が最初から繰り返され、N1、2×N1、4×N1の順にスリープウィンドウが配置される。これにより、従来パターンに比べてスリープウィンドウサイズを短くすることができ、WiFiリンクの品質及びバッファ量が変わらなければ、省電力を促進することができる。
 次に、パターンBは、図7Cに示すように、リスニングウィンドウにおいてMSがスリープウィンドウサイズ通知信号を受信すると、協力MSのバッファ量に応じて、スリープウィンドウの長さが徐々に短くなるようにスリープウィンドウが配置される。図7の例では、スリープウィンドウサイズ通知信号の受信後、4×N1、2×N1、N1の順にスリープウィンドウが配置される。これにより、従来パターンに比べてスリープウィンドウサイズを短くすることができ、また、WiFiリンクの品質及びバッファ量が徐々に変わる場合に、スリープ時間を長いまま保持することができるので、省電力を保持したまま、WiMAXリンクへの移行を速やかに行うことができる。
 次に、パターンCは、図7Dに示すように、従来のスリープサイクル(1スリープウィンドウ+1リスニングウィンドウ)を維持したまま、リスニングウィンドウを追加する。図7の例では、スリープウィンドウサイズ通知信号の受信後、2つのリスニングウィンドウを追加しており、いずれも1スリープウィンドウ(N1)と1リスニングウィンドウのスリープサイクルを維持している。これにより、従来パターンに比べてスリープウィンドウサイズを短くすることができ、省電力を保持したまま、WiMAXリンクへの移行を速やかに行うことができ、さらに、スリープサイクルを維持するので、タイミングの管理を容易に行うことができる。
 このように実施の形態1によれば、MSと協力MSとの間におけるWiFiリンクの品質と、協力MSにバッファされたMSの送信データ量とに基づいて、BSがスリープウィンドウのサイズを決定し、決定したスリープウィンドウのサイズをWiMAXがスリープモード中のMSに通知することにより、WiFiリンクの切断の可能性が高まった状態でスリープウィンドウを短くすることができ、リスニングウィンドウにおいてアクティブ信号をすぐに受信することができるので、MSがスリープモードからの復帰に要する時間を短縮することができる。
 (実施の形態2)
 図8は、本発明の実施の形態2に係るMS120の構成を示すブロック図である。図8が図3と異なる点は、復号部103を削除し、WiFiリンク品質検出部121及びバッファ量通知信号復号部122を追加し、スリープモード制御部104をスリープモード制御部123に変更した点である。
 品質取得手段としてのWiFiリンク品質検出部121は、WiFi用送受信部106から出力された信号を用いて、WiFiリンクの品質を検出し、検出したWiFiリンクの品質をスリープモード制御部123に出力する。
 バッファ量取得手段としてのバッファ量通知信号復号部122は、WiFi用送受信部106から出力された信号から、協力MSにバッファされたMSの送信データ量を示すバッファ量通知信号を復号し、復号したバッファ量通知信号をスリープモード制御部123に出力する。
 スリープモード制御部123は、WiFiリンク品質検出部121から出力されたWiFiリンクの品質と、バッファ量通知信号復号部122から出力されたバッファ量とに基づいて、スリープモードにおけるスリープウィンドウサイズを制御する。また、WiMAX用送受信部102から出力されたアクティブ信号に基づいて、WiMAXをアクティブモードに制御する。
 図9は、本発明の実施の形態2に係る協力MS220の構成を示すブロック図である。図9が図4と異なる点は、バッファ量通知信号符号化部221を追加し、WiFi用送受信部202をWiFi用送受信部222に変更した点である。
 バッファ量通知信号符号化部221は、バッファ部205から出力されたバッファ量を示す信号を符号化し、符号化した信号をWiFi用送受信部222に出力する。
 WiFi用送受信部222は、WiFi用アンテナ201を介して受信した信号にWiFi方式の所定の受信処理を施し、受信処理を施した信号をWiFiリンク品質検出部203及びWiFi用データ復号部204に出力する。また、WiFi用送受信部222は、バッファ量通知信号符号化部221から出力された信号にWiFi方式の所定の送信処理を施し、送信処理を施したデータをWiFi用アンテナ201から送信する。
 図10は、本発明の実施の形態2に係るBS320の構成を示すブロック図である。図10が図5と異なる点は、制御信号符号化部306を削除した点のみであるので、BS320の構成の詳細な説明は省略する。
 次に、上述したMS120、協力MS220及びBS320が行うスリープウィンドウの制御手順について図11を用いて説明する。協力MS220は、バッファ部205に記憶されたMSのデータ量であるバッファ量をWiFiリンクによってMS120へ通知すると共に、WiMAXリンクによってBS320へ通知する。
 BS320は、実施の形態1と同様に協力MS120からWiFiリンクの品質、及び、協力MSのバッファ量の通知を受ける。また、MS120は、WiFiリンクの品質を検出する共に、協力MS220から協力MS220のバッファ量の通知を受ける。これにより、MS120はBS320からの指示を受けることなく、スリープウィンドウサイズを変更することができる。
 ただし、MS120及び協力MS220間はTDD(Time Division Duplex)などの通信方式とし、協力MS220からMS120への品質が、MS120から協力MS220への品質と同様であることが前提である。協力MS220からMS120への品質でMS120から協力MS220への品質を推定できない場合には、別途通知信号が必要となる。
 このように、MS120とBS320がWiFiリンクの品質、及び、協力MSのバッファ量から共通の基準で、MS120のスリープウィンドウのサイズを決定することにより、BS320から直接スリープウィンドウサイズを通知することなく、スリープウィンドウのサイズを変更することができる。なお、BS320はリスニングウィンドウの位置を知る必要があるので、BS320もMS120のスリープウィンドウのサイズを知る必要がある。
 例えば、WiFiリンクの品質がSINR<3dBとなり、かつ、バッファ量<50%となった場合、スリープウィンドウのサイズを変更するものとする。
 なお、スリープウィンドウのサイズを変更する条件の一例として、上記においては、WiFiリンクの品質がSINR<3dBとなり、かつ、バッファ量<50%となった場合の例を示したが、これに限らず、WiFiリンクの品質が所定の値未満となり、かつ、バッファ量が所定の量あるいは所定の量未満となったとき、スリープウィンドウのサイズを変更するようにしてもよい。さらに、WiFiリンクの品質はSINRに限らず、CNR(Channel to Noise Ratio)などでもよい。
 このように実施の形態2によれば、MSと協力MSとの間におけるWiFiリンクの品質と、協力MSにバッファされたMSの送信データ量とに基づいて、BS及びMSが同じ基準でスリープウィンドウのサイズを決定することにより、BSからMSへスリープウィンドウサイズを通知することなく、WiFiリンクの切断の可能性が高まった状態でスリープウィンドウを短くすることができ、リスニングウィンドウにおいてアクティブ信号をすぐに受信することができるので、MSがスリープモードからの復帰に要する時間を短縮することができる。
 (実施の形態3)
 本発明の実施の形態3に係るMS、協力MS、BSの構成は、実施の形態1の図3~5に示した構成と同様であるので、これらの構成を示す場合には、図3~5を援用する。
 本発明の実施の形態3に係るMS、協力MS及びBSが行うスリープウィンドウの制御手順について図12を用いて説明する。ただし、図12において、BSがスリープウィンドウサイズ通知信号を送信するまでの手順は図6と同一である。
 BS300のスリープウィンドウサイズ決定部305は、協力MSからWiFiリンク切断の通知と、バッファ量が30%であることが通知されると、アクティブ信号を生成すると共に、WiMAXリンクによって送信を開始するシーケンス番号を生成し、MSに通知する。これにより、BSは、協力MSにバッファされたままのデータ、すなわち、取得できていないデータをMSから取得することができるようになり、MS及び協力MS間での誤り、または協力MS及びBS間での誤りがあっても、省電力を保ったまま、WiMAXリンクへの移行を確実に行うことができる。
 また、BS300のスリープウィンドウサイズ決定部305は、シーケンス番号の生成と共に、バッファの内容を破棄するフラッシュ信号を生成し、生成したフラッシュ信号を協力MSへ送信する。これにより、協力MSからBSへデータ送信中であっても、WiMAXリンクへの移行を行うことができる。
 このように実施の形態3によれば、BSからMSへのアクティブ信号の送信に際し、WiMAXリンクによって送信を開始するシーケンス番号をMSに通知することにより、BSは、協力MSにバッファされたままのデータをMSから取得することができ、WiMAXリンクへの移行を確実に行うことができる。
 なお、本実施の形態においてBSからMSに通知するシーケンス番号は、MACより上位層での番号でもよい。
 また、本実施の形態では、BSからMSにシーケンス番号を通知するとしたが、本発明はこれに限らず、協力MSのバッファ量を通知してもよい。
 (実施の形態4)
 図13は、本発明の実施の形態4に係るMS140の構成を示すブロック図である。図13が図8と異なる点は、WiMAX用送受信部102をWiMAX用送受信部141に変更した点である。
 WiMAX用送受信部141は、WiFiリンク品質検出部121から出力されたWiFiリンクの品質と、バッファ量通知信号復号部122から出力されたバッファ量とにWiMAX方式の所定の送信処理を施し、送信処理を施したデータをWiMAX用アンテナ101から送信する。
 なお、本発明の実施の形態4に係る協力MS及びBSの構成は、実施の形態2の図9、図10に示した構成と同様であるので、これらの構成を示す場合には、図9、図10を援用する。
 本発明の実施の形態4に係るMS140、協力MS及びBSが行うスリープウィンドウの制御手順について図14を用いて説明する。MS140は、WiFiリンクの品質を検出し、検出したWiFiリンクの品質をリスニングウィンドウのタイミングでBSに通知する。
 また、MS140のWiMAX用送受信部141は、協力MSから協力MSのバッファ量の通知を受け、通知された協力MSのバッファ量をリスニングウィンドウのタイミングでBSに通知する。
 これにより、MS140はBSからの指示を受けることなく、スリープウィンドウサイズを変更することができる。
 また、WiFiリンクが切断(図中×印で示す)し、通信が行えない状態(NG)となった場合、リスニングウィンドウのタイミングにおいて、MS140がWiFiリンクの品質(NG)をBSに通知する。BSはWiFiリンクの品質を取得し、スリープウィンドウサイズ決定部305がアクティブ信号を生成し、BSからMS140へWiMAXリンクのアクティブ信号を送信する。
 このように実施の形態4によれば、MSがWiFiリンクの品質を検出すると共に、協力MSから協力MSのバッファ量の通知を受け、検出したWiFiリンクの品質と通知された協力MSのバッファ量とをBSへ通知し、BS及びMSが共にWiFiリンクの品質、及び、協力MSのバッファ量に基づいて、スリープウィンドウのサイズを決定することにより、BSからMSへスリープウィンドウサイズを通知することなく、WiFiリンクの切断の可能性が高まった状態でスリープウィンドウを短くすることができ、リスニングウィンドウにおいてアクティブ信号をすぐに受信することができるので、MSがスリープモードからの復帰に要する時間を短縮することができる。
 なお、上記各実施の形態において、MSのWiMAXがアクティブになった後、MSへのリソース割り当ては共通IDでもよいし、MSに個別のIDでもよい。
 また、上記各実施の形態において、WiFiリンクが切断していない場合には、BSからの制御信号(スリープウィンドウサイズ通知信号及びアクティブ信号など)をBS(WiMAXリンク)、協力MS(WiFiリンク)、MSという順で通知してもよい。
 同様に、協力MSのバッファ量を協力MS(WiFiリンク)、MS(WiMAXリンク)、BSという順で通知してもよい。
 また、上記各実施の形態において、WiFiリンクの品質を常に報告する必要はなく、品質がある閾値以下となったときに通知すればよい。これにより、オーバヘッドの送信を削減することができる。
 同様に、バッファ量も常に報告する必要はなく、バッファ量がある閾値以下となったときに通知すればよい。これにより、オーバヘッドの送信を削減することができる。
 また、上記各実施の形態では、スリープウィンドウサイズの通知を行っていたが、リスニングウィンドウの位置を通知してもよい。
 また、上記各実施の形態では、WiFi及びWiMAXの組み合わせを例に示したが、本発明はこれに限らず、組み合わせる無線リンクの通信方式は何でもよい。
 また、上記各実施の形態では、本発明をハードウェアで構成する場合を例にとって説明したが、本発明はハードウェアとの連携においてソフトウェアによって実現することも可能である。
 また、上記各実施の形態の説明に用いた各機能ブロックは、典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部又は全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
 また、集積回路化の手法はLSIに限るものではなく、専用回路又は汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。
 さらには、半導体技術の進歩又は派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。
 なお、上記実施の形態ではアンテナとして説明したが、本発明はアンテナポート(antenna port)でも同様に適用できる。
 アンテナポートとは、1本または複数の物理アンテナから構成される、論理的なアンテナを指す。すなわち、アンテナポートは必ずしも1本の物理アンテナを指すとは限らず、複数のアンテナから構成されるアレイアンテナ等を指すことがある。
 例えば3GPP LTEにおいては、アンテナポートが何本の物理アンテナから構成されるかは規定されず、基地局が異なる参照信号(Reference signal)を送信できる最小単位として規定されている。
 また、アンテナポートはプリコーディングベクトル(Precoding vector)の重み付けを乗算する最小単位として規定されることもある。
 2010年4月9日出願の特願2010-090500の日本出願に含まれる明細書、図面及び要約書の開示内容は、すべて本願に援用される。
 本発明にかかる無線通信基地局装置、無線通信端末装置及び無線通信方法は、移動通信システム等に適用できる。
 101、210、301 WiMAX用アンテナ
 102、209、302、141 WiMAX用送受信部
 103 復号部
 104、123 スリープモード制御部
 105 データ生成部
 106、202、222 WiFi用送受信部
 107、201 WiFi用アンテナ
 203、121 WiFiリンク品質検出部
 204 WiFi用データ復号部
 205 バッファ部
 206 WiFiリンク品質通信信号符号化部
 207、221 バッファ量通知信号符号化部
 208 WiMAX用データ符号化部
 303 WiFiリンク品質通知信号復号部
 304、122 バッファ量通知信号復号部
 305 スリープウィンドウサイズ決定部
 306 制御信号符号化部

Claims (9)

  1.  第1通信方式によって第1通信装置及び第2通信装置と通信可能な通信装置であって、前記第1通信方式とは異なる第2通信方式によって前記第1通信装置から送信された信号を前記第2通信装置が前記第1通信方式によって中継し、中継された前記信号を受信する通信装置であって、
     前記第1通信装置と前記第2通信装置との間における回線の品質を取得する品質取得手段と、
     前記第2通信装置が記憶している前記第1通信装置から受信した信号の量を示すバッファ量を取得するバッファ量取得手段と、
     前記回線の品質及び前記バッファ量に基づいて、前記第1通信装置が前記第1通信方式による通信を一時停止する時間であるスリープウィンドウのサイズを決定するスリープウィンドウサイズ決定手段と、
     決定された前記スリープウィンドウのサイズを前記第1通信装置に送信する送信手段と、
     を具備する通信装置。
  2.  前記スリープウィンドウサイズ決定手段は、前記回線の品質が所定の値未満となり、かつ、前記バッファ量が所定の量または所定の量未満となった場合、前記スリープウィンドウのサイズを短くする請求項1に記載の通信装置。
  3.  前記スリープウィンドウサイズ決定手段は、前記第2通信方式による通信が切断された場合、前記第1通信方式による通信を一時停止するスリープモードから前記通信を行うアクティブモードへの切り替えを前記第1通信装置に指示するアクティブ信号を生成する請求項1に記載の通信装置。
  4.  前記スリープウィンドウサイズ決定手段は、前記第2通信方式による通信が切断された場合、前記アクティブ信号と共に、前記第1通信方式によって前記第1通信装置が送信を開始するシーケンス番号を生成する請求項3に記載の通信装置。
  5.  前記スリープウィンドウサイズ決定手段は、前記第2通信装置に記憶された前記第1通信装置から受信したデータの破棄を指示するフラッシュ信号を生成する請求項4に記載の通信装置。
  6.  第1通信方式によって第1通信装置と通信可能であり、前記第1通信方式とは異なる第2通信方式によって第2通信装置に信号を送信する通信装置であって、
     前記第2通信装置と前記通信装置との間における前記第2通信方式による回線の品質を取得する品質取得手段と、
     前記第2通信装置が記憶している前記通信装置から送信した信号の量を示すバッファ量を取得するバッファ量取得手段と、
     前記回線の品質及び前記バッファ量に基づいて、前記通信装置が前記第1通信方式による通信を一時停止する時間であるスリープウィンドウのサイズを制御するスリープモード制御手段と、
     を具備する通信装置。
  7.  前記スリープモード制御手段は、前記第2通信方式による回線の品質が所定の値未満となり、かつ、前記バッファ量が所定の量または所定の量未満となった場合、前記スリープウィンドウのサイズを短くする請求項6に記載の通信装置。
  8.  取得した前記回線の品質及び前記バッファ量を前記第1通信方式によって前記第1通信装置に送信する送信手段を具備する請求項6に記載の通信装置。
  9.  第1通信装置及び第2通信装置と第3通信装置とが第1通信方式によって通信可能であり、かつ、前記第1通信方式とは異なる第2通信方式によって前記第1通信装置から送信された信号を前記第2通信装置が前記第1通信方式によって前記第3通信装置に中継する通信方法であって、
     前記第1通信装置と前記第2通信装置との間における前記第2通信方式による回線の品質を取得し、
     前記第2通信装置が記憶している前記第1通信装置から受信した信号の量を示すバッファ量を取得し、
     前記回線の品質及び前記バッファ量に基づいて、前記第1通信装置が前記第1通信方式による通信を一時停止する時間であるスリープウィンドウのサイズを決定し、
     決定された前記スリープウィンドウのサイズを前記第1通信装置に送信する、
     通信方法。
PCT/JP2011/002076 2010-04-09 2011-04-07 無線通信基地局装置、無線通信端末装置及び無線通信方法 WO2011125333A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010090500 2010-04-09
JP2010-090500 2010-04-09

Publications (1)

Publication Number Publication Date
WO2011125333A1 true WO2011125333A1 (ja) 2011-10-13

Family

ID=44762303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/002076 WO2011125333A1 (ja) 2010-04-09 2011-04-07 無線通信基地局装置、無線通信端末装置及び無線通信方法

Country Status (1)

Country Link
WO (1) WO2011125333A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010502072A (ja) * 2006-08-18 2010-01-21 富士通株式会社 通信システム
JP2010021878A (ja) * 2008-07-11 2010-01-28 Ntt Broadband Platform Inc 無線中継装置
JP2011044928A (ja) * 2009-08-21 2011-03-03 Ntt Docomo Inc 無線通信方法及び無線通信装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010502072A (ja) * 2006-08-18 2010-01-21 富士通株式会社 通信システム
JP2010021878A (ja) * 2008-07-11 2010-01-28 Ntt Broadband Platform Inc 無線中継装置
JP2011044928A (ja) * 2009-08-21 2011-03-03 Ntt Docomo Inc 無線通信方法及び無線通信装置

Similar Documents

Publication Publication Date Title
EP3372007B1 (en) Scheduling ues with mixed tti length
JP6355281B2 (ja) バッファステータスレポートおよびスケジューリングリクエストを二重接続を用いて処理する方法および装置
CN112272931B (zh) 执行发送和接收操作的用户设备和系统
US11516882B2 (en) Downlink control for non coherent joint transmission
US8804601B2 (en) Wireless communication device, signal relay method, and signal allocation method
JP5877238B2 (ja) 基地局装置及び通信方法
CN110943848A (zh) 一种用于无线网络和多个ue之间的虚拟通信的方法
JP5828891B2 (ja) 中継局、基地局、送信方法、及び受信方法
WO2016155507A1 (zh) 一种支持多用户叠加的ue、基站中的方法和设备
CN113170361B (zh) 联合网络部署中的链路切换
EP3192309A1 (en) System and method for adaptive cooperation mode selection strategies for wireless networks
CN112218312A (zh) 上行链路数据复制的灵活网络控制
KR20200138318A (ko) 데이터 복제를 이용한 다중 노드 접속에 urllc 최적화된 스케줄링 정책
CN113287274A (zh) 管理分组复制
WO2020030261A1 (en) Adaptive relaying in a non-orthogonal multiple access (noma) communication system
CN112352393A (zh) Nr中多trp传输中用多个pucch的harq-ack处理
WO2011125333A1 (ja) 無線通信基地局装置、無線通信端末装置及び無線通信方法
AU2013409521A1 (en) Method for enabling a base station to decode data received from a first wireless device using a network coded form of the data received from a second wireless device
WO2016050175A1 (en) System and method for adaptive cooperation mode selection strategies for wireless networks
CN112753252A (zh) 用户装置
CN113632399A (zh) 装置、方法和计算机程序
CN113767664A (zh) 用户装置以及通信方法
WO2019219164A1 (en) Retransmission of messages using a non-orthogonal multiple access (noma) communication system
WO2016113827A1 (ja) 基地局、信号合成方法及び信号転送方法
JP7165816B2 (ja) 無線基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765235

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11765235

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP