WO2011125245A1 - Method for prediction of prognosis of small cell lung cancer, method for treatment of small cell lung cancer, method for amelioration of prognosis of small cell lung cancer, and method for screening for therapeutic agent for small cell lung cancer, each utilizing mirna - Google Patents

Method for prediction of prognosis of small cell lung cancer, method for treatment of small cell lung cancer, method for amelioration of prognosis of small cell lung cancer, and method for screening for therapeutic agent for small cell lung cancer, each utilizing mirna Download PDF

Info

Publication number
WO2011125245A1
WO2011125245A1 PCT/JP2010/067432 JP2010067432W WO2011125245A1 WO 2011125245 A1 WO2011125245 A1 WO 2011125245A1 JP 2010067432 W JP2010067432 W JP 2010067432W WO 2011125245 A1 WO2011125245 A1 WO 2011125245A1
Authority
WO
WIPO (PCT)
Prior art keywords
mir
lung cancer
small cell
precursor
cell lung
Prior art date
Application number
PCT/JP2010/067432
Other languages
French (fr)
Japanese (ja)
Inventor
石川 雄一
岳彦 大場
Original Assignee
財団法人癌研究会
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財団法人癌研究会 filed Critical 財団法人癌研究会
Priority to JP2012509270A priority Critical patent/JPWO2011125245A1/en
Publication of WO2011125245A1 publication Critical patent/WO2011125245A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/118Prognosis of disease development
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/178Oligonucleotides characterized by their use miRNA, siRNA or ncRNA

Definitions

  • the present invention relates to the fields of small cell lung cancer prognosis prediction, examination and diagnosis method using miRNA, small cell lung cancer treatment method, small cell lung cancer prognosis improvement method, and small cell lung cancer therapeutic agent screening method.
  • SCLC small cell lung cancer
  • LCNEC large cell neuroendocrine cancer
  • microRNA is a non-coding RNA with a small nucleotide of about 20 to 25 that is not translated into protein.
  • miRNA a primary transcript (pri-miRNA) of about several hundred bases is first transcribed from a DNA region that does not encode a protein. The primary transcript is processed into a secondary transcript (pre-miRNA) by Drosha with the complex. Subsequently, after being transported to the cytoplasm, it is processed by Dicer and becomes a double-stranded mature miRNA of about 20-25 nucleotides.
  • one of the two miRNAs forms a complex with RISC and binds to the 3 ′ untranslated region of the target mRNA to cause translational repression.
  • Many miRNAs are known to exist in organisms including humans. Recently, the relationship with diseases, particularly cancer, has attracted attention, and miRNA expression patterns are used for cancer diagnosis and miRNA expression is controlled. It has been proposed to be used for cancer treatment (Patent Document 1). For example, the expression of the let-7 family is decreased in lung cancer, and the decreased expression is a poor prognostic factor, and when miR-17-92 clusters that are overexpressed in lung cancer are overexpressed, a growth promoting effect is observed.
  • Non-patent Document 1 suppression of expression with antisense oligos has been shown to cause proliferation suppression and cell death induction specifically in lung cancer cell lines that strongly express miR-17-92 clusters.
  • Non-patent Document 3 In colorectal cancer, the expression levels of miR-143 and miR-145 decreased, and miR-143 was shown to exhibit antitumor effects when administered to model animals as an agonist.
  • Non-patent Document 3 In lung adenocarcinoma and lung squamous cell carcinoma, expression levels of hsa-mir-126, has-mir-205 and has-mir-21 are increased or decreased, and expression of hsa-mir-155 is high or hsa.
  • the present invention has been made in view of the above situation, and an object of the present invention is to provide a method for analyzing a miRNA related to SCLC and examining the prognosis of an SCLC patient using the miRNA.
  • miR-153, miR-196a, miR-203 or miR-216a is related to the prognosis of SCLC, and has completed the present invention. It was.
  • the present invention is as follows: [1] Measuring at least one expression level selected from the group consisting of miR-153, miR-196a, miR-203, miR-216a or a precursor thereof in a biological sample derived from a patient with small cell lung cancer, A test method for determining prognosis in a patient with cell lung cancer. [2] In the above method, when the expression level of miR-153, miR-216a or a precursor thereof is higher than the expression level in a control biological sample, the prognosis is determined to be poor. ] The method of description.
  • a method for treating small cell lung cancer (1) In a biological sample derived from a patient with small cell lung cancer, when the expression level of at least one of miR-196a, miR-203 or a precursor thereof is decreased compared to a control biological sample, the decrease Administering at least one miRNA, a precursor thereof, or a vector that expresses them; and / or (2) In a biological sample derived from a patient with small cell lung cancer, if the expression level of at least one of miR-153, miR-216a or a precursor thereof is increased compared to the control biological sample, the miRNA or Administering at least one compound that inhibits the function of their precursors;
  • a method of treating small cell lung cancer comprising: [6] A method for improving the prognosis of small cell lung cancer, (1) In a biological sample derived from a patient with small cell lung cancer, when the expression level of at least one of miR-196a, miR-203 or a precursor thereof is decreased compared to a control biological sample, the decrease Ad
  • a therapeutic agent for small cell lung cancer comprising at least one of miR-196a, miR-203, a precursor thereof, or a vector expressing them.
  • a therapeutic agent for small cell lung cancer comprising a compound that inhibits at least one function of miR-153, miR-216a or a precursor thereof.
  • An agent for improving the prognosis of small cell lung cancer comprising at least one of miR-196a, miR-203, a precursor thereof, or a vector that expresses them.
  • An agent for improving the prognosis of small cell lung cancer comprising a compound that inhibits at least one function of miR-153, miR-216a or a precursor thereof.
  • the change in function is inhibition of expression of miR-153, miR-216a or a precursor thereof.
  • the change in function is promotion of binding of miR-196a, miR-203 or a precursor thereof to a base sequence targeted by miR-196a, miR-203 or a precursor thereof, [12 ] The method of description. [16] The change in function is inhibition of binding of miR-153, miR-216a or a precursor thereof to a base sequence targeted by miR-153, miR-216a or a precursor thereof. ] The method of description. Is to provide.
  • the present invention provides [1] Measuring at least one expression level selected from the group consisting of miR-153, miR-196a, miR-203, miR-216a or a precursor thereof in a biological sample derived from a patient with small cell lung cancer, A method for predicting, examining and / or diagnosing prognosis in patients with cell lung cancer. [2] In the above method, when the expression level of miR-153, miR-216a or a precursor thereof is higher than the expression level in a control biological sample, the prognosis is diagnosed or determined as [1] ] The method of description.
  • a method of treating small cell lung cancer comprising: (1) When the expression level of at least one miR-196a, miR-203 or a precursor thereof is decreased, the reduced at least one miRNA, a precursor thereof, or the expression thereof is expressed Administering a vector; or / and (2) When the expression level of at least one of miR-153, miR-216a or a precursor thereof is increased, at least one compound that inhibits the function of the miRNA or a precursor thereof is administered thing;
  • a method of treating small cell lung cancer comprising: [6] A method of treating small cell lung cancer, (1) measuring at least one expression level selected from the group consisting of miR-153, miR-196a, miR-203, miR-216a or a precursor thereof in a biological sample derived from a patient with small cell lung cancer; (2) if the expression level is reduced compared to the control biological sample, administering the reduced at least one miRNA, a precursor thereof, or a vector expressing them; and / or (3) If the expression
  • a therapeutic agent for small cell lung cancer or a prognosis improving agent for small cell lung cancer comprising at least one of miR-196a, miR-203, a precursor thereof, or a vector that expresses them.
  • a therapeutic agent for small cell lung cancer or a prognosis improving agent for small cell lung cancer comprising a compound that inhibits at least one function of miR-153, miR-216a or a precursor thereof.
  • At least one expression level selected from the group consisting of miR-153, miR-196a, miR-203, miR-216a or a precursor thereof in a biological sample of a small cell lung cancer patient is compared with a control biological sample
  • a therapeutic agent for treating small cell lung cancer that is increasing or decreasing, (1) when the expression level of miR-196a, miR-203 or a precursor thereof is decreased, the decreased at least one miRNA, a precursor thereof, or a vector expressing them; or / as well as, (2) when the expression level of miR-153, miR-216a or a precursor thereof is increased, at least one compound that inhibits the function of the miRNA or a precursor thereof;
  • a therapeutic agent for treating small cell lung cancer that is increasing or decreasing, (1) when the expression level of miR-196a, miR-203 or a precursor thereof is decreased, the decreased at least one miRNA, a precursor thereof, or a vector expressing them; or / as well as, (2) when the expression level of miR-153, miR
  • a biological sample of a patient with small cell lung cancer at least one expression level selected from the group consisting of miR-153, miR-196a, miR-203, miR-216a or a precursor thereof is compared with the control biological sample
  • a prognostic improver for improving the prognosis of small cell lung cancer that is increasing or decreasing, (1) when the expression level of miR-196a, miR-203 or a precursor thereof is decreased, the decreased at least one miRNA, a precursor thereof, or a vector expressing them; or / as well as, (2) when the expression level of miR-153, miR-216a or a precursor thereof is increased, at least one compound that inhibits the function of the miRNA or a precursor thereof;
  • a prognosis improving agent for small cell lung cancer comprising: [15] The prognosis improving agent according to [14], wherein the
  • the present invention provides an SCLC therapeutic method, an SCLC prognostic improvement method, an SCLC therapeutic agent, and an SCLC therapeutic screening method using miRNA.
  • the present invention contributes to simple and accurate SCLC prognosis determination.
  • FIG. 1 shows the classification of 600 miRNA expression by hierarchical clustering. Rows and columns indicate the miRNA and case, respectively. For each miRNA, the color on the “7.0” side (original data red) indicates high expression, and the color on the “ ⁇ 7.0” side (original data blue) indicates low expression.
  • the lower bar shows small cell lung cancer (SCLC) (“1”, original data blue), large cell neuroendocrine cancer (LCNEC) (“2”, original data light blue), adenocarcinoma (Ad) (“3”, Original data pink), squamous cell carcinoma (Sq) (“4”, original data brown), normal lung (NL) (“5”, original data yellow) were shown.
  • SCLC small cell lung cancer
  • LCDNEC large cell neuroendocrine cancer
  • Ad adenocarcinoma
  • Sq squamous cell carcinoma
  • FIG. 2 shows the survival curves of the SCLC of group 1 (SCLC 1) and the SCLC of group 2 (SCLC 2).
  • FIG. 3 (A) shows normal lung tissue samples (NL), lung adenocarcinoma tissue samples and lung squamous cell carcinoma tissue samples (Ad + Sq), good prognosis group (SCLC2), and poor prognosis group for each miRNA expression level. A comparison between (SCLC1) is shown. *: P ⁇ 0.05, **: p ⁇ 0.01, ***: p ⁇ 0.001, NS: p ⁇ 0.05 (vs.
  • FIG. 3 shows the correlation between the expression level of each miRNA and the quantitative RT-PCR.
  • FIG. 4 shows the relationship between each miRNA and prognosis.
  • FIG. 5 shows classification by hierarchical clustering using 3 miRNA expressions. Rows and columns indicate the miRNA and case, respectively. The color on the “2.4” side (original data red) indicates high expression, and the color on the “ ⁇ 2.4” side (original data blue) indicates low expression.
  • the second bar from the bottom shows three groups classified by clustering. The bottom bar represents a poor prognosis group (SCLC1 group) and a good prognosis group (SCLC2 group) by clustering with 600 miRNAs.
  • FIG. 6 shows classification by hierarchical clustering using 4 miRNA expressions. Rows and columns indicate the miRNA and case, respectively. The color on the “3.2” side (original data red) indicates high expression, and the color on the “ ⁇ 3.2” side (original data blue) indicates low expression.
  • the second bar from the bottom shows two groups classified by clustering. The bottom bar represents a poor prognosis group (SCLC1 group) and a good prognosis group (SCLC2 group) by clustering with 600 miRNAs.
  • FIG. 7 shows the survival curves of the SCLC high-risk group and low-risk group classified by the prognosis prediction model using miR-153, miR-203, and miR-216a.
  • the prognosis prediction model using these three miRNAs can also classify small cell lung cancer into a good prognosis group and a poor prognosis group.
  • FIG. 8 shows tissue sections of cancer tissues of the small cell lung cancer high-risk group (A) and low-risk group (B) classified by the prognosis prediction model using miR-153, miR-203, and miR-216a.
  • FIG. 9 shows the results of evaluating the validity of the prognosis prediction model using three miRNAs (miR-153, miR-203, and miR-216a). The test set was classified based on the classification model built on the randomized learning set. The operation was repeated 1,000 times. (A) The result of survival analysis is shown as a histogram of p-value (by log rank test).
  • FIG. 10 shows the growth suppression of small cell lung cancer cells by miR-153 inhibitor and miR-203 mimetic (miR-203 mimic).
  • Panels (A) and (C) show RT-PCR analysis of miR-153 and miR-203 expression levels in poor prognosis group (SCLC1 group), good prognosis group (SCLC2 group), and various SCLC cell lines, respectively. Shows the results.
  • Panel (B) shows the results of transfecting SCLC cell line DMS 53 with miR-153 inhibitor
  • Panel (D) shows the results of transfecting SCLC cell line SCB5 with miR-203 (miR-203-mimic). Show.
  • As a result in both cases, it was confirmed that cell proliferation was suppressed as compared with the negative control. The decrease in the number of cells at 96 hr due to the introduction of miR-203 mimic when compared with the control was statistically significant.
  • Prognosis means a medical outlook or the patient's life expectancy about the course of the patient's cancer after some treatment (eg, chemotherapy, radiation therapy, surgical resection). Poor prognosis includes, for example, shorter survival after treatment, worsening or rapid deterioration of clinical features, progression of stage or rapid progression, and recurrence Or it means that the period until recurrence is short.
  • a good prognosis is, for example, a longer survival after treatment, a clinical feature improving or faster to improve, a stage not progressing or slow to progress, or a recurrence Or it means that the period until recurrence is long.
  • a biological sample derived from a cancer patient means, for example, a cancer tissue (eg, a small cell lung cancer tissue) collected from a cancer patient, a lymph node adjacent to the cancer tissue, a body fluid containing blood such as plasma and serum, and cells. It is not limited. In particular, cancer tissue collected from cancer patients is preferred. The cancer tissue can be collected with an endoscope or obtained by surgery.
  • the cells may be cells contained in body fluids such as blood, serum, plasma, urine, synovial fluid, cerebrospinal fluid, cerebrospinal fluid, semen, or lymph fluid, or cells contained in cancer tissue. It may be a circulating cancer cell ("CTC").
  • CTC circulating cancer cell
  • Examples of a method for obtaining circulating cancer cells include a method using immunomagnetic beads.
  • Immunomagnetic beads have antibodies against antigens selectively recognized on the surface of cancer cells such as epithelial cell adhesion molecule (EpCAM), cytokeratin-8, 19, etc., and are recognized on the surface of cancer cells. Some of them have antibodies against CD45 expressed on the surface of blood cells.
  • circulating cancer cells can be isolated using EASYSEP (registered trademark) human EpCAM positive kit (Stemcell Technologies) and EasySep (registered trademark) Human CD45 Deletion kit (Stemcell Technologies).
  • Other methods for isolating circulating cancer cells include the ISET method (Vona G et al., 2000, Am J Pathol. 2000 156: 57-63).
  • the control biological sample may be, for example, a healthy subject, a cancer patient other than small cell lung cancer, for example, a biological sample of a lung adenocarcinoma or lung squamous cell carcinoma patient, or a biological sample of a patient who has been judged to have a good prognosis. Although it means, it is not limited to these, What is necessary is just to select an optimal thing suitably according to a biological sample, miRNA to measure, etc.
  • a biological sample derived from the same site as the biological sample to be examined for example, the same tissue, organ, cell, for example, lung tissue
  • a biological sample of a healthy subject a lung adenocarcinoma, a lung squamous cell carcinoma patient, or a small cell lung cancer patient who has been judged to have a good prognosis
  • miR-196a a biological sample of a patient who has small cell lung cancer but a good prognosis can be used as a control biological sample.
  • the target to be measured in the test method for determining the prognosis of the present invention and the method for predicting, testing and / or diagnosing the prognosis is a specific miRNA or a precursor thereof.
  • the precursor means pri-miRNA that is a primary transcript or pre-miRNA that is a secondary transcript.
  • MiR-153 is a miRNA whose mature sequence is represented by UUGCAUAGUCACAAAAGUGAUC (SEQ ID NO: 1).
  • miR-153 precursor such as mir-153-1 (SEQ ID NO 2: CUCACAGCUGCCAGUGUCAUUUUUGUGAUCUGCAGCUAGUAUUCACUCCAGUUGCAUAGUCACAAAAGUGAUCAUUGGCAGGUGUGGC), mir-153-2 (SEQ ID NO 3: AGCGGUGGCCAGUGUCAUUUUUGUGAUGUUGCAGCUAGUAAUAUGAGCCCAGUUGCAUAGUCACAAAAGUGAUCAUUGGAAACUGUG), and the like.
  • MiR-196a is a miRNA whose mature sequence is represented by UAGGUAGUUUCAUGUUGUUGGG (SEQ ID NO: 4).
  • miR-196a precursor e.g. mir-196a-1 (SEQ ID NO 5: GUGAAUUAGGUAGUUUCAUGUUGUUGGGCCUGGGUUUCUGAACACAACAACAUUAAACCACCCGAUUCAC), mir-196a-2 (SEQ ID NO 6: UGCUCGCUCAGCUGAUCUGUGGCUUAGGUAGUUUCAUGUUGUUGGGAUUGAGUUUUGAACUCGGCAACAAGAAACUGCCUGAGUUACAUCAGUCGGUUUUCGUCGAGGGC), and the like.
  • MiR-203 is a miRNA whose mature sequence is represented by GUGAAAAUGUUUAGGACCACAUAG (SEQ ID NO: 7).
  • Examples of the miR-203 precursor include mir-203 (SEQ ID NO: 8: GUGUUGGGGGACUGCGCGCGUGGGGUCCAGUGGUUCUUAACAGUUCACAGUUCUGUGACGCAAUUGUGUAGAGCAGGACGACUGAGCGCG
  • MiR-216a is a miRNA whose mature sequence is represented by UAAUCUCAGCUGGCAACUGUGA (SEQ ID NO: 9).
  • mir-216a SEQ ID NO: 10: GAUGGCUGUGUGUGUGGGCUUAAUUCUCAGCUGGCAACUGUGGAGAUGUGUCAUGAUCAUCUCUCACAGUGUGAUCUUGUGAUCUUGAUGUUGAUGUUGAUGUUGAUGUUGAUGUUGAUGUUGAUGUUGAUGUUGAUGUUGAUGUUGAUGUUGAUGUUGAUGUUGAUGUUGAUGUUGAUGUUGAUGUUGAUGUUGAUGUUGAUGUUGAUGUUGAUGUUGAUGUUGAUGUUGAUGUUGAUGUUGAUGUUGAUGUUGAUGUUGAUGUUGAUGUUGAUGUUGAUGUUGAUGUUGAUGUUGAUGUUGAUGUUGAUGUUGAUGUUGAUGUUGAUGUUGAUGUUGAUGUUGAUGUUGAUGUUGAUGUUGAUGUUGAUGUUGAUGUUGAUGUUGAUGUUGAUGUUGAUGUUGAU
  • miRNAs and their precursors can be obtained, for example, by isolating them from natural products, chemically synthesizing them or using genetic recombination techniques, using conventionally known methods. it can.
  • the miRNA or precursor thereof used in the test method for determining the prognosis and the method for predicting, testing and / or diagnosing the prognosis may be used alone or in combination of two or more. However, it is preferable to use a combination of two or more in terms of improving accuracy of prediction, inspection and / or diagnosis.
  • miRNA and its precursor may be combined, or two or more different miRNAs may be combined.
  • a combination containing at least miRNA-153 and miRNA-216a is suitable in the present invention. Further, it may be a combination containing at least miRNA-153 and miR-203, or a combination containing at least miRNA-216a and miR-203. In the present invention, a combination containing at least miR-153, miR-203, and miR-216a is particularly preferred. Also preferred are combinations comprising miR-153, miR-203, miR-216a, and miR-196a.
  • total RNA is first extracted from a biological sample.
  • the extraction method include known methods such as guanidine ultracentrifugation (Chirgwin, J. M. et al., Biochemistry (1979) 18, 5294-5299), AGPC method (Chomczynski, P.et al., Anal). Biochem. (1987) 162, 156-159).
  • the expression level of miRNA or a precursor thereof according to the present invention can be measured using total RNA obtained from a biological sample.
  • Any known method can be used for quantitative measurement of miRNA or a precursor thereof.
  • the RT-PCR method or a modified method thereof, the Northern blot method, the in situ hybridization method, or a method using a microarray can be mentioned.
  • the expression level can be accurately measured by a quantitative RT-PCR (qRT-PCR) method.
  • the expression level of the miRNA or the precursor thereof according to the present invention in a biological sample derived from a patient to be examined to determine the prognosis, and in a biological sample derived from a patient to be predicted, examined and / or diagnosed. Can be compared with the expression level of the miRNA according to the present invention or a precursor thereof in a control biological sample.
  • miR-153, miR-216a or a precursor thereof in a biological sample derived from a patient to be examined to determine a prognosis a biological sample derived from a patient to be predicted, examined and / or diagnosed
  • the expression level of is increased compared to the expression level of miR-153, miR-216a or their precursors in the control biological sample, it can be determined that the prognosis is poor.
  • judging that the prognosis is poor means that if not (if it is not rising), it is judged that the prognosis is not bad (or good). Good.
  • Provided in the present invention are methods that include any of them, and methods that include both.
  • the present invention is such that the expression level of miR-153, miR-216a or a precursor thereof in the biological sample derived from the patient is compared with the expression level of miR-153, miR-216a or a precursor thereof in the control biological sample. It relates to a method for predicting, judging, diagnosing, testing and / or determining that the prognosis is poor if it is elevated and / or otherwise the prognosis is good (and / or not bad).
  • the expression level of miR-153, miR-216a or a precursor thereof in a biological sample derived from a patient with a poor prognosis is equal to the expression level of miR-153, miR-216a or a precursor thereof in a control biological sample. 2 times, preferably 3 times, more preferably 5 times, more preferably 10 times, more preferably 20 times, more preferably 50 times, more preferably 100 times, more preferably 1000 times, most preferably 10000 times It has risen above each value.
  • the expression level of miR-153, miR-216a, miR-203, or a precursor thereof in a biological sample derived from a patient whose prognosis is not bad (good) is the same as the expression level in a control biological sample.
  • the ratio of the sample with high expression / the sample with low expression is less than 2 times, less than 1.8 times, less than 1.5 times, or less than 1.3 times.
  • the expression level of miR-203 or a precursor thereof in a biological sample derived from a patient for which the prognosis is predicted, judged, diagnosed, examined, and / or determined is the expression level of miR-203 or a precursor thereof in a control biological sample.
  • the prognosis can be judged as poor. Further, when the decrease is made, it is judged that the prognosis is poor. If not (if it is not reduced), it means that the prognosis is judged not bad (or good). Good. Methods are included in the present invention that include any of them, and methods that include both. That is, the present invention has a poor prognosis when the expression level of miR-203 or a precursor thereof in a biological sample derived from the patient is reduced compared to the expression level of miR-203 or a precursor thereof in a control biological sample.
  • the expression level of miR-203 or a precursor thereof in a biological sample derived from a patient with a poor prognosis is 1/2 times the expression level of miR-203 or a precursor thereof in a control biological sample, preferably 1 / 3 times, more preferably 1/5 times, more preferably 1/10 times, more preferably 1/20 times, more preferably 1/50 times, further preferably 1/100 times, more preferably 1/1000 times
  • the most preferable value is 1 / 10,000 times or less.
  • the expression level of miR-196a or a precursor thereof in a biological sample derived from a patient for which the prognosis is predicted, judged, diagnosed, examined and / or determined is determined in a biological sample derived from a small cell lung cancer patient having a good prognosis. If the expression level of miR-196a or its precursor is decreased, it can be determined that the prognosis is poor. Further, when the decrease is made, it is judged that the prognosis is poor. If not (if it is not reduced), it means that the prognosis is judged not bad (or good). Good.
  • Provided in the present invention are methods that include any of them, and methods that include both.
  • the present invention shows that the expression level of miR-196a or a precursor thereof in a biological sample derived from the patient is higher than the expression level of miR-196a or a precursor thereof in a biological sample derived from a small cell lung cancer patient having a good prognosis. It relates to a method for predicting, judging, diagnosing, testing and / or determining that the prognosis is poor if it is decreasing and / or that the prognosis is good (and / or not bad) otherwise.
  • the expression level of miR-196a or a precursor thereof in a biological sample derived from a patient with a poor prognosis is the expression level of miR-196a or a precursor thereof in a biological sample derived from a small cell lung cancer patient with a good prognosis.
  • the value is reduced to 100 times, more preferably 1/1000 times, most preferably 1 / 10,000 times or less.
  • a biological sample derived from the patient for whom the prognosis is predicted judged, diagnosed, examined and / or judged If the expression level of miR-196a or its precursor in the sample is higher than the expression level of miR-196a or its precursor in the control biological sample, it can be judged that the prognosis is not poor (good), etc. If not, it can be determined that the prognosis is poor.
  • the present invention has a poor prognosis when the expression level of miR-196a or a precursor thereof in the biological sample derived from the patient is not increased compared to the expression level of miR-196a or a precursor thereof in the control biological sample. It relates to a method for predicting, judging, diagnosing, examining and / or determining that the prognosis is good (and / or not bad) when it is elevated.
  • the expression level of miR-196a or a precursor thereof in a biological sample derived from a patient whose prognosis is not poor (good) is, for example, that of a healthy subject, lung adenocarcinoma, or lung squamous cell carcinoma 2 times, preferably 3 times, more preferably 5 times, more preferably 10 times, more preferably 20 times, more preferably 50 times, more preferably 100 times, even more preferably compared to the same expression level in the control biological sample.
  • the expression level of miR-196a or a precursor thereof in a biological sample derived from a patient with a poor prognosis is increased by 1000 times, most preferably 10,000 times or more, for example, a healthy subject, lung adenocarcinoma, or The expression level is similar to that in the control biological sample of a patient determined to be squamous cell carcinoma of the lung. Specifically, for example, the ratio of the high expression / low sample is not doubled. , Less than 1.8-fold, less than 1.5, or less than 1.3 times.
  • one control biological sample may be used, but a plurality of biological samples may be used, for example, a plurality of healthy human biological samples may be used, or a healthy biological sample and a cancer patient biological sample may be used in combination. Also good.
  • the prognosis of a patient determined or diagnosed as small cell lung cancer is treated with chemotherapy, radiation, and the like. Predict, judge, determine, test and / or diagnose before therapy or surgery. Therefore, the treatment to be performed thereafter can be optimized. It is also possible to confirm the therapeutic effect by using the method for predicting, judging, judging, examining and / or diagnosing the prognosis according to the present invention at any time during chemotherapy and radiation therapy.
  • the prognosis according to the present invention can be predicted, judged, judged, examined and / or diagnosed after surgery by using the method for predicting, judging, judging, examining and / or diagnosing the prognosis of the present invention. is there.
  • the prediction and inspection method of the present invention can be implemented separately from the diagnosis. For example, even if a diagnosis is performed by a doctor, a test can be performed by a person who is not a doctor (for example, an external organization) and the doctor can make a diagnosis based on the test result.
  • the inspection method of the present invention can be implemented separately from the diagnostic method. For example, a biological sample may be converted into an ID.
  • the test method of the present invention is also useful in situations where the prognostic distribution of patients with small cell lung cancer is statistically investigated, such as when it is not finally linked to patient diagnosis.
  • the present invention also detects a method for obtaining an intermediate result for the diagnostic method of the present invention, a test method for determining a prognosis in a patient with small cell lung cancer, and a prognostic marker or indicator in a patient with small cell lung cancer.
  • a method for examining the prognosis of a biological sample derived from a patient with small cell lung cancer, a test method for determining or diagnosing the prognosis in a patient with small cell lung cancer, and in a patient with small cell lung cancer It also relates to non-diagnostic methods for examining prognosis. The steps of each method may be performed according to the above description, and in the final step, information on prognosis is provided as an intermediate or non-diagnostic result rather than a diagnosis.
  • the present invention also relates to at least one selected from the group consisting of miR-153, miR-196a, miR-203, miR-216a or their precursors in the examination, prediction, judgment, determination and diagnosis of the present invention. It relates to the use of probes, primers, and nucleic acids that hybridize to the at least one.
  • the probe, primer, and nucleic acid are useful as a drug for performing the test, prediction, judgment, determination, and diagnosis of the present invention, that is, a test agent, a diagnostic agent, and the like.
  • the present invention also relates to the diagnostic agent and the diagnostic agent comprising the probe, primer and nucleic acid, and the use of the probe, primer and nucleic acid in the production of the diagnostic agent or the diagnostic agent.
  • the probe, primer, and nucleic acid are preferably those that specifically hybridize with miR-153, miR-196a, miR-203, miR-216a or their precursors.
  • stringent conditions specifically , 1 x SSC (1 x SSC is 150 mM NaCl, 15 mM sodium citrate, pH 7.0), 37 ° C, or 1 x SSC is 40 ° C, 45 ° C, 50 ° C, or 55 ° C, preferably 37 It may be a nucleic acid that hybridizes at 37 ° C., 40 ° C., 45 ° C., or 50 ° C.
  • one of the nucleic acids to be hybridized is labeled, the other is immobilized on a membrane, and both are incubated.
  • Hybridization conditions are, for example, 5xSSC, 7% (W / V) SDS, 100 ⁇ g / ml denatured salmon sperm DNA, 5x Denhardt solution (1x Denhardt solution is 0.2% polyvinylpyrrolidone, 0.2% bovine serum albumin, and 0.2% Ficoll) May be performed in a solution containing After incubating for a sufficient period of time (eg, 3, 4, 5 or 6 hours or more), washing is performed under the above conditions, and by detecting whether the labeled nucleic acid is hybridized, the nucleic acid is hybridized under the condition. Or not.
  • the present invention also relates to a method for treating small cell lung cancer and a method for improving the prognosis of small cell lung cancer.
  • the diagnostic method and test of the present invention it is the same as the description of the method.
  • the expression level in a biological sample derived from a small cell lung cancer patient with a good prognosis can be used as a comparison target.
  • the expression level in a biological sample derived from a small cell lung cancer patient with a good prognosis can be used as a comparison target.
  • the expression level in a biological sample derived from a small cell lung cancer patient with a good prognosis can be used as a comparison target.
  • the expression level in a biological sample derived from a small cell lung cancer patient with a good prognosis can be used as a comparison target.
  • miR-196a, miR-203 or their precursors for example, miR-196a, miR-203 or their This can be done by administering a precursor.
  • the miRNA to be administered or a precursor thereof may be partially modified to improve or stabilize the resistance to nuclease.
  • the 2′-OH of the ribose of pyrimidine nucleotides may be fluorinated or methylated.
  • the nucleotides that make up the nucleic acid may be natural nucleotides, modified nucleotides, artificial nucleotides, or combinations thereof.
  • the nucleic acid may be composed of RNA, may be RNA / DNA chimera, may contain other nucleic acid analogs, and may contain any combination thereof.
  • Nucleic acids include not only those linked by phosphodiester bonds but also those having amide bonds or other backbones (such as peptide nucleic acids (PNA)). Nucleic acids include, for example, natural and artificial nucleic acids, and may be nucleic acid derivatives, nucleic acid derivatives, nucleic acid analogs, and the like. Such nucleic acid analogs are well known in the art and include, but are not limited to, phosphorothioates, phosphoramidates, methylphosphonates, chiral methylphosphonates, 2'-O-methylribonucleotides, peptide nucleic acids (PNA), and the like. Not.
  • the backbone of PNA may include a backbone consisting of aminoethylglycine, polyamide, polyethyl, polythioamide, polysulfinamide, polysulfonamide, or combinations thereof (Krutzfeldt, J. et al., Nucleic Acids Res. 35: 2885-2892; Davis, S. et al., 2006, Nucleic Acids Res. 34: 2294-2304; Boutla, A. et al., 2003), Nucleic Acids Res. 31: 4973-4980; Hutvagner, G. et al., 2004, PLoS Biol. 2: E98; Chan, JA et al., 2005, Cancer Res. 65: 6029-6033; Esau, C. et al., 2004, J. Biol. Chem. 279: 52361- 52365; Esau, C. et al., 2006, Cell Metab. 3: 87-98).
  • Nucleic acid modifications are specifically 2 ′ or 3 ′ sugar modifications such as 2′-O-methyl (2′-O-Me) ylated nucleotides or 2′-deoxynucleotides, or 2′-fluoro, difluorotoluyl.
  • DFT difluorotoluyl modification, for example, substitution of 2,4-difluorotoluyluracil or guanidine to inosine may be performed.
  • the nucleic acid may contain a conjugate at the end.
  • the conjugate include lipophilic substances, terpenes, protein binding substances, vitamins, carbohydrates, retinoids, peptides, and the like.
  • examples include cholesterol, dU-cholesterol, alkyl chains, aryl groups, heterocyclic complexes, and modified sugars (D-ribose, deoxyribose, glucose, etc.).
  • the conjugate and the nucleic acid can be bound via, for example, an arbitrary linker, and specific examples include a pyrrolidine linker, serinol linker, aminooxy, or hydroxyprolinol linker.
  • a cell permeation signal can be appropriately added to the nucleic acid.
  • many cell-permeable peptides for introducing nucleic acids into cells are known (WO2008 / 082885).
  • arginine-rich peptides such as polyarginine, such as HIV-1 Tat (48-60), HIV-1 (Rev (34-50), FHV Coat (35-49), BMV Gag ( 7-25), HTLV-II Rex (4-16), a partial peptide thereof, or an inverso or retro-inverso thereof.
  • amino acid d-form may be used as appropriate.
  • a cell-penetrating peptide or the like may be bound to a nucleic acid by a known linker.
  • modified nucleic acids, nucleic acid derivatives, nucleic acid derivatives, nucleic acid analogs, and the like are also included in the miRNA or precursor thereof of the present invention.
  • MiR-196a and miR-203 mimics mimicking natural miR-196a and miR-203 are already commercially available (eg MISSION TM microRNA Mimics, Sigma-Aldrich Corporation; miRIDIAN miRNA Mimic, Dharmacon, Lafayette, LA). These can be appropriately used as miR-196a and miR-203, respectively.
  • the method for administering miRNA or a precursor thereof to a patient is not particularly limited.
  • the miRNA according to the present invention or a precursor thereof may be administered as it is, and liposomes, lipofectins, cellfectins, polycations, nanoparticles, etc. May be administered in combination.
  • the DNA encoding the miRNA according to the present invention or a precursor thereof can be inserted into an expression vector for administration.
  • expression vectors include pME18S (Med. Immunol. 20: 27-32 (1990)), pEF-BOS (Nucleic Acids Res. 18: 5322 (1990)), pCDM8 (Nature 329: 840-842 (1987)).
  • the promoter for transcription of RNA is not particularly limited, and a Pol I promoter, Pol II promoter, Pol III promoter, a bacteriophage promoter (RNA polymerase recognition sequence of T4 phage or T7 phage), and the like can be used.
  • Examples of the polymerase II (Pol II) promoter include CMV promoter and ⁇ -globin promoter.
  • a polymerase III (Pol III) promoter that can be expressed in a higher amount than Pol II.
  • Pol III promoters include U6 promoter, H1 promoter, tRNA promoter, 7SK promoter, 7SL promoter, Y3 promoter, 5S rRNA promoter, Ad2 VAI and VAII promoter (Das, G. et al., 1988).
  • miRNA which concerns on this invention, or its precursor can also insert the nucleic acid which codes them in a well-known viral vector, and can also administer it.
  • a well-known viral vector for example, the following various viral vectors for gene therapy are known (see Adolph K.W. ed., Viral Genome Methods, CRC Press, Florida (1996)). Retrovirus vector adenovirus vector vaccinia virus vector poxvirus vector adeno-associated virus vector HVJ vector etc.
  • Administration may be oral administration or parenteral administration (eg, intravenous administration, intramuscular administration, subcutaneous administration, intradermal administration, cutaneous administration, mucosal administration, intrarectal administration, intravaginal administration, local administration to cancer tissue) But you can.
  • parenteral administration eg, intravenous administration, intramuscular administration, subcutaneous administration, intradermal administration, cutaneous administration, mucosal administration, intrarectal administration, intravaginal administration, local administration to cancer tissue
  • a known therapeutic agent for small cell lung cancer may be administered together with the miRNA according to the present invention or a precursor thereof, or radiation therapy may be performed.
  • miR-196a, miR-203 or their Doing by administering the precursor As the administration method, the same method as the method for treating small cell lung cancer according to the present invention can be used.
  • the compound, nucleic acid, vector, and other conditions to be used can also refer to the description of the method for treating small cell lung cancer according to the present invention, and any combination of the description and the description of the improvement method of the present invention , Disclosed herein.
  • miR-153, miR-216a or a precursor thereof is applied to a patient having increased expression of miR-153, miR-216a or a precursor thereof. Inhibits the function of Specifically, for example, it can be carried out by administering at least one compound that reduces the function of miR-153, miR-216a or a precursor thereof.
  • the compound that reduces the function is not particularly limited.
  • double-stranded RNA including RNAi constructs such as siRNA
  • antisense oligonucleotides, ribozymes, or expression vectors that express them can be used.
  • antisense oligonucleotides, ribozymes, or expression vectors that express them can be used.
  • These compounds only need to reduce the function of the miRNA or precursor thereof according to the present invention.
  • all or part of the compound binds to at least a part of the miRNA or precursor thereof according to the present invention, What inhibits this miRNA or its precursor binding
  • the compound may be RNA or DNA as long as it reduces the function of miRNA or a precursor thereof according to the present invention, may be a chimeric type containing DNA and RNA in the same strand, and one strand is DNA.
  • a hybrid type in which the other strand is RNA can also be used.
  • the compound that reduces the function of miRNA or a precursor thereof may be a nucleic acid (including a nucleic acid analog) that acts as an antagonist or inhibitor on the miRNA or a precursor thereof.
  • a nucleic acid including a nucleic acid analog
  • an antisense nucleic acid that binds to the miRNA or a precursor thereof an RNAi construct for the miRNA or a precursor thereof (including a double-stranded RNA such as siRNA), a ribozyme that cleaves the miRNA or a precursor thereof, and an miRNA or a thereof Nucleic acids that inhibit precursors.
  • These nucleic acids contain a base sequence that is complementary to at least a part or all of the base sequence of the miRNA or a precursor thereof in order to recognize a miRNA or a precursor thereof that has a reduced function.
  • MiRNA recognizes a target base sequence consisting of several bases present in the 3'-untranslated region of the target gene.
  • This target base sequence is, for example, a base sequence complementary to the 1st to 8th base sequences at the 5 'end of miRNA (Nature 433: 769-773 (2005)).
  • miRNA can be effectively inhibited by RNA having a sequence complementary to the base sequence at the 5 ′ end of miRNA that lowers the function.
  • Such RNA may be completely complementary to the above 5 ′ base sequence of miRNA (base 1 to 8, 2 to 7, or 3 to 8 from the 5 ′ end of miRNA). Or there may be 1-2 gaps.
  • this base sequence is completely complementary, and continuously contains at least 8 bases, more preferably 9 bases, more preferably 10 bases of complementary bases for miRNA. More preferably, it contains a total of 11 bases or more, more preferably 12 bases or more, and more preferably 13 bases or more complementary bases for miRNA.
  • Complementary bases may be contiguous or may include one or more (2, 3, 4) gaps. Mismatch with miRNA can suppress cleavage by RISC and increase the inhibitory activity of miRNA. Thus, it need not be completely complementary to the miRNA and can also be designed to contain a bulge.
  • the compound is at least 85% or more, preferably 90% or more, based on at least a part (for example, 6, 7, 8, 9, 10, 15 to 30 bases) or all of the miRNA or a precursor thereof according to the present invention More preferably 95% or more, even more preferably 98% or more, even more preferably 99% or more, and most preferably 100% sequence homology (identity).
  • the compound to be administered may be partially modified to improve or stabilize the resistance to nuclease.
  • the 2′-OH of the ribose of pyrimidine nucleotides may be fluorinated or methylated, Steroids, bile acids, polyethylene glycols, etc. may be added.
  • an antisense nucleic acid that binds to miRNA or a precursor thereof may contain about 15-30 bases or more.
  • Antisense nucleic acids may also contain one or more modified backbones and / or base moieties.
  • antisense nucleic acids include natural oligonucleotides and modified oligonucleotides such as phosphorothioates, phosphorodithioates, methylphosphonates, phosphoramidates, H-phosphonate types, triesters, alpha- Anomers, peptide nucleic acids, other artificial nucleic acids, and nucleic acid modifying compounds are included.
  • Antisense nucleic acids may also contain 2′-O-alkylated ribonucleotides.
  • the antisense nucleic acid may contain a base sequence complementary to the base sequence of miRNA, for example, 15 bases or more, 16, 17, 18, 19, 20, 25, 30, 35, 40 bases or more.
  • Complementary sequences may be contiguous or may include one or more (2, 3, 4) gaps (Schmajuk et al., 1999, J. Biol. Chem., 274, 21783-21789, Delihas et al., 1997, Nature, 15, 751-753, Stein et al., 1997, Antisense NA Drug Dev., 7, 151, Crooke, 2000, Methods Enzymol., 313, 3-45; Crooke, 1998, Biotech. Genet. Eng. Rev., 15, 121-157, Crooke, 1997, Ad.
  • the antisense nucleic acid is, for example, at least 85% or more, preferably 90% with respect to at least a part (for example, 6, 7, 8, 9, 10, 15 to 30 bases) or all of the miRNA or a precursor thereof according to the present invention. % Or more, more preferably 95% or more, even more preferably 98% or more, even more preferably 99% or more, and most preferably 100% sequence homology (identity).
  • the RNAi construct for the miRNA or a precursor thereof includes, for example, a base sequence complementary to at least a part of the target miRNA or the precursor thereof, and reduces the function of the miRNA (decreases the expression level of the miRNA, or RNA having an activity that inhibits the binding of the miRNA to a target gene or increases the expression level of the gene, and may be about 14 to 50 nucleotides, preferably 19 to 30 nucleotides, or The above may be included.
  • the double stranded portion of the RNAi construct is about 21-23 nucleotides in length.
  • RNAi construct may be siRNA (including hairpin type single-stranded RNA), or may be RNA (for example, double-stranded RNA) that generates siRNA by processing with Dicer in the cell.
  • RNAi constructs such as siRNA and double stranded RNA may contain DNA.
  • TT may be included at the 3 'end.
  • the target miRNA can be effectively inhibited by oligonucleotides such as 2′-O methyl (2′-OMe) RNA, locked nucleic acid (LNA), and antagomir, etc.
  • oligonucleotides such as 2′-O methyl (2′-OMe) RNA, locked nucleic acid (LNA), and antagomir, etc.
  • Methods for inhibiting target miRNAs are also known (Hutvagner, G. et al. (2004) PLoS Biol, 2, E98; Meister, G. et al. (2004) Rna, 10, 544-550; Orom, UA et al (2006) Gene, 372, 137-141; Krutzfeldt, J. et al. (2005) Nature, 438, 685-689; Ebert, MS et al. (2007) Nat Methods, 4, 721-726).
  • ribozymes that cleave miRNA or its precursor include ribozymes that cleave target miRNA or its precursor (WO 90/11364; US Pat. No. 5,093,246; Sarver ; et al., Science 247: 1222-). 1225).
  • the ribozyme includes any nucleic acid enzyme, and may be, for example, an RNA-type ribozyme, a DNA-type ribozyme (deoxyribozyme), or a DNA-RNA chimeric ribozyme.
  • a ribozyme can be appropriately produced using techniques well known to those skilled in the art (Haselof and Gerlach, 1988, Nature, 334: 585-591; Zaug et al., 1984, Science, 224: 574-578; Zaug and Cech, 1986, Science, 231: 470-475; Zaug et al., 1986, Nature, 324: 429-433; WO88 / 04300; Been and Cech , 1986, Cell, 47: 207-216).
  • the nucleic acid that inhibits miRNA or its precursor is preferably a nucleic acid that hybridizes with the miRNA sequence under physiological conditions.
  • physiological conditions include 1 ⁇ SSC (1 ⁇ SSC is 150 ⁇ M NaCl, 15 ⁇ M sodium citrate, pH 7.0), 37 ° C. More preferably, it may be a nucleic acid that hybridizes with miRNA under stringent conditions.
  • the stringent conditions are, for example, 1 ⁇ SSC or 0.5 ⁇ SSC, 42 ° C., more preferably 1 ⁇ SSC or 0.5 ⁇ SSC, 45 ° C., more preferably 1 ⁇ SSC or 0.5 ⁇ .
  • the conditions are SSC and 50 ° C.
  • Hybridization for example, either RNA containing a miRNA sequence or nucleic acid that inhibits miRNA is labeled, the other is immobilized on a membrane, and both are hybridized.
  • Hybridization conditions are, for example, 5xSSC, 7% (W / V) SDS, 100 ⁇ g / ml denatured salmon sperm DNA, 5x Denhardt solution (1x Denhardt solution is 0.2% polyvinylpyrrolidone, 0.2% bovine serum albumin, and 0.2% Ficoll) For example, at 37 ° C., 45 ° C., or 50 ° C.
  • the nucleic acid may be RNA or DNA, may be a chimeric type containing DNA and RNA in the same strand, or a hybrid type in which one strand is DNA and the other strand is RNA.
  • Double-stranded RNA may be administered as they are, but may be administered by a known method such as using an expression vector.
  • an expression vector for example, those described in the present specification can be used.
  • miRNA inhibitors An efficient method for producing an miRNA inhibitor is already known (Vermeulen A et al. RNA 13, 723-730 (2007)).
  • miR-153 inhibitors and miR-216a inhibitors are already commercially available (eg Synthetic® human® miRNA® inhibitor oligonucleotide, gene Genepopoia, Inc., Rockville, MD; miRIDIAN® microRNA® Hairpin® Inhibitor, Dharmacon, Lafayette, LA). These can be used as miRNA inhibitors as appropriate.
  • miR-153, miR-216a or their precursors are increased in patients with increased expression of miR-153, miR-216a or their precursors. It is performed by administering double-stranded RNA (including siRNA), antisense oligonucleotide, ribozyme, etc. to the precursor.
  • double-stranded RNA including siRNA
  • antisense oligonucleotide ribozyme, etc.
  • the administration method the same method as the method for treating small cell lung cancer according to the present invention can be used.
  • the compound, nucleic acid, vector, and other conditions to be used the above description regarding the method for treating small cell lung cancer according to the present invention can be referred to, and any of these descriptions and the description of the improvement method of the present invention can be referred to. Combinations of these are disclosed herein.
  • the therapeutic agent and prognosis improving agent according to the present invention include miR-196a, miR-203, a precursor thereof or a vector expressing them, miR-153, miR-216a or a precursor thereof according to the present invention as an active ingredient. Containing at least one kind of compound that inhibits the function of pharmacologically, and optionally adding pharmaceutically acceptable excipients, tonicity agents, solubilizers, stabilizers, preservatives, soothing agents, etc. It can be prepared as a pharmaceutical composition such as tablets, powders, granules, capsules, liposome capsules, injections, liquids, nasal drops and the like, and can also be lyophilized. These can be prepared according to conventional methods.
  • the therapeutic agent and prognosis improving agent according to the present invention can be appropriately adjusted according to the patient's condition and used in preferable amounts.
  • it can be administered in the range of 0.001 to 100 mg / kg, preferably 0.1 to 10 mg / kg, but is not particularly limited. Further, for example, such a dose may be divided into several times, and such a dose may be administered several times.
  • the therapeutic agent and prognosis improving agent according to the present invention can be subjected to pharmacological evaluation in, for example, the following in vitro or in vivo system.
  • Examples of the in vitro pharmacological evaluation include a cell growth inhibition assay and a colony formation inhibition assay.
  • the cell growth inhibition assay for example, the therapeutic agent or prognosis improving agent according to the present invention is brought into contact with a cancer cell in which the miRNA according to the present invention or a precursor thereof is expressed, and a 3 H-thymidine uptake assay after a predetermined period of time,
  • the cell growth inhibitory activity can be evaluated by MTT assay or the like.
  • the therapeutic agent or prognosis improving agent according to the present invention is contacted with cancer cells expressing the miRNA according to the present invention or a precursor thereof, followed by Giemsa staining after culture, and the number of resistant colonies is determined. It can be evaluated by counting.
  • cancer cells expressing miRNA or a precursor thereof according to the present invention animal cells or yeast cells directly introduced with the nucleic acid encoding the miRNA or precursor thereof, or the miRNA or precursor thereof are encoded.
  • a transformed cell obtained by introducing a vector expressing a nucleic acid into a host cell such as an animal cell or a yeast cell can be used.
  • miRNA for example, miR-153, miR-216a or a precursor thereof can be used, but is not limited thereto.
  • Pharmacological evaluation in vivo can be performed by administering an appropriate amount of the therapeutic agent or prognosis improving agent according to the present invention to a cancer animal model an appropriate number of times.
  • the size of the tumor can be used as an index for the evaluation.
  • a cancer animal model for example, a cancer-bearing animal model in which a cancer cell expressing the miRNA according to the present invention or a precursor thereof is transplanted can be used, but it is not particularly limited thereto.
  • the present invention also provides miR-153, miR-196a, miR-203, miR-216a, their precursors, their expression vectors, and compounds that inhibit the function of the miRNA or its precursors (including expression vectors) At least one selected from the group consisting of: a use for the treatment of small cell lung cancer, a use for improving the prognosis of the lung cancer, a use in the manufacture of a medicament or a medicament for the treatment of the lung cancer, and the lung cancer It relates to the use in the manufacture of a medicament or medicament for improving the prognosis of The present invention also provides miR-153, miR-196a, miR-203, miR-216a, their precursors, their expression vectors, and compounds that inhibit the function of the miRNA or its precursors (including expression vectors) At least one selected from the group consisting of: a use for inhibiting the growth of small cell lung cancer cells; and a use for producing a medicament or a medicament for inhibiting the growth of the cells.
  • the present invention also relates to a therapeutic agent for small cell lung cancer and a prognosis improving agent for small cell lung cancer, comprising at least one selected from the group.
  • the present invention also relates to a growth inhibitor of small cell lung cancer cells, comprising at least one selected from the group.
  • the present invention also includes a composition for inhibiting the growth of small cell lung cancer cells, a composition for the treatment of small cell lung cancer, comprising at least one selected from the group and a pharmaceutically acceptable carrier, And a composition for improving the prognosis of small cell lung cancer.
  • the pharmaceutically acceptable carrier include distilled water, phosphate buffered saline (PBS), sodium chloride solution, Ringer's solution, culture solution and the like.
  • vegetable oil, suspension agent, surfactant, stabilizer, biocide, etc. may be contained.
  • the present invention also provides miR-153, miR-196a, miR-203, miR-216a, their precursors, their expression vectors, and compounds that inhibit the function of the miRNA or its precursors (including expression vectors) At least one selected from the group consisting of miR-153, miR-196a, miR-203, miR-216a or a precursor thereof in at least one biological sample derived from a patient with small cell lung cancer selected from the group consisting of The present invention relates to a use for treating small cell lung cancer in which the expression level is changed (increased or decreased) compared to a control biological sample, and a use for improving the prognosis of the small cell lung cancer.
  • the present invention is selected from the group consisting of miR-153, miR-196a, miR-203, miR-216a or a precursor thereof in at least one biological sample derived from a patient with small cell lung cancer selected from the group.
  • the treatment or the prognosis improvement is (1) When the expression level of at least one of miR-196a, miR-203, or a precursor thereof is decreased, the decreased at least one miRNA, the precursor thereof, or the expression thereof is expressed Or / and (2) When the expression level of at least one of miR-153, miR-216a or a precursor thereof is increased, at least one compound that inhibits the function of the miRNA or a precursor thereof is administered May be included.
  • the present invention also relates to the use of at least one selected from the group consisting of miR-196a, miR-203, their precursors, and their expression vectors for treating small cell lung cancer, and prognosis of small cell lung cancer.
  • the invention relates to use for improving, use in the manufacture of a medicament or medicament for treating small cell lung cancer, and use in the manufacture of a medicament or medicament for improving the prognosis of small cell lung cancer.
  • the invention relates to use, in the manufacture of a medicament or medicament for treating the small cell lung cancer, and in use in the manufacture of a medicament or medicament for improving the prognosis of the small cell lung cancer.
  • the present invention also relates to the use of a compound (including an expression vector) that inhibits the function of at least one of miR-153, miR-216a or a precursor thereof for treating small cell lung cancer, prognosis of small cell lung cancer
  • the present invention relates to a use for improving the prognosis, a use in the manufacture of a medicament or medicament for treating small cell lung cancer, and a use in the manufacture of a medicament or medicament for improving the prognosis of small cell lung cancer.
  • the invention relates to use, in the manufacture of a medicament or medicament for treating the small cell lung cancer, and in use in the manufacture of a medicament or medicament for improving the prognosis of the small cell lung cancer.
  • the present invention is also selected from the group consisting of miR-153, miR-196a, miR-203, miR-216a, their precursors, and compounds (including expression vectors) that inhibit the function of the miRNA or its precursors.
  • At least one use for treating small cell lung cancer, use for improving the prognosis of small cell lung cancer, and use in the treatment or manufacture of a medicament or medicament for improving the prognosis The treatment or the prognostic improvement is (1) measuring at least one expression level selected from the group consisting of miR-153, miR-196a, miR-203, miR-216a or a precursor thereof in a biological material derived from a small cell lung cancer patient; (2) if the expression level is decreased compared to the control biological sample, administering the decreased at least one miRNA or a precursor thereof, or a vector expressing them; or / and , (3) a step of administering at least one compound (including an expression vector) that inhibits the function of the miRNA or a precursor thereof when the expression level is increased
  • the present invention also relates to use of at least one selected from the group consisting of miR-196a, miR-203, their precursors, and their expression vectors for treating small cell lung cancer, prognosis of small cell lung cancer Use in the manufacture of a medicament or medicament for treating small cell lung cancer, and use in the manufacture of a medicament or medicament for improving the prognosis of small cell lung cancer comprising the treatment or the prognosis Improvement of (1) In a biological material derived from a patient with small cell lung cancer, at least one expression level selected from the group consisting of miR-196a, miR-203, or a precursor thereof is measured, (2) When the expression level is reduced as compared to the control biological sample, administering the reduced at least one miRNA or a precursor thereof, or a vector expressing them, Concerning use, including The present invention also relates to the use of a compound (including an expression vector) that inhibits at least one function of miR-153, miR-216a, or a precursor thereof for treating small cell lung cancer, and prognos
  • the improvement is (1) measuring at least one expression level selected from the group consisting of miR-153, miR-216a, or a precursor thereof, in a biological material derived from a small cell lung cancer patient; (2) a step of administering at least one compound (including an expression vector) that inhibits the function of the miRNA or a precursor thereof when the expression level is increased compared to a control biological sample; Concerning use, including
  • a biological sample derived from a small cell lung cancer patient, a control biological sample, and measurement and comparison of the expression level are the same as those described for the diagnostic method and test method of the present invention.
  • the expression level in a biological sample derived from a small cell lung cancer patient with a good prognosis can be used as a comparison target.
  • the present invention also provides a therapeutic agent for small cell lung cancer, comprising as an index at least one function change selected from the group consisting of miR-153, miR-196a, miR-203, miR-216a, or a precursor thereof.
  • the present invention relates to a prognosis improving agent for cell lung cancer and a screening method for those candidate compounds.
  • the screening method according to the present invention is based on the finding that the expression level of a specific miRNA is associated with the prognosis in a biological sample derived from a patient with small cell lung cancer.
  • the therapeutic agent for small cell lung cancer, the prognosis improving agent for small cell lung cancer, and the candidate compound screening method thereof according to the present invention include miR-153, miR-196a, miR-203, miR-216a or their precursors.
  • “change in function” includes, for example, a case where the expression level of miRNA or a precursor thereof according to the present invention changes.
  • the expression level of the miRNA or precursor thereof according to the present invention does not change, but the expression level of the gene having the target base sequence of the miRNA or precursor thereof is changed by modifying the miRNA or precursor thereof.
  • the expression level of the miRNA according to the present invention or its precursor does not change, but the expression or activity of a factor that changes the expression level of the gene having the target base sequence of the miRNA or its precursor changes.
  • the case where the expression level of the gene having the target base sequence of the miRNA or a precursor thereof changes depending on circumstances is also included.
  • the first screening method can be performed using, for example, an increase in the expression level of miR-196a, miR-203 or a precursor thereof as an indicator. More specifically, for example, a screening method including the following steps (A) to (C) can be mentioned. (A) contacting a test compound with a cell expressing a nucleic acid encoding miR-196a, miR-203 or a precursor thereof; (B) measuring the expression level of a nucleic acid encoding miR-196a, miR-203 or a precursor thereof, (C) a step of selecting a test compound in which the expression level of a nucleic acid encoding miR-196a, miR-203 or a precursor thereof is increased compared to when no test compound is added.
  • the second screening method can be performed using, for example, a decrease in the expression level of miR-153, miR-216a or a precursor thereof as an indicator. More specifically, for example, a screening method including the following steps (A) to (C) can be mentioned. (A) contacting a test compound with a cell expressing a nucleic acid encoding miR-153, miR-216a or a precursor thereof; (B) measuring the expression level of a nucleic acid encoding miR-153, miR-216a or a precursor thereof, (C) A step of selecting a test compound in which the expression level of a nucleic acid encoding miR-153, miR-216a or a precursor thereof is reduced compared to when no test compound is added.
  • the third screening method is carried out, for example, by promoting the binding of miR-196a, miR-203 or their precursors to the base sequence targeted by miR-196a, miR-203 or their precursors. can do.
  • the binding of miRNA to the target base sequence may detect physical binding, or may detect binding functionally using the biological effect of binding as an index. More specifically, for example, a screening method including the following steps (A) to (C) can be mentioned.
  • A contacting a test compound with a cell expressing a nucleic acid encoding miR-196a, miR-203 or a precursor thereof;
  • B measuring the expression level of a gene (target gene) having a base sequence targeted by miR-196a, miR-203 or a precursor thereof;
  • C A test compound in which the expression level of a gene (target gene) having a base sequence targeted by miR-196a, miR-203 or a precursor thereof is reduced compared to the case where no test compound is added.
  • the fourth screening method is performed using, for example, inhibition of binding of miR-153, miR-216a or a precursor thereof to a base sequence targeted by miR-153, miR-216a or a precursor thereof as an indicator. can do. More specifically, for example, a screening method including the following steps (A) to (C) can be mentioned.
  • A contacting a test compound with a cell expressing a nucleic acid encoding miR-153, miR-216a or a precursor thereof;
  • B measuring the expression level of a gene (target gene) having a base sequence targeted by miR-153, miR-216a or a precursor thereof;
  • C A test compound in which the expression level of a gene (target gene) having a base sequence targeted by miR-153, miR-216a or a precursor thereof is increased as compared with the case where no test compound is added.
  • test compound in the step (A) according to the present invention is not particularly limited.
  • the nucleic acid may be modified and may contain a conjugate. Specific examples thereof are as described in this specification.
  • the test compound can be appropriately labeled and used as necessary. Examples of the label include a radiolabel and a fluorescent label.
  • limiting in particular as "a some test compound” For example, in addition to the said test compound, the mixture which mixed multiple types of these test compounds is also contained.
  • contact may mean that the test compound comes into contact outside and / or inside the cell, and can be performed, for example, by adding the test compound to the cell culture medium. .
  • a transfection reagent, a virus vector, etc. can be utilized suitably.
  • Cells expressing miR-153, miR-196a, miR-203, miR-216a or their precursors and / or genes having the target nucleotide sequence include cells that naturally express them, artificial In addition, cells expressing them can be used.
  • examples of the cell in which the nucleic acid encoding the miRNA or the precursor thereof according to the present invention is expressed include, for example, cancer cells and animal cells into which the nucleic acid encoding the miRNA or a precursor thereof is directly introduced.
  • miR-153, miR-196a, miR-203, miR- Cells expressing 216a or their precursors can be expressed exogenously, for example, with an expression vector or the like.
  • cells expressing miR-153, miR-196a, miR-203, miR-216a or their precursors are preferably naturally Cells expressing them are used.
  • any known measurement method is used for measuring the expression level of the nucleic acid encoding the miRNA or its precursor in the step (B) according to the present invention and the gene having the target base sequence of the miRNA or its precursor. It can. Specifically, for example, RT-PCR, a modified method thereof, a Northern blot method, an in situ hybridization method, and a method using a microarray can be mentioned. Further, the target base sequence of the miRNA or a precursor thereof is inserted into a known appropriate reporter gene expression vector, the vector is introduced into a suitable host cell, the cell is contacted with a test substance, and the reporter gene Screening according to the present invention can also be performed using expression as an indicator.
  • the gene having the target base sequence of step (B) according to the present invention may be a natural target gene of the miRNA, or a reporter gene prepared by incorporating the target base sequence of the miRNA.
  • the target base sequence can be incorporated into a 3′-UTR of a reporter gene (such as GFP or luciferase gene).
  • a sequence that hybridizes with miRNA can be used as appropriate, and even if it is not completely complementary to miRNA or has a bulge, it can be a target.
  • the target gene can be constructed by inserting a plurality of copies of the target base sequence, for example, in tandem.
  • a specific reporter gene can be prepared according to a known method (Vermeulen A et al. RNA 13, 723-730 (2007); Ebert, MS et al., Nat. Methods 4, 721-726 (2007) ).
  • the base sequence targeted by miRNA or its precursor is the number recognized by miRNA or its precursor existing in the 3′-untranslated region of mRNA that causes translational suppression of miRNA or its precursor.
  • the target base sequence is the target base sequence (Nature 433: 769-773 (2005)), and such a sequence is converted into a 3′-untranslated region.
  • the gene contained in is a target gene.
  • the target gene can be obtained, for example, by a method for searching a gene DATA base using a target base sequence, the HITS-CLIP method (Nature 460: 479-486 (2009)).
  • the patient background is shown in Table 1. Most were combined with chemotherapy before or after surgery.
  • Total RNA Extraction and MicroRNA Analysis A frozen tissue section was sliced and subjected to HE staining, and a specimen in which the proportion of tumor cells in the section was 70% or more was used for Total RNA extraction.
  • Total RNA was extracted with mirVana miRNA Isolation Kit (Applied Biosystems). The quality of the extracted RNA was evaluated with an Agilent 2100 bioanalyzer (manufactured by Agilent).
  • Total RNA labeled with Cy3 was hybridized to Human miRNA Microarray (manufactured by Agilent) loaded with 866 human miRNAs registered in miRBase database v12.0.
  • Microarray data was analyzed using GeneSpring GX10 software (manufactured by Agilent). Normalization was performed with a 75% tile value of the miRNA expression level of each sample, and analysis was performed with 600 miRNAs having a raw signal value of 5 or more. Extraction of miRNA having a difference in expression was performed by a signal ratio (2.0 or more), and ANOVA and Tukey post hoc test (p ⁇ 0.05). Benjamini-Hochberg correction was used for multiple test correction. Hierarchical clustering was performed using the Pearson coefficient as a measure of similarity.
  • Quantitative RT-PCR CDNAs of miR-153, miR-196a, miR-203, and miR-216a were synthesized using Taqman microRNA kit (Applied Biosystem). Quantitative RT-PCR was performed using Taqman microRNA assays (Applied Biosystem) containing Taqman probes and primers compatible with the miRNA. U6 was used as an endogenous control for miRNA expression level correction.
  • Group 1 consisted of only neuroendocrine cancers (SCLC 20 cases, LCNEC 3 cases), whereas group 2 classified neuroendocrine cancers (SCLC 15 cases, LCNEC 8 cases) and non-neuroendocrine cancers (4 cases of squamous cell carcinoma) It was done. The remaining non-neuroendocrine cancers were also classified in Group 2.
  • the classification by mRNA expression profiling performed previously by the present inventors (Jones MH et al., Lancet, 2004, 363: 775-781) and the classification by miRNA expression profiling were almost the same.
  • FIG. 2 A comparison of survival curves and clinicopathological background of group 1 SCLC (SCLC 1) and group 2 SCLC (SCLC 2) is shown in FIG. 2 and Table 2, respectively.
  • the table represents a comparison of clinical features between SCLC subgroups identified by unsupervised hierarchical clustering with 600 miRNAs.
  • SCLC 1 showed 6 successful cases / invariant 3 cases
  • SCLC 2 had 2 successful cases / invariant 1 case. There was no obvious difference in sensitivity.
  • the proGRP value is also affected by the tumor volume, but in this study, the difference in stage between the two groups is not clear, and the difference in value may reflect the difference in proGRP production ability It was. From these results, it is speculated that neuroendocrine activity is involved in the prognosis of SCLC.
  • miR-153, miR-216a decreased expression group, miR-196a, miR-203 increased expression group tend to have a low serum proGRP value that increases in neuroendocrine cancer, and the positive rate of neuroendocrine markers (immunostaining) Tended to be low.
  • SCLC prognosis and miRNA expression Among the SCLC patient tissue samples used in the analysis in Example 1, 10 SCLC tissue samples that survived without recurrence for 3 years or more and 14 SCLC patients who died of cancer in less than 3 years was selected, and miRNAs that differed in expression between the two were searched. Extraction of miRNA having a difference in expression was performed by a signal ratio (2.0 or more), and ANOVA and Tukey post hoc test (p ⁇ 0.05).
  • miR-153, miR-196a, miR-203, or miR-216a was found as miRNA having a difference in expression between the two.
  • Normal lung tissue sample (NL), lung adenocarcinoma tissue sample (Ad), lung squamous cell carcinoma tissue sample (Sq), and SCLC good prognosis group (SCLC2) and poor prognosis group (SCLC1) classified by hierarchical clustering ) MiRNA expression levels were compared (FIG. 3A).
  • miR-153, miR-203, and miR-216a have altered expression only in the SCLC poor prognosis group (SCLC1), and the expression in the SCLC good prognosis group (SCLC2) is normal lung or lung cancer other than SCLC It was the same.
  • the expression levels of miR-153 and miR-216a were higher in any group with poor prognosis than in any group, and the expression levels of miR-203 were lower than in any group.
  • the expression level of miR-196a was increased in the good prognosis group compared to the poor prognosis group.
  • Hierarchical clustering suggests that the miRNA expression profile of SCLC with good prognosis is close to that of normal lung and non-neuroendocrine cancers, so these miR-153, miR-216a, and miR-203 may be particularly relevant for prognosis It was considered expensive. Therefore, the expression levels of these three were also measured by quantitative RT-PCR. Microarray data and quantitative RT-PCR results correlated well (FIG. 3B). Compared with the poor prognosis group (SCLC1), the good prognosis group (SCLC2) had significantly decreased miR-153 and miR-216a expression and significantly increased miR-203 and miR-196a expression.
  • Example 1 Thirty-five SCLC patients used in the analysis in Example 1 were classified into a decrease-increase group and an increase-in-expression group with the median as the cut-off value for each of miR-153, miR-196a, miR-203, or miR-216a. .
  • the clinical characteristics and survival curves of both groups are shown in Table 3 and FIG.
  • the miR-153, miR-216a expression decreased group, and miR-196a expression increased group had significantly better prognosis.
  • the miR-203 expression increased group also showed a favorable prognosis.
  • FIG. 5 shows the results of classifying 35 SCLC patients used in the analysis in Example 1 and the survival curve of each group by hierarchical clustering using three of miR-203, miR-153, and miR-216a.
  • FIG. 6 shows the classification by the same clustering using four of miR-203, miR-196a, miR-196a, and miR-216a and the survival curve of each group. All SCLC patients could be classified into good prognosis group and poor prognosis group.
  • the SCLC-specific survival curves of the classified poor prognosis group (high risk) and good prognosis group (low risk) are shown in FIG. 7, and the clinical characteristics of patients are shown in Table 4.
  • MS1 and DMS53 are used.
  • MS1 is cultured in RPMI medium supplemented with 10% FBS
  • DMS53 is cultured in DMEM medium supplemented with 10% FBS.
  • miRIDIAN microRNA Hairin Inhibitors / Mimic (Dharmacon, Lafayette, Co, USA) inhibits miR-153 and miR-216a and enhances miR-203 and miR-196a.
  • Introduction into MS1 cells is performed by electroporation method using Nucleofector II Device (Amaxa).
  • Introduction into DMS53 cells is performed using Lipofectamine TM 2000 (Invitrogen). Cells introduced with miRIDIAN microRNA Hairpin Inhibitors / Mic negative control are used as controls.
  • the therapeutic effect of miRNA function control is detected by the proliferation curve of the introduced cells.
  • cell blocks are prepared from the introduced cells, immunostaining of neuroendocrine markers (Synaptophysin, Chromogranin A, NCAM) is performed, proteins are extracted from the introduced cells, and neuroendocrine markers (Synaptophysin, Chromogranin A, NCAM) are quantified. Evaluate the neuroendocrine character of the introduced cells.
  • DMS53 (ATCC CRL-2062) and SBC-5 (JCRB NO: JCRB0819, Mitsuhashi, Y. et al., Cancer, 70: 2540) are adhesion-adapted SCLC cell lines of small cell lung cancer cells with miRNA and miRNA inhibitors -2546, 1992).
  • miR-153 is highly expressed
  • SBC-5 miR-203 is lowly expressed (FIGS. 10 (A) and (C)).
  • DMS53 and SBC-5 were cultured in DMEM medium supplemented with 10% FBS.
  • miRIDIAN miR-153 inhibitor and miRIDIAN miR-203 mimic were prepared by miRIDIAN microRNA Hairpin Inhibitors / Mimic (Dharmacon, Lafayette, Co, USA), and miR-153 function inhibition and miR-203 function enhancement were performed.
  • oligos (miR-153 inhibitor and negative control * 1 ) were similarly diluted to 60 pmol / 3 ⁇ L, added to 3 ⁇ L at a ratio of 150 ⁇ L of OPTI-MEM, and lightly vortexed and spun down. These were added and allowed to stand at room temperature for 20 minutes, and 306 ⁇ L each was dispensed into the above-mentioned dish containing cells and culture solution and mixed well. Growth was confirmed by culturing for several days in a 37 ° C., 5% CO 2 incubator. The number of cells was counted at 0 hr, 48 hrs, and 122 hrs (confluent) for comparison. (* 1: miRIDIAN microRNA Hairpin Inhibitor Negative Control # 1 IN-001005-01-05 (catalog item))
  • miRIDIAN miR-153 inhibitor inhibits the proliferation of DMS-53.
  • MiRIDIAN miR-203 mimic also reduced SBC-5 proliferation (FIG. 10). Therefore, it has been clarified that an inhibitor of miR-153 may be used as a therapeutic agent for small cell lung cancer, particularly in patients where miR-153 is highly expressed.
  • miR-203 mimic could be used as a therapeutic agent for small cell lung cancer, particularly in patients with reduced miR-203 expression.
  • miR-216a inhibitor and miR-196a mimic could also be used as therapeutic agents for small cell lung cancer.
  • the present invention provides a method for predicting, examining, and diagnosing the prognosis of SCLC using miRNA.
  • the present invention provides an SCLC treatment method, an SCLC prognosis improvement method, an SCLC treatment agent, an SCLC prognosis improvement agent, and an SCLC treatment / prognosis improvement screening method using miRNA.

Abstract

Disclosed are a method for predicting the prognosis of small cell lung cancer, a method for treating small cell lung cancer, a method for ameliorating the prognosis of small cell lung cancer, a therapeutic agent for small cell lung cancer, and a method for screening for a therapeutic agent for small cell lung cancer, each of which utilizes miRNA. Specifically disclosed are: a method for diagnosing the prognosis of a small cell lung cancer patient, which employs miR-153, miR-196a, miR-203 or miR-216a as a measure; a method for ameliorating the prognosis of small cell lung cancer, which employs the above-mentioned substance as a measure; a method for treating small cell lung cancer, which targets the above-mentioned substance; a therapeutic agent for small cell lung cancer; and a method for screening for a therapeutic agent for small cell lung cancer, which utilizes the above-mentioned substance.

Description

miRNAを用いた小細胞肺癌の予後予測方法、小細胞肺癌治療方法、小細胞肺癌予後改善方法、及び小細胞肺癌治療剤のスクリーニング方法Method for predicting prognosis of small cell lung cancer using miRNA, method for treating small cell lung cancer, method for improving prognosis of small cell lung cancer, and method for screening agent for treating small cell lung cancer
 本発明は、miRNAを用いた小細胞肺癌の予後予測、検査、及び診断方法、小細胞肺癌治療方法、小細胞肺癌予後改善方法、及び小細胞肺癌治療剤のスクリーニング方法の分野に関する。 The present invention relates to the fields of small cell lung cancer prognosis prediction, examination and diagnosis method using miRNA, small cell lung cancer treatment method, small cell lung cancer prognosis improvement method, and small cell lung cancer therapeutic agent screening method.
 高悪性度肺神経内分泌腫瘍は小細胞肺癌(SCLC)及び大細胞神経内分泌癌(LCNEC)から成る。SCLCは非常に悪性度の高い肺癌であるが、一般に化学療法に対する感受性が高いため、手術はあまり行われない。しかし、化学療法に対する感受性は治療初期は高いものの、次第に感受性が低くなることが多く、予後は非常に不良である。 High-grade pulmonary neuroendocrine tumors consist of small cell lung cancer (SCLC) and large cell neuroendocrine cancer (LCNEC). SCLC is a very high-grade lung cancer, but is generally less sensitive because of its high sensitivity to chemotherapy. However, although the sensitivity to chemotherapy is high in the early stage of treatment, the sensitivity is often low and the prognosis is very poor.
 一方、マイクロRNA(以下、「miRNA」とする)は、タンパク質に翻訳されない20~25程度のヌクレトチドの小さな非コードRNAである。miRNAは蛋白質をコードしないDNA領域からまず数百塩基程度の第一次転写物(pri-miRNA)が転写される。第一次転写物は複合体を伴ったDroshaによって第二次転写物(pre-miRNA)へとプロセシングされる。その後、細胞質へ輸送された後、Dicerによるプロセシングを受け、20~25ヌクレオチド程度の二本鎖の成熟miRNAとなる。成熟miRNAは二本のうちの一本がRISCと複合体を形成し、標的mRNAの3’非翻訳領域に結合することで翻訳抑制を引き起こすことが知られている。miRNAはヒトを含む生物に多数存在することが知られており、近年、疾患、特に癌との関係が注目され、miRNAの発現パターンを癌の診断に利用することや、miRNAの発現を制御し癌の治療に使用することが提案されている(特許文献1)。
 例えば、肺癌で、let-7ファミリーの発現が低下し、その発現低下が予後不良因子であることや、肺癌で過剰発現しているmiR-17-92クラスターを過剰発現させると増殖促進作用が見られる一方、アンチセンスオリゴにより発現を抑制すると,miR-17-92クラスターを強発現している肺癌細胞株特異的に増殖抑制や細胞死誘導を引き起こすことが示されている(非特許文献1,2)。また、結腸直腸癌では、miR-143及びmiR-145の発現量が減少しており、miR-143をアゴニストとしてモデル動物に投与したところ、miR-143は抗腫瘍効果を示すことが示されている(非特許文献3)。
 また、肺腺癌や肺扁平上皮癌ではhsa-mir-126、has-mir-205及びhas-mir-21は発現量が増加又は減少しており、hsa-mir-155の発現が高い又はhsa-let-7a-2の発現が低い肺腺癌患者は、hsa-mir-155の発現が低い又はhsa-let-7a-2の発現が高い患者よりも予後が悪いことが示されている(特許文献2)。
 また、非小細胞肺癌(NSCLC)患者では、let-7の発現が低下している場合は早期死のリスクが高いことが示されている(非特許文献4)。しかし、SCLCにおいてはどのようなmiRNAが疾患の予後と関連しているかはよく分かっていない。
On the other hand, microRNA (hereinafter referred to as “miRNA”) is a non-coding RNA with a small nucleotide of about 20 to 25 that is not translated into protein. As for miRNA, a primary transcript (pri-miRNA) of about several hundred bases is first transcribed from a DNA region that does not encode a protein. The primary transcript is processed into a secondary transcript (pre-miRNA) by Drosha with the complex. Subsequently, after being transported to the cytoplasm, it is processed by Dicer and becomes a double-stranded mature miRNA of about 20-25 nucleotides. It is known that one of the two miRNAs forms a complex with RISC and binds to the 3 ′ untranslated region of the target mRNA to cause translational repression. Many miRNAs are known to exist in organisms including humans. Recently, the relationship with diseases, particularly cancer, has attracted attention, and miRNA expression patterns are used for cancer diagnosis and miRNA expression is controlled. It has been proposed to be used for cancer treatment (Patent Document 1).
For example, the expression of the let-7 family is decreased in lung cancer, and the decreased expression is a poor prognostic factor, and when miR-17-92 clusters that are overexpressed in lung cancer are overexpressed, a growth promoting effect is observed. On the other hand, suppression of expression with antisense oligos has been shown to cause proliferation suppression and cell death induction specifically in lung cancer cell lines that strongly express miR-17-92 clusters (Non-patent Document 1, 2). In colorectal cancer, the expression levels of miR-143 and miR-145 decreased, and miR-143 was shown to exhibit antitumor effects when administered to model animals as an agonist. (Non-patent Document 3).
In lung adenocarcinoma and lung squamous cell carcinoma, expression levels of hsa-mir-126, has-mir-205 and has-mir-21 are increased or decreased, and expression of hsa-mir-155 is high or hsa. -Patients with lung adenocarcinoma with low expression of let-7a-2 have been shown to have a worse prognosis than patients with low expression of hsa-mir-155 or high expression of hsa-let-7a-2 ( Patent Document 2).
In addition, it has been shown that in patients with non-small cell lung cancer (NSCLC), the risk of early death is high when let-7 expression is decreased (Non-patent Document 4). However, in SCLC it is not well understood what miRNAs are associated with disease prognosis.
WO2004/043387号公報WO2004 / 043387 WO2007/081720号公報WO2007 / 081720
 本発明は上記の状況に鑑みてなされたものであり、SCLCに関連するmiRNAを解析し、miRNAを用いたSCLC患者の予後を検査する方法を提供することを目的とする。 The present invention has been made in view of the above situation, and an object of the present invention is to provide a method for analyzing a miRNA related to SCLC and examining the prognosis of an SCLC patient using the miRNA.
 本発明者は、上記の課題を解決すべく種々検討した結果、miR-153、miR-196a、miR-203又はmiR-216aがSCLCの予後と関連することを見出し、本発明を完成するに至った。 As a result of various studies to solve the above problems, the present inventor has found that miR-153, miR-196a, miR-203 or miR-216a is related to the prognosis of SCLC, and has completed the present invention. It was.
 すなわち、本発明は以下; 
〔1〕小細胞肺癌患者由来の生体試料において、miR-153、miR-196a、miR-203、miR-216a又はそれらの前駆体からなる群より選択される少なくとも一種の発現量を測定する、小細胞肺癌患者における予後を判定するための検査方法。
〔2〕上記方法において、miR-153、miR-216a又はそれらの前駆体の発現量が、対照生体試料における発現量より増加している場合に予後が不良であると判定するための、〔1〕記載の方法。
〔3〕上記方法において、miR-203又はその前駆体の発現量が、対照生体試料における発現量より減少している場合に予後が不良であると判定するための、〔1〕記載の方法。
〔4〕上記方法において、miR-196a又はその前駆体の発現量が、予後が良好である小細胞肺癌患者由来の生体試料における発現量より減少している場合に予後が不良であると判定するための、〔1〕記載の方法。
〔5〕小細胞肺癌を治療する方法であって、
(1)小細胞肺癌患者由来の生体試料において、miR-196a、miR-203又はそれらの前駆体の少なくとも1種の発現量が対照生体試料と比較して減少している場合は、該減少している少なくとも1種のmiRNA、その前駆体、又はそれらを発現するベクターを投与すること;又は/及び、
(2)小細胞肺癌患者由来の生体試料において、miR-153、miR-216a又はそれらの前駆体の少なくとも1種の発現量が対照生体試料と比較して増加している場合は、該miRNA又はそれらの前駆体の機能を阻害する少なくとも1種の化合物を投与すること;
を含む、小細胞肺癌を治療する方法。
〔6〕小細胞肺癌の予後を改善する方法であって、
(1)小細胞肺癌患者由来の生体試料において、miR-196a、miR-203又はそれらの前駆体の少なくとも1種の発現量が対照生体試料と比較して減少している場合は、該減少している少なくとも1種のmiRNA、その前駆体、又はそれらを発現するベクターを投与すること;又は/及び、
(2)小細胞肺癌患者由来の生体試料において、miR-153、miR-216a又はそれらの前駆体の少なくとも1種の発現量が対照生体試料と比較して増加している場合は、該miRNA又はその前駆体の機能を阻害する少なくとも1種の化合物を投与すること;
を含む、小細胞肺癌の予後を改善する方法。
〔7〕上記生体試料が、血清、血漿、肺癌組織、細胞からなる群に由来する、〔1〕~〔6〕記載の方法。
〔8〕miR-196a、miR-203、それらの前駆体、又はそれらを発現するベクターの少なくとも1種を含む小細胞肺癌治療剤。
〔9〕miR-153、miR-216a又はそれらの前駆体の少なくとも1種の機能を阻害する化合物を含む小細胞肺癌治療剤。
〔10〕miR-196a、miR-203、それらの前駆体、又はそれらを発現するベクターの少なくとも1種を含む小細胞肺癌の予後改善剤。
〔11〕miR-153、miR-216a又はそれらの前駆体の少なくとも1種の機能を阻害する化合物を含む小細胞肺癌の予後改善剤。
〔12〕小細胞肺癌治療剤または小細胞肺癌の予後改善剤のスクリーニング方法であって、miR-153、miR-196a、miR-203、miR-216a又はそれらの前駆体からなる群より選択される少なくとも一種の機能の変化を指標とする、スクリーニング方法。
〔13〕機能の変化は、miR-196a、miR-203又はそれらの前駆体の発現量の増加である、〔12〕に記載の方法。
〔14〕機能の変化は、miR-153、miR-216a又はそれらの前駆体の発現の阻害である、〔12〕に記載の方法。
〔15〕機能の変化は、miR-196a、miR-203又はそれらの前駆体が標的とする塩基配列への、miR-196a、miR-203又はそれらの前駆体の結合の促進である、〔12〕に記載の方法。
〔16〕機能の変化は、miR-153、miR-216a又はそれらの前駆体が標的とする塩基配列への、miR-153、miR-216a又はそれらの前駆体の結合の阻害である、〔12〕に記載の方法。
を提供するものである。
That is, the present invention is as follows:
[1] Measuring at least one expression level selected from the group consisting of miR-153, miR-196a, miR-203, miR-216a or a precursor thereof in a biological sample derived from a patient with small cell lung cancer, A test method for determining prognosis in a patient with cell lung cancer.
[2] In the above method, when the expression level of miR-153, miR-216a or a precursor thereof is higher than the expression level in a control biological sample, the prognosis is determined to be poor. ] The method of description.
[3] The method according to [1], wherein in the above method, the prognosis is judged to be poor when the expression level of miR-203 or a precursor thereof is lower than the expression level in a control biological sample.
[4] In the above method, when the expression level of miR-196a or a precursor thereof is lower than the expression level in a biological sample derived from a small cell lung cancer patient with a good prognosis, the prognosis is judged to be poor. The method according to [1].
[5] A method for treating small cell lung cancer,
(1) In a biological sample derived from a patient with small cell lung cancer, when the expression level of at least one of miR-196a, miR-203 or a precursor thereof is decreased compared to a control biological sample, the decrease Administering at least one miRNA, a precursor thereof, or a vector that expresses them; and / or
(2) In a biological sample derived from a patient with small cell lung cancer, if the expression level of at least one of miR-153, miR-216a or a precursor thereof is increased compared to the control biological sample, the miRNA or Administering at least one compound that inhibits the function of their precursors;
A method of treating small cell lung cancer, comprising:
[6] A method for improving the prognosis of small cell lung cancer,
(1) In a biological sample derived from a patient with small cell lung cancer, when the expression level of at least one of miR-196a, miR-203 or a precursor thereof is decreased compared to a control biological sample, the decrease Administering at least one miRNA, a precursor thereof, or a vector that expresses them; and / or
(2) In a biological sample derived from a patient with small cell lung cancer, if the expression level of at least one of miR-153, miR-216a or a precursor thereof is increased compared to the control biological sample, the miRNA or Administering at least one compound that inhibits the function of the precursor;
A method for improving the prognosis of small cell lung cancer, comprising:
[7] The method according to [1] to [6], wherein the biological sample is derived from the group consisting of serum, plasma, lung cancer tissue, and cells.
[8] A therapeutic agent for small cell lung cancer comprising at least one of miR-196a, miR-203, a precursor thereof, or a vector expressing them.
[9] A therapeutic agent for small cell lung cancer comprising a compound that inhibits at least one function of miR-153, miR-216a or a precursor thereof.
[10] An agent for improving the prognosis of small cell lung cancer, comprising at least one of miR-196a, miR-203, a precursor thereof, or a vector that expresses them.
[11] An agent for improving the prognosis of small cell lung cancer, comprising a compound that inhibits at least one function of miR-153, miR-216a or a precursor thereof.
[12] A screening method for a small cell lung cancer therapeutic agent or a small cell lung cancer prognosis improving agent selected from the group consisting of miR-153, miR-196a, miR-203, miR-216a, or a precursor thereof. A screening method using at least one function change as an index.
[13] The method according to [12], wherein the change in function is an increase in the expression level of miR-196a, miR-203 or a precursor thereof.
[14] The method according to [12], wherein the change in function is inhibition of expression of miR-153, miR-216a or a precursor thereof.
[15] The change in function is promotion of binding of miR-196a, miR-203 or a precursor thereof to a base sequence targeted by miR-196a, miR-203 or a precursor thereof, [12 ] The method of description.
[16] The change in function is inhibition of binding of miR-153, miR-216a or a precursor thereof to a base sequence targeted by miR-153, miR-216a or a precursor thereof. ] The method of description.
Is to provide.
 さらに本発明は、
〔1〕小細胞肺癌患者由来の生体試料において、miR-153、miR-196a、miR-203、miR-216a又はそれらの前駆体からなる群より選択される少なくとも一種の発現量を測定する、小細胞肺癌患者における予後を予測、検査および/または診断する方法。
〔2〕上記方法において、miR-153、miR-216a又はそれらの前駆体の発現量が、対照生体試料における発現量より増加している場合に予後が不良であると診断または判定する、〔1〕記載の方法。
〔3〕上記方法において、miR-203又はその前駆体の発現量が、対照生体試料における発現量より減少している場合に予後が不良であると診断または判定する、〔1〕記載の方法。
〔4〕上記方法において、miR-196a又はその前駆体の発現量が、予後が良好である小細胞肺癌患者由来の生体試料における発現量より減少している場合に予後が不良であると診断または判定する、〔1〕記載の方法。
〔5〕小細胞肺癌患者由来の生体試料において、miR-153、miR-196a、miR-203、miR-216a又はそれらの前駆体からなる群より選択される少なくとも一種の発現量が対照生体試料と比較して増加又は減少している小細胞肺癌を治療する方法であって、
(1)miR-196a、miR-203又はそれらの前駆体の少なくとも1種の発現量が減少している場合は、該減少している少なくとも1種のmiRNA、その前駆体、又はそれらを発現するベクターを投与すること;又は/及び、
(2)miR-153、miR-216a又はそれらの前駆体の少なくとも1種の発現量が増加している場合は、該miRNA又はそれらの前駆体の機能を阻害する少なくとも1種の化合物を投与すること;
を含む、小細胞肺癌を治療する方法。
〔6〕小細胞肺癌を治療する方法であって、
(1)小細胞肺癌患者由来の生体試料において、miR-153、miR-196a、miR-203、miR-216a又はそれらの前駆体からなる群より選択される少なくとも一種の発現量を測定し、
(2)対照生体試料と比較して発現量が減少している場合は、該減少している少なくとも1種のmiRNA、その前駆体、又はそれらを発現するベクターを投与すること;又は/及び、
(3)対照生体試料と比較して発現量が増加している場合は、該miRNA又はその前駆体の機能を阻害する少なくとも1種の化合物を投与すること;
を含む、小細胞肺癌を治療する方法。
〔7〕小細胞肺癌患者の生体試料において、miR-153、miR-196a、miR-203、miR-216a又はそれらの前駆体からなる群より選択される少なくとも一種の発現量が対照生体試料と比較して増加又は減少している小細胞肺癌の予後を改善する方法であって、
(1)miR-196a、miR-203又はそれらの前駆体の少なくとも1種の発現量が減少している場合は、該減少している少なくとも1種のmiRNA、その前駆体、又はそれらを発現するベクターを投与すること;又は/及び、
(2)miR-153、miR-216a又はそれらの前駆体の少なくとも1種の発現量が増加している場合は、該miRNA又はその前駆体の機能を阻害する少なくとも1種の化合物を投与すること;
を含む、小細胞肺癌の予後を改善する方法。
〔8〕小細胞肺癌の予後を改善する方法であって、
(1)小細胞肺癌患者由来の生体対料において、miR-153、miR-196a、miR-203、miR-216a又はそれらの前駆体からなる群より選択される少なくとも一種の発現量を測定し、
(2)対照生体試料と比較して発現量が減少している場合は、該減少している少なくとも1種のmiRNA、その前駆体、又はそれらを発現するベクターを投与すること;又は/及び、
(3)対照生体試料と比較して発現量が増加している場合は、該miRNA又はその前駆体の機能を阻害する少なくとも1種の化合物を投与すること;
を含む、小細胞肺癌の予後を改善する方法。
〔9〕上記生体試料が、血清、血漿、肺癌組織、細胞からなる群に由来する、〔1〕~〔8〕記載の方法。
〔10〕miR-196a、miR-203、それらの前駆体、又はそれらを発現するベクターの少なくとも1種を含む小細胞肺癌治療剤または小細胞肺癌の予後改善剤。
〔11〕miR-153、miR-216a又はそれらの前駆体の少なくとも1種の機能を阻害する化合物を含む小細胞肺癌治療剤または小細胞肺癌の予後改善剤。
〔12〕小細胞肺癌患者の生体試料において、miR-153、miR-196a、miR-203、miR-216a又はそれらの前駆体からなる群より選択される少なくとも一種の発現量が対照生体試料と比較して増加又は減少している小細胞肺癌を治療するための治療剤であって、
(1)miR-196a、miR-203又はそれらの前駆体の発現量が減少している場合は、該減少している少なくとも1種のmiRNA、その前駆体、又はそれらを発現するベクター;又は/及び、
(2)miR-153、miR-216a又はそれらの前駆体の発現量が増加している場合は、該miRNA又はその前駆体の機能を阻害する少なくとも1種の化合物;
を含む、小細胞肺癌を治療するための治療剤。
〔13〕上記生体試料が、血清、血漿、肺癌組織、細胞からなる群に由来する、〔12〕記載の治療剤。
〔14〕小細胞肺癌患者の生体試料において、miR-153、miR-196a、miR-203、miR-216a又はそれらの前駆体からなる群より選択される少なくとも一種の発現量が対照生体試料と比較して増加又は減少している小細胞肺癌の予後を改善するための予後改善剤であって、
(1)miR-196a、miR-203又はそれらの前駆体の発現量が減少している場合は、該減少している少なくとも1種のmiRNA、その前駆体、又はそれらを発現するベクター;又は/及び、
(2)miR-153、miR-216a又はそれらの前駆体の発現量が増加している場合は、該miRNA又はその前駆体の機能を阻害する少なくとも1種の化合物;
を含む、小細胞肺癌の予後改善剤。
〔15〕上記生体試料が、血清、血漿、肺癌組織、細胞からなる群に由来する、〔14〕記載の予後改善剤。
を提供するものである。
Furthermore, the present invention provides
[1] Measuring at least one expression level selected from the group consisting of miR-153, miR-196a, miR-203, miR-216a or a precursor thereof in a biological sample derived from a patient with small cell lung cancer, A method for predicting, examining and / or diagnosing prognosis in patients with cell lung cancer.
[2] In the above method, when the expression level of miR-153, miR-216a or a precursor thereof is higher than the expression level in a control biological sample, the prognosis is diagnosed or determined as [1] ] The method of description.
[3] The method according to [1], wherein in the above method, the prognosis is diagnosed or determined when the expression level of miR-203 or a precursor thereof is lower than the expression level in a control biological sample.
[4] In the above method, if the expression level of miR-196a or a precursor thereof is smaller than the expression level in a biological sample derived from a small cell lung cancer patient with a good prognosis, The method according to [1], wherein the determination is performed.
[5] In a biological sample derived from a small cell lung cancer patient, at least one expression level selected from the group consisting of miR-153, miR-196a, miR-203, miR-216a or a precursor thereof is different from that of the control biological sample. A method of treating small cell lung cancer, which is increased or decreased in comparison, comprising:
(1) When the expression level of at least one miR-196a, miR-203 or a precursor thereof is decreased, the reduced at least one miRNA, a precursor thereof, or the expression thereof is expressed Administering a vector; or / and
(2) When the expression level of at least one of miR-153, miR-216a or a precursor thereof is increased, at least one compound that inhibits the function of the miRNA or a precursor thereof is administered thing;
A method of treating small cell lung cancer, comprising:
[6] A method of treating small cell lung cancer,
(1) measuring at least one expression level selected from the group consisting of miR-153, miR-196a, miR-203, miR-216a or a precursor thereof in a biological sample derived from a patient with small cell lung cancer;
(2) if the expression level is reduced compared to the control biological sample, administering the reduced at least one miRNA, a precursor thereof, or a vector expressing them; and / or
(3) If the expression level is increased compared to the control biological sample, administering at least one compound that inhibits the function of the miRNA or a precursor thereof;
A method of treating small cell lung cancer, comprising:
[7] In a biological sample of a small cell lung cancer patient, at least one expression level selected from the group consisting of miR-153, miR-196a, miR-203, miR-216a or a precursor thereof is compared with a control biological sample A method of improving the prognosis of small cell lung cancer that is increasing or decreasing,
(1) When the expression level of at least one miR-196a, miR-203 or a precursor thereof is decreased, the reduced at least one miRNA, a precursor thereof, or the expression thereof is expressed Administering a vector; or / and
(2) When the expression level of at least one of miR-153, miR-216a or a precursor thereof is increased, administering at least one compound that inhibits the function of the miRNA or a precursor thereof ;
A method for improving the prognosis of small cell lung cancer, comprising:
[8] A method for improving the prognosis of small cell lung cancer,
(1) measuring at least one expression level selected from the group consisting of miR-153, miR-196a, miR-203, miR-216a or a precursor thereof in a biological material derived from a small cell lung cancer patient;
(2) if the expression level is reduced compared to the control biological sample, administering the reduced at least one miRNA, a precursor thereof, or a vector expressing them; and / or
(3) If the expression level is increased compared to the control biological sample, administering at least one compound that inhibits the function of the miRNA or a precursor thereof;
A method for improving the prognosis of small cell lung cancer, comprising:
[9] The method according to [1] to [8], wherein the biological sample is derived from the group consisting of serum, plasma, lung cancer tissue, and cells.
[10] A therapeutic agent for small cell lung cancer or a prognosis improving agent for small cell lung cancer comprising at least one of miR-196a, miR-203, a precursor thereof, or a vector that expresses them.
[11] A therapeutic agent for small cell lung cancer or a prognosis improving agent for small cell lung cancer comprising a compound that inhibits at least one function of miR-153, miR-216a or a precursor thereof.
[12] At least one expression level selected from the group consisting of miR-153, miR-196a, miR-203, miR-216a or a precursor thereof in a biological sample of a small cell lung cancer patient is compared with a control biological sample A therapeutic agent for treating small cell lung cancer that is increasing or decreasing,
(1) when the expression level of miR-196a, miR-203 or a precursor thereof is decreased, the decreased at least one miRNA, a precursor thereof, or a vector expressing them; or / as well as,
(2) when the expression level of miR-153, miR-216a or a precursor thereof is increased, at least one compound that inhibits the function of the miRNA or a precursor thereof;
A therapeutic agent for treating small cell lung cancer.
[13] The therapeutic agent according to [12], wherein the biological sample is derived from a group consisting of serum, plasma, lung cancer tissue, and cells.
[14] In a biological sample of a patient with small cell lung cancer, at least one expression level selected from the group consisting of miR-153, miR-196a, miR-203, miR-216a or a precursor thereof is compared with the control biological sample A prognostic improver for improving the prognosis of small cell lung cancer that is increasing or decreasing,
(1) when the expression level of miR-196a, miR-203 or a precursor thereof is decreased, the decreased at least one miRNA, a precursor thereof, or a vector expressing them; or / as well as,
(2) when the expression level of miR-153, miR-216a or a precursor thereof is increased, at least one compound that inhibits the function of the miRNA or a precursor thereof;
A prognosis improving agent for small cell lung cancer, comprising:
[15] The prognosis improving agent according to [14], wherein the biological sample is derived from a group consisting of serum, plasma, lung cancer tissue, and cells.
Is to provide.
 本発明により、miRNAを利用したSCLCの予後予測、検査および診断方法が提供された。また本発明により、miRNAを利用したSCLC治療方法、SCLC予後改善方法、SCLC治療剤及びSCLC治療薬のスクリーニング方法が提供された。本発明は、簡便かつ正確なSCLCの予後判定に寄与する。 According to the present invention, a method for predicting prognosis, testing and diagnosis of SCLC using miRNA was provided. In addition, the present invention provides an SCLC therapeutic method, an SCLC prognostic improvement method, an SCLC therapeutic agent, and an SCLC therapeutic screening method using miRNA. The present invention contributes to simple and accurate SCLC prognosis determination.
図1は、600個のmiRNA発現の階層クラスタリングによる分類を示す。行と列は各々、miRNA及び症例を示す。各々のmiRNAについて、「7.0」側の色(元データ赤色)は高発現を示し、「-7.0」側の色(元データ青色)は低発現を示す。下のバーに、小細胞肺癌(SCLC)(「1」,元データ青色)、大細胞神経内分泌癌(LCNEC)(「2」,元データ薄青色)、腺癌(Ad)(「3」,元データピンク色)、扁平上皮癌(Sq)(「4」,元データ茶色)、正常肺(NL)(「5」,元データ黄色)の別を示した。小細胞肺癌検体は大きく2つのグループに分類され、予後不良患者由来の検体と、予後良好患者由来の検体が、別々のグループによく分離されている。FIG. 1 shows the classification of 600 miRNA expression by hierarchical clustering. Rows and columns indicate the miRNA and case, respectively. For each miRNA, the color on the “7.0” side (original data red) indicates high expression, and the color on the “−7.0” side (original data blue) indicates low expression. The lower bar shows small cell lung cancer (SCLC) (“1”, original data blue), large cell neuroendocrine cancer (LCNEC) (“2”, original data light blue), adenocarcinoma (Ad) (“3”, Original data pink), squamous cell carcinoma (Sq) (“4”, original data brown), normal lung (NL) (“5”, original data yellow) were shown. Small cell lung cancer specimens are roughly classified into two groups, and specimens from patients with poor prognosis and specimens from patients with good prognosis are well separated into separate groups. 図2は、グループ 1のSCLC(SCLC 1)とグループ 2のSCLC(SCLC 2)の生存曲線を示す。FIG. 2 shows the survival curves of the SCLC of group 1 (SCLC 1) and the SCLC of group 2 (SCLC 2). 図3(A)は、各miRNA発現量に関する、正常肺の組織検体(NL)、肺腺癌の組織検体および肺扁平上皮癌の組織検体(Ad+Sq)、予後良好群(SCLC2),予後不良群(SCLC1)間の比較を示す。*:p<0.05、**:p<0.01、***:p<0.001、NS:p≧0.05(対予後不良群(SCLC1))。図3(B)は、各miRNAの発現レベルのマイクロアレイと定量的RT-PCRとの相関性を示す。FIG. 3 (A) shows normal lung tissue samples (NL), lung adenocarcinoma tissue samples and lung squamous cell carcinoma tissue samples (Ad + Sq), good prognosis group (SCLC2), and poor prognosis group for each miRNA expression level. A comparison between (SCLC1) is shown. *: P <0.05, **: p <0.01, ***: p <0.001, NS: p ≧ 0.05 (vs. poor prognosis group (SCLC1)). FIG. 3 (B) shows the correlation between the expression level of each miRNA and the quantitative RT-PCR. 図4は、各miRNAと予後との関連を示す。FIG. 4 shows the relationship between each miRNA and prognosis. 図5は、3個のmiRNA発現を用いた階層クラスタリングによる分類を示す。行と列は各々、miRNA及び症例を示す。「2.4」側の色(元データ赤色)は高発現を示し、「-2.4」側の色(元データ青色)は低発現を示す。下から2つ目のバーはクラスタリングにより分類された3グループを示す。一番下のバーは、600個のmiRNAによるクラスタリングによる予後不良群(SCLC1群)および予後良好群(SCLC2群)を表す。この3個のmiRNAを用いると、600個を用いたときとほぼ同様の分類が得られ、小細胞肺癌を予後良好群と予後不良群に分類することが出来る。下パネルに、各グループの生存曲線を示した。FIG. 5 shows classification by hierarchical clustering using 3 miRNA expressions. Rows and columns indicate the miRNA and case, respectively. The color on the “2.4” side (original data red) indicates high expression, and the color on the “−2.4” side (original data blue) indicates low expression. The second bar from the bottom shows three groups classified by clustering. The bottom bar represents a poor prognosis group (SCLC1 group) and a good prognosis group (SCLC2 group) by clustering with 600 miRNAs. When these three miRNAs are used, classification almost similar to that when 600 are used can be obtained, and small cell lung cancer can be classified into a good prognosis group and a poor prognosis group. The bottom panel shows the survival curves for each group. 図6は、4個のmiRNA発現を用いた階層クラスタリングによる分類を示す。行と列は各々、miRNA及び症例を示す。「3.2」側の色(元データ赤色)は高発現を示し、「-3.2」側の色(元データ青色)は低発現を示す。下から2つ目のバーはクラスタリングにより分類された2グループを示す。一番下のバーは、600個のmiRNAによるクラスタリングによる予後不良群(SCLC1群)および予後良好群(SCLC2群)を表す。この4個のmiRNAを用いると、600個を用いたときとほぼ同様の分類が得られ、小細胞肺癌を予後良好群と予後不良群に分類することが出来る。下パネルに、各グループの生存曲線を示した。FIG. 6 shows classification by hierarchical clustering using 4 miRNA expressions. Rows and columns indicate the miRNA and case, respectively. The color on the “3.2” side (original data red) indicates high expression, and the color on the “−3.2” side (original data blue) indicates low expression. The second bar from the bottom shows two groups classified by clustering. The bottom bar represents a poor prognosis group (SCLC1 group) and a good prognosis group (SCLC2 group) by clustering with 600 miRNAs. When these four miRNAs are used, almost the same classification as when 600 are used can be obtained, and small cell lung cancer can be classified into a good prognosis group and a poor prognosis group. The bottom panel shows the survival curves for each group. 図7は、miR-153、miR-203、およびmiR-216aを用いた予後予測モデルにより分類したSCLC高リスク群と低リスク群の生存曲線を示す。この3個のmiRNAを用いた予後予測モデルによっても、小細胞肺癌を予後良好群と予後不良群に分類することが出来る。FIG. 7 shows the survival curves of the SCLC high-risk group and low-risk group classified by the prognosis prediction model using miR-153, miR-203, and miR-216a. The prognosis prediction model using these three miRNAs can also classify small cell lung cancer into a good prognosis group and a poor prognosis group. 図8は、miR-153、miR-203、およびmiR-216aを用いた予後予測モデルにより分類した小細胞肺癌高リスク群(A)および低リスク群(B)の癌組織の組織切片を示す。FIG. 8 shows tissue sections of cancer tissues of the small cell lung cancer high-risk group (A) and low-risk group (B) classified by the prognosis prediction model using miR-153, miR-203, and miR-216a. 図9は、3個のmiRNA(miR-153、miR-203、およびmiR-216a)による予後予測モデルの妥当性を評価した結果を示す。無作為抽出されたラーニングセットにおいて構築された分類モデルに基づいてテストセットを分類した。その作業を1,000回繰り返した。(A)生存解析の結果をp値(ログランク試験による)のヒストグラムで示す。p値の中央値および幾何学的平均値は各々0.048、0.041であり、この予後予測モデルは肺小細胞癌予後を平均的には正確に予測できていることが示された。(B)600個のmiRNAを用いた階層クラスタリングによる分類と比較したときの、予測エラーの数のヒストグラム。階層クラスタリングとの一致率および不一致率は各々0.874、0.126であり、この予後予測モデルは600個のmiRNAを用いた分類をおおむね再現出来ることが示された。FIG. 9 shows the results of evaluating the validity of the prognosis prediction model using three miRNAs (miR-153, miR-203, and miR-216a). The test set was classified based on the classification model built on the randomized learning set. The operation was repeated 1,000 times. (A) The result of survival analysis is shown as a histogram of p-value (by log rank test). The median and geometric mean of the p-values were 0.048 and 0.041, respectively, indicating that this prognosis prediction model can accurately predict small cell lung cancer prognosis on average. (B) Histogram of the number of prediction errors when compared with classification by hierarchical clustering using 600 miRNAs. The coincidence rate and disagreement rate with hierarchical clustering were 0.874 and 0.126, respectively, and it was shown that this prognosis prediction model can generally reproduce classification using 600 miRNAs. 図10は、miR-153阻害剤およびmiR-203模倣剤(miR-203 mimic)による肺小細胞癌細胞の増殖抑制を示す。パネル(A)および(C)は、予後不良群(SCLC1群)、予後良好群(SCLC2群)、および各種SCLC細胞株における、それぞれmiR-153およびmiR-203の発現レベルをRT-PCRにより解析した結果を示している。パネル(B)は、SCLC細胞株DMS 53にmiR-153阻害剤をトランスフェクトした結果を、パネル(D)は、SCLC細胞株SCB5にmiR-203(miR-203 mimic)をトランスフェクトした結果を示す。その結果、どちらの場合でも、陰性対照に比べて細胞増殖が抑制されることが確認された。対照と比較した場合のmiR-203 mimicの導入による96 hrの細胞数の低下は統計学的に有意であった。FIG. 10 shows the growth suppression of small cell lung cancer cells by miR-153 inhibitor and miR-203 mimetic (miR-203 mimic). Panels (A) and (C) show RT-PCR analysis of miR-153 and miR-203 expression levels in poor prognosis group (SCLC1 group), good prognosis group (SCLC2 group), and various SCLC cell lines, respectively. Shows the results. Panel (B) shows the results of transfecting SCLC cell line DMS 53 with miR-153 inhibitor, and Panel (D) shows the results of transfecting SCLC cell line SCB5 with miR-203 (miR-203-mimic). Show. As a result, in both cases, it was confirmed that cell proliferation was suppressed as compared with the negative control. The decrease in the number of cells at 96 hr due to the introduction of miR-203 mimic when compared with the control was statistically significant.
 以下の定義は、本明細書において説明する本発明の理解を容易にするために提供される。 The following definitions are provided to facilitate understanding of the invention described herein.
 予後とは、何らかの治療(例えば、化学療法、放射線療法、外科的切除)を行った後の患者の癌の経過についての医学的見通しまたは患者の余命を意味する。予後が不良であるとは、例えば、治療後の生存期間が短くなること、臨床的特徴が悪化するまたは悪化するのが速いこと、病期が進展するまたは進展するのが速いこと、再発が起こるまたは再発までの期間が短いこと、などを意味する。予後が良好とは、例えば、治療後の生存期間が長くなること、臨床的特徴が改善するまたは改善するのが速いこと、病期が進展しないまたは進展するのが遅いこと、再発が起こらないかまたは再発までの期間が長いこと、などを意味する。 Prognosis means a medical outlook or the patient's life expectancy about the course of the patient's cancer after some treatment (eg, chemotherapy, radiation therapy, surgical resection). Poor prognosis includes, for example, shorter survival after treatment, worsening or rapid deterioration of clinical features, progression of stage or rapid progression, and recurrence Or it means that the period until recurrence is short. A good prognosis is, for example, a longer survival after treatment, a clinical feature improving or faster to improve, a stage not progressing or slow to progress, or a recurrence Or it means that the period until recurrence is long.
 癌患者由来の生体試料は、例えば癌患者から採取した癌組織(例えば小細胞肺癌組織)、癌組織に近接したリンパ節、血漿及び血清などの血液を含む体液、細胞を意味するが、これらに限定されない。特に、癌患者から採取した癌組織が好ましい。癌組織は、内視鏡などで採取するか、もしくは手術によって得ることができる。 A biological sample derived from a cancer patient means, for example, a cancer tissue (eg, a small cell lung cancer tissue) collected from a cancer patient, a lymph node adjacent to the cancer tissue, a body fluid containing blood such as plasma and serum, and cells. It is not limited. In particular, cancer tissue collected from cancer patients is preferred. The cancer tissue can be collected with an endoscope or obtained by surgery.
 体液、特に血清又は血漿からのmiRNAの分離には、Mitchellら(PNAS(2008)、105(30)、10513-10518)やZhuら(BMC Research Note(2009)、2(89))の方法を用いることができる。 For separation of miRNA from body fluids, particularly serum or plasma, the method of Mitchell et al. (PNAS (2008), 105 (30), 10513-10518) and Zhu et al. (BMC Research Note (2009), 2 (89)) is used. Can be used.
 細胞は、血液、血清、血漿、尿、滑液、髄液、脳脊髄液、精液、またはリンパ液等の体液に含まれている細胞や癌組織に含まれている細胞であってもよく、血液中の循環癌細胞(「CTC」)であってもよい。 The cells may be cells contained in body fluids such as blood, serum, plasma, urine, synovial fluid, cerebrospinal fluid, cerebrospinal fluid, semen, or lymph fluid, or cells contained in cancer tissue. It may be a circulating cancer cell ("CTC").
 循環癌細胞を得る方法として、例えば免疫磁気ビーズを用いた方法が挙げられる。免疫磁気ビーズには、上皮細胞接着分子(EpCAM)、サイトケラチン-8、19などのサイトケラチンなどの癌細胞の表面に選択的に認められる抗原に対する抗体を有するもの、癌細胞の表面には認められず血球系の細胞表面に発現しているCD45に対する抗体を有するものなどがある。例えば、EASYSEP(登録商標)ヒトEpCAM positive kit(Stemcell Technologies社)及びEasySep(登録商標) Human CD45 Depletion kit(Stemcell Technologies社)を用いて循環癌細胞を分離することができる。循環癌細胞を単離する他の方法としては、ISET法が挙げられる(Vona Gら,2000,Am J Pathol.2000 156:57-63)。 Examples of a method for obtaining circulating cancer cells include a method using immunomagnetic beads. Immunomagnetic beads have antibodies against antigens selectively recognized on the surface of cancer cells such as epithelial cell adhesion molecule (EpCAM), cytokeratin-8, 19, etc., and are recognized on the surface of cancer cells. Some of them have antibodies against CD45 expressed on the surface of blood cells. For example, circulating cancer cells can be isolated using EASYSEP (registered trademark) human EpCAM positive kit (Stemcell Technologies) and EasySep (registered trademark) Human CD45 Deletion kit (Stemcell Technologies). Other methods for isolating circulating cancer cells include the ISET method (Vona G et al., 2000, Am J Pathol. 2000 156: 57-63).
 対照生体試料は、例えば健常者、小細胞肺癌以外の癌患者、例えば肺腺癌、肺扁平上皮癌患者の生体試料、又は小細胞肺癌であるが予後が良好と判断された患者の生体試料を意味するが、これらに限定されず、生体試料や測定するmiRNAなどによって適宜最適なものを選択すればよい。健常者の対照生体試料は、例えば検査対象となる生体試料と同じ部位に由来する生体試料(例えば同じ組織、器官、細胞、例えば肺組織)を用いることができる。例えば、miR-153、miR-203及びmiR-216aを測定する場合、健常者、肺腺癌、肺扁平上皮癌患者の生体試料、又は小細胞肺癌であるが予後が良好と判断された患者の生体試料を対照生体試料として用い、miR-196aを測定する場合は小細胞肺癌であるが予後が良好と判断された患者の生体試料を対照生体試料として用いることができる。 The control biological sample may be, for example, a healthy subject, a cancer patient other than small cell lung cancer, for example, a biological sample of a lung adenocarcinoma or lung squamous cell carcinoma patient, or a biological sample of a patient who has been judged to have a good prognosis. Although it means, it is not limited to these, What is necessary is just to select an optimal thing suitably according to a biological sample, miRNA to measure, etc. As the control biological sample of a healthy person, for example, a biological sample derived from the same site as the biological sample to be examined (for example, the same tissue, organ, cell, for example, lung tissue) can be used. For example, when miR-153, miR-203, and miR-216a are measured, a biological sample of a healthy subject, a lung adenocarcinoma, a lung squamous cell carcinoma patient, or a small cell lung cancer patient who has been judged to have a good prognosis When a biological sample is used as a control biological sample, and miR-196a is measured, a biological sample of a patient who has small cell lung cancer but a good prognosis can be used as a control biological sample.
 本発明の予後を判定するための検査方法、予後を予測、検査および/または診断する方法において測定する対象は、特定のmiRNA又はその前駆体である。前駆体とは一次転写物であるpri-miRNA又は二次転写物であるpre-miRNAを意味する。 The target to be measured in the test method for determining the prognosis of the present invention and the method for predicting, testing and / or diagnosing the prognosis is a specific miRNA or a precursor thereof. The precursor means pri-miRNA that is a primary transcript or pre-miRNA that is a secondary transcript.
 miR-153はその成熟型配列がUUGCAUAGUCACAAAAGUGAUC(配列番号1)で示されるmiRNAである。miR-153前駆体として、例えばmir-153-1 (配列番号2:CUCACAGCUGCCAGUGUCAUUUUUGUGAUCUGCAGCUAGUAUUCUCACUCCAGUUGCAUAGUCACAAAAGUGAUCAUUGGCAGGUGUGGC)、mir-153-2(配列番号3:AGCGGUGGCCAGUGUCAUUUUUGUGAUGUUGCAGCUAGUAAUAUGAGCCCAGUUGCAUAGUCACAAAAGUGAUCAUUGGAAACUGUG)などが挙げられる。 MiR-153 is a miRNA whose mature sequence is represented by UUGCAUAGUCACAAAAGUGAUC (SEQ ID NO: 1). As miR-153 precursor such as mir-153-1 (SEQ ID NO 2: CUCACAGCUGCCAGUGUCAUUUUUGUGAUCUGCAGCUAGUAUUCUCACUCCAGUUGCAUAGUCACAAAAGUGAUCAUUGGCAGGUGUGGC), mir-153-2 (SEQ ID NO 3: AGCGGUGGCCAGUGUCAUUUUUGUGAUGUUGCAGCUAGUAAUAUGAGCCCAGUUGCAUAGUCACAAAAGUGAUCAUUGGAAACUGUG), and the like.
 miR-196aはその成熟型配列がUAGGUAGUUUCAUGUUGUUGGG(配列番号4)で示されるmiRNAである。miR-196a前駆体として、例えばmir-196a-1 (配列番号5:GUGAAUUAGGUAGUUUCAUGUUGUUGGGCCUGGGUUUCUGAACACAACAACAUUAAACCACCCGAUUCAC)、mir-196a-2(配列番号6:UGCUCGCUCAGCUGAUCUGUGGCUUAGGUAGUUUCAUGUUGUUGGGAUUGAGUUUUGAACUCGGCAACAAGAAACUGCCUGAGUUACAUCAGUCGGUUUUCGUCGAGGGC)などが挙げられる。 MiR-196a is a miRNA whose mature sequence is represented by UAGGUAGUUUCAUGUUGUUGGG (SEQ ID NO: 4). As miR-196a precursor, e.g. mir-196a-1 (SEQ ID NO 5: GUGAAUUAGGUAGUUUCAUGUUGUUGGGCCUGGGUUUCUGAACACAACAACAUUAAACCACCCGAUUCAC), mir-196a-2 (SEQ ID NO 6: UGCUCGCUCAGCUGAUCUGUGGCUUAGGUAGUUUCAUGUUGUUGGGAUUGAGUUUUGAACUCGGCAACAAGAAACUGCCUGAGUUACAUCAGUCGGUUUUCGUCGAGGGC), and the like.
 miR-203はその成熟型配列がGUGAAAUGUUUAGGACCACUAG(配列番号7)で示されるmiRNAである。miR-203前駆体として、例えばmir-203(配列番号8:GUGUUGGGGACUCGCGCGCUGGGUCCAGUGGUUCUUAACAGUUCAACAGUUCUGUAGCGCAAUUGUGAAAUGUUUAGGACCACUAGACCCGGCGGGCGCGGCGACAGCGA)などが挙げられる。 MiR-203 is a miRNA whose mature sequence is represented by GUGAAAAUGUUUAGGACCACAUAG (SEQ ID NO: 7). Examples of the miR-203 precursor include mir-203 (SEQ ID NO: 8: GUGUUGGGGGACUGCGCGCGUGGGGUCCAGUGGUUCUUAACAGUUCACAGUUCUGUGACGCAAUUGUGUAGAGCAGGACGACUGAGCGCG
 miR-216aはその成熟型配列がUAAUCUCAGCUGGCAACUGUGA(配列番号9)で示されるmiRNAである。miR-216a前駆体として、例えばmir-216a(配列番号10:GAUGGCUGUGAGUUGGCUUAAUCUCAGCUGGCAACUGUGAGAUGUUCAUACAAUCCCUCACAGUGGUCUCUGGGAUUAUGCUAAACAGAGCAAUUUCCUAGCCCUCACGA)などが挙げられる。 MiR-216a is a miRNA whose mature sequence is represented by UAAUCUCAGCUGGCAACUGUGA (SEQ ID NO: 9). As a miR-216a precursor, for example, mir-216a (SEQ ID NO: 10: GAUGGCUGUGUGUGUGGGCUUAAUUCUCAGCUGGCAACUGUGGAGAUGUGUCAUGAUCAUCUCUCACAGUGUGAUCUUGUGAUCUUGAUGUUGAUGUUGAUGUUGAUGUUGAUGUUGAUGUUGAUCU
 これらmiRNA及びそれら前駆体は、例えば従来公知の手法を用いて、天然物から単離することにより、化学的に合成することにより、又は遺伝子組換え技術を用いることにより産生することで得ることができる。 These miRNAs and their precursors can be obtained, for example, by isolating them from natural products, chemically synthesizing them or using genetic recombination techniques, using conventionally known methods. it can.
 予後を判定するための検査方法、予後を予測、検査および/または診断する方法において使用するmiRNA又はその前駆体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよいが、2種以上を組み合わせて用いることが予測、検査および/または診断の精度向上の点で好ましい。例えば、miRNAとその前駆体を組み合わせてもよく、また異なるmiRNAを2つ以上組み合わせてもよい。 The miRNA or precursor thereof used in the test method for determining the prognosis and the method for predicting, testing and / or diagnosing the prognosis may be used alone or in combination of two or more. However, it is preferable to use a combination of two or more in terms of improving accuracy of prediction, inspection and / or diagnosis. For example, miRNA and its precursor may be combined, or two or more different miRNAs may be combined.
 例えば、miRNA-153とmiRNA-216aを少なくとも含む組み合わせは、本発明において好適である。また、miRNA-153とmiR-203を少なくとも含む組み合わせであってもよく、miRNA-216aとmiR-203を少なくとも含む組み合わせであってもよい。本発明においては、miR-153、miR-203、およびmiR-216aを少なくとも含む組み合わせが特に好適である。miR-153、miR-203、miR-216a、およびmiR-196aを含む組み合わせも好ましい。 For example, a combination containing at least miRNA-153 and miRNA-216a is suitable in the present invention. Further, it may be a combination containing at least miRNA-153 and miR-203, or a combination containing at least miRNA-216a and miR-203. In the present invention, a combination containing at least miR-153, miR-203, and miR-216a is particularly preferred. Also preferred are combinations comprising miR-153, miR-203, miR-216a, and miR-196a.
 本発明により予後を判定するための検査方法、予後を予測、検査、または診断する方法では、例えば、まず生体試料からtotal RNAを抽出する。その抽出方法としては、公知の方法、例えば、グアニジン超遠心法(Chirgwin, J. M. et al., Biochemistry(1979)18, 5294-5299)、AGPC法(Chomczynski, P.et al., Anal. Biochem.(1987)162, 156-159)が挙げられる。 In the test method for determining the prognosis and the method for predicting, testing, or diagnosing the prognosis according to the present invention, for example, total RNA is first extracted from a biological sample. Examples of the extraction method include known methods such as guanidine ultracentrifugation (Chirgwin, J. M. et al., Biochemistry (1979) 18, 5294-5299), AGPC method (Chomczynski, P.et al., Anal). Biochem. (1987) 162, 156-159).
 次に、生体試料から得られたtotal RNAを用いて、本発明に係るmiRNA又はその前駆体の発現量を測定することができる。miRNA又はその前駆体の定量的な測定方法には、公知の方法をいずれも使用できる。具体的には、例えばRT-PCR法やその変法、ノーザンブロット法、in situハイブリダイゼーション法やマイクロアレイを用いる方法を挙げることができる。RT-PCR法は、定量的RT-PCR(qRT-PCR)法により発現量を正確に測定することができる。 Next, the expression level of miRNA or a precursor thereof according to the present invention can be measured using total RNA obtained from a biological sample. Any known method can be used for quantitative measurement of miRNA or a precursor thereof. Specifically, for example, the RT-PCR method or a modified method thereof, the Northern blot method, the in situ hybridization method, or a method using a microarray can be mentioned. In the RT-PCR method, the expression level can be accurately measured by a quantitative RT-PCR (qRT-PCR) method.
 次に、予後を判定するために検査する対象の患者由来の生体試料、予後を予測、検査および/または診断する対象の患者由来の生体試料における本発明に係るmiRNA又はそれらの前駆体の発現量を、対照生体試料における本発明に係るmiRNA又はそれらの前駆体の発現量と比較することができる。比較した結果、予後を判定するために検査する対象の患者由来の生体試料、予後を予測、検査および/または診断する対象の患者由来の生体試料におけるmiR-153、miR-216a又はそれらの前駆体の発現量が、対照生体試料におけるmiR-153、miR-216a又はそれらの前駆体の発現量に比べ上昇している場合は予後が不良と判断等できる。なお、該上昇している場合は予後が不良と判断するとは、そうでない場合(上昇していない場合)は予後が不良ではない(または良好である)と判断するということを意味していてもよい。それらのいずれかが含まれる方法、および両方が含まれる方法が本発明において提供される。
 すなわち本発明は、該患者由来の生体試料におけるmiR-153、miR-216a又はそれらの前駆体の発現量が、対照生体試料におけるmiR-153、miR-216a又はそれらの前駆体の発現量に比べ上昇している場合は予後が不良および/または、そうでない場合に予後が良好である(および/または不良ではない)と予測、判断、診断、検査および/または判定する方法に関する。例えば、予後が不良である患者由来の生体試料におけるmiR-153、miR-216a又はそれらの前駆体の発現量は、対照生体試料におけるmiR-153、miR-216a又はそれらの前駆体の発現量に比べ2倍、好ましくは3倍、さらに好ましくは5倍、さらに好ましくは10倍、さらに好ましくは20倍、さらに好ましくは50倍、さらに好ましくは100倍、更に好ましくは1000倍、最も好ましくは10000倍の各値以上に上昇している。また、例えば予後が不良ではない(良好である)患者由来の生体試料におけるmiR-153、miR-216a、miR-203、又はそれらの前駆体の発現量は、対照生体試料における同発現量と同程度であり、具体的には例えば発現の高い試料/低い試料の比として2倍未満、1.8倍未満、1.5倍未満、または1.3倍未満である。
 一方、予後を予測、判断、診断、検査および/または判定する対象の患者由来の生体試料におけるmiR-203又はその前駆体の発現量が、対照生体試料におけるmiR-203又はその前駆体の発現量に比べ減少している場合は予後が不良と判断等できる。また、該減少している場合は予後が不良と判断するとは、そうでない場合(減少していない場合)は予後が不良ではない(または良好である)と判断するということを意味していてもよい。それらのいずれかが含まれる方法、および両方が含まれる方法が本発明において提供される。すなわち本発明は、該患者由来の生体試料におけるmiR-203又はその前駆体の発現量が、対照生体試料におけるmiR-203又はその前駆体の発現量に比べ減少している場合は予後が不良および/または、そうでない場合に予後が良好である(および/または不良ではない)と予測、判断、診断、検査および/または判定する方法に関する。例えば、予後が不良である患者由来の生体試料におけるmiR-203又はその前駆体の発現量は、対照生体試料におけるmiR-203又はその前駆体の発現量に比べ1/2倍、好ましくは1/3倍、さらに好ましくは1/5倍、さらに好ましくは1/10倍、さらに好ましくは1/20倍、さらに好ましくは1/50倍、さらに好ましくは1/100倍、更に好ましくは1/1000倍、最も好ましくは1/10000倍の各値以下に低下している。
 また、予後を予測、判断、診断、検査および/または判定する対象の患者由来の生体試料におけるmiR-196a又はその前駆体の発現量が、予後が良好である小細胞肺癌患者由来の生体試料におけるmiR-196a又はその前駆体の発現量に比べ減少している場合は予後が不良と判断等できる。また、該減少している場合は予後が不良と判断するとは、そうでない場合(減少していない場合)は予後が不良ではない(または良好である)と判断するということを意味していてもよい。それらのいずれかが含まれる方法、および両方が含まれる方法が本発明において提供される。すなわち本発明は、該患者由来の生体試料におけるmiR-196a又はその前駆体の発現量が、予後が良好である小細胞肺癌患者由来の生体試料におけるmiR-196a又はその前駆体の発現量に比べ減少している場合は予後が不良および/または、そうでない場合に予後が良好である(および/または不良ではない)と予測、判断、診断、検査および/または判定する方法に関する。例えば、予後が不良である患者由来の生体試料におけるmiR-196a又はその前駆体の発現量は、予後が良好である小細胞肺癌患者由来の生体試料におけるmiR-196a又はその前駆体の発現量に比べ1/2倍、好ましくは1/3倍、さらに好ましくは1/5倍、さらに好ましくは1/10倍、さらに好ましくは1/20倍、さらに好ましくは1/50倍、さらに好ましくは1/100倍、更に好ましくは1/1000倍、最も好ましくは1/10000倍の各値以下に低下している。また対照生体試料として例えば健常者、肺腺癌、または肺扁平上皮癌と判断された患者の生体試料を使う場合、予後を予測、判断、診断、検査および/または判定する対象の患者由来の生体試料におけるmiR-196a又はその前駆体の発現量が、対照生体試料におけるmiR-196a又はその前駆体の発現量に比べ上昇している場合は予後が不良ではない(良好)と判断等でき、そうでない場合は予後が不良と判断等できる。すなわち本発明は、該患者由来の生体試料におけるmiR-196a又はその前駆体の発現量が、対照生体試料におけるmiR-196a又はその前駆体の発現量に比べ上昇していない場合は予後が不良および/または、上昇している場合に予後が良好である(および/または不良ではない)と予測、判断、診断、検査および/または判定する方法に関する。
 例えば、予後が不良ではない(良好である)患者由来の生体試料におけるmiR-196a又はそれらの前駆体の発現量は、例えば健常者、肺腺癌、または肺扁平上皮癌と判断された患者の対照生体試料における同発現量に比べ2倍、好ましくは3倍、さらに好ましくは5倍、さらに好ましくは10倍、さらに好ましくは20倍、さらに好ましくは50倍、さらに好ましくは100倍、更に好ましくは1000倍、最も好ましくは10000倍の各値以上に上昇しており、予後が不良な患者由来の生体試料におけるmiR-196a又はそれらの前駆体の発現量は、例えば健常者、肺腺癌、または肺扁平上皮癌と判断された患者の対照生体試料における同発現量と同程度であり、具体的には例えば発現の高い試料/低い試料の比として2倍未満、1.8倍未満、1.5倍未満、または1.3倍未満である。
 ここで、対照生体試料は一つでもよいが、複数用いても良く、例えば、健常者の生体試料を複数用いてもよく、また健常者の生体試料と癌患者の生体試料を組み合わせて用いてもよい。
Next, the expression level of the miRNA or the precursor thereof according to the present invention in a biological sample derived from a patient to be examined to determine the prognosis, and in a biological sample derived from a patient to be predicted, examined and / or diagnosed. Can be compared with the expression level of the miRNA according to the present invention or a precursor thereof in a control biological sample. As a result of comparison, miR-153, miR-216a or a precursor thereof in a biological sample derived from a patient to be examined to determine a prognosis, a biological sample derived from a patient to be predicted, examined and / or diagnosed When the expression level of is increased compared to the expression level of miR-153, miR-216a or their precursors in the control biological sample, it can be determined that the prognosis is poor. Note that if it is rising, judging that the prognosis is poor means that if not (if it is not rising), it is judged that the prognosis is not bad (or good). Good. Provided in the present invention are methods that include any of them, and methods that include both.
That is, the present invention is such that the expression level of miR-153, miR-216a or a precursor thereof in the biological sample derived from the patient is compared with the expression level of miR-153, miR-216a or a precursor thereof in the control biological sample. It relates to a method for predicting, judging, diagnosing, testing and / or determining that the prognosis is poor if it is elevated and / or otherwise the prognosis is good (and / or not bad). For example, the expression level of miR-153, miR-216a or a precursor thereof in a biological sample derived from a patient with a poor prognosis is equal to the expression level of miR-153, miR-216a or a precursor thereof in a control biological sample. 2 times, preferably 3 times, more preferably 5 times, more preferably 10 times, more preferably 20 times, more preferably 50 times, more preferably 100 times, more preferably 1000 times, most preferably 10000 times It has risen above each value. In addition, for example, the expression level of miR-153, miR-216a, miR-203, or a precursor thereof in a biological sample derived from a patient whose prognosis is not bad (good) is the same as the expression level in a control biological sample. Specifically, for example, the ratio of the sample with high expression / the sample with low expression is less than 2 times, less than 1.8 times, less than 1.5 times, or less than 1.3 times.
On the other hand, the expression level of miR-203 or a precursor thereof in a biological sample derived from a patient for which the prognosis is predicted, judged, diagnosed, examined, and / or determined is the expression level of miR-203 or a precursor thereof in a control biological sample. If it is reduced compared to, the prognosis can be judged as poor. Further, when the decrease is made, it is judged that the prognosis is poor. If not (if it is not reduced), it means that the prognosis is judged not bad (or good). Good. Methods are included in the present invention that include any of them, and methods that include both. That is, the present invention has a poor prognosis when the expression level of miR-203 or a precursor thereof in a biological sample derived from the patient is reduced compared to the expression level of miR-203 or a precursor thereof in a control biological sample. And / or relates to a method of predicting, judging, diagnosing, testing and / or determining that the prognosis is good (and / or not bad) otherwise. For example, the expression level of miR-203 or a precursor thereof in a biological sample derived from a patient with a poor prognosis is 1/2 times the expression level of miR-203 or a precursor thereof in a control biological sample, preferably 1 / 3 times, more preferably 1/5 times, more preferably 1/10 times, more preferably 1/20 times, more preferably 1/50 times, further preferably 1/100 times, more preferably 1/1000 times The most preferable value is 1 / 10,000 times or less.
In addition, the expression level of miR-196a or a precursor thereof in a biological sample derived from a patient for which the prognosis is predicted, judged, diagnosed, examined and / or determined is determined in a biological sample derived from a small cell lung cancer patient having a good prognosis. If the expression level of miR-196a or its precursor is decreased, it can be determined that the prognosis is poor. Further, when the decrease is made, it is judged that the prognosis is poor. If not (if it is not reduced), it means that the prognosis is judged not bad (or good). Good. Provided in the present invention are methods that include any of them, and methods that include both. That is, the present invention shows that the expression level of miR-196a or a precursor thereof in a biological sample derived from the patient is higher than the expression level of miR-196a or a precursor thereof in a biological sample derived from a small cell lung cancer patient having a good prognosis. It relates to a method for predicting, judging, diagnosing, testing and / or determining that the prognosis is poor if it is decreasing and / or that the prognosis is good (and / or not bad) otherwise. For example, the expression level of miR-196a or a precursor thereof in a biological sample derived from a patient with a poor prognosis is the expression level of miR-196a or a precursor thereof in a biological sample derived from a small cell lung cancer patient with a good prognosis. Compared to 1/2 times, preferably 1/3 times, more preferably 1/5 times, more preferably 1/10 times, more preferably 1/20 times, more preferably 1/50 times, more preferably 1 / fold. The value is reduced to 100 times, more preferably 1/1000 times, most preferably 1 / 10,000 times or less. For example, when using a biological sample from a patient who has been determined to be healthy, lung adenocarcinoma, or lung squamous cell carcinoma as a control biological sample, a biological sample derived from the patient for whom the prognosis is predicted, judged, diagnosed, examined and / or judged If the expression level of miR-196a or its precursor in the sample is higher than the expression level of miR-196a or its precursor in the control biological sample, it can be judged that the prognosis is not poor (good), etc. If not, it can be determined that the prognosis is poor. That is, the present invention has a poor prognosis when the expression level of miR-196a or a precursor thereof in the biological sample derived from the patient is not increased compared to the expression level of miR-196a or a precursor thereof in the control biological sample. It relates to a method for predicting, judging, diagnosing, examining and / or determining that the prognosis is good (and / or not bad) when it is elevated.
For example, the expression level of miR-196a or a precursor thereof in a biological sample derived from a patient whose prognosis is not poor (good) is, for example, that of a healthy subject, lung adenocarcinoma, or lung squamous cell carcinoma 2 times, preferably 3 times, more preferably 5 times, more preferably 10 times, more preferably 20 times, more preferably 50 times, more preferably 100 times, even more preferably compared to the same expression level in the control biological sample. The expression level of miR-196a or a precursor thereof in a biological sample derived from a patient with a poor prognosis is increased by 1000 times, most preferably 10,000 times or more, for example, a healthy subject, lung adenocarcinoma, or The expression level is similar to that in the control biological sample of a patient determined to be squamous cell carcinoma of the lung. Specifically, for example, the ratio of the high expression / low sample is not doubled. , Less than 1.8-fold, less than 1.5, or less than 1.3 times.
Here, one control biological sample may be used, but a plurality of biological samples may be used, for example, a plurality of healthy human biological samples may be used, or a healthy biological sample and a cancer patient biological sample may be used in combination. Also good.
 以上に説明した本発明に係る予後を判定するための検査方法、予後を予測、検査および/または診断する方法によれば、小細胞肺癌と判定または診断等された患者の予後を化学療法、放射線療法や手術前に予測、判断、判定、検査および/または診断することができる。そのため、その後に行う治療を最適なものとすることができる。また、化学療法中、放射線療法中にも随時本発明に係る予後を予測、判断、判定、検査および/または診断する方法を用いることで、治療効果を確認することも可能である。さらには手術後においても本発明に係る予後を予測、判断、判定、検査および/または診断する方法を用いることで、その後の予後を予測、判断、判定、検査および/または診断することが可能である。 According to the test method for determining the prognosis and the method for predicting, testing and / or diagnosing the prognosis according to the present invention described above, the prognosis of a patient determined or diagnosed as small cell lung cancer is treated with chemotherapy, radiation, and the like. Predict, judge, determine, test and / or diagnose before therapy or surgery. Therefore, the treatment to be performed thereafter can be optimized. It is also possible to confirm the therapeutic effect by using the method for predicting, judging, judging, examining and / or diagnosing the prognosis according to the present invention at any time during chemotherapy and radiation therapy. Furthermore, the prognosis according to the present invention can be predicted, judged, judged, examined and / or diagnosed after surgery by using the method for predicting, judging, judging, examining and / or diagnosing the prognosis of the present invention. is there.
 なお本発明の予測および検査方法は、診断とは切り離して実施することが可能である。例えば診断は医師が行うとしても、検査は例えば医師ではない者(例えば外部機関)が実施し、その検査結果をもとに医師が診断することができる。生体試料を、それが由来する患者とは直接結びつかないように検査することにより、例えば診断方法と切り離して本発明の検査方法を実施することができる。例えば生体試料をID化してもよい。また、小細胞肺癌患者の予後分布を統計学的に調査する場合など、最終的に患者の診断と結びつかない場面においても、本発明の検査方法は有用である。
 また本発明は、本発明の診断方法のための中間的な結果を得るための方法、小細胞肺癌患者における予後を判定するための検査方法、小細胞肺癌患者における予後のマーカーまたは指標を検出する方法、小細胞肺癌患者由来の生体試料がどのような予後を持つ患者に由来するかを検査する方法、小細胞肺癌患者における予後を判定または診断するために資する検査方法、および小細胞肺癌患者における予後を検査するための非診断方法にも関する。各方法の工程は、上記の記載に従って実施すればよく、最終工程において、診断ではなく、中間的または非診断的な結果として、予後に関する情報が提供される。
Note that the prediction and inspection method of the present invention can be implemented separately from the diagnosis. For example, even if a diagnosis is performed by a doctor, a test can be performed by a person who is not a doctor (for example, an external organization) and the doctor can make a diagnosis based on the test result. By inspecting a biological sample so that it is not directly associated with the patient from which it is derived, for example, the inspection method of the present invention can be implemented separately from the diagnostic method. For example, a biological sample may be converted into an ID. In addition, the test method of the present invention is also useful in situations where the prognostic distribution of patients with small cell lung cancer is statistically investigated, such as when it is not finally linked to patient diagnosis.
The present invention also detects a method for obtaining an intermediate result for the diagnostic method of the present invention, a test method for determining a prognosis in a patient with small cell lung cancer, and a prognostic marker or indicator in a patient with small cell lung cancer. A method for examining the prognosis of a biological sample derived from a patient with small cell lung cancer, a test method for determining or diagnosing the prognosis in a patient with small cell lung cancer, and in a patient with small cell lung cancer It also relates to non-diagnostic methods for examining prognosis. The steps of each method may be performed according to the above description, and in the final step, information on prognosis is provided as an intermediate or non-diagnostic result rather than a diagnosis.
 また本発明は、本発明の検査、予測、判断、判定、および診断における、miR-153、miR-196a、miR-203、miR-216a又はそれらの前駆体からなる群より選択される少なくとも一種に対するプローブ、プライマー、および該少なくとも一種とハイブリダイズする核酸の使用に関する。該プローブ、プライマー、および核酸は、本発明の検査、予測、判断、判定、および診断を行うための薬剤、すなわち検査剤、診断剤等として有用である。本発明は、該プローブ、プライマー、および核酸を含む該診断剤および該検査剤、該診断剤または該検査剤の製造における該プローブ、プライマー、および核酸の使用にも関する。該プローブ、プライマー、および核酸は、miR-153、miR-196a、miR-203、miR-216a又はそれらの前駆体と特異的にハイブリダイズするものが好ましく、例えばストリンジェントな条件、具体的には、1×SSC(1×SSCは150 mM NaCl、15 mM sodium citrate、pH 7.0)で37℃、または1×SSCで40℃、45℃、50℃、または55℃、好ましくは0.5×SSCで37℃、40℃、45℃、または50℃、好ましくは0.2×SSCで37℃、40℃、45℃、または50℃の条件でハイブリダイズする核酸であってよい。例えばハイブリダイズさせる核酸のどちらかを標識し、他方を膜に固定して、両者をインキュベートする。ハイブリダイゼーションの条件は、例えば 5xSSC、7%(W/V) SDS、100μg/ml 変性サケ精子DNA、5xデンハルト液(1xデンハルト溶液は0.2%ポリビニールピロリドン、0.2%牛血清アルブミン、及び0.2%フィコールを含む)を含む溶液中で行えばよい。十分な時間(例えば3、4、5または6時間以上)インキュベートした後、上記の条件で洗浄を行い、標識した核酸がハイブリダイズしているかを検出することにより、当該条件で核酸がハイブリダイズするか否かを決定することができる。 The present invention also relates to at least one selected from the group consisting of miR-153, miR-196a, miR-203, miR-216a or their precursors in the examination, prediction, judgment, determination and diagnosis of the present invention. It relates to the use of probes, primers, and nucleic acids that hybridize to the at least one. The probe, primer, and nucleic acid are useful as a drug for performing the test, prediction, judgment, determination, and diagnosis of the present invention, that is, a test agent, a diagnostic agent, and the like. The present invention also relates to the diagnostic agent and the diagnostic agent comprising the probe, primer and nucleic acid, and the use of the probe, primer and nucleic acid in the production of the diagnostic agent or the diagnostic agent. The probe, primer, and nucleic acid are preferably those that specifically hybridize with miR-153, miR-196a, miR-203, miR-216a or their precursors. For example, stringent conditions, specifically , 1 x SSC (1 x SSC is 150 mM NaCl, 15 mM sodium citrate, pH 7.0), 37 ° C, or 1 x SSC is 40 ° C, 45 ° C, 50 ° C, or 55 ° C, preferably 37 It may be a nucleic acid that hybridizes at 37 ° C., 40 ° C., 45 ° C., or 50 ° C. at 0.2 ° C., 40 ° C., 45 ° C., or 50 ° C., preferably 0.2 × SSC. For example, one of the nucleic acids to be hybridized is labeled, the other is immobilized on a membrane, and both are incubated. Hybridization conditions are, for example, 5xSSC, 7% (W / V) SDS, 100μg / ml denatured salmon sperm DNA, 5x Denhardt solution (1x Denhardt solution is 0.2% polyvinylpyrrolidone, 0.2% bovine serum albumin, and 0.2% Ficoll) May be performed in a solution containing After incubating for a sufficient period of time (eg, 3, 4, 5 or 6 hours or more), washing is performed under the above conditions, and by detecting whether the labeled nucleic acid is hybridized, the nucleic acid is hybridized under the condition. Or not.
 また本発明は、小細胞肺癌を治療する方法、および小細胞肺癌の予後を改善する方法に関する。実施にあたっては、本発明の診断、予測、判断、判定、および診断方法の記載を参照することができ、それらの記載と本発明の治療方法の記載との任意の組み合わせが、本明細書において開示される。具体的には、例えば本発明の治療方法および予後を改善する方法における、小細胞肺癌患者由来の生体対料、対照生体試料、発現量の測定および比較等については、本発明の診断方法および検査方法の記載と同じである。例えば、miR-196a又はその前駆体の発現量の比較においては、予後が良好である小細胞肺癌患者由来の生体試料における発現量を比較対象とすることができる。本発明に係る小細胞肺癌を治療する方法では、miR-196a、miR-203又はそれらの前駆体の発現が減少している患者に対しては、例えば、miR-196a、miR-203又はそれらの前駆体を投与することにより行うことができる。 The present invention also relates to a method for treating small cell lung cancer and a method for improving the prognosis of small cell lung cancer. In practicing, reference can be made to the description of the diagnosis, prediction, judgment, determination and diagnosis method of the present invention, and any combination of the description and the description of the treatment method of the present invention is disclosed herein. Is done. Specifically, for example, in the treatment method and the method for improving the prognosis of the present invention, for the biomaterials derived from small cell lung cancer patients, the control biological sample, the measurement and comparison of the expression level, etc., the diagnostic method and test of the present invention It is the same as the description of the method. For example, in the comparison of the expression level of miR-196a or a precursor thereof, the expression level in a biological sample derived from a small cell lung cancer patient with a good prognosis can be used as a comparison target. In the method of treating small cell lung cancer according to the present invention, for patients with reduced expression of miR-196a, miR-203 or their precursors, for example, miR-196a, miR-203 or their This can be done by administering a precursor.
 投与するmiRNA又はその前駆体は、ヌクレアーゼに対する耐性の向上や安定化のためにその一部が修飾されていてもよく、例えば、ピリミジンヌクレオチドのリボースの2’-OHをフルオロ化またはメチル化してもよく、コレステロール、ステロイド、胆汁酸やポリエチレングリコールなどを付加してもよい。
 具体的には、核酸を構成するヌクレオチドは、天然のヌクレオチド、修飾されたヌクレオチド、人工のヌクレオチド、またはそれらの組み合わせであってよい。また核酸はRNAからなっていてもよく、またはRNA・DNAキメラであってよく、あるいはその他の核酸類縁体を含んでもよく、それらの任意の組み合わせを含んでよい。核酸には、リン酸ジエステル結合により結合しているもののみならず、アミド結合やその他のバックボーンを有するもの(ペプチド核酸(PNA)等)が含まれる。核酸には、例えば天然および人工の核酸が含まれ、核酸誘導体、核酸派生体、核酸アナログ等であってよい。そのような核酸類縁体は当該分野において周知であり、例えばホスホロチオエート、ホスホアミデート、メチルホスホネート、キラルメチルホスホネート、2'-O-メチルリボヌクレオチド、ペプチド核酸(PNA)が含まれるが、これらに限定されない。PNAの骨格には、アミノエチルグリシン、ポリアミド、ポリエチル、ポリチオアミド、ポリスルフィナミド、ポリスルホンアミド、またはそれらの組み合わせからなる骨格を含んでよい(Krutzfeldt, J. et al., Nucleic Acids Res. 35: 2885-2892; Davis, S. et al., 2006, Nucleic Acids Res. 34: 2294-2304; Boutla, A. et al., 2003), Nucleic Acids Res. 31: 4973-4980; Hutvagner, G. et al., 2004, PLoS Biol. 2: E98; Chan, J.A. et al., 2005, Cancer Res. 65: 6029-6033; Esau, C. et al., 2004, J. Biol. Chem. 279: 52361-52365; Esau, C. et al., 2006, Cell Metab. 3: 87-98)。
The miRNA to be administered or a precursor thereof may be partially modified to improve or stabilize the resistance to nuclease. For example, the 2′-OH of the ribose of pyrimidine nucleotides may be fluorinated or methylated. Well, you may add cholesterol, steroid, bile acid, polyethylene glycol and the like.
Specifically, the nucleotides that make up the nucleic acid may be natural nucleotides, modified nucleotides, artificial nucleotides, or combinations thereof. The nucleic acid may be composed of RNA, may be RNA / DNA chimera, may contain other nucleic acid analogs, and may contain any combination thereof. Nucleic acids include not only those linked by phosphodiester bonds but also those having amide bonds or other backbones (such as peptide nucleic acids (PNA)). Nucleic acids include, for example, natural and artificial nucleic acids, and may be nucleic acid derivatives, nucleic acid derivatives, nucleic acid analogs, and the like. Such nucleic acid analogs are well known in the art and include, but are not limited to, phosphorothioates, phosphoramidates, methylphosphonates, chiral methylphosphonates, 2'-O-methylribonucleotides, peptide nucleic acids (PNA), and the like. Not. The backbone of PNA may include a backbone consisting of aminoethylglycine, polyamide, polyethyl, polythioamide, polysulfinamide, polysulfonamide, or combinations thereof (Krutzfeldt, J. et al., Nucleic Acids Res. 35: 2885-2892; Davis, S. et al., 2006, Nucleic Acids Res. 34: 2294-2304; Boutla, A. et al., 2003), Nucleic Acids Res. 31: 4973-4980; Hutvagner, G. et al., 2004, PLoS Biol. 2: E98; Chan, JA et al., 2005, Cancer Res. 65: 6029-6033; Esau, C. et al., 2004, J. Biol. Chem. 279: 52361- 52365; Esau, C. et al., 2006, Cell Metab. 3: 87-98).
 核酸の修飾は、具体的には、2'または3'糖修飾、例えば2'-O-メチル(2'-O-Me)化ヌクレオチドまたは2'-デオキシヌクレオチド、または2'-フルオロ、ジフルオロトルイル、5-Me-2'-ピリミジン、5-アリルアミノ-ピリミジン、2'-O-メトキシエチル(2'-O-MOE)、2'-O-アミノプロピル(2'-O-AP)、2'-O-N-メチルアセタミド(2'-O-NMA)、2'-O-ジメチルアミノエチルオキシエチル(2'-DMAEOE)、2'-O-ジメチルアミノエチル(2'-O-DMAOE)、2'-O-ジメチルアミノプロピル(2'-O-AP)、2'-ヒドロキシヌクレオチド、ホスホロチオエート、4'-チオヌクレオチド、2'-O-トリフルオロメチルヌクレオチド、2'-O-エチル-トリフルオロメトキシヌクレオチド、2'-O-ジフルオロメトキシ-エトキシヌクレオチド、または2'-アラ-フルオロヌクレオチド、Locked核酸(LNA)、2'-O,4'-C-エチレン架橋核酸 (2'-O,4'-C-ethylene bridged nucleic acid (ENA)) などのエチレン核酸、その他の bridged nucleic acid (BNA)、ヘキシトール核酸(hexitol nucleic acid; HNA)、モルホリノ核酸、トリシクロ-DNA(tcDNA)、ポリエーテル核酸(US Pat. No. 5,908,845)、シクロヘキセン核酸(CeNA)、およびそれらの組み合わせが挙げられる。またジフルオロトルイル(DFT)修飾、例えば2,4-ジフルオロトルイルウラシル、またはグアニジンのイノシンへの置換を行ってもよい。 Nucleic acid modifications are specifically 2 ′ or 3 ′ sugar modifications such as 2′-O-methyl (2′-O-Me) ylated nucleotides or 2′-deoxynucleotides, or 2′-fluoro, difluorotoluyl. , 5-Me-2'-pyrimidine, 5-allylamino-pyrimidine, 2'-O-methoxyethyl (2'-O-MOE), 2'-O-aminopropyl (2'-O-AP), 2 ' -ON-Methylacetamide (2'-O-NMA), 2'-O-dimethylaminoethyloxyethyl (2'-DMAEOE), 2'-O-dimethylaminoethyl (2'-O-DMAOE), 2'- O-dimethylaminopropyl (2′-O-AP), 2′-hydroxy nucleotide, phosphorothioate, 4′-thionucleotide, 2′-O-trifluoromethyl nucleotide, 2′-O-ethyl-trifluoromethoxy nucleotide, 2'-O-difluoromethoxy-ethoxy nucleotide, or 2'-ara-fluoronucleotide, Locked nucleic acid (LNA), 2'-O, 4'-C-ethylene cross-linked nucleic acid Ethylene nucleic acids such as (2'-O, 4'-C-ethylene bridged nucleic acid (ENA)), other bridged nucleic acid (BNA), hexitol 核酸 nucleic acid (HNA), morpholino nucleic acid, tricyclo-DNA ( tcDNA), polyether nucleic acid (US Pat. No. 5,908,845), cyclohexene nucleic acid (CeNA), and combinations thereof. Further, difluorotoluyl (DFT) modification, for example, substitution of 2,4-difluorotoluyluracil or guanidine to inosine may be performed.
 また、核酸は末端に結合体を含んでよい。結合体としては、例えば親油性物質、テルペン、タンパク質結合物質、ビタミン、炭水化物、レチノイド、およびペプチド等が挙げられる。具体的には、C5-アミノアルキルdT、ナプロキセン、ニトロインドール、葉酸、コラン酸、イブプロフェン、レチノイド、ポリエチレングリコール(PEG)、C5ピリミジンリンカー、グリセリド脂質(例えばジアルキルグリセリド誘導体)、ビタミンE、コレステロール、チオコレステロール、dU-コレステロール、アルキル鎖、アリール基、複素環式複合体、および修飾糖(D-リボース、デオキシリボース、グルコースなど)が例示できる。結合体と核酸は、例えば任意のリンカーを介して結合させることができ、具体的には、ピロリジンリンカー、セリノールリンカー、アミノオキシ、またはヒドロキシプロリノールリンカー等が挙げられる。また、核酸には適宜、細胞透過シグナルを付加することができる。例えば、核酸を細胞に導入するための細胞透過性ペプチドが多数知られている(WO2008/082885)。具体的には、例えばポリアルギニンなどのアルギニンリッチなペプチドが挙げられ、例えばHIV-1 Tat(48-60)、HIV-1 Rev(34-50)、FHV Coat(35-49)、BMV Gag(7-25)、HTLV-II Rex(4-16)、それらの部分ペプチド、またはそのインベルソ(inverso)又はレトロインベルソ(retro-inverso)などであってよい。アミノ酸は、適宜d体を用いてよい。細胞透過性ペプチド等は、周知のリンカーにより、核酸に結合させればよい。このような修飾された核酸や核酸誘導体、核酸派生体、核酸アナログなども、本発明のmiRNAまたはその前駆体に含まれる。 Also, the nucleic acid may contain a conjugate at the end. Examples of the conjugate include lipophilic substances, terpenes, protein binding substances, vitamins, carbohydrates, retinoids, peptides, and the like. Specifically, C5-aminoalkyl dT, naproxen, nitroindole, folic acid, colanic acid, ibuprofen, retinoid, polyethylene glycol (PEG), C5 pyrimidine linker, glyceride lipid (eg dialkyl glyceride derivative), vitamin E, cholesterol, thio Examples include cholesterol, dU-cholesterol, alkyl chains, aryl groups, heterocyclic complexes, and modified sugars (D-ribose, deoxyribose, glucose, etc.). The conjugate and the nucleic acid can be bound via, for example, an arbitrary linker, and specific examples include a pyrrolidine linker, serinol linker, aminooxy, or hydroxyprolinol linker. In addition, a cell permeation signal can be appropriately added to the nucleic acid. For example, many cell-permeable peptides for introducing nucleic acids into cells are known (WO2008 / 082885). Specific examples include arginine-rich peptides such as polyarginine, such as HIV-1 Tat (48-60), HIV-1 (Rev (34-50), FHV Coat (35-49), BMV Gag ( 7-25), HTLV-II Rex (4-16), a partial peptide thereof, or an inverso or retro-inverso thereof. As the amino acid, d-form may be used as appropriate. A cell-penetrating peptide or the like may be bound to a nucleic acid by a known linker. Such modified nucleic acids, nucleic acid derivatives, nucleic acid derivatives, nucleic acid analogs, and the like are also included in the miRNA or precursor thereof of the present invention.
 天然のmiR-196aおよびmiR-203を模倣したmiR-196a mimicやmiR-203 mimicは既に商業的に入手可能である(例えばMISSIONTM microRNA Mimics, Sigma-Aldrich Corporation; miRIDIAN miRNA Mimic, Dharmacon, Lafayette, LA)。これらをそれぞれmiR-196aおよびmiR-203として、適宜使用することができる。 MiR-196a and miR-203 mimics mimicking natural miR-196a and miR-203 are already commercially available (eg MISSION microRNA Mimics, Sigma-Aldrich Corporation; miRIDIAN miRNA Mimic, Dharmacon, Lafayette, LA). These can be appropriately used as miR-196a and miR-203, respectively.
 患者へのmiRNA又はその前駆体の投与方法としては、特に制限はなく、例えば本発明に係るmiRNA又はその前駆体をそのまま投与してもよく、またリポソーム、リポフェクチン、セルフェクチン、ポリカチオンやナノ粒子などと組み合わせて投与してもよい。 The method for administering miRNA or a precursor thereof to a patient is not particularly limited. For example, the miRNA according to the present invention or a precursor thereof may be administered as it is, and liposomes, lipofectins, cellfectins, polycations, nanoparticles, etc. May be administered in combination.
 また、本発明に係るmiRNA又はその前駆体(pri-miRNAやpre-miRNAなど)をコードするDNAを発現ベクターに挿入して投与することもできる。ここで発現ベクターとしては、pME18S(Med.immunol.20:27-32(1990))、pEF-BOS(Nucleic Acids Res.18:5322(1990))、pCDM8(Nature 329:840-842(1987)、pRSVneo、pSV2-neo、pcDNAI/Amp(Invitrogen)、pcDNAI、pAMoERC3Sc、pCDM8(Nature 329:840(1987))、pAGE107(Cytotechnology 3:133(1990))、pREP4(Invitrogen)、pAGE103(J.Biochem.101:1307(1987))、pAMoA、pAS3-3、pCAGGS(Gene 108:193-200(1991))、pBK-CMV、pcDNA3.1(Invirtogen)、pZeoSV(Stratagene)等が挙げられる。 Alternatively, the DNA encoding the miRNA according to the present invention or a precursor thereof (pri-miRNA, pre-miRNA, etc.) can be inserted into an expression vector for administration. Here, examples of expression vectors include pME18S (Med. Immunol. 20: 27-32 (1990)), pEF-BOS (Nucleic Acids Res. 18: 5322 (1990)), pCDM8 (Nature 329: 840-842 (1987)). , PRSVneo, pSV2-neo, pcDNAI / Amp (Invitrogen), pcDNAI, pAMoERC3Sc, pCDM8 (Nature 329: 840 (1987)), pAGE107 (Cytotechnology 3: 133 (1990)), pREP4 (InJ. 101: 1307 (1987)), pAMoA, pAS3-3, pCAGGS (Gene 108: 193-200 (199). )), PBK-CMV, pcDNA3.1 (Invirtogen), pZeoSV (Stratagene) and the like.
 RNAを転写させるためのプロモーターは特に制限はなく、Pol Iプロモーター、Pol IIプロモーター、Pol IIIプロモーター、バクテリオファージ(T4ファージやT7ファージのRNAポリメラーゼ認識配列)のプロモーター等を用いることができる。またポリメラーゼII(Pol II)プロモーターとしては、例えばCMVプロモーターやβ-globinプロモーター等を例示することができる。数百塩基以内の比較的短いRNAを発現させるためには、Pol IIよりも高い発現量が見込めるポリメラーゼIII(Pol III)プロモーターを利用することが好ましい。Pol IIIプロモーターとしては、U6プロモーター、H1プロモーター、tRNAプロモーター、7SKプロモーター、7SLプロモーター、Y3プロモーター、5S rRNAプロモーター、Ad2 VAIおよびVAIIプロモーター等を例示することができる(Das, G. et al., 1988, EMBO J. 7:503-512; Hernandez, N., 1992, pp. 281-313, In S. L. McKnight and K. R. Yamamoto (ed.), Transcriptional regulation, vol. 1. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.; Kunkel, G. R., 1991, Biochim. Biophys. Acta 1088:1-9; Lobo, S. M., and N. Hernandez, 1989, Cell 58:55-67; Mattaj, I. W. et al., 1988, Cell 55:435-442; Geiduschek, E.P. and G.A. Kassavetis, 1992, pp.247-280, In Transcriptional regulation. Monograph 22 (ed. S.L. McKnight and K.R. Yamamoto), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.)。 The promoter for transcription of RNA is not particularly limited, and a Pol I promoter, Pol II promoter, Pol III promoter, a bacteriophage promoter (RNA polymerase recognition sequence of T4 phage or T7 phage), and the like can be used. Examples of the polymerase II (Pol II) promoter include CMV promoter and β-globin promoter. In order to express a relatively short RNA within a few hundred bases, it is preferable to use a polymerase III (Pol III) promoter that can be expressed in a higher amount than Pol II. Examples of Pol III promoters include U6 promoter, H1 promoter, tRNA promoter, 7SK promoter, 7SL promoter, Y3 promoter, 5S rRNA promoter, Ad2 VAI and VAII promoter (Das, G. et al., 1988). EMBO J. 7: 503-512; Hernandez, N., 1992, pp. 281-313, In S. L. McKnight and K. R. Yamamoto (ed.), Transcriptional regulation, vol. 1. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY; Kunkel, G. R., 1991, Biochim. Biophys. Acta 1088: 1-9; Lobo, S. M., and N. Hernandez, 1989, Cell 58: 55-67; , I. W. et al., 1988, Cell 55: 435-442; Geiduschek, EP and GA Kassavetis, 1992, pp.247-280, In Transcriptional regulation. Monograph 22 (ed. SL McKnight and KR Yamamoto), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.).
 また、本発明に係るmiRNA又はその前駆体は、それらをコードする核酸を公知のウイルスベクターに挿入して投与することもできる。たとえば以下のような遺伝子治療用の各種ウイルスベクターが公知である(Adolph K.W. ed., Viral Genome Methods, CRC Press, Florid (1996)参照)。
レトロウイルスベクター
アデノウイルスベクター
ワクシニアウイルスベクター
ポックスウイルスベクター
アデノ随伴ウイルスベクター
HVJベクター等
Moreover, miRNA which concerns on this invention, or its precursor can also insert the nucleic acid which codes them in a well-known viral vector, and can also administer it. For example, the following various viral vectors for gene therapy are known (see Adolph K.W. ed., Viral Genome Methods, CRC Press, Florida (1996)).
Retrovirus vector adenovirus vector vaccinia virus vector poxvirus vector adeno-associated virus vector
HVJ vector etc.
 投与は、経口投与でもよく、非経口投与(例えば、静脈内投与、筋肉内投与、皮下投与、皮内投与、皮膚投与、粘膜投与、直腸内投与、膣内投与、癌組織への局所投与)でもよい。 Administration may be oral administration or parenteral administration (eg, intravenous administration, intramuscular administration, subcutaneous administration, intradermal administration, cutaneous administration, mucosal administration, intrarectal administration, intravaginal administration, local administration to cancer tissue) But you can.
 本発明に係る小細胞肺癌を治療する方法では、本発明に係るmiRNA又はその前駆体とともに、公知の小細胞肺癌治療剤を投与してもよく、放射線療法を行ってもよい。 In the method for treating small cell lung cancer according to the present invention, a known therapeutic agent for small cell lung cancer may be administered together with the miRNA according to the present invention or a precursor thereof, or radiation therapy may be performed.
 本発明に係る小細胞肺癌の予後を改善する方法では、miR-196a、miR-203又はそれらの前駆体の発現が減少している患者に対しては、miR-196a、miR-203又はそれらの前駆体を投与することにより行う。投与方法などは本発明に係る小細胞肺癌を治療する方法と同じ方法を用いることができる。用いる化合物や核酸、ベクター、その他の条件についても、本発明に係る小細胞肺癌を治療する方法に関する記載を参照することができ、それらの記載と本発明の改善方法の記載との任意の組み合わせが、本明細書において開示される。 In the method for improving the prognosis of small cell lung cancer according to the present invention, miR-196a, miR-203 or their Doing by administering the precursor. As the administration method, the same method as the method for treating small cell lung cancer according to the present invention can be used. The compound, nucleic acid, vector, and other conditions to be used can also refer to the description of the method for treating small cell lung cancer according to the present invention, and any combination of the description and the description of the improvement method of the present invention , Disclosed herein.
 本発明に係る小細胞肺癌を治療する方法では、miR-153、miR-216a又はそれらの前駆体の発現が増加している患者に対しては、miR-153、miR-216a又はそれらの前駆体の機能を阻害する。具体的には、例えば、miR-153、miR-216a又はそれらの前駆体の機能を低下させる少なくとも1種の化合物を投与することにより行うことができる。 In the method for treating small cell lung cancer according to the present invention, miR-153, miR-216a or a precursor thereof is applied to a patient having increased expression of miR-153, miR-216a or a precursor thereof. Inhibits the function of Specifically, for example, it can be carried out by administering at least one compound that reduces the function of miR-153, miR-216a or a precursor thereof.
 前記機能を低下させる化合物としては、特に制限はないが、例えば、miR-153、miR-216a又はそれらの前駆体に対する二本鎖RNA(siRNAなどのRNAi構築物を含む)(また1本鎖RNAが分子内アニールにより二本鎖RNAになる場合を含む)、アンチセンスオリゴヌクレオチド、リボザイム、またはそれらを発現する発現ベクターなどを用いることができる。これら化合物は本発明に係るmiRNA又はその前駆体の機能を低下させるものであればよく、例えば、該化合物の全部又は一部が本発明に係るmiRNA又はその前駆体の少なくとも一部に結合し、該miRNA又はその前駆体が、該miRNA又はその前駆体が標的とする塩基配列(標的塩基配列)に結合するのを阻害するものが挙げられる。また、本発明に係るmiRNA又はその前駆体の機能を低下させるものであれば、化合物はRNAでもDNAでもよく、同一の鎖にDNAとRNAを含むキメラ型でもよく、また一方の鎖がDNAでもう一方の鎖がRNAであるハイブリッド型も使用することができる。 The compound that reduces the function is not particularly limited. For example, double-stranded RNA (including RNAi constructs such as siRNA) against miR-153, miR-216a, or a precursor thereof (also, single-stranded RNA) For example, antisense oligonucleotides, ribozymes, or expression vectors that express them can be used. These compounds only need to reduce the function of the miRNA or precursor thereof according to the present invention. For example, all or part of the compound binds to at least a part of the miRNA or precursor thereof according to the present invention, What inhibits this miRNA or its precursor binding | binding to the base sequence (target base sequence) which this miRNA or its precursor targets is mentioned. Further, the compound may be RNA or DNA as long as it reduces the function of miRNA or a precursor thereof according to the present invention, may be a chimeric type containing DNA and RNA in the same strand, and one strand is DNA. A hybrid type in which the other strand is RNA can also be used.
 例えば、miRNA又はその前駆体の機能を低下させる化合物としては、該miRNA又はその前駆体にアンタゴニストまたは阻害剤として作用する核酸(核酸アナログを含む)であってよい。例えば該miRNA又はその前駆体に結合するアンチセンス核酸、該miRNA又はその前駆体に対するRNAi構築物(siRNAなどの二本鎖RNAを含む)、該miRNA又はその前駆体を切断するリボザイム、及びmiRNA又はその前駆体を阻害する核酸が挙げられる。これらの核酸は、機能を低下させるmiRNA又はその前駆体を認識するために、該miRNA又はその前駆体の塩基配列の少なくとも一部または全部に対して相補的な塩基配列を含む。 For example, the compound that reduces the function of miRNA or a precursor thereof may be a nucleic acid (including a nucleic acid analog) that acts as an antagonist or inhibitor on the miRNA or a precursor thereof. For example, an antisense nucleic acid that binds to the miRNA or a precursor thereof, an RNAi construct for the miRNA or a precursor thereof (including a double-stranded RNA such as siRNA), a ribozyme that cleaves the miRNA or a precursor thereof, and an miRNA or a thereof Nucleic acids that inhibit precursors. These nucleic acids contain a base sequence that is complementary to at least a part or all of the base sequence of the miRNA or a precursor thereof in order to recognize a miRNA or a precursor thereof that has a reduced function.
 miRNAは、標的遺伝子の3’-非翻訳領域に存在する数塩基からなる標的塩基配列を認識する。この標的塩基配列は、例えばmiRNAの5’末端の1~8番目の塩基配列に相補的な塩基配列である(Nature 433:769-773(2005))。従って、例えば機能を低下させるmiRNAの5'末端の塩基配列と相補的な配列を持つRNAにより、効果的にmiRNAを阻害することができる。このようなRNAは、miRNAの上記の5'末端の塩基配列(miRNAの5'末端から1~8番目、2~7番目、または3~8番目の塩基)と完全に相補的であってよく、または1~2個のギャップがあってもよい。好ましくは、この塩基配列が完全に相補的であって、miRNAに対して、少なくとも8塩基、より好ましくは9塩基、より好ましくは10塩基の相補的な塩基を連続して含む。さらに好ましくは、miRNAに対して、合計11塩基以上、より好ましくは12塩基以上、より好ましくは13塩基以上の相補的な塩基を含む。相補的な塩基は、連続していてもよいし、1または複数(2、3、4個)のギャップを含んでいてもよい。miRNAとのミスマッチは、RISCによる切断を抑制し、miRNAの阻害活性を上昇させ得る。従って、miRNAと完全に相補的である必要はなく、バルジを含むように設計することもできる。 MiRNA recognizes a target base sequence consisting of several bases present in the 3'-untranslated region of the target gene. This target base sequence is, for example, a base sequence complementary to the 1st to 8th base sequences at the 5 'end of miRNA (Nature 433: 769-773 (2005)). Accordingly, for example, miRNA can be effectively inhibited by RNA having a sequence complementary to the base sequence at the 5 ′ end of miRNA that lowers the function. Such RNA may be completely complementary to the above 5 ′ base sequence of miRNA (base 1 to 8, 2 to 7, or 3 to 8 from the 5 ′ end of miRNA). Or there may be 1-2 gaps. Preferably, this base sequence is completely complementary, and continuously contains at least 8 bases, more preferably 9 bases, more preferably 10 bases of complementary bases for miRNA. More preferably, it contains a total of 11 bases or more, more preferably 12 bases or more, and more preferably 13 bases or more complementary bases for miRNA. Complementary bases may be contiguous or may include one or more (2, 3, 4) gaps. Mismatch with miRNA can suppress cleavage by RISC and increase the inhibitory activity of miRNA. Thus, it need not be completely complementary to the miRNA and can also be designed to contain a bulge.
 例えば前記化合物は、本発明に係るmiRNA又はその前駆体の少なくとも一部(例えば6、7、8、9、10、15~30塩基)または全部に対して少なくとも85%以上、好ましくは90%以上、より好ましくは95%以上、さらにより好ましくは98%以上、さらにより好ましくは99%以上、最も好ましくは100%の配列相同性(同一性)を有する。 For example, the compound is at least 85% or more, preferably 90% or more, based on at least a part (for example, 6, 7, 8, 9, 10, 15 to 30 bases) or all of the miRNA or a precursor thereof according to the present invention More preferably 95% or more, even more preferably 98% or more, even more preferably 99% or more, and most preferably 100% sequence homology (identity).
 投与する前記化合物は、ヌクレアーゼに対する耐性の向上や安定化のためにその一部が修飾されていてもよく、例えば、ピリミジンヌクレオチドのリボースの2’-OHをフルオロ化またはメチル化してもよく、コレステロール、ステロイド、胆汁酸やポリエチレングリコールなどを付加してもよい。 The compound to be administered may be partially modified to improve or stabilize the resistance to nuclease. For example, the 2′-OH of the ribose of pyrimidine nucleotides may be fluorinated or methylated, Steroids, bile acids, polyethylene glycols, etc. may be added.
 例えばmiRNA又はその前駆体に結合するアンチセンス核酸は、約15~30塩基またはそれ以上を含んでいてよい。またアンチセンス核酸は、一つまたは複数の修飾された主鎖および/または塩基部分を含んでよい。具体的には、アンチセンス核酸は、天然型オリゴヌクレオチド及び改変されたオリゴヌクレオチドが含まれ、例えばホスホロチオエート、ホスホロジチオエート、メチルホスホネート、ホスホルアミデート、H-ホスホネート型、トリエステル、アルファ-アノマー、ペプチド核酸、他の人工核酸、および核酸改変化合物が含まれる。またアンチセンス核酸は、2’-O-アルキル化リボヌクレオチドを含んでもよい。
 アンチセンス核酸は、miRNAの塩基配列に対して、例えば15塩基以上、16、17、18、19、20、25、30、35、40塩基以上相補的な塩基配列を含んでいてよい。相補的な配列は、連続していてもよいし、1または複数(2、3、4個)のギャップを含んでいてもよい(Schmajuk et al., 1999, J. Biol. Chem., 274, 21783-21789, Delihas et al., 1997, Nature, 15, 751-753, Stein et al., 1997, Antisense N.A. Drug Dev., 7, 151, Crooke, 2000, Methods Enzymol., 313, 3-45; Crooke, 1998, Biotech. Genet. Eng. Rev., 15, 121-157, Crooke, 1997, Ad. Pharmacol., 40, 1-49)。アンチセンス核酸は、本発明に係るmiRNA又はその前駆体の少なくとも一部(例えば6、7、8、9、10、15~30塩基)または全部に対して、例えば少なくとも85%以上、好ましくは90%以上、より好ましくは95%以上、さらにより好ましくは98%以上、さらにより好ましくは99%以上、最も好ましくは100%の配列相同性(同一性)を有するものであってよい。
For example, an antisense nucleic acid that binds to miRNA or a precursor thereof may contain about 15-30 bases or more. Antisense nucleic acids may also contain one or more modified backbones and / or base moieties. Specifically, antisense nucleic acids include natural oligonucleotides and modified oligonucleotides such as phosphorothioates, phosphorodithioates, methylphosphonates, phosphoramidates, H-phosphonate types, triesters, alpha- Anomers, peptide nucleic acids, other artificial nucleic acids, and nucleic acid modifying compounds are included. Antisense nucleic acids may also contain 2′-O-alkylated ribonucleotides.
The antisense nucleic acid may contain a base sequence complementary to the base sequence of miRNA, for example, 15 bases or more, 16, 17, 18, 19, 20, 25, 30, 35, 40 bases or more. Complementary sequences may be contiguous or may include one or more (2, 3, 4) gaps (Schmajuk et al., 1999, J. Biol. Chem., 274, 21783-21789, Delihas et al., 1997, Nature, 15, 751-753, Stein et al., 1997, Antisense NA Drug Dev., 7, 151, Crooke, 2000, Methods Enzymol., 313, 3-45; Crooke, 1998, Biotech. Genet. Eng. Rev., 15, 121-157, Crooke, 1997, Ad. Pharmacol., 40, 1-49). The antisense nucleic acid is, for example, at least 85% or more, preferably 90% with respect to at least a part (for example, 6, 7, 8, 9, 10, 15 to 30 bases) or all of the miRNA or a precursor thereof according to the present invention. % Or more, more preferably 95% or more, even more preferably 98% or more, even more preferably 99% or more, and most preferably 100% sequence homology (identity).
 miRNA又はその前駆体に対するRNAi構築物は、例えば標的となるmiRNA又はその前駆体の少なくとも一部に相補的な塩基配列を含み、該miRNAの機能を低下させる(miRNAの発現レベルを低下させたり、あるいは該miRNAの標的遺伝子への結合を阻害したり、該遺伝子の発現レベルを上昇させる)活性を有するRNAが挙げられ、約14~50ヌクレオチド、好ましくは19~30ヌクレオチドであってもよく、またはそれ以上を含んでよい。好ましくは、RNAi構築物の二本鎖部分は、約21~23ヌクレオチド長である。RNAi構築物は、siRNA(ヘアピン型の一本鎖RNAを含む)であってもよく、細胞内でダイサーによるプロセッシングによりsiRNAを生成するRNA(例えば二本鎖RNA)であってもよい。siRNAや二本鎖RNAなどのRNAi構築物はDNAを含んでいてもよい。例えば3’末端にTTを含んでもよい。 The RNAi construct for the miRNA or a precursor thereof includes, for example, a base sequence complementary to at least a part of the target miRNA or the precursor thereof, and reduces the function of the miRNA (decreases the expression level of the miRNA, or RNA having an activity that inhibits the binding of the miRNA to a target gene or increases the expression level of the gene, and may be about 14 to 50 nucleotides, preferably 19 to 30 nucleotides, or The above may be included. Preferably, the double stranded portion of the RNAi construct is about 21-23 nucleotides in length. The RNAi construct may be siRNA (including hairpin type single-stranded RNA), or may be RNA (for example, double-stranded RNA) that generates siRNA by processing with Dicer in the cell. RNAi constructs such as siRNA and double stranded RNA may contain DNA. For example, TT may be included at the 3 'end.
 また、例えば2'-O methyl (2'-OMe) RNA、locked nucleic acid (LNA)、およびアンタゴmirなどのオリゴヌクレオチドにより、効果的に標的miRNAを阻害できることが知られている他、発現ベクターによる標的miRNAの阻害方法も公知である(Hutvagner, G. et al. (2004) PLoS Biol, 2, E98; Meister, G. et al. (2004) Rna, 10, 544-550; Orom, U.A. et al. (2006) Gene, 372, 137-141; Krutzfeldt, J. et al. (2005) Nature, 438, 685-689; Ebert, M.S. et al. (2007) Nat Methods, 4, 721-726)。 In addition, it is known that the target miRNA can be effectively inhibited by oligonucleotides such as 2′-O methyl (2′-OMe) RNA, locked nucleic acid (LNA), and antagomir, etc. Methods for inhibiting target miRNAs are also known (Hutvagner, G. et al. (2004) PLoS Biol, 2, E98; Meister, G. et al. (2004) Rna, 10, 544-550; Orom, UA et al (2006) Gene, 372, 137-141; Krutzfeldt, J. et al. (2005) Nature, 438, 685-689; Ebert, MS et al. (2007) Nat Methods, 4, 721-726).
 miRNA又はその前駆体を切断するリボザイムは、例えば標的miRNA又はその前駆体を開裂するリボザイムが挙げられる(WO90/11364;米国特許第5,093,246号;Sarver et al., Science 247:1222-1225)。リボザイムには、任意の核酸酵素が含まれ、例えばRNA型リボザイム、DNA型リボザイム(デオキシリボザイム)、またはDNA-RNAキメラ型リボザイムであってよい。標的miRNA又はその前駆体を特異的に開裂させるために、当業者に周知の技術を利用して、適宜リボザイムを作製することができる(Haselof and Gerlach, 1988, Nature, 334:585-591; Zaug et al., 1984, Science, 224:574-578;Zaug and Cech, 1986, Science, 231:470-475;Zaug et al., 1986, Nature, 324:429-433; WO88/04300; Been and Cech, 1986, Cell, 47:207-216)。 Examples of ribozymes that cleave miRNA or its precursor include ribozymes that cleave target miRNA or its precursor (WO 90/11364; US Pat. No. 5,093,246; Sarver ; et al., Science 247: 1222-). 1225). The ribozyme includes any nucleic acid enzyme, and may be, for example, an RNA-type ribozyme, a DNA-type ribozyme (deoxyribozyme), or a DNA-RNA chimeric ribozyme. In order to specifically cleave the target miRNA or a precursor thereof, a ribozyme can be appropriately produced using techniques well known to those skilled in the art (Haselof and Gerlach, 1988, Nature, 334: 585-591; Zaug et al., 1984, Science, 224: 574-578; Zaug and Cech, 1986, Science, 231: 470-475; Zaug et al., 1986, Nature, 324: 429-433; WO88 / 04300; Been and Cech , 1986, Cell, 47: 207-216).
 miRNA又はその前駆体を阻害する核酸は、好ましくは、miRNA配列と生理的条件下でハイブリダイズする核酸である。生理的条件下とは、例えば1×SSC(1×SSCは150 mM NaCl、15 mM sodium citrate、pH 7.0)、37℃ が挙げられる。より好ましくは、miRNAとストリンジェントな条件下でハイブリダイズする核酸であってよい。ストリンジェントな条件とは、例えば1×SSCまたは0.5×SSC、42℃の条件であり、より好ましくは1×SSCまたは0.5×SSC、45℃の条件であり、より好ましくは1×SSCまたは0.5×SSC、50℃の条件である。ハイブリダイゼーションにおいては、例えばmiRNA配列を含むRNAまたはmiRNAを阻害する核酸のどちらかを標識し、他方を膜に固定して、両者をハイブリダイズさせる。ハイブリダイゼーションの条件は、例えば 5xSSC、7%(W/V) SDS、100μg/ml 変性サケ精子DNA、5xデンハルト液(1xデンハルト溶液は0.2%ポリビニールピロリドン、0.2%牛血清アルブミン、及び0.2%フィコールを含む)を含む溶液中、例えば37℃、または45℃、または50℃で行えばよい。十分な時間(例えば3、4、5または6時間以上)インキュベートした後、上記の条件で洗浄を行い、標識した核酸がハイブリダイズしているかを検出することにより、当該条件で核酸がハイブリダイズするか否かを決定することができる。尚、核酸はRNAでもDNAでもよく、同一の鎖にDNAとRNAを含むキメラ型でもよく、また一方の鎖がDNAでもう一方の鎖がRNAであるハイブリッド型も使用することができる。 The nucleic acid that inhibits miRNA or its precursor is preferably a nucleic acid that hybridizes with the miRNA sequence under physiological conditions. Examples of physiological conditions include 1 × SSC (1 × SSC is 150 μM NaCl, 15 μM sodium citrate, pH 7.0), 37 ° C. More preferably, it may be a nucleic acid that hybridizes with miRNA under stringent conditions. The stringent conditions are, for example, 1 × SSC or 0.5 × SSC, 42 ° C., more preferably 1 × SSC or 0.5 × SSC, 45 ° C., more preferably 1 × SSC or 0.5 ×. The conditions are SSC and 50 ° C. In hybridization, for example, either RNA containing a miRNA sequence or nucleic acid that inhibits miRNA is labeled, the other is immobilized on a membrane, and both are hybridized. Hybridization conditions are, for example, 5xSSC, 7% (W / V) SDS, 100μg / ml denatured salmon sperm DNA, 5x Denhardt solution (1x Denhardt solution is 0.2% polyvinylpyrrolidone, 0.2% bovine serum albumin, and 0.2% Ficoll) For example, at 37 ° C., 45 ° C., or 50 ° C. After incubating for a sufficient period of time (eg, 3, 4, 5 or 6 hours or more), washing is performed under the above conditions, and by detecting whether the labeled nucleic acid is hybridized, the nucleic acid is hybridized under the condition. Or not. The nucleic acid may be RNA or DNA, may be a chimeric type containing DNA and RNA in the same strand, or a hybrid type in which one strand is DNA and the other strand is RNA.
 二本鎖RNA(siRNAを含む)、アンチセンスオリゴヌクレオチド、リボザイムなどはそのまま投与してもよいが、発現ベクターを用いるなど、公知の方法で投与してもよい。発現ベクターとしては、例えば本明細書に記載したものを使用することができる。 Double-stranded RNA (including siRNA), antisense oligonucleotide, ribozyme and the like may be administered as they are, but may be administered by a known method such as using an expression vector. As the expression vector, for example, those described in the present specification can be used.
 効率的なmiRNA阻害剤の製造方法は既に知られている(Vermeulen A et al. RNA 13, 723-730 (2007))。またmiR-153阻害剤およびmiR-216a阻害剤は既に商業的に入手可能である(例えばSynthetic human miRNA inhibitor oligonucleotide, GeneCopoeia, Inc., Rockville, MD; miRIDIAN microRNA Hairpin Inhibitor, Dharmacon, Lafayette, LA)。これらを適宜miRNA阻害剤として使用することができる。 An efficient method for producing an miRNA inhibitor is already known (Vermeulen A et al. RNA 13, 723-730 (2007)). In addition, miR-153 inhibitors and miR-216a inhibitors are already commercially available (eg Synthetic® human® miRNA® inhibitor oligonucleotide, gene Genepopoia, Inc., Rockville, MD; miRIDIAN® microRNA® Hairpin® Inhibitor, Dharmacon, Lafayette, LA). These can be used as miRNA inhibitors as appropriate.
 本発明に係る小細胞肺癌の予後を改善する方法では、miR-153、miR-216a又はそれらの前駆体の発現が増加している患者に対しては、miR-153、miR-216a又はそれらの前駆体に対する二本鎖RNA(siRNAを含む)、アンチセンスオリゴヌクレオチド、リボザイムなどを投与することにより行う。投与方法などは本発明に係る小細胞肺癌を治療する方法と同じ方法を用いることができる。また用いる化合物や核酸、ベクター、その他の条件についても、本発明に係る小細胞肺癌を治療する方法に関する上記の記載を参照することができ、それらの記載と本発明の改善方法の記載との任意の組み合わせが、本明細書において開示される。 In the method for improving the prognosis of small cell lung cancer according to the present invention, miR-153, miR-216a or their precursors are increased in patients with increased expression of miR-153, miR-216a or their precursors. It is performed by administering double-stranded RNA (including siRNA), antisense oligonucleotide, ribozyme, etc. to the precursor. As the administration method, the same method as the method for treating small cell lung cancer according to the present invention can be used. In addition, regarding the compound, nucleic acid, vector, and other conditions to be used, the above description regarding the method for treating small cell lung cancer according to the present invention can be referred to, and any of these descriptions and the description of the improvement method of the present invention can be referred to. Combinations of these are disclosed herein.
 本発明に係る治療剤および予後改善剤は、有効成分として本発明に係るmiR-196a、miR-203、それらの前駆体又はそれらを発現するベクター、miR-153、miR-216a又はそれらの前駆体の機能を阻害する化合物の少なくとも一種を含有し、必要に応じて、製薬上許容される賦形剤、等張化剤、溶解補助剤、安定化剤、防腐剤、無痛化剤等を加えて錠剤、散剤、顆粒剤、カプセル剤、リポソームカプセル剤、注射剤、液剤、点鼻剤などの医薬組成物として調製することができ、さらに凍結乾燥剤とすることができる。これらは常法にしたがって調製することができる。 The therapeutic agent and prognosis improving agent according to the present invention include miR-196a, miR-203, a precursor thereof or a vector expressing them, miR-153, miR-216a or a precursor thereof according to the present invention as an active ingredient. Containing at least one kind of compound that inhibits the function of pharmacologically, and optionally adding pharmaceutically acceptable excipients, tonicity agents, solubilizers, stabilizers, preservatives, soothing agents, etc. It can be prepared as a pharmaceutical composition such as tablets, powders, granules, capsules, liposome capsules, injections, liquids, nasal drops and the like, and can also be lyophilized. These can be prepared according to conventional methods.
 本発明に係る治療剤および予後改善剤は、患者の状態に応じて適宜調整し好ましい量を用いることができる。例えば、0.001~100mg/kg、好ましくは0.1~10mg/kgの範囲で投与することができるが、特に限定するものではない。また、例えば、かかる投与量を数回に分けて投与してもよく、また、かかる投与量を数回投与してもよい。 The therapeutic agent and prognosis improving agent according to the present invention can be appropriately adjusted according to the patient's condition and used in preferable amounts. For example, it can be administered in the range of 0.001 to 100 mg / kg, preferably 0.1 to 10 mg / kg, but is not particularly limited. Further, for example, such a dose may be divided into several times, and such a dose may be administered several times.
 本発明に係る治療剤および予後改善剤は、例えば以下のようなin vitro又はin vivoの系で薬理評価を行うことができる。 The therapeutic agent and prognosis improving agent according to the present invention can be subjected to pharmacological evaluation in, for example, the following in vitro or in vivo system.
 In vitroでの薬理評価としては、例えば、細胞増殖阻害アッセイおよびコロニー形成阻害アッセイが挙げられる。細胞増殖阻害アッセイでは、例えば本発明に係るmiRNA又はその前駆体が発現している癌細胞に本発明に係る治療剤または予後改善剤を接触させ、所定の時間経過後にH-チミジン取り込みアッセイ、MTTアッセイなどによって細胞増殖阻害活性を評価することができる。また、コロニー形成アッセイでは、例えば本発明に係るmiRNA又はその前駆体が発現している癌細胞に、本発明に係る治療剤または予後改善剤を接触させ、培養後ギムザ染色し、耐性コロニー数を計数することで評価することができる。尚、本発明に係るmiRNA又はその前駆体が発現している癌細胞のほか、該miRNA又はその前駆体をコードする核酸を直接導入した動物細胞や酵母細胞や、該miRNA又はその前駆体をコードする核酸を発現するベクターを動物細胞や酵母細胞などの宿主細胞に導入して得られる形質転換細胞を用いることができる。miRNAとしては、例えばmiR-153、miR-216a又はそれらの前駆体などを用いることができるが、それらに限定されない。 Examples of the in vitro pharmacological evaluation include a cell growth inhibition assay and a colony formation inhibition assay. In the cell growth inhibition assay, for example, the therapeutic agent or prognosis improving agent according to the present invention is brought into contact with a cancer cell in which the miRNA according to the present invention or a precursor thereof is expressed, and a 3 H-thymidine uptake assay after a predetermined period of time, The cell growth inhibitory activity can be evaluated by MTT assay or the like. In the colony formation assay, for example, the therapeutic agent or prognosis improving agent according to the present invention is contacted with cancer cells expressing the miRNA according to the present invention or a precursor thereof, followed by Giemsa staining after culture, and the number of resistant colonies is determined. It can be evaluated by counting. In addition to cancer cells expressing miRNA or a precursor thereof according to the present invention, animal cells or yeast cells directly introduced with the nucleic acid encoding the miRNA or precursor thereof, or the miRNA or precursor thereof are encoded. A transformed cell obtained by introducing a vector expressing a nucleic acid into a host cell such as an animal cell or a yeast cell can be used. As miRNA, for example, miR-153, miR-216a or a precursor thereof can be used, but is not limited thereto.
 In vivoでの薬理評価としては、癌動物モデルに適切な量の本発明に係る治療剤または予後改善剤を適切な回数投与することにより行うことができる。評価は例えば、腫瘍の大きさを指標とするができる。癌動物モデルとして、例えば本発明に係るmiRNA又はその前駆体を発現する癌細胞を移植した担癌動物モデルを使用できるが、特にこれに限定されない。 Pharmacological evaluation in vivo can be performed by administering an appropriate amount of the therapeutic agent or prognosis improving agent according to the present invention to a cancer animal model an appropriate number of times. For example, the size of the tumor can be used as an index for the evaluation. As a cancer animal model, for example, a cancer-bearing animal model in which a cancer cell expressing the miRNA according to the present invention or a precursor thereof is transplanted can be used, but it is not particularly limited thereto.
 また本発明は、miR-153、miR-196a、miR-203、miR-216a、それらの前駆体、それらの発現ベクター、および該miRNA又はその前駆体の機能を阻害する化合物(発現ベクターを含む)からなる群より選択される少なくとも一つの、小細胞肺癌の治療のための使用、該肺癌の予後を改善するための使用、該肺癌の治療のための医薬または薬剤の製造における使用、および該肺癌の予後を改善するための医薬または薬剤の製造における使用に関する。また本発明は、miR-153、miR-196a、miR-203、miR-216a、それらの前駆体、それらの発現ベクター、および該miRNA又はその前駆体の機能を阻害する化合物(発現ベクターを含む)からなる群より選択される少なくとも一つの、小細胞肺癌細胞の増殖を抑制するための使用、該細胞の増殖を抑制するための医薬または薬剤の製造における使用に関する。また本発明は、該群より選択される少なくとも一つを含む、小細胞肺癌治療剤、および小細胞肺癌の予後改善剤に関する。また本発明は、該群より選択される少なくとも一つを含む、小細胞肺癌細胞の増殖抑制剤に関する。また本発明は、該群より選択される少なくとも一つおよび薬学的に許容される担体を含む、小細胞肺癌細胞の増殖を抑制するための組成物、小細胞肺癌の治療のための組成物、および小細胞肺癌の予後を改善するための組成物に関する。薬学的に許容される担体としては、例えば蒸留水、リン酸緩衝生理食塩水(PBS)、塩化ナトリウム溶液、リンゲル溶液、培養液等が例示できる。また植物油、懸濁剤、界面活性剤、安定剤、殺生物剤等が含有されていてもよい。 The present invention also provides miR-153, miR-196a, miR-203, miR-216a, their precursors, their expression vectors, and compounds that inhibit the function of the miRNA or its precursors (including expression vectors) At least one selected from the group consisting of: a use for the treatment of small cell lung cancer, a use for improving the prognosis of the lung cancer, a use in the manufacture of a medicament or a medicament for the treatment of the lung cancer, and the lung cancer It relates to the use in the manufacture of a medicament or medicament for improving the prognosis of The present invention also provides miR-153, miR-196a, miR-203, miR-216a, their precursors, their expression vectors, and compounds that inhibit the function of the miRNA or its precursors (including expression vectors) At least one selected from the group consisting of: a use for inhibiting the growth of small cell lung cancer cells; and a use for producing a medicament or a medicament for inhibiting the growth of the cells. The present invention also relates to a therapeutic agent for small cell lung cancer and a prognosis improving agent for small cell lung cancer, comprising at least one selected from the group. The present invention also relates to a growth inhibitor of small cell lung cancer cells, comprising at least one selected from the group. The present invention also includes a composition for inhibiting the growth of small cell lung cancer cells, a composition for the treatment of small cell lung cancer, comprising at least one selected from the group and a pharmaceutically acceptable carrier, And a composition for improving the prognosis of small cell lung cancer. Examples of the pharmaceutically acceptable carrier include distilled water, phosphate buffered saline (PBS), sodium chloride solution, Ringer's solution, culture solution and the like. Moreover, vegetable oil, suspension agent, surfactant, stabilizer, biocide, etc. may be contained.
 また本発明は、miR-153、miR-196a、miR-203、miR-216a、それらの前駆体、それらの発現ベクター、および該miRNA又はその前駆体の機能を阻害する化合物(発現ベクターを含む)からなる群より選択される少なくとも一つの、小細胞肺癌患者由来の生体試料においてmiR-153、miR-196a、miR-203、miR-216a又はそれらの前駆体からなる群より選択される少なくとも一種の発現量が対照生体試料と比較して変化(増加又は減少)している小細胞肺癌を治療するための使用、および、該小細胞肺癌の予後を改善するための使用に関する。また本発明は、該群より選択される少なくとも一つの、小細胞肺癌患者由来の生体試料においてmiR-153、miR-196a、miR-203、miR-216a又はそれらの前駆体からなる群より選択される少なくとも一種の発現量が対照生体試料と比較して変化(増加又は減少)している小細胞肺癌を治療するための医薬または薬剤の製造における使用、および、該小細胞肺癌の予後を改善するための医薬または薬剤の製造における使用に関する。
 具体的には、該治療または該予後の改善は、
(1)miR-196a、miR-203又はそれらの前駆体の少なくとも1種の発現量が減少している場合は、該減少している少なくとも1種のmiRNA又は、その前駆体、又はそれらを発現するベクターを投与すること;又は/及び、
(2)miR-153、miR-216a又はそれらの前駆体の少なくとも1種の発現量が増加している場合は、該miRNA又はそれらの前駆体の機能を阻害する少なくとも1種の化合物を投与すること;を含んでよい。
The present invention also provides miR-153, miR-196a, miR-203, miR-216a, their precursors, their expression vectors, and compounds that inhibit the function of the miRNA or its precursors (including expression vectors) At least one selected from the group consisting of miR-153, miR-196a, miR-203, miR-216a or a precursor thereof in at least one biological sample derived from a patient with small cell lung cancer selected from the group consisting of The present invention relates to a use for treating small cell lung cancer in which the expression level is changed (increased or decreased) compared to a control biological sample, and a use for improving the prognosis of the small cell lung cancer. Further, the present invention is selected from the group consisting of miR-153, miR-196a, miR-203, miR-216a or a precursor thereof in at least one biological sample derived from a patient with small cell lung cancer selected from the group. Use in the manufacture of a medicament or medicament for treating small cell lung cancer in which at least one expression level is altered (increased or decreased) compared to a control biological sample, and improves the prognosis of the small cell lung cancer For use in the manufacture of a medicament or medicament.
Specifically, the treatment or the prognosis improvement is
(1) When the expression level of at least one of miR-196a, miR-203, or a precursor thereof is decreased, the decreased at least one miRNA, the precursor thereof, or the expression thereof is expressed Or / and
(2) When the expression level of at least one of miR-153, miR-216a or a precursor thereof is increased, at least one compound that inhibits the function of the miRNA or a precursor thereof is administered May be included.
 また本発明は、miR-196a、miR-203、それらの前駆体、およびそれらの発現ベクターからなる群より選択される少なくとも1つの、小細胞肺癌を治療するための使用、小細胞肺癌の予後を改善するための使用、小細胞肺癌を治療するための医薬または薬剤の製造における使用、および小細胞肺癌の予後を改善するための医薬または薬剤の製造における使用に関する。具体的には、miR-196a、miR-203又はそれらの前駆体の少なくとも1種の発現量が減少している小細胞肺癌を治療するための使用、該小細胞肺癌の予後を改善するための使用、該小細胞肺癌を治療するための医薬または薬剤の製造における使用、および該小細胞肺癌の予後を改善するための医薬または薬剤の製造における使用に関する。 The present invention also relates to the use of at least one selected from the group consisting of miR-196a, miR-203, their precursors, and their expression vectors for treating small cell lung cancer, and prognosis of small cell lung cancer. The invention relates to use for improving, use in the manufacture of a medicament or medicament for treating small cell lung cancer, and use in the manufacture of a medicament or medicament for improving the prognosis of small cell lung cancer. Specifically, use for treating small cell lung cancer in which the expression level of at least one of miR-196a, miR-203 or a precursor thereof is decreased, and for improving the prognosis of the small cell lung cancer The invention relates to use, in the manufacture of a medicament or medicament for treating the small cell lung cancer, and in use in the manufacture of a medicament or medicament for improving the prognosis of the small cell lung cancer.
 また本発明は、miR-153、miR-216a又はそれらの前駆体の少なくとも1種の機能を阻害する化合物(発現ベクターを含む)の、小細胞肺癌を治療するための使用、小細胞肺癌の予後を改善するための使用、小細胞肺癌を治療するための医薬または薬剤の製造における使用、および小細胞肺癌の予後を改善するための医薬または薬剤の製造における使用に関する。具体的には、miR-153、miR-216a又はそれらの前駆体の少なくとも1種の発現量が増加している小細胞肺癌を治療するための使用、該小細胞肺癌の予後を改善するための使用、該小細胞肺癌を治療するための医薬または薬剤の製造における使用、および該小細胞肺癌の予後を改善するための医薬または薬剤の製造における使用に関する。 The present invention also relates to the use of a compound (including an expression vector) that inhibits the function of at least one of miR-153, miR-216a or a precursor thereof for treating small cell lung cancer, prognosis of small cell lung cancer The present invention relates to a use for improving the prognosis, a use in the manufacture of a medicament or medicament for treating small cell lung cancer, and a use in the manufacture of a medicament or medicament for improving the prognosis of small cell lung cancer. Specifically, use for treating small cell lung cancer in which the expression level of at least one of miR-153, miR-216a or a precursor thereof is increased, and for improving the prognosis of the small cell lung cancer The invention relates to use, in the manufacture of a medicament or medicament for treating the small cell lung cancer, and in use in the manufacture of a medicament or medicament for improving the prognosis of the small cell lung cancer.
 また本発明は、miR-153、miR-196a、miR-203、miR-216a、それらの前駆体、および該miRNA又はその前駆体の機能を阻害する化合物(発現ベクターを含む)からなる群より選択される少なくとも一つの、小細胞肺癌を治療するための使用、小細胞肺癌の予後を改善するための使用、および、該治療または該予後を改善するための医薬または薬剤の製造における使用であって、該治療または該予後の改善は、
(1)小細胞肺癌患者由来の生体対料において、miR-153、miR-196a、miR-203、miR-216a又はそれらの前駆体からなる群より選択される少なくとも一種の発現量を測定し、
(2)対照生体試料と比較して発現量が減少している場合は、該減少している少なくとも1種のmiRNA又は、その前駆体、又はそれらを発現するベクターを投与すること;又は/及び、
(3)対照生体試料と比較して発現量が増加している場合は、該miRNA又はその前駆体の機能を阻害する少なくとも一種の化合物(発現ベクターを含む)を投与すること工程;
を含む、使用に関する。
The present invention is also selected from the group consisting of miR-153, miR-196a, miR-203, miR-216a, their precursors, and compounds (including expression vectors) that inhibit the function of the miRNA or its precursors. At least one use for treating small cell lung cancer, use for improving the prognosis of small cell lung cancer, and use in the treatment or manufacture of a medicament or medicament for improving the prognosis The treatment or the prognostic improvement is
(1) measuring at least one expression level selected from the group consisting of miR-153, miR-196a, miR-203, miR-216a or a precursor thereof in a biological material derived from a small cell lung cancer patient;
(2) if the expression level is decreased compared to the control biological sample, administering the decreased at least one miRNA or a precursor thereof, or a vector expressing them; or / and ,
(3) a step of administering at least one compound (including an expression vector) that inhibits the function of the miRNA or a precursor thereof when the expression level is increased compared to the control biological sample;
Concerning use, including
 また本発明は、miR-196a、miR-203、それらの前駆体、およびそれらの発現ベクターからなる群より選択されるの少なくとも1つの、小細胞肺癌を治療するための使用、小細胞肺癌の予後を改善するための使用、小細胞肺癌を治療するための医薬または薬剤の製造における使用、および小細胞肺癌の予後を改善するための医薬または薬剤の製造における使用であって、該治療または該予後の改善は、
(1)小細胞肺癌患者由来の生体対料において、miR-196a、miR-203、又はそれらの前駆体からなる群より選択される少なくとも一種の発現量を測定し、
(2)対照生体試料と比較して発現量が減少している場合は、該減少している少なくとも1種のmiRNA又は、その前駆体、又はそれらを発現するベクターを投与すること、
を含む、使用に関する。
 また本発明は、miR-153、miR-216a、それらの前駆体の少なくとも1種機能を阻害する化合物(発現ベクターを含む)の、小細胞肺癌を治療するための使用、小細胞肺癌の予後を改善するための使用、小細胞肺癌を治療するための医薬または薬剤の製造における使用、および小細胞肺癌の予後を改善するための医薬または薬剤の製造における使用であって、該治療または該予後の改善は、
(1)小細胞肺癌患者由来の生体対料において、miR-153、miR-216a、又はそれらの前駆体からなる群より選択される少なくとも一種の発現量を測定し、
(2)対照生体試料と比較して発現量が増加している場合は、該miRNA又はその前駆体の機能を阻害する少なくとも1種の化合物(発現ベクターを含む)を投与すること工程、
を含む、使用に関する。
The present invention also relates to use of at least one selected from the group consisting of miR-196a, miR-203, their precursors, and their expression vectors for treating small cell lung cancer, prognosis of small cell lung cancer Use in the manufacture of a medicament or medicament for treating small cell lung cancer, and use in the manufacture of a medicament or medicament for improving the prognosis of small cell lung cancer comprising the treatment or the prognosis Improvement of
(1) In a biological material derived from a patient with small cell lung cancer, at least one expression level selected from the group consisting of miR-196a, miR-203, or a precursor thereof is measured,
(2) When the expression level is reduced as compared to the control biological sample, administering the reduced at least one miRNA or a precursor thereof, or a vector expressing them,
Concerning use, including
The present invention also relates to the use of a compound (including an expression vector) that inhibits at least one function of miR-153, miR-216a, or a precursor thereof for treating small cell lung cancer, and prognosis of small cell lung cancer. Use in improving, use in the manufacture of a medicament or medicament for treating small cell lung cancer, and use in the manufacture of a medicament or medicament for improving the prognosis of small cell lung cancer comprising the treatment or the prognosis The improvement is
(1) measuring at least one expression level selected from the group consisting of miR-153, miR-216a, or a precursor thereof, in a biological material derived from a small cell lung cancer patient;
(2) a step of administering at least one compound (including an expression vector) that inhibits the function of the miRNA or a precursor thereof when the expression level is increased compared to a control biological sample;
Concerning use, including
 上記の使用においては、本発明の診断、予測、および検査方法の記載を参照することができ、それらの記載と上記の使用に関する記載との任意の組み合わせが、本明細書において開示される。例えば小細胞肺癌患者由来の生体試料、対照生体試料、発現量の測定および比較等については、本発明の診断方法および検査方法に関する記載と同じである。例えば、miR-196a又はその前駆体の発現量の比較においては、予後が良好である小細胞肺癌患者由来の生体試料における発現量を比較対象とすることができる。 In the above use, reference can be made to the description of the diagnosis, prediction, and examination method of the present invention, and any combination of the description and the description related to the above use is disclosed herein. For example, a biological sample derived from a small cell lung cancer patient, a control biological sample, and measurement and comparison of the expression level are the same as those described for the diagnostic method and test method of the present invention. For example, in the comparison of the expression level of miR-196a or a precursor thereof, the expression level in a biological sample derived from a small cell lung cancer patient with a good prognosis can be used as a comparison target.
 また本発明は、miR-153、miR-196a、miR-203、miR-216a又はそれらの前駆体からなる群より選択される少なくとも一種の機能の変化を指標とする、小細胞肺癌治療剤、小細胞肺癌予後改善剤、およびそれらの候補化合物のスクリーニング方法に関する。本発明に係るスクリーニング方法は小細胞肺癌患者由来の生体試料中で特定のmiRNAの発現量と予後が関連していることを見出したことに基づくものである。従って、本発明に係る小細胞肺癌治療剤、小細胞肺癌予後改善剤、およびそれらの候補化合物のスクリーニング方法は、miR-153、miR-196a、miR-203、miR-216a又はそれらの前駆体からなる群より選択される少なくとも一種の機能の変化を指標とするスクリーニング方法である。 The present invention also provides a therapeutic agent for small cell lung cancer, comprising as an index at least one function change selected from the group consisting of miR-153, miR-196a, miR-203, miR-216a, or a precursor thereof. The present invention relates to a prognosis improving agent for cell lung cancer and a screening method for those candidate compounds. The screening method according to the present invention is based on the finding that the expression level of a specific miRNA is associated with the prognosis in a biological sample derived from a patient with small cell lung cancer. Therefore, the therapeutic agent for small cell lung cancer, the prognosis improving agent for small cell lung cancer, and the candidate compound screening method thereof according to the present invention include miR-153, miR-196a, miR-203, miR-216a or their precursors. This is a screening method using as an index a change in at least one function selected from the group consisting of:
 ここで「機能の変化」には、例えば本発明に係るmiRNA又はその前駆体の発現量自体が変化する場合が挙げられる。また、本発明に係るmiRNA又はその前駆体の発現量自体は変化しないが該miRNA又はその前駆体が修飾されることによって該miRNA又はその前駆体の標的塩基配列を有する遺伝子の発現量を変化させる活性が変化する場合、本発明に係るmiRNA又はその前駆体の発現量自体は変化しないが該miRNA又はその前駆体の標的塩基配列を有する遺伝子の発現量を変化させる因子の発現や活性が変化する場合などにより、該miRNA又はその前駆体の標的塩基配列を有する遺伝子の発現量が変化する場合も含まれる。 Here, “change in function” includes, for example, a case where the expression level of miRNA or a precursor thereof according to the present invention changes. In addition, the expression level of the miRNA or precursor thereof according to the present invention does not change, but the expression level of the gene having the target base sequence of the miRNA or precursor thereof is changed by modifying the miRNA or precursor thereof. When the activity changes, the expression level of the miRNA according to the present invention or its precursor does not change, but the expression or activity of a factor that changes the expression level of the gene having the target base sequence of the miRNA or its precursor changes. The case where the expression level of the gene having the target base sequence of the miRNA or a precursor thereof changes depending on circumstances is also included.
 第一のスクリーニング方法は、例えば、miR-196a、miR-203又はそれらの前駆体の発現量の増加を指標に実施することができる。
 より具体的には、例えば、以下の(A)~(C)の工程を含むスクリーニング方法を挙げることができる。
(A)被検化合物とmiR-196a、miR-203又はそれらの前駆体をコードする核酸が発現している細胞を接触させる工程、
(B)miR-196a、miR-203又はそれらの前駆体をコードする核酸の発現量を測定する工程、
(C)被検化合物を添加しない場合に比べて、miR-196a、miR-203又はそれらの前駆体をコードする核酸の発現量を増加させた被検化合物を選択する工程
The first screening method can be performed using, for example, an increase in the expression level of miR-196a, miR-203 or a precursor thereof as an indicator.
More specifically, for example, a screening method including the following steps (A) to (C) can be mentioned.
(A) contacting a test compound with a cell expressing a nucleic acid encoding miR-196a, miR-203 or a precursor thereof;
(B) measuring the expression level of a nucleic acid encoding miR-196a, miR-203 or a precursor thereof,
(C) a step of selecting a test compound in which the expression level of a nucleic acid encoding miR-196a, miR-203 or a precursor thereof is increased compared to when no test compound is added.
 第二のスクリーニング方法は、例えば、miR-153、miR-216a又はそれらの前駆体の発現量の低下を指標に実施することができる。
 より具体的には、例えば、以下の(A)~(C)の工程を含むスクリーニング方法を挙げることができる。
(A)被検化合物とmiR-153、miR-216a又はそれらの前駆体をコードする核酸が発現している細胞を接触させる工程、
(B)miR-153、miR-216a又はそれらの前駆体をコードする核酸の発現量を測定する工程、
(C)被検化合物を添加しない場合に比べて、miR-153、miR-216a又はそれらの前駆体をコードする核酸の発現量を低下させた被検化合物を選択する工程
The second screening method can be performed using, for example, a decrease in the expression level of miR-153, miR-216a or a precursor thereof as an indicator.
More specifically, for example, a screening method including the following steps (A) to (C) can be mentioned.
(A) contacting a test compound with a cell expressing a nucleic acid encoding miR-153, miR-216a or a precursor thereof;
(B) measuring the expression level of a nucleic acid encoding miR-153, miR-216a or a precursor thereof,
(C) A step of selecting a test compound in which the expression level of a nucleic acid encoding miR-153, miR-216a or a precursor thereof is reduced compared to when no test compound is added.
 第三のスクリーニング方法は、例えば、miR-196a、miR-203又はそれらの前駆体が標的とする塩基配列への、miR-196a、miR-203又はそれらの前駆体の結合の促進を指標に実施することができる。標的塩基配列へのmiRNAの結合は、物理的な結合を検出してもよいし、あるいは結合による生物学的効果を指標として、機能的に結合を検出してもよい。
 より具体的には、例えば、以下の(A)~(C)の工程を含むスクリーニング方法を挙げることができる。
(A)被検化合物とmiR-196a、miR-203又はそれらの前駆体をコードする核酸が発現している細胞を接触させる工程、
(B)miR-196a、miR-203又はそれらの前駆体が標的とする塩基配列を有する遺伝子(標的遺伝子)の発現量を測定する工程、
(C)被検化合物を添加しない場合に比べて、miR-196a、miR-203又はそれらの前駆体が標的とする塩基配列を有する遺伝子(標的遺伝子)の発現量を低下させた被検化合物を選択する工程
The third screening method is carried out, for example, by promoting the binding of miR-196a, miR-203 or their precursors to the base sequence targeted by miR-196a, miR-203 or their precursors. can do. The binding of miRNA to the target base sequence may detect physical binding, or may detect binding functionally using the biological effect of binding as an index.
More specifically, for example, a screening method including the following steps (A) to (C) can be mentioned.
(A) contacting a test compound with a cell expressing a nucleic acid encoding miR-196a, miR-203 or a precursor thereof;
(B) measuring the expression level of a gene (target gene) having a base sequence targeted by miR-196a, miR-203 or a precursor thereof;
(C) A test compound in which the expression level of a gene (target gene) having a base sequence targeted by miR-196a, miR-203 or a precursor thereof is reduced compared to the case where no test compound is added. Process to select
 第四のスクリーニング方法は、例えば、miR-153、miR-216a又はそれらの前駆体が標的とする塩基配列への、miR-153、miR-216a又はそれらの前駆体の結合の阻害を指標に実施することができる。
 より具体的には、例えば、以下の(A)~(C)の工程を含むスクリーニング方法を挙げることができる。
(A)被検化合物とmiR-153、miR-216a又はそれらの前駆体をコードする核酸が発現している細胞を接触させる工程、
(B)miR-153、miR-216a又はそれらの前駆体が標的とする塩基配列を有する遺伝子(標的遺伝子)の発現量を測定する工程、
(C)被検化合物を添加しない場合に比べて、miR-153、miR-216a又はそれらの前駆体が標的とする塩基配列を有する遺伝子(標的遺伝子)の発現量を増加させた被検化合物を選択する工程
The fourth screening method is performed using, for example, inhibition of binding of miR-153, miR-216a or a precursor thereof to a base sequence targeted by miR-153, miR-216a or a precursor thereof as an indicator. can do.
More specifically, for example, a screening method including the following steps (A) to (C) can be mentioned.
(A) contacting a test compound with a cell expressing a nucleic acid encoding miR-153, miR-216a or a precursor thereof;
(B) measuring the expression level of a gene (target gene) having a base sequence targeted by miR-153, miR-216a or a precursor thereof;
(C) A test compound in which the expression level of a gene (target gene) having a base sequence targeted by miR-153, miR-216a or a precursor thereof is increased as compared with the case where no test compound is added. Process to select
 本発明に係る工程(A)における「被検化合物」としては、特に制限はなく、例えば、天然化合物、有機化合物、無機化合物、核酸(核酸アナログを含む)、タンパク質、ペプチド等の単一化合物、それらを発現するベクター、並びに、化合物ライブラリー、遺伝子ライブラリーの発現産物、細胞抽出物、細胞培養上清、発酵微生物産生物、海洋生物抽出物、植物抽出物、原核細胞抽出物、真核単細胞抽出物もしくは動物細胞抽出物を挙げることができる。核酸は修飾されていてもよく、結合体を含んでいてもよい。それらの具体例は本明細書に記載した通りである。上記被検化合物は必要に応じて適宜標識して用いることができる。標識としては、例えば、放射標識、蛍光標識を挙げることができる。また、「複数の被検化合物」としては、特に制限はなく、例えば、上記被検化合物に加えて、これらの被検化合物を複数種混合した混合物も含まれる。 The “test compound” in the step (A) according to the present invention is not particularly limited. For example, natural compounds, organic compounds, inorganic compounds, nucleic acids (including nucleic acid analogs), proteins, peptides and other single compounds, Vectors expressing them, as well as compound libraries, gene library expression products, cell extracts, cell culture supernatants, fermented microbial products, marine organism extracts, plant extracts, prokaryotic cell extracts, eukaryotic single cells Mention may be made of extracts or animal cell extracts. The nucleic acid may be modified and may contain a conjugate. Specific examples thereof are as described in this specification. The test compound can be appropriately labeled and used as necessary. Examples of the label include a radiolabel and a fluorescent label. Moreover, there is no restriction | limiting in particular as "a some test compound", For example, in addition to the said test compound, the mixture which mixed multiple types of these test compounds is also contained.
 本発明において「接触」は、被検化合物が細胞の外および/または中に結果的に接触することであってよく、例えば、細胞の培養液に被検化合物を添加することにより行うことができる。また、適宜トランスフェクション試薬やウイルスベクター等を利用することができる。 In the present invention, “contact” may mean that the test compound comes into contact outside and / or inside the cell, and can be performed, for example, by adding the test compound to the cell culture medium. . Moreover, a transfection reagent, a virus vector, etc. can be utilized suitably.
 miR-153、miR-196a、miR-203、miR-216a又はそれらの前駆体、および/または標的塩基配列を有する遺伝子を発現している細胞としては、天然にそれらを発現する細胞や、人工的にそれらを発現する細胞を用いることができる。具体的には、本発明に係るmiRNA又はその前駆体をコードする核酸が発現している細胞としては、例えば、癌細胞のほか、該miRNA又はその前駆体をコードする核酸を直接導入した動物細胞や酵母細胞や、該miRNA又はその前駆体をコードする核酸を発現するベクターを動物細胞や酵母細胞などの宿主細胞に導入して得られる形質転換細胞を用いることができる。例えば、miRNAと標的との結合を指標とする場合や、miRNAの発現量をmiRNAの安定性や分解を指標として検出する場合などにおいては、miR-153、miR-196a、miR-203、miR-216a又はそれらの前駆体を発現する細胞は、例えば発現ベクター等により、外来的に発現させることができる。転写活性の増減により発現量を変化させる化合物をスクリーニングする場合などにおいては、miR-153、miR-196a、miR-203、miR-216a又はそれらの前駆体を発現する細胞は、好ましくは、天然にそれらを発現する細胞が用いられる。 Cells expressing miR-153, miR-196a, miR-203, miR-216a or their precursors and / or genes having the target nucleotide sequence include cells that naturally express them, artificial In addition, cells expressing them can be used. Specifically, examples of the cell in which the nucleic acid encoding the miRNA or the precursor thereof according to the present invention is expressed include, for example, cancer cells and animal cells into which the nucleic acid encoding the miRNA or a precursor thereof is directly introduced. Or yeast cells, or transformed cells obtained by introducing a vector expressing a nucleic acid encoding the miRNA or a precursor thereof into a host cell such as an animal cell or a yeast cell. For example, in the case where the binding between miRNA and the target is used as an index, or the expression level of miRNA is detected using the stability or degradation of miRNA as an index, miR-153, miR-196a, miR-203, miR- Cells expressing 216a or their precursors can be expressed exogenously, for example, with an expression vector or the like. In the case of screening for a compound that changes the expression level by increasing or decreasing transcriptional activity, cells expressing miR-153, miR-196a, miR-203, miR-216a or their precursors are preferably naturally Cells expressing them are used.
 本発明に係る工程(B)の該miRNA又はその前駆体をコードする核酸及び、該miRNA又はその前駆体の標的塩基配列を有する遺伝子の発現量の測定には、公知の測定方法をいずれも使用できる。具体的には、例えばRT-PCRやその変法、ノーザンブロット法、in situハイブリダイゼーション法やマイクロアレイを用いる方法を挙げることができる。また、該miRNA又はその前駆体の標的塩基配列を、公知の適当なレポーター遺伝子発現ベクターに挿入し、該ベクターを適当な宿主細胞に導入し、その細胞と被検物質を接触させ、レポーター遺伝子の発現を指標に本発明に係るスクリーニングを実施することもできる。すなわち、本発明に係る工程(B)の標的塩基配列を有する遺伝子としては、該miRNAの天然の標的遺伝子であってもよいし、該miRNAの標的塩基配列を組み込んで作製したレポーター遺伝子であってもよい。例えば、レポーター遺伝子(GFPやルシフェラーゼ遺伝子など)の3’-UTR等に標的塩基配列を組み込んで使用することができる。標的塩基配列としては、miRNAとハイブリダイズする配列を適宜使用することができ、miRNAと完全に相補的でなくても、バルジを有するものであっても標的となりうる。また標的塩基配列は、例えばタンデムに、複数コピー挿入して標的遺伝子を構築することができる。具体的なレポーター遺伝子の作製は、公知の方法に従えばよい(Vermeulen A et al. RNA 13, 723-730 (2007); Ebert, M.S. et al., Nat. Methods 4, 721-726 (2007))。 Any known measurement method is used for measuring the expression level of the nucleic acid encoding the miRNA or its precursor in the step (B) according to the present invention and the gene having the target base sequence of the miRNA or its precursor. it can. Specifically, for example, RT-PCR, a modified method thereof, a Northern blot method, an in situ hybridization method, and a method using a microarray can be mentioned. Further, the target base sequence of the miRNA or a precursor thereof is inserted into a known appropriate reporter gene expression vector, the vector is introduced into a suitable host cell, the cell is contacted with a test substance, and the reporter gene Screening according to the present invention can also be performed using expression as an indicator. That is, the gene having the target base sequence of step (B) according to the present invention may be a natural target gene of the miRNA, or a reporter gene prepared by incorporating the target base sequence of the miRNA. Also good. For example, the target base sequence can be incorporated into a 3′-UTR of a reporter gene (such as GFP or luciferase gene). As the target base sequence, a sequence that hybridizes with miRNA can be used as appropriate, and even if it is not completely complementary to miRNA or has a bulge, it can be a target. The target gene can be constructed by inserting a plurality of copies of the target base sequence, for example, in tandem. A specific reporter gene can be prepared according to a known method (Vermeulen A et al. RNA 13, 723-730 (2007); Ebert, MS et al., Nat. Methods 4, 721-726 (2007) ).
 miRNA又はその前駆体が標的とする塩基配列(標的塩基配列)とは、miRNA又はその前駆体が翻訳抑制を引き起こすmRNAの3’-非翻訳領域に存在するmiRNA又はその前駆体によって認識される数塩基からなる核酸の塩基配列をいう。例えば、miRNAの5’末端の1~8番目の塩基配列に相補的な塩基配列が標的塩基配列であり(Nature 433:769-773(2005))、そのような配列を3’-非翻訳領域に有する遺伝子は標的遺伝子である可能性が高い。標的遺伝子は、例えば、標的塩基配列を用いて遺伝子DATAベースを検索する方法、HITS-CLIP法(Nature 460:479-486(2009))によって得ることができる。 The base sequence targeted by miRNA or its precursor (target base sequence) is the number recognized by miRNA or its precursor existing in the 3′-untranslated region of mRNA that causes translational suppression of miRNA or its precursor. The base sequence of a nucleic acid consisting of bases. For example, the base sequence complementary to the 1st to 8th base sequences at the 5 ′ end of miRNA is the target base sequence (Nature 433: 769-773 (2005)), and such a sequence is converted into a 3′-untranslated region. It is highly possible that the gene contained in is a target gene. The target gene can be obtained, for example, by a method for searching a gene DATA base using a target base sequence, the HITS-CLIP method (Nature 460: 479-486 (2009)).
 本発明は、以下の実施例によってさらに例示されるが、下記の実施例に限定されるものではない。なお本明細書に記載した文献およびその他の参照は、本明細書の一部として組み込まれる。 The present invention is further illustrated by the following examples, but is not limited to the following examples. References and other references mentioned herein are incorporated as part of this specification.
材料及び方法
 財団法人癌研究会附属病院ないし有明病院で1995年から2008年の間に手術切除された肺癌組織検体のうち、35人の小細胞肺癌(SCLC)の組織検体、11人の大細胞神経内分泌癌(LCNEC)の組織検体、4人の腺癌(Ad)の組織検体、5人の扁平上皮癌(Sq)の組織検体、8人の正常肺(NL)の組織検体を解析に用いた。すべてのサンプルは患者の同意を得て収集され、その使用は当院の倫理委員会の承認を得て行われた。
Materials and Methods Among lung cancer tissue specimens surgically excised between 1995 and 2008 at the Cancer Research Institute Hospital or Ariake Hospital, 35 small cell lung cancer (SCLC) tissue specimens, 11 large cells Neuroendocrine cancer (LCNEC) tissue specimens, 4 adenocarcinoma (Ad) tissue specimens, 5 squamous cell carcinoma (Sq) tissue specimens, and 8 normal lung (NL) tissue specimens for analysis It was. All samples were collected with patient consent and their use was approved by our ethics committee.
 患者背景を表1に示した。大部分は手術前又は後に化学療法を併用されていた。
Figure JPOXMLDOC01-appb-T000001
The patient background is shown in Table 1. Most were combined with chemotherapy before or after surgery.
Figure JPOXMLDOC01-appb-T000001
Total RNA抽出とマイクロRNA解析
 凍結された組織切片を薄切してHE染色を行い、切片中に腫瘍細胞の占める割合が70%以上であった標本をTotal RNA抽出に使用した。Total RNAの抽出は、mirVana miRNA Isolation Kit (Applied Biosystems社製) にて行った。抽出されたRNAの質の評価を、Agilent 2100 バイオアナライザ (Agilent社製) にて行った。Cy3にて標識したTotal RNAを、miRBaseデータベースv12.0に登録された866個のヒトmiRNAが搭載されたHuman miRNA Microarray (Agilent社製) へハイブリダイゼーションした。
Total RNA Extraction and MicroRNA Analysis A frozen tissue section was sliced and subjected to HE staining, and a specimen in which the proportion of tumor cells in the section was 70% or more was used for Total RNA extraction. Total RNA was extracted with mirVana miRNA Isolation Kit (Applied Biosystems). The quality of the extracted RNA was evaluated with an Agilent 2100 bioanalyzer (manufactured by Agilent). Total RNA labeled with Cy3 was hybridized to Human miRNA Microarray (manufactured by Agilent) loaded with 866 human miRNAs registered in miRBase database v12.0.
マイクロアレイデータのコンピューター解析
 マイクロアレイのデータはGeneSpring GX10ソフト(Agilent社製)を用いて解析した。各サンプルのmiRNA発現量の75%tile値にてノーマライゼーションを行い、生シグナル値が5以上のmiRNA 600個にて解析を行った。発現に差のあるmiRNAの抽出は、シグナル比(2.0以上)、およびANOVAとTukey post hoc検定(p<0.05)にて行った。多重検定の補正のためBenjamini-Hochberg補正を使用した。階層クラスタリングはピアソン係数を類似性の尺度に用いて行った。
Computer analysis of microarray data Microarray data was analyzed using GeneSpring GX10 software (manufactured by Agilent). Normalization was performed with a 75% tile value of the miRNA expression level of each sample, and analysis was performed with 600 miRNAs having a raw signal value of 5 or more. Extraction of miRNA having a difference in expression was performed by a signal ratio (2.0 or more), and ANOVA and Tukey post hoc test (p <0.05). Benjamini-Hochberg correction was used for multiple test correction. Hierarchical clustering was performed using the Pearson coefficient as a measure of similarity.
定量的RT-PCR
 Taqman microRNA kit (Applied Biosystem社製)にてmiR-153、miR-196a、miR-203、およびmiR-216aのcDNAを合成した。上記miRNAに適合するTaqmanプローブとプライマーが含有されたTaqman microRNA assays (Applied Biosystem社製)を用いて、定量的RT-PCRを行った。miRNA発現量補正のための内因性コントロールとして、U6を使用した。
Quantitative RT-PCR
CDNAs of miR-153, miR-196a, miR-203, and miR-216a were synthesized using Taqman microRNA kit (Applied Biosystem). Quantitative RT-PCR was performed using Taqman microRNA assays (Applied Biosystem) containing Taqman probes and primers compatible with the miRNA. U6 was used as an endogenous control for miRNA expression level correction.
<結果>
SCLCで発現変動の見られるmiRNA
 統計解析により、SCLCと正常肺の間で有意に発現が異なるmiRNAが101個抽出された。67個がSCLCで有意に低下、34個がSCLCで有意に上昇していた。
<Result>
MiRNA whose expression is changed by SCLC
Statistical analysis extracted 101 miRNAs with significantly different expression between SCLC and normal lung. 67 were significantly decreased by SCLC and 34 were significantly increased by SCLC.
階層クラスタリングで分類されるSCLCのサブグループ
 階層クラスタリングにより、2つの群に分類された(図1、 グループ 1、2)。グループ 1には神経内分泌癌のみ(SCLC20例、LCNEC3例)で構成されたのに対し、グループ 2は神経内分泌癌(SCLC15例、LCNEC8例)と共に非神経内分泌癌(扁平上皮癌4例)が分類された。残りの非神経内分泌癌もグループ 2の近縁に分類された。以前本発明者らが行ったmRNA発現プロファイリングによる分類(Jones M.H. et al., Lancet, 2004, 363: 775-781)とmiRNA発現プロファイリングによる分類はほぼ一致していた。
It was classified into two groups by SCLC sub-group hierarchical clustering classified by hierarchical clustering (FIG. 1, groups 1 and 2). Group 1 consisted of only neuroendocrine cancers (SCLC 20 cases, LCNEC 3 cases), whereas group 2 classified neuroendocrine cancers (SCLC 15 cases, LCNEC 8 cases) and non-neuroendocrine cancers (4 cases of squamous cell carcinoma) It was done. The remaining non-neuroendocrine cancers were also classified in Group 2. The classification by mRNA expression profiling performed previously by the present inventors (Jones MH et al., Lancet, 2004, 363: 775-781) and the classification by miRNA expression profiling were almost the same.
 グループ 1のSCLC(SCLC 1)とグループ 2のSCLC(SCLC 2)の生存曲線及び臨床病理学的背景の比較を、それぞれ図2及び表2に示す。
Figure JPOXMLDOC01-appb-T000002
(表は、600のmiRNAを用いた教師なし階層クラスタリングにより同定されたSCLCサブグループ間の臨床的特徴の比較を表す。)
A comparison of survival curves and clinicopathological background of group 1 SCLC (SCLC 1) and group 2 SCLC (SCLC 2) is shown in FIG. 2 and Table 2, respectively.
Figure JPOXMLDOC01-appb-T000002
(The table represents a comparison of clinical features between SCLC subgroups identified by unsupervised hierarchical clustering with 600 miRNAs.)
 SCLC 2は、SCLC 1に比べて有意に予後良好であった(5年生存率79%対0%、p=0.007)。手術前に化学療法が施行され治療効果判定が可能であった12例を検討したところ、SCLC 1では奏功6例/不変3例、SCLC 2では奏功2例/不変1例であり、化学療法の感受性に明らかな相違は認められなかった。 SCLC 2 had a significantly better prognosis than SCLC 1 (5-year survival rate 79% vs. 0%, p = 0.007). We examined 12 patients who were able to determine the treatment effect after chemotherapy before surgery. SCLC 1 showed 6 successful cases / invariant 3 cases, SCLC 2 had 2 successful cases / invariant 1 case. There was no obvious difference in sensitivity.
 治療開始前のproGRP値が測定されていたSCLC 1の14例とSCLC 2の13例では、SCLC 2で血清proGRP値が有意に低かった(26.4pg/ml対50.9pg/ml、p<0.01)。proGRP値は腫瘍量とも相関するが、proGRPが測定された症例の病期は、両群で有意な差を認めなかった(SCLC 1;Stage Iが6例、Stage II-IVが8例。SCLC 2;Stage Iが4例、Stage II-IVが9例。p=0.80)。喫煙指数がSCLC 2で有意に高かった(1347対824、p=0.03)。腫瘍径はSCLC 2で大きい傾向があった。proGRP値は腫瘍量にも影響されるが、今回の検討では両群の間に病期の差は明らかでなく、値の相違はproGRP産生能の相違を反映している可能性があると考えられた。これらの結果から、神経内分泌性がSCLCの予後に関与することが推測される。また、miR-153、miR-216a発現低下群、miR-196a、miR-203発現増加群は、神経内分泌癌で上昇する血清proGRP値が低い傾向にあり、神経内分泌マーカーの陽性率(免疫染色)が低い傾向にあった。 In 14 cases of SCLC 1 and 13 cases of SCLC 2 in which proGRP values were measured before the start of treatment, serum proGRP values were significantly lower in SCLC 2 (26.4 pg / ml vs. 50.9 pg / ml, p < 0.01). Although the proGRP value correlates with the tumor volume, the stage of the case in which proGRP was measured did not show a significant difference between the two groups (SCLC 1; Stage I 6 cases, Stage II-IV 8 cases. SCLC. 2; 4 cases of Stage I and 9 cases of Stage II-IV, p = 0.80). The smoking index was significantly higher in SCLC 2 (1347 vs. 824, p = 0.03). The tumor diameter tended to be large in SCLC 2. The proGRP value is also affected by the tumor volume, but in this study, the difference in stage between the two groups is not clear, and the difference in value may reflect the difference in proGRP production ability It was. From these results, it is speculated that neuroendocrine activity is involved in the prognosis of SCLC. In addition, miR-153, miR-216a decreased expression group, miR-196a, miR-203 increased expression group tend to have a low serum proGRP value that increases in neuroendocrine cancer, and the positive rate of neuroendocrine markers (immunostaining) Tended to be low.
SCLCの予後とmiRNA発現
 実施例1で解析に用いたSCLC患者の組織検体のうち、3年以上無再発生存したSCLC10例の組織検体と3年未満に癌により死亡したSCLC患者14例の組織検体を選択し、両者間で発現に差があるmiRNAを探索した。発現に差のあるmiRNAの抽出は、シグナル比(2.0以上)、およびANOVAとTukey post hoc検定(p<0.05)にて行った。
SCLC prognosis and miRNA expression Among the SCLC patient tissue samples used in the analysis in Example 1, 10 SCLC tissue samples that survived without recurrence for 3 years or more and 14 SCLC patients who died of cancer in less than 3 years Was selected, and miRNAs that differed in expression between the two were searched. Extraction of miRNA having a difference in expression was performed by a signal ratio (2.0 or more), and ANOVA and Tukey post hoc test (p <0.05).
 解析の結果、両者間で発現に差があるmiRNAとして、miR-153、miR-196a、miR-203又はmiR-216aを見出した。正常肺の組織検体(NL)、肺腺癌の組織検体(Ad)、肺扁平上皮癌の組織検体(Sq)、および階層クラスタリングで分類されたSCLC予後良好群(SCLC2)と予後不良群(SCLC1)のmiRNA発現量を比較した(図3(A))。4個のうち、miR-153、miR-203、miR-216aはSCLC予後不良群(SCLC1)のみで発現変動が見られ、SCLC予後良好群(SCLC2)における発現は、正常肺やSCLC以外の肺癌と同様であった。特に、miR-153及びmiR-216aの発現量は予後不良群において、いずれの群よりも増加しており、miR-203の発現量はいずれの群よりも低下していた。また、miR-196aの発現量は、予後不良群に比べ、予後良好群で発現が増加していた。
 予後良好なSCLCのmiRNA発現プロフィールは正常肺や非神経内分泌癌に近いことが、階層クラスタリングにより示唆されたので、これらmiR-153、miR-216a、miR-203は特に予後に関連する可能性が高いと考えられた。そこで、これら3個については定量RT-PCRでも発現量を測定した。マイクロアレイのデータと定量RT-PCRの結果はよく相関した(図3(B))。また予後不良群(SCLC1)と比べた場合、予後良好群(SCLC2)ではmiR-153とmiR-216aの発現が有意に低下、miR-203とmiR-196aの発現が有意に上昇していた。
As a result of the analysis, miR-153, miR-196a, miR-203, or miR-216a was found as miRNA having a difference in expression between the two. Normal lung tissue sample (NL), lung adenocarcinoma tissue sample (Ad), lung squamous cell carcinoma tissue sample (Sq), and SCLC good prognosis group (SCLC2) and poor prognosis group (SCLC1) classified by hierarchical clustering ) MiRNA expression levels were compared (FIG. 3A). Of the four, miR-153, miR-203, and miR-216a have altered expression only in the SCLC poor prognosis group (SCLC1), and the expression in the SCLC good prognosis group (SCLC2) is normal lung or lung cancer other than SCLC It was the same. In particular, the expression levels of miR-153 and miR-216a were higher in any group with poor prognosis than in any group, and the expression levels of miR-203 were lower than in any group. In addition, the expression level of miR-196a was increased in the good prognosis group compared to the poor prognosis group.
Hierarchical clustering suggests that the miRNA expression profile of SCLC with good prognosis is close to that of normal lung and non-neuroendocrine cancers, so these miR-153, miR-216a, and miR-203 may be particularly relevant for prognosis It was considered expensive. Therefore, the expression levels of these three were also measured by quantitative RT-PCR. Microarray data and quantitative RT-PCR results correlated well (FIG. 3B). Compared with the poor prognosis group (SCLC1), the good prognosis group (SCLC2) had significantly decreased miR-153 and miR-216a expression and significantly increased miR-203 and miR-196a expression.
 実施例1で解析に用いたSCLC患者35例を、miR-153、miR-196a、miR-203又はmiR-216aのそれぞれについて、中央値をカットオフ値として発現低下群と発現増加群に分類した。両群の臨床学的特徴と生存曲線を、表3および図4に示した。miR-153、miR-216a発現低下群、miR-196a発現増加群は有意に予後良好であった。miR-203発現増加群も予後良好な傾向であった。 Thirty-five SCLC patients used in the analysis in Example 1 were classified into a decrease-increase group and an increase-in-expression group with the median as the cut-off value for each of miR-153, miR-196a, miR-203, or miR-216a. . The clinical characteristics and survival curves of both groups are shown in Table 3 and FIG. The miR-153, miR-216a expression decreased group, and miR-196a expression increased group had significantly better prognosis. The miR-203 expression increased group also showed a favorable prognosis.
Figure JPOXMLDOC01-appb-T000003
(表は、SCLC症例をmiR-153、miR-203、miR-216a、およびmiR-196aの高/低発現群に分類したときの臨床的特徴の比較を示す。喫煙インデックスおよび化学療法への反応性は表2の脚注を参照。)
Figure JPOXMLDOC01-appb-T000003
(The table shows a comparison of clinical features when SCLC cases were classified into high / low expression groups of miR-153, miR-203, miR-216a, and miR-196a. Smoking index and response to chemotherapy (See footnote in Table 2 for gender.)
 また、miR-203、miR-153、およびmiR-216aの3つを用いた階層クラスタリングにより、実施例1で解析に用いたSCLC患者35例を分類した結果と各グループの生存曲線を図5に、miR-203、miR-196a、miR-153、およびmiR-216aの4つを用いた同様のクラスタリングによる分類と各グループの生存曲線を図6に示した。全SCLC患者を、予後良好な群と不良な群に分類することができた。 FIG. 5 shows the results of classifying 35 SCLC patients used in the analysis in Example 1 and the survival curve of each group by hierarchical clustering using three of miR-203, miR-153, and miR-216a. FIG. 6 shows the classification by the same clustering using four of miR-203, miR-196a, miR-196a, and miR-216a and the survival curve of each group. All SCLC patients could be classified into good prognosis group and poor prognosis group.
 miR-153、miR-203、およびmiR-216aの3つを用いて構築された予後予測モデルに基づいて、35例のSCLC患者の分類を行った。本モデルのアルゴリズムについて簡潔に述べると、3つの各miRNAについて判定樹法によりカットオフ値を決定し(miR-153、miR-203、およびmiR-216aはそれぞれ、-0.764、-1.46、および-1.67;log10値、定量的RT-PCRによる測定)、これをもとに3つのmiRNAの多数決にて患者を高リスク群と低リスク群に分類した。 Based on the prognostic prediction model constructed using three of miR-153, miR-203, and miR-216a, 35 SCLC patients were classified. Briefly describing the algorithm of this model, cut-off values are determined for each of the three miRNAs by the decision tree method (miR-153, miR-203, and miR-216a are -0.764, -1.46, respectively). Based on this, patients were classified into a high-risk group and a low-risk group based on the majority of three miRNAs.
 分類された予後不良群(高リスク)および予後良好群(低リスク)のSCLC特異的生存曲線を図7に、患者の臨床特性を表4に示す。 The SCLC-specific survival curves of the classified poor prognosis group (high risk) and good prognosis group (low risk) are shown in FIG. 7, and the clinical characteristics of patients are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 高リスク群に比べ、低リスク群は有意に予後良好であった(5年生存で0%対80.4%;p=0.004)。病期の分布は2群で類似していたが、治療前にproGRPレベルを測定した27患者において、血清proGRPレベルは高リスク群に比べ低リスク群で有意に低値を示した(26.5pg/ml対59.9pg/ml;p<0.01)。累積的喫煙は低リスク群の方が高リスク群より有意に高かった(1306対831;p=0.04)。また術前化学療法を実施した12ケースにおいて感受性の明らかな違いは認められなかった(PR:NC比は高リスク群で6:3、低リスク群で2:1)。腫瘍の組織学的所見は2群で緊密に似通っており、予備知識なく見分けるのは困難であった(図8)。従って、本発明は組織学的所見からは区別が難しい試料においても適用できる。 The low-risk group had a significantly better prognosis than the high-risk group (5% survival 0% vs. 80.4%; p = 0.004). The distribution of stage was similar in the two groups, but in 27 patients whose proGRP levels were measured before treatment, serum proGRP levels were significantly lower in the low risk group than in the high risk group (26.5 pg). / Ml vs. 59.9 pg / ml; p <0.01). Cumulative smoking was significantly higher in the low risk group than in the high risk group (1306 vs. 831; p = 0.04). In 12 cases where preoperative chemotherapy was performed, there was no obvious difference in sensitivity (PR: NC ratio was 6: 3 in the high-risk group and 2: 1 in the low-risk group). The histological findings of the tumors were closely similar in the two groups and were difficult to distinguish without prior knowledge (FIG. 8). Therefore, the present invention can be applied to a sample that is difficult to distinguish from histological findings.
 パフォーマンスの検証のために35例のSCLC患者をランダムにラーニングセット(患者数20)およびテストセット(患者数15)に分けた。なおラーニングセットはSCLC1患者11人とSCLC2患者9人で構成されるように選択した。ラーニングセットにおいて決定されたカットオフ値を基にテストセットの患者を分類し、ログランク試験による生存解析と、600個のmiRNAの階層クラスタリングによる分類との一致性の評価を行った。この作業を1,000回反復した。その結果、ログランク試験のp値の中央値および幾何学的平均は各々0.048および0.041で、本モデルによる予後予測は平均的には正確であることが示された(図9(A))。階層クラスタリングとの一致率および不一致率の平均は各々0.874および0.126であり、本モデルによる分類は600のmiRNAによる分類をおおむね正確に再現できることが示された(図9(B))。 For the performance verification, 35 SCLC patients were randomly divided into a learning set (20 patients) and a test set (15 patients). The learning set was selected to consist of 11 SCLC1 patients and 9 SCLC2 patients. Based on the cut-off value determined in the learning set, the test set patients were classified, and the consistency between the survival analysis by the log rank test and the classification by hierarchical clustering of 600 miRNAs was evaluated. This operation was repeated 1,000 times. As a result, the median and geometric mean of the p-value in the log rank test were 0.048 and 0.041, respectively, indicating that the prognosis prediction by this model is accurate on average (FIG. 9 ( A)). The average of the coincidence rate and the discrepancy rate with the hierarchical clustering was 0.874 and 0.126, respectively, and it was shown that the classification by this model can roughly reproduce the classification by 600 miRNAs (FIG. 9B). .
癌細胞増殖抑制のアッセイ
 SCLC細胞株である、MS1およびDMS53を用いる。MS1は10%FBS添加RPMI培地、DMS53は10%FBS添加DMEM培地にて、それぞれ培養する。miRIDIAN microRNA Hairpin Inhibitors/Mimic(Dharmacon, Lafayette, Co, USA)により、miR-153およびmiR-216aの機能阻害とmiR-203とmiR-196aの機能増強を行う。MS1細胞への導入はNucleofector II Device(Amaxa)を用いてエレクトロポレーション法にて行う。DMS53細胞への導入はLipofectamineTM2000(Invitrogen)を用いて行う。miRIDIAN microRNA Hairpin Inhibitors/Mimicネガティブコントロールを導入した細胞を、対照として使用する。導入細胞の増殖曲線により、miRNAの機能制御による治療効果を検出する。
 また導入細胞よりセルブロックを作成し、神経内分泌マーカー(Synaptophysin, ChromograninA, NCAM)の免疫染色を行い、また導入細胞よりタンパクを抽出し、神経内分泌マーカー(Synaptophysin, ChromograninA, NCAM)の定量を行って、導入細胞の神経内分泌性格を評価する。
Cancer Cell Growth Inhibition Assay SC1 cell lines MS1 and DMS53 are used. MS1 is cultured in RPMI medium supplemented with 10% FBS, and DMS53 is cultured in DMEM medium supplemented with 10% FBS. miRIDIAN microRNA Hairin Inhibitors / Mimic (Dharmacon, Lafayette, Co, USA) inhibits miR-153 and miR-216a and enhances miR-203 and miR-196a. Introduction into MS1 cells is performed by electroporation method using Nucleofector II Device (Amaxa). Introduction into DMS53 cells is performed using Lipofectamine ™ 2000 (Invitrogen). Cells introduced with miRIDIAN microRNA Hairpin Inhibitors / Mic negative control are used as controls. The therapeutic effect of miRNA function control is detected by the proliferation curve of the introduced cells.
In addition, cell blocks are prepared from the introduced cells, immunostaining of neuroendocrine markers (Synaptophysin, Chromogranin A, NCAM) is performed, proteins are extracted from the introduced cells, and neuroendocrine markers (Synaptophysin, Chromogranin A, NCAM) are quantified. Evaluate the neuroendocrine character of the introduced cells.
miRNAおよびmiRNA阻害剤による小細胞肺癌細胞の増殖抑制
 接着性SCLC細胞株であるDMS53(ATCC CRL-2062)及びSBC-5(JCRB NO: JCRB0819, Mitsuhashi,Y. et al., Cancer, 70:2540-2546, 1992)を用いた。DMS-53ではmiR-153は高発現し、SBC-5ではmiR-203の発現は低い(図10 (A) および (C))。DMS53及びSBC-5は10%FBS添加DMEM培地にて培養した。miRIDIAN microRNA Hairpin Inhibitors/Mimic (Dharmacon, Lafayette, Co, USA) により、miRIDIAN miR-153 inhibitor及びmiRIDIAN miR-203 mimicを作製し、miR-153の機能阻害とmiR-203の機能増強を行った。
 (1) miRIDIAN Hairpin Inhibitor IH-300616-08-0005, Human hsa-miR-153, MIMAT0000439, MI0000464, 5nmol (Mature microRNA Sequence: UUGCAUAGUCACAAAAGUGAUC/配列番号:1) :ThermoFisher Dharmacon製
 (2) miRIDIAN Mimic C-300562-03-0005, Human hsa-miR-203, MIMAT0000264, MI0000283, 5nmol (Mature microRNA Sequence: GUGAAAUGUUUAGGACCACUAG/配列番号:7) :ThermoFisher Dharmacon製
DMS53 (ATCC CRL-2062) and SBC-5 (JCRB NO: JCRB0819, Mitsuhashi, Y. et al., Cancer, 70: 2540) are adhesion-adapted SCLC cell lines of small cell lung cancer cells with miRNA and miRNA inhibitors -2546, 1992). In DMS-53, miR-153 is highly expressed, and in SBC-5, miR-203 is lowly expressed (FIGS. 10 (A) and (C)). DMS53 and SBC-5 were cultured in DMEM medium supplemented with 10% FBS. miRIDIAN miR-153 inhibitor and miRIDIAN miR-203 mimic were prepared by miRIDIAN microRNA Hairpin Inhibitors / Mimic (Dharmacon, Lafayette, Co, USA), and miR-153 function inhibition and miR-203 function enhancement were performed.
(1) miRIDIAN Hairpin Inhibitor IH-300616-08-0005, Human hsa-miR-153, MIMAT0000439, MI0000464, 5 nmol (Mature microRNA Sequence: UUGCAUAGUCACAAAAGUGAUC / SEQ ID NO: 1): ThermoFisher Dharmacon (2) miRIDIAN Mimic C-300562 -03-0005, Human hsa-miR-203, MIMAT0000264, MI0000283, 5 nmol (Mature microRNA Sequence: GUGAAAUGUUUAGGACCACUAG / SEQ ID NO: 7): ThermoFisher Dharmacon
(1) DMS-53におけるmiR-153 inhibitor導入実験
 実験前日に1ディッシュ (35mm) に5.0x105cellずつ植えた。当日、LipofectamineTM 2000 (Invitrogen:cat. #11668-019) 3μLにOPTI-MEMTM I (GIBCO:cat.#31985)(以下OPTI-MEMとする) 150μLの割合で加えた。軽くボルテックス、スピンダウンの上、室温にて5分間放置した。一方でオリゴ (miR-153 inhibitorならびにnegative control*1) も同様にそれぞれ60pmol/3μLに希釈し、そのうち3μLにOPTI-MEM 150μLの割合で加えて軽くボルテックス、スピンダウンした。これらを加え室温で20分放置し、細胞と培養液の入った上記のディッシュに306μLずつ分注し、よく混和した。37℃、5% CO2 インキュベーター内で数日間培養し増殖を確認した。0hr、48hrs、122hrs(confluent)にて細胞数をカウントし比較検討した。
(*1: miRIDIAN microRNA Hairpin Inhibitor Negative Control #1 IN-001005-01-05(catalog item))
(1) miR-153 inhibitor introduction experiment in DMS-53 5.0x10 5 cells were planted in 1 dish (35 mm) the day before the experiment. On the day, 3 μL of Lipofectamine 2000 (Invitrogen: cat. # 11668-019) was added at a ratio of 150 μL of OPTI-MEM I (GIBCO: cat. # 31985) (hereinafter referred to as OPTI-MEM). Lightly vortexed and spun down and left at room temperature for 5 minutes. On the other hand, oligos (miR-153 inhibitor and negative control * 1 ) were similarly diluted to 60 pmol / 3 μL, added to 3 μL at a ratio of 150 μL of OPTI-MEM, and lightly vortexed and spun down. These were added and allowed to stand at room temperature for 20 minutes, and 306 μL each was dispensed into the above-mentioned dish containing cells and culture solution and mixed well. Growth was confirmed by culturing for several days in a 37 ° C., 5% CO 2 incubator. The number of cells was counted at 0 hr, 48 hrs, and 122 hrs (confluent) for comparison.
(* 1: miRIDIAN microRNA Hairpin Inhibitor Negative Control # 1 IN-001005-01-05 (catalog item))
(2) SBC-5におけるmiR-203mimic導入実験
 DMS-53における実験と同様に、実験前日に1ディッシュ (35mm) に3.0x105cellずつ植えた。当日、LipofectamineTM 2000 3μLにOPTI-MEM 150μLの割合で加えた。軽くボルテックス、スピンダウンの上、室温にて5分間放置した。一方でオリゴ (miR-203 mimicならびにnegative control*2) も同様にそれぞれ60pmol/3μLに希釈し、そのうち3μLにOPTI-MEM 150μLの割合で加えて軽くボルテックス、スピンダウンした。これらを加え室温で20分放置し、細胞と培養液の入った上記のディッシュに306μLずつ分注し、よく混和した。37℃、5% CO2 インキュベーター内で数日間培養し増殖を確認した。0hr、23hrs、48hrs、51hrs、69hrs、96hrs、120hrs(confluent)にて細胞数をカウントし比較検討した。
(*2: miRIDIAN microRNA Mimic Negative Control #1 CN-001000-01-05(catalog item))
(2) miR-203mimic introduction experiment in SBC-5 Similar to the experiment in DMS-53, 3.0x10 5 cells were planted in 1 dish (35mm) the day before the experiment. On the day, 150 μL of OPTI-MEM was added to 3 μL of Lipofectamine 2000. Lightly vortexed and spun down and left at room temperature for 5 minutes. On the other hand, oligos (miR-203 mimic and negative control * 2 ) were similarly diluted to 60 pmol / 3 μL, respectively, 3 μL of which was added at a ratio of 150 μL of OPTI-MEM, and lightly vortexed and spun down. These were added and allowed to stand at room temperature for 20 minutes, and 306 μL each was dispensed into the above-mentioned dish containing cells and culture solution and mixed well. Growth was confirmed by culturing for several days in a 37 ° C., 5% CO 2 incubator. The number of cells was counted and compared at 0 hr, 23 hrs, 48 hrs, 51 hrs, 69 hrs, 96 hrs, 120 hrs (confluent).
(* 2: miRIDIAN microRNA Mimic Negative Control # 1 CN-001000-01-05 (catalog item))
(3) 結果
 miRIDIAN miR-153 inhibitorはDMS-53の増殖を抑制することが確認された。また、miRIDIAN miR-203 mimicはSBC-5の増殖を低下させた(図10)。
 従って、miR-153の阻害剤は、特にmiR-153が高発現している患者において、小細胞肺癌の治療剤として使用できる可能性があることが明らかとなった。また、miR-203のmimicは、特にmiR-203の発現が低下している患者において、小細胞肺癌の治療剤として使用できる可能性があることが明らかとなった。これらの結果から、miR-216aの阻害剤及びmiR-196aのmimicも同様に小細胞肺癌の治療剤として使用できる可能性が示唆された。
(3) Results It was confirmed that miRIDIAN miR-153 inhibitor inhibits the proliferation of DMS-53. MiRIDIAN miR-203 mimic also reduced SBC-5 proliferation (FIG. 10).
Therefore, it has been clarified that an inhibitor of miR-153 may be used as a therapeutic agent for small cell lung cancer, particularly in patients where miR-153 is highly expressed. In addition, it was revealed that miR-203 mimic could be used as a therapeutic agent for small cell lung cancer, particularly in patients with reduced miR-203 expression. These results suggested that miR-216a inhibitor and miR-196a mimic could also be used as therapeutic agents for small cell lung cancer.
 本発明により、miRNAを利用したSCLCの予後の予測、検査、および診断方法が提供された。また本発明により、miRNAを利用したSCLC治療方法、SCLC予後改善方法、SCLC治療剤、SCLC予後改善剤、及びSCLC治療薬・予後改善剤のスクリーニング方法が提供された。 The present invention provides a method for predicting, examining, and diagnosing the prognosis of SCLC using miRNA. In addition, the present invention provides an SCLC treatment method, an SCLC prognosis improvement method, an SCLC treatment agent, an SCLC prognosis improvement agent, and an SCLC treatment / prognosis improvement screening method using miRNA.

Claims (16)

  1. 小細胞肺癌患者由来の生体試料において、miR-153、miR-196a、miR-203、miR-216a又はそれらの前駆体からなる群より選択される少なくとも一種の発現量を測定する、小細胞肺癌患者における予後を判定するための検査方法。 A patient with small cell lung cancer that measures at least one expression level selected from the group consisting of miR-153, miR-196a, miR-203, miR-216a or a precursor thereof in a biological sample derived from a patient with small cell lung cancer Inspection method for determining prognosis in children.
  2. 上記方法において、miR-153、miR-216a又はそれらの前駆体の発現量が、対照生体試料における発現量より増加している場合に予後が不良であると判定するための、請求項1記載の方法。 The method according to claim 1, wherein the prognosis is determined to be poor when the expression level of miR-153, miR-216a or a precursor thereof is higher than the expression level in a control biological sample. Method.
  3. 上記方法において、miR-203又はその前駆体の発現量が、対照生体試料における発現量より減少している場合に予後が不良であると判定するための、請求項1記載の方法。 The method according to claim 1, wherein the prognosis is poor when the expression level of miR-203 or a precursor thereof is lower than the expression level in a control biological sample.
  4. 上記方法において、miR-196a又はその前駆体の発現量が、予後が良好である小細胞肺癌患者由来の生体試料における発現量より減少している場合に予後が不良であると判定するための、請求項1記載の方法。 In the above method, when the expression level of miR-196a or a precursor thereof is lower than the expression level in a biological sample derived from a small cell lung cancer patient having a good prognosis, the prognosis is determined to be poor. The method of claim 1.
  5. 小細胞肺癌を治療する方法であって、
    (1)小細胞肺癌患者由来の生体試料において、miR-196a、miR-203又はそれらの前駆体の少なくとも1種の発現量が対照生体試料と比較して減少している場合は、該減少している少なくとも1種のmiRNA、その前駆体、又はそれらを発現するベクターを投与すること;又は/及び、
    (2)小細胞肺癌患者由来の生体試料において、miR-153、miR-216a又はそれらの前駆体の少なくとも1種の発現量が対照生体試料と比較して増加している場合は、該miRNA又はそれらの前駆体の機能を阻害する少なくとも1種の化合物を投与すること;
    を含む、小細胞肺癌を治療する方法。
    A method of treating small cell lung cancer, comprising:
    (1) In a biological sample derived from a patient with small cell lung cancer, when the expression level of at least one of miR-196a, miR-203 or a precursor thereof is decreased compared to a control biological sample, the decrease Administering at least one miRNA, a precursor thereof, or a vector that expresses them; and / or
    (2) In a biological sample derived from a patient with small cell lung cancer, if the expression level of at least one of miR-153, miR-216a or a precursor thereof is increased compared to the control biological sample, the miRNA or Administering at least one compound that inhibits the function of their precursors;
    A method of treating small cell lung cancer, comprising:
  6. 小細胞肺癌の予後を改善する方法であって、
    (1)小細胞肺癌患者由来の生体試料において、miR-196a、miR-203又はそれらの前駆体の少なくとも1種の発現量が対照生体試料と比較して減少している場合は、該減少している少なくとも1種のmiRNA、その前駆体、又はそれらを発現するベクターを投与すること;又は/及び、
    (2)小細胞肺癌患者由来の生体試料において、miR-153、miR-216a又はそれらの前駆体の少なくとも1種の発現量が対照生体試料と比較して増加している場合は、該miRNA又はその前駆体の機能を阻害する少なくとも1種の化合物を投与すること;
    を含む、小細胞肺癌の予後を改善する方法。
    A method for improving the prognosis of small cell lung cancer,
    (1) In a biological sample derived from a patient with small cell lung cancer, when the expression level of at least one of miR-196a, miR-203 or a precursor thereof is decreased compared to a control biological sample, the decrease Administering at least one miRNA, a precursor thereof, or a vector that expresses them; and / or
    (2) In a biological sample derived from a patient with small cell lung cancer, if the expression level of at least one of miR-153, miR-216a or a precursor thereof is increased compared to the control biological sample, the miRNA or Administering at least one compound that inhibits the function of the precursor;
    A method for improving the prognosis of small cell lung cancer, comprising:
  7. 上記生体試料が、血清、血漿、肺癌組織、細胞からなる群に由来する、請求項1~6記載の方法。 The method according to claims 1 to 6, wherein the biological sample is derived from the group consisting of serum, plasma, lung cancer tissue, and cells.
  8. miR-196a、miR-203、それらの前駆体、又はそれらを発現するベクターの少なくとも1種を含む小細胞肺癌治療剤。 A therapeutic agent for small cell lung cancer comprising at least one of miR-196a, miR-203, a precursor thereof, or a vector that expresses them.
  9. miR-153、miR-216a又はそれらの前駆体の少なくとも1種の機能を阻害する化合物を含む小細胞肺癌治療剤。 A therapeutic agent for small cell lung cancer comprising a compound that inhibits at least one function of miR-153, miR-216a or a precursor thereof.
  10. miR-196a、miR-203、それらの前駆体、又はそれらを発現するベクターの少なくとも1種を含む小細胞肺癌の予後改善剤。 A prognosis improving agent for small cell lung cancer comprising at least one of miR-196a, miR-203, a precursor thereof, or a vector expressing the same.
  11. miR-153、miR-216a又はそれらの前駆体の少なくとも1種の機能を阻害する化合物を含む小細胞肺癌の予後改善剤。 A prognosis improving agent for small cell lung cancer comprising a compound that inhibits at least one function of miR-153, miR-216a, or a precursor thereof.
  12. 小細胞肺癌治療剤または小細胞肺癌の予後改善剤のスクリーニング方法であって、miR-153、miR-196a、miR-203、miR-216a又はそれらの前駆体からなる群より選択される少なくとも一種の機能の変化を指標とする、スクリーニング方法。 A method for screening a therapeutic agent for small cell lung cancer or a prognosis improving agent for small cell lung cancer, comprising at least one selected from the group consisting of miR-153, miR-196a, miR-203, miR-216a or a precursor thereof. A screening method that uses changes in function as an index.
  13. 機能の変化は、miR-196a、miR-203又はそれらの前駆体の発現量の増加である、請求項12に記載の方法。 The method according to claim 12, wherein the change in function is an increase in the expression level of miR-196a, miR-203 or a precursor thereof.
  14. 機能の変化は、miR-153、miR-216a又はそれらの前駆体の発現の阻害である、請求項12に記載の方法。 13. The method of claim 12, wherein the change in function is inhibition of expression of miR-153, miR-216a or precursors thereof.
  15. 機能の変化は、miR-196a、miR-203又はそれらの前駆体が標的とする塩基配列への、miR-196a、miR-203又はそれらの前駆体の結合の促進である、請求項12に記載の方法。 The change in function is promotion of binding of miR-196a, miR-203 or a precursor thereof to a base sequence targeted by miR-196a, miR-203 or a precursor thereof. the method of.
  16. 機能の変化は、miR-153、miR-216a又はそれらの前駆体が標的とする塩基配列への、miR-153、miR-216a又はそれらの前駆体の結合の阻害である、請求項12に記載の方法。 The change in function is inhibition of binding of miR-153, miR-216a or a precursor thereof to a base sequence targeted by miR-153, miR-216a or a precursor thereof. the method of.
PCT/JP2010/067432 2010-04-05 2010-10-05 Method for prediction of prognosis of small cell lung cancer, method for treatment of small cell lung cancer, method for amelioration of prognosis of small cell lung cancer, and method for screening for therapeutic agent for small cell lung cancer, each utilizing mirna WO2011125245A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012509270A JPWO2011125245A1 (en) 2010-04-05 2010-10-05 Method for predicting prognosis of small cell lung cancer using miRNA, method for treating small cell lung cancer, method for improving prognosis of small cell lung cancer, and method for screening agent for treating small cell lung cancer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-087093 2010-04-05
JP2010087093 2010-04-05

Publications (1)

Publication Number Publication Date
WO2011125245A1 true WO2011125245A1 (en) 2011-10-13

Family

ID=44762220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067432 WO2011125245A1 (en) 2010-04-05 2010-10-05 Method for prediction of prognosis of small cell lung cancer, method for treatment of small cell lung cancer, method for amelioration of prognosis of small cell lung cancer, and method for screening for therapeutic agent for small cell lung cancer, each utilizing mirna

Country Status (2)

Country Link
JP (1) JPWO2011125245A1 (en)
WO (1) WO2011125245A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014126233A1 (en) * 2013-02-15 2014-08-21 国立大学法人東京医科歯科大学 Method for assaying microrna, cancer therapeutic agent, and medicinal composition containing same for cancer therapy
CN107384921A (en) * 2017-07-27 2017-11-24 中国人民解放军总医院 MiR216a is used for propagation, invasion and attack and the migration for suppressing osteosarcoma cell
CN112094904A (en) * 2020-09-30 2020-12-18 中国人民解放军军事科学院军事医学研究院 Microorganism species level marker for acute ionizing radiation early damage detection and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008154333A2 (en) * 2007-06-08 2008-12-18 Asuragen, Inc. Mir-34 regulated genes and pathways as targets for therapeutic intervention
JP2009028036A (en) * 2007-06-28 2009-02-12 Mitsubishi Chemical Medience Corp Detection method for tissue damage or cell proliferative disorder
JP2009531018A (en) * 2006-01-05 2009-09-03 ジ・オハイオ・ステイト・ユニバーシティ・リサーチ・ファウンデイション MicroRNA-based methods and compositions for lung cancer diagnosis, prognosis and treatment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009531018A (en) * 2006-01-05 2009-09-03 ジ・オハイオ・ステイト・ユニバーシティ・リサーチ・ファウンデイション MicroRNA-based methods and compositions for lung cancer diagnosis, prognosis and treatment
WO2008154333A2 (en) * 2007-06-08 2008-12-18 Asuragen, Inc. Mir-34 regulated genes and pathways as targets for therapeutic intervention
JP2009028036A (en) * 2007-06-28 2009-02-12 Mitsubishi Chemical Medience Corp Detection method for tissue damage or cell proliferative disorder

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
OBA, TAKEHIKO ET AL: "Identification of subgroup with good prognosis of small-cell lung cancer by miRNA expression profiling", AACR 101ST ANNUAL MEETING 2010, 12 March 2010 (2010-03-12), Retrieved from the Internet <URL:http://www.abstractsonline.com/Plan/ViewAbstract.aspx?sKey=ab4788a7-757c-403c-a00e-404cd806d69f&cKey=7308da44-068a-4bb9-b211-7b4e3c054407&mKey=%7B0591FA3B-AFEF-49D2-8E65-55F41EE8117E%7D> [retrieved on 20101206] *
TAKEHIKO OBA ET AL.: "Hai Shosaibo Gan ni Okeru microRNA Hatsugen Profile no Kaiseki, O-117", JAPANESE JOURNAL OF LUNG CANCER, vol. 49, 5 October 2009 (2009-10-05), pages 624 *
TAKEHIKO OBA ET AL.: "MicroRNA Hatsugen Profiling ni yoru Yogo Ryoko na Hai Shosaibo Gan no Dotei, 1-E-12", PROCEEDINGS OF THE JAPANESE SOCIETY OF PATHOLOGY, vol. 99, 26 March 2010 (2010-03-26), pages 190 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014126233A1 (en) * 2013-02-15 2014-08-21 国立大学法人東京医科歯科大学 Method for assaying microrna, cancer therapeutic agent, and medicinal composition containing same for cancer therapy
US9994843B2 (en) 2013-02-15 2018-06-12 National University Corporation Tokyo Medical And Dental University Method for assaying microRNA, cancer therapeutic agent, and medicinal composition containing same for cancer therapy
US10876115B2 (en) 2013-02-15 2020-12-29 National University Corporation Tokyo Medical And Dental University Method for assaying MicroRNA, cancer therapeutic agent, and medical composition containing same for cancer therapy
CN107384921A (en) * 2017-07-27 2017-11-24 中国人民解放军总医院 MiR216a is used for propagation, invasion and attack and the migration for suppressing osteosarcoma cell
CN107384921B (en) * 2017-07-27 2020-09-15 中国人民解放军总医院 miR216a for inhibiting proliferation, invasion and migration of osteosarcoma cells
CN112094904A (en) * 2020-09-30 2020-12-18 中国人民解放军军事科学院军事医学研究院 Microorganism species level marker for acute ionizing radiation early damage detection and application thereof

Also Published As

Publication number Publication date
JPWO2011125245A1 (en) 2013-07-08

Similar Documents

Publication Publication Date Title
JP5624470B2 (en) Expression of miRNA and its use in human peripheral blood microvesicles
JP6153932B2 (en) MicroRNA-based methods and assays for osteosarcoma
Li et al. Hyperglycaemia-induced miR-301a promotes cell proliferation by repressing p21 and Smad4 in prostate cancer
Wu et al. miR-362-5p inhibits proliferation and migration of neuroblastoma cells by targeting phosphatidylinositol 3-kinase-C2β
Zhan et al. MicroRNA-548j functions as a metastasis promoter in human breast cancer by targeting Tensin1
WO2006074367A2 (en) Method of predicting and reducing risk of metastasis of breast cancer to lung
US20160346311A1 (en) Long non-coding rna spry4-it1 as a diagnostic and therapeutic agent
EP2683411B1 (en) Methods of using microrna-26a to promote angiogenesis
US11639531B2 (en) Composition, kit, and method for diagnosis and treatment of taxane anticancer agent-resistant cancer
US9994915B2 (en) miR-211 expression and related pathways in human melanoma
EP2886122B1 (en) Agent for treating cancer
WO2011125245A1 (en) Method for prediction of prognosis of small cell lung cancer, method for treatment of small cell lung cancer, method for amelioration of prognosis of small cell lung cancer, and method for screening for therapeutic agent for small cell lung cancer, each utilizing mirna
US8921333B2 (en) Therapeutic agent for tumor
KR102142791B1 (en) Use of miR-204 inhibitors for treating osteoarthritis
US9631194B2 (en) Methods and compositions for use in treatment of FOXP2-related cancers
WO2010050328A1 (en) Tumor metastasis inhibitor
US10905708B2 (en) MicroRNA-based methods and assays for osteocarcinoma
US11260072B2 (en) MicroRNA-based methods and assays for osteocarcinoma
EP2199407A1 (en) In vitro methods and compositions for the diagnosis and/or treatment of adenocarcinoma
CN110964832A (en) Target genes for lung cancer diagnosis and treatment
CN110951888A (en) Reagent for detecting and targeting AL845472.2 and application of reagent in lung cancer diagnosis and treatment
Mody Investigation of Micro-RNA-based Approaches to Overcome Epithelial-Mesenchymal Transition in Pancreatic Cancer
WO2017176215A1 (en) Cancer biomarkers and methods of use
JP2012512642A (en) Method for identifying gene related to TRAIL-induced apoptosis and therapeutic application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10849485

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012509270

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10849485

Country of ref document: EP

Kind code of ref document: A1